WO2010150687A1 - 画像処理装置、x線画像診断装置、及び画像処理方法 - Google Patents

画像処理装置、x線画像診断装置、及び画像処理方法 Download PDF

Info

Publication number
WO2010150687A1
WO2010150687A1 PCT/JP2010/060179 JP2010060179W WO2010150687A1 WO 2010150687 A1 WO2010150687 A1 WO 2010150687A1 JP 2010060179 W JP2010060179 W JP 2010060179W WO 2010150687 A1 WO2010150687 A1 WO 2010150687A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
value
determined
image
determination
Prior art date
Application number
PCT/JP2010/060179
Other languages
English (en)
French (fr)
Inventor
宗作 重村
克己 鈴木
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2011519805A priority Critical patent/JP5674659B2/ja
Priority to CN201080028072.7A priority patent/CN102802530B/zh
Publication of WO2010150687A1 publication Critical patent/WO2010150687A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/30Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from X-rays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/81Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing

Definitions

  • the present invention relates to an image processing apparatus, an X-ray image diagnostic apparatus, and an image processing method, and in particular, digital X-ray image data does not depend on S / N characteristics of an X-ray detector, and an edge portion of an image signal is detected.
  • the present invention relates to a technique for performing noise reduction processing without blurring.
  • Patent Document 1 in the input X-ray image data, the variance value of the pixel value in each direction (horizontal, vertical, diagonal) around the pixel of interest is calculated, and the portion where the variance value of the pixel value is large is
  • an X-ray image processing apparatus that performs smoothing and outputting in the direction of the smallest variance value.
  • the dispersion value itself has a pixel value variation due to noise or a pixel value due to an edge of the image signal. For example, when noise fluctuation is larger than low contrast edge fluctuation, the edge portion of the image signal may be smoothed and the edge portion may be blurred. was there.
  • An object of the present invention is to provide an apparatus and an image processing method.
  • an image processing apparatus includes an image reading unit that reads a medical image obtained by seeing through or photographing a subject using an X-ray diagnostic imaging apparatus, For each pixel, it is set for the pixel value, and based on a similarity threshold for determining similarity to the pixel value, a determination unit that determines whether or not the noise component is a noise component by the determination unit And a noise component correction unit that performs a noise reduction process on the pixel determined to be, and a display unit that displays the medical image corrected by the noise component correction unit.
  • an X-ray diagnostic imaging apparatus is characterized by including the above-described image processing apparatus.
  • the image processing method includes a step of reading a medical image obtained by fluoroscopying or photographing a subject using an X-ray image diagnostic apparatus, and a pixel value for each pixel of the medical image. And determining whether or not it is a noise component based on a similarity threshold for determining similarity with the pixel value, and noise reduction processing for a pixel determined to be a noise component by the determination And a step of causing the computer to execute a step of displaying the medical image on which the noise reduction processing has been performed.
  • noise reduction processing for the noise component is performed on the target pixel determined to be a noise component based on the determination result.
  • a noise reduction effect can be obtained without blurring the edge portion.
  • image signal component for a pixel of interest that is determined to be a component that is not a noise component (referred to as an “image signal component”), image processing for the image signal component, for example, average processing applied to the image signal component, or edge portion It is possible to perform edge enhancement processing or the like on the image, and image processing suitable for each characteristic can be performed on each of the noise component and the image signal component.
  • an image processing apparatus since there is no calculation processing in the time axis direction, an image processing apparatus, an X-ray image diagnostic apparatus, and the like that do not generate an afterimage even in a portion where there is movement in a fluoroscopic image, And an image processing method can be provided.
  • the X-ray diagnostic imaging apparatus referred to here is an apparatus capable of both fluoroscopy and radiographing, or one of them.
  • FIG. 1 is a schematic diagram showing a configuration of an X-ray image diagnostic apparatus 1 according to the first embodiment.
  • the X-ray diagnostic imaging apparatus 1 in FIG. 1 is arranged so as to face the X-ray generation means 11 that irradiates the subject 30 with X-rays, and the X-ray intensity distribution after being transmitted through the subject 30 X-ray flat panel detector 12 for outputting the image as digital image data, parameter input means 13 for inputting and setting parameters required for noise reduction processing, and processing the digital image data output from the X-ray flat panel detector 12
  • the digital image processing device 14 is configured by hardware including an arithmetic / control device including a CPU and an MPU, and a storage device including a memory and a hard disk, and the image processing program according to the present embodiment. Is stored.
  • Image storage that performs processing for storing the digital image data output from the X-ray flat panel detector 12 in the storage device by the cooperation of the image processing program and the hardware constituting the digital image processing device 14 Means 21; image reading means 22 for reading stored digital image data by raster scanning; parameter calculating means 23 for calculating parameters necessary for image processing; and pixel values of pixels to be determined and calculated parameters ( For example, based on the determination result of the first determination unit 24a and the first determination unit 24a that determines whether or not the pixel to be determined is similar to the pixel value corresponding to the similarity threshold, The determination unit 24 includes a second determination unit 24b that determines whether or not the pixel to be determined is a noise component, and the target pixel that is determined to be a noise component by the determination unit 24 is noisy.
  • An image correction unit 25 including a noise component correction unit 25a that performs a reduction process, and an image signal component correction unit 25b that performs image processing on a pixel that is determined not to be a noise component, and a corrected medical image Display control means 26 for displaying, and the function of the image processing program is realized.
  • both the noise component correction means 25a and the image signal component correction means 25b perform an averaging process.
  • the image correction means 25 includes, in place of the noise component correction means 25a and the image signal component correction means 25b, a means for performing one process, for example, an average processing means for performing an average process. You may comprise so that an average process may be performed, changing a process content with respect to both the component and an image signal component according to the kind of signal component.
  • the determination unit 24 includes a first determination unit 24a and a second determination unit 24b. However, the determination unit 24 determines similarity using a similarity threshold and a noise component. It may be configured as one means (for example, one software module) that performs the determination of whether or not.
  • FIG. 2 is a flowchart showing a processing flow of the present embodiment.
  • FIG. 3 is a flowchart showing the flow of processing in step S3 of FIG.
  • FIG. 4 is a table (relationship between pixel value and similarity threshold P) used for calculating the similarity threshold P by the determination unit 24 and the parameter calculation unit 23.
