WO2010143489A1 - 表示用駆動回路およびそれを備える基板モジュール - Google Patents

表示用駆動回路およびそれを備える基板モジュール Download PDF

Info

Publication number
WO2010143489A1
WO2010143489A1 PCT/JP2010/057998 JP2010057998W WO2010143489A1 WO 2010143489 A1 WO2010143489 A1 WO 2010143489A1 JP 2010057998 W JP2010057998 W JP 2010057998W WO 2010143489 A1 WO2010143489 A1 WO 2010143489A1
Authority
WO
WIPO (PCT)
Prior art keywords
parallel
input terminal
display
signal
terminal group
Prior art date
Application number
PCT/JP2010/057998
Other languages
English (en)
French (fr)
Inventor
雅博 今井
範之 中根
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to RU2011154110/08A priority Critical patent/RU2486577C1/ru
Priority to EP10786020A priority patent/EP2442293A4/en
Priority to US13/264,081 priority patent/US9183805B2/en
Priority to CN201080025609.4A priority patent/CN102460541B/zh
Priority to BRPI1012944A priority patent/BRPI1012944A2/pt
Priority to JP2011518367A priority patent/JP5307240B2/ja
Publication of WO2010143489A1 publication Critical patent/WO2010143489A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G3/2096Details of the interface to the display terminal specific for a flat panel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/06Handling electromagnetic interferences [EMI], covering emitted as well as received electromagnetic radiation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/08Details of image data interface between the display device controller and the data line driver circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/148Arrangements of two or more hingeably connected rigid printed circuit boards, i.e. connected by flexible means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10128Display
    • H05K2201/10136Liquid Crystal display [LCD]

