WO2010146737A1 - 表示パネル用基板および表示装置 - Google Patents

表示パネル用基板および表示装置 Download PDF

Info

Publication number
WO2010146737A1
WO2010146737A1 PCT/JP2010/001036 JP2010001036W WO2010146737A1 WO 2010146737 A1 WO2010146737 A1 WO 2010146737A1 JP 2010001036 W JP2010001036 W JP 2010001036W WO 2010146737 A1 WO2010146737 A1 WO 2010146737A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
display panel
light receiving
layer
panel substrate
Prior art date
Application number
PCT/JP2010/001036
Other languages
English (en)
French (fr)
Inventor
金子誠二
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/378,154 priority Critical patent/US20120086019A1/en
Publication of WO2010146737A1 publication Critical patent/WO2010146737A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13312Circuits comprising photodetectors for purposes other than feedback

Definitions

  • the present invention relates to a display panel substrate including a light receiving element (light sensor) and a display device including the display panel substrate.
  • a display device in which a plurality of photosensors are arranged at regular intervals in a display area of a display device having a plurality of pixels, and the photosensors are provided inside the corresponding pixels.
  • the light amount detection function of the optical sensor is used, for example, when the panel surface is touched with an input pen or a human finger, the touched position is displayed.
  • a touch panel (area sensor) function that can be detected can be provided.
  • Examples of the optical sensor provided in such a display device include a PIN photodiode.
  • the structure of the PIN photodiode includes a vertical structure in which a P layer, an I layer, and an N layer are stacked in this order on a substrate, and a horizontal type in which the P layer, the I layer, and the N layer are arranged in the in-plane direction on the substrate ( Lateral) structure.
  • the P layer is a semiconductor layer having a high P-type impurity concentration
  • the I layer is an intrinsic semiconductor layer or a semiconductor layer having a low impurity concentration
  • the N layer is a semiconductor layer having a high N-type impurity concentration.
  • the lateral structure is a structure in which each of the P layer, the I layer, and the N layer does not overlap each other, and as a result, the parasitic capacitance between the respective layers is reduced, so that the sensing speed is faster than the vertical structure. Is often used.
  • the lateral structure also has an advantage that it can be easily manufactured using the same process as other elements formed on the substrate.
  • Patent Document 1 describes a liquid crystal display device having a configuration in which a PIN photodiode is used as an optical sensor.
  • the liquid crystal display device will be described with reference to FIG.
  • a light shielding film 142 for blocking the light L1 is formed.
  • An insulating film 143 made of a silicon oxide film or the like deposited so as to cover substantially the entire element forming surface 114a is formed above the light shielding films 141 and 142.
  • a semiconductor layer 144 (P-type channel region 144c / N-type source region and drain regions 144s / 144d) constituting the TFT element 150 is formed on the upper surface of the insulating film 143 and above the light-shielding film 141. ing.
  • a PIN diode 145 (polycrystalline semiconductor I-type region 145i / N-type region 145n and P-type region 145p) is formed as an optical sensor on the upper surface of the insulating film 143 and above the light shielding film 142. Yes.
  • a gate insulating film 146 made of a silicon oxide film or the like deposited so as to cover substantially the entire element formation surface 114a is formed on the upper side of the semiconductor layer 144 and the PIN diode 145.
  • a gate electrode 147 is formed on the upper surface of the gate insulating film 146 and above the channel region 144 c of the semiconductor layer 144.
  • a first interlayer insulating film 151 made of a silicon oxide film or the like is formed on the gate electrode 147 so as to cover the gate insulating film 146.
  • contact holes H1 and H2 are formed on the source region 144s and the drain region 144d of the semiconductor layer 144, respectively, and in the contact hole H1, a data line electrically connected to the source region 144s.
  • a drain electrode 152 electrically connected to the drain region 144d is formed in the contact hole H2 Ly.
  • contact holes H3 and H4 are respectively formed on the N-type region 145n and the P-type region 145p of the PIN diode 145, and the contact holes H3 are electrically connected to the N-type region 145n.
  • a second electrode 154 is formed in which the first electrode 153 is electrically connected to the P-type region 145p in the contact hole H4.
  • a second interlayer insulating film 155 made of a silicon oxide film or the like is formed so as to cover the first interlayer insulating film 151.
  • an organic planarizing film 156 made of acrylic resin or the like is formed on the second interlayer insulating film 155.
  • a via hole 158 is formed above the drain electrode 152, and a light-transmitting material such as ITO is formed on the cholesteric liquid crystal layer 157 in the via hole 158 and above the region where the PIN diode 145 is formed.
  • a pixel electrode 159 made of a conductive material is formed for each pixel. The pixel electrode 159 is connected to the drain electrode 152 through the via hole 158.
  • the array substrate 114 and the color filter substrate 115 provided with each color filter layer 133 are arranged so that the pixel electrode 159 and the counter electrode 161 face each other.
  • a nematic liquid crystal 117 is sealed between 159 and the counter electrode 161.
  • the capacitance value of the parasitic capacitor can be reduced by providing the organic planarization film 156 having a relatively low dielectric constant between the pixel electrode 159 and each signal line such as the data line Ly. Can do.
  • the pixel electrode 159 can be overlapped with the signal lines, and only light having a specific wavelength (red light Lr) can be reflected by the cholesteric liquid crystal layer 157 provided on the formation region of the PIN diode 145.
  • a liquid crystal display device with improved aperture ratio and light utilization efficiency can be realized.
  • Patent Document 2 suppresses polarization generated by moisture in liquid crystal or moisture entering through a gap between seal adhesives by reducing the relative dielectric constant of a planarization film formed on a TFT element.
  • polarization can be made difficult to occur by using a material having a relative dielectric constant of 5 or less, preferably 4 or less.
  • Patent Document 3 includes an inorganic insulating film (for example, the contact surface with the organic protective film has a concavo-convex shape) formed in different forms on the contact surface with the organic protective film and the non-contact surface.
  • an inorganic insulating film for example, the contact surface with the organic protective film has a concavo-convex shape
  • a configuration capable of preventing a separation phenomenon between an organic film and an inorganic film is disclosed.
  • JP 2008-158272 A Japanese Patent Publication “Japanese Patent Laid-Open No. 11-274510 (published Oct. 8, 1999)” Japanese Patent Publication “JP 2007-116164 A (published May 10, 2007)”
  • the organic insulating film (organic planarizing film) having a relative dielectric constant of 4 or less described in Patent Document 2 has already been generalized, and such an organic insulating film (organic planarizing film) was used. Even so, it is difficult to solve the reliability problem.
  • the present invention has been made in view of the above problems, and even with a configuration using an organic insulating film (organic planarization film), it is possible to suppress degradation of photocurrent characteristics and to improve reliability. It is an object of the present invention to provide a display panel substrate including an improved light receiving element (photosensor) and a display device including the display panel substrate.
  • organic planarization film organic planarization film
  • a display panel substrate is a display panel substrate having a plurality of pixels.
  • the pixel is provided with a conductive film patterned in such a manner.
  • the organic insulating film is interposed between the wiring and the transparent pixel electrode, the capacitance value of the parasitic capacitor generated between the wiring and the transparent pixel electrode can be reduced.
  • the organic insulating film and the light receiving element are interposed between the organic insulating film and the light receiving element, more specifically, between the organic insulating film and the first inorganic insulating film, and in the light receiving portion of the light receiving element.
  • a conductive film for applying a predetermined voltage is provided, which is patterned so as to partially overlap and partially open. Therefore, even if charge accumulation occurs in the organic insulating film, the influence of the charge on the light receiving portion of the light receiving element due to capacitive coupling can be suppressed.
  • a display panel substrate including an element can be realized.
  • the conductive film provided on the light receiving portion of the light receiving element is partially opened, light can be guided to the light receiving element side.
  • the organic insulating film is an insulating film mainly composed of an organic substance, and is an insulating film made of only an organic substance or an insulating film to which an inorganic substance is added as required.
  • the display panel substrate of the present invention is formed on a light receiving element that passes a different current value according to the amount of received light, an inorganic insulating film formed on the light receiving element, and the inorganic insulating film.
  • a conductive film patterned so as to partially overlap and partially open to the light receiving portion of the light receiving element.
  • the display panel substrate of the present invention includes a light receiving element that passes a different current value according to the amount of received light, an organic insulating film formed on a light incident path with respect to the light receiving element, A conductive film formed so as to be interposed on the light receiving element side of the organic insulating film in the incident path, and patterned so as to partially overlap and partially open to the light receiving part of the light receiving element; It is the composition which is provided.
  • the display device of the present invention is configured to include the display panel substrate.
  • FIG. 2A is a cross-sectional view taken along the line A-A ′ of FIG. 2A
  • FIG. 2B is a cross-sectional view corresponding to (a) in the comparative example.
  • (A) is a figure which shows the use environment temperature dependence of the leak current in an organic insulating film
  • (b) is a figure which shows the use environment temperature dependence of the leak current in an inorganic insulating film. It is a graph which shows a time-dependent change of the photocurrent characteristic in the PIN diode with which the display panel board
  • FIG. 2 is a circuit diagram illustrating an example of a circuit configuration of one pixel unit including red, green, and blue pixels in the display panel substrate of FIG. 1.
  • FIG. 6 is a circuit diagram showing another example of the circuit configuration of one pixel unit including red, green, and blue pixels in the display panel substrate of FIG. 1.
  • FIG. 11 is a diagram illustrating an example in which a metal wiring network bus line is taken out in a direction in which a reset signal line and a row selection signal line extend in the circuit configuration illustrated in FIG. 10.
  • FIG. 11 is a diagram illustrating an example in which a metal wiring bus line is taken out in a direction in which a source signal line (power supply line) and a source signal line (output signal line) extend in the circuit configuration illustrated in FIG. 10.
  • FIG. 14 is a sectional view taken along line B-B ′ of FIG. 13.
  • the conventional liquid crystal display device it is principal part sectional drawing which shows the display part and light-receiving part in a pixel.
  • the display device of the present invention is not limited to the liquid crystal display device 19 and may be embodied as an organic EL display device, for example.
  • the liquid crystal display device 19 includes an active matrix substrate 1 and a color filter substrate 2 disposed so as to face the active matrix substrate 1, and a liquid crystal layer between the substrates 1 and 2.
  • 3 includes a liquid crystal display panel 18 having a configuration enclosed by a sealing material.
  • the liquid crystal display device 19 includes a backlight unit 4 that emits light toward the liquid crystal display panel 18.
  • the glass substrate 17 of the color filter substrate 2 is provided with a color filter layer, a common electrode, an alignment film, etc. (not shown), and a polarizing plate 16a is provided on the opposite side of the color filter layer formation surface. It has been.
  • a polarizing plate 16b is also provided on the side of the active matrix substrate 1 facing the backlight unit 4.
  • the active matrix substrate 1 is provided with a display area composed of a large number of transparent pixel electrodes 15 arranged in a matrix.
  • a pixel TFT 20 as an active element for controlling the transparent pixel electrode 15 and a light receiving element for realizing a touch panel function As a PIN diode 21.
  • a voltage for displaying a desired image can be applied to the transparent pixel electrode 15 by the pixel TFT 20, and the PIN diode 21 that allows a different current value to flow according to the amount of received light, for example, It is possible to detect touching with a finger or a pen.
  • the liquid crystal display device 19 with a touch panel (area sensor) function including the active matrix substrate 1 in which the pixel TFT 20 and the PIN diode 21 are formed on the same substrate, a resistive film type or a capacitance type is used.
  • the thickness can be reduced and the manufacturing cost can be reduced.
  • the active matrix substrate 1 includes a plurality of transparent pixel electrodes 15, pixel TFTs 20 connected to the transparent pixel electrodes 15, and a plurality of PIN diodes 21 that flow different current values according to the amount of received light. It has been.
  • the pixel TFT 20 is provided for each pixel formed by each transparent pixel electrode 15, but the PIN diode 21 is not necessarily provided for all pixels, and is required to detect the touched position. It may be provided for a necessary pixel in consideration of the resolution.
  • the liquid crystal display device 19 is composed of red, green, and blue pixels.
  • the PIN diode 21 is provided only in the pixel corresponding to blue, and the transistors and capacitors connected to the PIN diode 21 are provided. Are provided in pixels corresponding to red and green (see FIGS. 9 and 10 described later), but are not limited thereto.
  • the P layer 8e as shown in FIG. 1 is used from the viewpoint of relatively easily manufacturing the active matrix substrate 1 having a light receiving element with a high sensing speed as an optical sensor.
  • the PIN diode 21 having a structure in which the I layer 8d and the N layer 8f do not overlap each other is used, the present invention is not limited to this.
  • any light receiving element may be used as long as it passes a different current value according to the amount of light received in the light receiving unit provided in the light receiving element.
  • a CCD, CMOS, PN diode, phototransistor, or the like is used. You can also
  • the configuration of the active matrix substrate 1 will be described in detail while explaining the process of simultaneously forming the pixel TFT 20 and the PIN diode 21 on the active matrix substrate 1.
  • a glass substrate 5 is used as a substrate for constituting the active matrix substrate 1.
  • a quartz substrate, a plastic substrate, or the like can be used in addition to the glass substrate 5.
  • a light shielding film 6 for blocking the light emitted from the backlight unit 4 from entering the pixel TFT 20 and the PIN diode 21. 6 is formed respectively.
  • a base coat film 7 is formed on the light shielding films 6 and 6 so as to cover the light shielding films 6 and 6 and the glass substrate 5.
  • the base coat film 7 it is possible to use a film made of an insulating inorganic material such as a silicon oxide film, a silicon nitride film, a silicon nitride oxide film, or a laminated film in which these are appropriately combined.
