WO2010150705A1 - 音場調整装置 - Google Patents

音場調整装置 Download PDF

Info

Publication number
WO2010150705A1
WO2010150705A1 PCT/JP2010/060351 JP2010060351W WO2010150705A1 WO 2010150705 A1 WO2010150705 A1 WO 2010150705A1 JP 2010060351 W JP2010060351 W JP 2010060351W WO 2010150705 A1 WO2010150705 A1 WO 2010150705A1
Authority
WO
WIPO (PCT)
Prior art keywords
speaker
sound field
delay amount
delay
pair
Prior art date
Application number
PCT/JP2010/060351
Other languages
English (en)
French (fr)
Inventor
健作 小幡
晃広 井関
佳樹 太田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2011519853A priority Critical patent/JP5330515B2/ja
Priority to US13/380,404 priority patent/US20120155651A1/en
Publication of WO2010150705A1 publication Critical patent/WO2010150705A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/002Non-adaptive circuits, e.g. manually adjustable or static, for enhancing the sound image or the spatial distribution

Definitions

  • the present invention relates to an apparatus for adjusting a sound field.
  • the speaker arrangement viewed from the listener is not concentric with the listeners as the speakers SP1 to SP5 shown in FIG. 26A, but is asymmetric as shown in FIG. . Therefore, the sound pressure balance at the listener position shown in FIG.
  • An object of the present invention is to provide a sound field adjusting device that can improve the sound pressure balance at the listener position to be adjusted and reduce the deterioration of the sound pressure balance at other positions.
  • the invention according to claim 1 is a sound field adjustment device that reproduces a signal from a plurality of speakers arranged in an acoustic space, and includes a signal supply unit that supplies signals to the plurality of speakers, and a plurality of speakers.
  • the band-by-band delay means for giving a delay of a different delay amount for each frequency band with respect to a signal supplied to at least a pair of adjacent speakers that is the closest speaker pair from the listening position, and the band-by-band delay means gave a delay.
  • Constant delay means for giving a constant delay amount to a speaker pair other than the speaker pair regardless of the frequency band.
  • One aspect of the present invention is a sound field adjustment device that reproduces signals from a plurality of speakers arranged in an acoustic space and within a predetermined distance from a listening position, and supplies the signals to the plurality of speakers.
  • a signal delay unit for giving a delay of a different delay amount for each frequency band to a signal supplied to at least a pair of adjacent speakers that is the closest speaker pair from the listening position among the plurality of speakers.
  • constant delay means for giving a delay of a constant delay amount to speaker pairs other than the speaker pair to which the delay means for each band gives a delay regardless of the frequency band.
  • the above sound field adjusting device can be applied to a device for adjusting the sound field in the vehicle, for example.
  • the sound field adjusting device reproduces a signal from a plurality of speaker pairs arranged in an acoustic space.
  • the sound field adjustment device supplies signals to a plurality of speakers, and at least a frequency band is supplied to a signal supplied to a pair of adjacent speakers that is the speaker pair closest to the listening position among the plurality of speakers.
  • a different delay amount is given to each other, and a constant delay amount is given to a speaker pair other than the speaker pair that gives a different delay amount for each frequency band regardless of the frequency band.
  • the sound field adjustment device adjusts the sound field only by adjusting the delay amount without adjusting the level, so that the sound pressure balance is adjusted at a position other than the listening position as a result of adjusting the sound pressure balance at the listening position. It is possible to avoid the deterioration, and to further improve the sound pressure balance at the listening position.
  • the close speaker pair here refers to a speaker pair that is closest to the listening position among the speaker pairs in the acoustic space.
  • a speaker pair refers to a pair of speakers.
  • the sound field adjusting device of the present invention adds a different delay amount for each frequency band for the signal supplied to the pair of adjacent speakers.
  • the sound field adjustment device gives a delay amount different for each frequency band to the speaker pair that is easily affected by the head of the listening position, and thus is close to the listening position and the listening position. The deterioration of the sound pressure balance before and after the position can be avoided.
  • the speaker pair is a speaker pair arranged in either the front-rear direction or the left-right direction of the listening position
  • the delay unit for each band is the proximity speaker pair.
  • the delay amount is determined so that the level difference between the two becomes equal to or less than a predetermined value.
  • the sound field adjusting device reduces the level difference between the pair of adjacent speakers that are susceptible to the influence of the head at the listening position, thereby generating a sound pressure level difference before and after the listening position. It can be avoided.
  • the speaker pair is a speaker pair arranged in either the front-rear direction or the left-right direction of the listening position, and the delay unit for each band is the proximity
  • the delay amount is determined so that the level difference between the speaker pairs becomes zero
  • the constant delay means determines the delay amount so that the level difference between the speaker pairs other than the close speaker pair becomes zero.
  • the sound field adjustment device can set the front-rear level difference and the left-right level difference at the listening position or in the vicinity of the listening position to be substantially zero.
  • the delay unit for each band increases the delay amount given to the high frequency signal than the delay amount given to the low frequency signal.
  • the deterioration of the sound pressure level balance due to the influence of the head located at the listening position is particularly noticeable when the frequency is high from a predetermined frequency. Therefore, the sound field adjustment device is affected by the head of a person located at the listening position by increasing the delay amount given to the high frequency signal than the delay amount given to the low frequency signal. A level difference can be avoided.
  • the delay unit for each band increases a delay amount stepwise as the frequency increases for a signal belonging to a predetermined frequency range equal to or higher than a reference frequency.
  • the sound field adjusting device can determine the delay amount in accordance with the influence of the head located at the listening position.
  • the speaker pair farthest from the listening position is excluded from the speaker pair that is the target of the process for determining the delay amount.
  • the speaker pair is the speaker pair having the least influence on the sound pressure balance, that is, the speaker pair farthest from the listening position.
  • the close speaker pair is a speaker pair having a short vertical distance from the listening position among the plurality of speaker pairs, and the vertical distance constitutes the speaker pair. The shortest distance from the straight line connecting the two speakers to the listening position.
  • the sound field adjustment device identifies the proximity speaker pair that is most affected by the head located at the listening position, and sets an appropriate delay amount for each frequency for the proximity speaker pair. Appropriate sound pressure balance improvement can be realized.
  • the predetermined distance is a distance at which an optimum delay amount at which the level difference between the speaker pairs becomes zero changes for each frequency.
  • the optimum delay amount which is the delay amount at which the level difference between the speaker pair becomes 0 shows a characteristic that changes for each frequency up to a certain distance. It becomes constant regardless of.
  • the present invention is effective when the speaker arrangement is such that the distance between the listening position and at least one speaker pair is within the predetermined distance.
  • FIG. 1A shows a speaker layout according to the sound field adjusting apparatus of the first embodiment.
  • FIG. 1A schematically shows a speaker and a listening position (listener) in the vehicle.
  • a speaker FR is disposed on the right side and a speaker FL is disposed on the left side in front of the vehicle, and a speaker SR is disposed on the right side and a speaker SL is disposed on the left side behind the vehicle.
  • the driver's seat is closer to the right speaker and the passenger seat is closer to the left speaker.
  • the positional relationship among the four speakers, the driver's seat and the passenger seat is as shown in the numerical values shown in FIG.
  • the sound field adjusting device includes a delay unit (not shown) that adds a delay amount to the signal output from each speaker.
  • the pair of speaker SL and speaker FL is speaker pair 10A
  • the pair of speaker FL and speaker FR is speaker pair 10B
  • the pair of speaker FR and speaker SR is speaker pair 10C
  • the pair of speaker SL and speaker SR is paired. Is a speaker pair 10D.
  • the sound field is adjusted based on the driver's seat.
  • the speaker pair having the shortest vertical distance between the listener position and the straight lines L1 to L4, which are straight lines connecting the speakers constituting each speaker pair is defined as a near speaker pair.
  • the “vertical distance” refers to the shortest distance from a straight line connecting two speakers constituting the speaker pair (including a straight line extending outside the speaker pair) to the listener position.
  • the speaker pair 10C is a close speaker pair.
  • the sound field adjustment apparatus in the present embodiment gives a delay of a different delay amount for each frequency band to a signal supplied to the speaker pair 10C that is a close speaker pair, and a signal supplied to a speaker pair that is not a close speaker pair Is given a fixed delay amount regardless of the frequency band.
  • the sound field adjusting apparatus in the present embodiment gives a certain delay amount to the signals supplied to the speaker pair 10A and the speaker pair 10B.
  • the speaker pair 10D corresponding to the rear speaker pair has little influence on the sound pressure balance. Therefore, when determining the delay amount of each speaker, the level difference is measured and the delay amount is determined. Are excluded from the target speaker pair. That is, one speaker pair that cannot give a desired delay amount as described above is the speaker pair farthest from the listening position. In this way, the sound field adjustment device adjusts the sound pressure balance more appropriately by excluding the rear speaker pair that has little influence on the adjustment of the sound pressure balance from the processing target in determining the delay amount.
  • FIG. 2 schematically shows the configuration of the sound field adjusting device.
  • An input signal from an acoustic source (not shown) is input to the signal processing units 5SL, 5FL, 5FR, and 5SR.
  • the signal processing unit 5SL when referring to the entire signal processing units 5SL to 5SR, it is also simply referred to as the signal processing unit 5, and when referring to individual signal processing units, a suffix is added to the signal processing unit 5SL. The same applies to other components.
  • the signal processing unit 5 performs a delay control process on the input signal and supplies the signal subjected to the delay process to the speaker.
  • the signal processing unit 5 includes a mixer 6, a band dividing unit 8, and a delay unit 9.
  • the input signal is supplied to the band dividing unit 8.
  • the band dividing unit 8 includes a plurality of band dividing filters and the like, and divides an input signal into signals of predetermined plural bands. Specifically, the band dividing unit 8 sets each bandwidth to 1/3 octave and sets the center frequencies f (1) to f (N) of each band to 250 Hz to 1 kHz.
  • the signal of each divided band is sent to the delay unit 9.
  • the delay unit 9 gives a delay with a different delay amount or the same delay amount to the signal of each band, and outputs it to the mixer 6.
  • the mixer 6 synthesizes the signals given by the delay unit 9 and outputs them to each speaker.
  • the delay unit 9 that gives the delay of the same delay amount for all frequency bands of the input signal corresponds to a constant delay means, and gives a delay of a different delay amount for each frequency band of the input signal.
  • the delay unit 9 corresponds to a delay unit for each band.
  • the sound field adjustment device measures the level difference and determines the delay amount.
  • the delay amount in the speaker pair 10B that is a speaker pair parallel to the left and right direction of the listener
  • the delay amount is determined based on the level difference between the microphones arranged on the left and right sides of the listener.
  • the delay amount in the speaker pairs 10A and 10C which are speaker pairs parallel to the front-rear direction of the listener
  • the delay amount is determined based on the level difference in the microphones arranged in the front-rear direction of the listener.
  • FIGS. 3 (A) and 3 (B) a method for determining a time difference given to a signal supplied to the speaker pair 10A will be described with reference to FIGS. 3 (A) and 3 (B).
  • the level difference between the microphone M1 and the microphone M2 attached to the dummy head 30 is measured by measuring pink noise or the like output from the speaker FL or the speaker SL of the sound field adjusting device. Measurement is performed, and a time difference applied to the signal supplied to the speaker pair 10A is determined based on the measurement result.
  • the microphones M1 to M4 are connected to the sound field adjustment device.
  • the sound field adjusting device generates pink noise that is a measurement signal, and simultaneously outputs pink noise from the speaker FL and the speaker SL.
  • the sound field adjusting device picks up the pink noise from the microphone M1 and the microphone M2 and detects a level difference.
  • FIG. 3B shows a distribution diagram of level differences when the delay amount of each band is changed.
  • the delay amount when the level difference between the microphones M1 and M2 becomes 0 is shown by a graph 11A.
  • the delay amount when the level difference between the microphones M1 and M2 becomes 0 is 0.7 msec regardless of the frequency band.
  • the delay amount in the delay unit 9FL is 0.7 msec for all frequency bands.
  • FIGS. 4 (A) and 4 (B) a method for determining a time difference given to a signal supplied to the speaker pair 10B will be described with reference to FIGS. 4 (A) and 4 (B).
  • the level difference between the microphone M3 and the microphone M4 attached to the dummy head 30 is measured by measuring pink noise or the like output from the speaker FL or the speaker FR of the sound field adjusting device. Measure and determine the time difference applied to the signal supplied to the speaker pair 10B.
  • the sound field adjustment device generates pink noise that is a measurement signal, and simultaneously outputs pink noise from the speaker FL and the speaker FR.
  • the sound field adjusting device collects the pink noise from the microphone M3 and the microphone M4 and detects a level difference.
  • the delay unit 9FR of the sound field adjusting device changes the delay amount when the predetermined threshold is not reached. Then, the sound field adjustment device detects the level difference again. As described above, the sound field adjustment device repeats the delay amount change and the level difference detection until the level difference reaches the threshold value.
  • FIG. 4B shows a distribution diagram of level differences when the delay amount of each band is changed. In FIG. 4B, the delay amount when the level difference between the microphones M3 and M4 becomes 0 is shown by a graph 11B.
  • the delay amount when the level difference between the microphones M3 and M4 becomes 0 is 1.3 msec regardless of the frequency band.
  • the delay amount in the delay unit 9FR is set to 1.3 msec for all frequency bands.
