WO2010143726A1 - 大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、大入熱溶接熱影響部靭性に優れた厚手高強度鋼板 - Google Patents

大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、大入熱溶接熱影響部靭性に優れた厚手高強度鋼板 Download PDF

Info

Publication number
WO2010143726A1
WO2010143726A1 PCT/JP2010/059991 JP2010059991W WO2010143726A1 WO 2010143726 A1 WO2010143726 A1 WO 2010143726A1 JP 2010059991 W JP2010059991 W JP 2010059991W WO 2010143726 A1 WO2010143726 A1 WO 2010143726A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
formula
heat input
oti
affected zone
Prior art date
Application number
PCT/JP2010/059991
Other languages
English (en)
French (fr)
Inventor
明彦 児島
肇 石川
義之 渡部
清司 石橋
義史 溝本
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43308982&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010143726(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to KR1020117029176A priority Critical patent/KR101176612B1/ko
Priority to CN201080025820.6A priority patent/CN102459656B/zh
Priority to JP2010540354A priority patent/JP4681690B2/ja
Publication of WO2010143726A1 publication Critical patent/WO2010143726A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to a method for producing a thick high-strength steel sheet having excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone (Heat Affected Zone: hereinafter referred to as HAZ) toughness, and high heat input welding heat.
  • HAZ heat Affected Zone
  • the present invention relates to a thick high-strength steel sheet having excellent affected zone toughness.
  • a yield strength of 400 to 650 MPa and a tensile strength of 490 to a thick steel plate having a thickness of 50 to 100 mm (hereinafter sometimes referred to as a thick material).
  • 720 MPa ensured,
  • Reduction of expensive alloy elements Ni amount ⁇ 1% etc.
  • Patent Document 1 discloses a technique for using B in high heat input welding HAZ. Under the condition of 0.30 to 0.38% of Ceq, the effect of suppressing grain boundary ferrite (calcination) by solute B in ⁇ . This demonstrates the effectiveness of combining the effect of improving the hardenability and the effect of promoting intragranular ferrite (hardenability reducing effect) by BN in ⁇ . That is, in this case, B plays two conflicting roles with respect to hardenability.
  • Patent Document 1 The effect of improving hardenability by solute B in ⁇ is used in a directly quenched base material and large heat input welding HAZ, and at the same time, precipitation B in ⁇ (BN here) The effect of reducing the hardenability by means of high heat input welding HAZ is utilized.
  • Patent Documents 2 and 3 invent techniques to refine the HAZ structure by acting as a nucleus. Further, as shown in Non-Patent Document 1, the effect of increasing the strength of the base material by adding V is widely known. As described above, the effects of improving the strength of the base metal and the toughness of the high heat input welding HAZ by adding B or V are known.
  • Ni is known as a rare element that enhances the toughness of a base material and HAZ, and effective use of Ni is considered from the viewpoint of the above (2).
  • Ni is an expensive element.
  • steel with Ni added tends to cause surface flaws, there is a problem that a care process is required. Therefore, regarding the addition of Ni, the interests of (3) and (2) conflict.
  • the carbon equivalent (Ceq) increases and the HAZ in the case of high heat input welding hardens and becomes brittle. There is a conflict of interest with the needs of 2). For this reason, there has been a strong demand for the development of a steel sheet that simultaneously satisfies the three needs (1) to (3), which have conflicting interests as described above.
  • the present invention has been made in view of the above problems.
  • the gist of the present invention for solving the above problems is as follows.
  • the carbon equivalent Ceq of the following formula (1) is 0.32 to 0.45%
  • the effective boron amount Bef of the following formula (2) is 0% or less, A continuous cast slab having an effective titanium amount Tief of the following formula (3) of 0.005% or more, After heating to over 1100 ° C.
  • OTi O-0.4Ca-0.66Mg-0.17REM-0.35Zr-0.89Al (4) here, When OTi in formula (4) is less than 0%, OTi in formula (2) and formula (3) is 0%, When N-0.29 (Ti-2OTi) is smaller than 0%, N-0.29 (Ti-2OTi) in formula (2) is set to 0%,
  • the elements shown in Formula (1), Formula (2), Formula (3), and Formula (4) are the contents (% by mass) of the respective elements, and elements mixed as inevitable impurities are included in the calculation.
  • the accelerating cooling is further subjected to tempering heat treatment at 350 to 700 ° C. for 5 to 60 minutes. Manufacturing method of high strength steel sheet.
  • OTi O-0.4Ca-0.66Mg-0.17REM-0.35Zr-0.89Al (3) here, When OTi in formula (4) is less than 0%, OTi in formula (2) and formula (3) is 0%, When N-0.29 (Ti-2OTi) is smaller than 0%, N-0.29 (Ti-2OTi) in formula (2) is set to 0%,
  • the elements shown in Formula (1), Formula (2), Formula (3), and Formula (4) are the contents (% by mass) of the respective elements, and elements mixed as inevitable impurities are included in the calculation.
  • the plate thickness is 50 to 100 mm.
  • high yield strength of 400-650 MPa and high tensile strength of 490-720 MPa and (2) good high heat input weld HAZ toughness with vE ( ⁇ 20 ° C.) ⁇ 70 J even when the welding heat input ⁇ 20 kJ / mm (3)
  • Low manufacturing cost due to reduction of expensive alloy elements (Ni ⁇ 1%, etc.) can be realized.
  • Such a thick high-strength steel sheet according to the present invention is used for various welded structures including high-rise buildings, so that the welded structures are enlarged, high safety against breakage, high efficiency of welding in construction, Since the economics of steel as a raw material are satisfied at the same time, the industrial effects are immeasurable.
  • the manufacturing method of the thick high strength steel plate excellent in the high heat input welding heat affected zone toughness of the present invention and the embodiment of the thick high strength steel plate excellent in the high heat input welding heat affected zone toughness will be described.
  • this embodiment is described in detail for better understanding of the gist of the invention, the present invention is not limited unless otherwise specified.
  • steel plates used for welded structures such as high-rise buildings there are increasing needs for (1) high strength with large plate thickness, (2) good high heat input HAZ toughness, and (3) low manufacturing cost. Yes.
  • the method for producing a thick high-strength steel sheet having excellent high heat input welding heat-affected zone toughness is mass%, C: 0.05 to 0.12%, Si: 0.00. 3% or less, Mn: 1 to 2%, P: 0.015% or less, S: 0.005% or less, B: 0.0003 to 0.003%, V: 0.03 to 0.15%, Al : 0.001 to 0.1%, Ti: 0.005 to 0.02%, N: 0.002 to 0.01%, O: 0.004% or less, further, if necessary, S: 0.0005 to 0.005%, O: 0.001 to 0.004%, Ca: 0.0003 to 0.004%, Mg: 0.0003 to 0.004%, Ni: 0.01 to 1%, Cu: 0.01-1%, Cr: 0.01-1%, Mo: 0.01-0.5%, Nb: 0.003-0.03%, REM: 0.0003-0 .0 %, Zr: 0.0003 to 0.02% or one or more
  • the carbon equivalent Ceq of (1) is 0.32 to 0.45%, and the effective boron amount Bef, which is the amount of boron dissolved in the ⁇ substrate before transformation represented by the following formula (2), is 0% or less.
  • the effective titanium amount Tief of the following formula (3) is 0.005% or more, and after heating to over 1100 ° C. to 1300 ° C. or less, the steel surface temperature is 850 ° C. or more and the cumulative reduction amount is The rolling is performed at 50% or more, and then the steel surface temperature is cooled to 800 ° C. or less by applying accelerated cooling from 800 ° C. or more.
  • OTi O-0.4Ca-0.66Mg-0.17REM-0.35Zr-0.89Al (4) here, When OTi in formula (4) is less than 0%, OTi in formula (2) and formula (3) is 0%, When N-0.29 (Ti-2OTi) is smaller than 0%, N-0.29 (Ti-2OTi) in formula (2) is set to 0%,
  • the elements shown in Formula (1), Formula (2), Formula (3), and Formula (4) are the contents (% by mass) of the respective elements, and elements mixed as inevitable impurities are included in the calculation.
  • the main point of the present invention is that, in a thick steel plate manufactured by TMCP type, B and V are added in combination in order to satisfy simultaneously strength, high heat input welding HAZ toughness, low manufacturing cost, etc.
  • This is a technique for optimizing the existence state of B and V in ⁇ by precisely controlling N bonded to an object-forming element and controlling the transformation structure of the base material and the high heat input welding HAZ.
  • the state of B in ⁇ is an idea that all B is precipitated as BN without solute B in both the base metal and the high heat input welding HAZ.
  • the existence state of V in ⁇ is a concept of using as solid solution V in the base metal and as precipitation V (VN or the like) in high heat input welding HAZ. Details will be described below.
  • HAZ toughness is improved without relying on Ni from the viewpoint of (3) above.
  • the controlling factors of the high heat input welding HAZ toughness of the present invention are roughly classified into the following three.
  • First is hardness
  • second is MA (martensite / austenite mixed phase)
  • third is effective crystal grain size.
  • the present invention limits the carbon equivalent Ceq to 0.45% or less. This is because if the carbon equivalent Ceq exceeds 0.45%, the HAZ hardens excessively and at the same time, the MA increases and the HAZ becomes greatly brittle. Furthermore, by controlling the effective boron amount (Bef) to 0% or less, it is avoided that B hardenability is expressed in HAZ, and hardening and MA increase are suppressed.
  • Bef effective boron amount
  • the superiority of V addition was found in the present invention. It has been found that when HAZ is mainly composed of bainite as in the present invention, it is difficult to cure even if V is added. That is, when an element other than V, such as C or Mn, is added to strengthen the base material, the bainite-based HAZ is remarkably hardened and the HAZ is greatly embrittled. On the other hand, when the base material is strengthened by adding V as in the present invention, the hardening of HAZ mainly composed of bainite is suppressed.
  • Nb promotes MA generation despite its small contribution to the base material.
  • Mo facilitates MA formation despite being expensive. Accordingly, Nb and Mo are preferably reduced as much as possible in the present invention.
  • the first technique is to simultaneously use B precipitates and V precipitates in ⁇ as transformation nuclei.
  • the second technology for refining the HAZ structure is to finely disperse bainite packets by dispersing a large number of fine oxides and sulfides by appropriate addition of Ca and Mg, and suppressing ⁇ grain growth by the pinning effect.
  • B precipitates and V precipitates are compounded in a part of fine oxides and sulfides, and the transformation nucleus function is added to the pinning particles, so that the bainite transformed from the ⁇ grain boundary is further refined.
  • the above HAZ microstructure refinement technique results in lowering the hardenability of HAZ, and thus contributes from the viewpoint of reducing hardness and MA.
  • the high heat input HAZ of the present invention can achieve high vE ( ⁇ 20 ° C.) without depending on Ni.
  • Ceq may be limited to 0.43% or less, 0.41% or less, or 0.39% or less.
  • Slabs need to be heated above 1100 ° C and below 1300 ° C. At low temperature heating of 1100 ° C. or less, there is a concern that the solidified and segregated alloy element is not sufficiently dissolved and remains as a precipitate, and the hardenability by the alloy element is not sufficiently exhibited during accelerated cooling after rolling, It is difficult to ensure a stable strength. On the other hand, when the heating is higher than 1300 ° C., the ⁇ grains become extremely coarse, and the ⁇ grains are not sufficiently refined even by rolling, and it is difficult to stably ensure toughness.
  • the heated slab needs to be rolled with a steel surface temperature of 850 ° C. or more and a cumulative reduction amount of 50% or more.
  • is not recrystallized and the hardenability is significantly reduced, so that it is difficult to stably secure the strength.
  • the cumulative reduction amount in the ⁇ recrystallization region at 850 ° C. or higher is less than 50%, the ⁇ recrystallized grains are insufficiently refined and it is difficult to stably ensure toughness.
  • accelerated cooling After rolling, it is necessary to apply accelerated cooling from a steel surface temperature of 800 ° C. or higher to 500 ° C. or lower. When accelerated cooling is applied from less than 800 ° C., there is a concern that ⁇ recrystallized grains grow and toughness deteriorates after the end of rolling until the start of accelerated cooling. On the other hand, when the accelerated cooling is stopped at a temperature higher than 500 ° C., the accelerated cooling is terminated in the middle of the transformation in the middle of the high temperature and, for example, air cooling is performed, so that the bainite structure is reduced and the strength is insufficient. In accelerated cooling, it is preferable to secure a water density of 0.3 m 3 / m 2 / min or more in order to achieve both strength and toughness.
  • the first means eliminates hardenability instability caused by fluctuations in the amount of solid solution boron in ⁇ by allowing all B to precipitate as BN without having solid solution B present in ⁇ in TMCP. .
  • This is a concept that is completely opposite to the conventional B utilization technology and is a concept that does not use B hardenability for the strength of the base material.
  • the above-described effective boron amount (Bef) is controlled to 0% or less.
  • the significance of adding B in the present invention resides in the high heat input welding HAZ as described above.
  • the second means increases the base material strength by utilizing precipitation strengthening by V carbide.
  • V addition is a very effective strengthening means. This is because the bainite structure, which has been transformed under sufficient hardenability by thorough high-temperature heating and high-temperature rolling, is fine and dense in V carbide (VC, V 4 C 3 etc.) in accelerated cooling and tempering treatment. This is because it is suitable as a substrate that precipitates on the surface.
  • Another significance of adding V in the present invention resides in the high heat input welding HAZ as described above.
  • the manufacturing cost increases, but the strength, elongation, and Charpy impact characteristics can be controlled within a predetermined range with high accuracy.
  • the tempering heat treatment are less than 350 ° C. or less than 5 minutes, the tempering effect is not exhibited.
  • the tempering phenomenon is excessively expressed beyond the appropriate range, and the strength reduction and the Charpy impact property deterioration become remarkable, and appropriate mechanical properties are obtained. Cannot be obtained.
  • C Carbon
  • 0.05 to 0.12% C is an important element for improving the strength.
  • the strength can be increased more stably by containing 0.06% or more or 0.07% or more of C.
  • Nb, Ni, and Mo it is necessary to suppress the contents of Nb, Ni, and Mo to the minimum necessary, and it is difficult to increase these elements to increase the strength.
  • C is a very important strengthening element. Furthermore, C also has an effect of promoting the precipitation of V (C, N) transformation nuclei in the high heat input HAZ. However, in order to stably secure good HAZ toughness, C needs to be suppressed to 0.12% or less. C may be limited to 0.11% or less or 0.10% or less.
  • Si silicon 0.3% or less Si has a deoxidizing action, but is unnecessary when Al, which is a strong deoxidizing element, is sufficiently contained. There is also an effect of strengthening the base material, but the effect is relatively small compared to other elements.
  • Si has a high risk of promoting MA formation, so it is necessary to suppress it to 0.3% or less.
  • Si is preferably as low as possible, and may be limited to 0.20% or less, 0.16% or less, or 0.13% or less.
  • Mn Manganese
  • Mn may be limited to 1.1% or more or 1.2% or more.
  • the heat input may be limited to 1.8% or less, 1.6% or less, or 1.5% or less.
  • P Phosphorus 0.015% or less P is an impurity element, and it is necessary to reduce it to 0.015% or less in order to stably secure good brittle fracture propagation stopping characteristics and high heat input HAZ toughness. There is.
  • S sulfur 0.005% or less S needs to be suppressed to 0.005% or less.
  • S exceeds 0.005%, a part of the sulfide is coarsened to cause harmfulness as a fracture starting point, and the toughness of the base metal and the high heat input welding HAZ deteriorates.
  • S may be limited to 0.004% or less or 0.003% or less.
  • S needs to be secured at 0.0005% or more.
  • B Boron 0.0003 to 0.003% B is a characteristic element of the present invention.
  • all B is precipitated as BN without the presence of solid solution B in ⁇ so that the B hardenability does not appear.
  • the effective boron amount (Bef) is controlled to 0% or less.
  • BN precipitated in ⁇ acts as a transformation nucleus and enhances toughness through HAZ microstructure refinement, hardness reduction, and MA reduction. For that purpose, it is necessary to contain 0.0003% or more of B. If necessary, B may be limited to 0.0005% or more.
  • B may be limited to 0.002% or less or 0.0015% or less.
  • V Vanadium 0.03-0.15%
  • V effectively strengthens the base material under the TMCP conditions of the present invention.
  • V suppresses hardening and MA increase in the high heat input welding HAZ of the present invention, and at the same time, VN and V (C, N) precipitated in ⁇ act as transformation nuclei to refine the HAZ structure.
  • V if V exceeds 0.15%, the HAZ toughness deteriorates because the effect of refining the HAZ structure becomes saturated and the HAZ hardens significantly. Therefore, the V content needs to be 0.15% or less. If necessary, V may be limited to 0.10% or less or 0.07% or less.
  • Al Aluminum 0.001 to 0.1% Al is necessary for carrying out deoxidation, reducing O, and increasing the cleanliness of steel. Si, Ti, Ca, Mg, REM, Zr, etc. other than Al also have a deoxidizing action, but even if these elements are contained, O (oxygen) is stable without 0.001% or more of Al. ) To 0.004% or less is difficult. However, if Al exceeds 0.1%, the tendency of the alumina-based coarse oxide to be clustered is strengthened, and a steelmaking nozzle is clogged, or the harmfulness as a fracture starting point becomes obvious, so this is the upper limit. More preferably, Al is limited to 0.06% or less, 0.04% or 0.03% or less. In particular, when adding Mg, Al may be limited to 0.02% or less.
  • Ti Titanium
  • N Nitrogen
  • Amount of effective boron: Bef (%)” 0% or less Ti combines with N to form TiN, contributes to pinning effect during slab reheating and high heat input welding HAZ, and contributes to ⁇ refinement
  • the microstructure of the base material and the HAZ is refined to enhance toughness.
  • Ti is 0.005 to 0.02%, N is 0.002 to 0.01%, and the effective boron amount (Bef) is 0% or less. If Ti and N are less than 0.005% and 0.002%, respectively, the pinning effect by TiN is not sufficiently exhibited, and the toughness of the base material and the HAZ deteriorates. When Ti and N exceed 0.02% and 0.01%, respectively, the toughness of the base material and the HAZ deteriorates due to TiC precipitation and solute N increase.
  • Ti and N are in the proper range, if the effective boron amount exceeds 0%, the amount of solute B in ⁇ increases and B hardenability develops, and variations in the strength of the base metal and HAZ Causes hardening (embrittlement). More preferably, Ti is limited to 0.015% or less, and N is limited to 0.008% or 0.006%.
  • an element represents content (mass%) of each element.
  • Ti added as a chemical component may be consumed by deoxidation in molten steel (prone to occur in the case of low Al), and Ti remaining after deoxidation forms TiN in ⁇ after solidification.
  • N is excessive with respect to Ti
  • N remaining after forming TiN is combined with a part of B to form BN.
  • the remaining B which formed BN will express hardenability as the solid solution B.
  • the amount of dissolved boron in ⁇ that contributes to the hardenability is treated as the effective boron amount Bef (%).
  • OTi (%) O ⁇ 0.4Ca ⁇ 0.66Mg ⁇ 0.17REM ⁇ 0.35Zr ⁇ 0.89Al (3)
  • component elements that are treated as inevitable impurities are also included in the calculation.
  • the residual oxygen amount OTi is regarded as 0%.
  • Ti deoxidizes the remaining oxygen (that is, OTi).
  • OTi is the amount of residual oxygen that can be deoxidized by Ti, and combines with Ti to form Ti 2 O 3 .
  • two Ti bonds to three Os. Therefore, when Ti 2 O 3 is considered in terms of mass%, the atomic weight of O is 16, so that three Os are 48. Further, since the atomic weight of Ti is 48, two Ti are 96. Therefore, Ti constituting Ti 2 O 3 is calculated to be twice the mass of O (here, OTi). This is the amount of Ti consumed by deoxidation. Therefore, assuming Ti 2 O 3 , the effective titanium amount Tief, which is the remaining titanium amount after subtracting Ti consumed in deoxidation, is expressed as Tief Ti-2OTi.
  • This effective titanium amount Tief is a Ti amount that produces TiN having an effect of improving HAZ toughness. If the remaining Ti after subtracting Ti consumed by deoxidation is less than 0.005%, the pinning effect by TiN is not sufficiently exhibited, and the thick base material and the high heat input weld HAZ toughness deteriorate. For this reason, it is necessary to secure 0.005% or more of the effective titanium amount.
  • Nr (%) N-0.29 (Ti-2OTi) (5)
  • Nef N-0.29 (Ti-2OTi)
  • Nef N-0.29
  • Nef N-0.29
  • the formula (N-0.29Tief) is the remaining N denitrified by Ti, and can combine with B to form BN. At this time, one N is bonded to one B. Therefore, when BN is considered in mass%, the atomic weight of B is 10.8, and the atomic weight of N is 14. Therefore, B constituting BN is calculated to be 0.77 times the mass of N (here, N-0.29 England). This is the amount of B consumed by denitrification. Moreover, in each said formula, 0.29Tief in a formula (N-0.29Tief) means NasTiN.
  • Oxygen 0.004% or less O must be suppressed to 0.004% or less.
  • O exceeds 0.004%, a part of the oxide is coarsened to cause harmfulness as a fracture starting point, and the toughness of the base material and the high heat input welding HAZ is deteriorated.
  • O needs to be secured at 0.001% or more. The reason for this is to reinforce the pinning effect and achieve ⁇ grain refinement when a large number of fine oxides are dispersed by appropriate addition of Ca and Mg in the vicinity of the HAZ melting line to increase HAZ toughness. It is. If O is less than 0.001%, the number of oxides may be insufficient and a sufficient pinning effect may not be obtained.
  • Ca Calcium
  • Mg Magnesium 0.0003 to 0.004% Ca and Mg are added in an amount of 0.0003% or more in consideration of the order of addition to the molten steel, so that 10 to 500 nm of oxides and sulfides containing Ca and Mg are 1000 / mm 2. This can be ensured. If Ca or Mg is less than 0.0003%, the number of oxides and sulfides that are pinning particles of the high heat input welding HAZ may be insufficient.
  • Ni Nickel 0.01-1% Ni is effective for suppressing strength deterioration and ensuring strength. For that purpose, it is preferable to contain 0.01% or more of Ni. However, Ni has a problem that the alloy cost is very high and a surface flawing process occurs. Therefore, Ni is preferably suppressed to 1% or less. The Ni content is preferably as low as possible, and may be limited to 0.7% or less, 0.5% or less, or 0.3% or less.
  • Cu, Cr, and Mo are effective for securing strength, and both exhibit an effect with a content of 0.01% or more.
  • the upper limit is 1%, 1%, and 0.5%, respectively.
  • Mo is an expensive element like Ni, and also has a high risk of promoting the MA formation of HAZ. Therefore, the content of Mo is preferably as low as Ni.
  • Cu and Cr may be limited to 0.5% or less or 0.3% or less, and Mo may be limited to 0.3% or less or 0.1% or less.
  • Nb: Niobium 0.003-0.03% Nb is effective for securing strength from both aspects of hardenability and precipitation.
  • Nb is harmful to rolling ⁇ recrystallization and high heat input welding HAZ toughness. Therefore, when Nb is added, since it is essential to use the fine graining effect due to the pinning effect of the high heat input welding HAZ with Mg, Mg is also added.
  • the harmfulness of Nb to rolled ⁇ recrystallization and high heat input welding HAZ toughness becomes obvious.
  • Nb 0.03% or less. It is more preferable to suppress it to 0.02% or less, 0.01% or less, or 0.005% or less. It is more preferable not to contain Nb from the viewpoint of HAZ toughness.
  • REM rare earth element (lanthanoid element)
  • Zr Zirconium
  • REM rare earth element
  • Zr Zirconium
  • REM rare earth element
  • Zr Zirconium
  • Such a thick high-strength steel sheet according to the present invention is used for various welded structures including high-rise buildings, so that the welded structures are enlarged, high safety against breakage, high efficiency of welding in construction, Since the economics of steel as a raw material are satisfied at the same time, the industrial effects are immeasurable.
  • Example preparation In the steelmaking process, the deoxidation / desulfurization of the molten steel and the chemical composition are controlled, and No. shown in Tables 1 to 4 below by continuous casting. 1-No. 36, and No. 36 shown in Table 11 and Table 12. Slabs having chemical components A to J were prepared. Then, the slab is finished to a thickness of 50 to 100 mm by reheating and thick plate rolling under the production conditions shown in Table 5, Table 6, and Table 13, and accelerated cooling is performed. Perform the tempering process off-line. 1-No. 36 and no. Samples of thick steel plates A to J were prepared. No. 1 shown in Table 1 The slab of No. 1 chemical component is reheated and rolled to a plate thickness of 50 to 100 mm under the production conditions shown in Table 7 below, finished with accelerated cooling, further tempered offline, . 1A ⁇ No. A sample of 1E thick steel plate was prepared.
  • the component composition, Ceq, Tief and effective boron amounts are within the scope of the present invention, whereas in the comparative steels 17 to 36 and G to J, the component composition, Either Ceq or effective boron content is outside the scope of the present invention.
  • the butt groove is welded by one pass by submerged arc welding (SAW) or electroslag welding (ESW), and a notch is made in the HAZ that is 1 mm away from the melt line with a thickness of 1/2 part.
  • SAW submerged arc welding
  • ESW electroslag welding
  • No. is a comparative steel. 17-36 and steel no. As shown in Table 9, Table 10 and Table 14, yield strength, H to J are not suitable for the chemical composition of steel, and Comparative Steels 1A to 1E shown in Table 7 are not suitable for steel plate production conditions. It can be seen that any one of the tensile strength, vTrs, and high heat input welding HAZ toughness is inferior, and the plurality of required properties cannot be satisfied at the same time as the thick high-strength steel sheet of the present invention.
  • Steel 17 has a small amount of C and Ceq
  • Steel 20 has a small amount of Mn. Therefore, hardenability is insufficient and yield strength and tensile strength are inferior.
  • Steel 18 has a large amount of C
  • Steel 19 has a large amount of Si
  • Steel 21 has a large amount of Mn
  • Steel 22 has a small amount of B
  • Steel 23 has a small amount of V
  • Steel 24 has a small amount of V. Since the amount is large, the toughness of the high heat input welding HAZ is inferior.
  • steel 21 has a high Ceq
  • yield strength and tensile strength are excessive, and vTrs is also deteriorated.
  • Steels 25, 26, 27, 30, 31, 34, and 35 have the same plate thickness as Ceq and the same TMCP conditions in Table 6, but the effective boron content is 8 to 27 ppm, so strength and toughness Fluctuation is large, vTrs is deteriorated in some steels, and the toughness of the high heat input welding HAZ is inferior. Since steel 28 has a large amount of P and steel 29 has a large amount of S, the toughness of vTrs and high heat input HAZ is inferior.
  • Steel 31 has a large amount of O due to a small amount of Al, and Steel 32 has a large amount of Al, so alumina clusters are formed, and both the coarse harmful oxides increase and the toughness of the base material and the high heat input HAz is inferior.
  • the steel 33 has a small amount of Ti and the steel 35 has a small amount of N, the formation of TiN is insufficient and the base material and HAZ crystal grains are not sufficiently refined, and the base material toughness and high heat input HAZ are reduced.
  • the toughness is inferior.
  • the steel 34 has a large amount of Ti and the steel 36 has a large amount of N, the base metal toughness and the high heat input HAZ toughness are inferior due to TiC embrittlement or solute B embrittlement.
  • Nb is added but Mg is not added, so that the high heat input HAZ toughness is lowered. Since Steel H, Steel I and Steel J have a small amount of V, the high heat input HAZ toughness is reduced.
  • Steel 1A has a too low heating temperature for slab reheating
  • Steel 1B has a too low rolling end temperature
  • Steel 1D has a too low starting temperature for accelerated cooling
  • Steel 1E has a too high stop temperature for accelerated cooling. Therefore, the strength is insufficient. Since steel 1C has too little cumulative rolling reduction, the base metal toughness is deteriorated.
  • the thick high-strength steel plate excellent in high heat input welding heat-affected zone toughness is (1) plate thickness 50-100 mm, yield strength 400-650 MPa, and tensile strength 490-720 MPa. (2) It has good high heat input HAZ toughness that results in vE ( ⁇ 20 ° C.) ⁇ 70 J even when the welding heat input ⁇ 20 kJ / mm, and (3) Reduction of expensive alloy elements (Ni ⁇ It is clear that low manufacturing costs such as 1% can be realized.
  • the thick high-strength steel sheet according to the present invention is mainly used for construction of high-rise buildings and the like, but can also be used for other welded structures such as bridges, ships, tanks and offshore structures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

 良好な大入熱溶接熱影響部靭性を有する厚手高強度鋼板の製造方法、及び、それによって得られる厚手高強度鋼板を提供する。BとVを複合添加する規定の成分組成を有し、強脱酸元素による脱酸後に残存し弱脱酸元素であるTiにより脱酸され得る残存酸素量OTi、変態前のオーステナイト素地に固溶する有効ボロン量:Bef、炭素当量Ceqが各関係式によって規定される連続鋳造スラブを、1100℃を超えて1300℃以下に加熱した後、鋼表面温度が850℃以上で累積圧下量が50%以上の圧延を行い、次いで鋼表面温度が800℃以上から加速冷却を適用して500℃以下まで冷却する方法としている。

Description

大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、大入熱溶接熱影響部靭性に優れた厚手高強度鋼板
 本発明は、脆性破壊伝播停止特性と大入熱溶接熱影響部(Heat Affected Zone:以下、HAZと称することがある)靭性に優れた厚手高強度鋼板の製造方法、及び、大入熱溶接熱影響部靭性に優れた厚手高強度鋼板に関する。
 溶接構造物の近年のニーズとして、構造物の大型化、破壊に対する高い安全性、建造における溶接の高能率化、素材である鋼材の経済性等が挙げられる。このような動向を受け、溶接構造物に使用される鋼板に対して、(1)大きな板厚での高い強度、(2)良好な大入熱溶接HAZ靭性、(3)低い製造コスト等のニーズが高まりつつある。
 具体的には、高層ビルに用いられる鋼板に対して、(1)板厚50~100mmの厚手鋼板(以下、厚手材と称することがある)での降伏強度400~650MPa、かつ引張強度490~720MPaの確保、(2)溶接入熱量が20kJ/mm以上の溶接部のHAZ靭性(シャルピー衝撃吸収エネルギー)vE(−20℃)≧70Jの確保、(3)高価合金元素の低減(Ni量≦1%等)を同時に満たすことが要求される。
 TMCP(Thermo Mechanical Control Process)によって製造される厚手鋼板では、従来からボロン(B)添加による高強度化が図られてきた。Bの添加による効果としては、圧延後の加速冷却においてオーステナイト(γ)粒界に偏析した固溶Bが、変態時の焼入性を高めることが挙げられ、特許文献1では、BにNbを複合添加することによって高強度化を図っている。特許文献1の実施例に示されているように、この場合の圧延終了温度は930~1000℃と高いことが特徴であり、再結晶γから加速冷却することを必須条件として、NbとBの複合効果を発揮させて高い焼入性を引き出すことにより、強度を高めている。圧延終了温度を930℃よりも低い未再結晶域として低温圧延を行った場合、靭性は満足するものの強度特性は満足できず、Nb−B複合効果による高強度化が難しいことも示されている。また、特許文献1では、大入熱溶接HAZにおけるB利用技術を開示しており、0.30~0.38%のCeqのもとで、γ中固溶Bによる粒界フェライト抑制効果(焼入性向上効果)と、γ中BNによる粒内フェライト促進効果(焼入性低減効果)を併用する有効性を示している。つまりこの場合、Bは焼入性に関して相反する二つの役割を演じている。以上から、特許文献1におけるB利用技術を要約すると、γ中固溶Bによる焼入性向上効果を直接焼入れ母材と大入熱溶接HAZで利用し、同時にγ中析出B(ここではBN)による焼入性低減効果を大入熱溶接HAZで利用している。
 発明者らは、大入熱溶接HAZ靭性を高めるために、HAZの冷却過程でγ中に析出するVNをピン止め粒子(酸化物、硫化物)に複合析出させ、このVN複合粒子がフェライト変態核として作用してHAZ組織を微細化する技術を特許文献2、3で発明している。
 また、非特許文献1に示されるように、V添加によって母材の強度が上昇する効果は広く知られている。
 以上説明したように、BあるいはVの添加によって、母材の強度が向上する効果と、大入熱溶接HAZの靭性が向上する効果が知られている。
特許第3599556号公報 特開2005−298900号公報 特開2007−262508号公報
CAMP−ISIJ、6(1993)、684
 一般に、母材やHAZの靭性を高める希少な元素としてNiが知られており、上記(2)の観点からNiの有効利用が考えられる。しかしながら、Niは高価な元素である。また、Niを添加した鋼は表面疵が生じやすいため、その手入工程が発生するという問題がある。従って、Ni添加に関して、上記(3)のニーズと上記(2)のニーズとの間で、その利害が対立する。また、上記(1)の観点から合金添加量を増加すると、炭素当量(Ceq)が高まって大入熱溶接の場合のHAZが硬化して脆化するので、上記(1)のニーズと上記(2)のニーズとの間で利害が対立する。
 このため、上述のような互いに利害が対立する上記(1)~(3)の三つのニーズを同時に満足する鋼板の開発が強く求められていた。
 本発明は上記問題に鑑みてなされたものであり、(1)板厚50~100mm、降伏強度400~650MPa、かつ引張強度490~720MPaの厚手高強度で、(2)溶接入熱量≧20kJ/mmでもvE(−20℃)≧70Jとなる良好な大入熱溶接HAZ靭性を有し、(3)高価合金元素の低減(Ni≦1%等)等による低い製造コストを実現できる、大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び大入熱溶接熱影響部靭性に優れた厚手高強度鋼板を提供することを目的とする。
 上記問題を解決するための本発明の要旨は以下のとおりである。
[1]質量%で、
C :0.05~0.12%、
Si:0.3%以下、
Mn:1~2%、
P :0.015%以下、
S :0.005%以下、
B :0.0003~0.003%、
V :0.03~0.15%、
Al:0.001~0.1%、
Ti:0.005~0.02%、
N :0.002~0.01%、
O :0.004%以下
を含有し、残部が鉄および不可避的不純物からなり、
下記式(1)の炭素当量Ceqが0.32~0.45%であり、
下記式(2)の有効ボロン量Befが0%以下であり、
下記式(3)の有効チタン量Tiefが0.005%以上である連続鋳造スラブを、
1100℃を超えて1300℃以下に加熱した後、鋼表面温度が850℃以上で累積圧下量が50%以上の圧延を行い、次いで鋼表面温度が800℃以上から加速冷却を適用して500℃以下まで冷却する
ことを特徴とする大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法。
ここで、
Ceq=C+Mn/6+{(Cr+Mo+V)/5}+{(Ni+Cu)/15} ・・・(1)
Bef=B−0.77{N−0.29(Ti−2OTi)}・・・(2)
Tief=Ti−2OTi・・・(3)
ただし、OTiは下記式(4)による。
OTi=O−0.4Ca−0.66Mg−0.17REM−0.35Zr−0.89Al ・・・(4)
ここで、
式(4)のOTiが0%より小さい場合、式(2)および式(3)のOTiを0%とし、
N−0.29(Ti−2OTi)が0%より小さい場合、式(2)のN−0.29(Ti−2OTi)を0%とし、
式(1)、式(2)、式(3)および式(4)に示す元素は、それぞれの元素の含有量(質量%)とし、不可避的不純物として混入した元素も計算に含める。
[2]前記加速冷却の後、さらに、350~700℃で5~60分の焼戻し熱処理を施すことを特徴とする、上記[1]に記載の大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法。
[3]質量%で、
Ca:0.0003~0.004%、
Mg:0.0003~0.004%、
Ni:0.01~1%、
Cu:0.01~1%、
Cr:0.01~1%、
Mo:0.01~0.5%、
Nb:0.003~0.03%、
REM:0.0003~0.02%、
Zr:0.0003~0.02%
のうちの1種または2種以上を含有し、ただし、Nbを含有するときはMgも含有することを特徴とする、上記[1]又は[2]に記載の大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法。
[4]質量%で、
C :0.05~0.12%、
Si:0.3%以下、
Mn:1~2%、
P :0.015%以下、
S :0.005%以下、
B :0.0003~0.003%、
V :0.03~0.15%
Al:0.001~0.1%、
Ti:0.005~0.02%、
N :0.002~0.01%、
O :0.004%以下
を含有し、残部が鉄および不可避的不純物からなり、
下記式(1)の炭素当量Ceqが0.32~0.45%であり、
下記式(2)の有効ボロン量Befが0%以下であり、
下記式(3)の有効チタン量Tiefが0.005%以上であり、
板厚が50~100mmであり、
降伏強度が400~650MPaであり、
引張強度が490~720MPaである
ことを特徴とする大入熱溶接熱影響部靭性に優れた厚手高強度鋼板。
ここで、
Ceq=C+Mn/6+{(Cr+Mo+V)/5}+{(Ni+Cu)/15} ・・・(1)
Bef=B−0.77{N−0.29(Ti−2Oef)}・・・(2)
Tief=Ti−2OTi・・・(3)
ただし、OTiは下記式(3)による。
OTi=O−0.4Ca−0.66Mg−0.17REM−0.35Zr−0.89Al ・・・(3)
ここで、
式(4)のOTiが0%より小さい場合、式(2)および式(3)のOTiを0%とし、
N−0.29(Ti−2OTi)が0%より小さい場合、式(2)のN−0.29(Ti−2OTi)を0%とし、
式(1)、式(2)、式(3)および式(4)に示す元素は、それぞれの元素の含有量(質量%)とし、不可避的不純物として混入した元素も計算に含める。
[5]質量%で、
Ca:0.0003~0.004%、
Mg:0.0003~0.004%、
Ni:0.01~1%、
Cu:0.01~1%、
Cr:0.01~1%、
Mo:0.01~0.5%、
Nb:0.003~0.03%、
REM:0.0003~0.02%、
Zr:0.0003~0.02%
のうちの1種又は2種以上を含有し、ただし、Nbを含有するときはMgも含有することを特徴とする、上記[4]に記載の大入熱溶接熱影響部靭性に優れた厚手高強度鋼板。
 本発明の大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び大入熱溶接熱影響部靭性に優れた厚手高強度鋼板によれば、(1)板厚50~100mm、降伏強度400~650MPa、かつ引張強度490~720MPaの厚手高強度で、(2)溶接入熱量≧20kJ/mmでもvE(−20℃)≧70Jとなる良好な大入熱溶接HAZ靭性を有し、(3)高価合金元素の低減(Ni≦1%等)等による低い製造コストを実現できる。
 このような本発明による厚手高強度鋼板が高層ビルをはじめとする各種の溶接構造物に使用されることで、溶接構造物の大型化、破壊に対する高い安全性、建造における溶接の高能率化、素材である鋼材の経済性等々が同時に満たされることから、その産業上の効果は計り知れない。
 以下、本発明の大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の実施の形態について説明する。
 なお、この実施形態は、発明の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り、本発明を限定するものではない。
 高層ビル等の溶接構造物に使用される鋼板においては、(1)大きな板厚での高い強度、(2)良好な大入熱溶接HAZ靭性、(3)低い製造コスト等のニーズが高まっている。
 このようなニーズに対し、本発明に係る大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法は、質量%で、C:0.05~0.12%、Si:0.3%以下、Mn:1~2%、P:0.015%以下、S:0.005%以下、B:0.0003~0.003%、V:0.03~0.15%、Al:0.001~0.1%、Ti:0.005~0.02%、N:0.002~0.01%、O:0.004%以下を含有し、さらに、必要に応じて、S:0.0005~0.005%、O:0.001~0.004%、Ca:0.0003~0.004%、Mg:0.0003~0.004%、Ni:0.01~1%、Cu:0.01~1%、Cr:0.01~1%、Mo:0.01~0.5%、Nb:0.003~0.03%、REM:0.0003~0.02%、Zr:0.0003~0.02%のうちの1種または2種以上を含有し、ただし、Nbを含有するときはMgも含有し、残部が鉄および不可避的不純物からなり、下記式(1)の炭素当量Ceqが0.32~0.45%であり、下記式(2)で表される変態前のγ素地に固溶するボロン量である有効ボロン量Befが0%以下であり、下記式(3)の有効チタン量Tiefが0.005%以上である連続鋳造スラブを、1100℃を超えて1300℃以下に加熱した後、鋼表面温度が850℃以上で累積圧下量が50%以上の圧延を行い、次いで鋼表面温度が800℃以上から加速冷却を適用して500℃以下まで冷却することを特徴とする。
 Ceq=C+Mn/6+{(Cr+Mo+V)/5}+{(Ni+Cu)/15} ・・・(1)
Bef=B−0.77{N−0.29(Ti−2OTi)}・・・(2)
Tief=Ti−2OTi・・・(3)
ただし、OTiは下記式(4)による。
OTi=O−0.4Ca−0.66Mg−0.17REM−0.35Zr−0.89Al ・・・(4)
ここで、
式(4)のOTiが0%より小さい場合、式(2)および式(3)のOTiを0%とし、
N−0.29(Ti−2OTi)が0%より小さい場合、式(2)のN−0.29(Ti−2OTi)を0%とし、
式(1)、式(2)、式(3)および式(4)に示す元素は、それぞれの元素の含有量(質量%)とし、不可避的不純物として混入した元素も計算に含める。
 本発明の要点は、TMCP型で製造する厚手鋼板において、強度、大入熱溶接HAZ靭性、及び低い製造コスト等を同時に満足するために、BとVを複合添加することを特徴とし、これら窒化物形成元素と結合するNを精緻に制御することでγ中のBとVの存在状態を最適化し、母材と大入熱溶接HAZの変態組織を制御する技術である。具体的には、γ中のB存在状態は、母材と大入熱溶接HAZの両方において、固溶Bを存在させずに全てのBをBNとして析出させる思想である。γ中のV存在状態は、母材では固溶Vとして、大入熱溶接HAZでは析出V(VN等)として利用する思想である。以下、詳細を説明する。
 まず、本発明における最大の技術課題である上記(2)の大入熱溶接HAZ靭性を満足するための技術を説明する。ここでは同時に、上記(3)の観点からNiに頼らずにHAZ靭性の向上を図る。本発明の大入熱溶接HAZ靭性の支配要因は、大別して次の三つである。第一に硬さであり、第二にMA(マルテンサイト・オーステナイト混合相)であり、第三に有効結晶粒径である。
 硬さとMAの両面から、本発明では炭素当量Ceqを0.45%以下に制限する。炭素当量Ceqが0.45%を超えると、HAZが過剰に硬化すると同時にMAが増加し、HAZが大きく脆化するからである。
 さらに、有効ボロン量(Bef)を0%以下に制御することで、HAZにおいてB焼入性が発現されることを回避し、硬化とMA増加を抑える。
 硬さの観点から、本発明ではV添加の優位性が判明した。本発明のようにHAZがベイナイト主体となる場合、V添加してもHAZは硬化しにくいことを知見した。つまり、CやMnなどV以外の元素を添加して母材を強化すると、ベイナイト主体のHAZは著しく硬化してHAZは大きく脆化する。これに対して、本発明のようにVを添加して母材を強化すると、ベイナイト主体のHAZは硬化が抑えられる。この新しい知見に基づくと、Vによる母材強度の上昇分を相殺するようにCやMnを低減して低Ceq化すれば、HAZにおいては低Ceq化した分だけ硬さが低減するので、HAZ靭性が向上する。このような、母材とHAZでのV硬化挙動の差異を利用したHAZ靭性向上技術は、従来なかった。
 MAの観点から、本発明では可能な限りSiを低減する必要がある。また、本発明のTMCP条件では、Nbは母材材質への貢献が小さいにも関わらずMA生成を助長する。本発明の比較的高いCeq範囲では、Moは高価であるにも関わらずMA生成を助長する。従って、NbとMoは本発明においては可能な限り低減することが好ましい。
 有効結晶粒径の観点から、本発明では二つのHAZ組織微細化技術を適用することが好ましい。第一の技術によって−20℃のシャルピー吸収エネルギーを確保し、これに第二の技術を組み合わせることでHAZ組織を極限まで微細化すれば、−40℃のシャルピー吸収エネルギーを確保できる可能性がある。第一の技術は、γ中のB析出物とV析出物を変態核として同時に利用することである。上記式(2)で表される有効ボロン量(Bef)が0%以下となるようにN量を適正に高めることで、大入熱溶接の冷却中にγ粒界やγ粒内にBN、VNあるいはV(C,N)が析出し、これらの単独あるいは複合の粒子がフェライトのみならずベイナイトの変態核としても有効に作用し、HAZ組織を微細化する。
 さらにHAZ組織を微細化する第二の技術は、CaやMgの適正添加によって微細な酸化物や硫化物を多数分散させ、γ粒成長をピン止め効果によって抑制することで、ベイナイトのパケットを微細化する。微細な酸化物や硫化物の一部にはB析出物やV析出物が複合析出し、ピン止め粒子に変態核機能が付加されることで、γ粒界から変態するベイナイトをより一層微細化する効果もある。以上のHAZ組織微細化技術は、結果的にHAZの焼入性を低めるので、硬さとMAを低減する観点からも貢献する。
 以上説明した硬さ低減、MA低減、HAZ組織微細化の施策を通じて、本発明の大入熱溶接HAZはNiに頼ることなく高いvE(−20℃)を達成することができる。
 上述した二つの制約、つまり、有効ボロン量(Bef)が0%以下でCeqが0.45%以下である場合に、残る技術課題である上記(1)を満足するための技術を説明する。
 最大板厚100mmの鋼板において所定の強度を確保するためには、焼入性として最低限のCeqを確保し、TMCP条件として高温にスラブを加熱して、高温で圧延を終了し、高温から水冷を開始することが必要と判明した。
 Ceqは0.32%以上にする必要がある。0.32%未満の低い焼入性では板厚100mmの下で400MPa以上の降伏強度と490MPa以上の引張強度を安定的に確保するのは難しい。HAZの硬化とMA生成を抑制するために、Ceqを0.43%以下、0.41%以下または0.39%以下に制限してもよい。
 スラブは1100℃を超えて1300℃以下に加熱する必要がある。1100℃以下の低温加熱では、凝固偏析した合金元素が十分に固溶せず析出物のまま残存する懸念があり、圧延後の加速冷却時において合金元素による焼入性が十分に発揮されず、強度を安定的に確保するのが難しい。一方、1300℃を超える高温加熱だと、γ粒が著しく粗大化し、圧延によってもγ粒の細粒化が不十分となり、靭性を安定的に確保するのが難しい。
 加熱されたスラブは、鋼表面温度が850℃以上で累積圧下量が50%以上の圧延を行う必要がある。850℃未満の低温圧延を行うと、γが未再結晶化して焼入性が大幅に低下するため、強度を安定的に確保するのが難しい。一方、850℃以上のγ再結晶域での累積圧下量が50%未満であると、γ再結晶粒の細粒化が不十分となり、靭性を安定的に確保するのが難しい。
 圧延終了後、鋼表面温度が800℃以上から加速冷却を適用して500℃以下まで冷却する必要がある。800℃未満から加速冷却を適用すると、圧延終了後から加速冷却開始までの間にγ再結晶粒が成長して靭性が劣化する懸念が生じる。一方、加速冷却を500℃より高温で停止すると、温度の高い板厚内部において、変態の途中で加速冷却が終了して例えば空冷されることになるため、ベイナイト組織が少なくなり強度が不足する。加速冷却においては、0.3m/m/min以上の水量密度を確保することが、強度と靭性を両立するために好ましい。
 さらに本発明では、強度を安定かつ十分に確保することを狙って、下記の二つの手段を講じる。
 第一の手段は、TMCPにおいてγ中に固溶Bを存在させず、全てのBをBNとして析出させることで、γ中固溶ボロン量の変動に起因する焼入性の不安定性を排除する。これは、従来のB利用技術とまったく反対の考え方であり、母材強度のためにB焼入性を使わない思想である。このことによって、大量生産での強度ばらつきを抑えることができる。具体的には、先述した有効ボロン量(Bef)を0%以下に制御する。本発明でBを添加する意義は先述したとおり大入熱溶接HAZにある。
 第二の手段は、V炭化物による析出強化を利用して母材強度を高める。本発明のTMCP条件では、V添加が極めて有効な強化手段である。これは、高温加熱と高温圧延を徹底して十分な焼入性のもとで変態させたベイナイト組織が、加速冷却や焼き戻し処理においてV炭化物(VC、V等)が微細高密度に析出する素地として好適なためである。本発明でVを添加するもう一つの意義は先述したとおり大入熱溶接HAZにある。
 加速冷却後に350~700℃で5~60分の焼戻し熱処理を行うことにより、製造コストは上昇するものの、強度や伸び、シャルピー衝撃特性を、高精度で所定の範囲に制御できる。焼戻し熱処理の温度や時間が350℃未満や5分未満であると、焼戻し効果が発揮されない。また、焼戻し熱処理の温度や時間が700℃超えや60分超えであると、焼戻し現象が適正範囲を超えて過剰に発現され、強度低下とシャルピー衝撃特性劣化が著しくなって、適正な機械的性質が得られない。
<化学成分組成>
 以下に本発明における鋼板(および鋼板の製造に用いられる連続鋳造スラブ)の化学成分についての限定理由を説明する。
「C:炭素」0.05~0.12%
 Cは、強度向上のために重要な元素である。低温加熱、低温圧延を徹底したTMCP型厚手鋼板において、所定の強度を安定確保するために、0.05%以上のCを含有させる必要がある。好ましくは、0.06%以上または0.07%以上のCを含有させることにより、より安定して強度を高めることができる。また、後述する理由から、本発明ではNb、Ni、Moの含有量を必要最小限に抑える必要があるので、これらの元素を増加して高強度化することは困難である。従って、Cは非常に重要な強化元素である。さらに、Cは大入熱HAZにおけるV(C,N)変態核の析出を促す効果もある。しかしながら、良好なHAZ靭性を安定確保するためには、Cを0.12%以下に抑える必要がある。Cを0.11%以下又は0.10%以下に制限してもよい。
「Si:ケイ素」0.3%以下
 Siは、脱酸作用を有するが、強力な脱酸元素であるAlが十分に含有されている場合には不要である。母材を強化する作用もあるが、他の元素に比べるとその効果は相対的に小さい。比較的高い炭素当量Ceqが必要となる本発明の大入熱溶接HAZでは、SiはMA生成を助長する危険性が高いため、0.3%以下に抑える必要がある。HAZ靭性の観点からSiを極力低くすることが好ましく、0.20%以下、0.16%以下または0.13%以下に制限してもよい。
「Mn:マンガン」1~2%
 Mnは、経済的に強度を確保するために1%以上の含有量が必要である。但し、2%を超えてMnを含有させると、スラブの中心偏析の有害性が顕著となるうえ、大入熱溶接HAZの硬化とMA生成を助長して脆化させるため、これを上限とする。強度を確保するためには、Mnを1.1%以上または1.2%以上に制限してもよい。大入熱溶接HAZの硬化とMA生成を抑制するために、1.8%以下、1.6%以下又は、1.5%以下に制限してもよい。
「P:リン」0.015%以下
 Pは、不純物元素であり、良好な脆性破壊伝播停止特性と大入熱溶接HAZ靭性を安定的に確保するために、0.015%以下に低減する必要がある。
「S:硫黄」0.005%以下
 Sは、0.005%以下に抑える必要がある。Sが0.005%を超えると、硫化物の一部が粗大化して破壊起点として有害性をもたらし、母材と大入熱溶接HAZの靭性が劣化する。靭性向上のため、Sを0.004%以下または0.003%以下に制限してもよい。一方で、HAZのピン止め効果を利用する際には、Sは0.0005%以上確保する必要がある。その理由は、HAZの溶融線近傍において、HAZ靭性を高めるためにCaやMgの適正添加によって微細な硫化物を多数分散させた場合に、ピン止め効果を強化してγ細粒化を図るためである。Sが0.0005%未満だと、硫化物個数が不足して十分なピン止め効果が得られない場合がある。
「B:ボロン(ホウ素)」0.0003~0.003%
 Bは、本発明の特徴的な元素である。既に詳述したように、本発明では母材と大入熱溶接HAZの両方において、γ中に固溶Bを存在させずに全てのBをBNとして析出させ、B焼入性が発現しないように有効ボロン量(Bef)を0%以下に制御する。γ中に析出させたBNは変態核として作用し、HAZの組織微細化、硬さ低減、MA低減を通じて靭性を高める。そのためには、Bを0.0003%以上含有させる必要がある。必要に応じて、Bを0.0005%以上に制限してもよい。一方、0.003%を超えてBを含有させると、粗大なB析出物が生成してHAZ靭性が劣化するため、これを上限とする。HAZ靭性の向上のため、Bを0.002%以下または0.0015%以下に制限してもよい。
「V:バナジウム」0.03~0.15%
 Vは、本発明の特徴的な元素である。既に詳述したように、Vは本発明のTMCP条件において母材を効果的に強化する。その一方で、Vは本発明の大入熱溶接HAZにおいて硬化やMA増加を抑えると同時に、γ中に析出させたVNやV(C,N)は変態核として作用し、HAZ組織を微細化して靭性を高める。この効果を発揮するためには、0.03%以上のVが必要である。HAZの靭性をより高めるために、Vを0.04%以上に制限することがより好ましい。変態核として作用効果をしかしながら、Vが0.15%を超えると、HAZの組織微細化効果が飽和すると同時にHAZの硬化が著しくなるので、HAZ靭性が劣化する。従って、Vの含有量を0.15%以下にする必要がある。必要に応じて、Vを0.10%以下または0.07%以下に制限してもよい。
「Al:アルミニウム」0.001~0.1%
 Alは、脱酸を担い、Oを低減して鋼の清浄度を高めるために必要である。Al以外のSi、Ti、Ca、Mg、REM、Zr等も脱酸作用があるが、たとえこれらの元素が含有される場合でも、0.001%以上のAlがないと安定的にO(酸素)を0.004%以下に抑えることは難しい。但し、Alが0.1%を超えるとアルミナ系粗大酸化物がクラスター化する傾向を強め、製鋼ノズルつまりが発生したり、破壊起点としての有害性が顕在化するため、これを上限とする。Alを0.06%以下、0.04%または0.03%以下に制限することがより好ましい。特に、Mgを添加する場合には、Alを0.02%以下に制限してもよい。
「Ti:チタン」0.005~0.02%
「N:窒素」0.002~0.01%
「有効ボロン量:Bef(%)」0%以下
 Tiは、Nと結合してTiNを形成し、スラブ再加熱時と大入熱溶接HAZでピン止め効果に貢献し、γ細粒化に寄与する結果があり、母材やHAZの組織を微細化して靭性を高める。そして、TiNを形成した残りのNはBと結合してBNを形成し、γ中に固溶Bを存在させずに全てのBをBNとして析出させ、B焼入性が発現しないようにする。以上の効果を同時に発揮するために、Tiを0.005~0.02%、Nを0.002~0.01%、有効ボロン量(Bef)を0%以下とする必要がある。TiとNが、それぞれ0.005%、0.002%に満たないと、TiNによるピン止め効果が十分に発揮されず、母材とHAZの靭性が劣化する。TiとNがそれぞれ0.02%、0.01%を超えると、TiC析出や固溶N増加によって母材とHAZの靭性が劣化する。さらに、TiとNが適正範囲にあっても、有効ボロン量が0%を超えると、γ中の固溶Bの量が増加してB焼入性が発現し、母材強度のばらつきやHAZの硬化(脆化)をもたらす。Tiを0.015%以下に制限することが、Nを0.008%または0.006%に制限することがより好ましい。
 以下に、有効ボロン量(Bef)の考え方を説明する。なお、以下に示す元素を含む式において、元素は、それぞれの元素の含有量(質量%)を表す。
 化学成分として添加されたTiは、溶鋼中の脱酸で消費される場合があり(低Alの場合に起こりやすい)、脱酸後に残ったTiが凝固後のγ中でTiNを形成する。この際、Tiに対してNが過剰であると、TiNを形成した後に残ったNがBの一部と結合してBNを形成する。そして、BNを形成した残りのBが固溶Bとして焼入性を発現してしまう。この焼入性に寄与するγ中の固溶ボロン量を本発明では有効ボロン量Bef(%)として扱う。
 各元素の添加量、熱力学的な反応順序、生成物質の化学量論組成に基づいた有効ボロン量Befの計算方法について以下に説明する。
 まず、脱酸力の高い順に、Ca、Mg、REM(希土類元素)、Zr、AlがOと結合すると仮定する。この際の脱酸生成物として、CaO、MgO、REM、ZrO、Alを仮定して、脱酸されるO量を計算する。
 Tiよりも脱酸力の強いこれらの元素によって脱酸が完了しない場合、これらの強脱酸元素による脱酸後に残存し、弱脱酸元素であるTiによって脱酸され得る残存酸素量OTi(%)は、下記式(3)で表される。
 OTi(%)=O−0.4Ca−0.66Mg−0.17REM−0.35Zr−0.89Al ・・・(3)
 但し、上記式(1)において、不可避的不純物扱いの成分元素も計算に含める。また、OTiが0%より小さい場合、残存酸素量OTiを0%とみなす。
 この場合、残った酸素(つまり、OTi)をTiが脱酸することになる。OTiはTiによって脱酸され得る残存酸素量であり、Tiと結合してTiを形成する。このとき3個のOに対して2個のTiが結合する。したがって、Tiを質量%で考えると、Oの原子量は16なので、Oが3個で48である。また、Tiの原子量は48なので、Tiが2個で96である。よって、Tiを構成するTiはO(ここではOTi)の2倍の質量と計算される。これが脱酸で消費されるTiの量である。そこで、Tiを仮定して、脱酸で消費されるTiを差し引いた残りのチタン量である有効チタン量Tiefは、Tief=Ti−2OTiで表される。
 この有効チタン量Tiefが、HAZ靭性改善効果があるTiNを生成するTi量となる。脱酸で消費されるTiを差し引いた残りのTiが0.005%未満であると、TiNによるピン止め効果が十分に発揮されず、厚手母材と大入熱溶接HAZ靭性が劣化する。このため、有効チタン量を0.005%以上確保する必要がある。
 また、脱酸で残った0.005%以上のTiがTiNを形成した後に残存する窒素量Nrは、下記式(5)で表される。
 Nr(%)=N−0.29(Ti−2OTi) ・・・(5)
 ここで、Nefが0%より大きい場合には窒素が残存していることを、Nefが0%より小さい場合にはNが残存していないことを意味する。
 Nr>0の場合:Nが残る
 Nr≦0場合 :Nが残らない
 また、Nrが0%より大きくなる場合、つまり窒素が残存している場合は、Bの一部がBNとして消費されるので、下記式(2)によって有効ボロン量Befが計算される。
 Bef(%)=B−0.77{N−0.29(Ti−2OTi)}・・・(2)
 また、Nrが0または負の値となって窒素が残らない場合は、有効ボロン量Befは、鋼中に含有されるB量となる。つまり、Nrが0%より小さい場合、Nr=N−0.29(Ti−2OTi)を0%として式(1)の計算を行うと、有効ボロン量を算出できる。
 次に、上述した残存酸素量OTiの式におけるCa、Mg、REM、Zr、Alの係数について述べると、溶鋼中での脱酸反応(酸化反応)による生成物(酸化物)としてCaO、MgO、REM、ZrO、Alを仮定し、これらの酸化物として存在するO量を質量%で計算する。例えば、CaOの場合、原子量はCaが40でOが16であるから、Caの質量%に対して16/40=0.4のOが結合する(OasCaO=0.4Ca)。Alであれば、原子量はAlが27でOが16であるから、Alの質量%に対して(16×3)/(27×2)=0.89のOが結合する(OasAl=0.89Al)。以下同様の計算概念として、上述のOTi式の各元素の係数(0.66:Mg、0.17:REM、0.35:Zr)を規定した。
 また、有効ボロン量Befの導出式概念を、低温側から高温側に遡って示すと以下のようになる。
 有効ボロン量Bef(%)=成分B量−BasBN
  →BasBN=0.77(N−NasTiN)
  →NasTiN=0.29(Ti−TiasTi
  →TiasTi=2(O−OasCaO−OasMgO−OasREM−OasZrO−OasAl
  →OasCao=0.4Ca
  →OasMgO=0.66Mg
  →OasREM=0.17REM
  →OasZrO=0.35Zr
  →OasAl=0.89Al
 次に、有効ボロン量Befの導出式概念を、高温側から低温側への反応順に示すと以下のようになる。すなわち、製鋼での精錬→凝固工程において、以下の順で反応する。
[1]液相(溶鋼中)での脱酸反応(1600℃付近)
 Oとの化学的親和力の強い順にCaO→MgO→REM→ZrO→Alの反応が生じ、溶鋼中の溶存Oが減少していく。これで脱酸が完了する場合は、OTi≦0で表される。脱酸が完了せずに溶存Oが残る場合は、OTi>0、Tief=Ti−2OTi≧0.005(%)で表され、Alより弱脱酸元素であるTiがTiとして脱酸に寄与し、成分Tiから脱酸で消費されたTiasTiを差し引いた残りの有効チタン量が0.005%以上となる。
[2]固相(凝固γ中)での脱窒反応(1300℃付近~800℃付近)
 Nとの化学的親和力の強い順にTiN→BN→AlNの反応が生じ、固相γ中の固溶Nが減少していく。まず、脱酸で消費された残りのTiが脱窒反応を起こす。これで脱窒が完了する場合は、N−0.29(Ti−2OTi)≦0で表され、γ中に固溶Nが存在しないので、BはBNを形成せずに全てが固溶Bとして存在する。一方、Tiによって脱窒が完了せず、固溶Nが残る場合は、N−0.29(Ti−2OTi)>0で表され、Bの一部がBNを生成して残りが固溶Bとなる。
 一方、Tiよりも脱酸力の強い元素によって脱酸が完了する場合には、下記式を満たす。
 OTi≦0
 この場合、Tiは脱酸では消費されない。TiがTiNを形成し、Nが残る場合は下記式を満たす。
 N−0.29Ti>0
 この際の有効ボロン量Befは下記式で計算される。
 Bef(%)=B−0.77(N−0.29Ti)
 TiがTiNを形成し、Nが残らない場合は下記式を満たす。
 N−0.29Ti≦0
 この際の有効ボロン量Befは下記式で計算される。
 Bef(%)=B−0.77{N−0.29(Ti−2OTi)}
 ここで、Ti−2OTiは、有効チタン量Tiefである。
 上記各式において、式(N−0.29Tief)はTiによって脱窒された残りのNであり、Bと結合してBNを形成しうる。このとき1個のBに対して1個のNが結合する。したがって、BNを質量%で考えると、Bの原子量は10.8であり、Nの原子量は14である。よって、BNを構成するBはN(ここではN−0.29Tief)の0.77倍の質量と計算される。これが脱窒で消費されるBの量である。
 また、上記各式において、式(N−0.29Tief)における0.29Tiefは、NasTiNを意味する。ここで、原子量はTiが48でNが14であるから、Tief(脱酸で消費されたTiを差し引いた残りのTi)の質量%に対して14/48=0.29のNが結合する。また、N−0.29Ti≦0であれば、Nは全てTiNで固定され、γ素地中に固溶Nは存在しない。一方、N−0.29Tief>0ならば、γ素地中にはTiNの他に固溶Nが存在するので、この固溶Nは、Bと結合してBNを生成し、有効ボロン量を減少させる。
「O:酸素」0.004%以下
 Oは、0.004%以下に抑える必要がある。Oが0.004%を超えると、酸化物の一部が粗大化して破壊起点として有害性をもたらし、母材と大入熱溶接HAZの靭性が劣化する。一方で、HAZのピン止め効果を利用する際には、Oは0.001%以上確保する必要がある。その理由は、HAZの溶融線近傍において、HAZ靭性を高めるためにCaやMgの適正添加によって微細な酸化物を多数分散させた場合に、ピン止め効果を強化してγ細粒化を図るためである。Oが0.001%未満だと、酸化物個数が不足して十分なピン止め効果が得られない場合がある。
「Ca:カルシウム」0.0003~0.004%
「Mg:マグネシウム」0.0003~0.004%
 Ca、Mgは、溶鋼への添加順序を考慮しつつ、一方あるいは両方を0.0003%以上含有させることで、CaやMgを含有する10~500nmの酸化物や硫化物を1000個/mm以上確保することができる。CaやMgが0.0003%未満だと、大入熱溶接HAZのピン止め粒子である酸化物や硫化物の個数が不足する場合がある。しかしながら、それぞれ0.004%超含有させると、酸化物や硫化物が粗大化してピン止め粒子の個数が不足すると同時に、破壊起点としての有害性も顕著となり、良好なHAZ靭性が得られない場合がある。なお、後述のように、Nbを添加する場合には、大入熱溶接HAZのピン止め効果による細粒化効果を併用が必須であり、Mgを必ず添加する必要がある。
「Ni:ニッケル」0.01~1%
 Niは、靭性の劣化を抑えて強度を確保するために有効である。そのためには0.01%以上のNiを含有させることが好ましい。しかしながら、Niは合金コストが非常に高いうえに、表面疵の手入工程が発生するという問題がある。従って、Niは1%以下に抑えることが好ましい。また、Niの含有量は極力低くすることが好ましく、0.7%以下、0.5%以下または0.3%以下に制限してもよい。
「Cu:銅」0.01~1%、
「Cr:クロム」0.01~1%
「Mo:モリブデン」0.01~0.5%
 Cu、Cr、Moは、強度を確保するために有効であり、ともに0.01%以上の含有量で効果を発揮する。一方、大入熱溶接HAZ靭性を劣化させる観点から、それぞれ1%、1%、0.5%が上限である。MoはNi同様に高価な元素であり、さらにHAZのMA生成を助長する危険性も高いので、Moの含有量はNi同様に極力低くすることが好ましい。HAZ靭性向上のため、Cu,Crを、0.5%以下または0.3%以下に、Moを0.3%以下または0.1%以下に制限してもよい。
「Nb:ニオブ」0.003~0.03%
 Nbは、焼入性と析出の両面から強度を確保するために有効である。しかし、圧延γ再結晶化や大入熱溶接HAZ靭性に対してNbは有害である。したがって、Nbを添加する場合は、Mgによる大入熱溶接HAZのピン止め効果による細粒化効果を併用が必須であるため、Mgも添加する。Nbの強度向上効果を享受するためには、0.003%以上のNbを含有させることが好ましい。より好ましくは、0.008%以上含有させるとよい。しかし、多すぎる添加は圧延γ再結晶化や大入熱溶接HAZ靭性に対するNbの有害さが顕在化するため、本発明では0.03%以下の微量Nbしか含有させないことが好ましい。0.02%以下、0.01%以下または0.005%以下に抑えることが、より好ましい。Nbを含有しないことがHAZ靭性の観点から、さらに好ましい。
「REM:希土類元素(ランタノイド系元素)」0.0003~0.02%
「Zr:ジルコニウム」0.0003~0.02%
 REM(希土類元素)、Zrは、脱酸と脱硫に関与して、中心偏析部の粗大な延伸MnSの生成を抑えて硫化物を球状無害化し、母材と大入熱溶接HAZの靭性を改善する。これらの効果を発揮するためには、REMとZrの下限はともに0.0003%である。但し、これらの含有量を増やしても効果は飽和するため、経済性の観点からREMとZrの上限はともに0.02%である。なお、本発明で含有するREMとは、LaやCeなどのランタノイド系元素である。
 以上説明したように、本発明に係る大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び大入熱溶接熱影響部靭性に優れた厚手高強度鋼板によれば、(1)板厚50~100mm、降伏強度400~650MPa、かつ引張強度490~720MPaの厚手高強度で、(2)溶接入熱量≧20kJ/mmでもvE(−20℃)≧70Jとなる良好な大入熱溶接HAZ靭性を有し、(3)高価合金元素の低減(Ni≦1%等)等による低い製造コストを実現できる。
 このような本発明による厚手高強度鋼板が高層ビルをはじめとする各種の溶接構造物に使用されることで、溶接構造物の大型化、破壊に対する高い安全性、建造における溶接の高能率化、素材である鋼材の経済性等々が同時に満たされることから、その産業上の効果は計り知れない。
 以下、本発明に係る大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の実施例を挙げ、本発明をより具体的に説明するが、本発明は、もとより下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。
[サンプル作製]
 製鋼工程において溶鋼の脱酸・脱硫と化学成分を制御し、連続鋳造によって下記表1~表4に示すNo.1~No.36、並びに表11および表12に示すNo.A~Jの化学成分のスラブを作製した。そして、前記スラブを、下記表5、表6及び表13に示す製造条件で、再加熱して厚板圧延することで板厚50~100mmに仕上げ、加速冷却を行い、さらに、必要に応じてオフラインでの焼戻し処理を行い、No.1~No.36およびNo.A~Jの厚手鋼板のサンプルを作製した。
 また、表1に示すNo.1の化学成分のスラブを、下記表7に示す製造条件で、再加熱して厚板圧延することで板厚50~100mmに仕上げ、加速冷却を行い、さらにオフラインでの焼戻し処理を行い、No.1A~No.1Eの厚手鋼板のサンプルを作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 本発明鋼1~16およびA~Fにおいては、成分組成、Ceq,Tief及び有効ボロン量が本発明の範囲内であるのに対し、比較鋼17~36およびG~Jにおいては、成分組成、Ceq又は有効ボロン量のいずれかが本発明の範囲外となっている。
[評価試験]
 上記方法によって作製したNo.1~No.36、No.A~J、No.1A~No.1Eの厚手鋼板のサンプルについて、以下のような評価試験を行った。
 母材の引張特性及びシャルピー衝撃特性については、厚手鋼板サンプルの板厚1/2部−圧延長手(L)方向から試験片を採取して測定して評価した。なお、引張試験片としてはJIS Z 2201の14B号の引張試験片を用意した。また、降伏強度および引張強度はJIS Z 2241の記載にしたがって測定した。
 また、継手のHAZ靭性については、突合せ開先をサブマージアーク溶接(SAW)あるいはエレクトロスラグ溶接(ESW)によって1パス溶接し、板厚1/2部の溶融線から1mm離れたHAZにノッチを入れて調べた。この際、−20℃で3本のシャルピー衝撃試験(JIS Z 2242)を行い、平均の吸収エネルギー値を評価した。また、参考として、−40℃における特性も同様に調べた。
 また、JIS Z 3001の2652の記載にしたがって溶接入熱量を測定した。
 本実施例における厚手鋼板と溶接継手の機械的性質の一覧を表8~表10および表14に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
[評価結果]
 No.1~16およびNo.A~Fは本発明鋼であり、鋼の化学成分を適正化し、TMCP条件を適正化することにより、厚手であるのにも関わらず、表8および表14に示すように、400~620MPaの降伏強度と520~700MPaの引張強度、及び、母材靭性を示す−20℃未満の良好な延脆性遷移温度(vTrs)を満足し、さらに、50~120kJ/mmの大きな溶接入熱量であるのにも関わらず、−20℃において70J以上の良好なHAZ靭性が、Ni含有量を1%以下に抑えながら、同時に満足できていることがわかる。
 一方、比較鋼であるNo.17~36および鋼No.H~Jは、鋼の化学成分が適正でないため、また、表7に示す比較鋼1A~1Eは鋼板製造条件が適正でないため、表9、表10および表14に示すように、降伏強度、引張強度、vTrs、大入熱溶接HAZ靭性の何れかが劣り、本発明の厚手高強度鋼板のように、これら複数の要求特性を同時に満足することができないことがわかる。
 鋼17はC量とCeqが少ないため、鋼20はMn量が少ないため、焼入性が不足して降伏強度や引張強度が劣っている。
 鋼18はC量が多いため、鋼19はSi量が多すぎるため、鋼21はMn量が多いため、鋼22はB量が少ないため、鋼23はV量が少ないため、鋼24はV量が多いため、大入熱溶接HAZの靭性が劣っている。さらに鋼21はCeqも高いため降伏強度と引張強度が過剰でありvTrsも劣化している。
 鋼25、26、27、30、31、34、35はCeqと板厚が同じであり、表6のTMCP条件も同一であるが、有効ボロン量が8~27ppm存在するため、強度と靭性の変動が大きく、一部の鋼でvTrsが劣化しており、さらに、大入熱溶接HAZの靭性が劣っている。
 鋼28はP量が多いために、鋼29はS量が多いために、vTrsと大入熱HAZの靭性が劣っている。
 鋼31はAl量が少ないためにOが多くなり、鋼32はAlが多いためにアルミナクラスターが生成し、ともに粗大な有害酸化物が増えて母材と大入熱HAzの靭性が劣っている。
 鋼33はTi量が少ないために、鋼35はN量が少ないために、TiNの生成が不十分で母材とHAZの結晶粒が十分に微細化されず、母材靭性、大入熱HAZ靭性が劣っている。
 鋼34はTi量が多いために、鋼36はN量が多いために、TiC脆化や固溶B脆化によって母材靭性と大入熱HAZ靭性が劣っている。
 鋼Gは、Nbが添加されているがMgが添加されていないため、大入熱HAZ靭性が低下している。
 鋼H、鋼I及び鋼JはV量が少ないため、大入熱HAZ靭性が低下している。
 鋼1Aは、スラブ再加熱の加熱温度が低すぎるため、鋼1Bは圧延終了温度が低すぎるため、鋼1Dは加速冷却の開始温度が低すぎるため、鋼1Eは加速冷却の停止温度が高すぎるため、強度が不足している。
 鋼1Cは圧延の累積圧下量が少なすぎるため、母材靭性が劣化している。
 以上説明した実施例の結果より、本発明の大入熱溶接熱影響部靭性に優れた厚手高強度鋼板が、(1)板厚50~100mm、降伏強度400~650MPa、かつ引張強度490~720MPaの厚手高強度で、(2)溶接入熱量≧20kJ/mmでもvE(−20℃)≧70Jとなる良好な大入熱溶接HAZ靭性を有し、(3)高価合金元素の低減(Ni≦1%等)等による低い製造コストを実現できることが明らかである。
 本発明に係る厚手高強度鋼板は、高層ビル等の建築向けとして主に使用されるが、橋梁、船舶、タンク及び海洋構造物等、その他の溶接構造物に使用することも可能である。

Claims (5)

  1.  質量%で、
    C :0.05~0.12%、
    Si:0.3%以下、
    Mn:1~2%、
    P :0.015%以下、
    S :0.005%以下、
    B :0.0003~0.003%、
    V :0.03~0.15%、
    Al:0.001~0.1%、
    Ti:0.005~0.02%、
    N :0.002~0.01%、
    O :0.004%以下
    を含有し、残部が鉄および不可避的不純物からなり、
    下記式(1)の炭素当量Ceqが0.32~0.45%であり、
    下記式(2)の有効ボロン量Befが0%以下であり、
    下記式(3)の有効チタン量Tiefが0.005%以上である連続鋳造スラブを、
    1100℃を超えて1300℃以下に加熱した後、鋼表面温度が850℃以上で累積圧下量が50%以上の圧延を行い、次いで鋼表面温度が800℃以上から加速冷却を適用して500℃以下まで冷却する
    ことを特徴とする大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法。
    ここで、
    Ceq=C+Mn/6+{(Cr+Mo+V)/5}+{(Ni+Cu)/15} ・・・(1)
    Bef=B−0.77{N−0.29(Ti−2OTi)}・・・(2)
    Tief=Ti−2OTi・・・(3)
    ただし、OTiは下記式(4)による。
    OTi=O−0.4Ca−0.66Mg−0.17REM−0.35Zr−0.89Al ・・・(4)
    ここで、
    式(4)のOTiが0%より小さい場合、式(2)および式(3)のOTiを0%とし、
    N−0.29(Ti−2OTi))が0%より小さい場合、式(2)のN−0.29(Ti−2OTi)を0%とし、
    式(1)、式(2)、式(3)および式(4)に示す元素は、それぞれの元素の含有量(質量%)とし、不可避的不純物として混入した元素も計算に含める。
  2.  前記加速冷却の後、さらに、350~700℃で5~60分の焼戻し熱処理を施すことを特徴とする、請求項1に記載の大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法。
  3.  質量%で、
    Ca:0.0003~0.004%、
    Mg:0.0003~0.004%、
    Ni:0.01~1%、
    Cu:0.01~1%、
    Cr:0.01~1%、
    Mo:0.01~0.5%、
    Nb:0.003~0.03%、
    REM:0.0003~0.02%、
    Zr:0.0003~0.02%
    のうちの1種または2種以上を含有し、ただし、Nbを含有するときはMgも含有することを特徴とする、請求項1又は2に記載の大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法。
  4.  質量%で、
    C :0.05~0.12%、
    Si:0.3%以下、
    Mn:1~2%、
    P :0.015%以下、
    S :0.005%以下、
    B :0.0003~0.003%、
    V :0.03~0.15%
    Al:0.001~0.1%、
    Ti:0.005~0.02%、
    N :0.002~0.01%、
    O :0.004%以下
    を含有し、残部が鉄および不可避的不純物からなり、
    下記式(1)の炭素当量Ceqが0.32~0.45%であり、
    下記式(2)の有効ボロン量Befが0%以下であり、
    下記式(3)の有効チタン量Tiefが0.005%以上であり、
    板厚が50~100mmであり、
    降伏強度が400~650MPaであり、
    引張強度が490~720MPaである
    ことを特徴とする大入熱溶接熱影響部靭性に優れた厚手高強度鋼板。
    ここで、
    Ceq=C+Mn/6+{(Cr+Mo+V)/5}+{(Ni+Cu)/15} ・・・(1)
    Bef=B−0.77{N−0.29(Ti−2Oef)}・・・(2)
    Tief=Ti−2OTi・・・(3)
    ただし、OTiは下記式(3)による。
    OTi=O−0.4Ca−0.66Mg−0.17REM−0.35Zr−0.89Al ・・・(3)
    ここで、
    式(4)のOTiが0%より小さい場合、式(2)および式(3)のOTiを0%とし、
    N−0.29(Ti−2OTi)が0%より小さい場合、式(2)のN−0.29(Ti−2OTi)を0%とし、
    式(1)、式(2)、式(3)および式(4)に示す元素は、それぞれの元素の含有量(質量%)とし、不可避的不純物として混入した元素も計算に含める。
  5.  質量%で、
    Ca:0.0003~0.004%、
    Mg:0.0003~0.004%、
    Ni:0.01~1%、
    Cu:0.01~1%、
    Cr:0.01~1%、
    Mo:0.01~0.5%、
    Nb:0.003~0.03%、
    REM:0.0003~0.02%、
    Zr:0.0003~0.02%
    のうちの1種又は2種以上を含有し、Nbを含有するときはMgも含有することを特徴とする、請求項4に記載の大入熱溶接熱影響部靭性に優れた厚手高強度鋼板。
PCT/JP2010/059991 2009-06-11 2010-06-07 大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、大入熱溶接熱影響部靭性に優れた厚手高強度鋼板 WO2010143726A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117029176A KR101176612B1 (ko) 2009-06-11 2010-06-07 대입열 용접 열 영향부 인성이 우수한 고강도 후강판의 제조 방법 및 대입열 용접 열 영향부 인성이 우수한 고강도 후강판
CN201080025820.6A CN102459656B (zh) 2009-06-11 2010-06-07 大线能量焊接热影响区韧性优异的厚壁高强度钢板的制造方法
JP2010540354A JP4681690B2 (ja) 2009-06-11 2010-06-07 大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、大入熱溶接熱影響部靭性に優れた厚手高強度鋼板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009140398 2009-06-11
JP2009-140398 2009-06-11

Publications (1)

Publication Number Publication Date
WO2010143726A1 true WO2010143726A1 (ja) 2010-12-16

Family

ID=43308982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059991 WO2010143726A1 (ja) 2009-06-11 2010-06-07 大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、大入熱溶接熱影響部靭性に優れた厚手高強度鋼板

Country Status (5)

Country Link
JP (1) JP4681690B2 (ja)
KR (1) KR101176612B1 (ja)
CN (1) CN102459656B (ja)
TW (1) TW201103988A (ja)
WO (1) WO2010143726A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695776A (zh) * 2013-12-20 2014-04-02 宝山钢铁股份有限公司 一种低碳当量焊接热影响区韧性优异的厚钢板及其制造方法
WO2014103629A1 (ja) * 2012-12-28 2014-07-03 新日鐵住金株式会社 降伏強度670~870N/mm2、及び引張強さ780~940N/mm2を有する鋼板
CN104145038A (zh) * 2012-03-01 2014-11-12 杰富意钢铁株式会社 大线能量焊接用钢材
CN105088072A (zh) * 2015-08-27 2015-11-25 舞阳钢铁有限责任公司 一种大线能量焊接用钢板及其生产方法
WO2017181632A1 (zh) * 2016-04-19 2017-10-26 江阴兴澄特种钢铁有限公司 一种连铸坯生产低压缩比高性能特厚钢板及其制造方法
WO2023132254A1 (ja) * 2022-01-07 2023-07-13 日本製鉄株式会社 熱延鋼板

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215507B (zh) * 2013-04-18 2015-01-14 湖南华菱湘潭钢铁有限公司 一种提高大线能量焊接性能的钢板冶炼方法
CN104451444B (zh) * 2014-11-27 2017-02-22 宝山钢铁股份有限公司 一种低碳当量可大线能量焊接用厚钢板及其制造方法
CN106756543B (zh) * 2016-12-12 2018-05-22 南京钢铁股份有限公司 一种tmcp态低成本大线能量焊接用高强船板钢及其制造方法
JP7127751B2 (ja) * 2020-08-31 2022-08-30 日本製鉄株式会社 鋼板およびその製造方法
CN114763589A (zh) * 2021-01-11 2022-07-19 宝山钢铁股份有限公司 一种压力容器用钢板及其制造方法
CN117737596A (zh) * 2024-02-20 2024-03-22 上海大学 一种大线能量焊接热影响区韧性优异的钢板及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056279A (ja) * 2005-08-22 2007-03-08 Nippon Steel Corp 母材及び溶接熱影響部の靱性に優れた引張強度590N/mm2級の溶接構造用鋼およびその製造方法
JP2008214754A (ja) * 2007-02-09 2008-09-18 Nippon Steel Corp 脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板
JP2008248382A (ja) * 2007-03-05 2008-10-16 Nippon Steel Corp 脆性き裂伝播停止特性に優れた厚手高強度鋼板およびその製造方法
WO2009072559A1 (ja) * 2007-12-06 2009-06-11 Nippon Steel Corporation 脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3009568B2 (ja) * 1993-10-06 2000-02-14 新日本製鐵株式会社 耐水素誘起割れ性および低温靭性の優れた高強度鋼板の製造法
JPH07173536A (ja) * 1993-12-16 1995-07-11 Nippon Steel Corp 耐サワー性の優れた高強度ラインパイプ用鋼板の製造法
JP3699657B2 (ja) * 2000-05-09 2005-09-28 新日本製鐵株式会社 溶接熱影響部のCTOD特性に優れた460MPa以上の降伏強度を有する厚鋼板
JP2008507006A (ja) * 2004-06-01 2008-03-06 マイケル エー. ベセリー 水平透視シミュレータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056279A (ja) * 2005-08-22 2007-03-08 Nippon Steel Corp 母材及び溶接熱影響部の靱性に優れた引張強度590N/mm2級の溶接構造用鋼およびその製造方法
JP2008214754A (ja) * 2007-02-09 2008-09-18 Nippon Steel Corp 脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板
JP2008248382A (ja) * 2007-03-05 2008-10-16 Nippon Steel Corp 脆性き裂伝播停止特性に優れた厚手高強度鋼板およびその製造方法
WO2009072559A1 (ja) * 2007-12-06 2009-06-11 Nippon Steel Corporation 脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104145038A (zh) * 2012-03-01 2014-11-12 杰富意钢铁株式会社 大线能量焊接用钢材
CN104145038B (zh) * 2012-03-01 2016-12-21 杰富意钢铁株式会社 大线能量焊接用钢材
WO2014103629A1 (ja) * 2012-12-28 2014-07-03 新日鐵住金株式会社 降伏強度670~870N/mm2、及び引張強さ780~940N/mm2を有する鋼板
US9499873B2 (en) 2012-12-28 2016-11-22 Nippon Steel & Sumitomo Metal Corporation Steel plate having yield strength of 670 to 870 N/mm2 and tensile strength of 780 to 940 N/mm2
CN103695776A (zh) * 2013-12-20 2014-04-02 宝山钢铁股份有限公司 一种低碳当量焊接热影响区韧性优异的厚钢板及其制造方法
CN105088072A (zh) * 2015-08-27 2015-11-25 舞阳钢铁有限责任公司 一种大线能量焊接用钢板及其生产方法
CN105088072B (zh) * 2015-08-27 2018-05-25 舞阳钢铁有限责任公司 一种大线能量焊接用钢板及其生产方法
WO2017181632A1 (zh) * 2016-04-19 2017-10-26 江阴兴澄特种钢铁有限公司 一种连铸坯生产低压缩比高性能特厚钢板及其制造方法
WO2023132254A1 (ja) * 2022-01-07 2023-07-13 日本製鉄株式会社 熱延鋼板

Also Published As

Publication number Publication date
KR101176612B1 (ko) 2012-08-23
JPWO2010143726A1 (ja) 2012-11-29
CN102459656B (zh) 2013-08-14
TWI359199B (ja) 2012-03-01
KR20110139774A (ko) 2011-12-29
CN102459656A (zh) 2012-05-16
JP4681690B2 (ja) 2011-05-11
TW201103988A (en) 2011-02-01

Similar Documents

Publication Publication Date Title
JP4681690B2 (ja) 大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、大入熱溶接熱影響部靭性に優れた厚手高強度鋼板
JP4612735B2 (ja) 脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板
JP4660315B2 (ja) 靭性に優れた厚手高強度鋼板の製造方法及び靭性に優れた厚手高強度鋼板
JP5085364B2 (ja) 脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板
JP6460292B1 (ja) 高Mn鋼およびその製造方法
JP5079419B2 (ja) 溶接熱影響部の靱性が優れた溶接構造物用鋼とその製造方法および溶接構造物の製造方法
JP5076658B2 (ja) 大入熱溶接用鋼材
JP5212124B2 (ja) 厚鋼板およびその製造方法
JP6245352B2 (ja) 高張力鋼板およびその製造方法
JP5708349B2 (ja) 溶接熱影響部靭性に優れた鋼材
JP3546308B2 (ja) 大入熱溶接用鋼材
JP2007284712A (ja) 靭性に優れた厚手高強度鋼板の製造方法及び靭性に優れた厚手高強度鋼板
US10300564B2 (en) Weld joint
JP7104370B2 (ja) 厚鋼板およびその製造方法
JP5008879B2 (ja) 強度および低温靭性の優れた高張力鋼板および高張力鋼板の製造方法
JP4912725B2 (ja) 溶接熱影響部靭性の優れた鋼板の製造方法
JP5895780B2 (ja) 大入熱溶接熱影響部靭性に優れた鋼板およびその製造方法
JP5343486B2 (ja) 大入熱溶接用鋼材
JP2020033585A (ja) 鋼板
JP4259374B2 (ja) 低温靭性および溶接熱影響部靭性に優れた高強度鋼板およびその製造方法
JP7272471B2 (ja) 鋼板
JP4959401B2 (ja) 耐表面割れ特性に優れた高強度溶接構造用鋼とその製造方法
JP2006045585A (ja) 溶接構造用鋼
JP2020033584A (ja) 鋼板
JP2013245385A (ja) Haz靱性に優れた厚鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025820.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010540354

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117029176

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10786257

Country of ref document: EP

Kind code of ref document: A1