  • FIG. 5 is a table (relationship between pixel value and filter mask size N) used to calculate a mask size for filtering by the parameter calculation means 23.
  • FIG. 6 shows an example of a method for searching for how many pixels similar to the target pixel are continuously present.
  • steps S1 to S4 displayed by solid lines in the flowchart of FIG. 2 are processes common to fluoroscopy (moving images) and photographing (still images), and steps displayed by dotted lines S5 and S6 are processes applied to fluoroscopy (moving images).
  • Step S1 Image processing parameters are set (S1).
  • the operator operates the parameter input means 13 to look up table (hereinafter abbreviated as “LUT”) 1 in which the relationship between the pixel value and the similarity threshold P shown in FIG. 4 is tabulated, and shown in FIG.
  • LUT look up table
  • the LUT 2 that tabulates the relationship between the pixel value and the filter mask size N and the image signal determination threshold Q used to determine whether the pixel of interest is a noise component are preset (S1).
  • the above “similarity threshold” defines the fluctuation range of the pixel value that can be allowed for each pixel value based on the S / N characteristic of the X-ray flat panel detector 12 provided in the X-ray diagnostic imaging apparatus 1. Parameters.
  • the “image signal determination threshold” is a parameter that determines how many pixels similar to the pixel of interest exist in the vicinity of the pixel of interest, and the pixel of interest is determined to be an image signal component. Since there are various ranges depending on the number of images continuously detected and the characteristics (for example, texture) of the image, they are input and set together with the range to be searched. If the number of pixels similar to the target pixel continuously present in the vicinity of the target pixel is less than the image signal component determination threshold, it is determined as noise, and if it is more than that, it is determined as the image signal component.
  • the above-mentioned two LUTs to be preset prior to medical image acquisition in this step are individually determined according to the S / N characteristics of the X-ray flat panel detector 12. Since each X-ray flat detector 12 has a different S / N characteristic and the number of bits (data length) of a pixel, it is necessary to determine for each X-ray flat detector 12.
  • the S / N characteristic is that the S / N ratio increases as the dose incident on the X-ray flat panel detector 12 increases, but the noise level generated in the low dose range and the noise level generated in the high dose range are In absolute comparison, the latter is larger.
  • the S / N ratio increases as the dose incident on the X-ray flat panel detector 12 increases.
  • the signal level corresponding to the incident dose increases as the dose increases. This is because the noise level is small. Since the ultimate goal is to suppress signal level fluctuations due to noise level fluctuations in the subsequent averaging process, the similarity threshold P and the signal level used to determine the pixels used in the averaging process ( In consideration of the S / N characteristic, it is appropriate that the LUT 1 indicating the relationship (corresponding to the pixel value) has a relationship in which the similarity threshold P increases as the pixel value increases as shown in FIG.
  • the size of the low signal level filter mask with a low S / N ratio is increased, and the S / N ratio is high.
  • the signal level should be small. Therefore, it is appropriate that the LUT 2 indicating the relationship between the filter mask size and the signal level has a relationship in which the filter mask size N decreases as the pixel value increases as shown in FIG.
  • Step S2 X-ray imaging is performed (S2).
  • the X-rays emitted from the X-ray generation means 11 are transmitted as digital image data from the X-ray flat panel detector 12 after passing through the subject 30, and stored and stored in the image storage means 21.
  • Step S3 Noise reduction processing is performed (S3).
  • the noise reduction process is performed on the noise component and the image signal component using an average process based on the processing content corresponding to each component.
  • Digital image data stored / saved in the image storage means 21 is subjected to noise reduction processing (average processing is used in this step) in the parameter calculation means 23, the determination means 24, and the image correction means 25 included in the digital image processing device 14. ) Is given.
  • the digital image processing apparatus 14 performs image processing according to the following procedure shown in FIG.
  • Step S301 The image reading means 22 reads the digital image data stored / saved in the image storage means 21 by raster scanning (S301).
  • Step S302 The parameter calculation means 23 refers to the LUT1 preset in step S1, and calculates a similarity threshold value Pi corresponding to the pixel value I of the pixel of interest (S302).
  • Step S303 The determining unit 24, more specifically, the first determining unit 24a searches for the number of pixels that are similar to the target pixel continuously in the vicinity of the target pixel based on the similarity threshold value Pi calculated in step S302. To do. At that time, when the absolute value of the value obtained by subtracting the pixel value I ′ of the neighboring pixel located in the vicinity of the target pixel from the pixel value I of the target pixel is less than the similarity threshold value Pi, that is, when the following formula (1) is satisfied, It is determined that the pixel has similarity. On the other hand, when the following formula (1) is not satisfied, that is, when the following formula (2) is satisfied, it is determined that the pixel has no similarity with the target pixel (S303).
  • I is a function that returns the pixel value of the pixel of interest
  • I ′ is the pixel value of the neighboring pixel
  • ABS () is the function that returns the absolute value of the argument.
  • FIG. 6 is a diagram for explaining a method for searching for the number of pixels similar to the target pixel A continuously in a 5 ⁇ 5 search mask centered on the target pixel A.
  • the size of the search mask is 5 ⁇ 5, but the size of the search mask can be arbitrarily set within a range not satisfying M 2 ⁇ Q when the search mask size is M.
  • Step S304 The determination unit 24, more specifically, the second determination unit 24b, determines that the pixel of interest A is an image signal component if the number of pixels calculated in step S303 is equal to or greater than the image signal determination threshold Q preset in step S1. If it is not satisfied, that is, if the number of pixels determined to be similar is less than Q, the target pixel A is determined as a noise component. If it is determined as an image signal component, the process proceeds to step S305. If it is determined as a noise component, the process proceeds to step S306 (S304).
  • Step S305 The parameter calculation means 23 calculates the filter mask size Ni corresponding to the pixel value of the pixel of interest based on the LUT2 preset in step S1.
  • the first determination unit 24a uses the similarity threshold value Pi calculated in step S302, and within the filter mask of size Ni ⁇ Ni centered on the pixel of interest A calculated by the parameter calculation unit 23. It is determined whether each pixel is similar to the target pixel A.
  • the image correcting unit 25 (more specifically, the image signal component correcting unit 25b) performs an averaging process using the pixel determined to be similar and the target pixel A, that is, the pixel value of the pixel determined to be similar and the target pixel. An average value with the pixel value of A is calculated, and the result is output as the pixel value of the pixel of interest A. (S305).
  • Step S306 The parameter calculation means 23 obtains the median value of the pixels in the search mask in step S303 (hereinafter referred to as “median”), and corresponds to the median based on the LUT1 and LUT2 preset in step S1.
  • the similarity threshold Pm and the filter mask size Nm are calculated.
