WO2010150755A1 - 光記録媒体 - Google Patents

光記録媒体 Download PDF

Info

Publication number
WO2010150755A1
WO2010150755A1 PCT/JP2010/060492 JP2010060492W WO2010150755A1 WO 2010150755 A1 WO2010150755 A1 WO 2010150755A1 JP 2010060492 W JP2010060492 W JP 2010060492W WO 2010150755 A1 WO2010150755 A1 WO 2010150755A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
protective layer
recording
recording medium
film thickness
Prior art date
Application number
PCT/JP2010/060492
Other languages
English (en)
French (fr)
Inventor
孝志 大野
善宏 野田
Original Assignee
三菱化学メディア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学メディア株式会社 filed Critical 三菱化学メディア株式会社
Priority to EP10792073.8A priority Critical patent/EP2447945A4/en
Priority to CN201080027000.0A priority patent/CN102804269B/zh
Publication of WO2010150755A1 publication Critical patent/WO2010150755A1/ja
Priority to US13/331,691 priority patent/US8535775B2/en
Priority to HK13100942.4A priority patent/HK1173839A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B7/2578Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/254Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers
    • G11B7/2548Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers consisting essentially of inorganic materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank

Definitions

  • the present invention relates to a multilayer optical recording medium having a plurality of recording layers.
  • an optical recording medium having a higher capacity is desired.
  • One method for increasing the capacity is a set of a recording layer and a reflection layer, a protective layer, and the like necessary for recording / reproducing on the recording layer (hereinafter, this set is referred to as a “recording / reproducing functional layer”). ) Are stacked so as to be optically separated from each other, and a multilayer optical recording medium is obtained by stacking a plurality of layers so as to greatly increase the capacity.
  • outermost recording / reproducing functional layer In a recording / reproducing functional layer (hereinafter referred to as “outermost recording / reproducing functional layer”) that is farthest from the laser beam incident side of a multilayer optical recording medium, it is generally unnecessary to increase the transmittance. It is possible to design an optical recording medium similar to the type of optical recording medium.
  • a recording / reproducing functional layer other than the outermost recording / reproducing functional layer (hereinafter referred to as a “transmissive recording / reproducing functional layer”) requires a predetermined transmittance, so that only a part of incident light is recorded / reproduced. Cannot be used for Further, since the recording / reproducing functional layer other than the recording / reproducing functional layer closest to the laser incident side has the recording / reproducing functional layer on the front side, only a part of the incident light can be used for signal recording / reproducing. Therefore, each recording / reproducing functional layer in the multilayer optical recording medium has a significantly reduced signal strength as compared with the single-layer optical recording medium. Therefore, it is necessary for the reproduction system of the multilayer optical recording medium to be able to cope with a case where the signal intensity is low, and such a reproduction technique has been developed in recent years.
  • a transmission type recording / reproducing functional layer is provided with a protective layer, a recording layer, a protective layer, a reflective layer, and a protective layer in this order from the laser light incident side.
  • a material having a high transmittance is used as the material of each layer constituting the transmissive recording / reproducing functional layer, or the thickness of each layer constituting the transmissive recording / reproducing functional layer. It may be possible to reduce the thickness. For example, it is conceivable to make the recording layer and the reflection layer thin. However, these layers have a large contribution to the signal intensity both thermally and optically, and the recording / reproducing characteristics tend to decrease as the thickness becomes thinner. For this reason, considering the transparency, it is preferable that the layer is thin, and it is not always possible to select a layer configuration that can form a recording mark cleanly, giving priority only to optimization of recording characteristics.
  • the adjustment range of the thickness of the reflective layer and the recording layer tends to be narrow. More precisely, the recording / reproducing characteristics of the recording / reproducing functional layer including the reflectance and transmittance are determined by the combination with the reflective layer and the protective layer formed above and below the recording layer, but it is not necessary to reduce the transmittance. Compared with the case, the adjustment range of the film thickness and the like tends to be extremely narrow.
  • the reflective layer has a role of quickly releasing heat from the phase change type recording layer that has absorbed the laser light and forming a clean amorphous mark.
  • a thick reflective layer with high thermal conductivity it is possible to design an optical recording medium that is easy to record and easy to erase.
  • a thin reflective layer is used for the purpose of forming a multilayer optical recording medium. It is very difficult to design an optical recording medium having layers.
  • the protective layer between the recording layer and the reflective layer is a layer that absorbs light energy and releases heat from the recording layer whose temperature has risen to the reflective layer.
  • the heat dissipation effect from the recording layer is controlled by the thickness of this protective layer, the film thickness adjustment range of the recording layer and the reflective layer is narrow. The thickness is almost decided. Therefore, the film thickness adjustment range of this protective layer is small, and generally the film thickness is thinner than the other two protective layers.
  • the transmittance of the recording / reproducing functional layer is often adjusted by the two outer protective layers.
  • the transmittance of the outer two protective layers is adjusted by adjusting the reflectance by using the interference effect of the material (dielectric material) used for the two outer protective layers.
  • the refractive index of the transparent resin or the substrate is often around 1.5, but the reflectance can be freely adjusted by making it as large as possible as compared with the refractive index of the transparent resin or the substrate sandwiching the recording / reproducing functional layer. be able to.
  • the transparency is high, and particularly at the wavelength of laser light used for recording / reproduction (hereinafter, sometimes referred to as “recording / reproducing laser wavelength”). It is preferable that transparency is high.
  • a recording / reproducing laser wavelength of 450 nm or less is often used, and materials that can be preferably used at this wavelength are limited.
  • the material for the protective layer preferably satisfies excellent conditions such as a high refractive index, low absorption, and high film formation speed, and a suitable material is mainly composed of ZnS.
  • the material to be used is preferably used.
  • (ZnS) 80 (SiO 2 ) 20 or the like is a material often used particularly in phase change optical disks (see Patent Document 1).
  • the transmissive recording / reproducing functional layer tends to be more significantly affected by non-uniformity in film thickness and film quality.
  • the material mainly composed of ZnS is an excellent material having a high refractive index, low light absorption, and high film formation speed. Therefore, it is often used for forming a protective layer. Tends to be difficult to obtain. Therefore, the film thickness is likely to change in the optical recording medium, and it tends to be difficult to obtain excellent recording / reproducing characteristics over the entire surface of the optical recording medium.
  • the transparent recording / reproducing functional layer tends to be particularly large.
  • the problem of non-uniformity of the recording / reproducing characteristics due to the non-uniformity of the film thickness becomes more conspicuous in an optical recording medium having a short recording / reproducing laser wavelength. This is because the phase difference due to the optical path difference due to the film thickness difference is inversely proportional to the recording / reproducing laser wavelength unless the refractive index changes with wavelength. This tendency contributes to an increase in the characteristic distribution because the film thickness difference in the optical recording medium increases as the film thickness increases.
  • the present invention has been made in order to solve the above-described problems, and its purpose is to make the reflectance uniformity in a recording / reproducing functional layer other than the recording / reproducing functional layer farthest from the laser beam incident side in a multilayer optical recording medium. Another object is to obtain an optical recording medium excellent in durability, signal strength and the like.
  • the inventors of the present invention have a translucent recording / reproduction having at least a first protective layer, a second protective layer, a recording layer, a third protective layer, a reflective layer, and a fourth protective layer in this order from the laser light incident side.
  • a translucent recording / reproduction having at least a first protective layer, a second protective layer, a recording layer, a third protective layer, a reflective layer, and a fourth protective layer in this order from the laser light incident side.
  • the above problem can be solved by adjusting the film thicknesses of the second protective layer and the fourth protective layer having a relatively wide film thickness adjustment range to have a specific relationship.
  • the present inventors have found that the present invention can be accomplished and have completed the present invention.
  • the gist of the present invention is that translucent recording having at least a first protective layer, a second protective layer, a recording layer, a third protective layer, a reflective layer, and a fourth protective layer in this order from the laser light incident side.
  • An optical recording medium having a reproducing functional layer, The second protective layer and the fourth protective layer are made of a material having the same constituent element, The refractive index of the second protective layer is 0.3 or more larger than the refractive index of the first protective layer, When the film thickness of the second protective layer is D2, the film thickness of the fourth protective layer is D4, and the reflectance before recording when the laser beam is focused on the recording layer is R, the increase with respect to the film thickness of R
  • the optical recording medium is characterized in that the sign d (R) / d (D2) and d (R) / d (D4) are opposite in sign.
  • the second protective layer and the fourth protective layer are made of a material containing ZnS.
  • the first protective layer preferably has a thickness of 12 nm or more and a refractive index at a recording / reproducing laser wavelength of 1.30 or more and 1.80 or less.
  • the film thickness of the second protective layer is 25 nm or less.
  • Another gist of the present invention is a translucent recording having at least a first protective layer, a second protective layer, a recording layer, a third protective layer, a reflective layer, and a fourth protective layer in this order from the incident side of the laser beam.
  • An optical recording medium having a reproducing functional layer, The second protective layer and the fourth protective layer are made of a material containing ZnS,
  • the film thickness of the first protective layer is 12 nm or more, and the refractive index at the recording / reproducing laser wavelength is 1.30 or more and 1.80 or less,
  • the thickness of the second protective layer is 25 nm or less.
  • the recording layer of each optical recording medium is preferably a phase change recording layer.
  • the phase change recording layer has a composition represented by Ge x Te 1-x (0.4 ⁇ x ⁇ 0.5) as a main component.
  • the recording / reproducing laser wavelength is preferably 450 nm or less.
  • the optical recording medium excellent in reflectance uniformity, durability, signal strength, etc. in the recording / reproducing functional layer other than the recording / reproducing functional layer farthest from the laser beam incident side. Can be obtained.
  • the present invention provides a translucent recording / reproducing functional layer having at least a first protective layer, a second protective layer, a recording layer, a third protective layer, a reflective layer, and a fourth protective layer in this order from the laser light incident side.
  • the present invention relates to an optical recording medium.
  • the optical recording medium of the present invention only needs to have at least one translucent recording / reproducing functional layer according to the present invention as the outermost recording / reproducing functional layer and / or the transmissive recording / reproducing functional layer.
  • the optical recording medium of the present invention may have a plurality of recording / reproducing functional layers according to the present invention, and has excellent recording / reproducing characteristics even if it is a multilayer optical recording medium.
  • each layer constituting the transmissive recording / reproducing functional layer is formed of a material having high transmittance, or the film thickness is adjusted. It is.
  • the second protective layer and the fourth protective layer are made of the same constituent element, but are preferably made of a material containing ZnS.
  • ZnS is preferable as a material for the protective layer because it has a large refractive index and is transparent and has a high film formation rate.
  • dielectric materials such as ZnS tend to have poor film thickness uniformity. Therefore, while the refractive index is large and the reflectance can be easily adjusted, the reflectance and the like due to the film thickness difference in the surface of the optical recording medium may be uneven, which may lead to deterioration in recording / reproducing characteristics.
  • the second protective layer and the fourth protective layer are formed of a material made of the same constituent element, the film thickness of the second protective layer is D2, and the film thickness of the fourth protective layer Is D4, and the reflectance before recording when the laser beam is focused on the recording layer is R, the increasing rates of R with respect to D2 and D4, d (R) / d (D2) and d (R) / d ( The protective layer is formed so that the film thickness is opposite to that of D4).
  • the film thickness D4 is a region where the rate of increase d (R) / d (D4) of R with respect to D4 is negative, that is, R decreases as D4 increases.
  • the fourth protective layer is positive, that is, the film thickness region where R increases as D4 increases.
  • the “main component” refers to a component contained in a proportion exceeding 50 mol% with respect to the total amount of the target substance.
  • the transmissive recording / reproducing functional layer is a translucent recording / reproducing functional layer, and includes at least a second protective layer, a recording layer, a third protective layer, a reflective layer, and a fourth protective layer from the incident side of the laser beam.
  • the structure is provided in order.
  • the first protective layer is further provided on the laser light incident side than the second protective layer.
  • the “translucent recording / reproducing functional layer” in the present invention refers to a case where the recording / reproducing functional layer alone has a transmittance of 30% or more for laser light used for recording / reproducing.
  • the recording / reproducing functional layer other than the outermost recording / reproducing functional layer is usually required to be translucent. In the translucent recording / reproducing functional layer, the higher the transmittance, the better. However, there is a certain upper limit in order to satisfy the recording / reproducing characteristics such as reflectance.
  • the transmissivity of the translucent recording / reproducing functional layer on the laser beam incident side is preferably 40% or more, more preferably 45% or more, preferably 60% or less, More preferably, it is 55% or less.
  • the translucent recording / reproducing functional layer As described above, desired transmittance and reflectance must be realized by adjusting the material and thickness of each layer constituting the recording / reproducing functional layer.
  • the recording layer, the third protective layer, and the reflective layer have a narrow range in which the film thickness can be adjusted.
  • the transmittance and reflectance of the recording / reproducing functional layer are mostly controlled by the second protective layer, And the fourth protective layer.
  • the materials of the second protective layer and the fourth protective layer are formed thin using a highly transparent material.
  • a material having a higher refractive index than the layer in contact with the second protective layer and the fourth protective layer is preferable. This is because the larger the difference is, the more the film thickness can be adjusted and the reflectance can be controlled by the interference effect. Further, considering the productivity of the optical recording medium, a material having a high film formation rate is preferable. Further, in order to obtain the effects described later, it is necessary to use materials made of the same constituent elements as the materials of the second protective layer and the fourth protective layer.
  • each constituent element is preferably the same.
  • the film thickness distribution when forming the protective layer becomes the same in the second protective layer and the fourth protective layer, and the effect of the present invention can be obtained.
  • the refractive index of each layer can be evaluated by preparing a single layer film of the material of each layer and measuring using a known ellipsometer (for example, MEL-30S manufactured by JASCO Corporation).
  • the materials of the second protective layer and the fourth protective layer are materials composed of the same constituent elements, preferably a material containing ZnS, more preferably a material containing ZnS as a main component. Used.
  • a material containing ZnS tends to have a low uniformity of film thickness.
  • the film thicknesses of the second protective layer and the fourth protective layer are also important from the viewpoint of adjustment for obtaining a desired reflectance using the interference effect, and it is difficult to make the film extremely thin.
  • the uniformity of the sputtering film thickness is affected by the material of the layer, the configuration of the sputtering apparatus for forming the layer, the film forming conditions, and the like.
  • the protective layer of the present invention is preferably made of a material containing ZnS. As described above, this material has many advantages in terms of transmittance and refractive index, but is formed on the film.
  • the uniformity of thickness tends to be low.
  • the uniformity of the layer thickness depends on the hard surface such as the structure and shape of the sputtering chamber and sputtering target of the sputtering apparatus for forming the layer, the magnet configuration, and the deposition conditions such as deposition power and deposition time. Will be. Therefore, it is ideal to design an apparatus according to the material to be used and film formation conditions, but this is often not practical.
