WO2010150644A1 - エレベータ装置 - Google Patents

エレベータ装置 Download PDF

Info

Publication number
WO2010150644A1
WO2010150644A1 PCT/JP2010/059610 JP2010059610W WO2010150644A1 WO 2010150644 A1 WO2010150644 A1 WO 2010150644A1 JP 2010059610 W JP2010059610 W JP 2010059610W WO 2010150644 A1 WO2010150644 A1 WO 2010150644A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
operation control
state
abnormality determination
determination unit
Prior art date
Application number
PCT/JP2010/059610
Other languages
English (en)
French (fr)
Inventor
琢夫 釘谷
弘 木川
力雄 近藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011519732A priority Critical patent/JP5523455B2/ja
Publication of WO2010150644A1 publication Critical patent/WO2010150644A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • B66B5/0031Devices monitoring the operating condition of the elevator system for safety reasons

Definitions

  • the present invention relates to an elevator apparatus having an abnormality determination unit that determines whether a car is abnormal based on a signal from a state detector that detects the state of the car.
  • a central controller monitors various sensors, contacts and switches via an electronic safety bus. When the central controller senses a dangerous state, it sends a control signal to the elevator control device and the drive / braking device to stop the car in a safe manner (see, for example, Patent Document 1).
  • the present invention has been made to solve the above-described problems, and an object thereof is to obtain an elevator apparatus that can prevent an increase in the number of state detectors while preventing a decrease in controllability. To do.
  • the elevator apparatus includes a car, a detector group including a plurality of state detectors that generate signals according to the car state, and a car control that controls the car operation based on signals from the detector group. And an abnormality determination unit that determines whether there is an abnormality in the car based on a signal from the detector group, and at least one state detector is shared by both the operation control unit and the abnormality determination unit.
  • the elevator apparatus since at least one state detector is shared by the operation control unit and the abnormality determination unit, a signal from the state detector is directly input to the operation control unit and the abnormality determination unit. It is possible to prevent an increase in the number of state detectors while preventing a decrease in the number of state detectors.
  • FIG. 1 is a block diagram showing an elevator apparatus according to Embodiment 1 of the present invention.
  • a car 1 and a counterweight 2 are suspended in a hoistway by suspension means 3.
  • the suspension means 3 includes a plurality of ropes (traction ropes) or belts.
  • a hoisting machine 4 for raising and lowering the car 1 and the counterweight 2 is installed in the lower part of the hoistway.
  • the hoisting machine 4 includes a driving sheave around which the suspension means 3 is wound, a hoisting machine motor that generates driving torque and rotates the driving sheave, and braking means that generates braking torque and brakes the rotation of the driving sheave.
  • a hoisting machine brake 5 and a hoisting machine encoder 6 as a speed detector for generating a signal corresponding to the rotation of the drive sheave are provided.
  • an electromagnetic brake device is used as the hoisting machine brake 5, for example.
  • the brake shoe is pressed against the braking surface by the spring force of the braking spring, the rotation of the drive sheave is braked, and the car 1 is braked. Further, by exciting the electromagnetic magnet, the brake shoe is pulled away from the braking surface, and the braking force is released. Furthermore, the braking force applied by the hoisting machine brake 5 is changed in accordance with the value of current flowing through the brake coil of the electromagnetic magnet.
  • the car 1 is provided with a pair of car suspension wheels 7a and 7b.
  • the counterweight 2 is provided with a counterweight suspension vehicle 8.
  • a pair of car return wheels 9a and 9b and a counterweight return wheel 10 are provided at the upper part of the hoistway.
  • the first end of the suspension means 3 is connected to a first rope stop 11a provided at the upper part of the hoistway.
  • the 2nd end part of the suspension means 3 is connected to the 2nd rope stop 11b provided in the upper part of the hoistway.
  • the suspension means 3 is wound around the car suspension wheels 7a and 7b, the car return wheels 9a and 9b, the driving sheave, the counterweight return wheel 10 and the counterweight suspension car 8 in order from the first end side. . That is, the car 1 and the counterweight 2 are suspended in the hoistway by a 2: 1 roping method.
  • a car shock absorber 12 and a counterweight shock absorber 13 are installed at the bottom of the hoistway.
  • the car shock absorber 12 is disposed directly below the car 1 and alleviates an impact when the car 1 collides with the bottom of the hoistway.
  • the counterweight shock absorber 13 is disposed directly below the counterweight 2 and alleviates the impact when the counterweight 2 collides with the bottom of the hoistway.
  • a governor 14 is installed at the top of the hoistway.
  • the governor 14 includes a governor sheave 15 and a governor encoder 16 that generates a signal corresponding to the rotation of the governor sheave 15.
  • a loop-shaped governor rope 17 is wound around the governor sheave 15.
  • the governor rope 17 is connected to an operation lever of an emergency stop device mounted on the car 1.
  • the lower end portion of the loop of the governor rope 17 is wound around a tension wheel 18 disposed at the lower part of the hoistway.
  • a plurality of position detection switches 19a and 19b for detecting the position of the car 1 are provided at predetermined positions in the hoistway.
  • limit switches 20a and 20b for detecting that the car 1 has passed over the terminal floor are respectively installed at the upper terminal portion and the lower terminal portion in the hoistway.
  • These switches 19a, 19b, 20a, 20b are fixed to the hoistway wall.
  • the car 1 is provided with a switch operation member (cam) for operating the switches 19a, 19b, 20a, 20b.
  • a car door switch 21 for detecting opening / closing of the car door is provided on the car 1.
  • the landing on each floor is provided with a landing door switch (not shown) for detecting opening / closing of the landing door.
  • the hoistway is provided with a plurality of floor matching sensors 22 for detecting that the car 1 is located at a position (door zone) where the passenger can safely enter and exit the car 1.
  • the state detector for detecting the state of the car 1 includes the hoisting machine encoder 6, the governor encoder 16, the position detection switches 19a and 19b, the limit switches 20a and 20b, the car door switch 21, and the landing door. A switch and a floor matching sensor 22.
  • the operation of the hoisting machine 4, that is, the operation of the car 1, is controlled by an operation control device 23 as an operation control unit.
  • the operation control device 23 controls the operation of the car 1 based on a signal from the detector group.
  • a safety controller (electronic safety device) 24 as an abnormality determination unit determines whether the car 1 is abnormal based on a signal from the detector group.
  • the car 1 When an abnormality is detected by the safety controller 24, the car 1 is shifted to a safe state according to the content of the abnormality. For example, if an abnormality is detected while the car 1 is traveling, a brake operation command is output to the hoisting machine brake 5 and the car 1 is suddenly stopped.
  • the at least one state detector is shared (shared) by both the operation control device 23 and the safety controller 24.
  • the hoisting machine encoder 6, the position detection switches 19 a and 19 b, the limit switches 20 a and 20 b, the car door switch 21, the landing door switch and the floor alignment sensor 22 are shared by the operation control device 23 and the safety controller 24. ing.
  • the signal from the state detector shared by the operation control device 23 and the safety controller 24 is directly input to the operation control device 23 without going through the safety controller 24, and without going through the operation control device 23. It is input directly to the safety controller 24.
  • the operation control device 23 detects the speed and position of the car 1 using a signal from the hoisting machine encoder 6 and controls the rotational speed of the hoisting machine 4. Thereby, the operation control device 23 controls the traveling speed and the traveling distance of the car 1.
  • the operation control device 23 opens and closes the car door and the landing door when it detects that the car 1 has stopped at the target landing position using signals from the hoisting machine encoder 6 and the floor alignment sensor 22. Take control. At this time, the operation control device 23 detects the open / closed states of the car door and the landing door using signals from the car door switch 21 and the landing door switch.