  • the first determination unit 24a uses the similarity threshold Pm corresponding to the median, and each pixel in the filter mask of size Nm ⁇ Nm centered on the pixel of interest A calculated by the parameter calculation unit 23 is Then, it is determined whether or not it is similar to the pixel corresponding to the median. Then, the image correction unit 25 (more specifically, the noise component correction unit 25a) performs an averaging process using pixels determined to be similar and pixels corresponding to the median, that is, the pixel value and median of the pixel determined to be similar. And the result is output as the pixel value of the target pixel A (S306).
  • Step S4 The display control means 26 outputs the digital image data processed by the digital image processing device 14 to the D / A converter 15.
  • the D / A converter 15 converts it into an analog signal, and displays the image processed by the image display means 16 (S4).
  • the first frame (hereinafter referred to as “first frame”) is read in step S301, and the processing from steps S301 to S4 is performed on the first frame. Subsequently, it is determined whether or not the image reading means 22 is the last frame (S5). If Yes, the process is terminated, and if No, the frame number of the image to be read is updated (S6). Then, by sequentially repeating the processing from step S3 on the frame with the updated frame number, it is possible to display an image that has been subjected to the image processing according to the present embodiment even for a moving image obtained by fluoroscopy. it can.
  • step S3 the noise reduction processing effect of step S3 will be described with reference to FIG. Note that the numbers in FIG. 7 are pixel values.
  • FIG. 7 is a diagram illustrating an example of a processing result when the search range and the mask size are 3 ⁇ 3.
  • Fig. 7 (a) shows the case where the image signal level in the mask (image signal A) is equivalent.
  • Fig. 7 (b) shows that the impulsive noise is generated in the vicinity of the target pixel in the mask and the target pixel.
  • 7 (c) shows a different image signal level in the mask (an image signal having an image signal level different from that of the image signal A described above).
  • B) is included (corresponding to the edge portions of the image signal A and the image signal B), and
  • FIGS. 7D to 7F show the processing results in the above three cases, respectively.
  • the image signal determination threshold Q in this example is 3, and the pixels that are distinguished at the same signal level in FIG.
  • FIG. 7 (a) is a flat portion, all the eight pixels other than the target pixel in the mask are similar to the target pixel, and the process proceeds to step S305 to satisfy the determination condition in step S304.
  • An averaging process using pixels is performed.
  • the flat portion is smoothed.
  • FIG. 7B is an example in the case where impulsive noise is generated in a flat portion, and impulsive noise is generated in the pixel of interest in the mask and in the vicinity thereof.
  • the pixel similar to the target pixel is one pixel in the vicinity, so the determination condition in step S304 is not satisfied, the process proceeds to step S306, the median in the mask is obtained, and the median is similar to it.
  • An averaging process using pixels is performed.
  • similar pixel determination is also based on the S / N characteristics of the X-ray flat panel detector 12.
  • FIG. 7 (c) is an example in the case where a boundary (edge part) of different signal levels is included in the mask, and processing that does not blur this boundary (edge part) is required.
  • the smoothing process is always performed in one direction around the pixel of interest, resulting in blurring.
  • the pixel of interest includes the image signal B regardless of the horizontal, vertical, diagonal, or any direction selected although it belongs to the image signal A.
  • the smoothing process includes the signal B, resulting in blurring.
  • the pixels similar to the target pixel are four pixels in the vicinity as shown in FIG.7 (f), so the process proceeds to step S305 to satisfy the determination condition in step S304.
  • X-ray diagnostic imaging apparatus in addition to the dominant X-ray quantum noise, circuit noise of the apparatus, etc., influences the image although it is weak.
  • Quantum noise follows a Poisson distribution stochastic process, and circuit noise has characteristics close to white noise characteristics.
  • X-ray flat panel detectors also have fixed pattern noise typified by defective pixels (defects), so in order to provide image quality suitable for diagnosis, noise reduction is performed by selecting image signal components and the above noise components. Processing is essential.
  • whether the image signal component or the noise component is determined, and the processing method is changed based on the determination result, the noise is not blurred in the edge portion of the image signal. A reduction effect can be obtained.
  • an image processing apparatus since there is no time-axis direction arithmetic processing, an image processing apparatus capable of obtaining a constant image quality without causing an afterimage even in a portion where the fluoroscopic image moves.
  • An X-ray diagnostic imaging apparatus and an image processing method can be provided.
  • FIG. 8 is a flowchart showing the processing flow of the second embodiment
  • FIG. 9 is a schematic diagram showing a table used for speeding up the search for the number of pixels similar to the target pixel in the vicinity of the target pixel. It is.
  • Step S302 ′ the parameter calculation means 23 calculates LUT3 (horizontal) as shown in FIG. 9 from the two values of the similarity threshold P calculated for the target pixel A in the search mask and the pixel value I of the target pixel A.
  • a pixel value (input value) is indicated on the axis and an output value is indicated on the vertical axis (W)).
  • the LUT 3 is configured to output the output value 1.0 if the input is the pixel value I ′ of the neighboring pixel and satisfy the following expression (3), and output the output value 0.0 if not (S302 ′).
  • the determination means 24, more specifically, the first determination means 24a sequentially inputs the pixel values I ′ of neighboring pixels included in the search mask to the LUT 3, and adds the output values W.
  • the sum of all output values W of neighboring pixels included in the mask is defined as W Total .
  • the search method is the same as in the first embodiment.
  • Step S304 ' The determination unit 24, more specifically, the second determination unit 24b, compares the image signal determination threshold value Q preset in step S301 with the W Total calculated in step S303 ′, and satisfies the following expression (4) Is determined as an image signal component, and if not satisfied, it is determined as a noise component, and the process proceeds to step S305 or step S306 (S304 ′).
  • the determination performed for each neighboring pixel in the search range in step S303 in FIG. 3 is performed through the LUT 3, so that the same effect as in the first embodiment can be achieved by faster processing. Obtainable.
  • the X-ray diagnostic imaging apparatus can be changed without departing from the gist thereof.
  • the target pixel is not a noise component
  • the noise component and the image signal component are distinguished, and the noise component and the image signal component are processed.
  • noise reduction processing is performed on the noise component, and it is determined that it is not a noise component.
  • the contents of the image processing for the image signal component and the noise reduction processing are not limited to the processing contents of the above embodiment.
  • a similarity threshold that is set for the pixel value based on the S / N characteristic of the X-ray detector provided in the X-ray image diagnostic apparatus and determines the similarity of the pixel value is used.
  • the similarity threshold may be defined based on pixel value fluctuations caused by factors other than the S / N characteristics of the X-ray flat panel detector. Thereby, it is possible to perform correction such as noise determination and noise reduction processing corresponding to various causes of fluctuation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