  • the problem of the uniformity of the layer is not limited to the material containing ZnS, and is always a problem that occurs to some extent.
  • the film thickness distribution tends to be the same even when the thickness of the layer to be formed is changed. That is, the region that tends to be thinner than the film thickness that is to be formed tends to become thinner each time a layer is formed, and the region that tends to be thicker than the film thickness that is to be formed is Each time a layer is formed, it tends to become thicker as well.
  • the tendency of the change in the film thickness that occurs in each layer is the same, so any region where the film thickness increases becomes thicker. In the region where the film thickness becomes thin, every layer becomes thin, and the uniformity of the film thickness tends to decrease more and more.
  • the transmission type recording / reproducing functional layer has a narrow film thickness adjustment range in order to obtain a high transmittance, but in addition to this, the film thickness uniformity is limited due to the performance limit of the sputtering apparatus. If it decreases, it tends to be particularly difficult to adjust the recording / reproducing characteristics.
  • the change in the reflectance with respect to the film thickness of the transparent material shows a periodic change. Therefore, if a film thickness in the vicinity where the reflectance shows a minimum value or a maximum value is selected, the change in reflectance with respect to the change in film thickness becomes small.
  • the thickness of each layer constituting the recording / reproducing functional layer cannot be determined in consideration of only the reflectance, and therefore a film thickness in the vicinity showing a minimum value or a maximum value cannot always be selected. Absent.
  • the recording layer, the third protective layer, and the reflective layer have a narrow adjustment range such as the film thickness. Therefore, many characteristics including reflectance are adjusted by the second protective layer and the fourth protective layer. Obviously, it is difficult to make the thicknesses of both layers close to the extreme values of the reflectance.
  • the present inventors set the second protective layer and the fourth protective layer to reflect the reflectance with respect to the film thickness change. It has been found that the uniformity of the reflectance can be improved by configuring the film thickness so that the increase and decrease are reversed.
  • the second protective layer has a thickness in the vicinity where the reflectance decreases as the thickness increases
  • the fourth protective layer has a thickness in the vicinity where the reflectance increases as the thickness increases.
  • the second protective layer has a thickness in the vicinity where the reflectivity increases as the film thickness increases
  • the fourth protective layer has a thickness in the vicinity where the reflectivity decreases as the film thickness increases. Consists of.
  • the film thickness distribution tends to be similar. Even if the film thickness uniformity of each layer is low, the change in reflectivity is canceled out, and a more uniform reflectivity is obtained when the playback function layer is observed as a single layer as a whole. A distribution will be obtained.
  • the recording / reproducing functional layer has a thickness in the vicinity where the reflectance decreases as the thickness of the second protective layer increases, and the reflectance increases as the thickness of the fourth protective layer increases.
  • the region where the second protective layer tends to be thin tends to be thinned similarly, but even if the reflectance of the second protective layer is reduced, 4 Since the reflectance of the protective layer is increased, the reflectance can be made uniform when the recording / reproducing functional layer is observed as one layer as a whole.
  • the optical recording medium of the present invention can improve the recording / reproducing characteristics by adjusting the second protective layer and the fourth protective layer in the translucent recording / reproducing functional layer other than the outermost recording / reproducing functional layer.
  • the reflectance change rate in the second protective layer thickness and the reflectance change rate in the fourth protective layer thickness are: Usually, positive and negative are not reversed. The reason is as follows.
  • a region where the reflectivity increases when the thickness of the fourth protective layer is increased is usually used in a state where the recording / reproducing characteristics are adjusted.
  • a material containing ZnS, which is a preferable material for the second protective layer has a tendency that the reflectance decreases at the beginning when the film thickness is increased from 0 nm and increases when the minimum value is exceeded. Therefore, to apply the present invention, the thickness of the second protective layer must be in a range thinner than the minimum value.
  • the thickness of the second protective layer is generally set to be larger than the thickness at which the reflectance takes the minimum value. That is, if the thickness of the second protective layer is designed to be thinner than the initial minimum value of the reflectance when the thickness is increased from 0 nm, the thickness of the second protective layer is made thinner than usual, and the protective function is lowered. Tend to. This tendency may cause a difference in the protective function in terms of storage durability performance under harsh environments. In addition, the case of a writable or rewritable optical recording medium is particularly prominent.
  • the decrease in the protective function due to the reduction in the thickness of the second protective layer is considered to be due to an increase in thermal damage to other layers in contact with the second protective layer, or deterioration due to gas permeation. Therefore, in the present invention, a first protective layer having a refractive index smaller than that of the second protective layer is newly provided on the laser beam incident side of the second protective layer, and the recording / reproducing functional layer is adjusted by adjusting the film thickness of each layer. Can be protected.
  • the refractive index of the second protective layer needs to be 0.3 or more larger than the refractive index of the first protective layer. It is. This is because when the refractive index of the first protective layer is close to that of the second protective layer, there is no optical distinction between the first protective layer and the second protective layer, and the influence on the reflectance is affected by the second protective layer. This is because it is determined by the total thickness of the second protective layer and the first protective layer, not by the thickness of the single layer.
  • FIG. 1 shows a translucent recording / reproducing functional layer having at least a first protective layer, a second protective layer, a recording layer, a third protective layer, a reflective layer, and a fourth protective layer in this order from the laser light incident side.
  • the complex refractive index of the portion (ultraviolet curable resin or the like) in contact with the first protective layer and the fourth protective layer was 1.5-0i.
  • Cr 2 O 3 —Ta 2 O 5 was provided between the fourth protective layer and the reflective layer
  • ZrO 2 —Cr 2 O 3 was provided between the recording layer and the second protective layer. .
  • the second protective layer and the fourth protective layer are assumed to be (ZnS) 80 (SiO 2 ) 20 .
  • the rate of increase d (R) / d (D4) with respect to the film thickness of R The sign is positive.
  • the film thickness of the second protective layer is D2
  • the area where the rate of increase d (R) / d (D2) with respect to the film thickness of R is negative. It needs to be.
  • the refractive index (n) of the first protective layer the lower the reflectivity change with respect to the change of the second protective layer film thickness, that is, d (R) / d (
  • the upper limit of the area in which the sign of D2) is negative is large, the area of the second protective layer thickness that can realize the present invention is widened, and the optical recording medium can be easily designed from the viewpoint of reflectance uniformity.
  • the refractive index of the first protective layer is approximately the same as that of the second protective layer, the reflectance change is the same as when the second protective layer is optically thickened, and as described above, the second The meaning of controlling the thickness of the protective layer is reduced. Therefore, the refractive index of the first protective layer is preferably smaller than the second protective layer by 0.3 or more.
  • the preferred refractive index of the first protective layer is that the refractive index of the recording / reproducing laser beam (usually around 405 nm) is usually larger than 2.0 in the case of the second protective layer containing ZnS. In the wavelength of light, it is preferably 1.90 or less, more preferably 1.80 or less, particularly preferably 1.75 or less, and further preferably 1.70 or less. From the viewpoint of the difference between the refractive index of the second protective layer and the first protective layer, including the case where the material of the second protective layer is other than the material containing ZnS, the refractive index of the second protective layer is the first protective layer. It is preferably 0.3 or more, more preferably 0.5 or more, and particularly preferably 0.6 or more larger than the refractive index of the layer.
  • the refractive index of the first protective layer is preferably 1.30 or more, more preferably 1.50 or more, and particularly preferably 1.60 or more.
  • the recording / reproducing functional layer is a transmissive recording / reproducing functional layer
  • the transmittance by reducing the film thickness of each layer constituting the recording / reproducing functional layer
  • the sign of the change rate of the reflectance is reversed in the region where the second protective layer and the fourth protective layer are as thin as possible. It is preferable that the film thickness is designed as follows.
  • the thicknesses of the second protective layer and the third protective layer can be designed relatively freely, and the reflectance There is a tendency that big problems concerning uniformity do not easily occur.
  • the third protective layer is often provided thickly for heat dissipation adjustment, which is advantageous for canceling the reflectance change between the second protective layer and the third protective layer.
  • the effect of the present invention can be obtained by applying the recording / reproducing functional layer of the present invention to the transmission type recording / reproducing functional layer. be able to.
  • the recording / reproducing functional layer of the present invention may be applied to the outermost recording / reproducing functional layer.
  • the outermost recording / reproducing functional layer may not have the fourth protective layer. Even if the fourth protective layer is provided, the optical design is not involved when the reflective layer is thick and the reflectance is high.
  • the film thickness of each layer is preferably in the following range.
  • the first protective layer is preferably 12 nm or more, more preferably 15 nm or more, and preferably 40 nm or less, more preferably 30 nm or less. By setting this range, it is possible to maintain good rewriting durability while maintaining the characteristics of reflectance, reflectance uniformity, and signal amplitude. Further, in the case of the second protective layer containing ZnS, by setting the film thickness of the first protective layer within the above range, the reflectance when the reflectance takes the minimum value with respect to the change in the film thickness of the second protective layer.
  • the film thickness value of the protective layer is an appropriate value, the film thickness range in which the signs of d (R) / d (D2) and d (R) / d (D4) are reversed is wide, and rewriting is performed. Since durability can also be kept favorable, it is preferable.
  • the second protective layer is preferably 8 nm or more, more preferably 10 nm or more, preferably 25 nm or less, more preferably 20 nm or less. By setting it in this range, it is possible to maintain good reflectance uniformity while maintaining reflectance, signal amplitude, and rewriting durability.
  • the recording layer is preferably 3 nm or more, more preferably 4 nm or more, preferably 10 nm or less, more preferably 8 nm or less. By setting it in this range, the crystallization speed and the signal intensity can be kept good while maintaining the transmittance.
  • the third protective layer is preferably 2 nm or more, more preferably 5 nm or more, preferably 20 nm or less, more preferably 15 nm or less. By setting it within this range, the heat dissipation of the recording layer becomes good and the signal intensity can be maintained.
  • the reflective layer is preferably 5 nm or more, more preferably 7 nm or more, preferably 20 nm or less, more preferably 15 nm or less. By setting this range, the signal intensity can be maintained while maintaining the transmittance.
  • the fourth protective layer is preferably at least 5 nm, more preferably at least 10 nm, further preferably at least 15 nm, more preferably at most 50 nm, more preferably at most 40 nm, further preferably at most 35 nm. By setting this range, the reflectance, transmittance, transmittance uniformity, and signal amplitude can be kept good.
  • the second protective layer and the fourth protective layer are made by using materials having the same constituent elements to make the tendency of the film thickness distribution similar and setting the refractive index of the first protective layer within the above-described range. It is preferable to facilitate the control of the uniformity of the reflectance by adjusting. By setting the film thickness of each layer constituting the recording / reproducing functional layer in the above range under such conditions, a recording / reproducing functional layer having a uniform reflectance can be obtained.
  • an optical recording medium having the effect of the present invention at least a first protective layer, a second protective layer, a recording layer, a third protective layer, a reflective layer, and a fourth protective layer are provided from the laser light incident side.
  • the second protective layer and the fourth protective layer are made of a material having the same constituent element containing ZnS, and the thickness of the first protective layer is 15 nm or more.
  • an optical recording medium having a constitution in which the refractive index at the recording / reproducing laser wavelength is 1.30 or more and 1.80 or less and the thickness of the second protective layer is 16 nm or less.
  • the second protective layer and the fourth protective layer are made of the same constituent element, preferably contain ZnS, and particularly preferably contain ZnS as a main component.
  • ZnS preferably contain Sc, Y, Ce, La, Ti, Zr, Hf, V, Nb, Ta, Zn, Al, Cr, In, Si, Sn, and Ge.
  • the difference in refractive index between the second protective layer and the first protective layer is 0.3 or more, and a dielectric having a relatively high refractive index is usually used for the second protective layer. It is preferable to make the refractive index smaller than that of the protective layer. Since ZnS, which is a preferable second protective layer material, is a material having a relatively large refractive index, in order to change the sign of the rate of change in reflectance with respect to the thickness of the second protective layer while maintaining a sufficient protective function. Therefore, a material having a substantially low refractive index is mainly selected.
  • an oxide such as Si or Al, a material mainly containing nitride, or the like is preferable.
  • oxide and nitride include Sc, Y, Ce, La, Ti, Zr, Hf, V, Nb, Ta, Zn, Al, Cr, In, Si, Sn, and Ge oxides; Ti, Zr, Hf, Nitride such as V, Nb, Ta, Cr, Mo, W, Zn, B, Al, Si, Ge, and Sn; Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Si, etc.
  • Carbides such as Zn, Y, Cd, Ga, In, Si, Ge, Sn, Pb, Sb and Bi; sulfides, selenides and tellurides; oxysulfides such as Y and Ce; Mg, Ca and the like And fluorides thereof and mixtures thereof.
  • Si—O—N is particularly preferable from the viewpoint of rewriting durability, transmittance, and the like.
  • composition ratio of Si—O—N when expressed as (SiO (2-x) ) z (Si 3 N (4-y) ) (1-z) , 0 ⁇ x ⁇ 0.4, 0 ⁇ y It is preferable to be within the range of ⁇ 0.6 and 0 ⁇ z ⁇ 1.
  • Examples of the material used for the third protective layer include oxides such as Sc, Y, Ce, La, Ti, Zr, Hf, V, Nb, Ta, Zn, Al, Cr, In, Si, Sn, and Ge.
  • Nitrides such as Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Zn, B, Al, Si, Ge, and Sn; Ti, Zr, Hf, V, Nb, Ta, Cr, Carbides such as Mo, W and Si; sulfides such as Zn, Y, Cd, Ga, In, Si, Ge, Sn, Pb, Sb and Bi, selenides and tellurides; acids such as Y and Ce Sulfides; fluorides such as Mg and Ca, and mixtures thereof. One of these may be used alone, or two or more may be used in any combination and ratio.
  • the present invention is preferably used for a rewritable optical recording medium having a phase change recording layer which requires high rewritability, but is a write-once type having a recording layer mainly composed of a metal or semiconductor nitride or oxide. It can also be used for optical recording media.
  • Phase change recording layer As a material for the phase change recording layer, a chalcogen-based alloy is often used. However, as a rewritable phase change recording material used for the transmission type recording / reproducing functional layer, a Ge—Te based recording material, for example, a composition around Ge 50 Te 50 is used. A material having a main component is preferred. In particular, a material whose main component is a composition represented by Ge x Te 1-x (0.4 ⁇ x ⁇ 0.5) is preferable.
  • This material has a large change in the complex refractive index between the crystalline state and the amorphous state, and a relatively large signal intensity can be obtained even when the thickness of the recording layer has to be reduced.
  • the reflective layer must be thin, that is, when the heat dissipation effect is small, relatively excellent rewriting characteristics are easily obtained.
  • the crystal nucleation frequency is higher than that of the phase change material mainly composed of Sb x Te 1-x (0.7 ⁇ x ⁇ 0.9), for example.
  • the crystallization rate is preferable to increase the crystallization rate by adding 3 to 15 atomic% of Bi, Sn, etc., and to include 3 to 10 atomic%. More preferred.
  • the crystal nucleation frequency varies greatly depending on the material in contact with the recording layer. Therefore, Ta 2 O 5 , ZrO 2 , HfO 2 , Cr 2 O 3 and the like which increase the crystal nucleation frequency are used. It is preferable to provide the component material in contact with the recording layer as an interface layer.
  • Recording layer of write-once optical recording medium made of metal or semiconductor nitride or oxide As a recording layer of a write-once optical recording medium made of a metal or semiconductor nitride or oxide, a substance A that decomposes at a temperature reached by the recording layer by heating at the time of recording and a recording layer reaches by heating at the time of recording. It is preferable to contain the substance B which does not cause a chemical reaction or a phase change at a temperature.