  • the operation control device 23 detects from the signal from the floor alignment sensor 22 that the car 1 is at the landing position and detects from the signal from the hoisting machine encoder 6 that the speed of the car 1 is sufficiently low. Only when it does, door opening control to open the car door and the landing door is performed.
  • the operation control device 23 corrects the position information of the car 1 by using signals from the position detection switches 19a and 19b. In addition, the operation control device 23 detects that the car 1 has passed through the terminal floor and traveled further toward the terminal using signals from the limit switches 20a and 20b. The operation control device 23 that has detected overshoot does not issue a control command other than traveling back to the intermediate floor until it is detected by the signals of the limit switches 20a and 20b that the car 1 has escaped from the end portion.
  • the safety controller 24 detects the speed of the car 1 using a signal from the governor encoder 16.
  • the safety controller 24 detects the position of the car 1 using signals from the governor encoder 16 and the position detection switches 19a and 19b.
  • the safety controller 24 uses the detected position of the car 1 to set a speed threshold determined according to the position of the car 1. When the detected speed of the car 1 exceeds the threshold value, the safety controller 24 determines that the car 1 is in an overspeed state and outputs a brake operation command.
  • the safety controller 24 uses the signals from the limit switches 20a and 20b to detect that the car 1 has passed through the terminal floor and has gone further toward the terminal section.
  • the safety controller 24 outputs a brake operation command. To do.
  • the safety controller 24 determines whether or not the car 1 is at the landing position using a signal from the floor alignment sensor 22. Furthermore, the safety controller 24 determines the open / closed state of the car door and the landing door using signals from the car door switch 21 and the landing door switch. Furthermore, the safety controller 24 uses the signal from the hoisting machine encoder 6 to determine whether or not the car 1 is traveling.
  • the safety controller 24 detects an abnormality in the car 1 when it detects the opening of the door outside the landing position (door zone). That is, the safety controller 24 detects a state in which at least one of the car door and the landing door is open although the car 1 has not reached the landing position (door zone), and outputs a brake operation command. Further, the safety controller 24 detects a state in which at least one of the car door and the landing door is open even though the car 1 is traveling, and outputs a brake operation command. Furthermore, the safety controller 24 detects that the car 1 is out of the landing position while at least one of the car door and the landing door is open, and outputs a brake operation command.
  • the safety controller 24 maintains the output of the brake operation command after outputting the brake operation command once. Then, only when the safety state can be confirmed by the maintenance staff or the function of the safety controller 24, the output of the brake operation command is stopped by the operation of the maintenance staff or the function of the safety controller 24.
  • the operation control device 23 and the safety controller 24 share the hoisting machine encoder 6, the car door switch 21, the landing door switch and the floor alignment sensor 22, and use signals from these state detectors for different purposes.
  • the operation control device 23 uses signals from these state detectors for operation control of the car 1
  • the safety controller 24 uses it for safety monitoring such as door-opening traveling monitoring.
  • the operation control device 23 and the safety controller 24 are connected to each other via a transmission line 25.
  • the operation control device 23 and the safety controller 24 transmit data about the state of the car 1 that they have to each other using the transmission line 25.
  • the operation control device 23 compares the information related to the state of the car 1 determined by the safety controller 24 with the information related to the state of the car 1 determined by itself, and if there is a difference in the state, sends an abnormality detection signal to the safety controller 24. Simultaneously with the transmission, control is performed to stop the car 1 at the nearest floor.
  • the safety controller 24 compares the information related to the state of the car 1 determined by the operation control device 23 with the information related to the state of the car 1 determined by itself, and outputs a brake operation command if the state is different.
  • the information compared between the operation control device 23 and the safety controller 24 includes, for example, at least one of information related to the traveling speed of the car 1, information related to the position of the car 1, and information related to the open / closed state of the door. It is done.
  • the operation control device 23 and the safety controller 24 have independent microcomputers. The functions of the operation control device 23 and the safety controller 24 are realized by these microcomputers.
  • FIG. 2 is a conceptual diagram showing a main part of the elevator apparatus of FIG.
  • the detector group 26 includes a hoisting machine encoder 6, a speed governor encoder 16, position detection switches 19 a and 19 b, limit switches 20 a and 20 b, a car door switch 21, a landing door switch, and a floor matching sensor 22. .
  • FIG. 3 is a block diagram showing an example of a connection state of the hoisting machine encoder 6 of FIG. 1 with the operation control device 23 and the safety controller 24.
  • the hoisting machine encoder 6 includes first and second sensors 27 and 28 having a common detection target. Only one of the first and second sensors 27, 28, in this example, the signal from the second sensor 28 is input to the operation control device 23. Signals from both the first and second sensors 27 and 28 are input to the safety controller 24.
  • the safety controller 24 has a redundant configuration (dual system) having first and second safety monitoring arithmetic processing units 29 and 30.
  • the first and second safety monitoring arithmetic processing units 29 and 30 execute the same arithmetic processing based on signals from the first and second sensors 27 and 28.
  • the safety controller 24 is provided with a first input port 31 for inputting a signal from the first sensor 27 and a second input port 32 for inputting a signal from the second sensor 28.
  • the first and second safety monitoring arithmetic processing units 29 and 30 are connected to the first and second input ports 31 and 32, respectively.
  • Photocouplers are used as the first and second input ports 31 and 32. Thereby, the hoisting machine encoder 6 and the safety controller 24 are electrically insulated.
  • the operation control device 23 includes an operation control calculation processing unit 33 and an input port 34 for inputting a signal from the second sensor 28.
  • a photocoupler is used as the input port 34.
  • the hoisting machine encoder 6, the position detection switches 19 a and 19 b, the limit switches 20 a and 20 b, the car door switch 21, the landing door switch and the floor alignment sensor 22 are connected to the operation control device 23. Since it is shared by the safety controller 24, the number of sensors used for speed control and overspeed running monitoring of the car 1, position control and position abnormality monitoring, door opening / closing control and door opening / closing abnormality monitoring, etc. can be reduced.
  • the safety controller 24 detects an abnormality of the operation control device 23 by comparing the state of the car 1 determined by the operation control device 23 with the state of the car 1 determined by the safety controller 24. Safe measures can be taken before the situation becomes abnormal.
  • the state detector shared by the operation control device 23 and the safety controller 24 and the safety controller 24 are electrically insulated, when an overvoltage occurs due to an electrical failure of the operation control device 23 Also, the safety controller 24 can be prevented from being destroyed.
  • the state detector and the operation control device 23 are also electrically insulated, the operation control device 23 is destroyed even when an overvoltage occurs due to an electrical failure of the safety controller 24. Can be prevented.
  • the safety controller 24 since the safety controller 24 includes the first and second safety monitoring arithmetic processing units 29 and 30 and the first and second input ports 31 and 32, the reliability can be improved.
  • FIG. 4 is a block diagram showing an elevator apparatus according to Embodiment 2 of the present invention.
  • the speed governor encoder 16 includes: It is shared by the operation control device 23 and the safety controller 24.
  • the operation control device 23 detects the speed of the car 1 using the signal from the hoisting machine encoder 6 and detects the position of the car 1 using the signal from the governor encoder 16, and determines the rotational speed of the hoisting machine 4. Control. Thereby, the operation control device 23 controls the traveling speed and the traveling distance of the car 1.
  • the speed governor 14 has lower inertia than the hoisting machine 4, and therefore has higher followability to the movement of the car 1 than the hoisting machine 4. For this reason, rather than using the hoisting machine encoder 6 as in the first embodiment, the position of the car 1 can be detected more accurately by using the governor encoder 16 as in the second embodiment. Can do.
  • the operation control device 23 opens and closes the car door and the landing door when it detects that the car 1 has stopped at the target landing position using signals from the governor encoder 16 and the floor alignment sensor 22. Take control.
  • the operation control device 23 and the safety controller 24 share the hoisting machine encoder 6, the governor encoder 16, the car door switch 21, the landing door switch, and the floor alignment sensor 22, and these state detectors.
  • the signal from is used for different purposes. That is, the operation control device 23 uses signals from these state detectors for operation control of the car 1, and the safety controller 24 uses it for safety monitoring such as door-opening traveling monitoring.
  • FIG. 5 is a block diagram showing an example of a connection state of the governor encoder 16 of FIG. 4 with the operation control device 23 and the safety controller 24.
  • the governor encoder 16 includes first and second sensors 35 and 36 having a common detection target. Only one of the first and second sensors 35, 36, in this example, the signal from the second sensor 36 is input to the operation control device 23. Signals from both the first and second sensors 35 and 36 are input to the safety controller 24.
  • the signal from the first sensor 35 is input to the first input port 31 of the safety controller 24.
  • a signal from the second sensor 36 is input to the second input port 32 of the safety controller 24 and the input port 34 of the operation control device 23.
  • the first and second safety monitoring arithmetic processing units 29 and 30 of the safety controller 24 execute similar arithmetic processing based on signals from the first and second sensors 35 and 36.
  • governor encoder 16 was shown in FIG. 5, other state detectors shared by the operation control device 23 and the safety controller 24 can be connected by the same connection method as in FIG. it can. Other configurations are the same as those in the first embodiment.
  • the hoisting machine encoder 6, the governor encoder 16, the position detection switches 19a and 19b, the limit switches 20a and 20b, the car door switch 21, the landing door switch, and the floor matching sensor 22 are used. Is shared by the operation control device 23 and the safety controller 24. Therefore, the number of sensors used for the speed control and overspeed traveling monitoring of the car 1, position control and position abnormality monitoring, door opening and closing control and door opening and closing abnormality monitoring, etc. Can be reduced.
  • the position detection accuracy of the car 1 can be improved.
  • FIG. 6 is a block diagram showing an elevator apparatus according to Embodiment 3 of the present invention.
  • a linear encoder tape 37 is provided in the hoistway along the raising / lowering direction of the car 1.
  • the linear encoder tape 37 is continuously arranged from the upper end to the lower end in the hoistway.
  • the linear encoder tape 37 is registered with a code indicating the position in the hoistway.
  • the car 1 is equipped with a linear encoder 38 that reads a code registered in the linear encoder tape 37 and outputs a signal indicating the position of the car 1.
  • the state detectors that detect the state of the car 1 are the hoisting machine encoder 6, the linear encoder 38, the limit switches 20a and 20b, the car door switch 21, and the landing door switch.
  • the detector group 26 (FIG. 2) according to the third embodiment includes a hoisting machine encoder 6, a linear encoder 38, limit switches 20a and 20b, a car door switch 21, and a landing door switch. That is, the governor encoder 16, the position detection switches 19a and 19b, and the floor matching sensor 22 in the first embodiment are omitted in the third embodiment.
  • the hoisting machine encoder 6, the linear encoder 38, the limit switches 20a and 20b, the car door switch 21, and the landing door switch are shared by the operation control device 23 and the safety controller 24.
  • the operation control device 23 detects the speed of the car 1 using a signal from the hoisting machine encoder 6 and detects the position of the car 1 using a signal from the linear encoder 38 to control the rotational speed of the hoisting machine 4. . Thereby, the operation control device 23 controls the traveling speed and the traveling distance of the car 1.
  • the operation control device 23 detects that the car 1 has stopped at the target landing position using the signal from the linear encoder 38, the operation control device 23 performs control to open and close the car door and the landing door.
  • the operation control device 23 detects from the signal from the linear encoder 38 that the car 1 is at the landing position and detects from the signal from the hoisting machine encoder 6 that the speed of the car 1 is sufficiently low. Only occasionally, the door opening control is performed to open the car door and the landing door.
  • the safety controller 24 detects the speed of the car 1 using a signal from the linear encoder 38. Further, the safety controller 24 detects the position of the car 1 using a signal from the linear encoder 38.
  • the safety controller 24 When the overshoot of the car 1 is detected by the signals from the limit switches 20a and 20b, and when traveling in the terminal direction of the car 1 is further detected by the signal from the linear encoder 38, the safety controller 24 outputs a brake operation command.
  • the safety controller 24 uses the signal from the linear encoder 38 to determine whether or not the car 1 is at the landing position.
  • the operation control device 23 and the safety controller 24 share the hoisting machine encoder 6, the linear encoder 38, the car door switch 21, and the landing door switch, and the signals from these state detectors for different purposes.
  • the operation control device 23 uses signals from these state detectors for operation control of the car 1, and the safety controller 24 uses it for safety monitoring such as door-opening traveling monitoring.
  • FIG. 7 is a block diagram showing an example of a connection state between the linear encoder 38 of FIG. 6, the operation control device 23, and the safety controller 24.
  • the linear encoder 38 includes first and second sensors 39 and 40 having a common detection target. Only one of the first and second sensors 39, 40, in this example, the signal from the second sensor 40 is input to the operation control device 23. Signals from both the first and second sensors 39 and 40 are input to the safety controller 24.
  • the signal from the first sensor 39 is input to the first input port 31 of the safety controller 24.
  • a signal from the second sensor 40 is input to the second input port 32 of the safety controller 24 and the input port 34 of the operation control device 23.
  • the first and second safety monitoring arithmetic processing units 29 and 30 of the safety controller 24 execute the same arithmetic processing based on signals from the first and second sensors 39 and 40.
  • linear encoder 38 can connect by the connection method similar to FIG. 7 also about the other state detector shared by the operation control apparatus 23 and the safety controller 24.
  • FIG. Other configurations are the same as those in the first embodiment.
  • the hoisting machine encoder 6, the linear encoder 38, the limit switches 20a and 20b, the car door switch 21, and the landing door switch are shared by the operation control device 23 and the safety controller 24.
  • the number of sensors used for speed control and overspeed running monitoring of the car 1, position control and position abnormality monitoring, door opening and closing control and door opening and closing abnormality monitoring, and the like can be reduced.
  • the installation adjustment is easier than in the first and second embodiments.
  • the state detector is not limited to the examples in the first to third embodiments, and may include, for example, a scale device for detecting a load in the car 1.
  • the overall layout and roping method of the elevator apparatus are not limited to those shown in FIGS. .
  • the operation control device 23 and the safety controller 24 may be housed in a common housing.

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)

Abstract

 エレベータ装置において、検出器群は、それぞれかごの状態に応じた信号を発生する複数の状態検出器を含む。運行制御部は、検出器群からの信号に基づいてかごの運行を制御する。異常判断部は、検出器群からの信号に基づいてかごの異常の有無を判断する。また、少なくとも1つの状態検出器は、運行制御部及び異常判断部の両方により共用されている。

Description

エレベータ装置
 この発明は、かごの状態を検出する状態検出器からの信号に基づいてかごの異常の有無を判断する異常判断部を有するエレベータ装置に関するものである。
 従来のエレベータ安全システムでは、中央コントローラが、電子安全バスを介して、種々のセンサ、接触子、及びスイッチを監視する。そして、中央コントローラは、危険な状態を感知すると、エレベータ制御装置と駆動・制動装置とに制御信号を送信して、安全な方法でかごを停止させる(例えば、特許文献1参照)。
特表2002-538061号公報
 上記のような従来のエレベータ安全システムでは、エレベータ制御装置がかごの走行速度や戸開閉の制御を実施するために必要なデータを中央コントローラとインターフェイスとを介して入手する必要があり、時間遅延によって制御性が低下する問題があった。これに対して、エレベータ制御装置に直接繋がるセンサを設置すると、センサの数が多くなり、昇降路レイアウトの自由度が低下する問題があった。
 この発明は、上記のような課題を解決するためになされたものであり、制御性の低下を防止しつつ、状態検出器の数の増加を防止することができるエレベータ装置を得ることを目的とする。
 この発明に係るエレベータ装置は、かご、それぞれかごの状態に応じた信号を発生する複数の状態検出器を含む検出器群と、検出器群からの信号に基づいてかごの運行を制御する運行制御部と、検出器群からの信号に基づいてかごの異常の有無を判断する異常判断部とを備え、少なくとも1つの状態検出器は、運行制御部及び異常判断部の両方により共用されている。
 この発明のエレベータ装置は、少なくとも1つの状態検出器を運行制御部と異常判断部とで共用したので、状態検出器からの信号を運行制御部及び異常判断部に直接的に入力して制御性の低下を防止しつつ、状態検出器の数の増加を防止することができる。
この発明の実施の形態1によるエレベータ装置を示す構成図である。 図1のエレベータ装置の要部を示す概念図である。 図1の巻上機エンコーダと運行制御装置及び安全コントローラとの接続状態の一例を示すブロック図である。 この発明の実施の形態2によるエレベータ装置を示す構成図である。 図4の調速機エンコーダと運行制御装置及び安全コントローラとの接続状態の一例を示すブロック図である。 この発明の実施の形態3によるエレベータ装置を示す構成図である。 図6のリニアエンコーダと運行制御装置及び安全コントローラとの接続状態の一例を示すブロック図である。
 以下、この発明を実施するための形態について、図面を参照して説明する。
 実施の形態1.
 図1はこの発明の実施の形態1によるエレベータ装置を示す構成図である。図において、かご1及び釣合おもり2は、懸架手段3により昇降路内に吊り下げられている。懸架手段3は、複数本のロープ(トラクションロープ)又はベルトを含んでいる。
 昇降路内の下部には、かご1及び釣合おもり2を昇降させる巻上機4が設置されている。巻上機4は、懸架手段3が巻き掛けられた駆動シーブと、駆動トルクを発生し駆動シーブを回転させる巻上機モータと、制動トルクを発生し駆動シーブの回転を制動する制動手段としての巻上機ブレーキ5と、駆動シーブの回転に応じた信号を発生する速度検出器としての巻上機エンコーダ6とを有している。
 巻上機ブレーキ5としては、例えば電磁ブレーキ装置が用いられている。電磁ブレーキ装置においては、制動ばねのばね力によりブレーキシューが制動面に押し付けられて駆動シーブの回転が制動され、かご1が制動される。また、電磁マグネットを励磁することによりブレーキシューが制動面から引き離され、制動力が解除される。さらに、巻上機ブレーキ5により印加される制動力は、電磁マグネットのブレーキコイルに流される電流値に応じて変化される。
 かご1には、一対のかご吊り車7a,7bが設けられている。釣合おもり2には、釣合おもり吊り車8が設けられている。昇降路の上部には、一対のかご返し車9a,9b及び釣合おもり返し車10が設けられている。懸架手段3の第1の端部は、昇降路の上部に設けられた第1の綱止め11aに接続されている。懸架手段3の第2の端部は、昇降路の上部に設けられた第2の綱止め11bに接続されている。
 懸架手段3は、第1の端部側から順に、かご吊り車7a,7b、かご返し車9a,9b、駆動シーブ、釣合おもり返し車10及び釣合おもり吊り車8に巻き掛けられている。即ち、かご1及び釣合おもり2は、2:1ローピング方式により昇降路内に吊り下げられている。
 昇降路の底部には、かご緩衝器12及び釣合おもり緩衝器13が設置されている。かご緩衝器12は、かご1の真下に配置され、かご1が昇降路の底部に衝突する際の衝撃を緩和する。釣合おもり緩衝器13は、釣合おもり2の真下に配置され、釣合おもり2が昇降路の底部に衝突する際の衝撃を緩和する。
 昇降路の上部には、調速機14が設置されている。調速機14は、調速機シーブ15と、調速機シーブ15の回転に応じた信号を発生する調速機エンコーダ16とを有している。調速機シーブ15には、ループ状の調速機ロープ17が巻き掛けられている。
 調速機ロープ17は、かご1に搭載された非常止め装置の操作レバーに接続されている。調速機ロープ17のループの下端部は、昇降路の下部に配置された張り車18に巻き掛けられている。かご1が昇降されると、調速機ロープ17が循環され、かご1の走行速度に応じた回転速度で調速機シーブ15が回転される。
 昇降路内の所定の位置には、かご1の位置を検出する複数の位置検出スイッチ19a,19bが設けられている。また、昇降路内の上部終端部及び下部終端部には、かご1が終端階を行き過ぎたことを検出するリミットスイッチ20a,20bがそれぞれ設置されている。これらのスイッチ19a,19b,20a,20bは、昇降路壁に固定されている。かご1には、スイッチ19a,19b,20a,20bを操作するスイッチ操作部材(カム)が設けられている。
 かご1上には、かごドアの開閉を検出するかごドアスイッチ21が設けられている。各階の乗場には、乗場ドアの開閉を検出する乗場ドアスイッチ(図示せず)が設けられている。また、昇降路には、乗客がかご1に安全に出入りできる位置(ドアゾーン)にかご1が位置していることを検出する複数の床合わせセンサ22が設けられている。
 実施の形態1において、かご1の状態を検出する状態検出器は、巻上機エンコーダ6、調速機エンコーダ16、位置検出スイッチ19a,19b、リミットスイッチ20a,20b、かごドアスイッチ21、乗場ドアスイッチ、及び床合わせセンサ22である。
 巻上機4の運転、即ちかご1の運行は、運行制御部としての運行制御装置23により制御される。運行制御装置23は、検出器群からの信号に基づいてかご1の運行を制御する。異常判断部としての安全コントローラ(電子安全装置)24は、検出器群からの信号に基づいてかご1の異常の有無を判断する。
 安全コントローラ24により異常が検出されると、異常の内容に応じてかご1が安全な状態に移行される。例えば、かご1の走行中に異常が検出されると、巻上機ブレーキ5にブレーキ動作指令が出力され、かご1が急停止される。
 少なくとも1つの状態検出器は、運行制御装置23及び安全コントローラ24の両方により共用(共有)されている。この例では、巻上機エンコーダ6、位置検出スイッチ19a,19b、リミットスイッチ20a,20b、かごドアスイッチ21、乗場ドアスイッチ、及び床合わせセンサ22が、運行制御装置23及び安全コントローラ24により共用されている。
 運行制御装置23及び安全コントローラ24により共用されている状態検出器からの信号は、安全コントローラ24を介さずに運行制御装置23に直接的に入力されているとともに、運行制御装置23を介さずに安全コントローラ24に直接的に入力されている。
 運行制御装置23は、巻上機エンコーダ6からの信号を用いて、かご1の速度と位置とを検出し、巻上機4の回転速度を制御する。これにより、運行制御装置23は、かご1の走行速度や走行距離を制御する。
 また、運行制御装置23は、巻上機エンコーダ6及び床合わせセンサ22からの信号を用いて、かご1が目標とする着床位置に停止したことを検出すると、かごドア及び乗場ドアを開閉する制御を行う。このとき、運行制御装置23は、かごドア及び乗場ドアの開閉状態をかごドアスイッチ21及び乗場ドアスイッチからの信号を用いて検出する。
 さらに、運行制御装置23は、床合わせセンサ22からの信号から、かご1が着床位置にいることを検出し、かつ巻上機エンコーダ6の信号からかご1の速度が十分に低いことを検出したときにのみ、かごドア及び乗場ドアを開く戸開制御を行う。
 さらにまた、運行制御装置23は、位置検出スイッチ19a,19bからの信号を用いて、かご1の位置情報を修正する。また、運行制御装置23は、リミットスイッチ20a,20bからの信号を用いて、かご1が終端階を通過してさらに終端部に向かって行き過ぎたことを検出する。行き過ぎを検出した運行制御装置23は、かご1が終端部から脱出したことがリミットスイッチ20a,20bの信号により検出されるまで、中間階に戻る走行以外の制御指令を出さない。
 安全コントローラ24は、調速機エンコーダ16からの信号を用いて、かご1の速度を検出する。また、安全コントローラ24は、調速機エンコーダ16及び位置検出スイッチ19a,19bからの信号を用いて、かご1の位置を検出する。
 さらに、安全コントローラ24は、検出したかご1の位置を用いて、かご1の位置に応じて決められた速度の閾値を設定する。そして、安全コントローラ24は、検出したかご1の速度が閾値を超えた場合は、かご1が過速度状態であると判断し、ブレーキ動作指令を出力する。
 さらにまた、安全コントローラ24は、リミットスイッチ20a,20bからの信号を用いて、かご1が終端階を通過してさらに終端部に向かって行き過ぎたことを検出する。リミットスイッチ20a,20bからの信号によりかご1の行き過ぎが検出され、さらに調速機エンコーダ16からの信号によりかご1の終端方向への走行が検出された場合、安全コントローラ24はブレーキ動作指令を出力する。
 また、安全コントローラ24は、床合わせセンサ22からの信号を用いて、かご1が着床位置にいるか否かを判断する。さらに、安全コントローラ24は、かごドアスイッチ21及び乗場ドアスイッチからの信号を用いて、かごドア及び乗場ドアの開閉状態を判断する。さらにまた、安全コントローラ24は、巻上機エンコーダ6からの信号を用いて、かご1が走行しているか否かを判断する。
 また、安全コントローラ24は、着床位置(ドアゾーン)外でのドアの開放を検出したときに、かご1の異常を検出する。即ち、安全コントローラ24は、かご1が着床位置(ドアゾーン)に来ていないにも拘わらずかごドア及び乗場ドアの少なくともいずれか一方が開いている状態を検出し、ブレーキ動作指令を出力する。さらに、安全コントローラ24は、かご1が走行中であるにも拘わらずかごドア及び乗場ドアの少なくともいずれか一方が開いている状態を検出し、ブレーキ動作指令を出力する。さらにまた、安全コントローラ24は、かごドア及び乗場ドアの少なくともいずれか一方が開いている状態のまま、かご1が着床位置を外れたことを検出し、ブレーキ動作指令を出力する。
 なお、安全コントローラ24は、ブレーキ動作指令を一旦出力した後は、ブレーキ動作指令の出力を維持する。そして、保守員、又は安全コントローラ24の機能によって安全状態を確認できた場合にのみ、保守員の操作、又は安全コントローラ24の機能によってブレーキ動作指令の出力を停止する。
 上記のように、運行制御装置23及び安全コントローラ24は、巻上機エンコーダ6、かごドアスイッチ21、乗場ドアスイッチ及び床合わせセンサ22を共用しつつ、これらの状態検出器からの信号を異なる目的で利用している。即ち、運行制御装置23は、これらの状態検出器からの信号をかご1の運行制御に利用し、安全コントローラ24は、戸開走行監視等の安全監視に利用している。
 運行制御装置23と安全コントローラ24とは、伝送線25を介して互いに接続されている。また、運行制御装置23と安全コントローラ24とは、それぞれが持つかご1の状態に関するデータを、伝送線25を用いて互いに送信し合っている。
 運行制御装置23は、安全コントローラ24で判断したかご1の状態に関する情報と自己が判断したかご1の状態に関する情報とを比較し、状態に相違がある場合は、異常検出信号を安全コントローラ24に送信すると同時に、かご1を最寄階に停止させる制御を実行する。
 安全コントローラ24は、運行制御装置23で判断したかご1の状態に関する情報と自己が判断したかご1の状態に関する情報とを比較し、状態に相違がある場合は、ブレーキ動作指令を出力する。
 運行制御装置23と安全コントローラ24との間で比較される情報としては、例えば、かご1の走行速度に関する情報、かご1の位置に関する情報、及びドアの開閉状態に関する情報の少なくともいずれか1つが挙げられる。
 運行制御装置23及び安全コントローラ24は、それぞれ独立したマイクロコンピュータを有している。運行制御装置23及び安全コントローラ24の機能は、これらのマイクロコンピュータにより実現される。
 ここで、図2は図1のエレベータ装置の要部を示す概念図である。検出器群26は、巻上機エンコーダ6、調速機エンコーダ16、位置検出スイッチ19a,19b、リミットスイッチ20a,20b、かごドアスイッチ21、乗場ドアスイッチ、及び床合わせセンサ22により構成されている。
 図3は図1の巻上機エンコーダ6と運行制御装置23及び安全コントローラ24との接続状態の一例を示すブロック図である。巻上機エンコーダ6は、検出対象が共通の第1及び第2のセンサ27,28を有している。運行制御装置23には、第1及び第2のセンサ27,28のいずれか一方、この例では第2のセンサ28からの信号のみが入力されている。安全コントローラ24には、第1及び第2のセンサ27,28の両方からの信号が入力されている。
 安全コントローラ24は、第1及び第2の安全監視演算処理部29,30を有する冗長構成(二重系)とされている。第1及び第2の安全監視演算処理部29,30は、第1及び第2のセンサ27,28からの信号に基づいて互いに同様の演算処理を実行する。
 また、安全コントローラ24には、第1のセンサ27からの信号を入力する第1の入力ポート31と、第2のセンサ28からの信号を入力する第2の入力ポート32とが設けられている。第1及び第2の安全監視演算処理部29,30は、第1及び第2の入力ポート31,32にそれぞれ繋がれている。
 第1及び第2の入力ポート31,32としては、フォトカプラが用いられている。これにより、巻上機エンコーダ6と安全コントローラ24との間は、電気的に絶縁されている。
 運行制御装置23は、運行制御演算処理部33と、第2のセンサ28からの信号を入力する入力ポート34とを有している。入力ポート34としては、フォトカプラが用いられている。
 なお、図3では巻上機エンコーダ6の例を示したが、運行制御装置23と安全コントローラ24とにより共用される他の状態検出器についても、図3と同様の接続方法で接続することができる。
 このようなエレベータ装置では、一部の状態検出器を運行制御装置23と安全コントローラ24とで共用したので、これらの状態検出器からの信号を運行制御装置23及び安全コントローラ24に直接的に入力して制御性の低下を防止しつつ、状態検出器の数の増加を防止することができる。また、コストの増大を抑えつつ電子安全システムの高機能化を図ることができる。
 具体的には、実施の形態1では、巻上機エンコーダ6、位置検出スイッチ19a,19b、リミットスイッチ20a,20b、かごドアスイッチ21、乗場ドアスイッチ、及び床合わせセンサ22を運行制御装置23と安全コントローラ24とで共用したので、かご1の速度制御と過速度走行監視、位置制御と位置異常監視、及び戸開閉制御と戸開閉異常監視等に使用するセンサの数を減らすことができる。
 また、安全コントローラ24は、運行制御装置23で判断されたかご1の状態と、安全コントローラ24で判断したかご1の状態とを比較することにより運行制御装置23の異常を検出するので、かご1の状態が異常となる前に安全な措置を実行することができる。
 さらに、運行制御装置23及び安全コントローラ24により共用される状態検出器と安全コントローラ24との間が電気的に絶縁されているので、運行制御装置23の電気的な故障により過電圧が生じた場合においても、安全コントローラ24が破壊されるのを防ぐことができる。
 さらにまた、状態検出器と運行制御装置23との間も電気的に絶縁されているので、安全コントローラ24の電気的な故障により過電圧が生じた場合においても、運行制御装置23が破壊されるのを防ぐことができる。
 また、安全コントローラ24は、第1及び第2の安全監視演算処理部29,30と第1及び第2の入力ポート31,32とを有しているので、信頼性を向上させることができる。
 実施の形態2.
 次に、図4はこの発明の実施の形態2によるエレベータ装置を示す構成図である。実施の形態2では、巻上機エンコーダ6、位置検出スイッチ19a,19b、リミットスイッチ20a,20b、かごドアスイッチ21、乗場ドアスイッチ、及び床合わせセンサ22に加えて、調速機エンコーダ16が、運行制御装置23及び安全コントローラ24により共用されている。
 運行制御装置23は、巻上機エンコーダ6からの信号を用いてかご1の速度を、調速機エンコーダ16からの信号を用いてかご1の位置を検出し、巻上機4の回転速度を制御する。これにより、運行制御装置23は、かご1の走行速度や走行距離を制御する。なお、調速機14は、巻上機4よりも慣性が小さいことから、巻上機4よりもかご1の動きに対する追従性が高い。このため、実施の形態1のように巻上機エンコーダ6を用いるよりも、この実施の形態2のように調速機エンコーダ16を用いた方が、より正確にかご1の位置を検出することができる。
 また、運行制御装置23は、調速機エンコーダ16及び床合わせセンサ22からの信号を用いて、かご1が目標とする着床位置に停止したことを検出すると、かごドア及び乗場ドアを開閉する制御を行う。
 上記のように、運行制御装置23及び安全コントローラ24は、巻上機エンコーダ6、調速機エンコーダ16、かごドアスイッチ21、乗場ドアスイッチ及び床合わせセンサ22を共用しつつ、これらの状態検出器からの信号を異なる目的で利用している。即ち、運行制御装置23は、これらの状態検出器からの信号をかご1の運行制御に利用し、安全コントローラ24は、戸開走行監視等の安全監視に利用している。
 図5は図4の調速機エンコーダ16と運行制御装置23及び安全コントローラ24との接続状態の一例を示すブロック図である。調速機エンコーダ16は、検出対象が共通の第1及び第2のセンサ35,36を有している。運行制御装置23には、第1及び第2のセンサ35,36のいずれか一方、この例では第2のセンサ36からの信号のみが入力されている。安全コントローラ24には、第1及び第2のセンサ35,36の両方からの信号が入力されている。
 第1のセンサ35からの信号は、安全コントローラ24の第1の入力ポート31に入力される。第2のセンサ36からの信号は、安全コントローラ24の第2の入力ポート32と、運行制御装置23の入力ポート34とに入力される。安全コントローラ24の第1及び第2の安全監視演算処理部29,30は、第1及び第2のセンサ35,36からの信号に基づいて互いに同様の演算処理を実行する。
 なお、図5では調速機エンコーダ16の例を示したが、運行制御装置23と安全コントローラ24とにより共用される他の状態検出器についても、図5と同様の接続方法で接続することができる。他の構成は、実施の形態1と同様である。
 このようなエレベータ装置では、一部の状態検出器を運行制御装置23と安全コントローラ24とで共用したので、実施の形態1と同様の効果を得ることができる。具体的には、実施の形態2では、巻上機エンコーダ6、調速機エンコーダ16、位置検出スイッチ19a,19b、リミットスイッチ20a,20b、かごドアスイッチ21、乗場ドアスイッチ、及び床合わせセンサ22を運行制御装置23と安全コントローラ24とで共用したので、かご1の速度制御と過速度走行監視、位置制御と位置異常監視、及び戸開閉制御と戸開閉異常監視等に使用するセンサの数を減らすことができる。
 また、調速機エンコーダ16からの信号を用いてかご1の位置を検出することにより、かご1の位置の検出精度を向上させることができる。
 実施の形態3.
 次に、図6はこの発明の実施の形態3によるエレベータ装置を示す構成図である。図において、昇降路内には、かご1の昇降方向に沿ってリニアエンコーダ用テープ37が設けられている。リニアエンコーダ用テープ37は、昇降路内の上端部から下端部に渡って連続して配置されている。また、リニアエンコーダ用テープ37には、昇降路における位置を示す符号が登録されている。
 かご1には、リニアエンコーダ用テープ37に登録された符号を読み取り、かご1の位置を表す信号を出力するリニアエンコーダ38が搭載されている。
 実施の形態3において、かご1の状態を検出する状態検出器は、巻上機エンコーダ6、リニアエンコーダ38、リミットスイッチ20a,20b、かごドアスイッチ21、及び乗場ドアスイッチである。実施の形態3における検出器群26(図2)は、巻上機エンコーダ6、リニアエンコーダ38、リミットスイッチ20a,20b、かごドアスイッチ21、及び乗場ドアスイッチにより構成されている。即ち、実施の形態1における調速機エンコーダ16、位置検出スイッチ19a,19b及び床合わせセンサ22は、実施の形態3では省略されている。
 また、実施の形態3では、巻上機エンコーダ6、リニアエンコーダ38、リミットスイッチ20a,20b、かごドアスイッチ21、及び乗場ドアスイッチが、運行制御装置23及び安全コントローラ24により共用されている。
 運行制御装置23は、巻上機エンコーダ6からの信号を用いてかご1の速度を、リニアエンコーダ38からの信号を用いてかご1の位置を検出し、巻上機4の回転速度を制御する。これにより、運行制御装置23は、かご1の走行速度や走行距離を制御する。
 また、運行制御装置23は、リニアエンコーダ38からの信号を用いて、かご1が目標とする着床位置に停止したことを検出すると、かごドア及び乗場ドアを開閉する制御を行う。
 さらに、運行制御装置23は、リニアエンコーダ38からの信号から、かご1が着床位置にいることを検出し、かつ巻上機エンコーダ6の信号からかご1の速度が十分に低いことを検出したときにのみ、かごドア及び乗場ドアを開く戸開制御を行う。
 安全コントローラ24は、リニアエンコーダ38からの信号を用いて、かご1の速度を検出する。また、安全コントローラ24は、リニアエンコーダ38からの信号を用いて、かご1の位置を検出する。
 リミットスイッチ20a,20bからの信号によりかご1の行き過ぎが検出され、さらにリニアエンコーダ38からの信号によりかご1の終端方向への走行が検出された場合、安全コントローラ24はブレーキ動作指令を出力する。
 また、安全コントローラ24は、リニアエンコーダ38からの信号を用いて、かご1が着床位置にいるか否かを判断する。
 上記のように、運行制御装置23及び安全コントローラ24は、巻上機エンコーダ6、リニアエンコーダ38、かごドアスイッチ21及び乗場ドアスイッチを共用しつつ、これらの状態検出器からの信号を異なる目的で利用している。即ち、運行制御装置23は、これらの状態検出器からの信号をかご1の運行制御に利用し、安全コントローラ24は、戸開走行監視等の安全監視に利用している。
 図7は図6のリニアエンコーダ38と運行制御装置23及び安全コントローラ24との接続状態の一例を示すブロック図である。リニアエンコーダ38は、検出対象が共通の第1及び第2のセンサ39,40を有している。運行制御装置23には、第1及び第2のセンサ39,40のいずれか一方、この例では第2のセンサ40からの信号のみが入力されている。安全コントローラ24には、第1及び第2のセンサ39,40の両方からの信号が入力されている。
 第1のセンサ39からの信号は、安全コントローラ24の第1の入力ポート31に入力される。第2のセンサ40からの信号は、安全コントローラ24の第2の入力ポート32と、運行制御装置23の入力ポート34とに入力される。安全コントローラ24の第1及び第2の安全監視演算処理部29,30は、第1及び第2のセンサ39,40からの信号に基づいて互いに同様の演算処理を実行する。
 なお、図7ではリニアエンコーダ38の例を示したが、運行制御装置23と安全コントローラ24とにより共用される他の状態検出器についても、図7と同様の接続方法で接続することができる。他の構成は、実施の形態1と同様である。
 このようなエレベータ装置では、一部の状態検出器を運行制御装置23と安全コントローラ24とで共用したので、実施の形態1と同様の効果を得ることができる。具体的には、実施の形態3では、巻上機エンコーダ6、リニアエンコーダ38、リミットスイッチ20a,20b、かごドアスイッチ21、及び乗場ドアスイッチを運行制御装置23と安全コントローラ24とで共用したので、かご1の速度制御と過速度走行監視、位置制御と位置異常監視、及び戸開閉制御と戸開閉異常監視等に使用するセンサの数を減らすことができる。
 また、実施の形態3では、位置検出スイッチ19a,19bや床合わせセンサ22の据付位置の微妙な調整が不要となるため、実施の形態1、2に比べて、据付調整が容易となる。
 なお、状態検出器は実施の形態1~3の例に限定されるものではなく、例えばかご1内の負荷を検出するための秤装置等を含んでもよい。
 また、エレベータ装置の全体のレイアウトやローピング方式は図1、4、6に限定されるものではなく、巻上機4、運行制御装置23及び安全コントローラ24の設置場所も特に限定されるものではない。例えば、運行制御装置23及び安全コントローラ24を共通の筐体に収納してもよい。

Claims (8)

  1.  かごと、
     それぞれ前記かごの状態に応じた信号を発生する複数の状態検出器を含む検出器群と、
     前記検出器群からの信号に基づいて前記かごの運行を制御する運行制御部と、
     前記検出器群からの信号に基づいて前記かごの異常の有無を判断する異常判断部と
     を備え、
     少なくとも1つの前記状態検出器は、前記運行制御部及び前記異常判断部の両方により共用されていることを特徴とするエレベータ装置。
  2.  前記運行制御部は、前記運行制御部で判断した前記かごの状態に関する情報を前記異常判断部に送信し、
     前記異常判断部は、前記運行制御部で判断された前記かごの状態と、前記異常判断部で判断した前記かごの状態とを比較することにより前記運行制御部の異常を検出することを特徴とする請求項1記載のエレベータ装置。
  3.  前記運行制御部は、前記かごの状態に関する情報として、前記かごの走行速度に関する情報、前記かごの位置に関する情報、及びドアの開閉状態に関する情報の少なくともいずれか1つを前記異常判断部に送信することを特徴とする請求項2に記載のエレベータ装置。
  4.  前記運行制御部及び前記異常判断部により共用される前記状態検出器と前記異常判断部との間は、電気的に絶縁されていることを特徴とする請求項1から請求項3までのいずれか1項に記載のエレベータ装置。
  5.  前記運行制御部及び前記異常判断部により共用される前記状態検出器からの信号は、フォトカプラを介して前記異常判断部に入力されることを特徴とする請求項4記載のエレベータ装置。
  6.  前記状態検出器の少なくとも1つは、検出対象が共通の第1及び第2のセンサを有し、
     前記運行制御部には、前記第1及び第2のセンサのいずれか一方からの信号のみが入力され、
     前記異常判断部には、前記第1及び第2のセンサの両方からの信号が入力されていることを特徴とする請求項1から請求項5までのいずれか1項に記載のエレベータ装置。
  7.  前記異常判断部は、前記第1及び第2のセンサからの信号に基づいて互いに同様の演算処理を実行する第1及び第2の演算処理部を有していることを特徴とする請求項6記載のエレベータ装置。
  8.  前記検出器群には、前記運行制御部及び前記異常判断部により共用される前記状態検出器として、ドアの開閉状態を検出する検出器と、前記かごの位置を検出する検出器とが含まれており、
     前記異常判断部は、ドアゾーン外でのドアの開放を検出したときに、前記かごの異常を検出し、
     前記運行制御部は、前記かごがドアゾーン内に位置することを検出して、前記ドアの開閉を行うことを特徴とする請求項1から請求項7までのいずれか1項に記載のエレベータ装置。
PCT/JP2010/059610 2009-06-23 2010-06-07 エレベータ装置 WO2010150644A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011519732A JP5523455B2 (ja) 2009-06-23 2010-06-07 エレベータ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009148404 2009-06-23
JP2009-148404 2009-06-23

Publications (1)

Publication Number Publication Date
WO2010150644A1 true WO2010150644A1 (ja) 2010-12-29

Family

ID=43386416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059610 WO2010150644A1 (ja) 2009-06-23 2010-06-07 エレベータ装置

Country Status (2)

Country Link
JP (1) JP5523455B2 (ja)
WO (1) WO2010150644A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815584A (zh) * 2011-06-08 2012-12-12 株式会社日立制作所 实现了电子化的安全运行型电梯用控制装置
EP2594519A1 (de) * 2011-11-15 2013-05-22 Inventio AG Aufzug mit Sicherheitseinrichtung
WO2017013763A1 (ja) * 2015-07-22 2017-01-26 三菱電機株式会社 エレベータ装置
CN106966248A (zh) * 2017-04-25 2017-07-21 快意电梯股份有限公司 轿厢意外移动监测装置、方法及其保护装置和方法
JP6313492B1 (ja) * 2017-03-06 2018-04-18 東芝エレベータ株式会社 エレベータ保守作業支援システム
EP3892582A1 (en) * 2020-04-07 2021-10-13 KONE Corporation Safety system, elevator, and method for upgrading a safety system of an elevator
EP4219373A1 (en) * 2022-01-28 2023-08-02 Otis Elevator Company Elevator systems with improved monitoring

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289265U (ja) * 1985-11-21 1987-06-08
JPH02198993A (ja) * 1989-01-27 1990-08-07 Toshiba Corp エレベータの制御装置
JPH11199153A (ja) * 1998-01-16 1999-07-27 Hitachi Building Systems Co Ltd エレベータの診断装置
JP2003300680A (ja) * 2002-04-10 2003-10-21 Takao Suzuki エレベータシステムおよびその制御方法
WO2006106575A1 (ja) * 2005-03-31 2006-10-12 Mitsubishi Denki Kabushiki Kaisha エレベータ装置
JP2006298538A (ja) * 2005-04-19 2006-11-02 Mitsubishi Electric Corp エレベータ装置
WO2007026416A1 (ja) * 2005-08-31 2007-03-08 Mitsubishi Denki Kabushiki Kaisha エレベータの制御システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289265U (ja) * 1985-11-21 1987-06-08
JPH02198993A (ja) * 1989-01-27 1990-08-07 Toshiba Corp エレベータの制御装置
JPH11199153A (ja) * 1998-01-16 1999-07-27 Hitachi Building Systems Co Ltd エレベータの診断装置
JP2003300680A (ja) * 2002-04-10 2003-10-21 Takao Suzuki エレベータシステムおよびその制御方法
WO2006106575A1 (ja) * 2005-03-31 2006-10-12 Mitsubishi Denki Kabushiki Kaisha エレベータ装置
JP2006298538A (ja) * 2005-04-19 2006-11-02 Mitsubishi Electric Corp エレベータ装置
WO2007026416A1 (ja) * 2005-08-31 2007-03-08 Mitsubishi Denki Kabushiki Kaisha エレベータの制御システム

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815584A (zh) * 2011-06-08 2012-12-12 株式会社日立制作所 实现了电子化的安全运行型电梯用控制装置
JP2012254851A (ja) * 2011-06-08 2012-12-27 Hitachi Ltd 電子化された安全対応のエレベータ用制御装置
EP2594519A1 (de) * 2011-11-15 2013-05-22 Inventio AG Aufzug mit Sicherheitseinrichtung
WO2013072184A1 (de) * 2011-11-15 2013-05-23 Inventio Ag Aufzug mit sicherheitseinrichtung
JPWO2017013763A1 (ja) * 2015-07-22 2017-10-05 三菱電機株式会社 エレベータ装置
WO2017013763A1 (ja) * 2015-07-22 2017-01-26 三菱電機株式会社 エレベータ装置
CN107835780A (zh) * 2015-07-22 2018-03-23 三菱电机株式会社 电梯装置
CN107835780B (zh) * 2015-07-22 2019-05-21 三菱电机株式会社 电梯装置
JP6313492B1 (ja) * 2017-03-06 2018-04-18 東芝エレベータ株式会社 エレベータ保守作業支援システム
CN108529371A (zh) * 2017-03-06 2018-09-14 东芝电梯株式会社 电梯维护作业支援系统
JP2018144954A (ja) * 2017-03-06 2018-09-20 東芝エレベータ株式会社 エレベータ保守作業支援システム
CN108529371B (zh) * 2017-03-06 2019-09-17 东芝电梯株式会社 电梯维护作业支援系统
CN106966248A (zh) * 2017-04-25 2017-07-21 快意电梯股份有限公司 轿厢意外移动监测装置、方法及其保护装置和方法
EP3892582A1 (en) * 2020-04-07 2021-10-13 KONE Corporation Safety system, elevator, and method for upgrading a safety system of an elevator
EP4219373A1 (en) * 2022-01-28 2023-08-02 Otis Elevator Company Elevator systems with improved monitoring

Also Published As

Publication number Publication date
JP5523455B2 (ja) 2014-06-18
JPWO2010150644A1 (ja) 2012-12-10

Similar Documents

Publication Publication Date Title
JP5523455B2 (ja) エレベータ装置
US8813919B2 (en) Elevator safety system preventing collision of cars
US9394139B2 (en) Multi-car elevator and controlling method therefor
KR101331390B1 (ko) 엘리베이터 장치 및 그 검사 방법
EP1864934B1 (en) Elevator apparatus
JP4907097B2 (ja) エレベータ装置
KR101225919B1 (ko) 승강기 승강실의 속도를 모니터링하는 방법 및 검출 시스템
WO2010125689A1 (ja) エレベータ装置
US20120073909A1 (en) Elevator device
US20150251877A1 (en) Elevator apparatus
WO2006103768A1 (ja) エレベータ装置
JPWO2008117423A1 (ja) エレベータのブレーキ装置
KR101189952B1 (ko) 엘리베이터 장치
JP5404787B2 (ja) エレベータ装置
CN105923477B (zh) 电梯
JPWO2006092967A1 (ja) エレベータ装置
KR101121343B1 (ko) 엘리베이터 장치
JP7140634B2 (ja) エレベーターの制御システム
WO2012140720A1 (ja) エレベータ装置
WO2009153882A1 (ja) エレベータ装置
JP5541372B2 (ja) エレベーターの終端階強制減速装置
WO2010089868A1 (ja) エレベータ装置
WO2021176547A1 (ja) エレベーターの安全制御システム、並びにそれを用いるエレベーター
JP2007076909A (ja) マルチかごエレベータの安全装置
JP6578066B2 (ja) エレベータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10791962

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519732

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10791962

Country of ref document: EP

Kind code of ref document: A1