WO2010144555A2 - Adjusting current ratios in inductively coupled plasma processing systems - Google Patents

Adjusting current ratios in inductively coupled plasma processing systems Download PDF

Info

Publication number
WO2010144555A2
WO2010144555A2 PCT/US2010/037942 US2010037942W WO2010144555A2 WO 2010144555 A2 WO2010144555 A2 WO 2010144555A2 US 2010037942 W US2010037942 W US 2010037942W WO 2010144555 A2 WO2010144555 A2 WO 2010144555A2
Authority
WO
WIPO (PCT)
Prior art keywords
coil
current
inductor
plasma processing
processing system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2010/037942
Other languages
English (en)
French (fr)
Other versions
WO2010144555A3 (en
Inventor
Maolin Long
Seyed Jafar Jafarian-Tehrani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Priority to SG2011083961A priority Critical patent/SG176069A1/en
Priority to CN2010800262057A priority patent/CN102804930A/zh
Priority to KR1020117029647A priority patent/KR101708075B1/ko
Priority to JP2012515098A priority patent/JP5643301B2/ja
Publication of WO2010144555A2 publication Critical patent/WO2010144555A2/en
Publication of WO2010144555A3 publication Critical patent/WO2010144555A3/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/4652Radiofrequency discharges using inductive coupling means, e.g. coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits

Definitions

  • the present invention relates to plasma processing systems.
  • the present invention relates to plasma processing systems having capability of coil current ratio adjustment for controlling plasma uniformity.
  • Plasma processing systems are employed in various industries for fabricating devices on wafers.
  • the industries may include semiconductor, magnetic read/write and storage, optical system, and micro-electromechanical system (MEMS) industries.
  • a plasma processing system may generate and sustain plasma in a plasma processing chamber to perform etching and/or deposition on a wafer such that device features may be formed on the wafer.
  • it may be important to control plasma uniformity in order to satisfy certain production yield requirements and/or certain feature specifications.
  • plasma uniformity control may involve utilizing a power splitter having current adjustment capability, as discussed with reference to the example of Fig. 1.
  • Fig. 1 shows a schematic representation illustrating a cross-sectional view of an example prior art plasma processing system 100.
  • Plasma processing system 100 may include a plasma processing chamber, which may include structural components such as a chamber wall 132, a pinnacle 130, a dielectric window 128, etc., for containing plasma, as illustrated by plasma 180. Inside the plasma processing chamber, plasma processing system 100 may include a chuck 136 (such as an electrostatic chuck) for supporting a wafer, as illustrated by wafer 134, during plasma processing.
  • a chuck 136 such as an electrostatic chuck
  • Plasma processing system 100 may also include a radio frequency (RF) power source 170, an inner coil 126 disposed on dielectric window 128 and electrically coupled with RF power source 170, and an outer coil 124 electrically coupled with RF power source 170 and surrounding inner coil 126.
  • Inner coil 126 and outer coil 124 may be disposed inside coil enclosure 138, which may be coupled to chamber wall 132.
  • RF power source 170 may produce RF currents conducted by inner coil 126 and outer coil 124 for generating and sustaining plasma 180.
  • inner coil 126 may conduct a first RF current mainly for sustaining an inner portion of plasma 180 (near inner coil 126), and outer coil 124 may conduct a second RF current mainly for sustaining an outer portion of plasma 180 (near inner coil 124).
  • Plasma processing system 100 may also include a power splitter 112 for adjusting the RF currents conducted by inner coil 126 and outer coil 124, thereby controlling the uniformity of plasma 180.
  • Power splitter 112 may be electrically coupled with RF power source 170 through a matching network 102.
  • Power splitter 112 may include a variable capacitor 116 electrically coupled between RF power source 170 and inner coil 126 for adjusting the amperage of the first RF current, thereby adjusting the density of the inner portion of plasma 180.
  • Power splitter 112 may also include another variable capacitor 120 electrically coupled between RF power source 170 and outer coil 126 for adjusting the amperage of the second RF current, thereby adjusting the density of the outer portion of plasma 180.
  • power splitter 112 may facilitate controlling the uniformity of plasma 180.
  • power splitter 112 may involve several disadvantages.
  • variable capacitors 116 and 120 may include mechanical parts that may incur substantial maintenance and operating costs.
  • each of variable capacitors 116 and 120 may require a step motor for actuating the mechanical parts to perform capacitance adjustment. The two step motors also may incur significant manufacturing, maintenance, and operating costs for power splitter 112. As a result, power splitter 112 may substantially increase the manufacturing, maintenance, and operating costs of plasma processing system 100.
  • the two variable capacitors and the two step motors may include a substantially large number of mechanical moving parts.
  • the substantially large number of mechanical moving parts may introduce significant reliability problems in operating plasma processing system 100. Malfunction of any of the mechanical moving parts may negatively affect the plasma processing process and may lead to undesirable production yield.
  • power splitter 112 may provide only a limited usable current ratio range. Operating plasma processing system 100 outside of the usable range may lead to unstable plasma, arcing, or failure of tuning by matching network 102; as a result, production yield requirements and/or device feature specifications may not be satisfied.
  • An embodiment of the invention is related to a plasma processing system for generating plasma to process at least a wafer.
  • the plasma processing system may include a first coil for conducting a first current for sustaining at least a first portion of the plasma.
  • the plasma processing system may also include a second coil for conducting a second current for sustaining at least a second portion of the plasma.
  • the plasma processing system may also include a power source for powering the first current and the second current.
  • the plasma processing system may also include a parallel circuit for adjusting one of the amperage of the first current and the amperage of the second current.
  • the parallel circuit may be electrically coupled between the power source and at least one of the first coil and the second coil.
  • the parallel circuit may include an inductor and a variable capacitor electrically connected in parallel to each other.
  • FIG. 1 shows a schematic representation illustrating a cross-sectional view of an example prior art plasma processing system.
  • FIG. 2 shows a schematic representation illustrating a cross-sectional view of a plasma processing system including a power splitter in accordance with one or more embodiments of the present invention.
  • Fig. 3 shows a schematic representation illustrating an electrical model of a power splitter in accordance with one or more embodiments of the present invention.
  • Fig. 4 shows a schematic representation illustrating an electrical model of a power splitter in accordance with one or more embodiments of the present invention.
  • One or more embodiments of the invention relate to a plasma processing system for generating plasma to process at least a substrate.
  • the plasma processing system may include a first coil for conducting a first current (e.g., an RF current) for sustaining at least a first portion of the plasma.
  • the plasma processing system may also include a second coil for conducting a second current (e.g., an RF current) for sustaining at least a second portion of the plasma.
  • the plasma processing system may also include a power source (e.g., an RF power source) electrically coupled with the first coil and the second coil for powering the first current and the second current.
  • a power source e.g., an RF power source
  • the plasma processing system may also include a power splitter for adjusting the amperage of the first current, to adjust the ratio of the first current to the second current for controlling the uniformity of the plasma.
  • the first coil and second coil may be disposed in a substantially coaxial arrangement, for achieving substantially symmetrical distribution of plasma. In one or more embodiments, the first coil and second coil may be disposed in a substantially eccentric arrangement, for meeting specific plasma distribution requirements.
  • the first coil may represent an inner coil
  • the second coil may represent an outer coil having a diameter larger than the diameter of the first coil. In one or more embodiments, at least a portion of the second coil may surround at least a portion of the first coil.
  • the first coil may represent an outer coil
  • the second coil may represent an inner coil having a diameter smaller than the diameter of the first coil.
  • at least a portion of the second coil may be surrounded by at least a portion of the first coil.
  • the first coil and the second coil may be disposed on the same plane, such that supporting hardware design may be simplified and that the tolerance of the coil-to-window gap tolerance may be consistently controlled.
  • the coplanar coil arrangement could be the optimal configuration for some plasma processing system designs.
  • the first coil may be disposed on a first plane, and the second coil may be disposed on a second plane that is different from the first plane, for optimum coil arrangements given particular plasma processing system designs.
  • the power splitter may include a parallel inductor-capacitor circuit (i.e., a parallel LC circuit, or a tank circuit) for changing the impedance between the power source and the first coil to adjust the amperage of the first current.
  • the parallel LC circuit may be electrically coupled between a matching network and the first coil, and/or electrically coupled between the power source and the first coil.
  • the parallel LC circuit may include an inductor and a variable capacitor (such as a variable vacuum capacitor or a variable air-gap capacitor), wherein the inductor and the variable capacitor may be electrically connected in parallel to each other.
  • embodiments of the invention may require only one variable capacitor for controlling plasma uniformity in plasma processing systems that include two plasma-sustaining coils.
  • embodiments of the invention may be associated with substantially lower costs and substantially higher reliability.
  • the parallel LC circuit may provide a substantially larger value range for the impedance between the matching network and the first coil than the range provided by the variable capacitor (such as variable capacitor 116 illustrated in the example of Fig. 1) utilized in prior art arrangements.
  • embodiments of the invention may advantageously enable a substantially larger current ratio range for satisfying more production yield requirements and/or more device feature requirements.
  • embodiments of the invention may enable adjusting the current ratio between a negative value and a positive value (e.g., in the range of about -0.5 to about 2.0) in a continuous manner.
  • a positive value e.g., in the range of about -0.5 to about 2.0
  • prior art arrangements may not be able to provide continuous adjustment from a positive current ratio to a negative current ratio without causing interruptions, difficulties, or even failure in operation.
  • embodiments of the invention may take advantage of the resonance effects of parallel LC circuit to provide a wider current ratio range to further enhance the controllability of plasma processing systems.
  • the power splitter may further include an additional inductor electrically coupled between the power source and the second coil.
  • the additional inductor may introduce impedance to reduce the amperage of the second current.
  • the current ratio range may be further expanded to satisfy even more production yield requirements and/or even more device feature requirements.
  • Fig. 2 shows a schematic representation illustrating a cross-sectional view of a plasma processing system 200 including a power splitter 204 in accordance with one or more embodiments of the present invention.
  • Plasma processing system 200 may include one or more components, such as a plasma processing chamber, a chuck, a power source, coils, a coil enclosure, and/or a matching network, that may be similar to or different from one or more components of plasma processing system 100 discussed in the example of Fig. 1.
  • plasma processing system 200 may include a power splitter 204 that is novel and inventive in view of power splitter 112 of plasma processing system 100 illustrated in the example of Fig. 1, for facilitating plasma uniformity control through adjusting the ratio between currents conducted by the coils.
  • Power splitter 204 may be electrically coupled with an RF power source 270 through a matching network 206.
  • Power splitter 204 may include a parallel inductor- capacitor circuit 208 (or parallel circuit 208) electrically coupled between RF power source 270 and a coil 216 for adjusting the amperage of the current (e.g., an RF current) conducted by coil 216.
  • the termination of coil 216 may represented by impedance 236.
  • Parallel circuit 208 may include an inductor 210 and a variable capacitor 212 electrically connected in parallel to each other.
  • Parallel circuit 208 may form a tank circuit such that the resonance effects of the tank circuit may introduce a wide range of possible impedance values between matching network 206 and coil 216 (and/or between RF power source 270 and coil 216). Accordingly, power splitter 204 may enable a wide range for the ratio between the amperage of the current conducted by coil 216 and the amperage of the current conducted by another coil, illustrated by a coil 214.
  • the termination of coil 214 may be represented by impedance 234. In one or more embodiments, coil 214 may surround coil 216.
  • plasma processing system 200 may be able to satisfy more production yield requirements and/or more device feature requirements than plasma processing system 100.
  • Power splitter 204 may require only one variable capacitor (i.e., variable capacitor 212) and only one associated step motor, in comparison with two variable capacitors and two associated step motors required by power splitter 112 of plasma processing system 100.
  • the manufacturing, maintenance, and/or operating costs associated with power splitter 204 may be substantially lower than the costs associated with power splitter 112.
  • power splitter 204 may also have substantially higher reliability than power splitter 112.
  • parallel circuit 208 may be electrically coupled between matching network 206 and coil 214 for adjusting the amperage of the current (e.g., an RF current) conducted by coil 214 to, for example, satisfy different plasma uniformity control requirements.
  • the current e.g., an RF current
  • power splitter 204 may require only one parallel circuit or only one variable capacitor.
  • costs may be minimized, and reliability may be maximized.
  • Plasma processing system 200 may also include a control unit 244 (which may include one or more monitoring devices) for driving variable capacitor 212 in power splitter
  • Plasma processing system 200 may also include a cooler 242 (e.g., a cooling fan) for cooling parallel circuit 208, to ensure the optimal performance of power splitter 204.
  • a cooler 242 e.g., a cooling fan
  • inductor 210 may be plated with a highly conductive material, such as silver, for facilitating heat dissipation to ensure the optimal performance of power splitter 204 with low power loss.
  • FIG. 3 shows a schematic representation illustrating an electrical model of a power splitter 304 in accordance with one or more embodiments of the present invention.
  • Power splitter 304 may be implemented in a plasma processing system similar to plasma processing system 200 illustrated in the example of Fig. 2 and may be electrically coupled with an RF power source 370 through a matching network 306.
  • Power splitter 304 may include a parallel inductor-capacitor circuit 308 (or parallel circuit 308) electrically coupled between RF power source 370 and a coil 316 (modeled with resistance and inductance) for adjusting the amperage of the current (e.g., an RF current) conducted by coil 316.
  • the current conducted by coil 316 may sustain at least a portion of the plasma generated in the plasma processing system.
  • Parallel circuit 308 may include an inductor 310 and a variable capacitor 312 electrically connected in parallel to each other.
  • Parallel circuit 308 may form a tank circuit with resonance effects to enlarge the range of possible impedance values between RF power source 370 and coil 316.
  • Power splitter 304 may also include an additional inductor 338 electrically coupled between RF power source 370 and a coil 314, with inductor 338 and parallel circuit 308 being electrically connected in parallel to each other.
  • Inductor 338 may introduce impedance to reduce the amperage of the current conducted by coil 314 (wherein the current conducted by coil 314 may sustain at least a different portion of the plasma).
  • the range of the ratio of the current conducted by coil 316 to the current conducted by coil 314 may be further expanded to further improve the plasma uniformity control capability of the plasma processing system.
  • even more production yield requirements and/or even more device feature requirements may be satisfied.
  • coil 316 may represent an inner coil surrounded by coil 314, which may represent an outer coil. In one or more embodiments, coil 316 may represent an outer coil surrounding coil 314, which may represent an inner coil.
  • Fig. 4 shows a schematic representation illustrating an electrical model of a power splitter 404 in accordance with one or more embodiments of the present invention.
  • Power splitter 404 may be implemented in a plasma processing system similar to plasma processing system 200 illustrated in the example of Fig. 2 but having more coils for finer plasma uniformity control.
  • the coils may include coil 452, coil 454, and coil 456, wherein each of the coils is modeled as resistance and inductance.
  • Power splitter 404 may be electrically coupled with an RF power source 470 through a matching network 406.
  • Power splitter 404 may include a parallel inductor-capacitor circuit 408 (or parallel circuit 408) electrically coupled between RF power source 470 and coil 454 for adjusting the amperage of the current (e.g., an RF current) conducted by coil 454, wherein the current conducted by coil 454 may sustain at least a first portion of plasma in the plasma processing system.
  • Power splitter 404 may also include a parallel inductor-capacitor circuit 414 (or parallel circuit 414) electrically coupled between RF power source 470 and coil 452 for adjusting the amperage of the current (e.g., an RF current) conducted by coil 452, wherein the current conducted by coil 452 may sustain at least a second portion of the plasma.
  • Each of parallel circuit 408 and parallel circuit 414 may have features and advantages similar to those of one or more of parallel circuit 208 and parallel circuit 308 discussed above with reference to the examples of Fig. 2 and Fig. 3, respectively.
  • Power splitter 404 may also include an additional inductor 438 electrically coupled between RF power source 470 and coil 456, with inductor 438 and at least parallel circuit 414 being electrically connected in parallel to each other.
  • Inductor 438 may introduce impedance to reduce the amperage of the current conducted by coil 456, wherein the current conducted by coil 456 may sustain at least a third portion of the plasma.
  • the difference between the current conducted by coil 454 and the current conducted by coil 456 may be further enlarged, and the difference between the current conducted by coil 452 and the current conducted by coil 456 also may be further enlarged.
  • the plasma uniformity control capability of the plasma processing system may be further enhanced to satisfy even more production yield requirements and/or even more device feature requirements.
  • coils may be disposed on the same plane or on different planes, according to various embodiments. In one or more embodiments, the coils may be disposed in a substantially coaxial arrangement. In one or more embodiments, coil 452 may surround coil 454, which may surround coil 456. In one or more embodiments, coil 456 may surround coil 454, which may surround coil 452. In one or more embodiments, coil 452 may surround coil 456, which may surround coil 454.
  • the plasma processing system may include more than three coils (i.e., including one or more coils in addition to coils 452, 454, and 456) for sustaining various portion of the plasma to facilitate even finer control of plasma uniformity.
  • the plasma processing system may include N coils, wherein N represents an integer that is greater than 3.
  • Power splitter 404 may include N-I (i.e., N minus 1) parallel inductor-capacitor circuits for adjusting the amperages of currents conducted by N-I of the N coils, e.g., except coil 456.
  • Each of the parallel inductor-capacitor circuits may be electrically coupled between RF power source 470 and one of the N-I coils.
  • the parallel inductor-capacitor circuits may have features and advantages similar to those of one or more of parallel circuit 208 and parallel circuit 308 discussed above with reference to the examples of Fig. 2 and Fig. 3, respectively.
  • embodiments of the present invention may reduce the required quantity of costly variable capacitors in implementing plasma uniformity control capability for plasma processing systems.
  • manufacturing, maintenance, and operating costs of plasma processing systems may be reduced.
  • Embodiments of the invention may also effectively reduce the number of mechanical parts in plasma processing systems.
  • Advantageously, reliability of plasma processing systems may be improved.
  • Embodiments of the invention may also take advantage of the resonance effects of parallel LC circuits to enlarge current ratio range in controlling plasma uniformity.
  • Embodiments of the invention may also facilitate implementation of more coils for individually sustaining different portion of plasma.
  • Finer granularity of plasma uniformity control may be enabled for satisfying more sophisticated plasma processing requirements.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
PCT/US2010/037942 2009-06-12 2010-06-09 Adjusting current ratios in inductively coupled plasma processing systems Ceased WO2010144555A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG2011083961A SG176069A1 (en) 2009-06-12 2010-06-09 Adjusting current ratios in inductively coupled plasma processing systems
CN2010800262057A CN102804930A (zh) 2009-06-12 2010-06-09 调节电感耦合等离子体处理系统中的电流比
KR1020117029647A KR101708075B1 (ko) 2009-06-12 2010-06-09 유도 결합 플라즈마 처리 시스템에서의 전류 비율 조정
JP2012515098A JP5643301B2 (ja) 2009-06-12 2010-06-09 プラズマ処理システム及び電力分配器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18671009P 2009-06-12 2009-06-12
US61/186,710 2009-06-12

Publications (2)

Publication Number Publication Date
WO2010144555A2 true WO2010144555A2 (en) 2010-12-16
WO2010144555A3 WO2010144555A3 (en) 2011-02-24

Family

ID=43305377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/037942 Ceased WO2010144555A2 (en) 2009-06-12 2010-06-09 Adjusting current ratios in inductively coupled plasma processing systems

Country Status (7)

Country Link
US (1) US9305750B2 (enExample)
JP (1) JP5643301B2 (enExample)
KR (1) KR101708075B1 (enExample)
CN (1) CN102804930A (enExample)
SG (2) SG176069A1 (enExample)
TW (1) TW201127224A (enExample)
WO (1) WO2010144555A2 (enExample)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209468A (ja) * 2011-03-30 2012-10-25 Tokyo Electron Ltd プラズマ処理装置
JPWO2011102083A1 (ja) * 2010-02-19 2013-06-17 株式会社アルバック プラズマ処理装置及びプラズマ処理方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8501631B2 (en) * 2009-11-19 2013-08-06 Lam Research Corporation Plasma processing system control based on RF voltage
US10056231B2 (en) * 2011-04-28 2018-08-21 Lam Research Corporation TCCT match circuit for plasma etch chambers
US9462672B2 (en) 2012-02-22 2016-10-04 Lam Research Corporation Adjustment of power and frequency based on three or more states
US9842725B2 (en) 2013-01-31 2017-12-12 Lam Research Corporation Using modeling to determine ion energy associated with a plasma system
US10157729B2 (en) 2012-02-22 2018-12-18 Lam Research Corporation Soft pulsing
US9320126B2 (en) 2012-12-17 2016-04-19 Lam Research Corporation Determining a value of a variable on an RF transmission model
US9197196B2 (en) 2012-02-22 2015-11-24 Lam Research Corporation State-based adjustment of power and frequency
US10128090B2 (en) 2012-02-22 2018-11-13 Lam Research Corporation RF impedance model based fault detection
US9114666B2 (en) 2012-02-22 2015-08-25 Lam Research Corporation Methods and apparatus for controlling plasma in a plasma processing system
CN103060778B (zh) * 2013-01-23 2015-03-11 深圳市劲拓自动化设备股份有限公司 平板式pecvd装置
KR20140122548A (ko) * 2013-04-10 2014-10-20 피에스케이 주식회사 전력 공급 장치, 전력 공급 방법, 그리고 그를 이용한 기판 처리 장치
KR102175081B1 (ko) * 2013-12-27 2020-11-06 세메스 주식회사 플라즈마 발생 장치 및 그를 포함하는 기판 처리 장치
US9594105B2 (en) 2014-01-10 2017-03-14 Lam Research Corporation Cable power loss determination for virtual metrology
US10950421B2 (en) 2014-04-21 2021-03-16 Lam Research Corporation Using modeling for identifying a location of a fault in an RF transmission system for a plasma system
CN104332379B (zh) * 2014-09-02 2017-12-19 清华大学 等离子体放电装置
US9515633B1 (en) * 2016-01-11 2016-12-06 Lam Research Corporation Transformer coupled capacitive tuning circuit with fast impedance switching for plasma etch chambers
US9839109B1 (en) * 2016-05-30 2017-12-05 Applied Materials, Inc. Dynamic control band for RF plasma current ratio control
US10553465B2 (en) * 2016-07-25 2020-02-04 Lam Research Corporation Control of water bow in multiple stations
CN108271307B (zh) * 2016-12-30 2019-11-05 中微半导体设备(上海)股份有限公司 电感耦合等离子体处理装置与等离子体产生装置
CN108882494B (zh) * 2017-05-08 2022-06-17 北京北方华创微电子装备有限公司 等离子体装置
CN111699542B (zh) 2017-11-29 2023-05-16 康姆艾德技术美国分公司 用于阻抗匹配网络控制的重新调谐
CN111192752B (zh) * 2018-11-14 2021-08-31 江苏鲁汶仪器有限公司 一种功率分配电感耦合线圈及具有其的等离子体处理装置
CN111199860A (zh) * 2018-11-20 2020-05-26 江苏鲁汶仪器有限公司 一种刻蚀均匀性调节装置及方法
US11114279B2 (en) 2019-06-28 2021-09-07 COMET Technologies USA, Inc. Arc suppression device for plasma processing equipment
US11107661B2 (en) 2019-07-09 2021-08-31 COMET Technologies USA, Inc. Hybrid matching network topology
WO2021041984A1 (en) 2019-08-28 2021-03-04 COMET Technologies USA, Inc. High power low frequency coils
US11342887B2 (en) * 2019-12-18 2022-05-24 Nxp Usa, Inc. Wideband RF power splitters and amplifiers including wideband RF power splitters
CN113496863B (zh) * 2020-04-01 2022-04-12 吉佳蓝科技股份有限公司 等离子体天线模块
KR102147877B1 (ko) * 2020-04-01 2020-08-25 주식회사 기가레인 플라즈마 안테나 모듈
KR20230071629A (ko) * 2021-11-16 2023-05-23 삼성전자주식회사 플라즈마 처리 장치 및 이를 이용한 반도체 소자 제조 방법
US12087549B2 (en) 2021-12-30 2024-09-10 Mks Instruments, Inc. Demagnetizing coils for linearity improvement of current ratio of plasma processing systems

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW293983B (enExample) * 1993-12-17 1996-12-21 Tokyo Electron Co Ltd
US5907221A (en) * 1995-08-16 1999-05-25 Applied Materials, Inc. Inductively coupled plasma reactor with an inductive coil antenna having independent loops
US6054013A (en) 1996-02-02 2000-04-25 Applied Materials, Inc. Parallel plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density
DE69840483D1 (de) 1997-11-10 2009-03-05 Nippon Zeon Co Binder mit vinylalkoholpolymer, dispersion, elektrode und sekundärzelle mit nichtwässrigem elektrolyt
US6326597B1 (en) * 1999-04-15 2001-12-04 Applied Materials, Inc. Temperature control system for process chamber
KR100338057B1 (ko) * 1999-08-26 2002-05-24 황 철 주 유도 결합형 플라즈마 발생용 안테나 장치
US6507155B1 (en) 2000-04-06 2003-01-14 Applied Materials Inc. Inductively coupled plasma source with controllable power deposition
JP2003100723A (ja) 2001-09-27 2003-04-04 Tokyo Electron Ltd 誘導結合プラズマ処理装置
US6876155B2 (en) * 2002-12-31 2005-04-05 Lam Research Corporation Plasma processor apparatus and method, and antenna
KR101144018B1 (ko) * 2004-05-28 2012-05-09 램 리써치 코포레이션 복수 rf 주파수에 반응하는 전극을 갖는 플라즈마 처리기
KR100648336B1 (ko) * 2004-07-12 2006-11-23 어플라이드 머티어리얼스, 인코포레이티드 플라즈마 챔버와 관련하여 사용되는 고정 임피던스 변형 네트워크 장치 및 방법
JP4884901B2 (ja) 2006-09-21 2012-02-29 三菱重工業株式会社 薄膜製造装置及び太陽電池の製造方法
KR100898165B1 (ko) 2006-11-24 2009-05-19 엘지전자 주식회사 플라즈마 발생장치 및 방법
KR20080102615A (ko) * 2007-05-21 2008-11-26 네스트 주식회사 멀티-모드 플라즈마 생성 방법 및 장치
JP5329167B2 (ja) 2007-11-21 2013-10-30 東京エレクトロン株式会社 誘導結合プラズマ処理装置、誘導結合プラズマ処理方法および記憶媒体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011102083A1 (ja) * 2010-02-19 2013-06-17 株式会社アルバック プラズマ処理装置及びプラズマ処理方法
JP2012209468A (ja) * 2011-03-30 2012-10-25 Tokyo Electron Ltd プラズマ処理装置
US9293299B2 (en) 2011-03-30 2016-03-22 Tokyo Electron Limited Plasma processing apparatus
US10020167B2 (en) 2011-03-30 2018-07-10 Tokyo Electron Limited Plasma processing apparatus

Also Published As

Publication number Publication date
KR101708075B1 (ko) 2017-02-17
KR20120028916A (ko) 2012-03-23
JP5643301B2 (ja) 2014-12-17
US20100314048A1 (en) 2010-12-16
SG176069A1 (en) 2011-12-29
US9305750B2 (en) 2016-04-05
TW201127224A (en) 2011-08-01
CN102804930A (zh) 2012-11-28
JP2012529750A (ja) 2012-11-22
SG10201402467SA (en) 2014-09-26
WO2010144555A3 (en) 2011-02-24

Similar Documents

Publication Publication Date Title
US9305750B2 (en) Adjusting current ratios in inductively coupled plasma processing systems
KR102012225B1 (ko) 플라즈마 처리 장치
JP5643062B2 (ja) プラズマ処理装置
CN102421239B (zh) 等离子体处理装置
JP6374489B2 (ja) 高速真空可変コンデンサ
US20120032756A1 (en) Radio frequency (rf) power filters and plasma processing systems including rf power filters
JP2013182966A (ja) プラズマ処理装置及びプラズマ処理方法
US9312832B2 (en) High power filter with single adjust for multiple channels
KR102009369B1 (ko) 플라즈마 처리 장치
JP2024099717A (ja) マルチ周波数無線周波数(rf)バイアス用のrfフィルタ
JPH11233289A (ja) 高周波放電装置及び高周波処理装置
US11251021B2 (en) Mode-switching plasma systems and methods of operating thereof
KR101986744B1 (ko) 플라즈마 처리 장치 및 방법
KR102589701B1 (ko) 에칭 균일도 조절 장치 및 방법
KR20090094320A (ko) 플라즈마 한정을 관리하기 위한 감소된 전기장 배열
JP5595136B2 (ja) 誘導結合プラズマ発生装置
CN118073160B (zh) 射频功率的馈入结构及半导体工艺设备
US20240038497A1 (en) Compound helical inductor coil
KR101143742B1 (ko) 유도 결합 플라즈마 처리 장치, 플라즈마 처리 방법 및 기억 매체
KR20080102615A (ko) 멀티-모드 플라즈마 생성 방법 및 장치
EP3005386A1 (en) Vacuum variable capacitor
JP2002280832A (ja) 誘電体共振器を用いた発振器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026205.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786764

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 20117029647

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012515098

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10786764

Country of ref document: EP

Kind code of ref document: A2