  • nitrides include nitrides of one element selected from the group consisting of Cr, Mo, W, Fe, Ge, Sn, and Sb. One of these may be used alone, or two or more may be used in any combination and ratio. Of these, nitrides of Mo, Ge, Sn, and Sb are preferable, and nitrides of Sn and Sb are particularly preferable in terms of stability and low noise after recording.
  • Examples of the substance A include a metal oxide or a semiconductor oxide having a decomposition temperature below a temperature (for example, 1200 ° C.) reached by the recording layer by heating during recording.
  • a metal oxide or a semiconductor oxide having a decomposition temperature below a temperature (for example, 1200 ° C.) reached by the recording layer by heating during recording As such an oxide, an oxide of one element selected from the group consisting of Ir, Au, Ag, and Pt is preferably used. One of these may be used alone, or two or more may be used in any combination and ratio. Among these, oxides of Au, Ag, and Pt are particularly preferable in terms of stability and low noise after recording.
  • metal nitrides, semiconductor nitrides, metal oxides, and semiconductor oxides release nitrogen or oxygen at the temperature reached by the recording layer during recording and decompose into single metals or semiconductors.
  • nitridation of a metal that does not cause a chemical reaction or a phase change at a temperature reached by the recording layer by heating during recording preferably has no decomposition temperature and melting point below 1500 ° C.
  • an oxide or a nitride of a semiconductor examples include nitrides of at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Al, and Si. One of these may be used alone, or two or more may be used in any combination and ratio.
  • nitrides of Ti, V, Nb, Ta, Al, and Si are preferable, and nitrides of Ti, V, Nb, Ta, and Si are particularly preferable because they are stable and inexpensive.
  • V and Nb are particularly preferable.
  • oxidation of a metal that does not cause a chemical reaction or a phase change at a temperature reached by the recording layer by heating during recording preferably has no decomposition temperature and melting point below 1500 ° C.
  • oxides of materials or semiconductors an oxide of at least one element selected from the group consisting of Zn, Al, Y, Zr, Ti, Nb, Ni, Mg, and Si is preferably used.
  • Zn, Al, Y, Zr, Nb, and Si is particularly preferable in terms of stability and low noise after recording.
  • the material used for the reflective layer is preferably a substance having a high reflectivity, particularly a metal such as Au, Ag, or Al that can be expected to have a heat dissipation effect, and particularly a material mainly composed of Ag.
  • Ag alloy containing any one of Mg, Ti, Au, Cu, Pd, Pt, Zn, Cr, Si, Ge, Bi, and Nd rare earth elements in an amount of 0.01 atomic percent to 10 atomic percent in Ag is also a reflectance, It is preferable because of its high thermal conductivity and excellent heat resistance. It is preferable to provide an interface layer that does not contain sulfur or has a low sulfur content at the interface on the side in contact with the reflective layer containing Ag as a main component. When sulfur is contained in the protective layer, it is usually used to suppress the reaction between Ag and sulfur (Ag corrosion).
  • substrate As the substrate used in the optical recording medium of the present invention, resins such as polycarbonate, acrylic and polyolefin; glass; metals such as aluminum; and the like can be used. Usually, since the guide groove having a depth of about 15 to 250 nm is provided on the substrate, a resin substrate capable of forming the guide groove by injection molding is preferable.
  • the thickness of such a substrate is appropriately determined depending on the application, and is usually 0.3 mm or more, preferably 0.5 mm or more, and usually 3 mm or less, preferably 2 mm or less. In the Blu-ray disc, the thickness of the substrate is about 1.1 mm.
  • Each protective layer, recording layer, and reflective layer can be formed by a conventionally known method, but is preferably formed by a sputtering method.
  • a sputtering method In the case of forming a layer composed of a plurality of elements, an alloy target may be used, or a co-sputtering method in which discharge is performed simultaneously from a plurality of single targets may be used. Further, when a gas element is contained, a reactive sputtering method can be used.
  • the optical recording medium of the present invention may be provided with other layers different from the above layers as necessary.
  • a cover layer on the laser beam incident side.
  • the cover layer needs to protect the sputtered film from moisture and dust and simultaneously transmit the laser beam. Therefore, the thickness is preferably 50 ⁇ m or more and 150 ⁇ m or less while being transparent to the laser beam used for recording / reproduction.
  • the cover layer is usually formed by applying an ultraviolet curable resin by spin coating and then curing, or by laminating a transparent sheet.
  • an interfacial layer having functions such as a diffusion preventing layer for preventing mutual diffusion and an adhesion layer for improving adhesion may be appropriately used between the layers.
  • the optical recording medium of the present invention there is no limitation on the wavelength of the laser used for recording / reproducing (recording / reproducing laser wavelength), but when used at a wavelength of 500 nm or less, preferably 450 nm or less, more preferably 420 nm or less, a high effect is obtained. can get. This is because the change in reflectance due to the thickness of the layer is more susceptible to a shorter wavelength.
  • the recording / reproducing laser wavelength is preferably 380 nm or more.
  • the present invention is assumed to be applied to a recording / reproducing functional layer (transmission recording / reproducing functional layer) other than the outermost recording / reproducing functional layer in an optical recording medium having a multilayer structure, and a two-layer optical recording medium is produced and recorded.
  • Reproduction characteristics were evaluated. However, the reflectivity and reflectivity uniformity were measured by producing a single-layer optical recording medium. This is because the influence of other recording / reproducing functional layers can be ignored in the reflectance measurement. Further, the refractive index of each layer was measured by producing a single layer film made of the material of each layer.
  • the linear velocity was 9.83 m / s (double speed), and the focus servo and tracking servo were applied in the groove to evaluate the recording characteristics.
  • the signal was overwritten using the 1-7PP recording encoding method.
  • the clock frequency was proportional to the linear velocity at the time of recording with respect to the reference clock frequency of 66 MHz at the 1 ⁇ speed of the Blu-ray Disc.
  • Jitter is binarized after waveform equalization of the recorded signal by a limit equalizer, and the time difference distribution between the rising edge and falling edge of the binarized signal and the rising edge of the periodic signal is measured with a time interval analyzer ( data to clock jitter).
  • the recording power at the time of jitter measurement was 12.8 mW
  • the erasing power was 3.5 mW
  • divided pulses were used, and the pulse waveform was the same for all optical recording media.
  • the divided pulse waveform was divided into n-1 pulses having recording power when recording a mark of length nT, where T is the reference clock period, and the divided pulse length was (6/16) T.
  • the power was 0.1 mW between the divided pulses, and the erasing power was applied to the portion corresponding to the space between the recording marks to perform overwriting.
  • the jitter is evaluated only for the recording / reproducing functional layer on the laser beam incident side of the two-layered optical recording medium.
  • the rewrite durability that is, the jitter value after 1000 overwrites (DOW1000) changes between the cover sheet used when manufacturing the one-layer optical recording medium and the ultraviolet curable resin used when manufacturing the two-layer optical recording medium. It is.
  • the ultraviolet curable resin is superior in rewriting durability.
  • ⁇ Uniformity of reflectance> The measurement of reflectance uniformity was performed on a single-layer optical recording medium before the second layer was laminated.
  • the average reflectance at each of the radii of 24, 40, 55, 57, and 58 mm from the center of the optical recording medium is first measured, the maximum reflectance is Rh, and the minimum reflectance is Rl. (Rh-Rl) / Rh.
  • the reproduction waveform was observed with an oscilloscope and the average value of one round was measured.
  • ⁇ Refractive index> The refractive index was measured using an ellipsometer MEL-30S manufactured by JASCO Corporation.
  • Examples 1 to 5, Comparative Examples 1 to 3 [Production of optical recording medium] Although the layer configuration of one layer of each of the optical recording media of Examples 1 to 5 and Comparative Examples 1 to 3 is different as shown in Table 2, the manufacturing method is common. The following is a summary description.
  • the sputtered film structure of the translucent recording / reproducing functional layer on the incident side of the laser beam includes a fourth protective layer ((ZnS) 80 (SiO 2 ) 20 ), a Cr 2 O 3 —Ta 2 O 5 interface layer (from the substrate side) 3 nm), Ag alloy reflective layer, third protective layer (Cr 2 O 3 —Ta 2 O 5 (8 nm)), Bi—Ge—Te recording layer, ZrO 2 —Cr 2 O 3 interface layer (5 nm), second The protective layer ((ZnS) 80 (SiO 2 ) 20 ) and the first protective layer (Si—O—N) were used.
  • the laser light is incident from the first protective layer side.
  • the Si—O—N layer of the first protective layer was obtained by sputtering the Si target at 1.5 kW using a DC power source while flowing 4 sccm of O 2 gas and 36 sccm of N 2 gas together with Ar gas.
  • the refractive index of the Si—O—N layer was 1.65.
  • the thicknesses of the first protective layers in Examples 1 to 5 and Comparative Examples 1 to 3 were as shown in Table 2.
  • the (ZnS) 80 (SiO 2 ) 20 layer of the second protective layer was obtained by sputtering a (ZnS) 80 (SiO 2 ) 20 target at 2 kW using an RF power source while flowing Ar gas at 10 sccm.
  • the refractive index of the (ZnS) 80 (SiO 2 ) 20 layer was 2.3.
  • the thicknesses of the second protective layers in Examples 1 to 5 and Comparative Examples 1 to 3 were as shown in Table 2.
  • the ZrO 2 —Cr 2 O 3 interface layer was formed with a thickness of 5 nm.
  • the ZrO 2 —Cr 2 O 3 interface layer was obtained by sputtering a ZrO 2 —Cr 2 O 3 target at 1.5 kW using an RF power source while flowing Ar gas at 30 sccm.
  • Bi-Ge-Te recording layer The Bi-Ge-Te recording layer was obtained by sputtering a Bi-Ge-Te target at 0.3 kW using a DC power source while flowing Ar gas at 10 sccm.
  • the thicknesses of the Bi—Ge—Te recording layers in Examples 1 to 5 and Comparative Examples 1 to 3 were as shown in Table 2.
  • the Cr 2 O 3 —Ta 2 O 5 layer of the third protective layer was formed with a thickness of 8 nm.
  • the Cr 2 O 3 —Ta 2 O 5 layer was obtained by sputtering a Cr 2 O 3 —Ta 2 O 5 target at 1.5 kW using an RF power source while flowing Ar gas at 10 sccm.
  • the Ag alloy reflective layer was obtained by sputtering an Ag alloy target at 0.5 kW using a DC power source while flowing Ar gas at 10 sccm.
  • the thicknesses of the Ag alloy reflective layers in Examples 1 to 5 and Comparative Examples 1 to 3 were as shown in Table 2.
  • the Cr 2 O 3 —Ta 2 O 5 interface layer is a layer provided to prevent S from diffusing into the Ag alloy, and was formed with a thickness of 3 nm.
  • the Cr 2 O 3 —Ta 2 O 5 layer was obtained by sputtering a Cr 2 O 3 —Ta 2 O 5 target at 1.5 kW using an RF power source while flowing Ar gas at 10 sccm.
  • the (ZnS) 80 (SiO 2 ) 20 layer of the fourth protective layer was prepared in the same manner as the second protective layer.
  • the thickness of each fourth protective layer in Examples 1 to 5 and Comparative Examples 1 to 3 was as shown in Table 2.
  • the recording / reproducing functional layer on the side far from the laser beam incident side is formed on a 1.1 mm thick substrate having a guide groove, with Nb (about 4.5 nm), Ag alloy (about 125 nm), Cr 2 O 3 —Ta 2 O 5 (about 3 nm), (ZnS) 80 (SiO 2 ) 20 (about 8 nm), Ge—In—Sb—Te (about 12 nm), ZrO 2 —ZnS (about 5 nm) ), (ZnS) 80 (SiO 2 ) 20 (about 26 nm) and Si—O—N (about 10 nm) were formed by sputtering. Note that the recording / reproducing functional layer on the side farther from the incident
  • the two-layer medium is manufactured by forming a recording / reproducing functional layer on the side far from the laser light incident side on a 1.1 mm-thick polycarbonate substrate having a guide groove, and forming a 25 ⁇ m-thick UV light having a guide groove thereon. A layer made of a cured resin was formed. Next, a translucent recording / reproducing functional layer on the laser beam incident side was formed, and a layer made of an ultraviolet curable resin having a thickness of 75 ⁇ m was formed thereon.
  • Both the guide grooves formed on the 1.1 mm thick substrate and the 25 ⁇ m thick UV curable resin layer have a groove width of 0.195 ⁇ m, a groove depth of 20 nm, and a groove pitch of 0.32 ⁇ m. Note that the “groove” is defined as the one closer to the distance as viewed from the light incident side.
  • the recording / reproducing functional layer was formed using a sputtering method.
  • Example 6 Further, an optical recording medium of Example 6 below was produced and evaluated.
  • the film thickness of the fourth protective layer is 34 nm
  • the film thickness of the Ag alloy reflective layer is 10 nm
  • the film thickness of the third protective layer is 5 nm
  • the recording layer is Bi 7 Ge 35 In 5 Te 53 (6.5 nm)
  • the second protection An optical recording medium was produced in the same manner as in Example 1 except that the thickness of the layer was 20 nm and the thickness of the first protective layer was 15 nm.
  • ⁇ Preparation of two-layer optical recording medium> The recording / reproducing functional layer on the side far from the laser beam incident side was produced in the same manner as in Example 1.
  • the double line in Table 3 indicates that it is not a continuous experiment.
  • the continuous experiment means that the production of each optical recording medium was literally continued, and the film was formed in a state where there was almost no influence of a change over time of the sputtering apparatus. It can be considered that the state is almost the same in each optical recording medium.
  • Experiments after Example 5 indicate that some sample production other than the experimental examples shown in the table is performed during the production of these experimental examples.
  • the jitter value of the optical recording medium is preferably 8.5% or less.
  • the value of reflectance uniformity ((Rh ⁇ Rl) / Rh) is preferably 0.25 or less.
  • Examples 1 to 4 and Comparative Example 1 From the results of the reflectances of Examples 1 to 4 and Comparative Example 1, when the first protective layer is 30 nm, the film thickness at which the reflectance of the second protective layer is the smallest is around 17 nm. Also, when the second protective layer is at least 10 to 18 nm, the thinner the film thickness, the better the reflectance uniformity. This large change in reflectance uniformity indicates that the non-uniformity of (ZnS) 80 (SiO 2 ) 20 that is the material of the second protective layer is affected.
  • the uniformity of the reflectance is improved in the range where the reflectance is smaller than the thickness at which the minimum value is shown. This is because the change rate of the reflectance with respect to the thickness of the second protective layer and the fourth protective layer is reversed. By doing so, it seems that the influence on the change in the reflectance of the second protective layer and the fourth protective layer showing similar tendency of the film thickness distribution was canceled each other.
  • (ZnS) 80 (SiO 2 ) 20 tends to have a difficulty in obtaining a uniform film thickness distribution, but the film thickness distribution is affected by the progress of erosion of the target during film formation. That is, since it is affected by the power integration time of the target and the like, it is preferable to compare in the case of continuous film formation in order to obtain an accurate result.
  • Examples 1 to 4 and Comparative Example 1 are optical recording media formed almost continuously.
  • Comparative Example 2 is an optical recording medium having no first protective layer and a second protective layer of 30 nm. Comparative Example 2, which is a conventional configuration without the first protective layer, has good rewrite durability because the second protective layer is thick, but is clearly inferior to Examples 1 to 6 in terms of reflectance uniformity. ing. Although the experiment was not performed continuously with Examples 1 to 4 and Comparative Example 1, it is obvious that the reflectance uniformity is difficult to improve. When attention is paid only to the reflectance, the thickness of the second protective layer can be made smaller than the reflectance minimum value thickness from the configuration of Comparative Example 2. However, the rewriting durability cannot be improved.
  • Comparative Example 3 is an optical recording medium having no first protective layer and a second protective layer of 26 nm.
  • the film thickness of the second protective layer was about 22 nm when the sign of d (R) / d (D2) was zero as a result of the optical simulation. Accordingly, it is considered that the reflectance uniformity is improved by making the thickness of the second protective layer less than 22 nm, but the rewriting durability is clearly deteriorated at the time of the thickness of 26 nm. It is difficult to reduce the thickness of the protective layer.
  • the reason why the rewriting durability is inferior is considered to be that the distance between the recording layer and the UV curable resin layer on the incident side is too small, and the resin layer is thermally damaged. Therefore, when the thickness of the first protective layer is thin, even if the reflectance is adjusted by making the thickness of the second protective layer thinner than the thickness at which the reflectance takes a minimum value, the rewriting durability is not improved. . In other words, the reason why the rewriting durability is kept good in Examples 1 to 5 in which the second protective layer is relatively thin is that the first protective layer is thick.
  • Example 6 The film thickness of the second protective layer of Example 6 is 20 nm, which is a value thicker than that of Comparative Examples 1 as well as Examples 1 to 4. Nevertheless, the reason why the sign of d (R) / d (D2) is negative is that the thickness of the first protective layer is 15 nm, which is thinner than Examples 1 to 4 and Comparative Example 1. For this reason, the state of the change in the reflectance with respect to the change in the film thickness of the second protective layer is changed, and the film thickness value of the second protective layer when the reflectivity is minimized is shifted to the higher film thickness side.
  • the thickness of the reflective layer and the recording layer is slightly different in the examples and comparative examples, it is considered that the rewriting durability of about 1000 times does not change greatly due to this thickness difference. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

 多層型の光記録媒体において、レーザー光の入射側から最も遠い記録再生機能層以外の記録再生機能層における反射率均一性、耐久性、信号強度等に優れた光記録媒体を提供することにある。 レーザー光の入射側から少なくとも、第1保護層、第2保護層、記録層、第3保護層、反射層、及び第4保護層をこの順に有する半透明な記録再生機能層を有する光記録媒体において、前記第2保護層と前記第4保護層とが同一の構成元素を有する材料からなり、前記第2保護層の屈折率が、第1保護層の屈折率よりも0.3以上大きく、前記第2保護層の膜厚をD2、前記第4保護層の膜厚をD4、前記記録層に該レーザー光をフォーカスした場合の記録前反射率をRとしたとき、Rの膜厚に対する増加率d(R)/d(D2)とd(R)/d(D4)との正負を逆とする。

Description

光記録媒体
 本発明は、記録層を複数有する多層型の光記録媒体に関する。
 近年、情報量の増大に伴い、ますます高容量の光記録媒体が望まれている。高容量化の1つの方法として、1つの記録層とその記録層に記録再生を行うために必要とされる反射層、保護層等の集合(以下、この集合を「記録再生機能層」という。)を光学的に分離できる程度に距離を離して複数積み重ねることにより多層型の光記録媒体とし、容量を大幅に増やす多層化技術が挙げられる。
 多層型の光記録媒体のレーザー光の入射側から最も遠い記録再生機能層(以下、「最外記録再生機能層」という。)では、一般的に、透過率を大きくする必要が無いため、一層型の光記録媒体と同様な光記録媒体の設計が可能である。
 その一方で最外記録再生機能層以外の記録再生機能層(以下、「透過型記録再生機能層」という。)には所定の透過率が必要なため、入射光の一部しか信号の記録再生に使用できない。また、レーザー入射側に最も近い記録再生機能層以外の記録再生機能層には、その手前側にある記録再生機能層の存在のため、やはり入射光の一部しか信号の記録再生に使用できない。したがって、多層型の光記録媒体における各記録再生機能層は、一層型の光記録媒体と比較して、得られる信号強度が著しく小さくなってしまう。そのため、多層型の光記録媒体の再生系は信号強度の小さい場合に対応できることが必要であり、そのような再生技術が近年多く開発されている。
 一般的に、透過型記録再生機能層は、レーザー光の入射側から、保護層、記録層、保護層、反射層、保護層を順に設ける。透過型記録再生機能層の透過率を向上させるためには、透過型記録再生機能層を構成する各層の材料に透過率が高い材料を用いたり、透過型記録再生機能層を構成する各層の厚みを薄くしたりすることが考えられる。例えば、記録層や反射層を薄くすることが考えられるが、これらの層は熱的にも光学的にも信号強度への寄与が大きく、薄くなるほど記録再生特性は低下する傾向にある。そのため、透過性を考慮すれば層は薄いほうが好ましく、記録特性の最適化のみを優先して、記録マークをきれいに形成できる層構成を選ぶことが必ずしもできなくなる。
 したがって、透過型記録再生機能層においては、反射層や記録層の膜厚の調整範囲は必然的に狭くなる傾向にある。より正確には、反射率や透過率を含む記録再生機能層の記録再生特性は、反射層や記録層の上下に形成される保護層との組み合わせによって決まるが、透過率を小さくする必要がない場合と比較すれば、膜厚等の調整範囲は極端に狭くなる傾向にある。
 なお、特に書換可能な相変化型光記録媒体において、反射層には、レーザー光を吸収した相変化型記録層から熱を速やかに逃がし、きれいなアモルファスマークを形成する役割がある。実験的には、熱伝導度の大きい反射層を厚く設けることにより、記録し易くかつ消去もし易い光記録媒体の設計が可能となるが、多層型の光記録媒体の形成を目的として、薄い反射層を有する光記録媒体を設計することは、著しく困難である。
 それでも、2層の記録再生機能層を持つ書換可能な相変化型光記録媒体におけるレーザー光の入射側の記録再生機能層の場合、記録線速度が速くなければ、10nm程度のAg合金などを反射層として使用し、記録層、保護層等の膜厚設計を慎重に行なうことにより商品化に必要なレベルの信号特性を得ることも不可能ではない。しかし、2層より多い多層型の光記録媒体に適用することは現状では困難であり、また記録線速度の向上も望めていない。
 次に、記録層と反射層との間の保護層は、光エネルギーを吸収して温度の上がった記録層から熱を反射層に逃がす層である。この保護層の厚さによって、記録層からの放熱効果が制御されることになるが、記録層及び反射層の膜厚調整範囲が狭いので、好ましい放熱効果にするために、この保護層の膜厚もほぼ決まってしまう。そのため、この保護層の膜厚調整範囲は小さく、一般的に他の2つの保護層より膜厚も薄くなる。
 以上のことから、記録再生機能層の透過率は外側の2つの保護層によって調整することが多い。
 外側の2つの保護層の透過率の調整は、これら外側の2つの保護層に用いられる材料(誘電体)による干渉効果を利用して、反射率を調整することによって行う。通常、透明樹脂や基板の屈折率は1.5付近である場合が多いが、記録再生機能層を挟む透明樹脂や基板の屈折率と比較しなるべく大きくすることで、反射率を自由に調整することができる。
 また、外側の2つの保護層はある程度厚くなる場合が多いので、透明性が高い方が好ましく、特に記録再生に用いるレーザー光の波長(以下、「記録再生レーザー波長」ということがある。)において透明性が高いことが好ましい。光記録媒体においては、例えば記録再生レーザー波長が450nm以下ものを用いることが多く、この波長で好ましく利用できる材料は限られてくる。
 さらに、ある程度厚い保護層をスパッタリング法等により形成して生産を行なう場合、膜形成速度が速い材料の方が好ましい。
 以上の観点から、保護層の材料としては、屈折率が大きいこと、吸収が小さいこと、膜形成速度が速いこと等の優れた条件を満たすことが好ましく、好適な材料としてはZnSを主成分とする材料が好適に用いられている。例えば(ZnS)80(SiO20等は特に相変化光ディスクにおいてよく用いられる材料となっている(特許文献1参照)。
特開2007-172717
 光記録媒体を製造するときに、記録再生機能層を形成するための装置(例えば、スパッタリング装置等)の性能によっては、光記録媒体内の層の膜厚や膜質が不均一になる傾向がある。本発明の発明者等が検討したところ、この光記録媒体内の層の膜厚や膜質の不均一性によって、光記録媒体の記録特性に課題を生じることが明らかになった。
 例えば、光記録媒体内の層の膜厚が不均一であるため反射率が不均一となる。特に、多層型の光記録媒体において、透過型記録再生機能層は、膜厚や膜質の不均一性による影響がより顕著になる傾向がある。
 ここで、ZnSを主成分とする材料は、屈折率が大きく光の吸収が小さく膜形成速度の速い優れた材料であるため、保護層の形成に多く用いられているが、膜厚の均一性の高い層が得られにくい傾向にある。
 そのため、光記録媒体内で膜厚の変化が生じやすく、光記録媒体全面において優れた記録再生特性を得にくい傾向にあり、この傾向はレーザー光の入射側から最も遠い記録再生機能層以外の半透明な記録再生機能層では特に大きくなる傾向がある。
 この課題の改善には、例えば膜厚が変化しても記録再生特性に変化を与えにくいような記録再生機能層の設計をする方法が考えられるが、透過型記録再生機能層は、上述のように各層の膜厚調整範囲が狭いため、光記録媒体の記録再生特性を調整しきれないという課題が残っていた。
 また、膜厚の不均一性に起因する記録再生特性の不均一性の課題は、記録再生レーザー波長が短い光記録媒体においてより顕著となる。これは、膜厚差起因の光路差による位相差は、波長による屈折率の変化がなければ、記録再生レーザー波長に反比例するためである。この傾向は、膜厚が厚くなると光記録媒体内での膜厚差が大きくなるのでそれだけ特性分布が大きくなる一因となる。
 本発明は上記課題を解決するためになされたもので、その目的は、多層型の光記録媒体において、レーザー光の入射側から最も遠い記録再生機能層以外の記録再生機能層における反射率均一性、耐久性、信号強度等に優れた光記録媒体を得ることにある。
 本発明の発明者等は、レーザー光の入射側から少なくとも、第1保護層、第2保護層、記録層、第3保護層、反射層、第4保護層をこの順に有する半透明な記録再生機能層を有する光記録媒体において、膜厚調整範囲が比較的広い第2保護層と第4保護層との膜厚を特定の関係になるように調節することで、上記課題を解決することができることを見出し、本発明を完成させるに至った。
 すなわち、本発明の要旨は、レーザー光の入射側から少なくとも、第1保護層、第2保護層、記録層、第3保護層、反射層、及び第4保護層をこの順に有する半透明な記録再生機能層を有する光記録媒体であって、
 前記第2保護層と前記第4保護層とが同一の構成元素を有する材料からなり、
 前記第2保護層の屈折率が、第1保護層の屈折率よりも0.3以上大きく、
 前記第2保護層の膜厚をD2、前記第4保護層の膜厚をD4、前記記録層に該レーザー光をフォーカスした場合の記録前反射率をRとしたとき、Rの膜厚に対する増加率d(R)/d(D2)とd(R)/d(D4)との正負が、逆であることを特徴とする、光記録媒体に存する。
 このとき、前記第2保護層と前記第4保護層とがZnSを含有する材料からなることが好ましい。
 また、前記第1保護層の膜厚が12nm以上であり、かつ記録再生レーザー波長での屈折率が1.30以上1.80以下であることが好ましい。
 また、前記第2保護層の膜厚が25nm以下であることが好ましい。
 本発明の別の要旨は、レーザー光の入射側から少なくとも、第1保護層、第2保護層、記録層、第3保護層、反射層、及び第4保護層をこの順に有する半透明な記録再生機能層を有する光記録媒体であって、
 前記第2保護層と前記第4保護層とがZnSを含有する材料からなり、
 前記第1保護層の膜厚が12nm以上であり、かつ記録再生レーザー波長での屈折率が1.30以上1.80以下であり、
 前記第2保護層の膜厚が25nm以下であることを特徴とする光記録媒体に存する。
 このとき、上記の各光記録媒体の前記記録層が、相変化記録層であることが好ましい。
 また、前記相変化記録層が、GeTe1-x(0.4≦x≦0.5)で表される組成を主成分とすることが好ましい。
 また、前記記録再生レーザー波長が450nm以下であることが好ましい。
 本発明によれば、多層型の光記録媒体において、レーザー光の入射側から最も遠い記録再生機能層以外の記録再生機能層における反射率均一性、耐久性、信号強度等に優れた光記録媒体を得ることが出来る。
本発明の光記録媒体構成における、第1保護層の屈折率を変更した際の、第2保護層膜厚と反射率の関係を計算した結果である。
 以下、本発明の実施の形態につき、大容量の光記録媒体である書換型のブルーレイディスクを想定して詳細に説明するが、本発明は以下の実施の形態に制限されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。
 本発明は、レーザー光の入射側から少なくとも、第1保護層、第2保護層、記録層、第3保護層、反射層、及び第4保護層をこの順に有する半透明な記録再生機能層を有する光記録媒体に関する発明である。本発明の光記録媒体は、少なくとも1層の本発明に係る半透明な記録再生機能層を、最外記録再生機能層及び/又は透過型記録再生機能層として有していればよい。本発明の光記録媒体は、本発明に係る記録再生機能層を複数有していてもよく、多層型の光記録媒体であっても優れた記録再生特性を有する。
 本発明に係る記録再生機能層は、レーザー光を一定の割合で透過する必要があり、そのため透過型記録再生機能層を構成する各層を透過率が高い材料で形成したり、膜厚を調整したりしている。
 例えば、本発明の光記録媒体は、前記第2保護層と前記第4保護層とが同一の構成元素からなる材料で形成されるが、ZnSを含有する材料で形成されることが好ましい。ZnSは、屈折率が大きく透明で膜形成速度が速く、保護層の材料として好ましいからである。しかし一方で、ZnSのような誘電体材料は膜厚均一性が劣る傾向にある。したがって、屈折率が大きく反射率調整をしやすい反面、光記録媒体面内の膜厚差に起因する反射率等の不均一が生じ、記録再生特性の低下を招く可能性がある。
 本発明では、保護層を形成するにあたり、層構成を工夫することにより上述した本発明の効果を得ている。
 具体的には、前記第2保護層と前記第4保護層とを同一の構成元素からなる材料で形成し、かつ、前記第2保護層の膜厚をD2、前記第4保護層の膜厚をD4、前記記録層に該レーザー光をフォーカスした場合の記録前反射率をRとしたとき、RのD2、D4に対する増加率d(R)/d(D2)とd(R)/d(D4)との正負が、逆となる膜厚になるように保護層を形成している。つまり、第2保護層の膜厚D2を、RのD2に対する増加率d(R)/d(D2)が正、すなわちD2が増加するとRが増加する領域とした場合に、第4保護層の膜厚D4を、RのD4に対する増加率d(R)/d(D4)が負、すなわちD4が増加するとRが減少する領域とすることを意味する。当然、第2保護層の膜厚D2を、RのD2に対する増加率d(R)/d(D2)が負、すなわちD2が増加するとRが減少する領域とした場合には、第4保護層の膜厚D4を、RのD4に対する増加率d(R)/d(D4)が正、すなわちD4が増加するとRが増加する膜厚領域とすることを意味する。
 以下、本発明に係る記録再生機能層の各層について説明し、本発明の光記録媒体の構成について説明する。
 なお、本発明において「主成分」とは、対象物の総物質量に対して50mol%を超える割合で含有される成分を指す。
[1.本発明に係る記録再生機能層の構成]
 一般に、透過型記録再生機能層は、半透明な記録再生機能層であり、レーザー光の入射側から少なくとも、第2保護層、記録層、第3保護層、反射層、及び第4保護層を順に設けた構成をしている。本願の記録再生機能層の場合には、第2保護層よりもさらにレーザー光の入射側に第1保護層を有している。
 ここで、本発明における「半透明な記録再生機能層」とは、当該記録再生機能層単独での、記録再生に用いるレーザー光の透過率が30%以上である場合を指す。最外記録再生機能層以外の記録再生機能層には、通常、半透明であることが求められる。
 半透明な記録再生機能層において、透過率は大きいほどよいが、反射率等の記録再生特性を満足するためにはおのずとある程度の上限が存在する。記録再生機能層を2層有する場合の、レーザー光の入射側の半透明な記録再生機能層の透過率は、好ましくは40%以上、より好ましくは45%以上であり、好ましくは60%以下、より好ましくは55%以下である。
 半透明な記録再生機能層においては、前述の通り、記録再生機能層を構成する各層の材質や厚みなどを調整することで所望の透過率や反射率を実現しなければならない。しかし、上述したように、記録層、第3保護層、及び反射層は膜厚を調整できる範囲が狭く、その結果記録再生機能層の透過率や反射率の制御は、大方第2保護層、及び第4保護層によってすることになる。
 第2保護層、及び第4保護層の材料は、記録再生機能層の透過率を考慮すれば透明性が高い材料を用いて薄く形成する方が好ましい。また、記録再生機能層の反射率を考慮すれば、第2保護層及び第4保護層が接する層に比べて屈折率が高い材料が好ましい。この差が大きいほど、膜厚などを調整して干渉効果により反射率を制御することができるためである。さらに、光記録媒体の生産性も考慮すると、膜形成速度が速い材料が好ましい。また、後述の効果を得るために、第2保護層、及び第4保護層の材料は、同一の構成元素からなる材料を用いる必要がある。特に、各構成元素の含有率も同一であることが好ましい。このような材料を選ぶことにより、保護層形成時の膜厚分布が、第2保護層と第4保護層において同様となり、本願発明の効果が得られるからである。
 なお、各層の屈折率は、各層の材料による単層膜を作製し、公知のエリプソメーター(例えば、日本分光社製MEL-30S)を用いて測定することにより評価可能である。
 これらのことから、第2保護層、及び第4保護層の材料は、同一の構成元素からなる材料であり、好ましくはZnSを含有する材料であり、更に好ましくはZnSを主成分とする材料が用いられる。しかし、その一方で、ZnSを含有する材料は、得られる膜厚の均一性が低い傾向にある。
(膜厚の不均一性が記録再生機能層の特性に与える影響)
 形成される保護層の膜厚の均一性が低く、部位によって膜厚に差がある場合、記録再生機能層の反射率の均一性にも影響を与える。記録再生機能層の反射率は、多くは反射層の材料に依存するが、屈折率の異なる層と層との界面では透過光と反射光が発生し、それらが干渉し合って全体の反射率に影響を与えるためである。膜厚の相違は即ち、光記録媒体内のレーザー光の光路差の相違となるため、干渉の度合いに影響を与えるからである。このように、膜厚の均一性の低下により、記録再生機能層内の反射率の均一性が低下する場合、記録生成特性が低下することになる。このため、良好な記録再生特性を得るためには、膜厚の均一性を向上させることが考えられる。
(膜厚の均一性を向上させるアプローチ)
 膜厚の均一性を向上させる方法として、例えば、膜厚を薄くする方法も考えられる。膜厚が薄ければ、膜厚の厚い部分と薄い部分との膜厚差も小さく、光路差も小さくなるためである。膜厚が厚くなりすぎると、光記録媒体の製造コストを悪化させる点からも、薄い方が好ましい。
 しかし一方で、通常、層を形成するときには、円周方向の膜厚分布を均一にするために基板やスパッタ用マグネットを回転させながら成膜を行うため、これらの回転周期より膜形成時間を充分長くとることが必要であるが、膜厚が薄すぎると膜形成時間が短すぎることにより、膜厚が不均一になる傾向にある。
 従って、単純に膜厚を薄くすることで、膜厚の均一性を向上させることは難しい。
 そもそも、第2保護層、及び第4保護層の膜厚は、干渉効果を利用して所望の反射率を得るための調整という観点においても重要であり、極端な薄膜化は困難である。
 スパッタ膜厚の均一性は、層の材料、層を形成するスパッタリング装置の構成や成膜条件などに影響を受ける。例えば、層の材料による面では、本発明の保護層はZnSを含有する材料が好ましいとしているが、上述したように、この材料は透過率や屈折率などでメリットが多い反面、形成される膜厚の均一性が低い傾向にある。また、層を形成するスパッタリング装置のスパッタリングチャンバーやスパッタリングターゲットの構造や形状、マグネット構成等のハード面や、成膜パワーや成膜時間等の成膜条件によって、層の膜厚の均一性が左右されることとなる。したがって用いる材料や成膜条件に応じた装置の設計をすることが理想とはなるが、これは現実的ではない場合も多い。層の均一性の問題は、ZnSを含有する材料に限られず、程度の差こそあれ、必ず生じる問題である。
 ここで、形成された層の膜厚に分布について検討すると、層を形成する度にランダムな膜厚分布になるのではなく、上述した条件が統一されていれば、即ち、同一の層材料を同一の装置で、同一の成膜条件で成膜する場合は、装置の経時変化の影響を除けば、同様な膜厚分布を有する層が形成される傾向にある。
 例えば、同じ材料、同じ装置と条件を用いた場合、形成する層の厚みを変えた場合であっても膜厚の分布は同様になる傾向にある。すなわち、形成しようとする膜厚よりも薄くなる傾向が有る領域は、層を形成する度に同様に薄くなる傾向があり、反対に形成しようとする膜厚よりも厚くなる傾向が有る領域は、層を形成する度に同様に厚くなる傾向がある。
 従って、記録再生機能層内に、同じ装置により同じ材料の複数の層を形成する場合、各層で生じる膜厚の変化の傾向が同様になるため、膜厚が厚くなる領域はどの層も厚くなり、膜厚が薄くなる領域はどの層も薄くなり、膜厚の均一性がますます低下する傾向になる。
 以上のことから、形成された層の膜厚に分布が生じることは避けづらく、そのため記録再生機能層の記録特性が低下する傾向にある。
 特に、透過型記録再生機能層は、上述したように、高い透過率を得るために各層の膜厚調整範囲等が狭いが、これに加えてスパッタリング装置の性能の限界により膜厚の均一性が低下する場合は、記録再生特性の調整が特に困難となる傾向にある。
(反射率の変化率の正負を逆にするアプローチ)
 記録再生機能層内の反射率の均一性を向上する方法として、再生機能層を構成する各層の厚さに変化があっても、再生機能層を全体として一つの層として観察したときに、その反射率に変化が少なく、均一な反射率になる構成とする方法が考えられる。
 一般に、干渉効果のために、透明な材料の膜厚に対する反射率の変化は周期的な変化を示す。そのため、反射率が極小値または極大値を示す付近の膜厚を選べば、膜厚の変化に対する反射率変化は小さくなる。しかし、上述したように記録再生機能層を構成する各層の厚みは、反射率だけを考慮して決定できるものではないため、必ずしも極小値または極大値を示す付近の膜厚を選択できるとは限らない。前述のように記録層、第3保護層、反射層は膜厚等の調整範囲が狭いので、反射率を含む多くの特性を第2保護層及び第4保護層で調整することになるため、両層の厚みを、反射率が極値をとる付近の厚みとすることが困難であることは明らかである。
 そこで、本発明者等は、透明な材料の膜厚に対する反射率の周期的な変化を考えた場合に、第2保護層と第4保護層とを、膜厚の変化に対して反射率の増減が逆になる膜厚となるように構成することで、反射率の均一性を改善できることを見出した。具体的には、第2保護層を膜厚が増大するほど反射率が低下する付近の膜厚とし、第4保護層を膜厚が増大するほど反射率が上昇する付近の膜厚となる組み合わせで構成するか、第2保護層を膜厚が増大するほど反射率が上昇する付近の膜厚とし、第4保護層を膜厚が増大するほど反射率が低下する付近の膜厚となる組み合わせで構成する。
 第2保護層と第4保護層の材料は共に同一の構成元素を有する材料からなるため膜厚分布の傾向は類似するので、膜厚の変化に対して反射率の増減が逆になる膜厚となるように構成することで、各層の膜厚の均一性が低かったとしても、反射率の変化が相殺され、再生機能層を全体として一つの層として観察したときに、より均一な反射率分布が得られることになる。
 具体的には、例えば、記録再生機能層を、第2保護層は膜厚が増大するほど反射率が低下する付近の膜厚とし、第4保護層は膜厚が増大するほど反射率が上昇する付近の膜厚として構成した場合、第2保護層が薄くなる傾向にある領域は第4保護層も同様に薄くなる傾向にあるが、第2保護層の反射率が低下したとしても、第4保護層の反射率は上昇するので、記録再生機能層を全体として一つの層として観察したときに均一な反射率とすることができる。
(第1保護層)
 本発明の光記録媒体は、最外記録再生機能層以外の半透明な記録再生機能層において、第2保護層と第4保護層の調整により、記録再生特性を向上させることができる。しかし、現在一般的に使用されている相変化記録層を用いる場合には、第2保護層の膜厚における反射率の変化率と、第4保護層の膜厚における反射率の変化率とは、通常正負が逆にはなっていない。この理由は以下の通りである。
 より具体的に、記録層として後述する相変化材料を用いる場合、記録再生特性を調整した状態では通常第4保護層の膜厚を厚くすると反射率が上昇する領域を用いることとなる。第2保護層の材料として好ましい材料であるZnSを含有する材料は、膜厚を0nmから大きくしていくと初めは反射率が下がり、極小値を超えると高くなる傾向にある。そのため、本願発明を適用しようとすると、第2保護層の膜厚は当該極小値よりも薄い範囲としなければならない。
 ところが、保護層は記録再生機能層の物理的、化学的な保護機能を有しているため、このように第2保護層を極端に薄くした場合、記録再生機能層の耐久性が低下してしまうことになる。さらには第2保護層を薄くすると、信号振幅が小さくなる傾向がある。従って、現在使用されている光記録媒体においては、第2保護層の膜厚を反射率が該極小値をとる膜厚よりも厚く設定することが一般的である。
 すなわち、第2保護層の膜厚を、0nmから厚くしたときの最初の反射率の極小値よりも薄く設計すると、第2保護層の膜厚を通常より薄くすることになり、保護機能が低下する傾向にある。この傾向は、過酷な環境下での保存耐久性能等で保護機能に差が出る可能性がある。また、書込型や書換型の光記録媒体の場合も特に顕著となる。
 第2保護層の膜厚が薄くなることによる保護機能低下は、第2保護層と接する他の層が受ける熱ダメージが高くなったり、ガスの透過による劣化が進んだりするためと考えられる。そのため、本願発明においては、第2保護層より小さい屈折率をもつ第1保護層を、第2保護層のレーザー光の入射側に新たに設け、各層膜厚を調整することで記録再生機能層の保護を図ることができる。
 第1保護層は、第2保護層と光学的に異なる性質である必要があるため、前記第2保護層の屈折率が、第1保護層の屈折率よりも0.3以上大きいことが必要である。何故なら、第1保護層の屈折率が第2保護層と近い値である場合には、光学的に第1保護層と第2保護層の区別がなくなり、反射率に対する影響が、第2保護層単独の膜厚ではなく、第2保護層と第1保護層のトータルの膜厚で決定されてしまうことになるからである。
 図1は、レーザー光の入射側から少なくとも、第1保護層、第2保護層、記録層、第3保護層、反射層、及び第4保護層をこの順に有する半透明な記録再生機能層を有する光記録媒体において、ある程度の記録再生特性が得られる光記録媒体の各層の設計値を基に、一定の膜厚の第1保護層に対して第2保護層の膜厚を変化させたときに、記録層にレーザー光をフォーカスした場合の記録前反射率がどのように変化するかについて、コンピューターシミュレーションにより計算した結果を示す。各層の具体的な厚さ及び複素屈折率は、下記表1の通りである。第1保護層および第4保護層に接する部分(紫外線硬化樹脂等)の複素屈折率は1.5-0iとした。なお、界面層として、第4保護層と反射層の間にCr-Taを、記録層と第2保護層の間にZrO-Crを設けた構成とした。
Figure JPOXMLDOC01-appb-T000001
 第2保護層と第4保護層は(ZnS)80(SiO20を想定している。ここで、第4保護層の膜厚をD4、記録層にレーザー光をフォーカスした場合の記録前反射率をRとしたとき、Rの膜厚に対する増加率d(R)/d(D4)の符号は正である。このため、本発明の光記録媒体の範囲とするには、前記第2保護層の膜厚をD2とすると、Rの膜厚に対する増加率d(R)/d(D2)が負となる領域である必要がある。
 図1から明らかなように、第1保護層の屈折率(n)が低いほど、第2保護層膜厚の変化に対する反射率の変化がマイナスとなる領域、すなわち、d(R)/d(D2)の符号が負となる領域の上限が大きくなっており、本願発明を実現可能な第2保護層膜厚の領域が広がり、反射率均一性の観点では光記録媒体の設計がしやすくなる。
 また、第1保護層の屈折率が第2保護層と同程度である場合は、光学的に第2保護層が厚くなった場合と同様の反射率変化になってしまい、前述の通り第2保護層の膜厚を制御する意味が低下してしまう。
 そのため、第1保護層の屈折率は、第2保護層より0.3以上小さいことが好ましい。
 具体的に第1保護層の好ましい屈折率は、ZnSを含有する第2保護層の場合記録再生レーザー光(通常、波長405nm付近)での屈折率が通常2.0より大きいため、記録再生レーザー光の波長において、1.90以下であることが好ましく、1.80以下であることがより好ましく、1.75以下であることが特に好ましく、1.70以下であることが更に好ましい。
 第2保護層の材料がZnSを含有する材料以外の場合も含め、第2保護層と第1保護層の屈折率との差という観点からは、第2保護層の屈折率は、第1保護層の屈折率よりも0.3以上大きいことが好ましく、更には0.5以上大きいことが好ましく、特には0.6以上大きいことが好ましい。
 一方、第1保護層の屈折率が小さすぎる場合、第4保護層の反射率の変化率の正負と、第2保護層の反射率の変化率の正負とが逆になる領域で、信号振幅が小さくなる傾向にある。
 この場合は反射層を厚く記録層を薄くして調整することにより、透過率と信号振幅の両立が可能となるが、記録層が薄くなりすぎると書換時の結晶化速度が遅くなり記録再生特性が低下する傾向があるため、第1保護層の屈折率が小さすぎると実質的には信号振幅が小さいところで使用せざるを得ない。従って、第1保護層の屈折率は1.30以上であることが好ましく、1.50以上がさらに好ましく、1.60以上が特に好ましい。
(最外記録再生機能層)
 上述したように、本発明において、記録再生機能層を透過型記録再生機能層とする場合には、該記録再生機能層を構成する各層の膜厚を薄くすることで透過率を確保しつつ、膜厚の不均一さから生じる反射率の不均一さを解消するために、第2保護層と第4保護層とをなるべく層の膜厚が薄い領域で反射率の変化率の正負が逆になるような膜厚の設計とすることが好ましい。
 ただし、最外記録再生機能層では、透過記録再生機能層に比べて透過率を考慮する必要がないため、第2保護層と第3保護層の膜厚を比較的自由に設計でき、反射率均一性に関する大きな課題は生じにくい傾向にある。またさらには、第3保護層は放熱性調整のため厚く設けることが多く、第2保護層と第3保護層の反射率変化の相殺に関しては好都合となる。
 従って、最外記録再生機能層に、本発明の記録再生機能層を適用しなくても、透過型記録再生機能層に本発明の記録再生機能層を適用させれば、本発明の効果を得ることができる。無論、最外記録再生機能層に本発明の記録再生機能層を適用してもよい。
 なお、最外記録再生機能層は、第4保護層を有していなくてもよい。また、第4保護層を有していたとしても、反射層が厚く反射率が高い場合、光学的な設計には関与しない。
(記録再生機能層を構成する各層の膜厚)
 以上のように各層の膜厚と記録再生特性の間には多くの要因が関係するため、各層の膜厚は以下の範囲が好ましい。
 第1保護層は、12nm以上が好ましく、15nm以上がより好ましく、また、40nm以下が好ましく、30nm以下がより好ましい。
 この範囲にすることで、反射率、反射率均一性、信号振幅の特性を維持しながら書換耐久性を良好に保つことができる。また、ZnSを含有する第2保護層の場合は、第1保護層の膜厚を上記範囲とすることで、第2保護層の膜厚変化に対して反射率が極小値をとる際の第2保護層の膜厚値が、適切な値となるため、d(R)/d(D2)とd(R)/d(D4)の符号が逆になる膜厚範囲が広く、かつ、書換耐久性も良好に保つことができるため好ましい。
 第2保護層は、8nm以上が好ましく、10nm以上がより好ましく、また、25nm以下が好ましく、20nm以下がより好ましい。
 この範囲にすることで、反射率、信号振幅、書換耐久性を維持しながら反射率均一性を良好に保つことが可能である。
 記録層は、3nm以上が好ましく、4nm以上がより好ましく、また、10nm以下が好ましく、8nm以下がより好ましい。
 この範囲にすることで、透過率を維持しながら結晶化速度、信号強度を良好に保つことができる。
 第3保護層は、2nm以上が好ましく、5nm以上がより好ましく、また、20nm以下が好ましく、15nm以下がより好ましい。
 この範囲にすることで、記録層の放熱性が良好となり信号強度を保つことができる。
 反射層は、5nm以上が好ましく、7nm以上がより好ましく、また、20nm以下が好ましく、15nm以下がより好ましい。
 この範囲にすることで、透過率を維持しながら信号強度を保つことができる。
 第4保護層は、5nm以上が好ましく、10nm以上がより好ましく、15nm以上がさらに好ましく、また、50nm以下が好ましく、40nm以下がより好ましく、35nm以下がさらに好ましい。
 この範囲にすることで、反射率、透過率、透過率均一性、信号振幅を良好に保つことができる。
 ここで、本発明に係る記録再生機能層が膜厚の不均一性を有するにも関わらず、高い反射率の均一性を有するためには、上述したように第2保護層と第4保護層の材料を共に同一の構成元素を有する材料を用いて膜厚分布の傾向を類似させ、第1保護層の屈折率を上述した範囲とすることで、記録再生機能層を構成する各層の膜厚を調整することによる反射率の均一性の制御をしやすくすることが好ましい。このような条件下で記録再生機能層を構成する各層の膜厚を上記範囲とすることで、均一な反射率の記録再生機能層を得ることができる。
 中でも、本発明の効果を有する光記録媒体としては、レーザー光の入射側から少なくとも、第1保護層、第2保護層、記録層、第3保護層、反射層、及び第4保護層をこの順に有する半透明な記録再生機能層を有しており、第2保護層と第4保護層とがZnSを含有する同一の構成元素を有する材料からなり、第1保護層の膜厚が15nm以上であり、かつ記録再生レーザー波長での屈折率が1.30以上1.80以下であり、第2保護層の膜厚が16nm以下である構成を有する光記録媒体が好ましい。
[2.本発明に係る記録再生機能層を構成する各層の成分]
(2-1.第2、4保護層の成分)
 第2保護層及び第4保護層は同一の構成元素からなり、好ましくはZnSを含有しており、中でもZnSを主成分とすることが特に好ましい。
 ZnSの他に含有してもよい成分としては、例えば、Sc、Y、Ce、La、Ti、Zr、Hf、V、Nb、Ta、Zn、Al、Cr、In、Si、Sn、及びGe等の酸化物;Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Zn、B、Al、Si、Ge、及びSn等の窒化物;Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、及びSi等の炭化物;Y、Cd、Ga、In、Si、Ge、Sn、Pb、Sb、及びBi等の硫化物、セレン化物及びテルル化物;Y、及びCe等の酸硫化物;Mg、Ca等のフッ化物等が挙げられる。これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
 中でも第2保護層、及び第4保護層の材料としては、書換耐久性、透過率、膜形成速度等の観点から、(ZnS)80(SiO20が特に好ましい。
(2-2.第1保護層の成分)
 第2保護層と第1保護層の屈折率の差は0.3以上であり、第2保護層には通常、比較的屈折率の大きい誘電体が用いられるため、第1保護層は第2保護層より屈折率を小さくすることが好ましい。好ましい第2保護層材料であるZnSは、屈折率が比較的大きい材料であるため、保護機能を充分に保ったまま第2保護層の膜厚に対する反射率の変化率の正負を変えるためには、実質的に屈折率が小さい材料を中心に選ぶことになる。
 具体的には、Si、Al等の酸化物、窒化物を主成分とする材料等が好ましく、最適な屈折率を得るには酸化物と窒化物とを混合することが好ましい。
 具体例としては、Sc、Y、Ce、La、Ti、Zr、Hf、V、Nb、Ta、Zn、Al、Cr、In、Si、Sn、及びGe等の酸化物;Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Zn、B、Al、Si、Ge、及びSn等の窒化物;Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、及びSi等の炭化物;Zn、Y、Cd、Ga、In、Si、Ge、Sn、Pb、Sb、及びBi等の硫化物、セレン化物及びテルル化物;Y、及びCe等の酸硫化物;Mg、Ca等のフッ化物等やこれらの混合物が挙げられる。これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
 中でも第1保護層の材料としては、書換耐久性、透過率等の観点から、Si-O-Nが特に好ましい。Si-O-Nの組成比については(SiO(2-x)(Si(4-y)(1-z)と表したとき、0≦x≦0.4、0≦y≦0.6、0<z<1の範囲内であることが好ましい。
(2-3.第3保護層の成分)
 第3保護層に用いる材料としては、例えば、Sc、Y、Ce、La、Ti、Zr、Hf、V、Nb、Ta、Zn、Al、Cr、In、Si、Sn、及びGe等の酸化物;Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Zn、B、Al、Si、Ge、及びSn等の窒化物;Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、及びSi等の炭化物;Zn、Y、Cd、Ga、In、Si、Ge、Sn、Pb、Sb、及びBi等の硫化物、セレン化物及びテルル化物;Y、及びCe等の酸硫化物;Mg、Ca等のフッ化物等やこれらの混合物が挙げられる。これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
(2-4.記録層の成分)
 本発明は、高い書換耐久性を要求される相変化記録層を有する書換型光記録媒体に用いることが好ましいが、主に金属もしくは半導体の窒化物あるいは酸化物からなる記録層を有する追記型の光記録媒体にも用いることが出来る。
(相変化記録層)
 相変化記録層の材料としてはカルコゲン系合金が多く用いられるが、透過型記録再生機能層に用いる書換型相変化記録材料としては、Ge-Te系記録材料、例えばGe50Te50付近の組成を主成分とする材料が好ましい。特にGeTe1-x(0.4≦x≦0.5)で表される組成を主成分とする材料が好ましい。
 この材料は結晶状態とアモルファス状態の複素屈折率の変化が大きく、記録層膜厚を薄くしなければならない場合でも比較的大きな信号強度を得ることができる。また、反射層を薄くしなければならない場合、すなわち放熱効果の小さい場合であっても比較的優れた書換特性が得られやすい。
 これは、例えばSbTe1-x(0.7≦x≦0.9)を主成分とする相変化材料と比較して、結晶核形成頻度が大きいことが一因と考えられている。Ge-Te系記録材料は結晶化速度が遅い傾向にあるため、Bi、Sn等を3~15原子%含有させることにより結晶化速度を速くすることが好ましく、3~10原子%含有させることがより好ましい。また、アモルファス状態の安定性を高めるため、Inを2~10原子%含有させることが好ましく、2~6原子%含有させることがより好ましい。
 上述の材料では記録層に接する材料によって結晶核形成頻度が大きく変わるため、結晶核形成頻度が大きくなるようなTa、ZrO、HfO、Cr等やこれらの混合物を主成分とする材料を界面層として記録層に接して設けることが好ましい。
(金属もしくは半導体の窒化物あるいは酸化物からなる追記型光記録媒体の記録層)
 金属もしくは半導体の窒化物あるいは酸化物からなる追記型光記録媒体の記録層としては、記録時の加熱によって記録層が到達する温度において分解する物質Aと、記録時の加熱によって記録層が到達する温度において化学反応又は相変化を起こすことのない物質Bとを含有することが好ましい。
 物質Aとしては、記録時の加熱によって記録層が到達する温度(例えば、1200℃)以下に分解温度をもつ金属の窒化物又は半導体の窒化物を用いることが好ましい。このような窒化物としては、Cr、Mo、W、Fe、Ge、Sn、及びSbからなる群から選ばれる1つの元素の窒化物を挙げることができる。これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
 これらの中で、安定性、記録後のノイズの低さといった点から、Mo、Ge、Sn、及びSbの窒化物が好ましく、Sn、Sbの窒化物が特に好ましい。
 また、物質Aとしては、記録時の加熱によって記録層が到達する温度(例えば、1200℃)以下に分解温度をもつ金属の酸化物又は半導体の酸化物を挙げることもできる。このような酸化物としては、Ir、Au、Ag、及びPtからなる群から選ばれる1つの元素の酸化物を用いることが好ましい。これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
 これらの中で、Au、Ag、Ptの酸化物が安定性、記録後のノイズの低さといった点で特に好ましい。
 これら、金属の窒化物、半導体の窒化物、金属の酸化物、半導体の酸化物は、記録時に記録層が到達する温度において、窒素又は酸素を放出し、金属又は半導体単体に分解する。
 一方、物質Bとしては、記録時の加熱によって記録層が到達する温度において化学反応又は相変化を起こすことのない(好ましくは、1500℃以下には分解温度及び融点をもたない)金属の窒化物又は半導体の窒化物を用いることが好ましい。このような窒化物としては、Ti、Zr、Hf、V、Nb、Ta、Al、及びSiからなる群から選ばれる少なくとも1つの元素の窒化物を挙げることができる。これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
 これらの中で、安定性が高く安価である点から、Ti、V、Nb、Ta、Al、及びSiの窒化物が好ましく、Ti、V、Nb、Ta、Siの窒化物が特に好ましい。中でも、V、Nbが特に好ましい。
 また、物質Bとしては、記録時の加熱によって記録層が到達する温度において化学反応又は相変化を起こすことのない(好ましくは、1500℃以下には分解温度及び融点をもたない)金属の酸化物又は半導体の酸化物を挙げることもできる。
 このような酸化物としては、Zn、Al、Y、Zr、Ti、Nb、Ni、Mg、及びSiからなる群から選ばれる少なくとも1つの元素の酸化物を用いることが好ましい。これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
 これらの中で、Zn、Al、Y、Zr、Nb、Siの酸化物が安定性、記録後のノイズの低さといった点で特に好ましい。
(2-5.反射層)
 反射層に使用する材料は、反射率の大きい物質が好ましく、特に放熱効果も期待できるAu、AgまたはAl等の金属が好ましく、特にAgを主成分とする材料が優れている。AgにMg、Ti、Au、Cu、Pd、Pt、Zn、Cr、Si、Ge、Bi、Nd希土類元素のいずれか一種を0.01原子%以上10原子%以下含むAg合金も、反射率、熱伝導率が高く、耐熱性も優れていて好ましい。
 Agを主成分とする反射層と接する側の界面に、硫黄を含まないか又は硫黄含有量の少ない界面層を設けることが好ましい。保護層に硫黄が含有される場合に、Agと硫黄との反応(Agの腐食)を抑制するために通常用いられる。
[3.本発明の光記録媒体の製造方法]
 本発明の光記録媒体の製造方法に制限はなく、従来公知の方法を用いて製造することができる。以下、具体例を説明する。
(基板)
 本発明の光記録媒体に用いられる基板としては、ポリカーボネート、アクリル、ポリオレフィンなどの樹脂;ガラス;アルミニウム等の金属;等を用いることができる。
 通常、基板には深さ15~250nm程度の案内溝が設けられているので、案内溝を射出成形によって形成できる樹脂製の基板が好ましい。
 このような基板の厚さは、用途に応じて適宜決定されるものであり、通常0.3mm以上、好ましくは0.5mm以上であり、また、通常3mm以下、好ましくは2mm以下である。ブルーレイディスクにおいては、基板の厚さは1.1mm程度である。
(保護層、記録層、反射層の形成方法)
 各保護層、記録層、反射層は、従来公知の方法で形成可能であるが、スパッタリング法によって形成することが好ましい。複数の元素から成る層を形成する場合は、合金ターゲットを用いても、複数の単体のターゲットから同時に放電させるコスパッタリング法により形成してもよい。また、ガス元素を含有させる場合は反応性スパッタリング法を用いることも可能である。
(保護層、記録層、反射層以外の層の形成方法)
 本発明の光記録媒体には、必要に応じて上記各層と異なる他の層を設けても良い。例えば、ブルーレイディスクの場合は、レーザー光の入射側にカバー層を設けることが一般的である。
 カバー層は、スパッタ膜を水分や塵埃から保護すると同時にレーザー光を透過する必要がある。したがって、記録・再生に用いられるレーザー光に対して透明であると同時にその厚さは50μm以上150μm以下が好ましい。カバー層は、通常、紫外線硬化樹脂をスピンコート法により塗布した後硬化することで、あるいは透明シートを貼り合せることで形成される。
 また、各層の間に、相互拡散を防止するための拡散防止層や、密着性を高めるための密着層等の機能を有する界面層を適宜用いても良い。
(記録再生レーザー波長)
 本発明の光記録媒体における、記録再生に用いるレーザーの波長(記録再生レーザー波長)に制限はないが、特に500nm以下、好ましくは450nm以下、さらに好ましくは420nm以下の波長で用いると、高い効果が得られる。層の厚みによる反射率の変化は、波長が短いほど受けやすいためである。また、記録再生レーザー波長は、380nm以上が好ましい。
 以下に、本発明の具体的態様を実施例によりさらに詳細に説明するが、本発明はその要旨を逸脱しない限り、これらの実施例によって限定されるものではない。
 本発明は、多層構造の光記録媒体における最外記録再生機能層以外の記録再生機能層(透過記録再生機能層)に適用することを想定しており、2層の光記録媒体を作製し記録再生特性の評価をした。ただし、反射率及び反射率均一性の測定は、単層の光記録媒体を作製して測定した。反射率の測定においては他の記録再生機能層の影響は無視できるためである。また、各層の屈折率については、各層の材料からなる単層膜を作製して測定した。
[評価方法]
<記録再生特性の評価>
 記録再生特性は、オーバーライト後のジッタ値を測定し、書換耐久性によって評価した。ジッタ値は、10回オーバーライト後のジッタ(DOW10)、1000回オーバーライト後のジッタ(DOW1000)をそれぞれ測定した。
 パルステック社製ODU1000テスター(ブルーレイディスク用、波長約406nm、NA=0.85)を用いた。線速度9.83m/s(2倍速)とし、溝内にフォーカスサーボ及びトラッキングサーボをかけ、記録特性を評価した。1-7PPの記録符号化方式を用いた信号のオーバーライトをおこなった。クロック周波数は、ブルーレイディスクの1倍速における基準クロック周波数66MHzに対して記録時は線速度に比例させたものとした。
 ジッタは記録信号をリミットイコライザにより波形等化した後2値化をおこない、2値化した信号の立ち上がりエッジおよび立ち下がりエッジと周期信号の立ち上がりエッジとの時間差の分布をタイムインターバルアナライザにより測定した(data to clock jitter)。ジッタ測定時の記録パワー12.8mW、消去パワー3.5mWとし、分割パルスを用い、そのパルス波形はすべての光記録媒体で同一とした。分割パルス波形は、基準クロック周期をTとして、長さnTのマークを記録する場合に記録パワーを有するn-1個のパルスに分割し、分割パルス長は(6/16)Tとした。分割パルス間は0.1mWのパワーとし、記録マーク間に相当する部分には消去パワーを照射し、オーバーライトをおこなった。
 なお、ジッタの評価は、2層化した光記録媒体のレーザー光の入射側の記録再生機能層に対してのみ行なっている。1層の光記録媒体作製時に用いたカバーシートと、2層の光記録媒体作製時に用いた紫外線硬化樹脂とでは、書換耐久性、すなわち1000回オーバーライト後のジッタ値(DOW1000)が変化するためである。なお、紫外線硬化樹脂の方が書換耐久性は優れている。
<反射率>
 反射率の測定は、2層を積層する前の単層の光記録媒体に対して行った。パルステック社製ODU1000テスター(ブルーレイディスク用、波長約406nm、NA=0.85)を用い、再生パワー0.7mW、線速度4.92m/sでの再生波形をアナログオシロスコープで観察し、1周の平均値を測定した。測定位置は光記録媒体の中心から半径29mmの位置とした。
<反射率均一性>
 反射率均一性の測定は、第2層を積層する前の単層の光記録媒体に対して行った。
 反射率均一性は、光記録媒体の中心から半径24、40、55、57、58mmのそれぞれの半径における平均の反射率をまず測定し、その最大反射率をRh、最小反射率をRlとしたときの(Rh-Rl)/Rhの値とした。各半径位置での反射率の測定は、パルステック社製ODU1000テスター(ブルーレイディスク用、波長約406nm、NA=0.85)を用い、再生パワー0.7mW、線速度4.92m/sでの再生波形をオシロスコープで観察し、1周の平均値を測定することによりおこなった。
<屈折率>
屈折率の測定は、日本分光社製のエリプソメーターMEL-30Sを用いた。
(実施例1~5、比較例1~3)
[光記録媒体の作製]
 実施例1~5、比較例1~3の各光記録媒体の、1層の層構成は表2に示すとおり異なるものの、その作製方法は共通である。以下、まとめて説明する。
<単層の光記録媒体の作製>
 まず、レーザー光の入射側用の半透明な記録再生機能層のみを、案内溝を有する1.1mm厚の基板上に直接形成した。その後、100μmの厚さの透明シートをカバー層として貼り、単層の光記録媒体を作製した。
 初期結晶化後、単層の構成の状態で入射側の記録再生機能層の反射率と反射率均一性の評価を行なった。
 レーザー光の入射側の半透明な記録再生機能層のスパッタ膜構成は、基板側から第4保護層((ZnS)80(SiO20)、Cr-Ta界面層(3nm)、Ag合金反射層、第3保護層(Cr-Ta(8nm))、Bi-Ge-Te記録層、ZrO-Cr界面層(5nm)、第2保護層((ZnS)80(SiO20)、第1保護層(Si-O-N)、とした。なお、レーザー光は、第1保護層側から入射される。
(第1保護層)
 第1保護層のSi-O-N層は、Oガス4sccm、Nガス36sccmをArガスとともに流しながらSiターゲットをDC電源を用いて1.5kWでスパッタすることにより得た。
 Si-O-N層の屈折率は1.65であった。
 なお、実施例1~5、比較例1~3における各第1保護層の厚さは表2に記載の通りとした。
(第2保護層)
 第2保護層の(ZnS)80(SiO20層は、Arガスを10sccm流しながら(ZnS)80(SiO20ターゲットをRF電源を用いて2kWでスパッタすることにより得た。(ZnS)80(SiO20層の屈折率は2.3であった。
 なお、実施例1~5、比較例1~3の各第2保護層の厚さは表2に記載の通りとした。
(ZrO-Cr界面層)
 ZrO-Cr界面層は、厚さ5nmで形成した。
 ZrO-Cr界面層は、Arガスを30sccm流しながらZrO-CrターゲットをRF電源を用いて1.5kWでスパッタすることにより得た。
(Bi-Ge-Te記録層)
 Bi-Ge-Te記録層は、Arガスを10sccm流しながらBi-Ge-TeターゲットをDC電源を用いて0.3kWでスパッタすることにより得た。
 なお、実施例1~5、比較例1~3における各Bi-Ge-Te記録層の厚さは表2に記載の通りとした。
(第3保護層)
 第3保護層のCr-Ta層は、厚さ8nmで形成した。
 Cr-Ta層は、Arガスを10sccm流しながらCr-TaターゲットをRF電源を用いて1.5kWでスパッタすることにより得た。
(Ag合金反射層)
 Ag合金反射層は、Arガスを10sccm流しながらAg合金ターゲットをDC電源を用いて0.5kWでスパッタすることにより得た。
 なお、実施例1~5、比較例1~3におけるAg合金反射層の厚さは表2に記載の通りとした。
(Cr-Ta界面層)
 Cr-Ta界面層は、SがAg合金中に拡散することを防ぐために設けた層であり、厚さ3nmで形成した。
 Cr-Ta層は、Arガスを10sccm流しながらCr-TaターゲットをRF電源を用いて1.5kWでスパッタすることにより得た。
(第4保護層)
 第4保護層の(ZnS)80(SiO20層は、第2保護層と同様の方法で作成した。
 なお、実施例1~5、比較例1~3における各第4保護層の厚さは表2に記載の通りとした。
Figure JPOXMLDOC01-appb-T000002
<2層の光記録媒体の作製>
 2層の光記録媒体を積層し、初期結晶化後、レーザー光の入射側の半透明な記録再生機能層のみについて記録再生特性の評価を行なった。なお、2層の光記録媒体において、レーザー光の入射側から遠い側の記録再生機能層は、案内溝を有する1.1mm厚の基板上に、Nb(約4.5nm)、Ag合金(約125nm)、Cr-Ta(約3nm)、(ZnS)80(SiO20(約8nm)、Ge-In-Sb-Te(約12nm)、ZrO-ZnS(約5nm)、(ZnS)80(SiO20(約26nm)、Si-O-N(約10nm)をスパッタリングにより設けることにより作製した。なお、レーザー光の入射側から遠い側の記録再生機能層は入射側の記録再生機能層の特性にはほとんど影響しない。
 2層媒体の作製は、案内溝を有する1.1mm厚のポリカーボネート基板上にレーザー光の入射側から遠い側の記録再生機能層を形成し、その上に案内溝を有する25μmの厚さの紫外線硬化樹脂からなる層を形成した。
 次に、レーザー光の入射側の半透明の記録再生機能層を形成し、その上に75μmの厚さの紫外線硬化樹脂からなる層を形成した。
 1.1mm厚の基板上と25μm厚の紫外線硬化樹脂からなる層上に形成された案内溝はどちらも溝幅0.195μm、溝深さ20nm、溝ピッチ0.32μmである。なお、「溝」とは光入射側から見て距離の近い方と定義した。記録再生機能層はスパッタリング法を用いて形成した。
 なお、実施例1~4と比較例1に供する2層の光記録媒体を連続して作製して記録再生特性の評価を行った。その後、実施例5、比較例2、及び比較例3に供する2層の光記録媒体を各々作製しては、記録再生特性の評価を行った。
 (実施例6)
 さらに、以下の実施例6の光記録媒体を作製し、評価を行った。
<単層の光記録媒体の作製>
 第4保護層の膜厚を34nm、Ag合金反射層の膜厚を10nm、第3保護層の膜厚を5nm、記録層をBiGe35InTe53(6.5nm)、第2保護層の膜厚を20nm、第1保護層の膜厚を15nmとした以外は、実施例1と同様に光記録媒体を作製した。
<2層の光記録媒体の作製>
 レーザー光の入射側から遠い側の記録再生機能層は、実施例1と同様に作製した。
[結果]
 実施例1~6及び比較例1~3の結果を表3に示す。表3の項目は左から、第1保護層の膜厚、第2保護層の膜厚、第4保護層の膜厚、反射率、第2保護層と第4保護層についての反射率の膜厚に対する変化率d(R)/d(D2)とd(R)/d(D4)の正負、反射率均一性、10回オーバーライト後のジッタ(DOW10)、1000回オーバーライト後のジッタ(DOW1000)の値を示す。
 ここで、第2保護層と第4保護層についての反射率の膜厚に対する変化率d(R)/d(D2)とd(R)/d(D4)の正負については、実施例または比較例の膜厚から第2保護層または第4保護層の膜厚を実験的に変えたサンプルを作製し反射率を測定することにより決定した。
 なお、表3中の二重線は連続した実験でないことを示す。ここで、連続した実験とは、各光記録媒体の作製を文字通り続けて行ったことを意味し、スパッタリング装置の経時変化等の影響がほとんど無い状態で成膜したことになり、膜厚分布の状態が各光記録媒体においてほぼ同一であるとみなせる。実施例5以降の実験は、表中に示した実験例以外の何らかのサンプル作製をこれらの実験例の作製の間に行っていることを示す。
Figure JPOXMLDOC01-appb-T000003
<考察>
 光記録媒体のジッタ値は、8.5%以下が好ましい。
 反射率均一性((Rh-Rl)/Rh)の値は、0.25以下であることが好ましい。
(実施例1~4と比較例1)
 実施例1~4と比較例1の反射率の結果より、第1保護層が30nmのときは第2保護層について反射率が最も小さくなる膜厚は17nm付近である。また、第2保護層が少なくとも10~18nmの間では膜厚が薄いほど反射率均一性は良くなっている。これだけ大きく反射率均一性が変化することは第2保護層の材料である(ZnS)80(SiO20の不均一性が影響していることを示している。
 また、反射率が極小値を示す膜厚より薄い範囲において反射率の均一性が改善するのは、第2保護層と第4保護層との膜厚に対する反射率の変化率の正負を逆にすることにより、似たような膜厚分布の傾向を示す第2保護層と第4保護層との反射率の変化に対する影響を互いに打ち消したためと思われる。
 計算においても、各層に同じ程度の膜厚分布があると仮定したとき、比較例2の構成の付近で反射率分布への影響の大きさを見積もったところ、第2保護層の影響が最も大きく、次に第4保護層の影響が大きくなった。
 実際に(ZnS)80(SiO20は均一な膜厚分布が得にくい傾向にあるが、膜厚分布は、成膜時のターゲットのエロージョンの進み具合等の影響を受ける。すなわちターゲットの電力積算時間等に影響されるため、正確な結果を得るには連続で成膜した場合での比較が好ましい。実施例1~4、比較例1はほぼ連続で成膜した光記録媒体である。
(比較例2)
 比較例2は、第1保護層が無く第2保護層が30nmの光記録媒体である。
 第1保護層が無い従来の構成である比較例2は、第2保護層が厚いために書換耐久性は良好なものの、反射率均一性の点で実施例1~6に対して明らかに劣っている。実施例1~4及び比較例1と連続で実験を行なったわけではないものの、反射率均一性が良くなりにくい構成であることは明らかである。
 反射率だけに注目した場合は、比較例2の構成から第2保護層の膜厚を反射率極小値膜厚より薄くして合わせることも可能である。しかしながら、書換耐久性は良くはなり得ない。
(比較例3)
 比較例3は、第1保護層が無く第2保護層が26nmの光記録媒体である。比較例3の場合において、光学シミュレーションの結果d(R)/d(D2)の符号がゼロとなるのは第2保護層の膜厚が22nm程度であると算出された。
 従って、第2保護層の膜厚を22nmより薄くすることにより、反射率均一性は良好になると思われるが、書換耐久性は膜厚26nmの時点で明らかに劣化しており、これ以上第2保護層の膜厚を薄くすることは困難である。
 書換耐久性が劣る原因は、記録層と入射側の紫外線硬化樹脂層の距離が小さすぎて、樹脂層が熱ダメージを受けるためと思われる。したがって、第1保護層の膜厚が薄い場合は、第2保護層の膜厚を反射率が極小値をとる膜厚より薄くして反射率を調整しても、書換耐久性は良くはならない。
 すなわち、第2保護層が比較的薄い実施例1~5において書換耐久性が良好に保たれているのは、第1保護層を厚く設けたためである。
(実施例6)
 実施例6の第2保護層の膜厚は20nmであり、実施例1~4はもとより、比較例1に比べても厚い値である。それにも関わらず、d(R)/d(D2)の符号が負となっている理由は、第1保護層の膜厚が15nmであり、実施例1~4、比較例1に比べて薄いため、第2保護層の膜厚変化に対する反射率の変化の様子が変わり、反射率が極小となる際の第2保護層の膜厚値が、より高膜厚側にシフトしたためである。このため、d(R)/d(D2)とd(R)/d(D4)の符号が逆となり、良好な反射率均一性が得られている。
 また、第1保護層の膜厚が、実施例1~4に対して薄くなっているものの、第2保護層膜厚がより厚くなっているため、書換耐久性は良好なまま維持されている。
(その他)
 なお、第1保護層が厚い場合でも、第2保護層が薄いと反射率均一性は改善されるが書換耐久性は多少悪化する傾向にある。これはSi-O-N層と(ZnS)80(SiO20層との界面付近の劣化が原因と思われる。Si-O-N層のみを厚くしても改善は小さかったが、(ZnS)80(SiO20層(第2保護層)を厚くすると改善されたからである。
 なお、実施例、比較例では多少反射層や記録層の膜厚が異なるものがあるが、この程度の膜厚差が原因で1000回程度の書換耐久性が大きく変化することはないと考えられる。
 本発明の用途に制限はないが、特に記録層を複数有する多層型の光記録媒体に好適に用いることができる。

 なお、2009年6月24日に出願された日本特許出願2009-149723号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (10)

  1.  レーザー光の入射側から少なくとも、第1保護層、第2保護層、記録層、第3保護層、反射層、及び第4保護層をこの順に有する半透明な記録再生機能層を有する光記録媒体であって、
     前記第2保護層と前記第4保護層とが同一の構成元素を有する材料からなり、
     前記第2保護層の屈折率が、第1保護層の屈折率よりも0.3以上大きく、
     前記第2保護層の膜厚をD2、前記第4保護層の膜厚をD4、前記記録層に該レーザー光をフォーカスした場合の記録前反射率をRとしたとき、Rの膜厚に対する増加率d(R)/d(D2)とd(R)/d(D4)との正負が、逆である
    ことを特徴とする、光記録媒体。
  2.  前記第2保護層と前記第4保護層とがZnSを含有する材料からなる
    ことを特徴とする、請求項1記載の光記録媒体。
  3.  前記第1保護層の膜厚が12nm以上であり、かつ記録再生レーザー波長での屈折率が1.30以上1.80以下である
    ことを特徴とする、請求項2記載の光記録媒体。
  4.  前記第2保護層の膜厚が25nm以下である
    ことを特徴とする、請求項2又は請求項3記載の光記録媒体。
  5.  レーザー光の入射側から少なくとも、第1保護層、第2保護層、記録層、第3保護層、反射層、及び第4保護層をこの順に有する半透明な記録再生機能層を有する光記録媒体であって、
     前記第2保護層と前記第4保護層とがZnSを含有する材料からなり、
     前記第1保護層の膜厚が12nm以上であり、かつ記録再生レーザー波長での屈折率が1.30以上1.80以下であり、
     前記第2保護層の膜厚が25nm以下である
    ことを特徴とする、光記録媒体。
  6.  前記記録層が、相変化記録層である
    ことを特徴とする、請求項1~5の何れか一項に記載の光記録媒体。
  7.  前記相変化記録層が、GeTe1-x(0.4≦x≦0.5)で表される組成を主成分とする
    ことを特徴とする、請求項6に記載の光記録媒体。
  8.  前記記録再生レーザー波長が450nm以下である
    ことを特徴とする、請求項1~7の何れか一項に記載の光記録媒体。
  9.  前記第1保護層が、Si、O及びNからなる
    ことを特徴とする、請求項1~8の何れか一項に記載の光記録媒体。
  10.  前記第2保護層及び第4保護層の材料が(ZnS)80(SiO20である
    ことを特徴とする、請求項1~9の何れか一項に記載の光記録媒体。
PCT/JP2010/060492 2009-06-24 2010-06-21 光記録媒体 WO2010150755A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10792073.8A EP2447945A4 (en) 2009-06-24 2010-06-21 OPTICAL RECORDING MEDIUM
CN201080027000.0A CN102804269B (zh) 2009-06-24 2010-06-21 光记录介质
US13/331,691 US8535775B2 (en) 2009-06-24 2011-12-20 Optical recording medium
HK13100942.4A HK1173839A1 (zh) 2009-06-24 2013-01-22 光記錄介質

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009149723 2009-06-24
JP2009-149723 2009-06-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/331,691 Continuation US8535775B2 (en) 2009-06-24 2011-12-20 Optical recording medium

Publications (1)

Publication Number Publication Date
WO2010150755A1 true WO2010150755A1 (ja) 2010-12-29

Family

ID=43386525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060492 WO2010150755A1 (ja) 2009-06-24 2010-06-21 光記録媒体

Country Status (7)

Country Link
US (1) US8535775B2 (ja)
EP (1) EP2447945A4 (ja)
JP (1) JP5498277B2 (ja)
CN (1) CN102804269B (ja)
HK (1) HK1173839A1 (ja)
TW (1) TWI402832B (ja)
WO (1) WO2010150755A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005182961A (ja) * 2003-12-22 2005-07-07 Ricoh Co Ltd 相変化型光記録媒体
JP2006085875A (ja) * 2004-09-17 2006-03-30 Seiteie Kagi Kofun Yugenkoshi 相変化光ディスク
JP2007172717A (ja) 2005-12-20 2007-07-05 Hitachi Maxell Ltd 光情報記録媒体
JP2007323743A (ja) * 2006-06-01 2007-12-13 Victor Co Of Japan Ltd 相変化型光記録媒体
WO2008132940A1 (ja) * 2007-04-18 2008-11-06 Nec Corporation 光学的情報記録媒体及びその製造方法
JP2009149723A (ja) 2007-12-19 2009-07-09 National Univ Corp Shizuoka Univ 着色重合粒子の製造方法および着色重合粒子、並びにこれを用いたトナー、現像剤、プロセスカートリッジ、画像形成装置及び画像形成方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587216A (en) * 1992-10-16 1996-12-24 Matsushita Electric Industrial Co., Ltd. Optical recording medium
TW575873B (en) * 2000-07-13 2004-02-11 Matsushita Electric Ind Co Ltd Information recording medium, method for producing the same, and recording/reproducing method using the same
EP1213715A3 (en) * 2000-11-30 2003-05-07 Victor Company Of Japan, Ltd. Optical recording medium
JP2003323744A (ja) * 2002-02-27 2003-11-14 Toshiba Corp 光ディスク
DE60318615T2 (de) * 2002-06-05 2008-12-24 Ricoh Co., Ltd. Optisches Aufzeichnungsverfahren
AU2003292692A1 (en) * 2003-01-08 2004-08-10 Mitsubishi Chemical Corporation Optical information recording medium and optical information recording medium manufacturing method
JP4505206B2 (ja) * 2003-10-17 2010-07-21 富士フイルム株式会社 光情報記録媒体および情報記録方法、並びに、色素化合物
WO2005044578A1 (ja) * 2003-11-10 2005-05-19 Ricoh Company, Ltd. 光記録媒体及びその製造方法、スパッタリングターゲット、並びに光記録媒体の使用方法及び光記録装置
JP2005190647A (ja) * 2003-12-03 2005-07-14 Ricoh Co Ltd 相変化型光記録媒体
DE602004031775D1 (de) * 2004-02-05 2011-04-21 Ricoh Co Ltd Phasenänderungsinformationsaufzeichnungsmedium, verfahren zu dessen herstellung und sputtertarget.
US20050207322A1 (en) * 2004-03-18 2005-09-22 Hon-Lun Chen Phase change optical disk
JP4577891B2 (ja) * 2004-07-16 2010-11-10 株式会社リコー 光記録媒体
JP2006095821A (ja) * 2004-09-29 2006-04-13 Tdk Corp 光記録媒体
TW200744091A (en) 2006-05-17 2007-12-01 Victor Company Of Japan Phase-change optical storage medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005182961A (ja) * 2003-12-22 2005-07-07 Ricoh Co Ltd 相変化型光記録媒体
JP2006085875A (ja) * 2004-09-17 2006-03-30 Seiteie Kagi Kofun Yugenkoshi 相変化光ディスク
JP2007172717A (ja) 2005-12-20 2007-07-05 Hitachi Maxell Ltd 光情報記録媒体
JP2007323743A (ja) * 2006-06-01 2007-12-13 Victor Co Of Japan Ltd 相変化型光記録媒体
WO2008132940A1 (ja) * 2007-04-18 2008-11-06 Nec Corporation 光学的情報記録媒体及びその製造方法
JP2009149723A (ja) 2007-12-19 2009-07-09 National Univ Corp Shizuoka Univ 着色重合粒子の製造方法および着色重合粒子、並びにこれを用いたトナー、現像剤、プロセスカートリッジ、画像形成装置及び画像形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2447945A4

Also Published As

Publication number Publication date
JP5498277B2 (ja) 2014-05-21
US20120148784A1 (en) 2012-06-14
EP2447945A4 (en) 2015-09-02
US8535775B2 (en) 2013-09-17
TW201112242A (en) 2011-04-01
TWI402832B (zh) 2013-07-21
JP2011028832A (ja) 2011-02-10
CN102804269B (zh) 2016-03-02
EP2447945A1 (en) 2012-05-02
CN102804269A (zh) 2012-11-28
HK1173839A1 (zh) 2013-05-24

Similar Documents

Publication Publication Date Title
KR100629230B1 (ko) 광학 정보 기록 매체
US6841217B2 (en) Optical information recording medium and method for manufacturing the same
JP4834666B2 (ja) 情報記録媒体およびその製造方法
US20040253539A1 (en) Optical information recording medium and method for manufacturing the same
WO2011024381A1 (ja) 情報記録媒体とその製造方法
JP2004362748A (ja) 光学情報記録媒体
TWI442391B (zh) 光學記錄媒體
WO2012120817A1 (ja) 情報記録媒体とその製造方法
JP4124535B2 (ja) 光学情報記録媒体およびその記録再生方法
JP5498277B2 (ja) 光記録媒体
KR100903575B1 (ko) 다층형 상변화 광기록 매체
JP5298623B2 (ja) 追記型光記録媒体
JP5437793B2 (ja) 情報記録媒体及びその製造方法
JP4047561B2 (ja) 光学的情報記録用媒体及び光学的情報記録用媒体の製造方法
WO2008026676A1 (fr) Support d'enregistrement d'informations optique
JP5838306B2 (ja) 情報記録媒体とその製造方法
JP2007323743A (ja) 相変化型光記録媒体
JP4086689B2 (ja) 光学的情報記録媒体とその製造方法
JP4352343B2 (ja) 光学的情報記録媒体
JP5286912B2 (ja) 書き換え型相変化光記録媒体
JP2006247855A (ja) 多層相変化型光記録媒体
JP2007095235A (ja) 光記録媒体
JP4322719B2 (ja) 光情報記録媒体及びその製造方法とスパッタリングターゲット
EP1764793A1 (en) Optical recording medium and process for producing the same
JP2007310940A (ja) 相変化型光記録媒体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080027000.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792073

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2598/MUMNP/2011

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2010792073

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010792073

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE