WO2010150687A1 - 画像処理装置、x線画像診断装置、及び画像処理方法 - Google Patents
画像処理装置、x線画像診断装置、及び画像処理方法 Download PDFInfo
- Publication number
- WO2010150687A1 WO2010150687A1 PCT/JP2010/060179 JP2010060179W WO2010150687A1 WO 2010150687 A1 WO2010150687 A1 WO 2010150687A1 JP 2010060179 W JP2010060179 W JP 2010060179W WO 2010150687 A1 WO2010150687 A1 WO 2010150687A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pixel
- value
- determined
- image
- determination
- Prior art date
Links
- 238000003672 processing method Methods 0.000 title claims description 8
- 238000003745 diagnosis Methods 0.000 title description 3
- 238000000034 method Methods 0.000 claims abstract description 50
- 238000004364 calculation method Methods 0.000 claims description 16
- 238000012935 Averaging Methods 0.000 claims description 13
- 238000002059 diagnostic imaging Methods 0.000 claims description 11
- 238000002594 fluoroscopy Methods 0.000 claims description 6
- 238000003384 imaging method Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000009499 grossing Methods 0.000 description 5
- 238000003702 image correction Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 238000011946 reduction process Methods 0.000 description 3
- 101100021996 Arabidopsis thaliana CYP97C1 gene Proteins 0.000 description 2
- 101100510695 Arabidopsis thaliana LUT2 gene Proteins 0.000 description 2
- 206010047571 Visual impairment Diseases 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005309 stochastic process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/30—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from X-rays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/80—Camera processing pipelines; Components thereof
- H04N23/81—Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10116—X-ray image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
Definitions
- the present invention relates to an image processing apparatus, an X-ray image diagnostic apparatus, and an image processing method, and in particular, digital X-ray image data does not depend on S / N characteristics of an X-ray detector, and an edge portion of an image signal is detected.
- the present invention relates to a technique for performing noise reduction processing without blurring.
- Patent Document 1 in the input X-ray image data, the variance value of the pixel value in each direction (horizontal, vertical, diagonal) around the pixel of interest is calculated, and the portion where the variance value of the pixel value is large is
- an X-ray image processing apparatus that performs smoothing and outputting in the direction of the smallest variance value.
- the dispersion value itself has a pixel value variation due to noise or a pixel value due to an edge of the image signal. For example, when noise fluctuation is larger than low contrast edge fluctuation, the edge portion of the image signal may be smoothed and the edge portion may be blurred. was there.
- An object of the present invention is to provide an apparatus and an image processing method.
- an image processing apparatus includes an image reading unit that reads a medical image obtained by seeing through or photographing a subject using an X-ray diagnostic imaging apparatus, For each pixel, it is set for the pixel value, and based on a similarity threshold for determining similarity to the pixel value, a determination unit that determines whether or not the noise component is a noise component by the determination unit And a noise component correction unit that performs a noise reduction process on the pixel determined to be, and a display unit that displays the medical image corrected by the noise component correction unit.
- an X-ray diagnostic imaging apparatus is characterized by including the above-described image processing apparatus.
- the image processing method includes a step of reading a medical image obtained by fluoroscopying or photographing a subject using an X-ray image diagnostic apparatus, and a pixel value for each pixel of the medical image. And determining whether or not it is a noise component based on a similarity threshold for determining similarity with the pixel value, and noise reduction processing for a pixel determined to be a noise component by the determination And a step of causing the computer to execute a step of displaying the medical image on which the noise reduction processing has been performed.
- noise reduction processing for the noise component is performed on the target pixel determined to be a noise component based on the determination result.
- a noise reduction effect can be obtained without blurring the edge portion.
- image signal component for a pixel of interest that is determined to be a component that is not a noise component (referred to as an “image signal component”), image processing for the image signal component, for example, average processing applied to the image signal component, or edge portion It is possible to perform edge enhancement processing or the like on the image, and image processing suitable for each characteristic can be performed on each of the noise component and the image signal component.
- an image processing apparatus since there is no calculation processing in the time axis direction, an image processing apparatus, an X-ray image diagnostic apparatus, and the like that do not generate an afterimage even in a portion where there is movement in a fluoroscopic image, And an image processing method can be provided.
- the X-ray diagnostic imaging apparatus referred to here is an apparatus capable of both fluoroscopy and radiographing, or one of them.
- FIG. 1 is a schematic diagram showing a configuration of an X-ray image diagnostic apparatus 1 according to the first embodiment.
- the X-ray diagnostic imaging apparatus 1 in FIG. 1 is arranged so as to face the X-ray generation means 11 that irradiates the subject 30 with X-rays, and the X-ray intensity distribution after being transmitted through the subject 30 X-ray flat panel detector 12 for outputting the image as digital image data, parameter input means 13 for inputting and setting parameters required for noise reduction processing, and processing the digital image data output from the X-ray flat panel detector 12
- the digital image processing device 14 is configured by hardware including an arithmetic / control device including a CPU and an MPU, and a storage device including a memory and a hard disk, and the image processing program according to the present embodiment. Is stored.
- Image storage that performs processing for storing the digital image data output from the X-ray flat panel detector 12 in the storage device by the cooperation of the image processing program and the hardware constituting the digital image processing device 14 Means 21; image reading means 22 for reading stored digital image data by raster scanning; parameter calculating means 23 for calculating parameters necessary for image processing; and pixel values of pixels to be determined and calculated parameters ( For example, based on the determination result of the first determination unit 24a and the first determination unit 24a that determines whether or not the pixel to be determined is similar to the pixel value corresponding to the similarity threshold, The determination unit 24 includes a second determination unit 24b that determines whether or not the pixel to be determined is a noise component, and the target pixel that is determined to be a noise component by the determination unit 24 is noisy.
- An image correction unit 25 including a noise component correction unit 25a that performs a reduction process, and an image signal component correction unit 25b that performs image processing on a pixel that is determined not to be a noise component, and a corrected medical image Display control means 26 for displaying, and the function of the image processing program is realized.
- both the noise component correction means 25a and the image signal component correction means 25b perform an averaging process.
- the image correction means 25 includes, in place of the noise component correction means 25a and the image signal component correction means 25b, a means for performing one process, for example, an average processing means for performing an average process. You may comprise so that an average process may be performed, changing a process content with respect to both the component and an image signal component according to the kind of signal component.
- the determination unit 24 includes a first determination unit 24a and a second determination unit 24b. However, the determination unit 24 determines similarity using a similarity threshold and a noise component. It may be configured as one means (for example, one software module) that performs the determination of whether or not.
- FIG. 2 is a flowchart showing a processing flow of the present embodiment.
- FIG. 3 is a flowchart showing the flow of processing in step S3 of FIG.
- FIG. 4 is a table (relationship between pixel value and similarity threshold P) used for calculating the similarity threshold P by the determination unit 24 and the parameter calculation unit 23.
- FIG. 5 is a table (relationship between pixel value and filter mask size N) used to calculate a mask size for filtering by the parameter calculation means 23.
- FIG. 6 shows an example of a method for searching for how many pixels similar to the target pixel are continuously present.
- steps S1 to S4 displayed by solid lines in the flowchart of FIG. 2 are processes common to fluoroscopy (moving images) and photographing (still images), and steps displayed by dotted lines S5 and S6 are processes applied to fluoroscopy (moving images).
- Step S1 Image processing parameters are set (S1).
- the operator operates the parameter input means 13 to look up table (hereinafter abbreviated as “LUT”) 1 in which the relationship between the pixel value and the similarity threshold P shown in FIG. 4 is tabulated, and shown in FIG.
- LUT look up table
- the LUT 2 that tabulates the relationship between the pixel value and the filter mask size N and the image signal determination threshold Q used to determine whether the pixel of interest is a noise component are preset (S1).
- the above “similarity threshold” defines the fluctuation range of the pixel value that can be allowed for each pixel value based on the S / N characteristic of the X-ray flat panel detector 12 provided in the X-ray diagnostic imaging apparatus 1. Parameters.
- the “image signal determination threshold” is a parameter that determines how many pixels similar to the pixel of interest exist in the vicinity of the pixel of interest, and the pixel of interest is determined to be an image signal component. Since there are various ranges depending on the number of images continuously detected and the characteristics (for example, texture) of the image, they are input and set together with the range to be searched. If the number of pixels similar to the target pixel continuously present in the vicinity of the target pixel is less than the image signal component determination threshold, it is determined as noise, and if it is more than that, it is determined as the image signal component.
- the above-mentioned two LUTs to be preset prior to medical image acquisition in this step are individually determined according to the S / N characteristics of the X-ray flat panel detector 12. Since each X-ray flat detector 12 has a different S / N characteristic and the number of bits (data length) of a pixel, it is necessary to determine for each X-ray flat detector 12.
- the S / N characteristic is that the S / N ratio increases as the dose incident on the X-ray flat panel detector 12 increases, but the noise level generated in the low dose range and the noise level generated in the high dose range are In absolute comparison, the latter is larger.
- the S / N ratio increases as the dose incident on the X-ray flat panel detector 12 increases.
- the signal level corresponding to the incident dose increases as the dose increases. This is because the noise level is small. Since the ultimate goal is to suppress signal level fluctuations due to noise level fluctuations in the subsequent averaging process, the similarity threshold P and the signal level used to determine the pixels used in the averaging process ( In consideration of the S / N characteristic, it is appropriate that the LUT 1 indicating the relationship (corresponding to the pixel value) has a relationship in which the similarity threshold P increases as the pixel value increases as shown in FIG.
- the size of the low signal level filter mask with a low S / N ratio is increased, and the S / N ratio is high.
- the signal level should be small. Therefore, it is appropriate that the LUT 2 indicating the relationship between the filter mask size and the signal level has a relationship in which the filter mask size N decreases as the pixel value increases as shown in FIG.
- Step S2 X-ray imaging is performed (S2).
- the X-rays emitted from the X-ray generation means 11 are transmitted as digital image data from the X-ray flat panel detector 12 after passing through the subject 30, and stored and stored in the image storage means 21.
- Step S3 Noise reduction processing is performed (S3).
- the noise reduction process is performed on the noise component and the image signal component using an average process based on the processing content corresponding to each component.
- Digital image data stored / saved in the image storage means 21 is subjected to noise reduction processing (average processing is used in this step) in the parameter calculation means 23, the determination means 24, and the image correction means 25 included in the digital image processing device 14. ) Is given.
- the digital image processing apparatus 14 performs image processing according to the following procedure shown in FIG.
- Step S301 The image reading means 22 reads the digital image data stored / saved in the image storage means 21 by raster scanning (S301).
- Step S302 The parameter calculation means 23 refers to the LUT1 preset in step S1, and calculates a similarity threshold value Pi corresponding to the pixel value I of the pixel of interest (S302).
- Step S303 The determining unit 24, more specifically, the first determining unit 24a searches for the number of pixels that are similar to the target pixel continuously in the vicinity of the target pixel based on the similarity threshold value Pi calculated in step S302. To do. At that time, when the absolute value of the value obtained by subtracting the pixel value I ′ of the neighboring pixel located in the vicinity of the target pixel from the pixel value I of the target pixel is less than the similarity threshold value Pi, that is, when the following formula (1) is satisfied, It is determined that the pixel has similarity. On the other hand, when the following formula (1) is not satisfied, that is, when the following formula (2) is satisfied, it is determined that the pixel has no similarity with the target pixel (S303).
- I is a function that returns the pixel value of the pixel of interest
- I ′ is the pixel value of the neighboring pixel
- ABS () is the function that returns the absolute value of the argument.
- FIG. 6 is a diagram for explaining a method for searching for the number of pixels similar to the target pixel A continuously in a 5 ⁇ 5 search mask centered on the target pixel A.
- the size of the search mask is 5 ⁇ 5, but the size of the search mask can be arbitrarily set within a range not satisfying M 2 ⁇ Q when the search mask size is M.
- Step S304 The determination unit 24, more specifically, the second determination unit 24b, determines that the pixel of interest A is an image signal component if the number of pixels calculated in step S303 is equal to or greater than the image signal determination threshold Q preset in step S1. If it is not satisfied, that is, if the number of pixels determined to be similar is less than Q, the target pixel A is determined as a noise component. If it is determined as an image signal component, the process proceeds to step S305. If it is determined as a noise component, the process proceeds to step S306 (S304).
- Step S305 The parameter calculation means 23 calculates the filter mask size Ni corresponding to the pixel value of the pixel of interest based on the LUT2 preset in step S1.
- the first determination unit 24a uses the similarity threshold value Pi calculated in step S302, and within the filter mask of size Ni ⁇ Ni centered on the pixel of interest A calculated by the parameter calculation unit 23. It is determined whether each pixel is similar to the target pixel A.
- the image correcting unit 25 (more specifically, the image signal component correcting unit 25b) performs an averaging process using the pixel determined to be similar and the target pixel A, that is, the pixel value of the pixel determined to be similar and the target pixel. An average value with the pixel value of A is calculated, and the result is output as the pixel value of the pixel of interest A. (S305).
- Step S306 The parameter calculation means 23 obtains the median value of the pixels in the search mask in step S303 (hereinafter referred to as “median”), and corresponds to the median based on the LUT1 and LUT2 preset in step S1.
- the similarity threshold Pm and the filter mask size Nm are calculated.
- the first determination unit 24a uses the similarity threshold Pm corresponding to the median, and each pixel in the filter mask of size Nm ⁇ Nm centered on the pixel of interest A calculated by the parameter calculation unit 23 is Then, it is determined whether or not it is similar to the pixel corresponding to the median. Then, the image correction unit 25 (more specifically, the noise component correction unit 25a) performs an averaging process using pixels determined to be similar and pixels corresponding to the median, that is, the pixel value and median of the pixel determined to be similar. And the result is output as the pixel value of the target pixel A (S306).
- Step S4 The display control means 26 outputs the digital image data processed by the digital image processing device 14 to the D / A converter 15.
- the D / A converter 15 converts it into an analog signal, and displays the image processed by the image display means 16 (S4).
- the first frame (hereinafter referred to as “first frame”) is read in step S301, and the processing from steps S301 to S4 is performed on the first frame. Subsequently, it is determined whether or not the image reading means 22 is the last frame (S5). If Yes, the process is terminated, and if No, the frame number of the image to be read is updated (S6). Then, by sequentially repeating the processing from step S3 on the frame with the updated frame number, it is possible to display an image that has been subjected to the image processing according to the present embodiment even for a moving image obtained by fluoroscopy. it can.
- step S3 the noise reduction processing effect of step S3 will be described with reference to FIG. Note that the numbers in FIG. 7 are pixel values.
- FIG. 7 is a diagram illustrating an example of a processing result when the search range and the mask size are 3 ⁇ 3.
- Fig. 7 (a) shows the case where the image signal level in the mask (image signal A) is equivalent.
- Fig. 7 (b) shows that the impulsive noise is generated in the vicinity of the target pixel in the mask and the target pixel.
- 7 (c) shows a different image signal level in the mask (an image signal having an image signal level different from that of the image signal A described above).
- B) is included (corresponding to the edge portions of the image signal A and the image signal B), and
- FIGS. 7D to 7F show the processing results in the above three cases, respectively.
- the image signal determination threshold Q in this example is 3, and the pixels that are distinguished at the same signal level in FIG.
- FIG. 7 (a) is a flat portion, all the eight pixels other than the target pixel in the mask are similar to the target pixel, and the process proceeds to step S305 to satisfy the determination condition in step S304.
- An averaging process using pixels is performed.
- the flat portion is smoothed.
- FIG. 7B is an example in the case where impulsive noise is generated in a flat portion, and impulsive noise is generated in the pixel of interest in the mask and in the vicinity thereof.
- the pixel similar to the target pixel is one pixel in the vicinity, so the determination condition in step S304 is not satisfied, the process proceeds to step S306, the median in the mask is obtained, and the median is similar to it.
- An averaging process using pixels is performed.
- similar pixel determination is also based on the S / N characteristics of the X-ray flat panel detector 12.
- FIG. 7 (c) is an example in the case where a boundary (edge part) of different signal levels is included in the mask, and processing that does not blur this boundary (edge part) is required.
- the smoothing process is always performed in one direction around the pixel of interest, resulting in blurring.
- the pixel of interest includes the image signal B regardless of the horizontal, vertical, diagonal, or any direction selected although it belongs to the image signal A.
- the smoothing process includes the signal B, resulting in blurring.
- the pixels similar to the target pixel are four pixels in the vicinity as shown in FIG.7 (f), so the process proceeds to step S305 to satisfy the determination condition in step S304.
- X-ray diagnostic imaging apparatus in addition to the dominant X-ray quantum noise, circuit noise of the apparatus, etc., influences the image although it is weak.
- Quantum noise follows a Poisson distribution stochastic process, and circuit noise has characteristics close to white noise characteristics.
- X-ray flat panel detectors also have fixed pattern noise typified by defective pixels (defects), so in order to provide image quality suitable for diagnosis, noise reduction is performed by selecting image signal components and the above noise components. Processing is essential.
- whether the image signal component or the noise component is determined, and the processing method is changed based on the determination result, the noise is not blurred in the edge portion of the image signal. A reduction effect can be obtained.
- an image processing apparatus since there is no time-axis direction arithmetic processing, an image processing apparatus capable of obtaining a constant image quality without causing an afterimage even in a portion where the fluoroscopic image moves.
- An X-ray diagnostic imaging apparatus and an image processing method can be provided.
- FIG. 8 is a flowchart showing the processing flow of the second embodiment
- FIG. 9 is a schematic diagram showing a table used for speeding up the search for the number of pixels similar to the target pixel in the vicinity of the target pixel. It is.
- Step S302 ′ the parameter calculation means 23 calculates LUT3 (horizontal) as shown in FIG. 9 from the two values of the similarity threshold P calculated for the target pixel A in the search mask and the pixel value I of the target pixel A.
- a pixel value (input value) is indicated on the axis and an output value is indicated on the vertical axis (W)).
- the LUT 3 is configured to output the output value 1.0 if the input is the pixel value I ′ of the neighboring pixel and satisfy the following expression (3), and output the output value 0.0 if not (S302 ′).
- the determination means 24, more specifically, the first determination means 24a sequentially inputs the pixel values I ′ of neighboring pixels included in the search mask to the LUT 3, and adds the output values W.
- the sum of all output values W of neighboring pixels included in the mask is defined as W Total .
- the search method is the same as in the first embodiment.
- Step S304 ' The determination unit 24, more specifically, the second determination unit 24b, compares the image signal determination threshold value Q preset in step S301 with the W Total calculated in step S303 ′, and satisfies the following expression (4) Is determined as an image signal component, and if not satisfied, it is determined as a noise component, and the process proceeds to step S305 or step S306 (S304 ′).
- the determination performed for each neighboring pixel in the search range in step S303 in FIG. 3 is performed through the LUT 3, so that the same effect as in the first embodiment can be achieved by faster processing. Obtainable.
- the X-ray diagnostic imaging apparatus can be changed without departing from the gist thereof.
- the target pixel is not a noise component
- the noise component and the image signal component are distinguished, and the noise component and the image signal component are processed.
- noise reduction processing is performed on the noise component, and it is determined that it is not a noise component.
- the contents of the image processing for the image signal component and the noise reduction processing are not limited to the processing contents of the above embodiment.
- a similarity threshold that is set for the pixel value based on the S / N characteristic of the X-ray detector provided in the X-ray image diagnostic apparatus and determines the similarity of the pixel value is used.
- the similarity threshold may be defined based on pixel value fluctuations caused by factors other than the S / N characteristics of the X-ray flat panel detector. Thereby, it is possible to perform correction such as noise determination and noise reduction processing corresponding to various causes of fluctuation.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
図1は、第一実施形態に係るX線画像診断装置1の構成を示した概略図である。
画像処理パラメータの設定を行う(S1)。操作者は、パラメータ入力手段13を操作して、図4に示す画素値と類似性閾値Pとの関係をテーブル化したLook Up Table(以下、「LUT」と略記)1と、図5に示すような画素値とフィルタマスクサイズNの関係をテーブル化したLUT2、及び着目画素がノイズ成分か否かを判定するために用いる画像信号判定閾値Qをプリセットする(S1)。
X線撮像が行われる(S2)。X線発生手段11から照射されたX線は被検体30を透過後、X線平面検出器12よりディジタル画像データとして出力され、画像記憶手段21により記憶・保存される。
ノイズ低減処理が行われる(S3)。本実施形態では、ノイズ成分及び画像信号成分に対し、各成分に応じた処理内容による平均処理を用いて、ノイズ低減処理が施される。画像記憶手段21に記憶・保存されたディジタル画像データは、ディジタル画像処理装置14に内包されたパラメータ算出手段23、判定手段24、画像補正手段25にてノイズ低減処理(本ステップでは平均処理を用いる)が施される。ディジタル画像処理装置14では図3に示す以下の手順にて画像処理が行われる。
画像読込手段22は、画像記憶手段21に記憶・保存されたディジタル画像データをラスタ走査して読み込む(S301)。
パラメータ算出手段23は、ステップS1においてプリセットされたLUT1を参照し、着目画素の画素値Iに対応する類似性閾値Piを算出する(S302)。
判定手段24、より詳しくは、第一判定手段24aは、ステップS302にて算出された類似性閾値Piに基づいて、着目画素近傍に着目画素と類似した画素が連続的に幾つ存在するかを探索する。その時、着目画素の画素値Iから着目画素近傍に位置する近傍画素の画素値I’を引いた値の絶対値が類似性閾値Pi未満、すなわち、下記式(1)を満たす場合、着目画素と類似性がある画素と判定する。一方、下記式(1)を満たさない場合、すなわち、下記式(2)を満たす場合、着目画素と類似性がない画素と判定する(S303)。
ABS(I-I’)≧Pi・・・(2)
但し、Iを着目画素の画素値、I’を近傍画素の画素値、ABS()を引数の絶対値を返す関数とする。
判定手段24、より詳しくは第二判定手段24bは、ステップS303にて算出された画素数がステップS1にてプリセットされた画像信号判定閾値Q以上であれば、着目画素Aを画像信号成分と判定し、それを満たさない場合、すなわち、類似した画素と判定された画素数がQ未満であれば、着目画素Aをノイズ成分と判定する。画像信号成分と判定された場合、ステップS305へ進み、ノイズ成分と判定された場合、ステップS306へ進む(S304)。
パラメータ算出手段23は、ステップS1にてプリセットされたLUT2に基づいて、着目画素の画素値に対応するフィルタマスクのサイズNiを算出する。次に、第一判定手段24aは、ステップS302にて算出された類似性閾値Piを用い、上記パラメータ算出手段23にて算出された着目画素Aを中心とするサイズNi×Niのフィルタマスク内の各画素が、着目画素Aに類似するか否かの判定を行う。そして、画像補正手段25(より詳しくは画像信号成分用補正手段25b)は、類似すると判定された画素及び着目画素Aを用いて平均処理、即ち、類似すると判定された画素の画素値と着目画素Aの画素値との平均値を算出し、その結果を着目画素Aの画素値として出力する。(S305)。
パラメータ算出手段23は、ステップS303での探索用マスク内の画素の画素値の中央値(以下「メディアン」という)を求め、ステップS1にてプリセットされたLUT1及びLUT2に基づいて、メディアンに対応する類似性閾値Pm及びフィルタマスクのサイズNmを算出する。
表示制御手段26は、D/A変換器15にディジタル画像処理装置14にて処理されたディジタル画像データを出力する。D/A変換器15は、それをアナログ信号へ変換し、画像表示手段16が処理された画像を表示する(S4)。
第二実施形態は、基本的なノイズ低減処理のアルゴリズムは第一実施形態と同様であるが、ステップS302、S303およびS304を変更し、画像処理を高速化する方法の一例について説明する。以下図8及び図9に基づいて第二実施形態を説明する。図8は、第二実施形態の処理の流れを示すフローチャート、図9は、着目画素近傍に着目画素と類似した画素が幾つあるか探索する際、高速化するために用いられるテーブルを示す模式図である。
パラメータ算出手段23は、ステップS302’にて、探索用マスク内の着目画素Aについて算出された類似性閾値Pと着目画素Aの画素値Iとの2つの値から図9のようなLUT3(横軸が画素値(入力値)、縦軸(W)が出力値を示す)を作成する。このLUT3は、入力を近傍画素の画素値I’とし、下式(3)を満たす場合、出力値1.0を出力、満たさない場合、出力値0.0を出力する形状となっている(S302’)。
(ステップS303’)
判定手段24、より詳しくは、第一判定手段24aは、探索用マスク内に含まれる近傍画素の画素値I’を順次LUT3に入力し、その出力値Wを加算していく。ここで、マスク内に含まれる近傍画素の全ての出力値Wを加算したものをWTotalと定義する。探索方法については第一実施形態と同様である。
判定手段24、より詳しくは第二判定手段24bは、ステップS301にてプリセットされた画像信号判定閾値Qと、ステップS303’にて算出したWTotalとを比較し、下式(4)を満たす場合は画像信号成分と判定し、満たさない場合はノイズ成分と判定し、ステップS305またはステップS306へ進む(S304’)。
以上、第二実施形態では、図3におけるステップS303の探索範囲内の各近傍画素に対して行う判定を、LUT3に通して行うことにより、第一実施形態と同様の効果をより高速な処理によって得ることができる。
Claims (12)
- X線画像診断装置を用いて被検体を透視、または撮影して得られた医用画像を読み込む画像読込手段と、
前記医用画像の画素毎に、画素値に対して設定され、当該画素値との類似性を判定するための類似性閾値に基づき、ノイズ成分か否かを判定する判定手段と、
前記判定手段によりノイズ成分であると判定された画素に対しノイズ低減処理を行うノイズ成分用補正手段と、
前記ノイズ成分用補正手段により補正された前記医用画像を表示する表示手段と、
を備えることを特徴とする画像処理装置。 - 前記類似性閾値は、前記X線画像診断装置に備えられたX線検出器のS/N特性に基づき予め定められる、
ことを特徴とする請求項1に記載の画像処理装置。 - 前記画素値と前記類似性閾値とを対応付けた第一データを有し、前記第一データを参照して、判定対象となる画素の画素値に対応する前記類似性閾値を算出するパラメータ算出手段を更に備え、
前記判定手段は、前記算出された類似性閾値を用いてノイズ成分の判定を行う、
ことを特徴とする請求項1に記載の画像処理装置。 - 前記判定手段は、
判定対象となる画素の画素値と前記類似性閾値とに基づいて、前記判定対象となる画素が前記類似性閾値に対応する画素値に類似するか否かを判定する第一判定手段と、
前記第一判定手段の結果に基づいて、前記判定対象となる画素がノイズ成分か否かを判定する第二判定手段と、により構成される、
ことを特徴とする請求項1に記載の画像処理装置。 - 前記第一判定手段は、前記判定対象となる画素を中心とする任意のサイズの探索範囲内の画素の画素値と前記判定対象となる画素の画素値との差分の絶対値と、前記類似性閾値と、を比較して、前記判定対象となる画素に類似するか否かを判定し、
前記第二判定手段は、前記探索範囲内に存在する前記判定対象となる画素に類似する画素数と、前記探索範囲のサイズに対応して定められた画像信号判定閾値と、を比較して前記判定対象となる画素がノイズ成分か否かの判定を行う、
ことを特徴とする請求項4に記載の画像処理装置。 - 前記ノイズ成分用補正手段は、複数の画素の画素値の中央値に基づいて平均処理を行うことを特徴とする請求項1に記載の画像処理装置。
- 前記第二判定手段によりノイズ成分であると判定された場合に、
前記パラメータ算出手段は、前記探索範囲内にある画素の画素値の中央値を算出し、前記第一データを参照して前記中央値に対応する前記類似性閾値を算出するとともに、画素値に対し、前記判定対象の画素に施す平均処理に用いるフィルタマスクのサイズを画素値毎のS/N比のばらつきを抑制させるように関係づけた第二データを参照して、前記中央値に対応するサイズを算出し、
前記第一判定手段は、前記中央値に対応する類似性閾値に基づいて、前記判定対象の画素を中心とし、前記算出された中央値に対応するサイズのフィルタマスク内に存在する画素毎に前記中央値に該当する画素に類似するか否かを判定し、
前記ノイズ成分用補正手段は、前記中央値に該当する画素に類似すると判定された画素と、前記中央値に該当する画素と、に基づいて前記平均処理を行い、その処理結果を前記判定対象の画素の画素値として出力する、
ことを特徴とする請求項4に記載の画像処理装置。 - 前記判定手段によりノイズ成分でないと判定された場合に、
前記類似性閾値を用いて前記判定対象の画素に類似すると判定された画素と、前記判定対象の画素と、に基づいて画像処理を行う画像信号成分用補正手段を更に備える、
ことを特徴とする請求項1に記載の画像処理装置。 - 前記パラメータ算出手段は、画素値に対し、前記判定対象の画素に施す平均処理に用いるフィルタマスクのサイズを画素値毎のS/N比のばらつきを抑制させるように関係づけた第二データを参照して、前記判定対象の画素の画素値に対応するサイズを算出し、
前記第一判定手段は、前記判定対象の画素の画素値に対応する類似性閾値に基づいて、前記判定対象の画素を中心とし、前記算出された判定対象の画素の画素値に対応するサイズのフィルタマスク内に存在する画素毎に前記判定対象となる画素に類似するか否かを判定し、
前記画像処理装置は、前記判定対象の画素に類似すると判定された画素と、前記判定対象の画素と、に基づいて前記平均処理を行い、その処理結果を前記判定対象の画素の画素値として出力する画像信号成分用補正手段を更に備える、
ことを特徴とする請求項4に記載の画像処理装置。 - 前記パラメータ算出手段は、前記判定対象の画素の画素値とその画素値に対応する前記類似性閾値とに基づいて、前記判定対象の画素の画素値から該画素値に対応する前記類似性閾値を減算した値よりも大きく、かつ、前記判定対象の画素の画素値に該画素値に対応する前記類似性閾値を加算した値よりも小さい画素値が入力された場合に出力値1.0を出力するとともに、前記判定対象の画素の画素値から該画素値に対応する前記類似性閾値を減算した値以下の画素値、又は前記判定対象の画素の画素値に該画素値に対応する前記類似性閾値を加算した値以上の画素値が入力された場合に出力値0.0を出力するルックアップテーブルを生成し、
前記第一判定手段は、前記ルックアップテーブルに前記探索範囲内の全ての画素の画素値を入力して得られた出力値の合計値を算出し、前記第二判定手段は、前記合計値と前記画像信号判定閾値とを比較して前記判定対象の画素がノイズ成分か否かの判定を行う、
ことを特徴とする請求項4に記載の画像処理装置。 - 請求項1に記載の画像処理装置を備えることを特徴とするX線画像診断装置。
- X線画像診断装置を用いて被検体を透視、または撮影して得られた医用画像を読み込むステップと、
前記医用画像の画素毎に、画素値に対して設定され、当該画素値との類似性を判定するための類似性閾値に基づき、ノイズ成分か否かを判定するステップと、
前記判定によりノイズ成分であると判定された画素に対しノイズ低減処理を行うステップと、
前記ノイズ低減処理がされた医用画像を表示するステップと、
をコンピュータに実行させることを特徴とする画像処理方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011519805A JP5674659B2 (ja) | 2009-06-26 | 2010-06-16 | 画像処理装置、x線画像診断装置 |
CN201080028072.7A CN102802530B (zh) | 2009-06-26 | 2010-06-16 | 图像处理装置、x线图像诊断装置及图像处理方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009152552 | 2009-06-26 | ||
JP2009-152552 | 2009-06-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010150687A1 true WO2010150687A1 (ja) | 2010-12-29 |
Family
ID=43386457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/060179 WO2010150687A1 (ja) | 2009-06-26 | 2010-06-16 | 画像処理装置、x線画像診断装置、及び画像処理方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5674659B2 (ja) |
CN (1) | CN102802530B (ja) |
WO (1) | WO2010150687A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013042352A1 (ja) * | 2011-09-22 | 2013-03-28 | 株式会社島津製作所 | 画像処理装置およびそれを備えた放射線撮影装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103177425B (zh) * | 2013-01-26 | 2015-07-15 | 西安电子科技大学 | 切伦科夫荧光成像中γ射线的去除方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11275579A (ja) * | 1998-03-23 | 1999-10-08 | Mitsubishi Electric Corp | 画像符号化方法、画像復号化方法、画像符号化装置および画像復号化装置 |
JP2004503030A (ja) * | 2000-07-12 | 2004-01-29 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | ディジタル画像欠陥補正及び雑音フィルタリングのための方法及び装置 |
JP2005151385A (ja) * | 2003-11-19 | 2005-06-09 | Sony Corp | 画像処理装置および画像処理方法、プログラム、並びに記録媒体 |
JP2007244675A (ja) * | 2006-03-16 | 2007-09-27 | Ge Medical Systems Global Technology Co Llc | 放射線撮影装置および画像処理装置 |
JP2008124976A (ja) * | 2006-11-15 | 2008-05-29 | Fujitsu Ltd | 画像処理装置及び画像処理方法 |
-
2010
- 2010-06-16 CN CN201080028072.7A patent/CN102802530B/zh active Active
- 2010-06-16 WO PCT/JP2010/060179 patent/WO2010150687A1/ja active Application Filing
- 2010-06-16 JP JP2011519805A patent/JP5674659B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11275579A (ja) * | 1998-03-23 | 1999-10-08 | Mitsubishi Electric Corp | 画像符号化方法、画像復号化方法、画像符号化装置および画像復号化装置 |
JP2004503030A (ja) * | 2000-07-12 | 2004-01-29 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | ディジタル画像欠陥補正及び雑音フィルタリングのための方法及び装置 |
JP2005151385A (ja) * | 2003-11-19 | 2005-06-09 | Sony Corp | 画像処理装置および画像処理方法、プログラム、並びに記録媒体 |
JP2007244675A (ja) * | 2006-03-16 | 2007-09-27 | Ge Medical Systems Global Technology Co Llc | 放射線撮影装置および画像処理装置 |
JP2008124976A (ja) * | 2006-11-15 | 2008-05-29 | Fujitsu Ltd | 画像処理装置及び画像処理方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013042352A1 (ja) * | 2011-09-22 | 2013-03-28 | 株式会社島津製作所 | 画像処理装置およびそれを備えた放射線撮影装置 |
CN103747735A (zh) * | 2011-09-22 | 2014-04-23 | 株式会社岛津制作所 | 图像处理装置以及具备该图像处理装置的放射线摄影装置 |
JP5641148B2 (ja) * | 2011-09-22 | 2014-12-17 | 株式会社島津製作所 | 画像処理装置およびそれを備えた放射線撮影装置 |
Also Published As
Publication number | Publication date |
---|---|
CN102802530B (zh) | 2015-01-14 |
JP5674659B2 (ja) | 2015-02-25 |
JPWO2010150687A1 (ja) | 2012-12-10 |
CN102802530A (zh) | 2012-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9311695B2 (en) | Image processing method and radiographic apparatus using the same | |
JP6097588B2 (ja) | 画像処理装置及び画像処理方法 | |
JP5416377B2 (ja) | 画像処理装置及びそれを備えたx線異物検出装置並びに画像処理方法 | |
JP6041502B2 (ja) | 画像処理装置および制御方法 | |
JP4007775B2 (ja) | X線診断装置 | |
JP2007249436A (ja) | 画像信号処理装置及び画像信号処理方法 | |
JP2010232892A (ja) | スレッショルド関数制御型ウェーブレットシュリンケージ雑音除去装置及びプログラム | |
US20130308841A1 (en) | Method and apparatus for image processing | |
US8374417B2 (en) | Image processing method and radiographic apparatus using the same | |
JP5674659B2 (ja) | 画像処理装置、x線画像診断装置 | |
WO2015002247A1 (ja) | 放射線画像生成装置及び画像処理方法 | |
JP6867563B1 (ja) | 画像処理方法 | |
JP6254813B2 (ja) | X線画像処理装置および方法、並びにx線撮像装置、プログラム | |
JP5349204B2 (ja) | 画像処理装置及び方法、並びに画像表示装置及び方法 | |
JP5302838B2 (ja) | 画像処理装置、画像処理方法、画像処理プログラム、および、x線画像撮影装置 | |
WO2013150824A1 (ja) | 画像処理装置及び方法、並びに画像処理プログラム | |
JP2010288040A (ja) | 輪郭補正方法及び輪郭補正装置 | |
JP6250988B2 (ja) | 画像処理方法および装置 | |
JP6126054B2 (ja) | 画像信号処理方法及び画像信号処理装置 | |
JP5247627B2 (ja) | 画像処理装置及び方法、並びに画像表示装置 | |
JP5350497B2 (ja) | 動き検出装置、制御プログラム、および集積回路 | |
JP2001086368A (ja) | 画像処理装置 | |
JP2006217057A (ja) | 画質変換処理方法および画質変換処理装置 | |
JP2014086957A (ja) | 画像処理装置及び画像処理方法 | |
JP2008146572A (ja) | 画像処理方法及び画像処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080028072.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10792005 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011519805 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10792005 Country of ref document: EP Kind code of ref document: A1 |