  • a silicon oxide film was used. These films can be deposited by LPCVD, plasma CVD, sputtering, or the like.
  • the base coat film 7 is also a film for preventing damage to the glass substrate 5 due to impurity diffusion from the glass substrate 5 and heat generation during laser irradiation.
  • a pixel TFT 20 and a PIN diode 21 are formed on the upper surface of the base coat film 7 in regions above the light shielding films 6 and 6, respectively.
  • the base coat film 7 is an interlayer film between the above-described light shielding films 6 and 6, the pixel TFT 20 and the PIN diode 21.
  • the formation process of the pixel TFT 20 and the PIN diode 21 is as follows.
  • a non-single-crystal semiconductor thin film that will later become the polycrystalline semiconductor film 8 is formed on the base coat film 7 in the region above the light shielding films 6 and 6 by LPCVD, plasma CVD, sputtering, or the like. Is done.
  • the non-single-crystal semiconductor thin film includes amorphous silicon, polycrystalline silicon, amorphous germanium, polycrystalline germanium, amorphous silicon / germanium, polycrystalline silicon / germanium, amorphous silicon / carbide, Crystalline silicon carbide or the like can be used. In this embodiment mode, amorphous silicon is used.
  • the non-single-crystal semiconductor thin film is crystallized to form a polycrystalline semiconductor film 8.
  • a laser beam, an electron beam, or the like can be used.
  • crystallization is performed using a laser beam.
  • the polycrystalline semiconductor film 8 is patterned by photolithography according to the formation region of the light shielding film 6.
  • a P-type channel region 8a is formed at the center of the polycrystalline semiconductor film 8, and an N-type source region 8b and an N-type drain region 8c are formed on both sides thereof. Each is formed.
  • an intrinsic semiconductor layer or an I layer 8d which is a semiconductor layer having a relatively low impurity concentration, is formed in the center of the polycrystalline semiconductor film 8 in the region where the PIN diode 21 is formed, and P-type is formed on both sides thereof.
  • a P layer 8e which is a semiconductor layer having a relatively high impurity concentration
  • an N layer 8f which is a semiconductor layer having a relatively high N-type impurity concentration
  • a gate insulating film 9 made of a deposited silicon oxide film or the like is formed on the entire upper surface of the glass substrate 5, and the polycrystalline semiconductor film 8 is covered with the gate insulating film 9.
  • the gate insulating film 9 also covers the polycrystalline semiconductor film 8 in the region where the PIN diode 21 is formed, but covers only the polycrystalline semiconductor film 8 in the region where the pixel TFT 20 is formed. It can also be done.
  • a TaN film and a W film are stacked as a conductive film.
  • a film in which a TaN film and a W film are stacked is used as the conductive film.
  • the present invention is not limited to this, and Ta, W, Ti, Mo, Al,
  • the conductive film may be formed of an element selected from Cu, Cr, Nd, or the like, or an alloy material or a compound material containing the element as a main component.
  • the conductive film may be formed using a semiconductor film typified by polycrystalline silicon or the like doped with an impurity such as phosphorus or boron.
  • the gate electrode 10 is formed by patterning the conductive film by etching using a resist pattern (not shown) formed by photolithography as a mask.
  • a first inorganic insulating film 11 made of a deposited silicon oxide film or the like is formed so as to cover the upper surface of the gate electrode 10 and the upper surface of the gate insulating film 9 where the gate electrode 10 is not formed.
  • contact holes penetrating the gate insulating film 9 and the first inorganic insulating film 11 are formed on the N-type source region 8b, the N-type drain region 8c, the P layer 8e, and the N layer 8f, respectively. It is formed.
  • a conductive film is formed on the entire upper surface of the glass substrate 5 by sputtering or the like.
  • the conductive film for example, a conductive film made of aluminum or the like can be used.
  • the conductive film is not limited to this, and is selected from Ta, W, Ti, Mo, Al, Cu, Cr, Nd, and the like.
  • An element, or an alloy material or a compound material containing the element as a main component may be used, and if necessary, a laminated structure may be formed by appropriately combining them.
  • aluminum is used.
  • the conductive film is patterned into a desired shape by etching using a resist pattern (not shown) formed by photolithography as a mask, and the N-type source region 8b and the N-type drain region 8c of the pixel TFT 20 are patterned.
  • the source electrode 12a and the drain electrode 12b are electrically connected to each other.
  • the conductive film also serves as metal electrodes (wirings) 12c and 12d electrically connected to the P layer 8e and the N layer 8f of the PIN diode 21, respectively.
  • the conductive film also becomes a metal wiring network 13 formed above the I layer 8d of the PIN diode 21.
  • the metal wiring network 13 will be described later.
  • a transparent organic insulating film 14 is formed by spin coating or slit coating so as to cover the first inorganic insulating film 11, the source electrode 12a, the drain electrode 12b, the metal electrodes 12c and 12d, and the metal wiring network 13. .
  • the via hole can be formed by an exposure / development process when the transparent organic insulating film 14 is photosensitive, and can be formed by, for example, a dry etching method when it is non-photosensitive.
  • an acrylic insulating film is used as the transparent organic insulating film 14.
  • an organic insulating film is an inorganic insulating film. Since the dielectric constant is lower than that of the film, for example, parasitic capacitance generated between the wiring and the electrode can be suppressed.
  • the step of the lower film can be easily flattened.
  • the organic insulating film may contain an inorganic material such as a siloxane polymer as long as it can be thickened without causing cracks.
  • a transparent conductive film such as ITO or IZO is formed on the transparent organic insulating film 14 by sputtering or the like, and is patterned into a desired pattern using a photoresist, thereby forming the transparent pixel electrode 15.
  • the transparent pixel electrode 15 is electrically connected to the drain electrode 12b as shown in the figure.
  • an alignment film is formed on the transparent pixel electrode 15.
  • the source electrode 12a, the drain electrode 12b, the metal electrodes 12c and 12d, and the metal wiring network 13 are preferably formed of the same material. According to this configuration, by patterning the same layer as described above, the metal wiring network 13 can be formed simultaneously with the source electrode 12a, the drain electrode 12b, and the metal electrodes 12c and 12d, thereby avoiding an increase in the number of steps. Because it can.
  • FIG. 2A is a plan view of the PIN diode 21 shown in FIG. 1 as viewed from the side on which the metal wiring network 13 is formed.
  • the metal wiring network 13 is formed mainly above the I layer 8d of the PIN diode 21, and has a planar shape patterned in a lattice shape as shown in FIG. Therefore, it can be said that the metal wiring network 13 is patterned so as to have an overlapping portion 13a that overlaps the I layer 8d and an opening portion 13b that opens to the I layer 8d. Since the metal wiring network 13 is a member formed by patterning a conductive film as described above, it has conductivity.
  • the metal wiring network 13 allows light incident from the transparent pixel electrode 15 side to pass through the opening 13b to the PIN diode 21 side (light guide function). Thereby, the light detection function in the PIN diode 21 can be maintained.
  • the metal wiring network 13 can suppress the influence which it has on the I layer 8d of the PIN diode 21 resulting from the capacitive coupling of the electric charge which generate
  • the active matrix substrate 1 including the PIN diode 21 with improved reliability can be realized.
  • the planar shape of the metal wiring network 13 is not limited to the shape shown in FIG. 2A.
  • the grid shape shown in FIG. 2B or the shape shown in FIGS. Any shape may be used as long as it is partially overlapped with the I layer 8d and patterned so as to partially open, such as the slit shape shown in f).
  • the planar shape of the metal wiring network 13 is a lattice shape, the overlapping portion 13a and the opening portion 13b are arranged in a distributed manner, so that light is guided to the entire light receiving portion of the PIN diode 21. Since the function and the charge influence suppressing function can be more uniformly exhibited, it can be said that the lattice shape is one of suitable shapes.
  • the shape, area, arrangement, and the like of the overlapping portion 13a and the opening portion 13b may be optimized in consideration of the light guiding function and the charge effect suppressing function.
  • 3A is a cross-sectional view taken along the line AA ′ of FIG. 2A, and shows a schematic configuration of a region where the PIN diode 21 is formed in the active matrix substrate 1 of the present embodiment. It is.
  • FIG. 3B is a diagram showing a configuration in which the metal wiring network 13 is omitted from FIG. 3A as a comparative example.
  • the transparent organic insulating film 14 is not dense compared to the inorganic insulating film formed by the various CVD methods described above.
  • the metal wiring network 13 is transparent to the first inorganic insulating film 11. It is provided so as to cover the I layer 8 d of the PIN diode 21 between the organic insulating film 14.
  • the metal wiring network 13 has the opening part 13b, it is possible to fully suppress the influence of the electric charge generated above the opening part 13b by the overlapping part 13a adjacent to the opening part 13b. It is.
  • the metal wiring network 13 is not provided, and the above-described influence cannot be suppressed.
  • an organic insulating film such as the transparent organic insulating film 14 may not have insulating properties depending on the usage environment, and a minute leak current may be generated.
  • the leakage current tends to increase as the environmental temperature of the organic insulating film increases.
  • FIG. 4A shows the use environment temperature dependence of the leak current in the organic insulating film
  • FIG. 4B shows the use environment temperature dependence of the leak current in the inorganic insulation film.
  • the leakage current increases as the use environment temperature increases from A to E.
  • the leakage current does not increase and does not change substantially.
  • the transparent organic insulating film 14 used in the present embodiment also tends to increase its leakage current as the use environment temperature rises, the transparent pixel electrode 15, the metal electrodes 12c and 12d, and the I layer 8d. Due to the potential difference between the two, the charge moves into the transparent organic insulating film 14, and the charge is accumulated in the transparent organic insulating film 14.
  • the electric charge accumulated in the transparent organic insulating film 14 adversely affects the photocurrent characteristic of the PIN diode 21 by the mechanism shown below.
  • a depletion layer region is formed in the semiconductor layer provided in the PIN diode 21.
  • a photocurrent due to the photoelectric effect flows through the PIN diode 21.
  • the above-described adverse effects can be suppressed by providing the metal wiring network 13 and applying a predetermined voltage to the metal wiring network 13.
  • the metal wiring network 13 is provided at a location closer to the PIN diode 21 than the position where the electric charge exists, the PIN diode 21 is applied to the metal wiring network 13 without being affected by the accumulated electric charge.
  • the configuration is only affected by the voltage (specifically, the voltage that can obtain the best characteristics of the PIN diode 21 described later).
  • FIG. 5 is a diagram showing a change with time of photocurrent characteristics when an operating voltage is applied to the PIN diode in the comparative example shown in FIG. 3B.
  • FIG. 6 is a diagram showing a change with time of photocurrent characteristics when an operating voltage is applied to the PIN diode 21 provided in the active matrix substrate 1 of the present embodiment shown in FIG. is there.
  • FIG. 6 is a result of confirmation in a configuration in which a conductive member having translucency without opening 13b is arranged instead of the metal wiring network 13 of FIG. Since the aperture ratio is different between the configuration using the metal wiring network 13 and the configuration using the light-transmitting conductive member, it cannot be said that the photocurrent characteristics are completely the same. It is thought that the same tendency can be seen as a change.
  • FIGS. 5 and 6 both show changes over time in the photodiode characteristics (changes in photocurrent with respect to changes in applied voltage) while irradiating the respective PIN diodes 21 with a certain intensity of light (initial state and irradiation). The result of measuring time from 1 minute to 1000 minutes) is shown. 5 and 6 indicate the voltage applied to the PIN diode 21 (minus (-) means reverse bias), and the vertical axis indicates the photocurrent flowing through the PIN diode 21 ( “1E-10” means 1 ⁇ 10 ⁇ 10 ).
  • the characteristic deterioration of the PIN diode 21 such as a decrease in the photocurrent value occurs with time.
  • This cause is considered to be a result of accumulated charges generated in the transparent organic insulating film 14 existing between the transparent pixel electrode 15 and the first inorganic insulating film 11 as described above.
  • the photocurrent value does not decrease with time.
  • the metal wiring network 13 is formed between the transparent organic insulating film 14 and the I layer 8d of the PIN diode 21 so as to cover the I layer 8d. This is because, by applying a desired voltage, it is possible to suppress the influence of the accumulated charge generated in the transparent organic insulating film 14 on the PIN diode 21.
  • the voltage dependence of the PIN diode 21 was measured under the conditions shown in FIG.
  • the configuration used corresponds to the above comparative example.
  • -7V is applied to the metal electrode 12c (the anode of the PIN diode 21)
  • -7V is applied to the metal electrode 12d (the cathode of the PIN diode 21)
  • a certain amount of light is transmitted through the transparent pixel electrode 15 to the PIN diode. 21
  • the voltage Vito of the transparent pixel electrode 15 was changed in a range of ⁇ 20V to + 20V.
  • the configuration used for this measurement corresponds to the above comparative example.
  • the metal wiring network 13 is further added (FIG. 3A)
  • the metal wiring is used.
  • the voltage applied to the metal wiring network 13 is the voltage at which the current value flowing through the PIN diode 21 is the largest when the I layer 8 d of the PIN diode 21 exhibits a certain amount of received light. It is preferable.
  • the optimum applied voltage of the metal wiring network 13 in which the current value flowing through the PIN diode 21 is maximized also changes.
  • the PIN diode 21 is adjusted by adjusting the voltage applied to the metal wiring network 13 so that the current value flowing through the PIN diode 21 is maximized. 21 characteristics can be further improved.
  • FIG. 9 and FIG. 10 show an example of a circuit configuration of a one-pixel unit PU composed of PR, PG, and PB pixels that display red, green, and blue, respectively, in the active matrix substrate 1 of the present embodiment.
  • FIG. 9 and FIG. 10 show an example of a circuit configuration of a one-pixel unit PU composed of PR, PG, and PB pixels that display red, green, and blue, respectively, in the active matrix substrate 1 of the present embodiment.
  • the source driver 25 is on the upper side of the active matrix substrate 1 in the drawing
  • the gate driver 26 is on the left side in the drawing
  • the sensor reading driver 27 is on the lower side in the drawing
  • the sensor is on the right side in the drawing.
  • a row driver 28 is provided.
  • an upper region in the drawing (region closer to the source driver 25) has source signal lines SLr, SLg, and SLb connected to the source driver 25 and a gate signal connected to the gate driver 26.
  • Each intersection of the line GL is located, and a pixel TFT 20 is provided in the vicinity of the intersection.
  • a PIN diode 21 is provided in the lower region in the blue pixel PB (region closer to the sensor reading driver 27), and a transistor connected to the PIN diode 21 in the lower region in the red pixel PR in the drawing. 22, a capacitor 23 connected to the PIN diode 21 and the transistor 22 is formed in the lower region of the green pixel PG.
  • the active matrix substrate 1 is provided with an auxiliary capacitor Cs in parallel with the liquid crystal capacitor CLC in order to increase the decay time of the charge charged in the liquid crystal capacitor CLC.
  • the auxiliary capacitor Cs is configured between the transparent pixel electrode 15 connected to the drain electrode 12b of the pixel TFT 20 and the common electrode that is opposed to the transparent pixel electrode 15 and to which the common electrode voltage VCOM is applied.
  • One end of the auxiliary capacity Cs is connected to the auxiliary capacity bus line CSL.
  • the source of the transistor 22 is connected to the power supply line 29, the drain is connected to the output signal line 30, the power supply line 29 and the output signal line 30 are connected to the sensor reading driver 27, and the power supply line A power supply voltage VDD is applied to 29 from the sensor reading driver 27.
  • the cathode of the PIN diode 21 (metal electrode 12d in FIG. 1) is connected to the gate of the transistor 22, and one end of the capacitor 23 connected to the PIN diode 21 is also connected.
  • the anode of the PIN diode 21 (metal electrode 12c in FIG. 1) is connected to a reset signal line (initialization signal input line) 31 to which a reset signal RST is sent from the sensor row driver 28, and the other end of the capacitor 23 is It is connected to a row selection signal line (selection signal input line) 32 through which a row selection signal RWS is sent.
  • the row selection signal RWS has a role of selecting a specific row and outputting a signal from the specific row.
  • a high level reset signal RST is sent from the sensor row driver 28 to the reset signal line 31 in order to reset the gate potential of the transistor 22.
  • a forward bias is applied to the PIN diode 21, so that the capacitor 23 is charged, the gate potential gradually rises, and finally reaches the initialization potential.
  • the gate potential at this time is a value obtained by subtracting the forward voltage drop in the PIN diode 21 and the voltage drop due to the parasitic capacitance of the PIN diode 21 from the initialization potential.
  • a high-level row selection signal RWS is applied from the sensor row driver 28 via the row selection signal line 32 to the other end of the capacitor 23 in order to read the light detection result.
  • the gate potential is pushed over the capacitor 23, so that the gate potential becomes a potential obtained by adding the high level potential of the row selection signal RWS to the detection potential.
  • a metal wiring network bus line TCEL is separately provided.
  • This metal wiring network bus line TCEL is for applying a predetermined voltage to the metal wiring network 13 described above, and is drawn out to the outer peripheral region (region outside the display region) of the active matrix substrate 1 for power supply. ing.
  • the metal wiring network 13 provided in each of a large number of pixel units PU arranged in the row direction (horizontal direction in FIG. 9) or the column direction (vertical direction in FIG. 9) is connected to one metal wiring network bus line TCEL. Can be kept.
  • the optimum voltage (fixed voltage) set as described above may be applied to the metal wiring bus line TCEL, the optimum voltage can be applied by connecting to the sensor row driver 28, for example. Good.
  • a power supply circuit for applying a voltage to the metal wiring network bus line TCEL may be separately provided.
  • FIG. 10 shows an example of a more preferable circuit configuration of a one-pixel unit PU composed of PR, PG, and PB pixels, which are pixels for displaying red, green, and blue, respectively, in the active matrix substrate 1 of the present embodiment.
  • the source signal line SLr and the power supply line 29, and the source signal line SLg and the output signal line 30 are provided in order to prevent a decrease in the aperture ratio due to an increase in the number of wirings.
  • This is a single configuration.
  • a drive circuit 34 having both the function of the source driver 25 (source signal line driving function) and the function of the sensor reading driver 27 (sensor reading function) shown in FIG.
  • the drive circuit 34 includes a shift register 34a, a sensor reading / source signal line driving circuit 34b, and a switch 34c for switching between a source signal line driving function and a sensor reading function.
  • the source signal line SLr power supply line 29
  • the source signal line SLg output signal line 30
  • the optical sensing data is read during a blanking period in which writing to the pixel TFT 20 is not performed.
  • the increase in the number of wirings can be greatly reduced, so that the active matrix substrate 1 having a high aperture ratio can be realized.
  • the metal wiring network bus line TCEL is routed so as not to cross the metal electrodes 12c and 12d. It is necessary to decide.
  • FIG. 11 shows an example in which the metal wiring network bus line TCEL is taken out in the direction in which the reset signal line 31 and the row selection signal line 32 extend in the circuit configuration shown in FIG.
  • FIG. 12 shows that the metal wiring network bus line TCEL is extracted in the circuit configuration shown in FIG. 10 in a direction in which the source signal line SLr (power supply line 29) and the source signal line SLg (output signal line 30) are extended. An example is shown.
  • FIGS. 11 and 12 the upper part of the PIN diode 21 in the metal wiring network bus line TCEL (this part becomes the metal wiring network 13) is shown in FIG. It is assumed that an opening 13b as shown in FIG. 2 (f) is formed.
  • a single source signal line SLr (power supply line 29) and source signal line SLg (output signal line 30) formed in the same level layer as the metal wiring network bus line TCEL are provided.
  • a connection wiring portion 35 is formed below each signal line, that is, in a layer at the same level as the gate signal line GL. It is connected to a metal wiring network bus line TCEL.
  • the metal wiring network bus line TCEL intersects with the single source signal line SLr (power supply line 29) and the source signal line SLg (output signal line 30) in the same level layer.
  • the reset signal line 31 and the row selection signal line 32 can be taken out in the extending direction.
  • the metal wiring bus line TCEL is not crossed with the source signal line SLr (power supply line 29) and the source signal line SLg (output signal line 30).
  • a TCEL is formed in parallel with each signal line.
  • the metal wiring network bus line TCEL does not intersect the source signal line SLr (power supply line 29) and the source signal line SLg (output signal line 30) in the same level layer as the source signal line SLr (power supply line 29).
  • the line SLr (power supply line 29) and the source signal line SLg (output signal line 30) can be taken out in the extending direction.
  • the metal electrodes 12c and 12d and the metal wiring network bus line TCEL are electrically insulated even when they intersect, the metal wiring network bus line TCEL can be more easily routed.
  • the metal wiring network 13 by connecting the metal wiring network 13 to any one of the metal electrodes 12c and 12d (the following description will be made on the assumption that the metal wiring network 13 is connected to the metal electrode 12c), the power supply to the metal wiring network 13 is supplied. It is also possible to carry out from the metal electrode 12c connected to.
  • the same voltage as the metal electrode 12c connected to the metal wiring network 13 must be applied to the metal wiring network 13, but even in this case, it is possible to obtain a charge influence suppressing function.
  • the metal wiring network bus line TCEL it is not necessary to separately provide the metal wiring network bus line TCEL.
  • the metal wiring network 13 and the metal electrodes 12c and 12d are formed from the same conductive film, the metal wiring network 13 and the metal electrode 12c It only has to be patterned so as to be partially connected. Therefore, in the above configuration, the process can be simplified.
  • each driver 25, 26, 27, and 28 can be formed monolithically on the active matrix substrate 1 using the polycrystalline semiconductor film 8 having relatively high electron mobility.
  • liquid crystal display device 19 By configuring the liquid crystal display device 19 using the active matrix substrate 1 configured as described above, a highly reliable liquid crystal display device 19 that exhibits bright display quality and has a touch panel (area sensor) function is realized. be able to.
  • a second inorganic insulating film 33 is provided between the metal wiring network 13 and the metal electrodes 12 c and 12 d connected to the PIN diode 21 via the first inorganic insulating film 11.
  • the other configuration is the same as that described in the first embodiment.
  • members having the same functions as those shown in the drawings of the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • FIG. 13 is a plan view of the PIN diode 21 provided on the display panel substrate of the present embodiment as viewed from the side on which the metal wiring network 13 is formed.
  • FIG. 14 is a cross-sectional view taken along the line B-B ′ of FIG. 13, and is a diagram showing a schematic configuration of a region where the PIN diode 21 is formed in the display panel substrate of the present embodiment.
  • a second inorganic insulating film 33 is provided between the metal wiring network 13 and the metal electrodes 12 c and 12 d connected to the PIN diode 21. Therefore, the metal wiring network 13 and the metal electrodes 12c and 12d can be partially overlapped as shown in FIG.
  • the metal wiring network bus line TCEL can be arranged so as to intersect the metal electrodes 12c and 12d, and the metal wiring network bus line TCEL can be easily handled.
  • the second inorganic insulating film 33 can be provided in the same manner as the first inorganic insulating film 11, and the description thereof is omitted.
  • first inorganic insulating film 11 and the second inorganic insulating film 33 may be formed of the same material.
  • the display panel substrate (active matrix substrate 1) of the present invention is a display panel substrate having a plurality of pixels, and a light receiving element (PIN diode) that passes different current values according to the amount of received light.
  • a light receiving element PIN diode
  • 21 an inorganic insulating film (first inorganic insulating film 11) formed on the light receiving element, and wirings (metal electrodes 12c and 12d) formed on the inorganic insulating film and connected to the light receiving element
  • a conductive film metal wiring network 13
  • the display panel substrate (active matrix substrate 1) of the present invention is formed on a light receiving element (PIN diode 21) that passes a different current value according to the amount of light received, and on a light incident path with respect to the light receiving element. And an organic insulating film (transparent organic insulating film 14) that is formed so as to be interposed on the light receiving element side with respect to the organic insulating film in the incident path, and partially overlaps the light receiving portion of the light receiving element. It can be said that the conductive film (metal wiring network 13) patterned so as to be opened is provided.
  • a layer forming a conductive portion may be formed.
  • the conductive film is preferably patterned in a lattice pattern.
  • the light guiding function and the charge influence suppressing function are more uniformly applied to the entire light receiving portion of the light emitting element. It can be demonstrated.
  • the display panel substrate of the present invention it is preferable that the display panel substrate further includes a bus line that is electrically connected to the conductive film and extends outside the display region of the display panel substrate.
  • a predetermined voltage can be applied to the conductive film by supplying power to the end portion of the bus line drawn out of the display area of the display panel substrate.
  • the conductive film provided for each of the plurality of pixels is electrically connected to the bus line, and it is preferable that power can be collectively supplied to the plurality of conductive films by the bus line. .
  • the conductive film may be connected to the wiring.
  • the light receiving element includes a P layer which is a semiconductor layer having a relatively high P-type impurity concentration, and an I layer which is an intrinsic semiconductor layer or a semiconductor layer having a relatively low impurity concentration.
  • an N layer that is a semiconductor layer having a relatively high N-type impurity concentration, and the light receiving portion is preferably the I layer.
  • the P layer, the I layer, and the N layer in the photodiode are arranged in an in-plane direction.
  • the P layer, the I layer, and the N layer do not overlap each other, the parasitic capacitance between the layers is reduced, and the sensing speed as an optical sensor can be increased.
  • the photodiode can be easily manufactured by using the same manufacturing process as that of an active element such as a TFT (Thin Film Transistor) element formed on the display panel substrate.
  • an active element such as a TFT (Thin Film Transistor) element formed on the display panel substrate.
  • a display panel substrate having a light receiving element with a high sensing speed can be manufactured relatively easily.
  • the conductive film and the wiring are preferably formed of the same material.
  • the conductive film and the wiring are made of the same material, they can be formed by patterning the same film.
  • the display panel substrate of the present invention preferably further includes a second inorganic insulating film interposed between the conductive film and the wiring.
  • the first inorganic insulating film and the second inorganic insulating film may be formed of the same material.
  • a substrate for a display panel of the present invention includes a light receiving element that causes a different current value to flow according to the amount of light received, and an organic insulating film formed on a light incident path with respect to the light receiving element And a conductive film that is formed so as to be interposed on the light receiving element side of the organic insulating film in the incident path, and is patterned so as to partially overlap and partially open to the light receiving part of the light receiving element It is characterized by comprising.
  • the conductive film is formed so as to be interposed on the light receiving element side with respect to the organic insulating film in the incident path, even if charge accumulation occurs in the organic insulating film, The influence of charge on the light receiving element due to capacitive coupling can be suppressed.
  • the conductive film is formed on the light incident path, the conductive film is partially opened, so that the light can be guided to the light receiving element side.
  • a display panel substrate including an element can be realized.
  • the display device of the present invention is characterized by including the display panel substrate in order to solve the above-described problems.
  • the display device since the display device includes the display panel substrate including the light receiving element, a highly reliable display device having a bright display quality and a touch panel (area sensor) function is provided. Can be realized.
  • the present invention can be applied to liquid crystal display devices and display devices represented by organic EL display devices.
  • Active matrix substrate (display panel substrate) 8 Polycrystalline semiconductor film 8d I layer of PIN diode (light receiving part of light receiving element) 8e P diode P layer (semiconductor layer of light receiving element) N layer of 8f PIN diode (semiconductor layer of light receiving element) 11 First inorganic insulating film 12c / 12d Metal electrode (wiring) 13 Metal wiring network (conductive film) 14 Organic insulating film 15 Transparent pixel electrode 19 Liquid crystal display device (display device) 21 PIN diode (light receiving element) 33 Second inorganic insulating film