Definitions

  • the present invention relates to a display driving circuit and a substrate module including the same, and more particularly to a display driving circuit having two or more types of input interface terminals and a substrate module including the same.
  • a display driving circuit for driving a display unit such as a liquid crystal display device has been mounted, for example, in the form of a chip on a glass substrate, and a flexible printed wiring (Flexible Printed Circuit) connected to the glass substrate.
  • FPC Flexible printed wiring
  • the transmission system for video signals given from the outside via this FPC board is roughly divided into two types of interface specifications: a serial system and a parallel system. Usually, either one of these methods is adopted, but these methods may be used together.
  • one device such as a mobile phone or a portable computer includes two or more display units and a corresponding number of display drive circuits.
  • a video signal is transmitted in a parallel manner to a drive circuit of a display unit close to a main board that generates a video signal, and a video signal is transmitted in a serial manner to a drive circuit of a display part far from the main board. Is transmitted.
  • a different display drive circuit corresponding to only one of the interface specifications for each drive circuit of each display unit.
  • the manufacturing cost of the device increases. To rise.
  • a display drive circuit provided with input terminals corresponding to the above two types of interface specifications is used, a drive circuit having the same configuration (same type) can be used for any display unit. Manufacturing costs can be reduced.
  • any display device can be used.
  • the drive circuit having the same configuration can be used in common, the manufacturing cost can also be reduced.
  • Japanese Utility Model Publication No. 1-79137 discloses a configuration of a graphic display device corresponding to both parallel interface and serial interface specifications.
  • the display drive circuit provided with the input terminals corresponding to the two types of interface specifications has a larger number of input terminals than the case where only one type is supported, the display drive circuit in which the input terminals are arranged.
  • the outer peripheral size, particularly the length of the long side thereof is increased.
  • the display driving circuit is disposed in the vicinity of the display unit, and generally provided with a display output terminal along the long side close to the display unit, and on the opposite side (that is, the side close to the FPC board).
  • An input terminal is provided along the long side. Therefore, the total length of the output terminals multiplied by the distance between the terminals (pitch) (of the entire output terminal) is greater than the length of the total number of input terminals multiplied by the distance between the terminals (pitch) (of the entire input terminal). In the case of being small, the length of the long side of the display drive circuit becomes larger as the number of input terminals increases.
  • the circuit size (especially, the length of the long side) is increased, it may be difficult to provide the circuit on a glass substrate having a limited arrangement area. Further, when a chip including the circuit is manufactured from one wafer, the larger the chip size, the smaller the number that can be manufactured from one wafer, resulting in an increase in manufacturing cost of the display drive circuit.
  • the present invention provides a display drive in which the length of the long side is smaller (than the length when all the input terminals are arranged in a line) when input terminals corresponding to two or more types of interface specifications are provided.
  • An object of the present invention is to provide a circuit and a substrate module including the circuit.
  • a first aspect of the present invention is a display driving circuit that has a rectangular shape having a long side and a short side, and is to be provided on a transparent substrate including a display unit that displays an image.
  • a first input terminal group for receiving a first signal based on a first interface specification;
  • a second input terminal group for receiving a second signal based on a second interface specification using a signal having a smaller amplitude value or higher frequency than the first interface specification;
  • An output terminal group for providing the display unit with a display signal for displaying the image, which is generated based on at least one of the first and second signals,
  • the output terminal group and at least a part of the first input terminal group are arranged along one of the long sides,
  • the second input terminal group is arranged along the other of the long sides.
  • the first signal includes a parallel data signal and a parallel clock signal based on a parallel interface specification
  • the second signal includes a serial data signal and a serial clock signal based on a serial interface specification.
  • the first input terminal group arranged along one of the long sides includes a parallel input terminal for receiving at least a part of the parallel data signal and the parallel clock signal.
  • the parallel input terminal is disposed in the vicinity of the short side.
  • parallel input terminals for receiving at least part of the parallel data signal and the parallel clock signal are arranged along the short side.
  • the second input terminal group arranged along the other of the long sides includes an input terminal for receiving the serial data signal and the serial signal.
  • a display driving circuit and a display unit according to the first aspect of the present invention, A transparent substrate; Display wiring formed on the transparent substrate, for transmitting the display signal from the output terminal group to the display unit, An input wiring line formed on the transparent substrate for transmitting at least one of the first and second signals given from the outside to at least one of the first and second input terminal groups; Prepared, The display driving circuit is arranged such that one of the long sides on which the output terminal group is arranged is close to the display unit.
  • the first signal includes a parallel data signal and a parallel clock signal based on a parallel interface specification
  • the second signal includes a serial data signal and a serial clock signal based on a serial interface specification
  • the first input terminal group arranged along one of the long sides includes a parallel input terminal for receiving at least a part of the parallel data signal and the parallel clock signal.
  • a ninth aspect of the present invention is the eighth aspect of the present invention,
  • the display driving circuit is attached as a circuit chip on the transparent substrate,
  • the parallel input terminal is disposed in the vicinity of the short side,
  • the input wiring connected to the parallel input terminal is arranged to pass through the short side from the lower side of the circuit chip.
  • a tenth aspect of the present invention is the eighth aspect of the present invention,
  • the input wiring connected to the parallel input terminal is wider than the input wiring connected to the second input terminal group arranged along the other of the long sides.
  • the output terminal group and at least a part of the first input terminal group are arranged along one of the long sides of the display drive circuit, and the second input terminal group is Since it is arranged along the other of the long sides, the length of the long side can be made smaller (than the length when all the input terminals are arranged in a line), and the manufacturing cost can be reduced.
  • the second aspect of the present invention it is possible to reduce the length of the long side by appropriately arranging the first and second input terminal groups that receive signals based on the parallel interface specification and the serial interface specification.
  • the manufacturing cost can be reduced.
  • a parallel input terminal that receives at least a part of a parallel data signal and a parallel clock signal that can be transmitted even when the wiring impedance is large because the amplitude is typically relatively large and the frequency is low.
  • the length of the long side can be reduced, and the manufacturing cost can be reduced.
  • the power supply line and the ground line in the parallel interface specification usually require a small wiring impedance, it is preferable that they are not included in the parallel input terminal and are not arranged along one of the long sides.
  • the parallel input terminal is arranged in the vicinity of the short side
  • the output terminal group arranged along the same long side as the parallel input terminal does not interfere with the output terminal group. Since the wiring can be provided directly under the short side or in the vicinity of the short side, the wiring distance from the parallel input terminal can be reduced, and the wiring impedance can be reduced.
  • the parallel input terminal is arranged along the short side, the length of the long side can be reduced, and the manufacturing cost can be reduced.
  • the wiring distance from the parallel input terminal can be reduced and the wiring impedance can be reduced as compared with the case where the output terminal group is arranged along the long side.
  • the input terminal for receiving the serial data signal and the serial signal is arranged along the long side on the side different from the output terminal group, for example, for input from an FPC board or the like
  • the wiring can be shortened, and the wiring impedance can be reduced.
  • a (display) substrate module such as a liquid crystal module
  • a display drive circuit that exhibits the same effect as the first aspect of the present invention.
  • a (display) substrate module such as a liquid crystal module
  • a display drive circuit that exhibits the same effect as the third aspect of the present invention.
  • the input wiring connected to the parallel input terminal disposed in the vicinity of the short side is disposed so as to pass through the short side from the lower side of the circuit chip.
  • the wiring impedance can be reduced.
  • the input wiring connected to the parallel input terminals is wider than the input wiring connected to the second input terminal group, so that the wiring distance increases. Regardless, the wiring impedance can be reduced.
  • FIG. 1st liquid crystal module in the said embodiment it is a schematic plan view which shows the structure of the 1st liquid crystal module in the said embodiment.
  • FIG. 2nd liquid crystal module in the said embodiment It is the top view which looked at the LSI chip in the said embodiment, and its peripheral part from the back surface side of the glass substrate.
  • FIG. 1st liquid crystal module in the said embodiment it is a schematic plan view which shows the structure of the 1st liquid crystal module in the said embodiment.
  • 2nd liquid crystal module in the said embodiment It is the top view which looked at the LSI chip in the said embodiment, and its peripheral part from the back surface side of the glass substrate.
  • FIG. 1 is a perspective view schematically showing a configuration of a liquid crystal display device according to an embodiment of the present invention
  • FIG. 2 is a schematic plan view showing the configuration.
  • the liquid crystal display device is a portable information terminal such as a PDA (Personal Digital Assistant) or a mobile phone terminal, and includes a first liquid crystal module 110 and a main substrate 100, and a first housing for storing them. 1 housing 101, a second liquid crystal module 210, and a second housing 201 for housing the same. Further, the first liquid crystal module 110 and the main board 100 are connected by a first FPC board 150, and the second liquid crystal module 210 and the main board 100 are connected by a second FPC board 250. Yes.
  • the arrangement positions, sizes, shapes, and the like of the respective components are described so as to be different from actual ones for easy viewing.
  • the portable information terminal which is a liquid crystal display device has two screens displayed by the first and second liquid crystal modules 110 and 210.
  • any display device having approximately two or more screens can be applied without changing the above-described configuration in the present embodiment.
  • the present invention can be similarly applied to a single-screen display device, but details will be described later in a modification.
  • the second FPC board 250 is connected to a serial interface connector 152 provided on the main board 100, and the first FPC board 150 is placed on the main board 100. It is connected to a parallel interface connector 151 provided.
  • the number of signal lines required for the serial interface is less than the number of signal lines required for the parallel interface (including power supply etc.), and signal transmission through the serial interface is possible. If this is done, there is an effect in reducing electromagnetic interference (EMI), and therefore, the second FPC board 250 having a long transmission distance may perform signal transmission through a serial interface. However, if signal transmission is performed using a serial interface, power consumption increases, and therefore, the first FPC board 150 having a long transmission distance may perform signal transmission using a parallel interface.
  • EMI electromagnetic interference
  • FIG. 3 is a schematic plan view showing the configuration of the first liquid crystal module 110 according to the embodiment of the present invention.
  • FIG. 4 shows the configuration of the second liquid crystal module 210 according to the embodiment of the present invention. It is a schematic plan view. Note that the arrangement positions and shapes of the components shown in these drawings are different from the actual ones for the sake of easy viewing.
  • the first liquid crystal module 110 is provided with two glass substrates 120 and 125 arranged to face each other and an LSI chip 140 for driving display. Further, an electronic component such as a capacitor may be provided. Similarly, in the second liquid crystal module 210, as shown in FIG. 4, two glass substrates 220 and 225 arranged opposite to each other and a display having the same configuration as that provided in the first liquid crystal module 110 are used. And an LSI chip 140 for driving.
  • a display unit 130 in which liquid crystal (not shown) is sealed with a sealing material (not shown) is formed.
  • An LSI chip 140 having a driver function necessary for driving a liquid crystal and a first FPC board 150 connected to the outside are mounted on the overhanging portion 120a of the glass substrate 120.
  • the LSI chip 140 displays a video by giving a display signal to the display unit 130. .
  • a display portion 230 in which liquid crystal is sealed is formed in a space between the glass substrates 220 and 225.
  • An LSI chip 140 and a second FPC board 250 are mounted. When a video signal transmitted from the main board to the LSI chip 140 via the second FPC board 250 by the serial interface is given, the LSI chip 140 gives a display signal to the display unit 230 to display the video.
  • the LSI chip 140 In the LSI chip 140, gate driver, source driver, DC / DC converter circuit patterns and the like are formed on the surface of the silicon substrate using a fine processing technique, and the circuit patterns are used as connection terminals for connecting to the outside.
  • This is a bare chip (chip before packaging) on which bump electrodes are formed.
  • the height of the bump electrode is, for example, about 15 ⁇ m.
  • the configuration in which the LSI chip 140, which is a bare chip, is face-down bonded to the overhang portion 120a is an example.
  • an LSI device in which the LSI chip 140 is packaged in a surface-mount package is mounted on the glass substrate 120. May be.
  • the first and second FPC substrates 150 and 250 are substrates in which, for example, a plurality of wiring layers 174 made of copper foil having a thickness of 8 to 50 ⁇ m are formed on one surface of a flexible insulating film having a thickness of 12 to 50 ⁇ m. It can be bent freely.
  • the wiring layers 174 and 274 may be formed not only on one side of the insulating film but also on both sides.
  • the LSI chip 140 provided in the first liquid crystal module 110 is connected to one end of the FPC wiring 173 formed in the overhanging portion 120a and the display wiring 123 extending to the display portion 130. .
  • the wiring layer 174 of the first FPC board 150 is also connected to the other end of the FPC wiring 173.
  • a video signal, a signal such as a clock signal, a reference voltage, and the like given to 174 are respectively given to corresponding input terminals of the LSI chip 140.
  • ACF Anisotropic Conductive Film
  • FIG. 5 is a plan view of the LSI chip 140 and its peripheral portion as viewed from the back side of the glass substrate 120. Note that the number of the display wiring 123 and the FPC wiring 173 and the corresponding output terminals 141a and input terminals 141b are several tens to several hundreds as will be described later. Unlike the actual case, the width and interval of the wiring are simply shown.
  • the display wiring 123 connected to the display unit 130 is connected to the output terminal 141 a, and these output terminals 141 a in the LSI chip 140 are all on the display unit 130 side (on the LSI chip 140. ) It is arranged along the long side.
  • a part of the input terminal 141b is provided along the long side, and a part of the input terminal 141b arranged alongside the output terminal 141a is parallel data which is a part of the FPC wiring 173. It is connected to the wiring 173a.
  • input terminals 141b are provided along the long side (of the LSI chip 140) on the first FPC board 150 side (the side opposite to the display unit 130), and these input terminals 141b are connected to the FPC wiring 173. Are connected to various wirings 173b which are a part of.
  • the wirings of the first and second FPC boards 150 and 250 are made of, for example, copper foil (Cu) having a thickness of 8 ⁇ m or more, and can have a sufficiently low sheet resistance.
  • Cu copper foil
  • Cu copper foil
  • Al aluminum
  • the sheet resistance of tantalum and aluminum is several tens to several hundred times higher than the sheet resistance of copper.
  • each wiring on the glass substrate cannot be multi-layered unlike the FPC substrate. Therefore, there are predetermined limits on the number of wirings formed on the glass substrate and the width of the wirings. Therefore, the number and pitch of the output terminals 141a and the input terminals 141b in the LSI chip 140 are determined according to this limit.
  • the number of output terminals 141a of the LSI chip 140 is 480, which is the same as the number of data signal lines of the display unit 130, and the pitch between the output terminals is 20 ⁇ m.
  • the number of input terminals 141b connected to the parallel data wiring 173a is 24, and the number of input terminals 141b connected to the various wirings 173b is 162 (the details will be described later).
  • the pitch is 70 ⁇ m. The reason why the pitch between the output terminals is smaller than the pitch between the input terminals is that the input terminal needs to have a smaller wiring impedance than the output terminal.
  • the pitch between the input terminals is determined so that each signal for the serial interface or the parallel interface to be input does not take an abnormal value (depending on the impedance of the wiring). Therefore, it is too small as a pitch for the power supply line and the ground line that require a lower impedance for the stable operation of the circuit. Therefore, here, the 20 input terminals 141b are combined into one and connected to the same serial interface or parallel interface power supply line or ground line. By doing so, the wiring width of the power supply line and the ground line for the serial interface or the parallel interface can be increased by about 20 times, so that the wiring impedance can be sufficiently reduced.
  • a power source line and a ground line for driving liquid crystal are connected to the input terminal 141b.
  • These wiring impedances need to be particularly small in order to stably drive the liquid crystal. Therefore, here, the 30 input terminals 141b are combined into one and connected to the same liquid crystal driving power supply line and ground line. Then, the wiring width can be increased by about 30 times, and the wiring impedance can be further sufficiently reduced.
  • setting signal wiring for controlling various operations of the LSI chip 140 such as switching between a parallel interface and a serial interface is also connected to the input terminal 141b.
  • the number of input terminals 141b connected to these is thirteen. Note that all or part of these may be omitted, and a parallel command and a serial interface may be switched by transmitting a predetermined command.
  • the clock signal line used for the parallel interface there are one clock signal line used for the parallel interface, 24 data signal lines used for the parallel interface, and two synchronization signal lines used for the parallel interface.
  • the data signal lines used for the parallel interface are connected to 24 input terminals 141b arranged on the long side (of the LSI chip 140) on the display unit 130 side.
  • the actual external size of the LSI chip 140 as a bare chip is, for example, a long side of 12000 ⁇ m and a short side of 1000 ⁇ m.
  • the length of the long side can be further reduced.
  • the length of the short side is determined in consideration of only the circuit scale, and when the input terminals are arranged along the short side, the number of terminals that can be arranged may be limited.
  • FIG. 6 is a diagram simply showing waveforms of signals used for the serial interface and signals used for the parallel interface.
  • FIG. 6 shows serial clock signals SCK + and SCK ⁇ , serial data signals SDAT + and SDAT ⁇ , a parallel clock signal PCK, and parallel data signals PDAT1 to PDAT3.
  • the serial clock signal means a clock signal in a predetermined serial interface specification
  • the serial data signal means a data signal in the specification
  • the parallel clock signal means a clock signal in a predetermined parallel interface specification
  • the parallel data signal means a data signal in the specification.
  • FIG. 6 shows two serial data signals SDAT + and SDAT ⁇ for simplicity of explanation.
  • An example in which three parallel data signals PDAT1 to PDAT3 are used will be described. Each data is sampled at both edges (rising time and falling time) of the corresponding clock, but may be sampled only at one edge.
  • serial clock signals SCK + and SCK ⁇ and serial data signals SDAT + and SDAT ⁇ which are a positive signal and a negative signal, which are in a differential signal relationship.
  • the voltage level here is 0.9V, which is half of 1.8V of the logic power supply voltage.
  • the amplitude is ⁇ 100 mV.
  • the data signal and the clock signal used for the serial interface have a small amplitude but a high frequency.
  • the generation of EMI can be suppressed and high-speed data transmission is possible.
  • power consumption increases for that purpose.
  • the amplitudes of the parallel clock signal PCK and the parallel data signals PDAT1 to PDAT3 are 1.8V of the logic power supply voltage, the amplitude is large, and the frequency is also set low. . This enables data transmission with low power consumption. Further, in order to secure a necessary data transmission amount within a unit time, the number of signals (here, 24) larger than the number of signals used in the serial interface (here, 4) is required.
  • the data signal and clock signal used for the serial interface have a high frequency and a small amplitude. Specifically, since the frequency is high, the signal setup time and hold time are shortened, resulting in low noise resistance, and because the amplitude is small, the voltage range in which the signal level can be recognized is reduced, so that noise resistance is also achieved. Becomes lower. For this reason, when an FPC board having a very small resistance value is used, these signals can be transmitted over a relatively long distance. However, as described above, the above signal is transmitted by the wiring on the glass substrate having a relatively large resistance value. In order to ensure sufficient noise resistance, these wirings are preferably as short as possible.
  • the power supply line and the ground line are required to have as low impedance as possible for stable operation of the circuit. Therefore, when connecting a power supply line or a ground line by wiring on a glass substrate having a relatively large resistance value, it is preferable that these wirings are as short as possible.
  • the data signal and clock signal used for the parallel interface have a low frequency and a large amplitude. Specifically, since the frequency is low, the signal setup time and hold time are increased, resulting in higher noise resistance. Also, because the amplitude is large, the voltage range in which the signal level can be recognized is increased, and the noise resistance is increased. Becomes higher. Therefore, even when an FPC board is used, and even when a wiring on a glass board having a relatively large resistance value is used, these signals can be transmitted over a relatively long distance as long as no malfunction occurs. .
  • the upper limit value of the wiring impedance required for stable operation in the serial interface is smaller than the upper limit value of the wiring impedance required for stable operation in the parallel interface.
  • each of the 24 data signal lines used for the parallel interface is arranged along the long side (of the LSI chip 140) on the display unit 130 side that is far from the FPC board 150. Connected to the 24 input terminals 141b.
  • the length of the long side can be made smaller (by 1680 ⁇ m) than the conventional configuration in which all the input terminals of the LSI chip are arranged on the FPC board side without causing malfunction due to noise or the like.
  • a configuration in which a part or all of the clock signal lines used for the parallel interface are connected to the 24 input terminals 141b may be employed. Further, a configuration may be adopted in which some or all of the synchronization signal lines used for the parallel interface (other signal lines excluding the power supply line and the ground line) are connected.
  • the 24 input terminals 141b and 24 data signal lines are connected by a parallel data wiring 173a.
  • the parallel data wiring 173a is disposed so as to pass directly under the short side (on the right side of the drawing) of the LSI chip 140.
  • the parallel data wiring 173a may be routed outward so as not to pass directly under the LSI chip 140, but in that case, the parallel data wiring 173a becomes longer. In that case, since the impedance of the parallel data wiring 173a increases, a malfunction may occur depending on circumstances.
  • the wiring (in this case, the parallel data wiring 173a) connected to the 24 input terminals 141b arranged along the long side on the display unit 130 side passes directly under the LSI chip 140 and has no terminals. It is preferable to be arranged so as to be drawn out under 140 short sides. However, the number of terminals drawn through directly under the chip short side may be limited by the chip short side size. In that case, some terminals may pass directly under the chip short side, and the remaining terminals may be routed outward.
  • the 24 input terminals 141b are arranged in the vicinity of the short side of the LSI chip 140. If so, the parallel data wiring 173a can be shortened, so that the possibility of malfunctions can be reduced by reducing the impedance. Even if the parallel data wiring 173a is routed outward so as not to pass directly under the LSI chip 140, the parallel data wiring 173a can be provided by arranging the 24 input terminals 141b in the vicinity of the short side of the LSI chip 140. Can be shortened, which is preferable.
  • the parallel data wiring 173a connected to the 24 input terminals 141b is formed to be wider than the various wirings 173b which are the other FPC wirings 173.
  • some of the input terminals for the parallel interface are arranged along the long side on the display unit 130 side.
  • the parallel interface signal for example, an input terminal for receiving the parallel clock signal PCK
  • the same LSI chip 140 is mounted on two liquid crystal modules built in one portable information terminal (liquid crystal display device).
  • the number is not particularly problematic when the present invention is applied, and any configuration may be used as long as the LSI chip 140 includes a serial interface input terminal and a parallel interface input terminal.
  • the LSI chip 140 having the same configuration is used in these devices, the above embodiment is used. In the same way as in the case, the manufacturing cost can be reduced.
  • the same LSI chip 140 is mounted on the glass substrate in each liquid crystal module.
  • the display drive circuit is an area adjacent to the display unit on the glass substrate.
  • a monolithic type formed using a thin film such as continuous grain boundary crystal silicon (CG silicon: ContinuousConGrain Silicon), amorphous silicon, or polycrystalline silicon may be employed.
  • CG silicon ContinuousConGrain Silicon
  • amorphous silicon or polycrystalline silicon
  • the size is often increased depending on the process rule.
  • the configuration of the first and second liquid crystal modules 110 and 210 before forming each wiring is the same. Therefore, the manufacturing cost can be similarly reduced.
  • various wiring is formed on a glass substrate using tantalum (Ta) or aluminum (Al), other well-known wiring materials can be used.
  • various wirings are formed on the glass substrate, but a transparent plastic substrate made of a known material may be used instead of the glass substrate which is a transparent substrate.
  • various wiring materials can be used, but typically transparent ITO (indium tin oxide) is used.
  • the substrate module which is a liquid crystal module has been described.
  • the substrate module is not limited to the liquid crystal module used in the liquid crystal display device, and an organic or inorganic EL (Electro Luminescence) display, plasma display panel (Plasma Display Display; It can be similarly applied to substrate modules used in various display devices such as vacuum fluorescent display (Vacuum Fluorescent Display), electronic paper, etc., and similarly applied to various substrate modules used other than display devices. be able to.
  • the present invention is applied to a display drive circuit and a board module such as a liquid crystal module provided with the display drive circuit, and more specifically, two or more types of input interface terminals used for a portable information terminal, for example. It is suitable for a display driving circuit having the above and a substrate module including the same.

Abstract

 本発明は、2種類以上の異なるインターフェース仕様に対応する入力端子を有する表示用駆動回路に関する。 表示用駆動回路であるLSIチップ(140)の入力端子のうち、低周波高振幅であるパラレルデータ配線(173a)に接続される入力端子と、表示用配線(123)に接続される出力端子とを、LSIチップの一方の長辺に沿って配置し、シリアルデータ配線を含む各種配線(173b)が接続される入力端子をLSIチップの他方の長辺に沿って配置する。 出力端子が配置される長辺側にも入力端子を配置するので、全入力端子が一列に配置される場合よりもLSIの長辺の長さを短くすることができ、製造コストを下げることができる。また、出力端子が配置される長辺側に配置する入力端子には、低周波高振幅のパラレルデータ配線を接続することで、配線長を延長してもノイズが発生し難いという効果もある。

Description

表示用駆動回路およびそれを備える基板モジュール
 本発明は、表示用駆動回路およびそれを備える基板モジュールに関し、より詳しくは、2種類以上の入力インタフェース用端子を有する表示用駆動回路およびそれを備える基板モジュールに関する。
 従来より、液晶表示装置などの表示部を駆動するための表示用駆動回路は、例えばガラス基板上に例えばチップの形で実装されており、このガラス基板に接続されるフレキシブルプリント配線(Flexible Printed Circuit:以下、「FPC」という)基板を介して外部から与えられる映像信号を受け取り、表示部に映像を表示する。
 このFPC基板を介して外部から与えられる映像信号の伝送方式には、大別してシリアル方式およびパラレル方式の2種類のインタフェース仕様が使用される。通常はこれらの方式のうちのいずれか一方が採用されるが、これらの方式がともに使用されることがある。例えば携帯電話や携帯型コンピュータなどの1つの装置に、2つ以上の表示部および対応する同数の表示用駆動回路が備えられるものがある。
 この構成では、典型的には映像信号を生成するメイン基板から近い表示部の駆動回路にはパラレル方式で映像信号を伝送し、当該メイン基板から遠い表示部の駆動回路にはシリアル方式で映像信号を伝送する。このような装置では、各表示部の駆動回路毎に、いずれか一方のインタフェース仕様のみに対応した異なる表示用駆動回路を使用することも考えられるが、部品点数が多くなるため装置の製造コストが上昇する。
 そこで、上記2種類のインタフェース仕様に対応した入力端子をそれぞれ設けた表示駆動用回路を使用すれば、いずれの表示部に対しても同一構成(同種類)の駆動回路を使用することができるので、製造コストを下げることができる。
 また、異なる2つのインタフェース仕様が使用される2種類の表示装置に対して、この2種類のインタフェース仕様に対応した入力端子をそれぞれ設けた表示駆動用回路を使用すれば、いずれの表示装置に対しても同一構成の駆動回路を共通して使用することができるので、やはり製造コストを下げることができる。
 なお、日本実開平1-79137号公報には、パラレルインタフェースおよびシリアルインタフェースの仕様の双方に対応したグラフィックディスプレイ装置の構成が開示されている。
日本実開平1-79137号公報
 しかし、2種類のインタフェース仕様に対応した入力端子をそれぞれ設けた表示用駆動回路は、1種類のみに対応した場合よりも入力端子の数が増加するので、入力端子が配置される表示用駆動回路の外周サイズ、特にその長辺の長さが大きくなる。
 例えば、上記表示用駆動回路は、表示部近傍に配置され、一般的には表示部に近い側の長辺に沿って表示用出力端子が設けられ、その反対側(すなわちFPC基板に近い側)の長辺に沿って入力端子が設けられる。したがって、出力端子の総数にその端子間距離(ピッチ)を乗算した(出力端子全体の)長さが、入力端子総数にその端子間距離(ピッチ)を乗算した(入力端子全体の)長さよりも小さい場合、入力端子が増加するほど表示用駆動回路の長辺の長さがより大きくなる。
 このように回路のサイズ(特に長辺の長さ)が大きくなると、配置可能面積が限られているガラス基板上に当該回路を設けることが困難になる場合がある。また当該回路を含むチップを1つのウェハから製造するとき、チップサイズが大きいほど1つのウェハから製造できる数が少なくなり、結果的に当該表示用駆動回路の製造コストが増加する。
 そこで、本発明は、2種類以上のインタフェース仕様それぞれに対応した入力端子が設けられる場合において、(全入力端子が一列に配置されるときの長さよりも)長辺の長さが小さい表示用駆動回路、およびそれを備える基板モジュールを提供することを目的とする。
 本発明の第1の局面は、長辺と短辺とを有する矩形の形状を有しており、画像を表示する表示部を含む透明基板上に設けられるべき表示用駆動回路であって、
 第1のインタフェース仕様に基づく第1の信号を受け取るための第1の入力端子群と、
 前記第1のインタフェース仕様よりも振幅値が小さいかまたは周波数が高い信号を使用する第2のインタフェース仕様に基づく第2の信号を受け取るための第2の入力端子群と、
 前記第1および第2の信号の少なくとも一方に基づき生成される、前記画像を表示するための表示信号を前記表示部へ与えるための出力端子群と
を備え、
 前記出力端子群と、前記第1の入力端子群の少なくとも一部とは、前記長辺の一方に沿って配列され、
 前記第2の入力端子群は、前記長辺の他方に沿って配列されることを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記第1の信号は、パラレルインタフェース仕様に基づくパラレルデータ信号およびパラレルクロック信号を含み、
 前記第2の信号は、シリアルインタフェース仕様に基づくシリアルデータ信号およびシリアルクロック信号を含むことを特徴とする。
 本発明の第3の局面は、本発明の第2の局面において、
 前記長辺の一方に沿って配列される前記第1の入力端子群は、前記パラレルデータ信号および前記パラレルクロック信号のうちの少なくとも一部を受け取るためのパラレル入力端子を含むことを特徴とする。
 本発明の第4の局面は、本発明の第3の局面において、
 前記パラレル入力端子は、前記短辺の近傍に配置されることを特徴とする。
 本発明の第5の局面は、本発明の第2の局面において、
 前記第1の入力端子群のうち、前記パラレルデータ信号および前記パラレルクロック信号のうちの少なくとも一部を受け取るためのパラレル入力端子は、前記短辺に沿って配置されることを特徴とする。
 本発明の第6の局面は、本発明の第2の局面において、
 前記長辺の他方に沿って配列される前記第2の入力端子群は、前記シリアルデータ信号および前記シリアル信号を受け取るための入力端子を含むことを特徴とする。
 本発明の第7の局面は、本発明の第1の局面に記載の表示用駆動回路および表示部と、
 透明基板と、
 前記透明基板上に形成されており、前記出力端子群から前記表示部へ前記表示信号を伝送するための表示用配線と、
 前記透明基板上に形成されており、外部から与えられる前記第1および第2の信号の少なくとも一方を、前記第1および第2の入力端子群の少なくとも一方へ伝送するための入力用配線と
を備え、
 前記表示用駆動回路は、前記出力端子群が配置される長辺の一方が前記表示部に近接するよう配置されることを特徴とする。
 本発明の第8の局面は、本発明の第7の局面において、
 前記第1の信号は、パラレルインタフェース仕様に基づくパラレルデータ信号およびパラレルクロック信号を含み、
 前記第2の信号は、シリアルインタフェース仕様に基づくシリアルデータ信号およびシリアルクロック信号を含み、
 前記長辺の一方に沿って配列される前記第1の入力端子群は、前記パラレルデータ信号および前記パラレルクロック信号のうちの少なくとも一部を受け取るためのパラレル入力端子を含むことを特徴とする。
 本発明の第9の局面は、本発明の第8の局面において、
 前記表示用駆動回路は、前記透明基板上に回路チップとして取り付けられており、
 前記パラレル入力端子は、前記短辺の近傍に配置され、
 前記パラレル入力端子に接続される入力用配線は、前記回路チップの下側から前記短辺を通るよう配置されることを特徴とする。
 本発明の第10の局面は、本発明の第8の局面において、
 前記パラレル入力端子に接続される入力用配線は、前記長辺の他方に沿って配列される前記第2の入力端子群に接続される入力配線よりも幅が大きいことを特徴とする。
 本発明の第1の局面によれば、出力端子群と第1の入力端子群の少なくとも一部とは、表示用駆動回路の長辺の一方に沿って配列され、第2の入力端子群は、長辺の他方に沿って配列されるので、長辺の長さを(全入力端子が一列に配置されるときの長さよりも)小さくすることができ、その製造コストを下げることができる。
 本発明の第2の局面によれば、パラレルインタフェース仕様およびシリアルインタフェース仕様に基づく信号を受け取る第1および第2の入力端子群を適宜に配列することにより、長辺の長さを小さくすることができ、その製造コストを下げることができる。
 本発明の第3の局面によれば、典型的には比較的大振幅かつ低周波であるため配線インピーダンスが大きくても伝送可能なパラレルデータ信号およびパラレルクロック信号の少なくとも一部を受け取るパラレル入力端子は、長辺の一方に沿って配列されるので、長辺の長さを小さくすることができ、その製造コストを下げることができる。なお、パラレルインタフェース仕様における電源線や接地線は、通常小さい配線インピーダンスが必要であるので、これらはパラレル入力端子に含まれず、上記長辺の一方に沿って配列されないことが好ましい。
 本発明の第4の局面によれば、パラレル入力端子が短辺の近傍に配置されるので、パラレル入力端子と同じ長辺に沿って配列される出力端子群に干渉されることなく、例えば当該短辺直下や短辺の近傍を通って配線を設けることができるので、パラレル入力端子からの配線距離を小さくすることができ、その配線インピーダンスを小さくすることができる。
 本発明の第5の局面によれば、パラレル入力端子は、短辺に沿って配置されるので、長辺の長さを小さくすることができ、その製造コストを下げることができる。また出力端子群が配置される長辺に沿って配置される場合よりも、パラレル入力端子からの配線距離を小さくすることができ、その配線インピーダンスを小さくすることができる。
 本発明の第6の局面によれば、シリアルデータ信号およびシリアル信号を受け取るための入力端子が出力端子群とは異なる側の長辺に沿って配置されるので、例えばFPC基板などからの入力用配線を短くすることができ、その配線インピーダンスを小さくすることができる。
 本発明の第7の局面によれば、本発明の第1の局面と同様の効果を奏する表示用駆動回路を備えた、例えば液晶モジュールなどの(表示用)基板モジュールを提供することができる。
 本発明の第8の局面によれば、本発明の第3の局面と同様の効果を奏する表示用駆動回路を備えた、例えば液晶モジュールなどの(表示用)基板モジュールを提供することができる。
 本発明の第9の局面によれば、短辺の近傍に配置されるパラレル入力端子に接続される入力用配線は、回路チップの下側から短辺を通るよう配置されるので、その配線距離を小さくすることができ、その配線インピーダンスを小さくすることができる。
 本発明の第10の局面によれば、パラレル入力端子に接続される入力用配線は、第2の入力端子群に接続される入力配線よりも幅が大きいので、その配線距離が大きくなるにもかかわらず、その配線インピーダンスを小さくすることができる。
本発明の一実施形態に係る液晶表示装置の構成を簡略に示す斜視図である。 上記実施形態において、図1に示す液晶表示装置の構成を簡略に示す図である。 上記実施形態における第1の液晶モジュールの構成を示す模式平面図である。 上記実施形態における第2の液晶モジュールの構成を示す模式平面図である。 上記実施形態におけるLSIチップおよびその周辺部分をガラス基板の裏面側から見た平面図である。 上記実施形態において、シリアルインタフェースに使用される信号およびパラレルインタフェースに使用される信号の波形を簡略に示す図である。
<1. 液晶表示装置の構成>
 図1は、本発明の一実施形態に係る液晶表示装置の構成を簡略に示す斜視図であり、図2はその構成を示す模式平面図である。図1に示されるように、この液晶表示装置は、PDA(Personal Digital Assistant)や携帯電話端末等の携帯情報端末であって、第1の液晶モジュール110およびメイン基板100と、これらを収納する第1の筐体101と、第2の液晶モジュール210と、これを収納する第2の筐体201とを備える。また、第1の液晶モジュール110とメイン基板100とは、第1のFPC基板150により接続されており、第2の液晶モジュール210とメイン基板100とは、第2のFPC基板250により接続されている。なお、これら各構成要素の配置位置や、大きさ、形状などは、見やすくするために実際とは異なるように記載されている。
 このように液晶表示装置である携帯情報端末は、第1および第2の液晶モジュール110,210により表示される2つの画面を有している。なお、およそ2画面以上を有する表示装置であれば本実施形態における上記構成を変更することなく適用することができる。また、1画面の表示装置においても同様に適用できるが、詳しくは変形例において後述する。
 ここで、図2に示されるように、第2のFPC基板250は、メイン基板100上に設けられるシリアルインタフェース用コネクタ152に接続されており、第1のFPC基板150は、メイン基板100上に設けられるパラレルインタフェース用コネクタ151に接続されている。
 後述するように、上記シリアルインタフェースに必要な(電源等を含む)信号線の数は、上記パラレルインタフェースに必要な(電源等を含む)信号線の数よりも少なく、またシリアルインタフェースによる信号伝送を行うと電磁妨害(EMI:Electro-Magnetic Interference)の低減にも効果があるため、伝送距離の長い第2のFPC基板250では、シリアルインタフェースによる信号伝送が行われる場合がある。もっとも、シリアルインタフェースによる信号伝送を行うと消費電力が増加するため、伝送距離の長い第1のFPC基板150では、パラレルインタフェースによる信号伝送が行われる場合がある。なお、これらのインタフェース仕様が採用される上記理由は一例であって、様々な理由によりこれらのインタフェース仕様は適宜に使用される。
 このように2種類のインタフェース仕様が採用される場合、第1の液晶モジュール110と第2の液晶モジュール210とで、いずれか一方のインタフェース仕様のみに対応した異なる表示用駆動回路を使用することも考えられるが、部品点数が多くなるため装置の製造コストが上昇する。そこで、上記2種類のインタフェース仕様それぞれに対応した入力端子を設けた表示駆動用回路を使用すれば、いずれの液晶表示モジュールに対しても同一の表示駆動回路を使用することができるので、製造コストを下げることができる。このことから、本実施形態では、第1の液晶モジュール110と第2の液晶モジュール210とにおいて、同一の表示駆動回路を含むLSIチップが使用される。以下、図3および図4を参照して、これらの液晶モジュールの構成について説明する。
<2. 液晶モジュールの構成>
 図3は、本発明の一実施形態に係る第1の液晶モジュール110の構成を示す模式平面図であり、図4は、本発明の一実施形態に係る第2の液晶モジュール210の構成を示す模式平面図である。なお、これらの図中に示される各構成要素の配置位置や形状は、見やすくするために実際とは異なるように記載されている。
 まず、第1の液晶モジュール110は、図3に示すように、対向して配置された2枚のガラス基板120、125と、表示駆動用のLSIチップ140とを備えている。なお、さらにコンデンサ等の電子部品を備えていてもよい。また、第2の液晶モジュール210も同様に、図4に示すように、対向して配置された2枚のガラス基板220、225と、第1の液晶モジュール110に備えられるものと同一構成の表示駆動用のLSIチップ140とを備えている。
 第1の液晶モジュール110に備えられる2枚のガラス基板120、125に挟まれた空間には、シール材(図示しない)によって液晶(図示しない)が封止された表示部130が形成される。ガラス基板120の張出部120aには、液晶を駆動するために必要なドライバ機能を有するLSIチップ140や、外部に接続される第1のFPC基板150が実装されている。メイン基板100から第1のFPC基板150を介してLSIチップ140にパラレルインタフェースにより伝送される映像信号が与えられると、LSIチップ140は表示部130に対して表示信号を与えることにより映像を表示する。
 また第2の液晶モジュール210も同様に、ガラス基板220、225に挟まれた空間には、液晶が封止された表示部230が形成されており、ガラス基板220の張出部220aには、LSIチップ140および第2のFPC基板250が実装されている。メイン基板から第2のFPC基板250を介してLSIチップ140にシリアルインタフェースにより伝送される映像信号が与えられると、LSIチップ140は表示部230に対して表示信号を与えることにより映像を表示する。
 LSIチップ140は、ゲートドライバ、ソースドライバおよびDC/DCコンバータの回路パターン等が微細加工技術を用いてシリコン基板の表面に形成されるとともに、それらの回路パターンを外部に接続するための接続端子としてのバンプ電極が形成されたベアチップ(パッケージングを行う前のチップ)である。なおバンプ電極の高さは、例えば約15μmである。なおこのようにベアチップであるLSIチップ140を張出部120aにフェイスダウンボンディングする構成は一例であって、例えばLSIチップ140を表面実装型のパッケージにパッケージングしたLSIデバイスをガラス基板120上に実装してもよい。
 第1および第2のFPC基板150,250は、例えば厚み12~50μmの可撓性の絶縁性フィルムの片面に、厚み8~50μmの銅箔からなる複数本の配線層174が形成された基板であり、自由に折り曲げられる。なお、配線層174,274は、絶縁性フィルムの片面だけでなく、両面に形成されていてもよい。
 図3に示すように、第1の液晶モジュール110に備えられるLSIチップ140は、張出部120aに形成されたFPC用配線173の一端および表示部130に延びる表示用配線123と接続されている。また、第1のFPC基板150の配線層174も、FPC用配線173の他端に接続されている。このようにして、第1のFPC基板150の配線層174とLSIチップ140の入力端子とがFPC用配線173を介して接続されるので、メイン基板100から第1のFPC基板150の各配線層174に与えられる映像信号、クロック信号などの信号、基準電圧などはそれぞれLSIチップ140の対応する入力端子に与えられる。なおこのような接続には、通常、異方性導電膜(ACF:Anisotropic Conductive Film)が用いられ、熱圧着により接続される。なお、このような構成は第2の液晶モジュール210に備えられる各配線も同様であるため,説明を省略する。次に、上記LSIチップ140の各端子と各配線との接続関係について、図5を参照して説明する。
 図5は、LSIチップ140およびその周辺部分をガラス基板120の裏面側から見た平面図である。なお、表示用配線123およびFPC用配線173とそれに対応するバンプ電極である出力端子141aおよび入力端子141bとの数は、後述するように数十ないし数百であるが、図中では簡略に示されており、配線の幅や間隔なども実際とは異なり簡略に示されている。
 図5に示されるように、表示部130に繋がる表示用配線123は、出力端子141aに接続されており、LSIチップ140におけるこれらの出力端子141aは、全て表示部130側の(LSIチップ140の)長辺に沿って配置されている。また、この長辺に沿って、入力端子141bの一部が設けられており、この出力端子141aと並んで配置される一部の入力端子141bは、FPC用配線173の一部であるパラレルデータ配線173aに接続されている。さらに、第1のFPC基板150側(表示部130とは反対側)の(LSIチップ140の)長辺に沿って入力端子141bが設けられており、これらの入力端子141bは、FPC用配線173の一部である各種配線173bに接続されている。
 ここで、第1および第2のFPC基板150,250の配線は、例えば厚みが8μm以上の銅箔(Cu)によって形成されており、十分に低いシート抵抗にすることができる。これに対して、銅はエッチングによる加工が困難であるため、第1および第2の液晶モジュール110,210の製造プロセスでは使用されない。そこで、その製造プロセスでも使用されるタンタル(Ta)またはアルミニウム(Al)を用いてガラス基板上に各種配線が形成される。
 もっとも例えばタンタルまたはアルミニウムの厚みを0.2~0.4μmとした場合に、タンタルおよびアルミニウムのシート抵抗は、銅のシート抵抗に比べて数十倍から数百倍も高くなる。また、ガラス基板上の各配線は、FPC基板のように多層化することができないのが一般的である。そのため、ガラス基板上に形成される各配線の数および配線の幅には所定の限界がある。そこでこの限界に応じて、LSIチップ140における出力端子141aおよび入力端子141bの数やピッチが定められることになる。
 ここで具体的な一例を以下に示す。LSIチップ140の出力端子141aは、表示部130のデータ信号線数と同数の480個であり、出力端子間のピッチは20μmである。また、パラレルデータ配線173aに接続されている入力端子141bは24個であり、各種配線173bに接続されている入力端子141bの数は162個(その内訳は後述する)であり、入力端子間のピッチは70μmである。このように出力端子間のピッチが入力端子間のピッチよりも小さいのは、出力端子よりも入力端子のほうが配線インピーダンスを小さくする必要があるからである。
 もっとも、入力端子間のピッチは、入力されるべきシリアルインタフェース用またはパラレルインタフェース用の各信号が(配線のインピーダンスにより)異常な値を取らない程度の大きさになるよう定められる。したがって、回路の安定動作のためにさらに低いインピーダンスが要求される電源線や接地線のためのピッチとしては小さすぎる。そこで、ここでは20個の入力端子141bが1つにまとめられて、同一のシリアルインタフェース用またはパラレルインタフェース用の電源線や接地線に接続される。そうすれば、シリアルインタフェース用またはパラレルインタフェース用の電源線や接地線の配線幅を約20倍にすることができるので、その配線インピーダンスを十分に下げることができる。
 また、入力端子141bには、液晶駆動用の電源線および接地線も接続される。安定して液晶駆動を行うためには、これらの配線インピーダンスは特に小さい必要がある。そこで、ここでは30個の入力端子141bが1つにまとめられて、同一の液晶駆動用の電源線や接地線に接続される。そうすれば、配線幅を約30倍にすることができるので、その配線インピーダンスをさらに十分に下げることができる。
 さらに入力端子141bには、パラレルインタフェースとシリアルインタフェースとを切り替えるといったLSIチップ140の各種動作を制御するための設定信号配線も接続される。ここではこれらに接続される入力端子141bの数は13個である。なお、これらの全部または一部を省略し、所定のコマンドを伝送することによりパラレルインタフェースとシリアルインタフェースとを切り替える構成であってもよい。
 また、ここではシリアルインタフェースに使用されるクロック信号線は2本であり、シリアルインタフェースに使用されるデータ信号線は4本であり、上述したようにシリアルインタフェースに使用される電源線および接地線にはそれぞれ入力端子141bが20個ずつ接続されるので、シリアルインタフェースに使用される入力端子141bの総数は46個(=2+4+20+20)である。
 さらにまた、ここではパラレルインタフェースに使用されるクロック信号線は1本であり、パラレルインタフェースに使用されるデータ信号線は24本であり、パラレルインタフェースに使用される同期信号線は2本であり、上述したようにパラレルインタフェースに使用される電源線および接地線にはそれぞれ入力端子141bが20個ずつ接続されるので、パラレルインタフェースに使用される入力端子141bの総数は67個(=1+24+2+20+20)である。ここで、パラレルインタフェースに使用されるデータ信号線は、表示部130側の(LSIチップ140の)長辺に配置される24個の入力端子141bと接続されている。また、液晶駆動用の電源線および接地線と、設定信号配線とに接続される入力端子141bの総数は73個(=30+30+13)である。
 以上より、ここでは上記入力端子141bの総数は186個であるが、これらの入力端子141bは、LSIチップ140の第1のFPC基板150側の長辺だけでなく、表示部130側の長辺にも24個が分かれて配されている。したがって、LSIチップの入力端子が全てFPC基板側に配置される従来の構成よりも、1680μm(=24×70)だけ長辺の長さを小さくすることができる。
 なお、LSIチップ140のベアチップとしての実際の外形サイズは、例えばその長辺の長さが12000μm、短辺の長さが1000μmである。ここで、短辺にも入力端子141bを配置すればさらに長辺の長さを小さくすることができるが、通常この短辺の長さが大きくなると、1つのウェハから製造できる回路数が少なくなり製造コストが上昇する。そのため、短辺の長さは回路規模のみを考慮して決定され、短辺に沿って入力端子を配置する場合、配置できる端子数が制約される場合がある。
 次に、表示部130側の(LSIチップ140の)長辺に沿って配置される24個の入力端子141bに対して、パラレルインタフェースに使用されるデータ信号線を接続する理由について、図6を参照して説明する。
 図6は、シリアルインタフェースに使用される信号およびパラレルインタフェースに使用される信号の波形を簡略に示す図である。この図6には、シリアルクロック信号SCK+,SCK-と、シリアルデータ信号SDAT+,SDAT-と、パラレルクロック信号PCKと、パラレルデータ信号PDAT1~3とが示されている。
 ここでシリアルクロック信号とは、所定のシリアルインタフェース仕様におけるクロック信号を意味し、シリアルデータ信号とは、当該仕様におけるデータ信号を意味する。また、パラレルクロック信号とは、所定のパラレルインタフェース仕様におけるクロック信号を意味し、パラレルデータ信号とは、当該仕様におけるデータ信号を意味する。
 なお、上述のシリアルデータ信号は4種類あり、また上述のパラレルデータ信号は24種類ある場合について述べているが、この図6では説明を簡単にするため、2つのシリアルデータ信号SDAT+,SDAT-と、3つのパラレルデータ信号PDAT1~3とが使用される例で説明する。また、各データは、対応するクロックの両方のエッジ(立ち上がり時点および立ち下がり時点)でサンプリングされる構成となっているが、片方のエッジでのみサンプリングされる構成であってもよい。
 図6に示されるように、シリアルクロック信号SCK+,SCK-およびシリアルデータ信号SDAT+,SDAT-は、差動信号の関係にあるプラス信号とマイナス信号との2種類が存在し、これらの信号のDC電圧レベルは、ここではロジック電源電圧の1.8Vの半分である0.9Vである。またその振幅は±100mVとなっている。
 このようにシリアルインタフェースに使用されるデータ信号およびクロック信号は、その振幅が小さい反面、その周波数が高く設定される。このことにより、EMIの発生を抑制することができ、かつ高速なデータ伝送が可能となっている。しかしそのために、消費電力は大きくなる。
 これに対して、図6に示されるように、パラレルクロック信号PCKと、パラレルデータ信号PDAT1~3の振幅は、ロジック電源電圧の1.8Vであり、その振幅が大きく、周波数も低く設定される。このことにより、少ない消費電力でデータ伝送が可能となっている。また単位時間内に必要なデータ伝送量を確保するため、シリアルインタフェースに使用される信号数(ここでは4)よりも多い信号数(ここでは24)が必要となる。
 このように、シリアルインタフェースに使用されるデータ信号およびクロック信号は、高周波かつ小振幅である。具体的には、周波数が高いことから信号のセットアップ時間やホールド時間が短くなって耐ノイズ性が低くなり、また振幅が小さいことから信号レベルを認識可能な電圧範囲が小さくなってやはり耐ノイズ性が低くなる。そのため、抵抗値が極めて小さいFPC基板が使用される場合、これらの信号は比較的長い距離を伝送可能であるが、前述したように抵抗値が比較的大きいガラス基板上の配線により上記信号が伝送される場合、十分な耐ノイズ性を確保するためにはこれらの配線はできるだけ短いことが好ましい。
 また前述したように、電源線や接地線は、回路の安定動作のためにできるだけ低いインピーダンスとなることが要求される。よって、抵抗値が比較的大きいガラス基板上の配線により電源線や接地線を接続する場合、これらの配線はできるだけ短いことが好ましい。
 これに対して、パラレルインタフェースに使用されるデータ信号およびクロック信号は、低周波かつ大振幅である。具体的には、周波数が低いことから信号のセットアップ時間やホールド時間が長くなって耐ノイズ性が高くなり、また振幅が大きいことから信号レベルを認識可能な電圧範囲が大きくなってやはり耐ノイズ性が高くなる。そのため、FPC基板が使用される場合はもちろん、抵抗値が比較的大きいガラス基板上の配線が使用される場合でも、これらの信号は誤動作を生じない限度で比較的長い距離を伝送することができる。
 このようにシリアルインタフェースにおいて安定動作に必要とされる配線インピーダンスの上限値は、パラレルインタフェースにおいて安定動作に必要とされる配線インピーダンスの上限値よりも小さい。
 本実施形態ではこの点に着目し、パラレルインタフェースに使用される24本のデータ信号線をそれぞれ、FPC基板150から遠い側である表示部130側の(LSIチップ140の)長辺に沿って配置される24個の入力端子141bに対して接続する。そうすれば、ノイズ等による誤動作を生じることなく、LSIチップの入力端子が全てFPC基板側に配置される従来の構成よりも、(1680μmだけ)長辺の長さを小さくすることができる。なお、上記24個の入力端子141bに対して、パラレルインタフェースに使用されるクロック信号線の一部または全てが接続される構成であってもよい。また、パラレルインタフェースに使用される同期信号線(その他、電源線や接地線を除く信号線)の一部または全てが接続される構成であってもよい。
 ここで、図5に示されるように、上記24個の入力端子141bと、(FPC基板150に含まれる配線層174のうちの)24本のデータ信号線とは、パラレルデータ配線173aにより接続される。このパラレルデータ配線173aは、LSIチップ140における(図の右側の)短辺の直下を通るよう配置されている。もちろん、LSIチップ140の直下を通らないようにパラレルデータ配線173aを外側へ引き回してもよいが、その場合にはパラレルデータ配線173aがより長くなる。その場合、パラレルデータ配線173aのインピーダンスが大きくなるため、場合によっては誤動作が生じる可能性もある。したがって、表示部130側の長辺に沿って配置される24個の入力端子141bに接続される配線(ここではパラレルデータ配線173a)は、LSIチップ140の直下を通り、端子が存在しないLSIチップ140の短辺直下を通って引き出されるように配置されることが好ましい。但し、チップ短辺直下を通って引き出される端子数は、チップ短辺サイズにより、制約される場合もある。その場合は、一部の端子はチップ短辺直下を通り、残りの端子は外側へ引き回してもよい。
 また、この構成では、上記24個の入力端子141bは、当該LSIチップ140の短辺近傍に配置されることがさらに好ましい。そうすればパラレルデータ配線173aを短くすることができるので、インピーダンスを小さくして誤動作が生じる可能性を下げることができる。なお、LSIチップ140の直下を通らないようにパラレルデータ配線173aを外側へ引き回す構成であっても、上記24個の入力端子141bをLSIチップ140の短辺近傍に配置すれば、パラレルデータ配線173aを短くすることができるので好適である。
 さらに、上記24個の入力端子141bに接続されるパラレルデータ配線173aは、その他のFPC用配線173である各種配線173bよりも、その幅が大きく形成されていることが好ましい。またそのためには上記24個の入力端子141bのピッチを(70μmよりも)大きくすることが好ましい。このように構成すれば、パラレルデータ配線173aのインピーダンスを小さくすることができるので、誤動作が生じる可能性をより小さくすることができる。
<3. 効果>
 以上のように、LSIチップ140の入力端子のうちパラレルインタフェース用の入力端子の一部(ここではパラレルデータ信号を受け取る24の入力端子)と出力端子とが表示部130側の長辺に沿って配置され、残りのパラレルインタフェース用の入力端子がFPC基板150側の長辺に沿って配置される。この構成により、表示用駆動回路であるLSIチップ140の長辺の長さを(全入力端子が一列に配置されるときの長さよりも)小さくすることができ、その製造コストを下げることができる。
<4. 変形例>
 上記実施形態では、パラレルインタフェース用の入力端子の一部(ここではパラレルデータ信号を受け取る24の入力端子)が表示部130側の長辺に沿って配置されるが、これらの一部(またはその他のパラレルインタフェース用信号、例えばパラレルクロック信号PCKを受け取る入力端子)がLSIチップ140の短辺に沿って配置されてもよい。このような構成であっても表示用駆動回路であるLSIチップ140の長辺の長さを(全入力端子が一列に配置される長さよりも)小さくすることができるので、その製造コストを下げることができる。
 上記実施形態では、1つの携帯情報端末(液晶表示装置)に内蔵される2つの液晶モジュールに対して同一のLSIチップ140が搭載される構成であるが、内蔵される液晶モジュールやLSIチップ140の数は、本発明の適用にあたって特に問題とはならず、LSIチップ140にシリアルインタフェース用入力端子と、パラレルインタフェース用入力端子とが備えられる構成であればよい。例えば、シリアルインタフェースのみが使用される液晶表示装置と、パラレルインタフェースのみが使用される液晶表示装置とがある場合、これらの装置に同一構成のLSIチップ140が使用される場合には、上記実施形態の場合と同様にその製造コストを下げることができる。
 上記実施形態では、各液晶モジュールにおけるガラス基板上に同一のLSIチップ140がそれぞれ搭載される構成であるが、これに代えて、その表示用駆動回路がガラス基板上の、表示部に隣接した領域に連続粒界結晶シリコン(CGシリコン:Continuous Grain Silicon)、アモルファスシリコン、多結晶シリコンなどの薄膜を用いて形成されるモノリシック型が採用されてもよい。この構成ではプロセスルールによりサイズが大きくなることが多いが、使用可能なサイズに形成できる場合には、各配線が形成される前の第1および第2の液晶モジュール110,210の構成を同一とすることができるので、同様に製造コストを下げることができる。また、上記実施形態では、タンタル(Ta)またはアルミニウム(Al)を用いてガラス基板上に各種配線が形成されるが、その他の周知の配線材料を使用することができる。さらに、上記実施形態では、ガラス基板上に各種配線が形成されるが、透明基板であるガラス基板に代えて周知の素材からなる透明プラスティック基板が使用されてもよい。この場合にも各種配線材料を使用可能であるが、典型的には透明であるITO(酸化インジウムスズ)が使用される。
 上記実施形態では液晶モジュールである基板モジュールについて説明したが、液晶表示装置に使用される液晶モジュールに限定されず、有機または無機のEL(Electro Luminescence)ディスプレイ、プラズマディスプレイパネル(Plasma Display Panel;PDP)、真空蛍光ディスプレイ(Vacuum Fluorescent Display)、電子ペーパなどの各種表示装置に使用される基板モジュールにも同様に適用することができ、また表示装置以外に使用される各種基板モジュールにも同様に適用することができる。
 以上において本発明を詳細に説明したが、以上の説明は全ての面で例示的なものであって制限的なものではない。多数の他の変更や変形が本発明の範囲を逸脱することなく案出可能である。
 本発明は、表示用駆動回路およびそれを備える例えば液晶モジュールのような基板モジュールに適用されるものであって、より詳しくは、例えば携帯情報端末などに使用される2種類以上の入力インタフェース用端子を有する表示用駆動回路およびそれを備える基板モジュールに適している。
 100…メイン基板
 101…第1の筐体
 110…第1の液晶モジュール
 120,125、220,225…ガラス基板
 120a,220a…張出部
 123,223…表示用配線
 130,230…表示部
 140…LSIチップ
 141a…出力端子
 141b…入力端子
 150,250…FPC基板
 173,273…FPC用配線
 173a…パラレルデータ配線
 174,274…FPC基板の配線層
 201…第2の筐体
 210…第2の液晶モジュール

Claims (10)

  1.  長辺と短辺とを有する矩形の形状を有しており、画像を表示する表示部を含む透明基板上に設けられるべき表示用駆動回路であって、
     第1のインタフェース仕様に基づく第1の信号を受け取るための第1の入力端子群と、
     前記第1のインタフェース仕様よりも振幅値が小さいかまたは周波数が高い信号を使用する第2のインタフェース仕様に基づく第2の信号を受け取るための第2の入力端子群と、
     前記第1および第2の信号の少なくとも一方に基づき生成される、前記画像を表示するための表示信号を前記表示部へ与えるための出力端子群と
    を備え、
     前記出力端子群と、前記第1の入力端子群の少なくとも一部とは、前記長辺の一方に沿って配列され、
     前記第2の入力端子群は、前記長辺の他方に沿って配列されることを特徴とする、表示用駆動回路。
  2.  前記第1の信号は、パラレルインタフェース仕様に基づくパラレルデータ信号およびパラレルクロック信号を含み、
     前記第2の信号は、シリアルインタフェース仕様に基づくシリアルデータ信号およびシリアルクロック信号を含むことを特徴とする、請求項1に記載の表示用駆動回路。
  3.  前記長辺の一方に沿って配列される前記第1の入力端子群は、前記パラレルデータ信号および前記パラレルクロック信号のうちの少なくとも一部を受け取るためのパラレル入力端子を含むことを特徴とする、請求項2に記載の表示用駆動回路。
  4.  前記パラレル入力端子は、前記短辺の近傍に配置されることを特徴とする、請求項3に記載の表示用駆動回路。
  5.  前記第1の入力端子群のうち、前記パラレルデータ信号および前記パラレルクロック信号のうちの少なくとも一部を受け取るためのパラレル入力端子は、前記短辺に沿って配置されることを特徴とする、請求項2に記載の表示用駆動回路。
  6.  前記長辺の他方に沿って配列される前記第2の入力端子群は、前記シリアルデータ信号および前記シリアル信号を受け取るための入力端子を含むことを特徴とする、請求項2に記載の表示用駆動回路。
  7.  請求項1に記載の表示用駆動回路および表示部と、
     透明基板と、
     前記透明基板上に形成されており、前記出力端子群から前記表示部へ前記表示信号を伝送するための表示用配線と、
     前記透明基板上に形成されており、外部から与えられる前記第1および第2の信号の少なくとも一方を、前記第1および第2の入力端子群の少なくとも一方へ伝送するための入力用配線と
    を備え、
     前記表示用駆動回路は、前記出力端子群が配置される長辺の一方が前記表示部に近接するよう配置されることを特徴とする、基板モジュール。
  8.  前記第1の信号は、パラレルインタフェース仕様に基づくパラレルデータ信号およびパラレルクロック信号を含み、
     前記第2の信号は、シリアルインタフェース仕様に基づくシリアルデータ信号およびシリアルクロック信号を含み、
     前記長辺の一方に沿って配列される前記第1の入力端子群は、前記パラレルデータ信号および前記パラレルクロック信号のうちの少なくとも一部を受け取るためのパラレル入力端子を含むことを特徴とする、請求項7に記載の基板モジュール。
  9.  前記表示用駆動回路は、前記透明基板上に回路チップとして取り付けられており、
     前記パラレル入力端子は、前記短辺の近傍に配置され、
     前記パラレル入力端子に接続される入力用配線は、前記回路チップの下側から前記短辺を通るよう配置されることを特徴とする、請求項8に記載の基板モジュール。
  10.  前記パラレル入力端子に接続される入力用配線は、前記長辺の他方に沿って配列される前記第2の入力端子群に接続される入力配線よりも幅が大きいことを特徴とする、請求項8に記載の基板モジュール。
PCT/JP2010/057998 2009-06-10 2010-05-12 表示用駆動回路およびそれを備える基板モジュール WO2010143489A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2011154110/08A RU2486577C1 (ru) 2009-06-10 2010-05-12 Схема управления дисплеем и одноплатный модуль, включающий в себя такую схему
EP10786020A EP2442293A4 (en) 2009-06-10 2010-05-12 DISPLAY CONTROL CIRCUIT AND SUBSTRATE MODULE THEREOF
US13/264,081 US9183805B2 (en) 2009-06-10 2010-05-12 Display driver circuit and board module including same
CN201080025609.4A CN102460541B (zh) 2009-06-10 2010-05-12 显示用驱动电路和具备它的基板模块
BRPI1012944A BRPI1012944A2 (pt) 2009-06-10 2010-05-12 "circuito de unidade de exibição e módulo de placa incluindo o mesmo"
JP2011518367A JP5307240B2 (ja) 2009-06-10 2010-05-12 表示用駆動回路およびそれを備える基板モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009138923 2009-06-10
JP2009-138923 2009-06-10

Publications (1)

Publication Number Publication Date
WO2010143489A1 true WO2010143489A1 (ja) 2010-12-16

Family

ID=43308749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057998 WO2010143489A1 (ja) 2009-06-10 2010-05-12 表示用駆動回路およびそれを備える基板モジュール

Country Status (7)

Country Link
US (1) US9183805B2 (ja)
EP (1) EP2442293A4 (ja)
JP (1) JP5307240B2 (ja)
CN (1) CN102460541B (ja)
BR (1) BRPI1012944A2 (ja)
RU (1) RU2486577C1 (ja)
WO (1) WO2010143489A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186076A (ja) * 2010-03-05 2011-09-22 Oki Semiconductor Co Ltd 表示パネル

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130328846A1 (en) * 2012-06-08 2013-12-12 Apple Inc. Characterization of transistors on a display system substrate using a replica transistor
US9524683B2 (en) * 2012-07-20 2016-12-20 Sharp Kabushiki Kaisha Display device with signal lines routed to decrease size of non-display area
KR20140079062A (ko) 2012-12-18 2014-06-26 삼성전자주식회사 반도체 패키지 및 이를 이용한 표시 장치
WO2014132799A1 (ja) * 2013-02-26 2014-09-04 シャープ株式会社 表示装置
CN103676230B (zh) * 2013-11-01 2017-01-11 六安市晶润光电科技有限公司 稳定电连接式液晶显示模块
EP3185568A1 (en) * 2015-12-23 2017-06-28 Samsung Electronics Co., Ltd. Display apparatus and control method for connecting external sources
US10388213B2 (en) * 2017-05-22 2019-08-20 Microsoft Technology Licensing, Llc Display and display integration method
CN109976050B (zh) * 2019-04-15 2024-01-26 武汉华星光电技术有限公司 显示面板及适用于该显示面板的芯片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0179137U (ja) * 1987-11-13 1989-05-26
JP2005242017A (ja) * 2004-02-26 2005-09-08 Optrex Corp 液晶表示パネル及び液晶表示装置
JP2006330551A (ja) * 2005-05-30 2006-12-07 Renesas Technology Corp 液晶駆動制御装置、携帯端末システム及びデータ処理システム
JP2010122483A (ja) * 2008-11-20 2010-06-03 Epson Imaging Devices Corp 電気光学パネル、電気光学装置、および電子機器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2051655C (en) * 1990-02-05 1997-04-22 Toyofumi Takahashi Animation display unit and external memory used therefor
US5249218A (en) * 1992-04-06 1993-09-28 Spectrum Information Technologies, Inc. Programmable universal interface system
JP4204685B2 (ja) * 1999-01-19 2009-01-07 株式会社ルネサステクノロジ 同期型半導体記憶装置
JP3892650B2 (ja) * 2000-07-25 2007-03-14 株式会社日立製作所 液晶表示装置
JP2003107513A (ja) * 2001-09-27 2003-04-09 Citizen Watch Co Ltd 液晶表示装置
KR100831235B1 (ko) * 2002-06-07 2008-05-22 삼성전자주식회사 박막 트랜지스터 기판
US20070038782A1 (en) * 2005-07-26 2007-02-15 Ambric, Inc. System of virtual data channels across clock boundaries in an integrated circuit
JP2006106077A (ja) * 2004-09-30 2006-04-20 Seiko Epson Corp 電気光学装置及び電子機器
US7184360B2 (en) * 2005-06-15 2007-02-27 Infineon Technologies, Ag High-speed interface circuit for semiconductor memory chips and memory system including semiconductor memory chips
KR100987479B1 (ko) * 2005-12-19 2010-10-13 삼성전자주식회사 반도체 칩 및 이를 이용한 반도체 칩 패키지
JP4370321B2 (ja) * 2006-12-05 2009-11-25 株式会社沖データ 駆動装置、ledアレイ、ledヘッド、及びこれらを備えた画像形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0179137U (ja) * 1987-11-13 1989-05-26
JP2005242017A (ja) * 2004-02-26 2005-09-08 Optrex Corp 液晶表示パネル及び液晶表示装置
JP2006330551A (ja) * 2005-05-30 2006-12-07 Renesas Technology Corp 液晶駆動制御装置、携帯端末システム及びデータ処理システム
JP2010122483A (ja) * 2008-11-20 2010-06-03 Epson Imaging Devices Corp 電気光学パネル、電気光学装置、および電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2442293A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186076A (ja) * 2010-03-05 2011-09-22 Oki Semiconductor Co Ltd 表示パネル
US9185817B2 (en) 2010-03-05 2015-11-10 Lapis Semiconductor Co., Ltd. Display panel
US10109256B2 (en) 2010-03-05 2018-10-23 Lapis Semiconductor Co., Ltd. Display panel

Also Published As

Publication number Publication date
US20120026138A1 (en) 2012-02-02
EP2442293A4 (en) 2012-10-17
CN102460541B (zh) 2014-08-20
US9183805B2 (en) 2015-11-10
RU2486577C1 (ru) 2013-06-27
BRPI1012944A2 (pt) 2018-01-16
JPWO2010143489A1 (ja) 2012-11-22
CN102460541A (zh) 2012-05-16
EP2442293A1 (en) 2012-04-18
JP5307240B2 (ja) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5307240B2 (ja) 表示用駆動回路およびそれを備える基板モジュール
KR100453306B1 (ko) 표시 소자 구동 장치 및 이를 이용한 표시 장치
US7683471B2 (en) Display driver integrated circuit device, film, and module
US20110169792A1 (en) Display panel
JP2008015507A (ja) 表示基板及びそれを具備した表示装置
JP4997593B2 (ja) 表示装置
WO2017045358A1 (zh) 柔性基板和显示装置
JP2004062201A (ja) ゲートpcb及びfpcがない液晶表示装置
US20110169791A1 (en) Display device
KR20120052764A (ko) 칩 온 필름 및 이를 포함하는 액정표시장치
US20070081117A1 (en) Display device and a circuit thereon
WO2012006804A1 (zh) 液晶显示器及其线路架构
US11877483B2 (en) Display device with circuit film coupled to lateral surface of base substrate
JP2002311451A (ja) 電極駆動装置及び電子機器
KR101931338B1 (ko) 연성회로기판과 이를 이용한 표시장치
CN212782503U (zh) 显示装置和电子设备
CN114677987A (zh) 一种显示面板及显示装置
WO2021253397A1 (zh) 显示模组和显示装置
CN101359106A (zh) 显示面板及其应用
CN113870691A (zh) 显示装置和电子设备
WO2020220466A1 (zh) 印刷电路板及显示装置
JP6334851B2 (ja) 半導体装置、表示デバイスモジュール、及び、表示デバイスモジュールの製造方法
WO2024040405A1 (zh) 一种阵列基板、显示面板及显示装置
WO2023103052A1 (zh) 阵列基板与显示装置
JPH11126792A (ja) フェースダウン用多出力ドライバの電極位置,フェースダウン用icの電極位置,配線基板およびディスプレイモジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025609.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011518367

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13264081

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010786020

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 243/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011154110

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1012944

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1012944

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111209