 ディジタルX線画像データをS/N特性に依存することなく、また画像信号のエッジ部をボケさせることなくノイズ低減処理を行い、一定の画質で表示するために、医用画像をラスタ走査して読み込み(S301)、着目画素毎にS/N特性を考慮した類似性閾値Pを用いて画像信号成分かノイズ成分かを判定し(S302~S304)、着目画素に画像信号成分との判定結果を受けた処理(S305)、またはノイズ成分との判定を受けた処理(S306)、のどちらか一方を施す。

Description

画像処理装置、X線画像診断装置、及び画像処理方法
 本発明は、画像処理装置、X線画像診断装置、及び画像処理方法に係り、特にディジタルX線画像データをX線検出器のS/N特性に依存することなく、また画像信号のエッジ部をボケさせることなくノイズ低減処理を行う技術に関する。
 特許文献1には、入力されたX線画像データにおいて、着目画素を中心とした各方向(水平、垂直、斜め)での画素値の分散値を算出し、画素値の分散値が大きい部分はエッジ部を含んでいる可能性が高いという考えから、最も分散値の小さい方向でスムージングして出力するX線画像の処理装置が開示されている。
特開平9-270003号公報
 上記特許文献1の技術は、画素値の分散値に基づき着目画素を中心として必ずある一方向についてスムージングを行うため、分散値自体では、ノイズによる画素値の変動か、画像信号のエッジによる画素値の変動かを判断できないことから、例えば、低コントラストのエッジの変動よりもノイズの変動が大きい場合には、画像信号のエッジ部がスムージングされて、エッジ部がぼけてしまう可能性があるという問題があった。
 本発明は、上記問題を鑑みてなされたもので、ノイズが加わったX線画像データであっても、画像信号のエッジ部をボケさせることなくノイズ低減処理を行う画像処理装置、X線画像診断装置、及び画像処理方法を提供することを目的とするものである。
 前記目的を達成するために、本発明に係る画像処理装置は、X線画像診断装置を用いて被検体を透視、または撮影して得られた医用画像を読み込む画像読込手段と、前記医用画像の画素毎に、画素値に対して設定され、当該画素値との類似性を判定するための類似性閾値に基づき、ノイズ成分か否かを判定する判定手段と、前記判定手段によりノイズ成分であると判定された画素に対しノイズ低減処理を行うノイズ成分用補正手段と、前記ノイズ成分用補正手段により補正された前記医用画像を表示する表示手段と、を備えることを特徴とする。
 また、本発明に係るX線画像診断装置は、上記画像処理装置を備えることを特徴とする。
 更に、本発明に係る画像処理方法は、X線画像診断装置を用いて被検体を透視、または撮影して得られた医用画像を読み込むステップと、前記医用画像の画素ごとに、画素値に対して設定され、当該画素値との類似性を判定するための類似性閾値に基づき、ノイズ成分か否かを判定するステップと、前記判定によりノイズ成分であると判定された画素に対しノイズ低減処理を行うステップと、前記ノイズ低減処理がされた医用画像を表示するステップと、をコンピュータに実行させることを特徴とする。
 本発明によれば、ノイズ成分であるか否かの判定を行い、その判定結果に基づいて、ノイズ成分と判定された着目画素に対してノイズ成分用のノイズ低減処理を施すため、画像信号のエッジ部をボケさせることなくノイズ低減効果を得ることができる。また、ノイズ成分でない成分(「画像信号成分」という)と判定された着目画素に対しては、画像信号成分用の画像処理、例えば、画像信号成分に対して施される平均処理や、エッジ部に対してのエッジ強調処理などを施すことが可能となり、ノイズ成分と画像信号成分との各々に対して、各々の特性に合った画像処理を施すことができる。更に、本発明によれば、時間軸方向の演算処理がないため、透視像における動きのある部分においても残像を生じることがなく、一定の画質が得られる画像処理装置、X線画像診断装置、及び画像処理方法を提供することが可能となる。
第一実施形態に係るX線画像診断装置の構成を示す概略図 第一実施形態の主な処理の流れを示すフローチャート 図2のステップS3内の処理の流れを示すフローチャート 判定手段24およびパラメータ算出手段23にて類似性閾値Pを算出するために用いられるテーブル(画素値と類似性閾値Pの関係) パラメータ算出手段23にてフィルタリングを行うマスクサイズを算出するために用いられるテーブル(画素値とフィルタマスクサイズNの関係) 着目画素と類似した画素が連続的に幾つ存在するかを探索する方法を示した例 本発明の基本処理の一例を説明する図 第二実施形態の処理の流れを示すフローチャート 着目画素近傍に着目画素と類似した画素が幾つあるか探索する際、高速化するために用いられるテーブルを示す模式図
 以下、本発明を適用する実施形態について説明する。以下、本発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付し、その繰り返しの説明は省略する。尚、ここでいうX線画像診断装置は透視及び撮影の両方が可能、またはどちらか一方が可能な装置である。
  <<第一実施形態>>
 図1は、第一実施形態に係るX線画像診断装置1の構成を示した概略図である。
 図1のX線画像診断装置1は、X線を被検体30に照射するX線発生手段11と、X線発生手段11と対向して配置され、被検体30を透過後のX線強度分布をディジタル画像データとして出力するX線平面検出器12と、ノイズ低減処理に際し必要となるパラメータを入力・設定するパラメータ入力手段13と、X線平面検出器12より出力されたディジタル画像データを処理するディジタル画像処理装置14と、ディジタル画像処理装置14にて処理されたディジタル画像データを、ディジタル/アナログ変換するD/A変換器15と、アナログ変換された画像データを表示するLCDまたはCRT等の表示デバイスから成る画像表示手段16と、を有している。
 ディジタル画像処理装置14は、図示を省略するものの、CPUやMPUからなる演算・制御装置と、メモリやハードディスクからなる記憶装置と、を備えたハードウェアにより構成され、本実施形態に係る画像処理プログラムが格納されている。
 画像処理プログラムとディジタル画像処理装置14を構成するハードウェアとが協動して動作することにより、X線平面検出器12より出力されたディジタル画像データを上記記憶装置に記憶する処理を行う画像記憶手段21と、記憶されたディジタル画像データをラスタ走査して読み込む画像読込手段22と、画像処理に必要なパラメータを算出するパラメータ算出手段23と、判定対象の画素の画素値と算出されたパラメータ(例えば類似性閾値)とに基づいて、判定対象の画素が類似性閾値に対応する画素値と類似するか否かを判定する第一判定手段24aと、第一判定手段24aの判定結果に基づき、判定対象の画素がノイズ成分か否かを判定する第二判定手段24bとを備えた判定手段24と、判定手段24によりノイズ成分であると判定された着目画素に対しノイズ低減処理を行うノイズ成分用補正手段25aと、ノイズ成分でないと判定された画素に対して画像処理を行う画像信号成分用補正手段25bとを備えた画像補正手段25と、補正された医用画像を表示する表示制御手段26と、を構成し、画像処理プログラムの機能が実現される。本実施形態では、ノイズ成分用補正手段25aと画像信号成分用補正手段25bはともに平均処理を行う。
 画像補正手段25は、ノイズ成分用補正手段25aと画像信号成分用補正手段25bとを備える代わりに、一つの処理を行う手段、例えば平均処理を行う平均処理手段を備え、この平均処理手段がノイズ成分と画像信号成分との両方に対して、信号成分の種類に応じて処理内容を変えながら平均処理を行うように構成してもよい。また、本実施形態では、判定手段24は、第一判定手段24aと第二判定手段24bとを備えて構成されるが、判定手段24は、類似性閾値を用いた類似性の判定とノイズ成分か否かの判定とをともに行う一つの手段(例えば一つのソフトウェアモジュール)として構成してもよい。
 次に、本発明に係るX線画像診断装置1の動作・原理を図2乃至図7に基づいて説明する。図2は、本実施形態の処理の流れを示すフローチャートである。図3は、図2のステップS3内の処理の流れを示すフローチャートである。図4は、判定手段24およびパラメータ算出手段23にて類似性閾値Pを算出するために用いられるテーブル(画素値と類似性閾値Pの関係)である。図5は、パラメータ算出手段23にてフィルタリングを行うマスクサイズを算出するために用いられるテーブル(画素値とフィルタマスクサイズNの関係)である。図6は、着目画素と類似した画素が連続的に幾つ存在するかを探索する方法を示した例である。図7は、本発明の基本処理の一例を説明する図である。以下図2のフローチャートを基に説明するが、図2のフローチャートのうち実線で表示したステップS1からS4は透視(動画)と撮影(静止画)とにおいて共通する処理であり、点線で表示したステップS5とS6とは、透視(動画)に適用される処理である。
 (ステップS1)
 画像処理パラメータの設定を行う(S1)。操作者は、パラメータ入力手段13を操作して、図4に示す画素値と類似性閾値Pとの関係をテーブル化したLook Up Table(以下、「LUT」と略記)1と、図5に示すような画素値とフィルタマスクサイズNの関係をテーブル化したLUT2、及び着目画素がノイズ成分か否かを判定するために用いる画像信号判定閾値Qをプリセットする(S1)。
 上記「類似性閾値」とは、X線画像診断装置1に備えられたX線平面検出器12のS/N特性に基づいて、画素値毎に許容することが出来る画素値の変動幅を定めたパラメータである。
 また、「画像信号判定閾値」とは、着目画素近傍に着目画素と類似した画素が連続して幾つ以上存在すれば着目画素が画像信号成分と判断するかを定めたパラメータであり、類似した画素が連続的に幾つ存在するかを探索する範囲、また画像の有する特徴(例えば、テクスチャ)によって様々であるため、探索する範囲と併せて入力・設定する。着目画素近傍に連続して存在する着目画素と類似した画素の数が、画像信号成分判定閾値未満であればノイズと判定し、以上であれば画像信号成分であると判定される。
 本ステップで医用画像取得に先立ちプリセットする上記2つのLUTは、X線平面検出器12の有するS/N特性に応じて個々に定められる。X線平面検出器12は個々でS/N特性、及び画素のビット数(データ長)も異なるため、X線平面検出器12毎に定める必要がある。一般的にS/N特性としては、X線平面検出器12に入射する線量が多くなるに伴いS/N比は高くなるが、低線量域で生じるノイズレベルと高線量域で生じるノイズレベルを絶対的に比較すると、後者の方が大きい。
 X線平面検出器12に入射する線量が多くなるに伴いS/N比が高くなるのは、入射する線量が多くなるに伴って、それに対応する信号レベルも大きくなるため、相対的にみた場合にはノイズレベルが小さくなるためである。ノイズレベルの変動に起因した信号レベルの変動を後段の平均処理にて抑制することが最終的な目的であるため、平均処理に用いる画素を決定する際に用いられる類似性閾値Pと信号レベル(画素値に相当)の関係を示すLUT1は、上記S/N特性を考慮すると、図4のように画素値が大きくなるにつれて類似性閾値Pも増加する関係にするのが適当である。
 一方、信号レベルに依存することなく一定のS/N比を得るために施す平均処理においては、S/N比が低い低信号レベルのフィルタマスクのサイズを大きくし、S/N比が高い高信号レベルのそれは小さくするとよい。よって、フィルタマスクのサイズと信号レベルの関係を示すLUT2は、図5のように画素値が大きくなるにつれて、フィルタマスクのサイズNが小さくなる関係にするのが適当である。
 (ステップS2)
 X線撮像が行われる(S2)。X線発生手段11から照射されたX線は被検体30を透過後、X線平面検出器12よりディジタル画像データとして出力され、画像記憶手段21により記憶・保存される。
 (ステップS3)
 ノイズ低減処理が行われる(S3)。本実施形態では、ノイズ成分及び画像信号成分に対し、各成分に応じた処理内容による平均処理を用いて、ノイズ低減処理が施される。画像記憶手段21に記憶・保存されたディジタル画像データは、ディジタル画像処理装置14に内包されたパラメータ算出手段23、判定手段24、画像補正手段25にてノイズ低減処理(本ステップでは平均処理を用いる)が施される。ディジタル画像処理装置14では図3に示す以下の手順にて画像処理が行われる。
 (ステップS301)
 画像読込手段22は、画像記憶手段21に記憶・保存されたディジタル画像データをラスタ走査して読み込む(S301)。
 (ステップS302)
 パラメータ算出手段23は、ステップS1においてプリセットされたLUT1を参照し、着目画素の画素値Iに対応する類似性閾値Piを算出する(S302)。
 (ステップS303)
 判定手段24、より詳しくは、第一判定手段24aは、ステップS302にて算出された類似性閾値Piに基づいて、着目画素近傍に着目画素と類似した画素が連続的に幾つ存在するかを探索する。その時、着目画素の画素値Iから着目画素近傍に位置する近傍画素の画素値I’を引いた値の絶対値が類似性閾値Pi未満、すなわち、下記式(1)を満たす場合、着目画素と類似性がある画素と判定する。一方、下記式(1)を満たさない場合、すなわち、下記式(2)を満たす場合、着目画素と類似性がない画素と判定する(S303)。
   ABS(I-I’)<Pi・・・(1)
   ABS(I-I’)≧Pi・・・(2)
 但し、Iを着目画素の画素値、I’を近傍画素の画素値、ABS()を引数の絶対値を返す関数とする。
 本ステップにおける探索範囲内に連続的に幾つ類似した画素が存在するかを探索する方法について、図6を用いて説明する。図6は、着目画素Aを中心とする5×5の探索用マスク内において、着目画素Aと類似した画素が連続的に幾つ存在するかを探索する方法について説明するための図である。本例では探索用マスクのサイズを5×5としたが、探索用マスクのサイズについては、探索用マスクサイズをMとした場合、M2<Qを満たさない範囲で任意に設定可能とする。
 まず、着目画素Aを取り囲むループ(Loop1)計8画素の中に上記式(1)を満たす画素が存在するか探索する。仮にLoop1の中に式(1)を満たす画素が1つも存在しない場合は、その時点で探索を終了し、ステップS304へ進む。
 次に、仮にLoop1の中で式(1)を満たす画素が存在した場合、その画素と隣接している外周の各画素に着目し、式(1)に基づき探索を続ける。図6を用いて説明すると、画素Pが着目画素Aと類似している、すなわち式(1)を満たすと判定された場合、画素Pと隣接している外周の画素P1~P5に関して式(1)を満たすか否かの判定を行う。この処理をLoop1の中で上記式(1)を満たす全ての画素について順次繰り返し、探索用マスク内における類似した画素数を算出する。
 (ステップS304)
 判定手段24、より詳しくは第二判定手段24bは、ステップS303にて算出された画素数がステップS1にてプリセットされた画像信号判定閾値Q以上であれば、着目画素Aを画像信号成分と判定し、それを満たさない場合、すなわち、類似した画素と判定された画素数がQ未満であれば、着目画素Aをノイズ成分と判定する。画像信号成分と判定された場合、ステップS305へ進み、ノイズ成分と判定された場合、ステップS306へ進む(S304)。
 (ステップS305)
 パラメータ算出手段23は、ステップS1にてプリセットされたLUT2に基づいて、着目画素の画素値に対応するフィルタマスクのサイズNiを算出する。次に、第一判定手段24aは、ステップS302にて算出された類似性閾値Piを用い、上記パラメータ算出手段23にて算出された着目画素Aを中心とするサイズNi×Niのフィルタマスク内の各画素が、着目画素Aに類似するか否かの判定を行う。そして、画像補正手段25(より詳しくは画像信号成分用補正手段25b)は、類似すると判定された画素及び着目画素Aを用いて平均処理、即ち、類似すると判定された画素の画素値と着目画素Aの画素値との平均値を算出し、その結果を着目画素Aの画素値として出力する。(S305)。
 (ステップS306)
 パラメータ算出手段23は、ステップS303での探索用マスク内の画素の画素値の中央値(以下「メディアン」という)を求め、ステップS1にてプリセットされたLUT1及びLUT2に基づいて、メディアンに対応する類似性閾値Pm及びフィルタマスクのサイズNmを算出する。
 次に、第一判定手段24aは、メディアンに対応する類似性閾値Pmを用い、上記パラメータ算出手段23にて算出された着目画素Aを中心とするサイズNm×Nmのフィルタマスク内の各画素が、メディアンに相当する画素に類似するか否かの判定を行う。そして、画像補正手段25(より詳しくはノイズ成分用補正手段25a)は、類似すると判定された画素及びメディアンに相当する画素を用いて平均処理、即ち、類似すると判定された画素の画素値とメディアンとの平均値を算出し、その結果を着目画素Aの画素値として出力する(S306)。
 (ステップS4)
 表示制御手段26は、D/A変換器15にディジタル画像処理装置14にて処理されたディジタル画像データを出力する。D/A変換器15は、それをアナログ信号へ変換し、画像表示手段16が処理された画像を表示する(S4)。
 X線撮像が透視の場合は、ステップS301で1番目のフレーム(以下「第1フレーム」という)を読み込み、第1フレームに対してステップS301からS4までの処理を行う。続いて、画像読込手段22が最終フレームか否かを判定(S5)し、Yesであれば処理を終了し、Noであれば読込対象となる画像のフレーム番号を更新する(S6)。そして、更新されたフレーム番号のフレームに対し、ステップS3からの処理を順次繰り返すことにより、透視により得られた動画に対しても本実施形態に係る画像処理が施された画像を表示させることができる。
 以下、図7を用いてステップS3のノイズ低減処理効果を説明する。なお、図7における図中の数字は、画素値である。
 図7は、探索範囲およびマスクサイズが3×3の場合における処理結果の一例を示す図である。図7(a)は、マスク内における画像信号レベル(画像信号Aとする)が同等の場合、図7(b)は、マスク内の着目画素および着目画素の近傍にインパルス性ノイズが発生している場合(画像信号Aにインパルス性ノイズが発生しているとする)、図7(c)は、マスク内に異なる画像信号レベル(前述の画像信号Aとそれとは異なる画像信号レベルである画像信号B)の境界が含まれる場合(画像信号Aと画像信号Bのエッジ部に相当する)、を示し、図7(d)~(f)は、上記3つの場合の処理結果をそれぞれ示している。尚、本一例における画像信号判定閾値Qは3とし、図7中において同じ信号レベルで区別(画像信号Aまたは画像信号Bにて区分)されている画素は、X線平面検出器12のS/N特性に基づいた場合、ある一定の変動幅にあり、同じ信号レベルと判断できるものとする。以下それぞれの場合について説明する。
 図7(a)は、平坦な部分であるため、マスク内の着目画素以外全ての8画素は着目画素と類似性があり、ステップS304における判定条件を満たすためステップS305へ進み、マスク内全ての画素を用いた平均処理が施される。その結果、着目画素の処理結果は、(80+85+75+82+84+80+84+80+78)/9=80(少数切捨て)となる。これにより平坦な部分の平滑化がなされる。
 図7(b)は、平坦な部分にインパルス性のノイズが発生した場合の一例であり、マスク内の着目画素およびその近傍にインパルス性のノイズが発生している。本実施形態に係る処理を適用した場合、着目画素と類似した画素は近傍において1画素のため、ステップS304における判定条件を満たさずステップS306へ進み、マスク内のメディアンを求め、メディアンとそれに類似した画素を用いた平均処理が施される。尚、ここでも類似した画素の判定はX線平面検出器12のS/N特性に基づく。その結果、着目画素の処理結果は、(82+80+85+75+80+78+80)/7=80となる。これによりインパルス性ノイズの影響を受けることなく、平坦な部分の平滑化を行うことが可能となる。
 図7(c)は、マスク内に異なる信号レベルの境界(エッジ部)が含まれる場合の一例であり、この境界(エッジ部)をボケさせない処理が求められる。本実施例に特許文献1の方法を適用した場合、必ず着目画素を中心とした一方向においてスムージング処理をするため、ボケが生じてしまう。具体的に図7(c)を用いて説明すると、着目画素は画像信号Aに属するにも関わらず、水平、垂直、斜め、どの方向を選択しても画像信号Bを含んでしまうため、画像信号Bを含んだ形でのスムージング処理となってしまい、その結果としてボケが生じてしまう。一方、本処理を適用した場合、図7(f)に示すように着目画素と類似した画素は近傍において4画素のため、ステップS304における判定条件を満たすためステップS305へ進み、着目画素とその4画素を用いた平均処理が施される。その結果、着目画素の処理結果は、(80+82+84+80+84)/5=82となる。これにより画像中における異なる信号レベルの境界であってもボケを生じさせることなく平滑化を行うことが可能となる。
 本実施形態にかかるX線画像診断装置の効果について説明する。一般に、X線画像診断装置の医用画像においては、支配的であるX線の量子ノイズに加え、装置の回路ノイズ等も微弱ながら画像に影響を及ぼす。量子ノイズはポアソン分布の確率過程に従い、回路ノイズはホワイトノイズ特性に近い特性を有する。さらにX線平面検出器には欠陥画素(ディフェクト)に代表される固定パターンノイズも存在するため、診断に適した画質を提供するためには画像信号成分と上記ノイズ成分を取捨選択しながらノイズ低減処理を行うことが必要不可欠である。これに対し、本実施の形態によれば、画像信号成分かノイズ成分かの判定を行い、その判定結果に基づいて処理方法を変更しているため、画像信号のエッジ部をボケさせることなくノイズ低減効果を得ることができる。
 また、仮にインパルス性のノイズを有するディジタル画像データに本処理を適用する場合、1つのインパルス性のノイズがどの程度の大きさを有するか、すなわち何画素占有しているかを把握し、その画素数以上の値をQに設定すればインパルス性のノイズも除去可能である。
 更に、本実施形態に係る画像処理装置においては、時間軸方向の演算処理がないため、透視像の動きのある部分においても残像を生じることがなく、一定の画質を得ることができる画像処理装置、X線画像診断装置、及び画像処理方法を提供することが可能となる。
 <<第二実施形態>>
 第二実施形態は、基本的なノイズ低減処理のアルゴリズムは第一実施形態と同様であるが、ステップS302、S303およびS304を変更し、画像処理を高速化する方法の一例について説明する。以下図8及び図9に基づいて第二実施形態を説明する。図8は、第二実施形態の処理の流れを示すフローチャート、図9は、着目画素近傍に着目画素と類似した画素が幾つあるか探索する際、高速化するために用いられるテーブルを示す模式図である。
 (ステップS302’)
 パラメータ算出手段23は、ステップS302’にて、探索用マスク内の着目画素Aについて算出された類似性閾値Pと着目画素Aの画素値Iとの2つの値から図9のようなLUT3(横軸が画素値(入力値)、縦軸(W)が出力値を示す)を作成する。このLUT3は、入力を近傍画素の画素値I’とし、下式(3)を満たす場合、出力値1.0を出力、満たさない場合、出力値0.0を出力する形状となっている(S302’)。
   I-P<I’<I+P・・・(3)
 (ステップS303’)
 判定手段24、より詳しくは、第一判定手段24aは、探索用マスク内に含まれる近傍画素の画素値I’を順次LUT3に入力し、その出力値Wを加算していく。ここで、マスク内に含まれる近傍画素の全ての出力値Wを加算したものをWTotalと定義する。探索方法については第一実施形態と同様である。
 まず、着目画素Aを取り囲むループ(Loop1)計8画素をLUT3に通した時点でWTotalが幾つか調べる。仮にLoop1においてWTotal=0、すなわち着目画素Aと類似した画素が1つも存在しない場合は、その時点で探索を終了し、ステップS304’へ進む。
 次に、仮にLoop1の中でW=1.0を出力した画素が存在した場合、その画素と隣接している外周の各画素に着目し、それらの画素をLUT3に通す。これを探索用マスク内において順次繰り返し、探索用マスク内でのWTotalを算出する(S303’)。
 (ステップS304’)
 判定手段24、より詳しくは第二判定手段24bは、ステップS301にてプリセットされた画像信号判定閾値Qと、ステップS303’にて算出したWTotalとを比較し、下式(4)を満たす場合は画像信号成分と判定し、満たさない場合はノイズ成分と判定し、ステップS305またはステップS306へ進む(S304’)。
 WTotal≧Q・・・(4)
 以上、第二実施形態では、図3におけるステップS303の探索範囲内の各近傍画素に対して行う判定を、LUT3に通して行うことにより、第一実施形態と同様の効果をより高速な処理によって得ることができる。
 本実施形態に係るX線画像診断装置は、その要旨を逸脱しない範囲で変更が可能である。例えば、上記第一、第二実施形態では、着目画素がノイズ成分でないときは画像信号成分であると判定してノイズ成分と画像信号成分とに区別し、ノイズ成分及び画像信号成分に対して処理内容を変えつつ、両方に平均処理を行ったが、着目画素がノイズ成分であるか否かだけを判定し、ノイズ成分に対してノイズ低減処理を施し、ノイズ成分でないと判定された場合には画像処理を施さないようにしたり、または画像信号成分に対して施される処理、例えば他の方法による平均処理やエッジ強調処理を施したりするように構成してもよい。また、画像信号成分に対する画像処理や、ノイズ低減処理の内容は、上記実施形態の処理内容に限定されない。
 更に、上記実施形態では、X線画像診断装置に備えられたX線検出器のS/N特性に基づき、画素値に対して設定され、画素値の類似性を判定する類似性閾値が用いられたが、類似性閾値は、X線平面検出器のS/N特性以外の要因による画素値の変動に基づいて規定されてもよい。これにより様々な変動原因に対応したノイズ判定やノイズ低減処理等の補正を行うことができる。
 1 X線画像診断装置、11 X線発生手段、12 X線平面検出器、13 パラメータ入力手段、14 ディジタル画像処理装置、15 ディジタル/アナログ変換器、16 画像表示手段、21 画像記憶手段、22 画像読込手段、23 パラメータ算出手段、24 判定手段、25 画像補正手段、26 表示制御手段

Claims (12)

  1.  X線画像診断装置を用いて被検体を透視、または撮影して得られた医用画像を読み込む画像読込手段と、
     前記医用画像の画素毎に、画素値に対して設定され、当該画素値との類似性を判定するための類似性閾値に基づき、ノイズ成分か否かを判定する判定手段と、
     前記判定手段によりノイズ成分であると判定された画素に対しノイズ低減処理を行うノイズ成分用補正手段と、
     前記ノイズ成分用補正手段により補正された前記医用画像を表示する表示手段と、
     を備えることを特徴とする画像処理装置。
  2.  前記類似性閾値は、前記X線画像診断装置に備えられたX線検出器のS/N特性に基づき予め定められる、
     ことを特徴とする請求項1に記載の画像処理装置。
  3.  前記画素値と前記類似性閾値とを対応付けた第一データを有し、前記第一データを参照して、判定対象となる画素の画素値に対応する前記類似性閾値を算出するパラメータ算出手段を更に備え、
     前記判定手段は、前記算出された類似性閾値を用いてノイズ成分の判定を行う、
     ことを特徴とする請求項1に記載の画像処理装置。
  4.  前記判定手段は、
     判定対象となる画素の画素値と前記類似性閾値とに基づいて、前記判定対象となる画素が前記類似性閾値に対応する画素値に類似するか否かを判定する第一判定手段と、
     前記第一判定手段の結果に基づいて、前記判定対象となる画素がノイズ成分か否かを判定する第二判定手段と、により構成される、
     ことを特徴とする請求項1に記載の画像処理装置。
  5.  前記第一判定手段は、前記判定対象となる画素を中心とする任意のサイズの探索範囲内の画素の画素値と前記判定対象となる画素の画素値との差分の絶対値と、前記類似性閾値と、を比較して、前記判定対象となる画素に類似するか否かを判定し、
     前記第二判定手段は、前記探索範囲内に存在する前記判定対象となる画素に類似する画素数と、前記探索範囲のサイズに対応して定められた画像信号判定閾値と、を比較して前記判定対象となる画素がノイズ成分か否かの判定を行う、
     ことを特徴とする請求項4に記載の画像処理装置。
  6.  前記ノイズ成分用補正手段は、複数の画素の画素値の中央値に基づいて平均処理を行うことを特徴とする請求項1に記載の画像処理装置。
  7.  前記第二判定手段によりノイズ成分であると判定された場合に、
     前記パラメータ算出手段は、前記探索範囲内にある画素の画素値の中央値を算出し、前記第一データを参照して前記中央値に対応する前記類似性閾値を算出するとともに、画素値に対し、前記判定対象の画素に施す平均処理に用いるフィルタマスクのサイズを画素値毎のS/N比のばらつきを抑制させるように関係づけた第二データを参照して、前記中央値に対応するサイズを算出し、
     前記第一判定手段は、前記中央値に対応する類似性閾値に基づいて、前記判定対象の画素を中心とし、前記算出された中央値に対応するサイズのフィルタマスク内に存在する画素毎に前記中央値に該当する画素に類似するか否かを判定し、
     前記ノイズ成分用補正手段は、前記中央値に該当する画素に類似すると判定された画素と、前記中央値に該当する画素と、に基づいて前記平均処理を行い、その処理結果を前記判定対象の画素の画素値として出力する、
     ことを特徴とする請求項4に記載の画像処理装置。
  8.  前記判定手段によりノイズ成分でないと判定された場合に、
    前記類似性閾値を用いて前記判定対象の画素に類似すると判定された画素と、前記判定対象の画素と、に基づいて画像処理を行う画像信号成分用補正手段を更に備える、
     ことを特徴とする請求項1に記載の画像処理装置。
  9.  前記パラメータ算出手段は、画素値に対し、前記判定対象の画素に施す平均処理に用いるフィルタマスクのサイズを画素値毎のS/N比のばらつきを抑制させるように関係づけた第二データを参照して、前記判定対象の画素の画素値に対応するサイズを算出し、
     前記第一判定手段は、前記判定対象の画素の画素値に対応する類似性閾値に基づいて、前記判定対象の画素を中心とし、前記算出された判定対象の画素の画素値に対応するサイズのフィルタマスク内に存在する画素毎に前記判定対象となる画素に類似するか否かを判定し、
     前記画像処理装置は、前記判定対象の画素に類似すると判定された画素と、前記判定対象の画素と、に基づいて前記平均処理を行い、その処理結果を前記判定対象の画素の画素値として出力する画像信号成分用補正手段を更に備える、
     ことを特徴とする請求項4に記載の画像処理装置。
  10.  前記パラメータ算出手段は、前記判定対象の画素の画素値とその画素値に対応する前記類似性閾値とに基づいて、前記判定対象の画素の画素値から該画素値に対応する前記類似性閾値を減算した値よりも大きく、かつ、前記判定対象の画素の画素値に該画素値に対応する前記類似性閾値を加算した値よりも小さい画素値が入力された場合に出力値1.0を出力するとともに、前記判定対象の画素の画素値から該画素値に対応する前記類似性閾値を減算した値以下の画素値、又は前記判定対象の画素の画素値に該画素値に対応する前記類似性閾値を加算した値以上の画素値が入力された場合に出力値0.0を出力するルックアップテーブルを生成し、
     前記第一判定手段は、前記ルックアップテーブルに前記探索範囲内の全ての画素の画素値を入力して得られた出力値の合計値を算出し、前記第二判定手段は、前記合計値と前記画像信号判定閾値とを比較して前記判定対象の画素がノイズ成分か否かの判定を行う、
     ことを特徴とする請求項4に記載の画像処理装置。
  11.  請求項1に記載の画像処理装置を備えることを特徴とするX線画像診断装置。
  12.  X線画像診断装置を用いて被検体を透視、または撮影して得られた医用画像を読み込むステップと、
     前記医用画像の画素毎に、画素値に対して設定され、当該画素値との類似性を判定するための類似性閾値に基づき、ノイズ成分か否かを判定するステップと、
     前記判定によりノイズ成分であると判定された画素に対しノイズ低減処理を行うステップと、
     前記ノイズ低減処理がされた医用画像を表示するステップと、
     をコンピュータに実行させることを特徴とする画像処理方法。
PCT/JP2010/060179 2009-06-26 2010-06-16 画像処理装置、x線画像診断装置、及び画像処理方法 WO2010150687A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011519805A JP5674659B2 (ja) 2009-06-26 2010-06-16 画像処理装置、x線画像診断装置
CN201080028072.7A CN102802530B (zh) 2009-06-26 2010-06-16 图像处理装置、x线图像诊断装置及图像处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009152552 2009-06-26
JP2009-152552 2009-06-26

Publications (1)

Publication Number Publication Date
WO2010150687A1 true WO2010150687A1 (ja) 2010-12-29

Family

ID=43386457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060179 WO2010150687A1 (ja) 2009-06-26 2010-06-16 画像処理装置、x線画像診断装置、及び画像処理方法

Country Status (3)

Country Link
JP (1) JP5674659B2 (ja)
CN (1) CN102802530B (ja)
WO (1) WO2010150687A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042352A1 (ja) * 2011-09-22 2013-03-28 株式会社島津製作所 画像処理装置およびそれを備えた放射線撮影装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103177425B (zh) * 2013-01-26 2015-07-15 西安电子科技大学 切伦科夫荧光成像中γ射线的去除方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11275579A (ja) * 1998-03-23 1999-10-08 Mitsubishi Electric Corp 画像符号化方法、画像復号化方法、画像符号化装置および画像復号化装置
JP2004503030A (ja) * 2000-07-12 2004-01-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ディジタル画像欠陥補正及び雑音フィルタリングのための方法及び装置
JP2005151385A (ja) * 2003-11-19 2005-06-09 Sony Corp 画像処理装置および画像処理方法、プログラム、並びに記録媒体
JP2007244675A (ja) * 2006-03-16 2007-09-27 Ge Medical Systems Global Technology Co Llc 放射線撮影装置および画像処理装置
JP2008124976A (ja) * 2006-11-15 2008-05-29 Fujitsu Ltd 画像処理装置及び画像処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11275579A (ja) * 1998-03-23 1999-10-08 Mitsubishi Electric Corp 画像符号化方法、画像復号化方法、画像符号化装置および画像復号化装置
JP2004503030A (ja) * 2000-07-12 2004-01-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ディジタル画像欠陥補正及び雑音フィルタリングのための方法及び装置
JP2005151385A (ja) * 2003-11-19 2005-06-09 Sony Corp 画像処理装置および画像処理方法、プログラム、並びに記録媒体
JP2007244675A (ja) * 2006-03-16 2007-09-27 Ge Medical Systems Global Technology Co Llc 放射線撮影装置および画像処理装置
JP2008124976A (ja) * 2006-11-15 2008-05-29 Fujitsu Ltd 画像処理装置及び画像処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042352A1 (ja) * 2011-09-22 2013-03-28 株式会社島津製作所 画像処理装置およびそれを備えた放射線撮影装置
CN103747735A (zh) * 2011-09-22 2014-04-23 株式会社岛津制作所 图像处理装置以及具备该图像处理装置的放射线摄影装置
JP5641148B2 (ja) * 2011-09-22 2014-12-17 株式会社島津製作所 画像処理装置およびそれを備えた放射線撮影装置

Also Published As

Publication number Publication date
CN102802530B (zh) 2015-01-14
JP5674659B2 (ja) 2015-02-25
JPWO2010150687A1 (ja) 2012-12-10
CN102802530A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
US9311695B2 (en) Image processing method and radiographic apparatus using the same
JP6097588B2 (ja) 画像処理装置及び画像処理方法
JP5416377B2 (ja) 画像処理装置及びそれを備えたx線異物検出装置並びに画像処理方法
JP6041502B2 (ja) 画像処理装置および制御方法
JP4007775B2 (ja) X線診断装置
JP2007249436A (ja) 画像信号処理装置及び画像信号処理方法
JP2010232892A (ja) スレッショルド関数制御型ウェーブレットシュリンケージ雑音除去装置及びプログラム
US20130308841A1 (en) Method and apparatus for image processing
US8374417B2 (en) Image processing method and radiographic apparatus using the same
JP5674659B2 (ja) 画像処理装置、x線画像診断装置
WO2015002247A1 (ja) 放射線画像生成装置及び画像処理方法
JP6867563B1 (ja) 画像処理方法
JP6254813B2 (ja) X線画像処理装置および方法、並びにx線撮像装置、プログラム
JP5349204B2 (ja) 画像処理装置及び方法、並びに画像表示装置及び方法
JP5302838B2 (ja) 画像処理装置、画像処理方法、画像処理プログラム、および、x線画像撮影装置
WO2013150824A1 (ja) 画像処理装置及び方法、並びに画像処理プログラム
JP2010288040A (ja) 輪郭補正方法及び輪郭補正装置
JP6250988B2 (ja) 画像処理方法および装置
JP6126054B2 (ja) 画像信号処理方法及び画像信号処理装置
JP5247627B2 (ja) 画像処理装置及び方法、並びに画像表示装置
JP5350497B2 (ja) 動き検出装置、制御プログラム、および集積回路
JP2001086368A (ja) 画像処理装置
JP2006217057A (ja) 画質変換処理方法および画質変換処理装置
JP2014086957A (ja) 画像処理装置及び画像処理方法
JP2008146572A (ja) 画像処理方法及び画像処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080028072.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792005

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519805

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10792005

Country of ref document: EP

Kind code of ref document: A1