  • FIGS. 5 (A) to (C) a method for determining a time difference given to a signal supplied to the speaker pair 10C will be described with reference to FIGS. 5 (A) to (C).
  • the level difference between the microphone M1 and the microphone M2 attached to the dummy head 30 is measured by measuring pink noise or the like output from the speakers FR and SR of the sound field adjusting device.
  • the time difference applied to the signals supplied to the speaker pair 10C is determined.
  • the sound field adjusting device generates pink noise that is a measurement signal, and simultaneously outputs pink noise from the speaker FR and the speaker SR.
  • the sound field adjusting device picks up the pink noise from the microphone M1 and the microphone M2 and detects a level difference.
  • the delay unit 9SR of the sound field adjustment device changes the delay amount.
  • the sound field adjustment device detects the level difference again.
  • the sound field adjusting device repeats the change of the delay amount and the detection of the level difference until the level difference reaches a predetermined threshold value.
  • FIG. 5B shows a distribution diagram of level differences when the delay amount of each band is changed.
  • the delay amount when the level difference between the microphones M1 and M2 becomes 0 is shown by a graph 11C.
  • FIG. 5C shows a table of delay amounts at which the level difference in each frequency band becomes zero.
  • the optimum delay amount which is the delay amount at which the level difference becomes 0, is around 0.85 msec, but the frequency is 500 Hz.
  • the optimum delay amount gradually increases. That is, the optimum delay amount in a frequency band having a frequency of 500 Hz or more (for example, 630 Hz) is larger than the optimum delay amount having a frequency of 500 Hz or less.
  • the sound field adjustment device sets a time difference for the signals supplied to the speaker pair 10C by setting the delay amount in the delay unit 9FR to a different delay amount for each frequency band based on the graph 11C.
  • the sound field adjusting device determines a close speaker pair.
  • the sound field adjusting device uses the speaker pair 10C as a proximity speaker pair.
  • the sound field adjustment device specifies the speaker farthest from the listener position.
  • the sound field adjustment device identifies the speaker SL as the farthest speaker.
  • the sound field adjustment device adds a delay amount of 0.7 msec to the delay unit 9FL without delaying the delay unit 9SL connected to the speaker SL which is the farthest speaker.
  • the sound field adjustment apparatus can provide the time difference determined in the description of FIGS. 3A and 3B for the speaker pair 10A.
  • the sound field adjusting device adds a delay amount obtained by adding the delay amount determined in the description of FIGS. 4A and 4B and the delay amount added to the delay unit 9FL to the delay unit 9FR. To do.
  • 1.3 msec which is the delay amount determined in the description of FIGS. 4A and 4B is added to 0.7 msec which is the delay amount added to the delay unit 9FL. Let 0 msec be the delay amount added to the delay unit 9FR.
  • the sound field adjusting device can provide the time difference determined in the description of FIGS. 4A and 4B for the speaker pair 10B.
  • the sound field adjusting device provides the time difference determined in the description of FIGS. 5A to 5C for the speaker pair 10C.
  • a difference value between the delay amount added to the delay unit 9FR and the delay amount based on the graph 11C in FIG. 5B is set as the delay amount for the delay unit 9SR.
  • the sound field adjusting device can provide the time difference determined in the description of FIGS. 5A to 5C to the speaker pair 10C.
  • a different time difference is provided for each band.
  • the sound field adjusting device can provide the time difference determined in the description of FIGS. 3 to 5 for the speaker pair 10A to the speaker pair 10C.
  • the delay amount is 2 msec based on the graph 18FR
  • the delay amount is 1.1 msec based on the graph 18SR
  • the signal output from the speaker FL is set to 0.55 msec based on the graph 18FL, and the delay amount is not added to the signal output from the speaker SL.
  • a delay amount is set so that the peak of interference comes to the listener position.
  • FIG. 7B is a graph showing the sound pressure distribution of a signal having a frequency band of 315 Hz in the vicinity of the dummy head 30.
  • FIG. 7B shows the sound pressure distribution when the time difference between the signal output from the speaker FR and the signal output from the speaker SR is 0.9 msec.
  • the vertical axis and the horizontal axis indicate positions near the dummy head 30, and the contour lines in the graph indicate the sound pressure level.
  • peak stripes 25A which are contour lines belonging to a high sound pressure level range ( ⁇ 4 dB to 2 dB), exist before and after the dummy head 30. Therefore, the sound pressure is uniform before and after the dummy head 30.
  • FIG. 7C is a graph showing a sound pressure distribution of a signal having a frequency band of 794 Hz in the vicinity of the dummy head 30.
  • FIG. 7C is a graph in the case where the time difference between the signal output from the speaker FR and the signal output from the speaker SR is 0.9 msec.
  • a peak stripe 25B which is a contour line belonging to a high sound pressure level range ( ⁇ 4 dB to 2 dB), exists at the center position of the dummy head 30.
  • the signal is strongly influenced by the dummy head 30 in the vicinity of the dummy head 30, and as a result, the level difference is disturbed before and after the dummy head 30.
  • the sound pressure level difference before and after the head is disturbed by the driver's head.
  • the sound pressure level difference is uniform before and after the dummy head 30 even when a certain delay amount is added to the signal regardless of the frequency level. .
  • the delay amount of the delay unit 9 is determined by the method described with reference to FIG. 6, the delay amount of each delay unit 9 is as shown in the graph of FIG. Specifically, the delay amount indicated by the graph 15FL is set in the delay unit 9FL, the delay amount indicated by the graph 15FR is set in the delay unit 9FR, and the delay amount indicated by the graph 15SR is set in the delay unit 9SR. Is set. Accordingly, as shown in the graph 15SR, a delay amount that differs depending on the band is set in the delay unit 9SR. Note that the delay unit 9SL has no delay amount, as shown by the graph 15SL.
  • FIG. 8B is a graph showing the sound pressure distribution of a signal having a frequency band of 794 Hz in the vicinity of the dummy head 30.
  • FIG. 8B is a graph in the case where the time difference between the signal output from the speaker FR and the signal output from the speaker SR is 0.9 msec.
  • the vertical axis and the horizontal axis indicate positions near the dummy head 30, and the contour lines in the graph indicate the sound pressure level.
  • a peak stripe 25C which is a contour line belonging to a high sound pressure level range ( ⁇ 4 dB to 2 dB), is present at the front position of the dummy head 30.
  • the peak stripe 25C is located at a place where the influence of the dummy head 30 is not so much affected. There is no disturbance.
  • the sound field adjustment device can avoid the influence of the dummy head 30 at the listener position by adding a different delay amount for each frequency to the signal output from the close speaker pair.
  • the sound field can be adjusted appropriately as compared with the case where a uniform delay amount is added to the signal depending on the frequency band.
  • the sound field adjustment device gives a larger delay amount to a signal output from a pair of adjacent speakers than a low-frequency signal for a signal having a frequency of a predetermined band or higher. It is possible to avoid the occurrence of a difference in sound pressure level due to the influence of the head of a person located in
  • the sound field correction of the conventional method refers to sound field correction in which a fixed delay amount is added regardless of level adjustment or frequency level. That is, for the input signal, the volume of the speaker closer to the driver's seat is lower than that of the speaker far from the driver's seat, or time alignment correction is performed by the delay units D1 to D4 as shown in FIG. This means adjusting the sound pressure balance at the driver's seat.
  • FIGS. 9 (A) to (C) the measurement results of the difference between the front and rear microphone levels will be described with reference to FIGS. 9 (A) to (C).
  • FIG. 9A the sound pressure level difference between the microphone M1 and the microphone M2 placed before and after the dummy head 30 at the listener position is measured.
  • FIG.9 (B) the graph of a measurement result is shown in FIG.9 (B).
  • a graph 21A is a graph when the sound field is not corrected
  • a graph 22A is a graph when the sound field is adjusted according to the present embodiment
  • a graph 23A is a graph when the sound field is corrected by the conventional method. It is a graph.
  • FIG. 9C shows the average values of the front and rear level differences when the sound field adjustment of the embodiment is performed, when the sound field correction of the conventional method is performed, and when the correction process is not performed.
  • the sound field adjusting apparatus of the present embodiment can make a state in which there is almost no difference in level before and after the listener position as compared with the prior art, and can adjust the sound field appropriately.
  • FIG. 10A the sound pressure level difference between the microphone M3 and the microphone M4 placed on the left and right of the dummy head 30 at the listener position is measured.
  • a graph of the measurement result is shown in FIG.
  • a graph 21B is a graph when the sound field is not corrected
  • a graph 22B is a graph when the sound field is adjusted according to the present embodiment
  • a graph 23B is a case where the sound field is corrected according to the conventional method. It is a graph.
  • FIG. 10C shows average values of the left and right level differences when the sound field is adjusted according to the embodiment, when the sound field is corrected by the conventional method, and when the correction process is not performed.
  • the average value of the left-right level difference is smaller when the sound field correction according to the conventional method is performed.
  • the average of the absolute values of the left and right level differences when the sound field is adjusted according to the present embodiment is 3 dB or less, it can be considered that the range is practically satisfactory for the listener. Therefore, there is no substantial difference.
  • FIG. 11B is a graph of the sound pressure levels of the speaker FR and the speaker FL in the passenger seat when the sound field correction of the conventional method is performed.
  • the graph 16FR is a graph showing the sound pressure level at each frequency of the speaker FR
  • the graph 16FL is a graph showing the sound pressure level at each frequency of the speaker FL.
  • the sound pressure level difference between the speaker FR and the speaker FL is 13.6 dB.
  • FIG. 11C is a graph of the sound pressure levels of the speakers FR and FL of the sound field adjusting apparatus of the present invention in the passenger seat.
  • the graph 17FR is a graph showing the sound pressure level at each frequency of the speaker FR
  • the graph 17FL is a graph showing the sound pressure level at each frequency of the speaker FL.
  • the difference in sound pressure level between the speaker FR and the speaker FL is 4.4 dB. Therefore, the sound field adjusting apparatus according to the present embodiment can suppress the difference in sound pressure level in the passenger seat as compared with the case where the sound field correction according to the conventional method is performed.
  • the sound field adjustment device of the present invention adjusts the sound pressure balance by signal interference without adjusting the level, so the sound field correction of the conventional method can be performed at the listening position corresponding to the driver's seat. While maintaining the same sound field correction effect, the adverse effects can be improved compared to the conventional sound field correction at other listening positions (for example, the passenger seat).
  • FIG. 12A shows a speaker layout of the sound field adjusting apparatus of the second embodiment.
  • FIG. 12A schematically shows a speaker and a listening position (listener position) in the vehicle.
  • the configuration of the speaker is the same as that of the first embodiment shown in FIG.
  • the second embodiment assumes a smaller vehicle than the first embodiment, and the distance between each speaker position and the listening position is shorter.
  • the distance between the rear speaker pair 10D and the listening position is closer.
  • the positional relationship between the four speakers and the driver seat is as shown in the numerical values shown in FIG.
  • the outline of the sound field adjusting apparatus of the second embodiment will be described with reference to FIG.
  • the sound field adjusting apparatus according to the second embodiment gives a delay having a different delay amount for each frequency band to a signal supplied to the speaker pair 10 ⁇ / b> D serving as a close speaker pair.
  • a delay amount that differs for each frequency band with respect to a signal supplied to the speaker pair 10C which is a speaker pair whose vertical distance from the listener position is the second closest to the adjacent speaker pair 10D.
  • a constant delay amount is given to the signal supplied to the speaker pair 10B regardless of the frequency band.
  • the speaker pair 10 ⁇ / b> A is excluded from the speaker pairs to be considered when determining the delay amount for each speaker.
  • the sound field adjustment device adjusts the sound pressure balance more appropriately by excluding the rear speaker pair that is far from the listener position and has little influence on the adjustment of the sound pressure balance from the speaker pair to be examined. Do.
  • the sound field adjustment device measures the level difference and determines the delay amount.
  • the delay amount is determined based on the level difference between the microphones arranged on the left and right sides of the listener.
  • the delay amount in the speaker pair 10C which is a speaker pair parallel to the front-rear direction of the listener
  • the delay amount is determined based on the level difference in the microphones arranged in the front-rear direction of the listener.
  • FIGS. 13 (A) and 13 (B) a method for determining a time difference to be given to signals supplied to the speaker pair 10B will be described with reference to FIGS. 13 (A) and 13 (B).
  • the level difference between the microphone M3 and the microphone M4 attached to the dummy head 30 is measured by measuring pink noise and the like output from the speakers FL and FR of the sound field adjusting device. Then, the time difference to be given to the signal supplied to the speaker pair 10B is determined based on the measured result.
  • the microphones M1 to M4 are connected to the sound field adjustment device.
  • the sound field adjustment device generates pink noise that is a measurement signal, and simultaneously outputs pink noise from the speaker FL and the speaker FR.
  • the sound field adjusting device collects the pink noise from the microphone M3 and the microphone M4 and detects a level difference.
  • FIG. 13B shows a distribution diagram of level differences when the delay amount of each band is changed.
  • the delay amount when the level difference between the microphones M3 and M4 becomes 0 is shown by a graph 12A.
  • the delay amount when the level difference between the microphones M3 and M4 is 0 is 1.2 msec regardless of the frequency band.
  • the delay amount in the delay unit 9FR is 1.2 msec for all frequency bands.
  • FIGS. 14 (A) and 14 (B) a method for determining a time difference given to a signal supplied to the speaker pair 10C will be described with reference to FIGS. 14 (A) and 14 (B).
  • the level difference between the microphone M1 and the microphone M2 attached to the dummy head 30 is measured by measuring pink noise and the like output from the speakers FR and SR of the sound field adjusting device. Measure and determine the time difference applied to the signal supplied to the speaker pair 10C.
  • the sound field adjusting device generates pink noise that is a measurement signal, and simultaneously outputs pink noise from the speaker FR and the speaker SR.
  • the sound field adjusting device picks up the pink noise from the microphone M1 and the microphone M2 and detects a level difference.
  • the delay unit 9SR of the sound field adjustment device changes the delay amount when the predetermined threshold is not reached. Then, the sound field adjustment device detects the level difference again. As described above, the sound field adjustment device repeats the delay amount change and the level difference detection until the level difference reaches the threshold value.
  • FIG. 14B shows a distribution diagram of level differences when the delay amount of each band is changed. In FIG. 14B, the delay amount when the level difference between the microphones M1 and M2 becomes 0 is shown by a graph 12B.
  • FIG. 14C shows a table of delay amounts at which the level difference in each frequency band becomes zero.
  • the optimum delay amount which is the delay amount at which the level difference becomes 0, is about 0.5 to 0.6 msec.
  • the optimum delay amount gradually decreases. That is, the optimum delay amount in a frequency band (for example, 630 Hz) having a frequency of 500 Hz or more is smaller than the optimum delay amount having a frequency of 500 Hz or less.
  • the sound field adjusting device sets a time difference for the signals supplied to the speaker pair 10C by setting the delay amount in the delay unit 9SR to a different delay amount for each frequency band based on the graph 12B.
  • FIGS. 15 (A) to (C) a method for determining a time difference given to a signal supplied to the speaker pair 10D will be described with reference to FIGS. 15 (A) to (C).
  • the level difference between the microphone M3 and the microphone M4 attached to the dummy head 30 is measured by measuring pink noise and the like output from the speakers SL and SR of the sound field adjusting device.
  • the time difference given to the signal supplied to the speaker pair 10D is determined.
  • the sound field adjusting device generates pink noise that is a measurement signal, and simultaneously outputs pink noise from the speaker SL and the speaker SR.
  • the sound field adjusting device collects the pink noise from the microphone M3 and the microphone M4 and detects a level difference.
  • the delay unit 9SR of the sound field adjustment device changes the delay amount.
  • the sound field adjustment device detects the level difference again.
  • the sound field adjusting device repeats the change of the delay amount and the detection of the level difference until the level difference reaches a predetermined threshold value.
  • FIG. 15B shows a distribution diagram of level differences when the delay amount of each band is changed. In FIG. 15B, the delay amount when the level difference between the microphones M3 and M4 becomes 0 is shown by a graph 12C.
  • FIG. 15C shows a table of delay amounts at which the level difference in each frequency band becomes zero.
  • the optimum delay amount which is a delay amount at which the level difference becomes 0, is about 1.3 msec, but the frequency is 500 Hz.
  • the optimum delay amount gradually increases. That is, the optimum delay amount in a frequency band (for example, 630 Hz) having a frequency of 500 Hz or more is 1.5 msec, which is larger than the optimum delay amount having a frequency of 500 Hz or less.
  • the optimum delay amount at 1 kHz is about 1 msec.
  • the sound field adjusting device sets a time difference for the signals supplied to the speaker pair 10D by setting the delay amount in the delay unit 9SR to a different delay amount for each frequency band based on the graph 12C.
  • the sound field adjusting device determines a close speaker pair.
  • the sound field adjusting device uses the speaker pair 10D as a close speaker pair.
  • the sound field adjustment device specifies the speaker farthest from the listener position.
  • the sound field adjusting device identifies the speaker FL as the farthest speaker.
  • the sound field adjusting device adds a delay amount of 1.2 msec to the delay unit 9FR without delaying the delay unit 9FL connected to the speaker SL which is the farthest speaker.
  • the sound field adjusting device can provide the time difference determined in the description of FIGS. 13A and 13B for the speaker pair 10B.
  • the sound field adjusting device adds a delay amount obtained by adding the delay amount determined in the description of FIGS. 14A to 14C and the delay amount added to the delay unit 9FR to the delay unit 9SR.
  • the delay amount determined by the description of FIGS. 14A to 14C is obtained by adding the delay amount that differs for each frequency and 1.2 msec that is the delay amount added to the delay unit 9FR. Is added to the delay unit 9SR.
  • the sound field adjusting device can provide the time difference determined in the description of FIGS. 14A to 14C for the speaker pair 10C. In the speaker pair 10C, a different time difference is provided for each band.
  • the sound field adjusting device sets the delay amount determined in the description of FIGS. 15A to 15C for the speaker pair 10C.
  • the difference value between the delay amount added to the delay unit 9SR and the delay amount based on the graph 12C in FIG. 15B is used as the delay amount for the delay unit 9SL.
  • the sound field adjusting device can provide the time difference determined in the description of FIGS. 15A to 15C to the speaker pair 10D. In the speaker pair 10D, a different time difference is provided for each band.
  • the delay amount of each delay unit 9 determined as described above is as shown in the graph of FIG. Specifically, the delay amount shown in the graph 35FR is set in the delay unit 9FR, the delay amount shown in the graph 35SR is set in the delay unit 9SR, and the delay amount shown in the graph 35SL is set in the delay unit 9SL. Is set. Accordingly, as shown in the graphs 35SL and 35SR, different delay amounts are set in the delay units 9SL and 9SR depending on the band. Note that the delay unit 9FL has no delay amount as shown by the graph 15FL.
  • the sound field adjusting device can provide the time difference determined in the description of FIGS. 13 to 15 for the speaker pair 10B to the speaker pair 10D.
  • the sound field correction of the conventional method refers to sound field correction in which a fixed delay amount is added regardless of the level adjustment or the frequency level, as in the case of the first embodiment.
  • FIG. 18A the sound pressure level difference between the microphone M1 and the microphone M2 placed before and after the dummy head 30 at the listener position is measured.
  • a graph of the measurement results is shown in FIG.
  • a graph 31A is a graph when the sound field is not corrected
  • a graph 32A is a graph when the sound field is adjusted according to the present embodiment
  • a graph 33A is a case where the sound field is corrected by the conventional method. It is a graph.
  • FIG. 18C shows the average values of the front and rear level differences when the sound field adjustment of the embodiment is performed, when the sound field correction of the conventional method is performed, and when the correction process is not performed.
  • the sound field adjusting apparatus of the present embodiment can reduce the level difference before and after the listener position as compared with the prior art, and can appropriately adjust the sound field.
  • FIG. 19A the sound pressure level difference between the microphone M3 and the microphone M4 placed on the left and right of the dummy head 30 at the listener position is measured.
  • a graph of the measurement results is shown in FIG.
  • a graph 31B is a graph when the sound field is not corrected
  • a graph 32B is a graph when the sound field is adjusted according to the present embodiment
  • a graph 33B is a case where the sound field is corrected by the conventional method. It is a graph.
  • FIG. 19C shows average values of the left and right level differences when the sound field is adjusted according to the embodiment, when the sound field is corrected by the conventional method, and when the correction process is not performed.
  • the sound field adjusting device of the present embodiment can reduce the difference between the left and right level of the listener position as compared with the prior art, and can appropriately adjust the sound field.
  • FIG. 20B is a graph of the sound pressure levels of the speaker FR and the speaker FL in the passenger seat when the sound field correction of the conventional method is performed.
  • the graph 36FR is a graph showing the sound pressure level at each frequency of the speaker FR
  • the graph 36FL is a graph showing the sound pressure level at each frequency of the speaker FL.
  • the sound pressure level difference between the speaker FR and the speaker FL is 7.22 dB.
  • FIG. 20C is a graph of the sound pressure levels of the speakers FR and FL of the sound field adjusting apparatus of the present invention in the passenger seat.
  • the graph 37FR is a graph showing the sound pressure level at each frequency of the speaker FR
  • the graph 37FL is a graph showing the sound pressure level at each frequency of the speaker FL.
  • the sound pressure level difference between the speaker FR and the speaker FL is 2.62 dB.
  • FIG. 21 shows a level difference distribution in which the delay amount of each band is changed when the vertical distance between the speaker pair 10C and the listener position is 40 cm.
  • a broken line 51 in FIG. 21 shows a graph when the level difference between the microphone M1 and the microphone M2 becomes zero.
  • the optimum delay amount which is a delay amount with which the level difference becomes 0 until the frequency is 500 Hz, is about 0.8 msec. However, when the frequency exceeds 500 Hz, the optimum delay amount increases.
  • FIG. 22 shows the distribution of the level difference in which the delay amount of each band is changed when the vertical distance between the speaker pair 10C and the listener position is 60 cm.
  • a broken line 52 in FIG. 22 shows a graph when the level difference between the microphone M1 and the microphone M2 becomes zero.
  • the optimum delay amount which is a delay amount with which the level difference becomes 0 until the frequency is 500 Hz, is about 0.8 msec, but the optimum delay amount gradually increases when the frequency exceeds 500 Hz.
  • the amount of increase is smaller than when the vertical distance is 60 cm.
  • FIG. 23 shows the distribution of the level difference in which the delay amount of each band is changed when the vertical distance between the speaker pair 10C and the listener position is 80 cm.
  • a broken line 53 in FIG. 23 shows a graph when the level difference between the microphone M1 and the microphone M2 becomes zero.
  • the optimum delay amount which is the delay amount at which the level difference between the microphones M1 and M2 is 0, is approximately 0.8 msec regardless of the frequency band.
  • FIG. 24 shows the distribution of the level difference in which the delay amount of each band is changed when the vertical distance between the speaker pair 10C and the listener position is 100 cm.
  • a broken line 54 in FIG. 24 shows a graph when the level difference between the microphone M1 and the microphone M2 becomes zero.
  • the optimum delay amount which is the delay amount at which the level difference between the microphones M1 and M2 is 0, is around 0.7 msec regardless of the frequency band.
  • the optimum delay amount becomes a constant value in each frequency band.
  • the tendency to take is shown. That is, when the position of the speaker pair is moved away from the listening position, the optimum delay amount, which is a delay amount at which the level difference between the speaker pair becomes zero, shows a characteristic that changes for each frequency up to a certain distance, but is further away from it. And constant regardless of frequency.
  • the vertical distance between the listener position and the proximity speaker pair is often 50 cm or less.
  • the present invention allows the distance between the listening position and at least one speaker pair to be within the predetermined distance. This is effective when a certain speaker arrangement is used.
  • the sound field adjustment device that reproduces signals from a plurality of speaker pairs arranged in an acoustic space includes a signal supply unit that supplies signals to the plurality of speakers, and at least a listening position among the plurality of speakers.
  • a band-by-band delay unit that gives a delay of a different delay amount for each frequency band with respect to a signal supplied to the closest speaker pair that is the closest speaker pair, and a speaker pair other than the speaker pair to which the band-by-band delay unit gives a delay
  • constant delay means for giving a delay of a constant delay amount regardless of the frequency band.
  • the sound field adjustment device adjusts the sound field only by adjusting the delay amount without adjusting the level, so that the sound pressure balance is adjusted at a position other than the listening position as a result of adjusting the sound pressure balance at the listening position. It is possible to avoid deterioration, and to improve the sound pressure balance at the listening position.
  • the influence of the head is ignored, a certain amount of delay is added regardless of the frequency, and the range where the sound pressure level is high (the peak stripe 25 in this embodiment) is positioned near the listening position.
  • the sound pressure balance can be adjusted.
  • the listener's head is positioned at the listening position, the level before and after the listening position is disturbed by the influence of the head. It is said that the effect of the head is more easily affected as the frequency is higher, and is more affected as the distance from the listening position is shorter.
  • the sound field adjusting device of the present invention adds a different delay amount for each frequency band for the signal supplied to the pair of adjacent speakers.
  • the sound field adjustment device gives a delay amount different for each frequency band to the speaker pair that is easily affected by the head of the listening position, and thus is close to the listening position and the listening position. The deterioration of the sound pressure balance before and after the position can be avoided.
  • the sound field adjustment device determines the delay amount so that the level difference between the speaker pairs 10A to 10C becomes zero. Thereby, the sound field adjustment device can reduce the level difference between the front-rear direction and the left-right direction of the listening position.
  • the delay amount of the proximity speaker pair is determined based on the measurement results of the microphones M1 to M4 has been described.
  • the present invention is not limited to this, and the distance from the listener position to the speaker is
  • the reference frequency may be calculated based on the above, and the delay amount may be set stepwise as the frequency increases from the reference frequency to a predetermined range of frequencies.
  • a reference frequency is calculated, and a delay amount graph 26 based on the reference frequency is shown in FIG.
  • 460 Hz is a reference frequency
  • 460 Hz to 580 Hz is a frequency range to be increased.
  • the burden of measurement processing is reduced, and the sound field adjustment device can determine the delay amount in accordance with the influence of the head or the like located at the listening position.
  • the sound field adjusting device does not give a delay amount to the signal supplied to the speaker pair 10D.
  • the present invention is not limited to this, and the signal supplied to the speaker pair 10D is not limited thereto. Alternatively, a certain delay amount may be given.
  • the sound field adjusting device has been described as the case where one proximity speaker pair is defined.
  • the present invention is not limited to this, and a plurality of speaker pairs at substantially the same distance are used as proximity speaker pairs. You may do it.
  • the sound field adjusting device has been described with respect to the case where the delay amount is determined so that the level difference between the pair of speakers 10C that is the close speaker pair becomes 0.
  • the level difference may be set to a predetermined value or less (for example, 3 dB). Even in this case, the sound field adjusting device can reduce the level difference in the front-rear direction and the left-right direction in the driver seat and the passenger seat.
  • the present invention can be used for a device for adjusting a sound field.

Abstract

 音場調整装置は、例えば、車内の音場を調整するための装置に適用することができる。上記音場調整装置は、音響空間に配置された複数のスピーカ対から信号を再生する。また、当該音場調整装置は、複数のスピーカに対して信号を供給し、複数のスピーカのうち、少なくとも聴取位置から最も近いスピーカ対である近接スピーカ対に供給される信号に対して周波数帯域毎に異なる遅延量の遅延を与え、周波数帯域毎に異なる遅延量の遅延を与えたスピーカ対以外のスピーカ対に対して周波数帯域に関わらず一定の遅延量の遅延を与える。この場合、音場調整装置は、レベル調整することなく、遅延量による調整のみで音場調整しているので、聴取位置で音圧バランスを調整した結果、聴取位置以外の位置で音圧バランスが悪化してしまうことを回避することができ、さらに聴取位置での音圧バランスの改善を図ることができる。

Description

音場調整装置
 本発明は、音場を調整する装置に関する。
 複数のスピーカを備えて高品質の音響空間を提供するオーディオシステムでは、臨場感の得られる適切な音響空間を自動的に作り出すことが要求されている。即ち、受聴者自らが適切な音響空間を得ようとしてオーディオシステムを操作しても、複数のスピーカで再生される再生音の音圧特性等を適切に調整することは極めて困難であるため、オーディオシステム側で自動的に音場調整することが要求されている。
 例えば、車室内では、リスナから見たスピーカの配置は、図26(A)に示すスピーカSP1~SP5のようなリスナを中心とした同心円配置ではなく、図26(B)のように非対称となる。よって、図26(B)に示すリスナ位置での音圧バランスが悪化する。
 この影響を回避するために、図26(C)に示すように、入力信号について、運転席から遠くのスピーカSP4に比して、運転席から近いスピーカSP1の音量を下げたり、遅延部D1~D4によりタイムアライメント補正を施したりすることにより、運転席での音圧バランスの調整を図る装置がある(例えば、特許文献1や特許文献2)。
実開平6-13292号公報 特開2001-224092号公報
 しかし、特許文献1に記載の音場特性調整装置及び特許文献2に記載の自動音場補正システムは、レベル自体を調整しているため調整した座席以外の座席(例えば、助手席)では、さらに音圧バランスが悪化してしまうという問題点がある。
 本発明が解決しようとする課題としては、上記のようなものが例として挙げられる。本発明は、調整対象のリスナ位置で音圧バランスを改善すると共に他の位置での音圧バランス悪化を軽減し得る音場調整装置を提供することを課題とする。
 請求項1に記載の発明は、音響空間に配置された複数のスピーカから信号を再生する音場調整装置であって、前記複数のスピーカに信号を供給する信号供給手段と、前記複数のスピーカのうち、少なくとも聴取位置から最も近いスピーカ対である近接スピーカ対に供給される信号に対して周波数帯域毎に異なる遅延量の遅延を与える帯域毎遅延手段と、前記帯域毎遅延手段が遅延を与えたスピーカ対以外のスピーカ対に対して周波数帯域に関わらず一定の遅延量の遅延を与える一定遅延手段と、を備えることを特徴とする。
第1実施例のスピーカレイアウトを模式的に示す図である。 音場調整装置の構成を示すブロック図である。 一定遅延量の決定方法を示す図である。 一定遅延量の決定方法を示す図である。 周波数帯域毎の遅延量の決定方法を示す図である。 第1実施例の音場調整装置の遅延設定値を示す図である。 周波数の高低に関わらず一定に遅延設定した場合の音圧分布である。 第1実施例による遅延設定した場合の音圧分布である。 前後マイク間のレベル差を示す図である。 左右マイク間のレベル差を示す図である。 助手席位置でのスピーカ間の音圧レベルを示す図である。 第2実施例のスピーカレイアウトを模式的に示す図である。 一定遅延量の決定方法を示す図である。 周波数帯域毎の遅延量の決定方法を示す図である。 周波数帯域毎の遅延量の決定方法を示す図である。 第2実施例の音場調整装置の遅延設定値を示す図である。 第2実施例の各スピーカの遅延量を示すグラフである。 前後マイク間のレベル差を示す図である。 左右マイク間のレベル差を示す図である。 助手席位置でのスピーカ間の音圧レベルを示す図である。 近接スピーカ対との距離と最適遅延量との関係を示すグラフである。 近接スピーカ対との距離と最適遅延量との関係を示すグラフである。 近接スピーカ対との距離と最適遅延量との関係を示すグラフである。 近接スピーカ対との距離と最適遅延量との関係を示すグラフである。 他の実施例における遅延量決定方法を説明する図である。 従来手法の音場補正を概念的に示す図である。
 本発明の1つの観点は、音響空間に配置され、かつ、聴取位置から所定距離内に配置された複数のスピーカから信号を再生する音場調整装置であって、前記複数のスピーカに信号を供給する信号供給手段と、前記複数のスピーカのうち、少なくとも前記聴取位置から最も近いスピーカ対である近接スピーカ対に供給される信号に対して周波数帯域毎に異なる遅延量の遅延を与える帯域毎遅延手段と、前記帯域毎遅延手段が遅延を与えたスピーカ対以外のスピーカ対に対して周波数帯域に関わらず一定の遅延量の遅延を与える一定遅延手段と、を備える。
 上記の音場調整装置は、例えば、車内の音場を調整するための装置に適用することができる。上記音場調整装置は、音響空間に配置された複数のスピーカ対から信号を再生する。また、当該音場調整装置は、複数のスピーカに対して信号を供給し、複数のスピーカのうち、少なくとも聴取位置から最も近いスピーカ対である近接スピーカ対に供給される信号に対して周波数帯域毎に異なる遅延量の遅延を与え、周波数帯域毎に異なる遅延量の遅延を与えたスピーカ対以外のスピーカ対に対して周波数帯域に関わらず一定の遅延量の遅延を与える。この場合、音場調整装置は、レベル調整することなく、遅延量による調整のみで音場調整しているので、聴取位置で音圧バランスを調整した結果、聴取位置以外の位置で音圧バランスが悪化してしまうことを回避することができ、さらに聴取位置での音圧バランスの改善を図ることができる。ここでいう近接スピーカ対とは、音響空間中のスピーカ対の内、聴取位置からの距離が最も近いスピーカ対をいう。また、スピーカ対とは、スピーカのペアをいう。
 一般的に、頭部の影響を無視すれば、周波数に関わらず、一定の遅延量を付加し、音圧レベルが高い範囲を聴取位置付近に位置させることで、音圧バランスを整えることが可能となる。しかし、聴取位置に聴取者の頭部が位置すると、当該頭部の影響を受け、聴取位置前後のレベルが乱れてしまう。この頭部による影響は、周波数が高ければ高い程影響を受けやすく、聴取位置との距離が近いほど影響を大きく受けるといわれている。
 そこで、本願発明の音場調整装置は、近接スピーカ対に供給される信号については、周波数帯域毎に異なる遅延量を付加している。このように、音場調整装置は、聴取位置の頭部による影響を受けやすいスピーカ対に対して、周波数帯域毎に異なる遅延量の遅延を与えているので、聴取位置及び当該聴取位置に近接する位置における前後の音圧バランスの悪化を回避することができる。
 上記の音場調整装置の一態様では、前記スピーカ対は、前記聴取位置の前後方向又は左右方向のいずれかの方向に配置されたスピーカ対であり、前記帯域毎遅延手段は、前記近接スピーカ対のレベル差が所定値以下となるように前記遅延量を決定する。このように、音場調整装置は、聴取位置の頭部による影響を受けやすいスピーカ対である近接スピーカ対のレベル差を小さくすることにより、聴取位置前後で音圧レベル差が生じてしまうことを回避することができる。
 上記の音場調整装置の他の一態様では、前記スピーカ対は、前記聴取位置の前後方向又は左右方向のいずれかの方向に配置されたスピーカ対であり、前記帯域毎遅延手段は、前記近接スピーカ対のレベル差が0となるように前記遅延量を決定し、前記一定遅延手段は、前記近接スピーカ対以外のスピーカ対のレベル差が0となるように前記遅延量を決定する。この場合、音場調整装置は、聴取位置や当該聴取位置の付近における、前後のレベル差及び左右のレベル差をほぼ0とすることができる。
 上記の音場調整装置の他の一態様では、前記帯域毎遅延手段は、低域信号に与える遅延量よりも高域信号に与える遅延量を大きくする。一般的に、聴取位置に位置する頭部の影響を受けて音圧レベルバランスが悪化するのは、所定の周波数から高い場合に特に顕著となる。そこで、音場調整装置は、低域信号に与える遅延量よりも高域信号に与える遅延量を大きくすることにより、聴取位置に位置する人の頭部等の影響を受け、音響空間の音圧レベル差が生じてしまうことを回避することができる。
 上記の音場調整装置の他の一態様では、前記帯域毎遅延手段は、基準周波数以上の所定周波数範囲に属する信号について、周波数が増加するにつれて遅延量を段階的に大きくすることを特徴とする。この場合、音場調整装置は、聴取位置に位置する頭部等の影響に即して遅延量を決定することができる。
 上記の音場調整装置の他の一態様では、前記聴取位置から最も遠いスピーカ対を、前記遅延量を決定する処理の対象となるスピーカ対から除外する。複数のスピーカが聴取位置を囲む形で配置される場合、構成上各スピーカ対のうち1つは所望の遅延量を与えることができない。そこで、そのスピーカ対を、音圧バランスに対する影響が最も少ないスピーカ対、即ち、聴取位置から最も遠いスピーカ対とする。
 上記の音場調整装置の他の一態様では、前記近接スピーカ対は、前記複数のスピーカ対のうち、前記聴取位置からの垂直距離が近いスピーカ対であり、前記垂直距離は、スピーカ対を構成する2つのスピーカを結ぶ直線から前記聴取位置までの最短距離を指す。このように、音場調整装置は、聴取位置に位置する頭部等の影響が最もある、近接スピーカ対を特定し、当該近接スピーカ対について、周波数毎に適切な遅延量を設定することにより、適切な音圧バランス改善を実現することができる。
 好適には、前記所定距離は、前記スピーカ対のレベル差が0となる最適遅延量が、周波数毎に変化する距離である。スピーカ対の位置を聴取位置から離していくと、スピーカ対のレベル差が0となる遅延量である最適遅延量は、ある距離までは周波数毎に変化する特性を示すが、それより離れると周波数を問わず一定となる。本発明は、聴取位置と少なくとも1つのスピーカ対との距離が上記の所定距離以内にあるスピーカ配置のときに有効となる。
 以下、図面を参照して本発明の好適な実施例について説明する。
 <第1実施例>
 [スピーカレイアウトについて]
 図1(A)に、第1実施例の音場調整装置に係るスピーカレイアウトを示す。図1(A)は、車内におけるスピーカ及び聴取位置(リスナ)を模式的に示す。車内の前方には、右側にスピーカFR、左側にスピーカFLが配置され、車内の後方には、右側にスピーカSR、左側にスピーカSLが配置される。また、運転席は右スピーカ寄りにあり、助手席は左スピーカ寄りにある。4つのスピーカ、運転席及び助手席の位置関係は図1(A)に示す数値の通りである。
 図1(B)を用いて、音場調整装置の概要を説明する。音場調整装置は、上記の各スピーカから出力される信号に遅延量を付加する遅延部(図示しない)を備えている。また、スピーカSLとスピーカFLとのペアをスピーカ対10A、スピーカFLとスピーカFRとのペアをスピーカ対10B、スピーカFRとスピーカSRとのペアをスピーカ対10Cとし、スピーカSLとスピーカSRとのペアをスピーカ対10Dとする。なお、ここでは運転席を基準に音場調整を行なうものとする。
 また、上記の複数のスピーカ対のうち、リスナ位置と各スピーカ対を構成するスピーカ間を結ぶ直線である直線L1~L4との垂直距離が最も近いスピーカ対を近接スピーカ対とする。なお、「垂直距離」とは、スピーカ対を構成する2つのスピーカを結ぶ直線(スピーカ対の外側に延長した直線を含む。)からリスナ位置までの最短距離を言う。本実施例の場合、スピーカ対10Cが近接スピーカ対となる。
 本実施例における音場調整装置は、近接スピーカ対となるスピーカ対10Cに供給される信号に対して周波数帯域毎に異なる遅延量の遅延を与え、近接スピーカ対ではないスピーカ対に供給される信号に対しては、周波数帯域に関わらず一定の遅延量の遅延を与える。本実施例における音場調整装置は、スピーカ対10A及びスピーカ対10Bに供給される信号に対して、一定の遅延量を与える。
 なお、本実施例のように、複数のスピーカが聴取位置を囲む形で配置される場合、構成上各スピーカ対のうち1つは所望の遅延量を与えることができない。本実施例では、車内後方のスピーカ対に該当するスピーカ対10Dについては、音圧バランスに影響が少ないので、各スピーカの遅延量を決定する際に、レベル差を計測し遅延量を決定する処理の対象とするスピーカ対から除外する。即ち、上記のように所望の遅延量を与えることができない1つのスピーカ対を、聴取位置から最も遠いスピーカ対とする。このように、音場調整装置は、音圧バランスの調整に影響が少ない後方スピーカ対を遅延量の決定における処理の対象から除外することにより、より適切に音圧バランスの調整を行う。
 [音場調整装置について]
 図2は、音場調整装置の構成を概略的に示す。図示しない音響ソースからの入力信号は、信号処理部5SL、5FL、5FR、及び5SRへ入力される。なお、以下の説明において、信号処理部5SL~5SR全体をいう場合、単に信号処理部5とも呼び、個々の信号処理部をいう場合には信号処理部5SLなどと添え字を付す。他の構成要素についても同様である。
 信号処理部5は、入力信号に対して遅延制御処理を行い、遅延処理を施した信号をスピーカに供給する。図示の通り、信号処理部5は、ミキサ6と、帯域分割部8と、遅延部9とを備える。信号処理部5において、入力信号が帯域分割部8に供給される。帯域分割部8は、複数の帯域分割フィルタなどを備え、入力信号を所定の複数帯域の信号に分割する。具体的に、帯域分割部8は、各帯域幅を1/3オクターブとし、各帯域の中心周波数f(1)~f(N)を250Hz~1kHzとする。
 分割された各帯域の信号は、遅延部9へ送られる。遅延部9は、各帯域の信号に対して異なる遅延量又は同一の遅延量で遅延を与え、ミキサ6へ出力する。ミキサ6は、遅延部9により与えられた信号を合成し、各スピーカへ出力する。
 なお、複数の遅延部9のうち、入力信号の全周波数帯域について同一の遅延量の遅延を与える遅延部9が一定遅延手段に相当し、入力信号の周波数帯域毎に異なる遅延量の遅延を与える遅延部9が帯域毎遅延手段に相当する。
 [遅延量の決定方法について]
 次に、図3~図5を用いて、各スピーカ対における遅延量の決定方法について説明する。音場調整装置は、各スピーカ対における遅延量を決定する際、レベル差を計測し、遅延量を決定する。リスナの左右方向と平行なスピーカ対であるスピーカ対10Bにおける遅延量を決定する際には、リスナの左右に配置されたマイクにおけるレベル差に基づいて遅延量を決定する。そして、リスナの前後方向と平行なスピーカ対であるスピーカ対10A及び10Cにおける遅延量を決定する際には、リスナの前後方向に配置されたマイクにおけるレベル差に基づいて遅延量を決定する。
 まず、図3(A)及び図3(B)を用いて、スピーカ対10Aに供給される信号に与える時間差を決定する方法について説明する。図3(A)に示すように、音場調整装置のスピーカFLやスピーカSLから出力するピンクノイズなどを計測することにより、ダミーヘッド30に付されているマイクM1とマイクM2とのレベル差を計測し、計測した結果に基づいてスピーカ対10Aに供給される信号に与える時間差を決定する。なお、マイクM1~M4は、音場調整装置と接続されている。
 音場調整装置は、測定用信号であるピンクノイズを発生させ、スピーカFL及びスピーカSLから同時にピンクノイズを出力する。そして、音場調整装置は、上記のピンクノイズをマイクM1及びマイクM2から収音し、レベル差を検出する。
 レベル差が所定の閾値(例えば、0)に達していない場合、音場調整装置の遅延部9FLは、遅延量を変更する。そして、音場調整装置は、レベル差を再度検出する。音場調整装置は、レベル差が上記閾値に達するまで、遅延量の変更とレベル差の検出とを繰り返す。各帯域の遅延量を変えた時のレベル差の分布図を図3(B)に示す。図3(B)において、マイクM1とM2のレベル差が0となるときの遅延量をグラフ11Aで示す。
 図3(B)に示すグラフ11Aによれば、マイクM1とM2のレベル差が0となるときの遅延量は、周波数帯域に関わらず0.7msecとなっているので、音場調整装置は、遅延部9FLにおける遅延量を全ての周波数帯域について0.7msecとする。これにより、音場調整装置は、スピーカ対10Aに供給される信号に与える時間差を設けることができる。
 次に、図4(A)及び図4(B)を用いて、スピーカ対10Bに供給される信号に与える時間差を決定する方法について説明する。図4(A)に示すように、音場調整装置のスピーカFLやスピーカFRから出力するピンクノイズ等を計測することにより、ダミーヘッド30に付されているマイクM3とマイクM4とのレベル差を計測し、スピーカ対10Bに供給される信号に与える時間差を決定する。
 音場調整装置は、測定用信号であるピンクノイズを発生させ、スピーカFL及びスピーカFRから同時にピンクノイズを出力する。そして、音場調整装置は、上記のピンクノイズをマイクM3及びマイクM4から収音し、レベル差を検出する。音場調整装置の遅延部9FRは、所定の閾値に達していない場合、遅延量を変更する。そして、音場調整装置は、レベル差を再度検出する。このように、音場調整装置は、レベル差が閾値に達するまで、遅延量の変更とレベル差の検出を繰り返す。各帯域の遅延量を変えた時のレベル差の分布図を図4(B)に示す。図4(B)において、マイクM3とM4のレベル差が0となるときの遅延量をグラフ11Bで示す。
 図4(B)に示すグラフ11Bによれば、マイクM3とM4のレベル差が0となるときの遅延量は、周波数帯域に関わらず1.3msecとなっているので、音場調整装置は、遅延部9FRにおける遅延量を全ての周波数帯域について1.3msecとする。これにより、音場調整装置は、スピーカ対10Bに供給される信号に与える時間差を設けることができる。
 次に、図5(A)~(C)を用いて、スピーカ対10Cに供給される信号に与える時間差を決定する方法について説明する。図5(A)に示すように、音場調整装置のスピーカFRやスピーカSRから出力するピンクノイズ等を計測することにより、ダミーヘッド30に付されたマイクM1とマイクM2とのレベル差を測定し、スピーカ対10Cに供給される信号に与える時間差を決定する。
 音場調整装置は、測定用信号であるピンクノイズを発生させ、スピーカFR及びスピーカSRから同時にピンクノイズを出力する。そして、音場調整装置は、上記のピンクノイズをマイクM1及びマイクM2から収音し、レベル差を検出する。レベル差が所定の閾値に達していない場合、音場調整装置の遅延部9SRは、遅延量を変更する。そして、音場調整装置は、レベル差を再度検出する。このように、音場調整装置は、レベル差が所定の閾値に達するまで、遅延量の変更とレベル差の検出とを繰り返す。各帯域の遅延量を変えた時のレベル差の分布図を図5(B)に示す。図5(B)において、マイクM1とM2のレベル差が0となるときの遅延量をグラフ11Cで示す。
 図5(B)に示すグラフ11Cによれば、周波数帯域によってレベル差が0になる遅延量が異なる。ここで、各周波数帯域におけるレベル差が0となる遅延量の表を図5(C)に示す。図5(B)及び図5(C)に示すように、周波数が500Hzになるまでは、レベル差が0となる遅延量である最適遅延量は0.85msec前後となるが、周波数が500Hzを超えると、徐々に最適遅延量が増加していく。即ち、周波数が500Hz以上の周波数帯域(例えば、630Hz等)の最適遅延量は、周波数500Hz以下の最適遅延量に比して大きくなる。
 音場調整装置は、遅延部9FRにおける遅延量をグラフ11Cに基づいて、周波数帯域毎で異なる遅延量とすることにより、スピーカ対10Cに供給される信号について時間差を設ける。
 次に、音場調整装置で与える遅延量を決定する手順について説明する。まず、音場調整装置は、近接スピーカ対を決定する。本実施例では、音場調整装置は、スピーカ対10Cを近接スピーカ対とする。そして、音場調整装置は、リスナ位置から最も遠いスピーカを特定する。本実施例では、音場調整装置は、スピーカSLを最も遠いスピーカであると特定する。そして、音場調整装置は、最も遠いスピーカであるスピーカSLに接続されている遅延部9SLについては、遅延させず、0.7msecの遅延量を遅延部9FLに付加する。これにより、音場調整装置は、図3(A)及び(B)についての説明で決定した時間差をスピーカ対10Aに対して設けることができる。
 そして、音場調整装置は、遅延部9FRに対して、図4(A)及び(B)についての説明で決定した遅延量と、遅延部9FLに付加する遅延量とを加算した遅延量を付加する。本実施例では、図4(A)及び(B)についての説明で決定した遅延量である1.3msecと、遅延部9FLに付加されている遅延量である0.7msecとを加算した2.0msecを遅延部9FRに付加する遅延量とする。これにより、音場調整装置は、図4(A)及び(B)についての説明で決定した時間差をスピーカ対10Bに対して設けることができる。
 そして、音場調整装置は、スピーカ対10Cに対して、図5(A)~(C)の説明で決定した時間差を設ける。本実施例では、遅延部9FRに付加されている遅延量と図5(B)のグラフ11Cに基づく遅延量との差分値を遅延部9SRに対する遅延量とする。これにより、音場調整装置は、図5(A)~(C)についての説明で決定した時間差をスピーカ対10Cに設けることができる。なお、スピーカ対10Cでは、帯域毎で異なる時間差が設けられることとなる。
 以上より、音場調整装置は、スピーカ対10A~スピーカ対10Cについて、図3~図5の説明で決定した時間差を設けることができる。
 [頭部の影響を加味せずに遅延量を設定する手法と本願発明との比較について]
 頭部の影響を加味せずに遅延量を設定する音場補正と本願発明との比較について、以下に記載する。まず、図7(A)に示すように、頭部の影響を加味せずに遅延量を設定する手法の一例として、各スピーカから出力される信号に対して全ての周波数帯域で一律に周波数の高低に関わらず一定の遅延量を付加することを想定する。例えば、スピーカFRから出力される信号に対しては、グラフ18FRに基づき、遅延量を2msecとし、スピーカSRから出力される信号に対しては、グラフ18SRに基づき、遅延量を1.1msecとし、スピーカFLから出力される信号に対しては、グラフ18FLに基づき、0.55msecとし、スピーカSLから出力される信号に対しては、遅延量を付加しないこととする。この場合、リスナと各スピーカとの位置関係に基づき、干渉のピークがリスナの位置に来るような遅延量を設定することになる。
 図7(B)は、ダミーヘッド30近傍における、周波数315Hzの帯域の信号の音圧分布を示すグラフである。また、図7(B)は、スピーカFRから出力される信号とスピーカSRから出力される信号との時間差が0.9msecである場合の音圧分布である。縦軸及び横軸はダミーヘッド30近傍の位置を示し、グラフ中の等高線が音圧レベルを示す。この場合、音圧レベルが高い範囲(-4dB~2dB)に属する等高線であるピーク縞25Aがダミーヘッド30の前後に渡って存在する。従って、ダミーヘッド30の前後で音圧が均一となっていることになる。
 図7(C)は、ダミーヘッド30近傍における、周波数794Hzの帯域の信号の音圧分布を示すグラフである。図7(C)は、スピーカFRから出力される信号とスピーカSRから出力される信号との時間差が0.9msecである場合のグラフである。図7(C)のグラフによれば、音圧レベルが高い範囲(-4dB~2dB)に属する等高線であるピーク縞25Bがダミーヘッド30の中心位置に存在する。この場合、ダミーヘッド30の近傍では、信号がダミーヘッド30の影響を強く受けると考えられ、その結果ダミーヘッド30の前後でレベル差が乱れてしまう。また、実際に、運転席に運転手が座った場合、当該運転手の頭部により頭部前後の音圧レベル差が乱れることになる。図7(B)に示すように、低域の信号については、周波数の高低に関わらず一定の遅延量を信号に対して付加した場合でも、ダミーヘッド30前後で音圧レベル差が均一となる。
 しかし、図7(C)に示すように、高域の信号については、周波数の高低に関わらず一定の遅延量を信号に対して付加した場合、ピーク縞25Bがダミーヘッド30の中心に位置することとなり、当該ダミーヘッド30の影響を受けるために、ダミーヘッド30前後で音圧レベルが乱れてしまう。
 次に、本発明による遅延量の決定方法により決定した遅延量に基づいた場合を想定する。図6を用いて説明した方法により、遅延部9の遅延量を決定すると、各遅延部9の遅延量は、図8(A)に示すグラフのようになる。具体的には、遅延部9FLには、グラフ15FLで示す遅延量が設定され、遅延部9FRには、グラフ15FRで示す遅延量が設定され、遅延部9SRには、グラフ15SRで示す遅延量が設定される。従って、グラフ15SRに示すように、遅延部9SRには、帯域によって異なる遅延量が設定される。なお、遅延部9SLには、グラフ15SLで示すように、遅延量はない。
 図8(B)は、ダミーヘッド30近傍における、周波数794Hzの帯域の信号の音圧分布を示すグラフである。また、図8(B)は、スピーカFRから出力される信号とスピーカSRから出力される信号との時間差が0.9msecである場合のグラフである。縦軸及び横軸はダミーヘッド30近傍の位置を示し、グラフ中の等高線が音圧レベルを示す。
 この場合、音圧レベルが高い範囲(-4dB~2dB)に属する等高線であるピーク縞25Cがダミーヘッド30の前方位置に存在する。図6で説明した方法により、遅延部9の遅延量を決定し、ダミーヘッド30に近いスピーカ対10Cについての時間差を帯域毎に設けることにより、ピーク縞25Cがダミーヘッド30の前方に存在する。
 従って、本発明による遅延量の決定方法により遅延量を定めた場合、ピーク縞25Cが当該ダミーヘッド30の影響をそれほど受けない箇所に位置することとなるため、ダミーヘッド30の前後でレベル差が乱れることがない。
 このように、音場調整装置は、近接スピーカ対から出力される信号に対して、周波数毎に異なる遅延量を付加することにより、リスナ位置のダミーヘッド30の影響を回避することができるので、周波数帯域によって一律の遅延量を信号に付加する場合に比して、適切に音場調整をすることができる。
 また、音場調整装置は、近接スピーカ対から出力される信号に対して、所定の帯域以上の周波数の信号については、低域の信号に比して大きい遅延量を与えているので、聴取位置に位置する人の頭部等の影響によって音圧レベル差が生じてしまうことを回避することができる。
 次に、リスナ位置で実施例の音場調整をした場合と、従来手法の音場補正をした場合と、補正処理を行っていない場合とにおける、前後マイクレベル差と左右マイクレベル差の測定結果を図9、図10を用いて説明する。ここでいう従来手法の音場補正とは、レベル調整や、周波数の高低に関わらず一定の遅延量を付加する音場補正をいう。即ち、入力信号について、運転席から遠くのスピーカに比して、運転席から近いスピーカの音量を下げたり、図13(C)に示したような遅延部D1~D4によりタイムアライメント補正を施したりすることにより、運転席での音圧バランスの調整を図ることをいう。
 まず、図9(A)~(C)を用いて、前後マイクレベル差の測定結果について説明する。図9(A)に示すように、リスナ位置のダミーヘッド30前後に置いたマイクM1及びマイクM2の音圧レベル差を測定する。そして、測定結果のグラフを図9(B)に示す。グラフ21Aは、音場補正をしていない場合のグラフであり、グラフ22Aは、本実施例の音場調整をした場合のグラフであり、グラフ23Aは、従来手法の音場補正をした場合のグラフである。
 また、実施例の音場調整をした場合と、従来手法の音場補正をした場合と、補正処理を行っていない場合のそれぞれにおける前後レベル差の平均値を図9(C)に示す。
 本実施例の音場調整をした場合のグラフ22Aを、グラフ21Aやグラフ23Aと比較すると、前後マイク間のレベル差がほとんど無い。従って、本実施例の音場調整装置は、従来技術等に比してリスナ位置の前後のレベル差をほとんど無い状態にすることができ、適切に音場調整することができる。
 次に、図10(A)~(C)を用いて、左右マイクレベル差の測定結果について説明する。図10(A)に示すように、リスナ位置のダミーヘッド30の左右に置いたマイクM3及びマイクM4の音圧レベル差を測定する。そして、測定結果のグラフを図10(B)に示す。
 グラフ21Bは、音場補正をしていない場合のグラフであり、グラフ22Bは、本実施例の音場調整をした場合のグラフであり、グラフ23Bは、従来手法の音場補正をした場合のグラフである。
 実施例の音場調整をした場合、従来手法の音場補正をした場合、及び補正処理を行っていない場合のそれぞれにおける左右レベル差の平均値を図10(C)に示す。
 従来手法の音場補正をした場合と、本実施例による音場調整をした場合とを比較すると、従来手法の音場補正をした場合の方が、左右レベル差の平均値は少ない。しかし、本実施例による音場調整をした場合の左右レベル差の絶対値の平均は、3dB以下となっていることから聴取者にとって実質的に問題ない範囲であると考えられる。よって、実質的な差異はないと考えられる。
 次に、図11(A)に示す、助手席におけるスピーカFRとスピーカFLとの出力の音圧レベルの比較について、図11(B)及び図11(C)を用いて説明する。
 図11(B)は、従来手法の音場補正を行なった場合の、助手席におけるスピーカFRとスピーカFLとの音圧レベルのグラフである。グラフ16FRがスピーカFRの各周波数における音圧レベルを示すグラフであり、グラフ16FLがスピーカFLの各周波数における音圧レベルを示すグラフである。平均するとスピーカFRとスピーカFLとの音圧レベル差は、13.6dBある。
 図11(C)は、助手席における、本願発明の音場調整装置のスピーカFRとスピーカFLとの音圧レベルのグラフである。グラフ17FRがスピーカFRの各周波数における音圧レベルを示すグラフであり、グラフ17FLがスピーカFLの各周波数における音圧レベルを示すグラフである。平均するとスピーカFRとスピーカFLとの音圧レベル差は、4.4dBある。よって、本実施例による音場調整装置は、従来手法の音場補正を行った場合に比して助手席における音圧レベル差を少なく抑えることができる。
 このように、本願発明の音場調整装置は、レベル調整することなく、信号の干渉によって音圧バランスの調整を行なっているので、運転席に対応する聴取位置で、従来手法の音場補正と同様の音場補正効果を保ちつつ、さらに他の聴取位置(例えば、助手席等)においては、従来手法の音場補正に比して悪影響を改善させることができる。
 <第2実施例>
 次に、本願発明の第2実施例について説明する。
 [スピーカレイアウトについて]
 図12(A)に、第2実施例の音場調整装置のスピーカレイアウトを示す。図12(A)は、車内におけるスピーカ及び聴取位置(リスナ位置)を模式的に示す。スピーカの構成は、図1に示す第1実施例と同様である。但し、第2実施例は、第1実施例より小型の車両を想定しており、各スピーカ位置及び聴取位置の距離が短くなっている。特に、第1実施例と比較して、後方のスピーカ対10Dと聴取位置との距離が近くなっている。4つのスピーカ及び運転席の位置関係は図12(A)に示す数値の通りである。
 図12(B)を用いて、第2実施例の音場調整装置の概要を説明する。第2実施例における音場調整装置は、近接スピーカ対となるスピーカ対10Dに供給される信号に対して周波数帯域毎に異なる遅延量の遅延を与える。これに加えて、第2実施例では、リスナ位置からの垂直距離が近接スピーカ対10Dの次に近いスピーカ対である、スピーカ対10Cに供給される信号に対しても周波数帯域毎に異なる遅延量の遅延を与える。一方、スピーカ対10Bに供給される信号に対しては周波数帯域に関わらず一定の遅延量の遅延を与える。なお、スピーカ対10Aについては、各スピーカに対する遅延量を決定する際の検討対象となるスピーカ対から除外する。音場調整装置は、リスナ位置から離れており、かつ、音圧バランスの調整に影響が少ない後方スピーカ対を、検討対象となるスピーカ対から除外することにより、より適切に音圧バランスの調整を行う。
 [遅延量の決定方法について]
 次に、図13~図15を用いて、各スピーカ対における遅延量の決定方法について説明する。音場調整装置は、各スピーカ対における遅延量を決定する際、レベル差を計測し、遅延量を決定する。リスナの左右方向と平行なスピーカ対であるスピーカ対10B及び10Dにおける遅延量を決定する際には、リスナの左右に配置されたマイクにおけるレベル差に基づいて遅延量を決定する。そして、リスナの前後方向と平行なスピーカ対であるスピーカ対10Cにおける遅延量を決定する際には、リスナの前後方向に配置されたマイクにおけるレベル差に基づいて遅延量を決定する。
 まず、図13(A)及び図13(B)を用いて、スピーカ対10Bに供給される信号に与える時間差を決定する方法について説明する。図13(A)に示すように、音場調整装置のスピーカFL及びFRから出力するピンクノイズなどを計測することにより、ダミーヘッド30に付されているマイクM3とマイクM4とのレベル差を計測し、計測した結果に基づいてスピーカ対10Bに供給される信号に与える時間差を決定する。なお、マイクM1~M4は、音場調整装置と接続されている。
 音場調整装置は、測定用信号であるピンクノイズを発生させ、スピーカFL及びスピーカFRから同時にピンクノイズを出力する。そして、音場調整装置は、上記のピンクノイズをマイクM3及びマイクM4から収音し、レベル差を検出する。
 レベル差が所定の閾値(例えば、0)に達していない場合、音場調整装置の遅延部9FRは、遅延量を変更する。そして、音場調整装置は、レベル差を再度検出する。音場調整装置は、レベル差が上記閾値に達するまで、遅延量の変更とレベル差の検出とを繰り返す。各帯域の遅延量を変えた時のレベル差の分布図を図13(B)に示す。図13(B)において、マイクM3とM4のレベル差が0となるときの遅延量をグラフ12Aで示す。
 図13(B)に示すグラフ12Aによれば、マイクM3とM4のレベル差が0となるときの遅延量は、周波数帯域に関わらず1.2msecとなっているので、音場調整装置は、遅延部9FRにおける遅延量を全ての周波数帯域について1.2msecとする。これにより、音場調整装置は、スピーカ対10Bに供給される信号に与える時間差を設けることができる。
 次に、図14(A)及び図14(B)を用いて、スピーカ対10Cに供給される信号に与える時間差を決定する方法について説明する。図14(A)に示すように、音場調整装置のスピーカFRやスピーカSRから出力するピンクノイズ等を計測することにより、ダミーヘッド30に付されているマイクM1とマイクM2とのレベル差を計測し、スピーカ対10Cに供給される信号に与える時間差を決定する。
 音場調整装置は、測定用信号であるピンクノイズを発生させ、スピーカFR及びスピーカSRから同時にピンクノイズを出力する。そして、音場調整装置は、上記のピンクノイズをマイクM1及びマイクM2から収音し、レベル差を検出する。音場調整装置の遅延部9SRは、所定の閾値に達していない場合、遅延量を変更する。そして、音場調整装置は、レベル差を再度検出する。このように、音場調整装置は、レベル差が閾値に達するまで、遅延量の変更とレベル差の検出を繰り返す。各帯域の遅延量を変えた時のレベル差の分布図を図14(B)に示す。図14(B)において、マイクM1とM2のレベル差が0となるときの遅延量をグラフ12Bで示す。
 図14(B)に示すグラフ12Bによれば、周波数帯域によってレベル差が0になる遅延量が異なる。ここで、各周波数帯域におけるレベル差が0となる遅延量の表を図14(C)に示す。図14(B)及び図14(C)に示すように、周波数が500Hzになるまでは、レベル差が0となる遅延量である最適遅延量は0.5~0.6msec前後となるが、周波数が500Hzを超えると、徐々に最適遅延量が減少していく。即ち、周波数が500Hz以上の周波数帯域(例えば、630Hz等)の最適遅延量は、周波数500Hz以下の最適遅延量に比して小さくなる。
 音場調整装置は、遅延部9SRにおける遅延量をグラフ12Bに基づいて、周波数帯域毎で異なる遅延量とすることにより、スピーカ対10Cに供給される信号について時間差を設ける。
 次に、図15(A)~(C)を用いて、スピーカ対10Dに供給される信号に与える時間差を決定する方法について説明する。図15(A)に示すように、音場調整装置のスピーカSL及びSRから出力するピンクノイズ等を計測することにより、ダミーヘッド30に付されたマイクM3とマイクM4とのレベル差を測定し、スピーカ対10Dに供給される信号に与える時間差を決定する。
 音場調整装置は、測定用信号であるピンクノイズを発生させ、スピーカSL及びスピーカSRから同時にピンクノイズを出力する。そして、音場調整装置は、上記のピンクノイズをマイクM3及びマイクM4から収音し、レベル差を検出する。レベル差が所定の閾値に達していない場合、音場調整装置の遅延部9SRは、遅延量を変更する。そして、音場調整装置は、レベル差を再度検出する。このように、音場調整装置は、レベル差が所定の閾値に達するまで、遅延量の変更とレベル差の検出とを繰り返す。各帯域の遅延量を変えた時のレベル差の分布図を図15(B)に示す。図15(B)において、マイクM3とM4のレベル差が0となるときの遅延量をグラフ12Cで示す。
 図15(B)に示すグラフ12Cによれば、周波数帯域によってレベル差が0になる遅延量が異なる。ここで、各周波数帯域におけるレベル差が0となる遅延量の表を図15(C)に示す。図15(B)及び図15(C)に示すように、周波数が500Hzになるまでは、レベル差が0となる遅延量である最適遅延量は1.3msec前後となるが、周波数が500Hzを超えると、徐々に最適遅延量が増加していく。即ち、周波数が500Hz以上の周波数帯域(例えば、630Hz等)の最適遅延量は1.5msecとなり、周波数500Hz以下の最適遅延量に比して大きくなる。しかし、その後周波数が1kHzに近づくと、最適遅延量は徐々に減少していく。例えば、1kHzでの最適遅延量は1msec程度となる。
 音場調整装置は、遅延部9SRにおける遅延量をグラフ12Cに基づいて、周波数帯域毎で異なる遅延量とすることにより、スピーカ対10Dに供給される信号について時間差を設ける。
 次に、音場調整装置で与える遅延量を決定する手順について説明する。まず、音場調整装置は、近接スピーカ対を決定する。本実施例では、音場調整装置は、スピーカ対10Dを近接スピーカ対とする。そして、音場調整装置は、リスナ位置から最も遠いスピーカを特定する。本実施例では、音場調整装置は、スピーカFLを最も遠いスピーカであると特定する。そして、音場調整装置は、最も遠いスピーカであるスピーカSLに接続されている遅延部9FLについては、遅延させず、1.2msecの遅延量を遅延部9FRに付加する。これにより、音場調整装置は、図13(A)及び(B)についての説明で決定した時間差をスピーカ対10Bに対して設けることができる。
 そして、音場調整装置は、遅延部9SRに対して、図14(A)~(C)についての説明で決定した遅延量と、遅延部9FRに付加する遅延量とを加算した遅延量を付加する。本実施例では、図14(A)~(C)についての説明で決定した、周波数毎に異なる遅延量と、遅延部9FRに付加されている遅延量である1.2msecとを加算した遅延量を遅延部9SRに付加する。これにより、音場調整装置は、図14(A)~(C)についての説明で決定した時間差をスピーカ対10Cに対して設けることができる。なお、スピーカ対10Cでは、帯域毎で異なる時間差が設けられることとなる。
 そして、音場調整装置は、スピーカ対10Cに対して、図15(A)~(C)の説明で決定した遅延量を設定する。本実施例では、遅延部9SRに付加されている遅延量と図15(B)のグラフ12Cに基づく遅延量との差分値を遅延部9SLに対する遅延量とする。これにより、音場調整装置は、図15(A)~(C)についての説明で決定した時間差をスピーカ対10Dに設けることができる。なお、スピーカ対10Dでは、帯域毎で異なる時間差が設けられることとなる。
 以上のように決定した各遅延部9の遅延量は、図17に示すグラフのようになる。具体的には、遅延部9FRには、グラフ35FRで示す遅延量が設定され、遅延部9SRには、グラフ35SRで示す遅延量が設定され、遅延部9SLには、グラフ35SLで示す遅延量が設定される。従って、グラフ35SL及び35SRに示すように、遅延部9SL及び9SRには、それぞれ帯域によって異なる遅延量が設定される。なお、遅延部9FLには、グラフ15FLで示すように、遅延量はない。
 以上より、音場調整装置は、スピーカ対10B~スピーカ対10Dについて、図13~図15の説明で決定した時間差を設けることができる。
 次に、リスナ位置で第2実施例の音場調整をした場合と、従来手法の音場補正をした場合と、補正処理を行っていない場合とにおける、前後マイクレベル差と左右マイクレベル差の測定結果を図18、図19を用いて説明する。ここでいう従来手法の音場補正とは、第1実施例の場合と同様に、レベル調整や、周波数の高低に関わらず一定の遅延量を付加する音場補正をいう。
 まず、図18(A)~(C)を用いて、前後マイクレベル差の測定結果について説明する。図18(A)に示すように、リスナ位置のダミーヘッド30の前後に置いたマイクM1及びマイクM2の音圧レベル差を測定する。そして、測定結果のグラフを図18(B)に示す。グラフ31Aは、音場補正をしていない場合のグラフであり、グラフ32Aは、本実施例の音場調整をした場合のグラフであり、グラフ33Aは、従来手法の音場補正をした場合のグラフである。
 また、実施例の音場調整をした場合と、従来手法の音場補正をした場合と、補正処理を行っていない場合のそれぞれにおける前後レベル差の平均値を図18(C)に示す。
 本実施例の音場調整をした場合のグラフ32Aを、グラフ31Aやグラフ33Aと比較すると、本実施例の音場調整をした場合が前後マイク間のレベル差が最も小さい。従って、本実施例の音場調整装置は、従来技術等に比してリスナ位置の前後のレベル差を小さくすることができ、適切に音場調整することができる。
 次に、図19(A)~(C)を用いて、左右マイクレベル差の測定結果について説明する。図19(A)に示すように、リスナ位置のダミーヘッド30の左右に置いたマイクM3及びマイクM4の音圧レベル差を測定する。そして、測定結果のグラフを図19(B)に示す。
 グラフ31Bは、音場補正をしていない場合のグラフであり、グラフ32Bは、本実施例の音場調整をした場合のグラフであり、グラフ33Bは、従来手法の音場補正をした場合のグラフである。
 実施例の音場調整をした場合、従来手法の音場補正をした場合、及び補正処理を行っていない場合のそれぞれにおける左右レベル差の平均値を図19(C)に示す。
 本実施例の音場調整をした場合のグラフ32Bを、グラフ31Bやグラフ33Bと比較すると、本実施例の音場調整をした場合が左右マイク間のレベル差が最も小さい。従って、本実施例の音場調整装置は、従来技術等に比してリスナ位置の左右のレベル差を小さくすることができ、適切に音場調整することができる。
 次に、図20(A)に示す、助手席におけるスピーカFRとスピーカFLとの出力の音圧レベルの比較について、図20(B)及び図20(C)を用いて説明する。
 図20(B)は、従来手法の音場補正を行なった場合の、助手席におけるスピーカFRとスピーカFLとの音圧レベルのグラフである。グラフ36FRがスピーカFRの各周波数における音圧レベルを示すグラフであり、グラフ36FLがスピーカFLの各周波数における音圧レベルを示すグラフである。平均するとスピーカFRとスピーカFLとの音圧レベル差は、7.22dBである。
 図20(C)は、助手席における、本願発明の音場調整装置のスピーカFRとスピーカFLとの音圧レベルのグラフである。グラフ37FRがスピーカFRの各周波数における音圧レベルを示すグラフであり、グラフ37FLがスピーカFLの各周波数における音圧レベルを示すグラフである。平均するとスピーカFRとスピーカFLとの音圧レベル差は、2.62dBである。このように、本実施例による音場調整装置は、従来手法の音場補正を行った場合に比して助手席における音圧レベル差を少なく抑えることができる。
 <スピーカ対の距離と最適遅延量との関係>
 次に、スピーカ対の距離と最適遅延量との関係について説明する。いま、図1に示す第1実施例における車両において、スピーカFR及びSRにより構成されるスピーカ対10Cとリスナ位置との垂直距離を変化させた場合に、スピーカ対10Cを構成するスピーカFRとスピーカSRとの間に与える最適遅延量の変化を検討する。なお、以下の例において、スピーカ対10Cとリスナ位置との垂直距離以外の値は全て固定とする。
 図21は、スピーカ対10Cとリスナ位置との垂直距離を40cmとした場合に、各帯域の遅延量を変えたレベル差の分布を示す。図21における破線51はマイクM1とマイクM2のレベル差が0となるときのグラフを示す。この場合、周波数が500Hzまではレベル差が0となる遅延量である最適遅延量は0.8msec前後となるが、周波数が500Hzを超えると最適遅延量が増加する。
 図22は、スピーカ対10Cとリスナ位置との垂直距離を60cmとした場合に、各帯域の遅延量を変えたレベル差の分布を示す。図22における破線52はマイクM1とマイクM2のレベル差が0となるときのグラフを示す。この場合、周波数が500Hzまではレベル差が0となる遅延量である最適遅延量は0.8msec前後となるが、周波数が500Hzを超えると最適遅延量が徐々に増加していく。但し、その増加量は、垂直距離を60cmとした場合よりも小さい。
 図23は、スピーカ対10Cとリスナ位置との垂直距離を80cmとした場合に、各帯域の遅延量を変えたレベル差の分布を示す。図23における破線53はマイクM1とマイクM2のレベル差が0となるときのグラフを示す。この場合、マイクM1とM2のレベル差が0となる遅延量である最適遅延量は周波数帯域に関わらずほぼ0.8msec前後となっている。
 図24は、スピーカ対10Cとリスナ位置との垂直距離を100cmとした場合に、各帯域の遅延量を変えたレベル差の分布を示す。図24における破線54はマイクM1とマイクM2のレベル差が0となるときのグラフを示す。この場合、マイクM1とM2のレベル差が0となる遅延量である最適遅延量は周波数帯域に関わらず0.7msec前後となっている。
 図21~24から理解されるように、スピーカ対10Cとリスナ位置との垂直距離が長くなるほど、リスナ位置における運転手の頭部の影響が弱くなり、最適遅延量は各周波数帯域で一定値をとる傾向を示す。即ち、スピーカ対の位置を聴取位置から離していくと、スピーカ対のレベル差が0となる遅延量である最適遅延量は、ある距離までは周波数毎に変化する特性を示すが、それより離れると周波数を問わず一定となる。本発明を適用する車両のサイズによるが、一般的なサイズの車両では、リスナ位置と近接スピーカ対との垂直距離は50cm以下となることが多いため、本発明の音場調整装置のように、少なくとも近接スピーカ対に対しては周波数帯域毎に異なる遅延量の遅延を与え、リスナ位置との垂直距離が長いスピーカ対に対しては周波数帯域に関わらず一定の遅延量の遅延を与えることが有効であることが理解される。つまり、スピーカ対のレベル差が0となる最適遅延量が周波数毎に変化する距離を「所定距離」とすると、本発明は聴取位置と少なくとも1つのスピーカ対との距離が上記の所定距離以内にあるスピーカ配置のときに有効となる。
 <本発明の効果>
 以上説明したように、音響空間に配置された複数のスピーカ対から信号を再生する音場調整装置は、複数のスピーカに信号を供給する信号供給手段と、複数のスピーカのうち、少なくとも聴取位置から最も近いスピーカ対である近接スピーカ対に供給される信号に対して周波数帯域毎に異なる遅延量の遅延を与える帯域毎遅延手段と、帯域毎遅延手段が遅延を与えたスピーカ対以外のスピーカ対に対して周波数帯域に関わらず一定の遅延量の遅延を与える一定遅延手段と、を備える。
 この場合、音場調整装置は、レベル調整することなく、遅延量による調整のみで音場調整しているので、聴取位置で音圧バランスを調整した結果、聴取位置以外の位置で音圧バランスが悪化してしまうことを回避することができ、さらに聴取位置での音圧バランスの改善を図ることができる。
 一般的に、頭部の影響を無視すれば、周波数に関わらず、一定の遅延量を付加し、音圧レベルが高い範囲(本実施例におけるピーク縞25)を聴取位置付近に位置させることで、音圧バランスを整えることが可能となる。しかし、聴取位置に聴取者の頭部が位置すると、当該頭部の影響を受け、聴取位置前後のレベルが乱れてしまう。この頭部による影響は、周波数が高ければ高い程影響を受けやすく、聴取位置との距離が近いほど影響を大きく受けると言われている。
 そこで、本願発明の音場調整装置は、近接スピーカ対に供給される信号については、周波数帯域毎に異なる遅延量を付加している。このように、音場調整装置は、聴取位置の頭部による影響を受けやすいスピーカ対に対して、周波数帯域毎に異なる遅延量の遅延を与えているので、聴取位置及び当該聴取位置に近接する位置における前後の音圧バランスの悪化を回避することができる。
 また、音場調整装置は、スピーカ対10A~10Cのレベル差が0となるように、遅延量を決定している。これにより、音場調整装置は、聴取位置の前後方向及び左右方向のレベル差を軽減させることができる。
 <変形例>
 上述の実施例では、マイクM1~マイクM4の計測結果に基づいて、近接スピーカ対の遅延量を決定する場合について述べたが、本発明は、これに限られず、リスナ位置からスピーカまでの距離等に基づいて、基準周波数を算出し、当該基準周波数から所定範囲の周波数まで、周波数の増加する分、段階的に遅延量を設定するようにしても良い。基準周波数を算出し、当該基準周波数に基づいた遅延量のグラフ26を図25に示す。グラフ26の場合、460Hzが基準周波数となり、460Hz~580Hzが増加対象となる周波数範囲になる。
 この場合、上述の実施例と異なり、計測処理の負担を軽減すると共に、音場調整装置は、聴取位置に位置する頭部等の影響に即して遅延量を決定することができる。
 上述の実施例では、音場調整装置は、スピーカ対10Dに供給される信号に対して遅延量を与えなかったが、本発明は、これに限られず、スピーカ対10Dに供給される信号に対して一定の遅延量を与えるようにしても良い。
 上述の実施例では、音場調整装置は、近接スピーカ対を1つに定める場合について述べたが、本発明は、これに限られず、ほぼ同じ距離にある複数のスピーカ対を近接スピーカ対とするようにしても良い。
 上述の実施例では、音場調整装置は、近接スピーカ対であるスピーカ対10Cのレベル差が0となるように、遅延量を決定する場合について述べたが、本発明は、これに限られず、レベル差を所定値以下(例えば、3dB)とするようにしても良い。この場合でも、音場調整装置は、運転席及び助手席における前後方向及び左右方向のレベル差を軽減させることができる。
 本発明は、音場を調整する装置について利用することができる。
 5 信号処理部
 6 ミキサ
 8 帯域分割部
 9 遅延部
 10 スピーカ対

Claims (8)

  1.  音響空間に配置され、かつ、聴取位置から所定距離内に配置された複数のスピーカから信号を再生する音場調整装置であって、
     前記複数のスピーカに信号を供給する信号供給手段と、
     前記複数のスピーカのうち、少なくとも前記聴取位置から最も近いスピーカ対である近接スピーカ対に供給される信号に対して周波数帯域毎に異なる遅延量の遅延を与える帯域毎遅延手段と、
     前記帯域毎遅延手段が遅延を与えたスピーカ対以外のスピーカ対に対して周波数帯域に関わらず一定の遅延量の遅延を与える一定遅延手段と、
    を備えることを特徴とする音場調整装置。
  2.  前記スピーカ対は、前記聴取位置の前後方向又は左右方向のいずれかの方向に配置されたスピーカ対であり、
     前記帯域毎遅延手段は、前記近接スピーカ対のレベル差が所定値以下となるように前記遅延量を決定することを特徴とする請求項1に記載の音場調整装置。
  3.  前記スピーカ対は、前記聴取位置の前後方向又は左右方向のいずれかの方向に配置されたスピーカ対であり、
     前記帯域毎遅延手段は、前記近接スピーカ対のレベル差が0となるように前記遅延量を決定し、
     前記一定遅延手段は、前記近接スピーカ対以外のスピーカ対のレベル差が0となるように前記遅延量を決定することを特徴とする請求項1に記載の音場調整装置。
  4.  前記帯域毎遅延手段は、低域信号に与える遅延量よりも高域信号に与える遅延量を大きくすることを特徴とする請求項1乃至3のいずれか一項に記載の音場調整装置。
  5.  前記帯域毎遅延手段は、基準周波数以上の所定周波数範囲に属する信号について、周波数が増加するにつれて遅延量を段階的に大きくすることを特徴とする請求項4に記載の音場調整装置。
  6.  前記帯域毎遅延手段及び前記一定遅延手段は、前記聴取位置から最も遠いスピーカ対を、前記遅延量を決定する処理の対象となるスピーカ対から除外することを特徴とする請求項1乃至5のいずれか一項に記載の音場調整装置。
  7.  前記近接スピーカ対は、前記複数のスピーカ対のうち、前記聴取位置からの垂直距離が近いスピーカ対であり、
     前記垂直距離は、スピーカ対を構成する2つのスピーカを結ぶ直線から前記聴取位置までの最短距離を指すことを特徴とする請求項1乃至6のいずれか一項に記載の音場調整装置。
  8.  前記所定距離は、前記スピーカ対のレベル差が0となる最適遅延量が、周波数毎に変化する距離であることを特徴とする請求項1乃至7のいずれか一項に記載の音場調整装置。
PCT/JP2010/060351 2009-06-24 2010-06-18 音場調整装置 WO2010150705A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011519853A JP5330515B2 (ja) 2009-06-24 2010-06-18 音場調整装置
US13/380,404 US20120155651A1 (en) 2009-06-24 2010-06-18 Sound field adjustment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/061503 WO2010150368A1 (ja) 2009-06-24 2009-06-24 音場調整装置
JPPCT/JP2009/061503 2009-06-24

Publications (1)

Publication Number Publication Date
WO2010150705A1 true WO2010150705A1 (ja) 2010-12-29

Family

ID=43386162

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/061503 WO2010150368A1 (ja) 2009-06-24 2009-06-24 音場調整装置
PCT/JP2010/060351 WO2010150705A1 (ja) 2009-06-24 2010-06-18 音場調整装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061503 WO2010150368A1 (ja) 2009-06-24 2009-06-24 音場調整装置

Country Status (2)

Country Link
US (1) US20120155651A1 (ja)
WO (2) WO2010150368A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120109331A (ko) * 2011-03-24 2012-10-08 하만 베커 오토모티브 시스템즈 게엠베하 공간적으로 일정한 서라운드 음향 생성 방법 및 시스템
US10375500B2 (en) 2013-06-27 2019-08-06 Clarion Co., Ltd. Propagation delay correction apparatus and propagation delay correction method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5015611B2 (ja) * 2005-01-24 2012-08-29 パナソニック株式会社 音像定位制御装置
JPWO2013145127A1 (ja) * 2012-03-27 2015-08-03 パイオニア株式会社 音声再生装置
IN2014MN02494A (ja) * 2012-06-29 2015-07-17 Sony Corp
US9762199B2 (en) 2014-03-31 2017-09-12 Bitwave Pte Ltd. Facilitation of headphone audio enhancement
US9508336B1 (en) 2015-06-25 2016-11-29 Bose Corporation Transitioning between arrayed and in-phase speaker configurations for active noise reduction
US9640169B2 (en) 2015-06-25 2017-05-02 Bose Corporation Arraying speakers for a uniform driver field
JP2017017717A (ja) * 2016-08-04 2017-01-19 パイオニア株式会社 音声再生装置、音声再生方法及び音声再生プログラム
WO2019142407A1 (ja) * 2018-01-19 2019-07-25 株式会社Jvcケンウッド 再生装置、再生方法、及び車載スピーカシステム
JP2018113718A (ja) * 2018-03-13 2018-07-19 パイオニア株式会社 音声再生装置、音声再生方法及び音声再生プログラム
CN110738995B (zh) * 2019-10-11 2022-11-11 北京地平线机器人技术研发有限公司 一种声音信号采集方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217900A (ja) * 1987-03-06 1988-09-09 Victor Co Of Japan Ltd オ−デイオ用群遅延調整装置
JPH03195199A (ja) * 1989-12-25 1991-08-26 Victor Co Of Japan Ltd 音像定位装置
JP2003199199A (ja) * 2001-12-25 2003-07-11 Alpine Electronics Inc オーディオ用音場調整装置
JP2005051324A (ja) * 2003-07-29 2005-02-24 Fujitsu Ten Ltd スピーカ装置
JP2006101248A (ja) * 2004-09-30 2006-04-13 Victor Co Of Japan Ltd 音場補正装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297881A (ja) * 1992-04-20 1993-11-12 Alpine Electron Inc 音像定位装置
US7639823B2 (en) * 2004-03-03 2009-12-29 Agere Systems Inc. Audio mixing using magnitude equalization
FR2918532B1 (fr) * 2007-07-05 2015-04-24 Arkamys Procede de traitement sonore d'un signal stereophonique a l'interieur d'un vehicule automobile et vehicule automobile mettant en oeuvre ce procede

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217900A (ja) * 1987-03-06 1988-09-09 Victor Co Of Japan Ltd オ−デイオ用群遅延調整装置
JPH03195199A (ja) * 1989-12-25 1991-08-26 Victor Co Of Japan Ltd 音像定位装置
JP2003199199A (ja) * 2001-12-25 2003-07-11 Alpine Electronics Inc オーディオ用音場調整装置
JP2005051324A (ja) * 2003-07-29 2005-02-24 Fujitsu Ten Ltd スピーカ装置
JP2006101248A (ja) * 2004-09-30 2006-04-13 Victor Co Of Japan Ltd 音場補正装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120109331A (ko) * 2011-03-24 2012-10-08 하만 베커 오토모티브 시스템즈 게엠베하 공간적으로 일정한 서라운드 음향 생성 방법 및 시스템
JP2012205302A (ja) * 2011-03-24 2012-10-22 Harman Becker Automotive Systems Gmbh 空間的に一定なサラウンドサウンド
KR101941939B1 (ko) 2011-03-24 2019-04-11 하만 베커 오토모티브 시스템즈 게엠베하 공간적으로 일정한 서라운드 음향 생성 방법 및 시스템
US10375500B2 (en) 2013-06-27 2019-08-06 Clarion Co., Ltd. Propagation delay correction apparatus and propagation delay correction method

Also Published As

Publication number Publication date
WO2010150368A1 (ja) 2010-12-29
US20120155651A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
WO2010150705A1 (ja) 音場調整装置
US8989404B2 (en) Driving of multi-channel speakers
JP7091313B2 (ja) 車両シート内に配置された音響トランスデューサアセンブリ
JP2002330499A (ja) 自動音場補正装置及びそのためのコンピュータプログラム
JP5917765B2 (ja) 音声再生装置、音声再生方法及び音声再生プログラム
WO2009144781A1 (ja) 音声再生装置
CN111988727A (zh) 扬声器系统中的主动式房间补偿
JP5330515B2 (ja) 音場調整装置
US20110268298A1 (en) Sound field correcting device
US9503817B2 (en) Sound reproduction device
JP6905045B2 (ja) 音出力制御装置、音出力制御方法及びプログラム
JP2007019940A (ja) 音場制御装置
KR20200046919A (ko) 스피커 음향 특성을 고려한 독립음장 구현 방법 및 구현 시스템
CN113631427A (zh) 信号处理装置、声学再现系统以及声学再现方法
JP6647362B2 (ja) 音量制御装置、音量制御方法、及び、プログラム
US10194260B2 (en) Sound volume control device, sound volume control method and sound volume control program
JP5774440B2 (ja) 音響調整方法、音響調整装置及びオーディオシステム
JP2018113718A (ja) 音声再生装置、音声再生方法及び音声再生プログラム
US20190299874A1 (en) Sound volume control device, sound volume control method and program
JP2017017717A (ja) 音声再生装置、音声再生方法及び音声再生プログラム
JP2022096522A (ja) 音声処理装置及び音声処理方法
WO2016063412A1 (ja) 音量制御装置、音量制御方法、及び、音量制御プログラム
JP5683394B2 (ja) 信号レベル調整装置
JPWO2013145127A1 (ja) 音声再生装置
JP2007184758A (ja) 音響再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792023

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519853

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13380404

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10792023

Country of ref document: EP

Kind code of ref document: A1