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

光の受光量に応じて異なる電流値を流すPINダイオード(21)と、PINダイオード(21)上に形成された第1の無機絶縁膜(11)と、第1の無機絶縁膜11上に形成され、PINダイオード(21)に接続されたメタル電極(12c)・(12d)と、メタル電極(12c)・(12d)上に形成された有機絶縁膜(14)と、有機絶縁膜(14)上に形成された透明画素電極(15)と、有機絶縁膜(14)と第1の無機絶縁膜(11)との間に介在し、PINダイオード(21)のI層(8d)に対して部分的に重畳し、部分的に開口するようにパターニングされた導電膜(13)とを、画素内に備える。

Description

表示パネル用基板および表示装置
 本発明は、受光素子(光センサ)を備えた表示パネル用基板と、この表示パネル用基板を備えた表示装置に関するものである。
 近年、複数の画素を有する表示装置の表示領域に一定間隔で複数の光センサを配置し、しかもその光センサを、対応する画素の内部に設けた表示装置が開発されている。これらの表示装置には、通常の表示機能に加えて、上記光センサの光量検知機能を利用して、例えば、入力用のペンまたは人の指などでパネル表面を触れると、その触れた位置を検出することのできるタッチパネル(エリアセンサ)機能などを持たせることができる。
 このような表示装置に具備される光センサとしては、例えば、PINフォトダイオードなどがある。PINフォトダイオードの構造は、基板に対し、P層、I層、N層をこの順に積層した縦型構造と、基板上に、P層、I層、N層を面内方向に並べた横型(ラテラル)構造とに分けることができる。なお、P層は、P型の不純物濃度が高い半導体層であり、I層は、真性半導体層または不純物濃度が低い半導体層であり、N層は、N型の不純物濃度が高い半導体層である。
 その中で、ラテラル構造は、P層、I層およびN層の各層が互いに重なりを持たない構造であるため、各層間の寄生容量が小さくなる結果、センシング速度が縦型構造より速くなるというメリットを有するため、よく用いられている。
 また、上記ラテラル構造は、上記基板上に形成される他の素子などと同じプロセスを用いて容易に製造することができるというメリットも有している。
 例えば、特許文献1には、光センサとして、PINフォトダイオードが用いられた構成の液晶表示装置について記載されている。
 図15に基づき上記液晶表示装置について説明すれば、以下のとおりである。
 アレイ基板114の素子形成面114aには、バックライトから表示部123のTFT素子150へ入射される光L1を遮断するための遮光膜141と、バックライトから受光部124のPINダイオード145へ入射される光L1を遮断するための遮光膜142が形成されている。
 上記両遮光膜141、142の上側には、素子形成面114a略全面を覆うように堆積されたシリコン酸化膜等からなる絶縁膜143が形成されている。
 上記絶縁膜143の上面であって、上記遮光膜141の上方にはTFT素子150を構成する半導体層144(P型のチャネル領域144c・N型のソース領域およびドレイン領域144s・144d)が形成されている。
 また、絶縁膜143の上面であって、上記遮光膜142の上方には光センサとしてのPINダイオード145(多結晶半導体のI型領域145i・N型領域145nおよびP型領域145p)が形成されている。
 半導体層144およびPINダイオード145の上側には、素子形成面114a略全面を覆うように堆積されたシリコン酸化膜等からなるゲート絶縁膜146が形成されている。このゲート絶縁膜146の上面であって、半導体層144のチャネル領域144cの上方には、ゲート電極147が形成されている。
 また、このゲート電極147上には、シリコン酸化膜等からなる第1層間絶縁膜151がゲート絶縁膜146を覆うように形成されている。
 また、上記半導体層144のソース領域144s上とドレイン領域144d上には、コンタクトホールH1・H2がそれぞれ形成されており、コンタクトホールH1内には、ソース領域144sに電気的に接続されたデータ線Lyが、コンタクトホールH2内には、ドレイン領域144dに電気的に接続されたドレイン電極152が形成されている。
 また、PINダイオード145のN型領域145nとP型領域145p上には、コンタクトホールH3・H4がそれぞれ形成されており、コンタクトホールH3内には、N型領域145nに電気的に接続された第1電極153が、コンタクトホールH4内には、P型領域145pに電気的に接続された第2電極154が形成されている。
 これらデータ線Ly、ドレイン電極152、第1および第2電極153、154上には、第1層間絶縁膜151を覆うようにシリコン酸化膜等からなる第2層間絶縁膜155が形成されており、上記第2層間絶縁膜155上には、アクリル樹脂等からなる有機平坦化膜156が形成されている。
 上記ドレイン電極152の上側には、ビアホール158が形成されており、このビアホール158内およびPINダイオード145が形成されている領域の上方であるコレステリック液晶層157上には、ITO等の光透過性の導電材料からなる画素電極159が画素毎に形成されている。なお、この画素電極159は、ビアホール158を介してドレイン電極152に接続されている。
 そして、アレイ基板114と各色のフィルタ層133(赤色フィルタ層133Rのみ図示)が備えられたカラーフィルター基板115とは、画素電極159と対向電極161とが互いに向かい合うように配置されて、その画素電極159と対向電極161との間には、ネマティック液晶117が封入されている。
 上記構成によれば、上記画素電極159と上記データ線Lyなどの各信号線との間に比較的低誘電率を示す有機平坦化膜156を設けることにより、寄生キャパシタの容量値を低減することができる。
 また、上記画素電極159と上記各信号線とを重畳できることやPINダイオード145の形成領域上に設けられたコレステリック液晶層157により特定波長の光(赤色の光Lr)のみを反射させることができるので、開口率や光の利用効率を向上させた液晶表示装置を実現することができる。
 また、特許文献2には、TFT素子上に形成される平坦化膜の比誘電率を小さくすることで、液晶中の水分或いはシール接着剤の隙間より進入した水分によって発生する分極を抑制することができ、特に、比誘電率が5以下、好ましくは4以下の物質を用いることで分極を発生しにくくすることができると記載されている。
 また、特許文献3には、有機保護膜との接触面と非接触面とで異なる形態で形成された無機絶縁膜(例えば、有機保護膜との接触面が凹凸形態を有する)を備えることにより、有機膜と無機膜との間の分離現象を防止することのできる構成について開示されている。
日本国公開特許公報「特開2008-158272号公報(2008年7月10日公開)」 日本国公開特許公報「特開平11-274510号公報(1999年10月8日公開)」 日本国公開特許公報「特開2007-116164号公報(2007年5月10日公開)」
 しかしながら、本発明者らは、上記特許文献1の構成において、上記アレイ基板114上に形成された光センサであるPINダイオード145を長時間駆動させた場合、その光電流特性が劣化し、信頼性に問題が生じることに気付いた。
 これは、上記画素電極159に印加された電圧に起因して有機平坦化膜156に電荷が蓄積される結果、その電荷が容量カップリングによって、上記PINダイオード145に影響を与えることによるものと考えられる。
 また、特許文献2に記載されている比誘電率が4以下の有機絶縁膜(有機平坦化膜)は、既に一般化されており、このような有機絶縁膜(有機平坦化膜)を用いたとしても、上記信頼性の問題を解決するのは、困難である。
 また、特許文献3に記載されている構成を用いて、有機膜と無機膜との間の分離現象を防止できたとしても、上記信頼性の問題を解決するのは、困難である。
 本発明は、上記の問題点に鑑みてなされたものであり、有機絶縁膜(有機平坦化膜)を用いた構成であっても、光電流特性の劣化を抑制することができ、信頼性の向上された受光素子(光センサ)を備えた表示パネル用基板および上記表示パネル用基板を備えた表示装置を提供することを目的とする。
 本発明の表示パネル用基板は、上記の課題を解決するために、複数の画素を有する表示パネル用基板において、光の受光量に応じて異なる電流値を流す受光素子と、上記受光素子上に形成された第1の無機絶縁膜と、上記第1の無機絶縁膜上に形成され、上記受光素子に電気的に接続された配線と、上記配線上に形成された有機絶縁膜と、上記有機絶縁膜上に形成された透明画素電極と、上記有機絶縁膜と上記第1の無機絶縁膜との間に介在し、上記受光素子の受光部に対して部分的に重畳し、部分的に開口するようにパターニングされた導電膜とを画素内に備えることを特徴としている。
 上記構成によれば、配線と透明画素電極との間に有機絶縁膜が介在することになるので、配線と透明画素電極との間に発生する寄生キャパシタの容量値を低減することができる。
 しかしながら、この構成では、上述したとおり、上記透明画素電極に印加された電圧に起因して上記有機絶縁膜に電荷が蓄積される結果、その電荷が容量カップリングによって受光素子の光電流特性を劣化させるという不具合が生じてしまう。
 そこで、上記構成では、上記有機絶縁膜と上記受光素子との間、より具体的には、上記有機絶縁膜と上記第1の無機絶縁膜との間に介在し、上記受光素子の受光部に対して部分的に重畳し、部分的に開口するようにパターニングされ、所定の電圧を印加するための導電膜が設けられている。そのため、上記有機絶縁膜に電荷蓄積が生じたとしても、その電荷が容量カップリングによって、上記受光素子の受光部へ及ぼす影響を抑制することができる。
 よって、有機絶縁膜を用いた構成であり、上記受光素子を長時間駆動させた場合であっても、上記受光素子の光電流特性の劣化を抑制することができ、信頼性の向上された受光素子を備えた表示パネル用基板を実現することができる。
 また、上記受光素子の受光部上に設けられた上記導電膜は、部分的に開口しているため、受光素子側へ光を導くことができる。
 なお、上記有機絶縁膜は、有機物を主成分とする絶縁膜を示し、有機物のみからなる絶縁膜や必要に応じて無機物が添加された絶縁膜である。
 本発明の表示パネル用基板は、以上のように、光の受光量に応じて異なる電流値を流す受光素子と、上記受光素子上に形成された無機絶縁膜と、上記無機絶縁膜上に形成され、上記受光素子に接続された配線と、上記配線上に形成された有機絶縁膜と、上記有機絶縁膜上に形成された透明画素電極と、上記有機絶縁膜と上記無機絶縁膜との間に介在し、上記受光素子の受光部に対して部分的に重畳し、部分的に開口するようにパターニングされた導電膜とを画素内に備える構成である。
 また、本発明の表示パネル用基板は、以上のように、光の受光量に応じて異なる電流値を流す受光素子と、上記受光素子に対する光の入射経路上に形成された有機絶縁膜と、上記入射経路において上記有機絶縁膜よりも上記受光素子側に介在するように形成され、上記受光素子の受光部に対して部分的に重畳し部分的に開口するようにパターニングされた導電膜とを備えている構成である。
 また、本発明の表示装置は、以上のように、上記表示パネル用基板を備えている構成である。
 それゆえ、有機絶縁膜(有機平坦化膜)を用いた構成であっても、光電流特性の劣化を抑制することができ、信頼性の向上された受光素子(光センサ)を備えた表示パネル用基板を実現することができるという効果を奏する。
 また、明るい表示品位を示すとともに、タッチパネル(エリアセンサ)機能を有する高信頼性の表示装置を実現することができるという効果を奏する。
本発明の実施の形態1の表示パネル用基板が備えられた液晶表示装置の概略構成を示す断面図である。 (a)は、図1の表示パネル用基板に備えられたPINダイオードをメタル配線網の形成面側から見た平面図であり、(b)~(f)はその変形例を示す平面図である。 (a)は、図2の(a)のA-A’断面図であり、(b)は、比較例における(a)に対応する断面図である。 (a)は、有機絶縁膜におけるリーク電流の使用環境温度依存性を示す図であり、(b)は、無機絶縁膜におけるリーク電流の使用環境温度依存性を示す図である。 図3の(b)に示す比較例の表示パネル用基板に備えられたPINダイオードにおける光電流特性の経時変化を示すグラフである。 図3の(a)に示す実施の形態1の表示パネル用基板に備えられたPINダイオードにおける光電流特性の経時変化を示すグラフである。 PINダイオードにおける光電流の電圧依存性を測定するための測定条件を示す図である。 PINダイオードにおける光電流の電圧依存性を示すグラフである。 図1の表示パネル用基板において、赤色・緑色・青色の各画素からなる1画素ユニットの回路構成の一例を示す回路図である。 図1の表示パネル用基板において、赤色・緑色・青色の各画素からなる1画素ユニットの回路構成の他の一例を示す回路図である。 図10に示す回路構成において、メタル配線網バスラインをリセット信号線と行選択信号線とが延びる方向に取り出した一例を示す図である。 図10に示す回路構成において、メタル配線網バスラインをソース信号線(電源供給線)とソース信号線(出力信号線)とが延びる方向に取り出した一例を示す図である。 本発明の実施の形態2の表示パネル用基板に備えられたPINダイオードをメタル配線網の形成面側から見た平面図である。 図13のB-B’断面図である。 従来の液晶表示装置において、画素における表示部と受光部とを示す要部断面図である。
 以下、図面に基づいて本発明の実施の形態について詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などはあくまで一実施形態に過ぎず、これらによってこの発明の範囲が限定解釈されるべきではない。
 〔実施の形態1〕
 以下、図1~12に基づき、本発明における表示パネル用基板としてのアクティブマトリクス基板1、及び表示装置としての液晶表示装置19の構成について説明する。
 なお、本発明の表示装置は液晶表示装置19に限らず、例えば有機EL表示装置などとしても具現化することもできる。
 図1に図示されているように、液晶表示装置19は、アクティブマトリクス基板1と、これに対向するように配置されたカラーフィルター基板2とを備え、これらの基板1・2の間に液晶層3がシール材によって封入された構成を有する液晶表示パネル18を備えている。
 さらに、液晶表示装置19は、液晶表示パネル18へ向かって光を照射するバックライトユニット4を備えている。
 なお、カラーフィルター基板2のガラス基板17には、図示されてないカラーフィルター層や共通電極、配向膜などが形成されており、カラーフィルター層の形成面の反対側には、偏光板16aが設けられている。
 一方、アクティブマトリクス基板1のバックライトユニット4と対向する面側にも偏光板16bが設けられている。
 以下、アクティブマトリクス基板1の構成について、詳しく説明する。
 アクティブマトリクス基板1には、マトリクス状に配置された多数の透明画素電極15によって構成される表示領域が備えられている。
 各透明画素電極15が形成されている領域には、図1に図示されているように、透明画素電極15を制御するためのアクティブ素子としての画素TFT20と、タッチパネル機能を実現するための受光素子としてのPINダイオード21とが備えられている。
 上記構成によれば、画素TFT20により、透明画素電極15に所望の画像を表示するための電圧を印加することができるとともに、光の受光量に応じて異なる電流値を流すPINダイオード21によって、例えば、指やペンなどによってタッチされたことを検出することができる。
 以上のように、画素TFT20とPINダイオード21とが同一基板上に形成されているアクティブマトリクス基板1を備えたタッチパネル(エリアセンサ)機能付き液晶表示装置19においては、抵抗膜方式や静電容量方式などのタッチパネル付き液晶表示装置に比べ、薄型化や製造コストの低減を図ることができる。
 すなわち、アクティブマトリクス基板1には、複数の透明画素電極15と、各透明画素電極15に接続された画素TFT20と、光の受光量に応じて異なる電流値を流す複数のPINダイオード21とが備えられている。
 なお、画素TFT20は、各透明画素電極15によって形成される画素毎に設けられているが、PINダイオード21は、必ずしも全ての画素に設ける必要はなく、タッチされた位置を検出するために求められる解像度との兼ね合いにより、必要な画素に設ければよい。
 液晶表示装置19は、赤色・緑色・青色の画素から構成されており、本実施の形態においては、青色に対応する画素にのみ、PINダイオード21を設け、PINダイオード21に接続されたトランジスタや容量などは、赤色・緑色に対応する画素に設けているが(後述する図9および図10参照)、これに限定されることはない。
 なお、本実施の形態においては、光センサとしてのセンシング速度が高い受光素子を備えたアクティブマトリクス基板1を比較的容易に製造するという観点から、図1に図示されているようなP層8e、I層8dおよびN層8fの各層が互いに重なりを持たない構造を有するPINダイオード21を用いているが、これに限定されることはない。
 よって、受光素子としては、上記受光素子に備えられた受光部における、光の受光量に応じて異なる電流値を流すものであればよく、例えば、CCD、CMOS、PNダイオード、フォトトランジスタなどを用いることもできる。
 以下、アクティブマトリクス基板1上に、画素TFT20とPINダイオード21とを同時に形成するプロセスを説明しつつ、アクティブマトリクス基板1の構成について詳しく説明する。
 本実施の形態においては、アクティブマトリクス基板1を構成するための基板として、ガラス基板5を用いている。ただし、アクティブマトリクス基板1を構成するための基板としては、ガラス基板5以外にも、石英基板やプラスチック基板などを用いることもできる。
 ガラス基板5において、画素TFT20とPINダイオード21とが形成される面には、バックライトユニット4から出射された光が、画素TFT20とPINダイオード21とに入射するのを遮断するための遮光膜6・6がそれぞれ形成される。
 各遮光膜6・6の上側には、各遮光膜6・6とガラス基板5を覆うようにベースコート膜7が形成される。
 ベースコート膜7としてはシリコン酸化膜、シリコン窒化膜、シリコン窒化酸化膜などの絶縁性無機物質からなる膜、あるいはこれらを適宜組み合わせた積層膜を用いることが可能であり、本実施の形態においては、シリコン酸化膜を用いた。これらの膜は、LPCVD法、プラズマCVD法、スパッタ法等により堆積させて形成することができる。
 なお、ベースコート膜7は、ガラス基板5からの不純物拡散やレーザ照射時の発熱によるガラス基板5へのダメージを防ぐための膜でもある。
 ベースコート膜7の上面における、各遮光膜6・6の上方となる領域に、それぞれ画素TFT20とPINダイオード21とが形成される。
 すなわち、図1に図示されているように、ベースコート膜7は、上述した遮光膜6・6と、画素TFT20及びPINダイオード21との間において、層間膜となっている。
 なお、画素TFT20及びPINダイオード21の形成プロセスは次のとおりである。
 先ず、ベースコート膜7上の、各遮光膜6・6の上方となる領域に、LPCVD法、プラズマCVD法、スパッタ法等により、後から多結晶半導体膜8となる非単結晶半導体薄膜がそれぞれ形成される。
 なお、上記非単結晶半導体薄膜としては、非晶質シリコン、多結晶シリコン、非晶質ゲルマニウム、多結晶ゲルマニウム、非晶質シリコン・ゲルマニウム、多結晶シリコン・ゲルマニウム、非晶質シリコン・カーバイド、多結晶シリコン・カーバイドなどを用いることができる。本実施の形態では、非晶質シリコンを用いている。
 続いて、上記非単結晶半導体薄膜が結晶化されることにより、多結晶半導体膜8となる。結晶化の際にはレーザビーム、電子ビームなどが使用可能であり、本実施の形態ではレーザビームを用いて結晶化を行った。
 次に、多結晶半導体膜8を、遮光膜6の形成領域に応じてフォトリソグラフィ法によりパターニングをする。
 そして、画素TFT20を形成する領域における、多結晶半導体膜8の中央には、P型のチャネル領域8aが形成され、その両側には、N型のソース領域8bとN型のドレイン領域8cとがそれぞれ形成される。
 一方、PINダイオード21を形成する領域における、多結晶半導体膜8の中央には、真性半導体層または不純物濃度が相対的に低い半導体層であるI層8dが形成され、その両側には、P型の不純物濃度が相対的に高い半導体層であるP層8eと、N型の不純物濃度が相対的に高い半導体層であるN層8fとがそれぞれ形成される。
 次に、ガラス基板5の上側全面に、堆積されたシリコン酸化膜などからなるゲート絶縁膜9が形成され、ゲート絶縁膜9によって、多結晶半導体膜8が覆われる。
 本実施の形態においては、ゲート絶縁膜9によって、PINダイオード21を形成する領域における、多結晶半導体膜8も覆われているが、画素TFT20を形成する領域における、多結晶半導体膜8のみを覆うようにすることもできる。
 その後、ゲート絶縁膜9の上には、例えば、導電膜として、TaN膜と、W膜とを積層する。なお、本実施の形態においては、上記導電膜としてTaN膜と、W膜とが積層された膜を用いているが、これに限定されることはなく、Ta、W、Ti、Mo、Al、Cu、Cr、Ndなどから選ばれた元素、あるいは上記元素を主成分とする合金材料もしくは化合物材料により上記導電膜を形成してもよい。また、多結晶シリコンなどに代表される半導体膜にリン、ボロンなどの不純物をドーピングしたものにより上記導電膜を形成してもよい。
 そして、上記導電膜を、フォトリソグラフィ法により形成したレジストパターン(図示せず)をマスクにしてエッチングすることによりパターニングし、ゲート電極10が形成される。
 次に、ゲート電極10の上面とゲート電極10が形成されてないゲート絶縁膜9の上面とを覆うように、堆積されたシリコン酸化膜等からなる第1の無機絶縁膜11が形成される。
 その後に、ゲート絶縁膜9と第1の無機絶縁膜11とを貫通するコンタクトホールが、N型のソース領域8b上、N型のドレイン領域8c上、P層8e上及びN層8f上にそれぞれ形成される。
 そして、スパッタ法などにより、ガラス基板5の上側全面に導電膜が形成される。
 上記導電膜としては、例えば、アルミニウム等からなる導電膜を用いることができるが、これに限定されることはなく、Ta、W、Ti、Mo、Al、Cu、Cr、Ndなどから選ばれた元素、あるいは前記元素を主成分とする合金材料もしくは化合物材料を用い、必要に応じてこれらの適宜組合せによる積層構造として形成してもよい。本実施の形態では、アルミニウムを用いている。
 なお、上記導電膜は、フォトリソグラフィ法により形成したレジストパターン(図示せず)をマスクとしてエッチングすることにより所望の形状にパターニングされ、画素TFT20のN型のソース領域8b及びN型のドレイン領域8cにそれぞれ電気的に接続されるソース電極12a及びドレイン電極12bとなる。
 また、上記導電膜は、同様に、PINダイオード21のP層8e及びN層8fにそれぞれ電気的に接続されるメタル電極(配線)12c・12dともなる。
 さらに、上記導電膜は、同様に、PINダイオード21のI層8dの上方に形成されるメタル配線網13ともなる。メタル配線網13については後述する。
 次に、第1の無機絶縁膜11、ソース電極12a、ドレイン電極12b、メタル電極12c・12dおよびメタル配線網13を覆うように、透明有機絶縁膜14がスピンコーティングまたはスリットコーティングなどにより形成される。
 その後、ドレイン電極12b上に、透明有機絶縁膜14を貫通するビアホールが形成される。上記ビアホールは、透明有機絶縁膜14が感光性である場合は、露光・現像工程によって形成することができ、非感光性である場合には、例えば、ドライエッチング法によって形成することができる。
 なお、本実施の形態においては、透明有機絶縁膜14として、アクリル系絶縁膜を用いた。
 無機絶縁膜ではなく、有機絶縁膜を用いることにより、上述したコーティング法などを用いて、クラックなどを生じることなく、容易に厚膜化することが可能であるとともに、一般に有機絶縁膜は無機絶縁膜よりも誘電率が低いため、例えば、配線と電極間に生じる寄生容量を抑制することができる。
 また、有機絶縁膜は、容易に厚膜化することができることから、下部膜の段差を容易に平坦化できる。
 また、有機絶縁膜には、クラックなどを生じることなく、厚膜化することが可能であれば、例えば、シロキサンポリマーなどの無機物が含有されていてもよい。
 最後に、透明有機絶縁膜14上に、ITO、IZOなどの透明導電膜がスパッタ法などにより形成され、フォトレジストを用いて所望のパターンにパターニングされ、透明画素電極15が形成される。
 なお、透明画素電極15は、図示されているように、ドレイン電極12bと電気的に接続されている。
 さらに、図示されてないが、透明画素電極15上には、配向膜が形成される。
 アクティブマトリクス基板1において、ソース電極12a、ドレイン電極12b、メタル電極12c・12dとメタル配線網13とは、同一の材料で形成されていることが好ましい。この構成によれば、上述のとおり同一層をパターニングすることにより、ソース電極12a、ドレイン電極12b、メタル電極12c・12dと同時にメタル配線網13を形成することができ、工程が増加することを回避できるからである。
 図2の(a)は、図1に図示されたPINダイオード21をメタル配線網13の形成面側から見た平面図である。
 メタル配線網13は、PINダイオード21の主にI層8dの上方に形成されており、図2の(a)に示すとおり、格子状にパターニングされた平面形状を有している。そのため、メタル配線網13は、I層8dに対して重畳する重畳部13aと、I層8dに対して開口する開口部13bとを有するようにパターニングされているといえる。そして、メタル配線網13は、上述のとおり導電膜をパターニングして形成された部材であることから、導電性を有するものである。
 このメタル配線網13は、開口部13bをとおして、透明画素電極15側から入射した光をPINダイオード21側へ通過させることになる(導光機能)。これにより、PINダイオード21における光検知機能を維持させることができる。
 また、メタル配線網13は、導電性を有する重畳部13aにより、透明有機絶縁膜14において発生した電荷の容量カップリングに起因するPINダイオード21のI層8dに与える影響を抑制することができる(電荷影響抑制機能)。
 メタル配線網13によるこれらの機能により、より信頼性の向上されたPINダイオード21を備えたアクティブマトリクス基板1を実現することができる。
 なお、メタル配線網13の平面形状は、図2の(a)に示した形状に限らず、例えば図2の(b)に示した格子状や、図2の(c)~図2の(f)に示したスリット状など、I層8dに対して部分的に重畳し、部分的に開口するようにパターニングされた形状であればよい。ただし、メタル配線網13の平面形状を格子状とすることにより、重畳部13aと開口部13bとが分散して配置されることになることから、PINダイオード21の受光部全域に対して導光機能及び電荷影響抑制機能をより均一に発揮できるようになることから、格子状は好適な形状の一つであるといえる。
 重畳部13a及び開口部13bの形状、面積、配置などは、導光機能及び電荷影響抑制機能を考慮して最適化すればよい。
 以下、図3に基づいて、透明有機絶縁膜14の電荷蓄積がPINダイオード21のI層8dに与える影響について説明する。
 図3の(a)は、図2の(a)のA-A’断面図であり、本実施の形態のアクティブマトリクス基板1において、PINダイオード21が形成されている領域の概略構成を示す図である。
 一方、図3の(b)は、比較例として、上記図3の(a)からメタル配線網13を省いた構成を示す図である。
 透明有機絶縁膜14は、上述した各種CVD法などにより形成された無機絶縁膜に比べると、緻密ではない。
 透明有機絶縁膜14上に形成された透明画素電極15には、画像を表示するための所定の電圧が印加されるため、透明有機絶縁膜14に電荷が蓄積され、その電荷が容量カップリングによって、PINダイオード21のI層8dに影響を与える。
 このような影響を抑制するため、本実施の形態のアクティブマトリクス基板1においては、図3の(a)に図示されているように、メタル配線網13が、第1の無機絶縁膜11と透明有機絶縁膜14との間に、PINダイオード21のI層8dを覆うように設けられている。
 なお、メタル配線網13は、開口部13bを有しているが、開口部13bの上方で発生した電荷の影響についても、その開口部13bに隣接する重畳部13aによって、十分抑制することは可能である。
 一方、図3の(b)の比較例においては、メタル配線網13が設けられておらず、上記影響を抑制することができない。
 一般的に、透明有機絶縁膜14などの有機絶縁膜は、その使用環境によって、絶縁性が保持されずに微小なリーク電流が生じる場合がある。
 例えば、上記有機絶縁膜の使用環境温度が高くなるに連れて、リーク電流が増加していく傾向にある。
 図4(a)は、上記有機絶縁膜におけるリーク電流の使用環境温度依存性を示しており、図4(b)は、無機絶縁膜におけるリーク電流の使用環境温度依存性を示している。
 図4(a)に図示されているように、上記有機絶縁膜においては、使用環境温度がAからEへと上昇するに連れて、そのリーク電流も増加しているが、一方、図4(b)に図示されているように、無機絶縁膜においては、使用環境温度がAからEへと上昇しても、そのリーク電流は増加することなく、略変わらない。
 本実施の形態に用いられている透明有機絶縁膜14も、使用環境温度の上昇に伴い、そのリーク電流が増加する傾向にあることから、透明画素電極15とメタル電極12c・12d及びI層8dとにおける電位差により、透明有機絶縁膜14内へ電荷が移動し、透明有機絶縁膜14に電荷の蓄積が生じる。
 このように透明有機絶縁膜14に蓄積された電荷は、以下に示すメカニズムにより、PINダイオード21の光電流特性に悪影響を及ぼす。
 PINダイオード21に所定の電圧を印加すると、PINダイオード21に備えられた半導体層には空乏層領域が形成される。そして、この空乏層領域に光が照射されることによって、PINダイオード21には光電効果による光電流が流れるようになっている。
 しかしながら、透明有機絶縁膜14に電荷が蓄積されると、この蓄積された電荷の容量カップリングによって、PINダイオード21に所定の電圧を印加しても、所望の空乏層領域を得ることができず、所望の光電流量を得られなくなる。
 これに対し、本実施の形態においては、メタル配線網13を設け、さらには、メタル配線網13に所定の電圧印加を行う事により、上述した悪影響を抑制することができる。
 上記構成によれば、透明有機絶縁膜14内の電荷移動を抑制することができる。
 また、電荷の存在位置よりもPINダイオード21に近い場所に、メタル配線網13が設けられているため、PINダイオード21は蓄積された電荷の影響を受けずに、メタル配線網13に印加される電圧(詳しくは後述するPINダイオード21の最良の特性を得ることのできる電圧)の影響のみを受ける構成となっている。
 図5は、上記図3の(b)に示した比較例において、PINダイオードに動作電圧印加時の光電流特性の経時変化の様子を示す図である。
 また、図6は、上記図3の(a)に示した本実施の形態のアクティブマトリクス基板1に備えられたPINダイオード21に動作電圧印加時の光電流特性の経時変化の様子を示す図である。ただし、図6は、実験の便宜上、図3の(a)のメタル配線網13の代わりに、開口部13bを有さず透光性を有する導電部材を配置した構成において確認した結果である。メタル配線網13を用いた構成と上記透光性を有する導電部材を用いた構成とでは、開口率が異なるため、光電流特性において完全に同一であるとはいえないが、光電流特性の経時変化としては同じ傾向がみられるものと考えられる。
 上記図5および図6は、何れも上記それぞれのPINダイオード21に一定の強さの光を照射しながら、光ダイオード特性(印加電圧の変化に対する光電流変化)の経時変化(初期状態、及び照射時間1分から1000分まで。)を測定した結果を示している。なお、上記図5および図6の横軸はPINダイオード21に印加する電圧を示し(マイナス(-)は逆バイアスであること意味する。)、縦軸はPINダイオード21に流れる光電流を示す(「1E-10」は1×10-10を意味する)。
 図5に図示されているように、比較例(メタル配線網13を省いた構成)においては、時間の経過に伴い、光電流値が低下するといったPINダイオード21の特性劣化が生じている。
 この原因は、上述したように、透明画素電極15と第1の無機絶縁膜11との間に存在する透明有機絶縁膜14に蓄積電荷が生じた結果によるものと考えられる。
 一方、本実施の形態のアクティブマトリクス基板1に備えられたPINダイオード21においては、図6に図示されているように、時間の経過に伴う光電流値の低下は生じない。
 これは、図3の(a)に図示されているように、メタル配線網13が、透明有機絶縁膜14とPINダイオード21のI層8dとの間に、I層8dを覆うように形成され、かつ所望の電圧が印加されていることにより、透明有機絶縁膜14に生じた蓄積電荷のPINダイオード21への影響を抑制することができるからである。
 なお、図6に示すPINダイオード21の逆バイアス印加時の光電流特性においては、光電流が逆バイアスに対して出来るだけフラットとなる事が望ましい。
 本実施の形態においては、透明有機絶縁膜14に生じた蓄積電荷のPINダイオード21への影響の抑制を最大化するため、図2の(a)に図示されているように、メタル配線網13が、I層8dの全面に形成しているが、メタル配線網13をI層8dの一部に設けても、上記抑制効果は得られる。
 次に、メタル配線網13に印加する電圧条件について説明する。
 メタル配線網13に印加する電圧条件を検討するために、図7に示した条件下において、PINダイオード21の電圧依存性に関する測定を行った。なお、測定の便宜上、用いた構成は上記比較例に対応するものである。この構成において、メタル電極12c(PINダイオード21のアノード)に-7V、メタル電極12d(PINダイオード21のカソード)に-7Vを印加し、ある一定量の光を透明画素電極15を介してPINダイオード21へ照射しつつ、透明画素電極15の電圧Vitoを-20V~+20Vの範囲で変化させた。
 その結果、PINダイオード21に流れる光電流は図8に示すとおり変化した。PINダイオード21の検知能力を向上するためには、受光量が同じ条件下においてより大きな電流値を示す条件を選択することが望ましい。したがって、本測定結果においては、図8より、Vitoを0V付近(例えば、-5V~+7V)に設定することが好適であるといえる。
 なお、上述のとおり、本測定に用いた構成は上記比較例に対応するものであるが、さらにメタル配線網13を加えた本実施の形態の構成(図3の(a))では、メタル配線網13の電圧を上記Vitoのように変化させることにより、メタル配線網13に設定する電圧の最適条件を見出せばよいことになる。
 すなわち、アクティブマトリクス基板1において、メタル配線網13に印加する電圧は、PINダイオード21のI層8dがある一定の受光量を示す場合に、PINダイオード21に流れる電流値が最も大きくなる電圧であることが好ましい。
 PINダイオード21における、例えばI層8dの長さや厚みなどが変化すると、PINダイオード21に流れる電流値が最も大きくなるメタル配線網13の最適な印加電圧も変わる。
 したがって、PINダイオード21のI層8dがある一定の受光量を示す場合に、PINダイオード21に流れる電流値が最も大きくなるように、メタル配線網13へ印加する電圧を調整することにより、PINダイオード21の特性をさらに改善することができる。
 次に、図9~10に基づき、アクティブマトリクス基板1の回路構成を説明しつつ、メタル配線網13へ電圧を印加するための具体的構成について説明する。図9および図10は、本実施の形態のアクティブマトリクス基板1において、それぞれ赤色・緑色・青色を表示する画素であるPR・PG・PBの各画素からなる1画素ユニットPUの回路構成の一例を示す図である。
 図9に図示されているように、アクティブマトリクス基板1の図中上側にはソースドライバ25、図中左側にはゲートドライバ26、図中下側にはセンサ読取ドライバ27、図中右側にはセンサ行ドライバ28が設けられている。
 各画素PR・PG・PBにおける図中上側領域(ソースドライバ25に近い側の領域)には、ソースドライバ25に接続されたソース信号線SLr・SLg・SLbおよびゲートドライバ26に接続されたゲート信号線GLの各交点が位置し、その交点近傍には、画素TFT20が設けられている。また、青色画素PBにおける図中下側領域(センサ読取ドライバ27に近い側の領域)には、PINダイオード21が、赤色画素PRにおける図中下側領域には、PINダイオード21に接続されたトランジスタ22が、緑色画素PGにおける図中下側領域には、PINダイオード21およびトランジスタ22と接続された容量23が形成されている。
 上記構成のように、PINダイオード21、トランジスタ22、容量23を各画素PR・PG・PBに分散して配置することにより、赤色・緑色・青色の開口率の差が大きくなるのを抑制することができる。
 なお、図1においては、図示を省略したが、液晶容量CLCに充電した電荷の減衰時間を長くするため、アクティブマトリクス基板1には、液晶容量CLCと並列に補助容量Csが備えられている。補助容量Csは、画素TFT20のドレイン電極12bに接続された透明画素電極15と、透明画素電極15に対向し共通電極電圧VCOMが印加される共通電極との間に構成されている。
 補助容量Csの一端は、補助容量バスラインCSLに接続されている。
 なお、トランジスタ22のソースは、電源供給線29に接続され、ドレインは出力信号線30に接続されており、電源供給線29および出力信号線30は、センサ読取ドライバ27に接続され、電源供給線29にはセンサ読取ドライバ27から電源電圧VDDが印加される。
 また、トランジスタ22のゲートには、PINダイオード21のカソード(図1のメタル電極12d)が接続されるとともに、PINダイオード21に接続された容量23の一端も接続されている。
 なお、PINダイオード21のアノード(図1のメタル電極12c)は、センサ行ドライバ28からリセット信号RSTが送られるリセット信号線(初期化信号入力線)31に接続され、容量23の他端は、行選択信号RWSが送られる行選択信号線(選択信号入力線)32に接続されている。なお、行選択信号RWSは、特定行を選択し、その特定行から信号を出力させる役割を持っている。
 以下、上記回路構成に基づいたタッチパネルとしての動作について説明する。
 上記構成によれば、トランジスタ22のゲート電位をリセットするために、センサ行ドライバ28からリセット信号線31にハイレベルのリセット信号RSTが送られる。これにより、PINダイオード21に順方向バイアスがかかるので、容量23が充電され、ゲート電位は徐々に立ち上がり、最終的に初期化電位に到達する。
 上記ゲート電位が初期化電位に到達した後、リセット信号RSTをローレベルに落とすと、PINダイオード21のカソード電位の方がアノード電位より高くなるので、PINダイオード21に逆バイアスがかかる。このときのゲート電位は、上記初期化電位から、PINダイオード21における順方向電圧降下分およびPINダイオード21の寄生容量に起因した電圧降下分を差し引いた値となる。
 この状態で、PINダイオード21に光が照射されると、光の強さに応じて、逆バイアスによる光電流がPINダイオード21に流れる。この結果、容量23に保持されていた電荷が、リセット信号線31を介して放電されるため、ゲート電位が次第に下がり、最終的には、光の強さに応じた検出電位まで下がる。
 続いて、光検出結果を読み取るため、容量23の他端に、センサ行ドライバ28から行選択信号線32を介してハイレベルの行選択信号RWSが印加される。これにより、容量23越しにゲート電位が突き上げられるので、ゲート電位は、上記検出電位に行選択信号RWSのハイレベルの電位が上乗せされた電位になる。
 ゲート電位が突き上げられると、トランジスタ22がオンになるしきい値電圧を越えるので、トランジスタ22がオン状態になる。この結果、ゲート電位のレベルに応じた、すなわち光の強さに応じた増幅率で制御された電圧が、検出信号として、トランジスタ22から出力され、出力信号線30を介してセンサ読取ドライバ27に送られる。
 また、図9に示す回路構成においては、メタル配線網バスラインTCELを別途に設けている。このメタル配線網バスラインTCELは、上述したメタル配線網13へ所定の電圧を印加するためのものであり、その給電のためにアクティブマトリクス基板1の外周領域(表示領域外の領域)まで引き出されている。1本のメタル配線網バスラインTCELには、例えば行方向(図9中横方向)あるいは列方向(図9中縦方向)に並ぶ多数の画素ユニットPUそれぞれに設けられたメタル配線網13を接続しておくことができる。
 メタル配線網バスラインTCELには、上述のとおり設定した最適電圧(固定電圧)を印加すればよいので、例えばセンサ行ドライバ28に接続するなどして上記最適電圧を印加できるようになっておればよい。なお、メタル配線網バスラインTCELへ電圧を印加するための電源回路を別途設けてもよい。
 なお、メタル配線網バスラインTCELの具体的な取り回し例については、後述する。
 図10は、本実施の形態のアクティブマトリクス基板1において、それぞれ赤色・緑色・青色を表示する画素であるPR・PG・PBの各画素からなる1画素ユニットPUのより好ましい回路構成の一例を示す図である。
 図10に図示されているように、この回路構成においては、配線数の増加による開口率の低下を防止するため、ソース信号線SLrと電源供給線29、ソース信号線SLgと出力信号線30が1本化されている構成である。
 図10中上側には、図9に示すソースドライバ25の機能(ソース信号線駆動機能)とセンサ読取ドライバ27の機能(センサ読取機能)とを兼ねて有する駆動回路34が備えられている。
 駆動回路34には、シフトレジスタ34a、センサ読取・ソース信号線駆動回路34b、ソース信号線駆動機能とセンサ読取機能とを切り替えるスイッチ34cが備えられている。ソース信号線SLr(電源供給線29)およびソース信号線SLg(出力信号線30)は、スイッチ34cを介してセンサ読取・ソース信号線駆動回路34bに接続されている。
 上記構成によれば、1本化されたソース信号線SLr(電源供給線29)およびソース信号線SLg(出力信号線30)を用いて、画素TFT20への書き込みとPINダイオード21によって得られる光センシングデータの読取を行うことができる。
 すなわち、画素TFT20への書き込みが行われないブランキング期間に上記光センシングデータの読取を行う構成となっている。
 よって、上記構成によれば、配線数の増加を大きく減らすことができるので、高開口率のアクティブマトリクス基板1を実現することができる。
 なお、上記図10においては、ゲートドライバ26やセンサ行ドライバ28の記載は省略している。
 以下、図11~12に基づいて、メタル配線網バスラインTCELの具体的な取り回し例について、説明する。
 図3の(a)の構成では、メタル配線網13はメタル電極12c・12dと同一レベルの層となっているので、メタル電極12c・12dと交差しないようにメタル配線網バスラインTCELの取り回しを決定する必要がある。
 図11は、図10に示す回路構成において、メタル配線網バスラインTCELをリセット信号線31および行選択信号線32が延びる方向に取り出した一例を示す。
 図12は、図10に示す回路構成において、メタル配線網バスラインTCELを1本化されたソース信号線SLr(電源供給線29)およびソース信号線SLg(出力信号線30)が延びる方向に取り出した一例を示す。
 なお、図11および図12では、図示は省略しているが、メタル配線網バスラインTCELにおけるPINダイオード21の上方部分(この部分がメタル配線網13となる。)には、図2の(a)~図2の(f)に示したような開口部13bが形成されているものとする。
 図11に示す構成においては、メタル配線網バスラインTCELと同一レベルの層に形成される1本化されたソース信号線SLr(電源供給線29)およびソース信号線SLg(出力信号線30)が同一レベルの層において、交差しないように、交差領域においては、上記各信号線の下部、すなわち、ゲート信号線GLと同一レベルの層に、接続配線部35を形成し、コンタクトホール36を介してメタル配線網バスラインTCELと接続されている。
 上記構成とすることによって、メタル配線網バスラインTCELは、1本化されたソース信号線SLr(電源供給線29)およびソース信号線SLg(出力信号線30)と同一レベルの層において、交差することなく、リセット信号線31および行選択信号線32が延びる方向に取り出すことができる。
 また、図12に示す構成においては、メタル配線網バスラインTCELが、ソース信号線SLr(電源供給線29)およびソース信号線SLg(出力信号線30)と交差しないように、メタル配線網バスラインTCELを上記各信号線と平行に形成している。
 よって、メタル配線網バスラインTCELは、1本化されたソース信号線SLr(電源供給線29)およびソース信号線SLg(出力信号線30)と同一レベルの層において、交差することなく、ソース信号線SLr(電源供給線29)およびソース信号線SLg(出力信号線30)が延びる方向に取り出すことができる。
 また、上述した取り回し例は、図9に示す構成にも適用可能であるのは、勿論である。
 なお、後述する図14の構成では、メタル電極12c・12dとメタル配線網バスラインTCELとが交差しても電気的に絶縁されるので、メタル配線網バスラインTCELの取り回しがより容易になる。
 また、メタル配線網13を、メタル電極12c・12dの何れかに接続することにより(以下ではメタル電極12cと接続する場合を前提に説明する)、メタル配線網13への給電をメタル配線網13と接続したメタル電極12cから行うことも可能である。
 上記構成では、メタル配線網13に対し、メタル配線網13と接続したメタル電極12cと同じ電圧を印加せざるを得ないが、この場合でも電荷影響抑制機能を得ることは可能である。
 また、上記構成では、メタル配線網バスラインTCELを別途設ける必要はなくなり、メタル配線網13およびメタル電極12c・12dを同一の導電膜から形成する際に、メタル配線網13とメタル電極12cとが部分的につながるようにパターニングしさえすればよいことになる。そのため、上記構成では、工程の簡略化を図ることができる。
 本実施の形態においては、電子移動度が比較的大きい多結晶半導体膜8を用いて、各ドライバ25・26・27・28をアクティブマトリクス基板1上にモノリシックに形成することができる。
 以上のように構成されたアクティブマトリクス基板1を用いて液晶表示装置19を構成することにより、明るい表示品位を示すとともに、タッチパネル(エリアセンサ)機能を有する高信頼性の液晶表示装置19を実現することができる。
 〔実施の形態2〕
 次に、図13~14に基づいて、本発明の第2の実施形態について説明する。本実施の形態は、メタル配線網13と、PINダイオード21に第1の無機絶縁膜11を介して接続されているメタル電極12c・12dとの間に、第2の無機絶縁膜33が設けられている点において実施の形態1とは異なっており、その他の構成については実施の形態1において説明したとおりである。説明の便宜上、上記の実施の形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図13は、本実施の形態の表示パネル用基板に備えられたPINダイオード21をメタル配線網13の形成面側から見た平面図である。
 また、図14は、図13のB-B’断面図であり、本実施の形態の表示パネル用基板において、PINダイオード21が形成されている領域の概略構成を示す図である。
 図13および図14に図示されているように、メタル配線網13と、PINダイオード21に接続されているメタル電極12c・12dとの間には、第2の無機絶縁膜33が設けられているため、図13のようにメタル配線網13とメタル電極12c・12dとを部分的に重畳させることができる。
 よって、メタル配線網13とメタル電極12c・12dとの間のアライメントズレなどによるショートをより確実に防止することができ、より信頼性の向上された表示パネル用基板を実現することができる。
 また、前述したとおり、メタル電極12c・12dとメタル配線網バスラインTCEL(図9および図10参照)とが交差しても、これらの間には第2の無機絶縁膜33が介在することになるので、メタル電極12c・12dとメタル配線網バスラインTCELとは電気的絶縁が保たれる。そのため、メタル配線網バスラインTCELをメタル電極12c・12dと交差するように配置することも可能になり、メタル配線網バスラインTCELの取り回しが容易になる。
 なお、第2の無機絶縁膜33は、第1の無機絶縁膜11とで同様に設けることができるので、その説明を省略する。
 ここで、上記第1の無機絶縁膜11と上記第2の無機絶縁膜33とは同一の材料で形成しても良い。
 以上のように、本発明の表示パネル用基板(アクティブマトリクス基板1)は、複数の画素を有する表示パネル用基板であって、光の受光量に応じて異なる電流値を流す受光素子(PINダイオード21)と、上記受光素子上に形成された無機絶縁膜(第1の無機絶縁膜11)と、上記無機絶縁膜上に形成され、上記受光素子に接続された配線(メタル電極12c・12d)と、上記配線上に形成された有機絶縁膜(透明有機絶縁膜14)と、上記有機絶縁膜上に形成された透明画素電極(透明画素電極15)と、上記有機絶縁膜と上記無機絶縁膜との間に介在し、上記受光素子の受光部に対して部分的に重畳し、部分的に開口するようにパターニングされた導電膜(メタル配線網13)と、を画素内に備えるものである。
 また、本発明の表示パネル用基板(アクティブマトリクス基板1)は、光の受光量に応じて異なる電流値を流す受光素子(PINダイオード21)と、上記受光素子に対する光の入射経路上に形成された有機絶縁膜(透明有機絶縁膜14)と、上記入射経路において上記有機絶縁膜よりも上記受光素子側に介在するように形成され、上記受光素子の受光部に対して部分的に重畳し部分的に開口するようにパターニングされた導電膜(メタル配線網13)と、を備えたものであるともいえる。
 さらに、上記透明電極の機能に着目すると、本発明においては、上記入射経路における上記有機絶縁膜よりも上記受光素子側の領域において、少なくとも部分的には上記入射経路を確保しつつ、少なくとも部分的には導電部を成す層を形成しておけばよいことになる。
 本発明は上記した各実施の形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施の形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。
 本発明の表示パネル用基板において、上記導電膜は、格子状にパターニングされていることが好ましい。
 上記構成によれば、上記導電膜の重畳部と開口部とが分散して配置されることになることから、発光素子の受光部全域に対して導光機能及び電荷影響抑制機能をより均一に発揮できるようになる。
 本発明の表示パネル用基板において、上記導電膜と電気的に接続されており、当該表示パネル用基板の表示領域外へ延びるバスラインをさらに備えることが好ましい。
 上記構成によれば、表示パネル用基板の表示領域外に引き出されたバスラインの端部に給電することにより、導電膜に所定の電圧を印加することができる。これにより、上記電荷の容量カップリングによる受光素子への影響を好適に抑制することができる。
 なお、バスラインには、複数の画素それぞれに設けられた導電膜それぞれが電気的に接続されており、このバスラインによって複数の導電膜に対して一括して給電できるようにしておくことが好ましい。
 あるいは、本発明の表示パネル用基板において、上記導電膜は、上記配線に接続されていてもよい。
 上記構成によれば、上記導電膜に対して上記配線と同一の電圧を印加することになるが、これによっても上記電荷の容量カップリングによる受光素子への影響を抑制することは可能である。また、上記構成によれば、別途バスラインを設ける必要がないので、製造工程を簡略化することができる。
 本発明の表示パネル用基板において、上記受光素子は、P型の不純物濃度が相対的に高い半導体層であるP層と、真性半導体層または不純物濃度が相対的に低い半導体層であるI層と、N型の不純物濃度が相対的に高い半導体層であるN層とを、有するフォトダイオードであり、上記受光部は、上記I層であることが好ましい。
 本発明の表示パネル用基板において、上記フォトダイオードにおける、上記P層と、上記I層と、上記N層とは、面内方向に並べられていることが好ましい。
 上記構成によれば、P層、I層およびN層の各層が互いに重なりを持たない構造であるため、各層間の寄生容量が小さくなり、光センサとしてのセンシング速度を早くすることができる。
 また、上記フォトダイオードは、上記表示パネル用基板上に形成される例えば、TFT(Thin Film Transistor)素子などのアクティブ素子と同じ製造プロセスを用いて容易に製造することができる。
 よって、センシング速度が高い受光素子を備えた表示パネル用基板を比較的容易に製造することができる。
 本発明の表示パネル用基板において、上記導電膜と上記配線とは、同一の材料で形成されていることが好ましい。
 上記構成によれば、上記導電膜と上記配線とが同一の材料で形成されているため、これらを同一の膜をパターニングすることによって形成することができる。
 本発明の表示パネル用基板において、上記導電膜と上記配線との間に介在する第2の無機絶縁膜をさらに備えることが好ましい。
 上記構成によれば、導電膜と配線との間のアライメントズレなどによるショートをより確実に防止することができ、より信頼性の向上された表示パネル用基板を実現することができる。
 本発明の表示パネル用基板において、上記第1の無機絶縁膜と上記第2の無機絶縁膜とは同一の材料で形成しても良い。
 本発明の表示パネル用基板は、上記の課題を解決するために、光の受光量に応じて異なる電流値を流す受光素子と、上記受光素子に対する光の入射経路上に形成された有機絶縁膜と、上記入射経路において上記有機絶縁膜よりも上記受光素子側に介在するように形成され、上記受光素子の受光部に対して部分的に重畳し部分的に開口するようにパターニングされた導電膜とを備えることを特徴としている。
 上記構成によれば、上記導電膜が、上記入射経路において上記有機絶縁膜よりも上記受光素子側に介在するように形成されているため、上記有機絶縁膜に電荷蓄積が生じたとしても、その電荷が容量カップリングによって、上記受光素子へ及ぼす影響を抑制することができる。
 また、上記導電膜は上記光の入射経路上に形成されているが、部分的に開口しているため、受光素子側へ光を導くことができる。
 よって、有機絶縁膜を用いた構成であり、上記受光素子を長時間駆動させた場合であっても、上記受光素子の光電流特性の劣化を抑制することができ、信頼性の向上された受光素子を備えた表示パネル用基板を実現することができる。
 本発明の表示装置は、上記の課題を解決するために、上記表示パネル用基板を備えていることを特徴としている。
 上記構成によれば、上記表示装置は、上記受光素子を備えた表示パネル用基板を備えていることから、明るい表示品位を示すとともに、タッチパネル(エリアセンサ)機能を有する高信頼性の表示装置を実現することができる。
 本発明は、液晶表示装置や、有機EL表示装置に代表される表示装置に適用することができる。
  1        アクティブマトリクス基板(表示パネル用基板)
  8        多結晶半導体膜
  8d       PINダイオードのI層(受光素子の受光部)
  8e       PINダイオードのP層(受光素子の半導体層)
  8f       PINダイオードのN層(受光素子の半導体層)
  11       第1の無機絶縁膜
  12c・12d  メタル電極(配線)
  13       メタル配線網(導電膜)
  14       有機絶縁膜
  15       透明画素電極
  19       液晶表示装置(表示装置)
  21       PINダイオード(受光素子)
  33       第2の無機絶縁膜

Claims (11)

  1.  複数の画素を有する表示パネル用基板において、
     光の受光量に応じて異なる電流値を流す受光素子と、
     上記受光素子上に形成された第1の無機絶縁膜と、
     上記第1の無機絶縁膜上に形成され、上記受光素子に電気的に接続された配線と、
     上記配線上に形成された有機絶縁膜と、
     上記有機絶縁膜上に形成された透明画素電極と、
     上記有機絶縁膜と上記第1の無機絶縁膜との間に介在し、上記受光素子の受光部に対して部分的に重畳し、部分的に開口するようにパターニングされた導電膜と、
    を画素内に備えることを特徴とする表示パネル用基板。
  2.  上記導電膜は、格子状にパターニングされていることを特徴とする請求項1に記載の表示パネル用基板。
  3.  上記導電膜と電気的に接続されており、当該表示パネル用基板の表示領域外へ延びるバスラインをさらに備えることを特徴とする請求項1または2に記載の表示パネル用基板。
  4.  上記導電膜は、上記配線に接続されていることを特徴とする請求項1または2に記載の表示パネル用基板。
  5.  上記受光素子は、P型の不純物濃度が相対的に高い半導体層であるP層と、
     真性半導体層または不純物濃度が相対的に低い半導体層であるI層と、
     N型の不純物濃度が相対的に高い半導体層であるN層とを、
     有するフォトダイオードであり、
     上記受光部は、上記I層であることを特徴とする請求項1から4の何れか1項に記載の表示パネル用基板。
  6.  上記フォトダイオードにおける、
     上記P層と、上記I層と、上記N層とは、
     面内方向に並べられていることを特徴とする請求項5に記載の表示パネル用基板。
  7.  上記導電膜と上記配線とは、同一の材料で形成されていることを特徴とする請求項1から6の何れか1項に記載の表示パネル用基板。
  8.  上記導電膜と上記配線との間に介在する第2の無機絶縁膜をさらに備えることを特徴とする請求項1から7の何れか1項に記載の表示パネル用基板。
  9.  上記第1の無機絶縁膜と上記第2の無機絶縁膜とは同一の材料で形成されていることを特徴とする請求項8に記載の表示パネル用基板。
  10.  光の受光量に応じて異なる電流値を流す受光素子と、
     上記受光素子に対する光の入射経路上に形成された有機絶縁膜と、
     上記入射経路において上記有機絶縁膜よりも上記受光素子側に介在するように形成され、上記受光素子の受光部に対して部分的に重畳し部分的に開口するようにパターニングされた導電膜とを備えることを特徴とする表示パネル用基板。
  11.  請求項1から10の何れか1項に記載の表示パネル用基板を備えて構成されていることを特徴とする表示装置。
PCT/JP2010/001036 2009-06-16 2010-02-18 表示パネル用基板および表示装置 WO2010146737A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/378,154 US20120086019A1 (en) 2009-06-16 2010-02-18 Substrate for display panel, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-143447 2009-06-16
JP2009143447 2009-06-16

Publications (1)

Publication Number Publication Date
WO2010146737A1 true WO2010146737A1 (ja) 2010-12-23

Family

ID=43356074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001036 WO2010146737A1 (ja) 2009-06-16 2010-02-18 表示パネル用基板および表示装置

Country Status (2)

Country Link
US (1) US20120086019A1 (ja)
WO (1) WO2010146737A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932692B (zh) * 2015-06-24 2017-12-08 京东方科技集团股份有限公司 三维触摸感测方法、三维显示设备、可穿戴设备
CN105609079A (zh) * 2016-03-11 2016-05-25 武汉华星光电技术有限公司 触控装置驱动方法、触控装置驱动电路及触控装置
JP2018045034A (ja) * 2016-09-13 2018-03-22 株式会社ジャパンディスプレイ 表示装置
CN108596015B (zh) * 2018-01-31 2022-02-15 北京小米移动软件有限公司 显示组件及其制备方法、显示装置
CN111247630B (zh) * 2019-09-30 2022-03-01 重庆康佳光电技术研究院有限公司 一种发光二极管检测系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158272A (ja) * 2006-12-25 2008-07-10 Seiko Epson Corp 液晶装置及び電子機器
JP2009080469A (ja) * 2007-09-07 2009-04-16 Sony Corp 液晶表示装置
JP2009109800A (ja) * 2007-10-31 2009-05-21 Seiko Epson Corp 液晶装置、イメージセンサ、及び電子機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4044187B2 (ja) * 1997-10-20 2008-02-06 株式会社半導体エネルギー研究所 アクティブマトリクス型表示装置およびその作製方法
US8106401B2 (en) * 2007-04-25 2012-01-31 Sharp Kabushiki Kaisha Display device including metal lines provided above photodiode
TWI328884B (en) * 2007-05-14 2010-08-11 Au Optronics Corp Photo detector and method for forming thereof
TWI324832B (en) * 2007-10-23 2010-05-11 Au Optronics Corp Photo sensor and fabrication method thereof
US7999259B2 (en) * 2007-12-19 2011-08-16 Sony Corporation Display device having a photodiode whose p region has an edge width different than that of the n region
JP5086877B2 (ja) * 2008-04-11 2012-11-28 シャープ株式会社 固体撮像素子およびその製造方法、電子情報機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158272A (ja) * 2006-12-25 2008-07-10 Seiko Epson Corp 液晶装置及び電子機器
JP2009080469A (ja) * 2007-09-07 2009-04-16 Sony Corp 液晶表示装置
JP2009109800A (ja) * 2007-10-31 2009-05-21 Seiko Epson Corp 液晶装置、イメージセンサ、及び電子機器

Also Published As

Publication number Publication date
US20120086019A1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
US11620012B2 (en) Display device
JP5275515B2 (ja) 回路基板および表示装置
US8368068B2 (en) Display with photo sensor and manufacturing method thereof
US7462863B2 (en) Thin film phototransistor, active matrix substrate using the phototransistor, and image scanning device using the substrate
TWI424558B (zh) 顯示器
KR101790161B1 (ko) 광 센서, 광 센서의 제조 방법, 및 광 센서를 포함하는 액정 표시 장치
KR20050022358A (ko) 표시 장치 및 광전 변환 소자
KR20080056648A (ko) 고감도 광 센서 소자 및 그를 이용한 광 센서 장치
WO2014000394A1 (zh) Esd保护系统及x射线平板探测器
WO2010146736A1 (ja) 表示パネル用基板および表示装置
WO2010146737A1 (ja) 表示パネル用基板および表示装置
US20120319978A1 (en) Display device
JP2020202223A (ja) 半導体装置
JP2011039125A (ja) 表示装置
US8614493B2 (en) Photosensor element, photosensor circuit, thin film transistor substrate, display panel, and method for manufacturing photosensor element
JP5813943B2 (ja) 液晶表示装置
WO2011152307A1 (ja) タッチセンサ付き表示装置
US20090250708A1 (en) Thin-film photodiode and display device
JP5504661B2 (ja) 光電変換装置
JP2004140338A (ja) 光センサ素子、これを用いた平面表示装置、光センサ素子の製造方法、平面表示装置の製造方法
JP5285365B2 (ja) 受光素子および表示装置
US10775678B1 (en) Display panel
JP5358228B2 (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789122

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13378154

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP