WO2010140455A1 - 太陽電池モジュールの製造方法 - Google Patents
太陽電池モジュールの製造方法 Download PDFInfo
- Publication number
- WO2010140455A1 WO2010140455A1 PCT/JP2010/058177 JP2010058177W WO2010140455A1 WO 2010140455 A1 WO2010140455 A1 WO 2010140455A1 JP 2010058177 W JP2010058177 W JP 2010058177W WO 2010140455 A1 WO2010140455 A1 WO 2010140455A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chamber
- tab wire
- surface electrode
- solar cell
- film
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 33
- 229920005989 resin Polymers 0.000 claims abstract description 105
- 239000011347 resin Substances 0.000 claims abstract description 105
- 238000007789 sealing Methods 0.000 claims abstract description 96
- 230000006837 decompression Effects 0.000 claims abstract description 46
- 239000000853 adhesive Substances 0.000 claims abstract description 44
- 230000001070 adhesive effect Effects 0.000 claims abstract description 44
- 238000010438 heat treatment Methods 0.000 claims abstract description 36
- 239000010408 film Substances 0.000 claims description 53
- 239000002313 adhesive film Substances 0.000 claims description 47
- 239000011521 glass Substances 0.000 claims description 43
- 239000010410 layer Substances 0.000 claims description 41
- 239000002245 particle Substances 0.000 claims description 39
- 229920001187 thermosetting polymer Polymers 0.000 claims description 33
- 239000000758 substrate Substances 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000012790 adhesive layer Substances 0.000 claims description 17
- 238000003825 pressing Methods 0.000 claims description 13
- 239000010409 thin film Substances 0.000 claims description 12
- 239000012298 atmosphere Substances 0.000 claims description 11
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 4
- 239000005977 Ethylene Substances 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 4
- 238000010030 laminating Methods 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims 1
- 239000000463 material Substances 0.000 description 13
- 239000005038 ethylene vinyl acetate Substances 0.000 description 11
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 7
- 229920000647 polyepoxide Polymers 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- -1 Polyethylene terephthalate Polymers 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 229920006287 phenoxy resin Polymers 0.000 description 3
- 239000013034 phenoxy resin Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910017944 Ag—Cu Inorganic materials 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1876—Particular processes or apparatus for batch treatment of the devices
- H01L31/188—Apparatus specially adapted for automatic interconnection of solar cells in a module
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10009—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
- B32B17/10018—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10788—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10807—Making laminated safety glass or glazing; Apparatus therefor
- B32B17/10816—Making laminated safety glass or glazing; Apparatus therefor by pressing
- B32B17/10871—Making laminated safety glass or glazing; Apparatus therefor by pressing in combination with particular heat treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/02002—Arrangements for conducting electric current to or from the device in operations
- H01L31/02005—Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
- H01L31/02008—Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/05—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
- H01L31/0504—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
- H01L31/0512—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- This invention relates to the manufacturing method of the solar cell module by which the photovoltaic cell which has the surface electrode to which the tab wire was connected is resin-sealed.
- a solder-coated ribbon-like copper foil serving as a tab line is used to form a pattern connecting one surface of the adjacent solar cell and the other back surface to a plurality of solar cells.
- a solar cell unit is created by applying, and then a transparent ethylene-vinyl acetate copolymer (EVA) sheet as a sealing resin is arranged on both sides of the solar cell unit.
- EVA transparent ethylene-vinyl acetate copolymer
- a transparent protective plate such as a transparent glass plate is provided on the front surface side, and a light-resistant resin sheet is provided on the back surface, and the entire laminate obtained is manufactured by thermocompression treatment (Patent Document 1, paragraphs 0003- 0010).
- Patent Document 2 It has also been proposed to use a decompression laminator equipped with a decompression device and a heat plate during thermocompression bonding (Patent Document 2). By using a decompression laminator, it is said that voids can be prevented from occurring at the thermocompression bonding site.
- the temperature is relatively high at 240 ° C. or higher, and on the other hand, when sealing with an EVA sheet (resin sealing)
- the temperature of the process is relatively low at about 150 ° C., and the temperatures of both processes are different. Therefore, these processes have to be separated from each other in terms of time, resulting in a problem that the manufacturing tact becomes long, the number of times of handling increases, and the manufacturing cost increases as a result.
- internal stress accumulates in the solar battery cell due to the high temperature in the tab wire connection process, defects such as cracks may occur in the solar battery cell in the sealing resin process.
- a conductive adhesive paste (AP), a conductive adhesive film (AF), an anisotropic conductive paste (ACP), an anisotropic conductive adhesive is formed on a solar battery cell 92 having a surface electrode 91.
- Laminating film (ACF) adhesive 93 such as insulating adhesive paste (NCP) or insulating adhesive film (NCF), tab wire 94, EVA sheet 95, moisture-proof sheet 96 as required, and crushing when laminated under reduced pressure Since the obtained EVA covers the side surface of the layered adhesive 93, the resin component of the adhesive 93 is not excluded from the connection portion, and there is a concern that reliable bonding cannot be realized.
- the adhesive 93 is a conductive adhesive film
- the contained conductive particles are not sufficiently crushed, and there is a possibility that reliable conductive bonding cannot be realized. Therefore, even if a conductive adhesive film is used as an adhesive, the tab wire connecting step and the resin sealing step must still be performed as separate steps in terms of time.
- the present invention is intended to solve the above-described conventional problems.
- the surface electrode is used as the surface electrode.
- the purpose of the present invention is to perform a tab wire connecting process for connecting tab wires and a resin sealing process for sealing solar cells with a sealing resin at a temperature of a relatively low temperature resin sealing process. .
- the resin constituting the adhesive film is made conductive without being excluded to the outside of the connection region. Protruding the conductive particles from the conductive adhesive film base so that the conductive particles can be crushed.
- the tab wire itself is in direct contact with the solar cell having the surface electrode.
- a thermosetting adhesive layer is formed on one side of the metal substrate as the tab wire. And it is to use what the convex part of the metal base material protrudes from the thermosetting adhesive bond layer.
- the present invention provides, as a first aspect, a method for producing a solar cell module in which a solar cell having a surface electrode to which a tab wire is connected with an adhesive is sealed with a resin using a reduced pressure laminator.
- a heating stage that has a first chamber and a second chamber partitioned by a flexible sheet as a decompression laminator, each chamber can be independently adjusted for internal pressure, and can be heated in the second chamber.
- a moisture-proof back sheet or glass plate is sequentially laminated on the resin layer for sealing and the resin layer for sealing, The solar cell is heated on the heating stage while pressing the moisture-proof backsheet or glass plate with the flexible sheet by increasing the internal pressure of the first chamber relative to the second chamber of the decompression laminator, thereby Provided is a manufacturing method characterized in that a surface electrode of a solar battery cell and a tab
- the present invention is a method for producing a solar cell module as a second aspect, wherein a solar cell having a surface electrode to which a tab wire is connected with a conductive adhesive film is sealed with a resin using a reduced pressure laminator. And As the conductive adhesive film, the thermosetting resin film base holds conductive particles having a particle size larger than the base thickness, and the conductive particles protrude from at least one side of the thermosetting resin film base.
- each chamber can be independently adjusted for internal pressure, and can be heated in the second chamber
- Solar cell with surface electrode formed on heating stage in second chamber of vacuum laminator, conductive adhesive film on surface electrode, tab wire on conductive adhesive film, sealing resin layer on tab wire, sealing Laminate a moisture-proof backsheet or glass plate on the resin layer in sequence, but when laminating the conductive adhesive film on the surface electrode, laminate so that the conductive particle protruding surface of the conductive adhesive film is on the tab wire or the surface electrode side.
- the solar cell is heated on the heating stage while pressing the moisture-proof backsheet or glass plate with the flexible sheet by increasing the internal pressure of the first chamber relative to the second chamber of the decompression laminator, thereby Provided is a manufacturing method characterized in that a surface electrode of a solar battery cell and a tab wire are conductively connected, and the solar battery cell is resin-sealed with a sealing resin layer, thereby obtaining a solar battery module.
- the present invention is a method for producing a solar cell module, wherein a solar cell having a surface electrode connected with a tab wire is resin-sealed using a reduced pressure laminator, Use a tab wire that has a thermosetting adhesive layer formed on one side of the metal substrate and protrudes from the thermosetting adhesive layer so that the convex portion of the metal substrate can be connected to the surface electrode.
- a convex portion is formed in the region of the surface electrode connected to the tab wire, using a thermosetting adhesive layer formed on one side of the metal substrate,
- a heating stage that has a first chamber and a second chamber partitioned by a flexible sheet as a decompression laminator, each chamber can be independently adjusted for internal pressure, and can be heated in the second chamber
- a solar cell having a surface electrode formed on the heating stage of the second chamber of the decompression laminator, a tab wire on the surface electrode, a sealing resin layer on the tab wire, a moisture-proof backsheet on the sealing resin layer, or Laminate the glass plates in sequence, but when the tab wire with the convex portion of the metal substrate protruding from the thermosetting adhesive layer is laminated on the surface electrode, the convex surface of the metal substrate of the tab wire is on the surface electrode side.
- Laminate so that The solar cell is heated on the heating stage while pressing the moisture-proof backsheet or glass plate with the flexible sheet by increasing the internal pressure of the first chamber relative to the second chamber of the decompression laminator, thereby Provided is a manufacturing method characterized by connecting a surface electrode of a solar battery cell and a convex portion of a tab wire, and sealing the solar battery cell with a sealing resin sheet, thereby obtaining a solar battery module.
- the connection is made when the tab wire and the surface electrode of the solar cell are connected by an adhesive (CP, CF, ACP, ACF, NCP, NCF, etc.).
- an adhesive CP, CF, ACP, ACF, NCP, NCF, etc.
- the tab wire and the sealing resin are connected so that the pressing force of the sealing resin can be transmitted to the connecting region while separating the connecting region from the sealing resin. A pressure film is placed between them.
- the conductive connection can be made without removing the binder resin constituting the conductive adhesive film outside the connection region.
- the conductive particles are projected from the conductive adhesive film base so that the conductive particles for carrying out the process can be crushed.
- thermosetting adhesive when using the thermosetting adhesive and connecting the tab wire itself to the solar cell having the surface electrode in direct contact, the thermosetting adhesive is excluded outside the connection region.
- a thermosetting adhesive layer is formed on one side of the metal substrate as the tab wire, and the thermosetting adhesive layer Use one with protruding protrusions. Therefore, in any embodiment, the tab wire and the surface electrode of the solar battery cell can be thermocompression-bonded with high connection reliability by using a reduced pressure laminator, and at the same time, the resin sealing of the solar battery cell can be performed. In addition, it replaces with forming a convex part in a tab line, and the same effect is acquired even if it provides a convex part in the surface electrode side.
- FIG. 2 is a photomicrograph of conductive particles observed from the glass surface of a laminate prepared in Comparative Example 1.
- 4 is a photomicrograph of conductive particles observed from the glass surface of the laminate created in Example 3.
- FIG. 4 is a photomicrograph of conductive particles observed from the glass surface of a laminate prepared in Comparative Example 2. It is a schematic sectional drawing of a solar cell unit. It is a schematic top view of a thin film solar cell unit. It is a schematic sectional drawing of the conventional photovoltaic cell.
- the first aspect of the present invention is a method for manufacturing a solar cell module in which a solar cell having a surface electrode to which a tab wire is connected with an adhesive is sealed with a resin using a reduced pressure laminator.
- the decompression laminator used in the present invention has a first chamber and a second chamber partitioned by a flexible sheet, and each chamber can independently adjust the internal pressure, and is heated in the second chamber. It has a heating stage capable of. An example of this decompression laminator will be described in more detail with reference to FIG.
- FIG. 1 shows a decompression laminator 10 before use, which is composed of an upper unit 11 and a lower unit 12. These units are detachably integrated through a seal member 13 such as an O-ring.
- the upper unit 11 is provided with a flexible sheet 14 such as silicon rubber, and the flexible sheet 14 divides the decompression laminator 10 into a first chamber 15 and a second chamber 16.
- a thin glass cloth reinforced Teflon (registered trademark) sheet can be disposed on the surface of the flexible sheet 14 on the second chamber 16 side so that molten sealing resin such as EVA is not transferred.
- each of the upper unit 11 and the lower unit 12 has a pipe 17, so that each chamber can independently adjust the internal pressure, that is, can be depressurized, pressurized and further released to the atmosphere by a vacuum pump or a compressor. 18 is provided.
- the piping 17 is branched into two directions 17a and 17b by a switching valve 19, and the piping 18 is branched into two directions 18a and 18b by a switching valve 20.
- the lower unit 12 is provided with a stage 21 that can be heated.
- Such a decompression laminator 10 is used as shown in FIGS. 2A to 2E, for example.
- the upper unit 11 and the lower unit 12 are separated, and a laminate 22 to be thermocompression-bonded is placed on the stage 21.
- the upper unit 11 and the lower unit 12 are integrated so as to be separable via the seal member 13, and then a vacuum pump (not shown) is connected to each of the pipe 17a and the pipe 18a. Then, the first chamber 15 and the second chamber 16 are evacuated.
- the switching valve 19 is switched to introduce air into the first chamber 15 from the pipe 17b.
- the flexible sheet 14 is spread toward the second chamber 16, and as a result, the laminate 22 is pressed by the flexible sheet 14 while being heated by the stage 21.
- the switching valve 20 is switched to introduce air into the second chamber 16 from the pipe 18b. Thereby, the flexible sheet 14 is pushed back toward the first chamber 15, and finally the internal pressures of the first chamber 15 and the second chamber 16 become the same.
- the laminate 22 is a laminate in which a conductive adhesive film is sandwiched between the surface electrode of the solar battery cell and the tab wire and the sealing resin layer is disposed on the entire surface of the solar battery cell, FIG. 2A to FIG.
- conductive connection between the surface electrode and the tab wire and resin sealing of the conductive connection portion can be performed at once.
- the decompression laminator used in the present invention has been described above, not only is it composed of the upper unit 11 and the lower unit 12 as shown in FIG. 1, but the interior of one housing is divided into two chambers to open and close the door. It is also possible to use a decompression laminator configured to input and recover the laminate.
- the first chamber and the second chamber may introduce compressed air into the first chamber and pressurize at or above atmospheric pressure. Further, the indoor air may be simply exhausted without reducing the pressure in the second chamber.
- a surface electrode 31 is formed on the heating stage 21 of the second chamber 16 of the decompression laminator defined by the flexible sheet 14 from the first chamber 15.
- Solar cell 32, adhesive 33 on surface electrode 31, tab wire 34 on adhesive 33, pressure film 35 on tab wire 34, sealing resin layer 36 on pressure film 35, sealing A moisture-proof back sheet 37 or a glass plate (not shown) is sequentially laminated on the resin layer 36.
- the solar battery cell 32 is heated by the heating stage 21. Thereby, the surface electrode 31 and the tab wire 34 of the solar battery cell 32 are connected, and the solar battery cell 32 is resin-sealed with the sealing resin layer 36. Thereby, the solar cell module 30 can be obtained (FIG. 3C).
- the internal pressures of the first chamber 15 and the second chamber 16 are both reduced, and then the second chamber 16 For example, the first chamber 15 is released to the atmosphere while maintaining the reduced pressure state.
- a film (ACF), an insulating adhesive paste (NCP), an insulating adhesive film (NCF), or the like can be used.
- Those that are thermosetting can be preferably used.
- the pressurizing film 35 a resin film having a thickness of 5 to 500 ⁇ m, synthetic paper, non-woven fabric, etc., which exhibits dimensional stability even when heated and pressurized with a vacuum laminator can be used.
- a constituent material of such a pressure film 35 polyamide, polyimide, polyester, or the like can be used.
- the glass transition temperature of the pressurizing film 35 is preferably higher than the laminating temperature of the sealing resin layer 36. Specifically, it is desirably at least 10 ° C. or higher.
- the periphery of the pressurizing film 35 is resin-sealed with a sealing resin layer 36. If it does in this way, what does not have adhesiveness can also be used as the film 35 for pressurization.
- the sealing resin layer 36 it is preferable to use a sealing resin sheet formed from a known liquid or paste-like sealing resin composition, particularly a sheet. Specifically, a thermoplastic ethylene / vinyl acetate copolymer sheet exhibiting good sealing properties and adhesiveness can be preferably used.
- the sealing resin layer 36 flows by heating at the time of resin sealing and covers a region to be sealed, but when it contains a curing component, a good resin can be obtained by curing after flowing. Sealing can be realized.
- the solar cell 32 having the surface electrode 31 is a solar cell that is required to perform tab wire bonding and resin sealing, for example, a crystalline solar cell using a crystalline photoelectric conversion element, A thin film solar cell using a thin film photoelectric conversion element can be mentioned.
- the surface electrode may exist also in the surface of the back side of a photovoltaic cell.
- a solar cell unit can be formed from a plurality of solar cells (see FIG. 8 of Patent Document 1 and FIG. 1 of Patent Document 2).
- a photoelectric conversion element material of a solar battery cell a conventionally known material can be employed. For example, single crystal compounds such as single crystal silicon, polycrystalline silicon, amorphous silicon, and GaAs, CdS, CdTe, and the like can be used. Polycrystalline compounds and the like can be mentioned.
- the tab wire is used as an inner lead for connecting solar cells or an outer lead for taking out electric power in a conventional solar cell module, and a solder coated copper foil ribbon or the like is preferably used. be able to.
- the moisture-proof back sheet 37 and a glass plate are laminated
- a solar cell having a surface electrode to which a tab wire is connected with an isotropic or anisotropic conductive adhesive film (CF or ACF) is resin-sealed using a reduced pressure laminator. This is a manufacturing method.
- thermosetting resin film base 42 As shown in FIG. 4A, conductive particles 43 having a particle size larger than the base thickness are held on the thermosetting resin film base 42 as the conductive adhesive film 41.
- the one in which the conductive particles 43 protrude from at least one side of the thermosetting resin film base 42 is used.
- the crushed conductive particles 43 are accommodated in the gaps between the conductive particles 43. Therefore, even if it does not use the film for pressurization used in the 1st aspect, the conductive particle of a conductive adhesive film can fully be crushed and conductive connection can be performed.
- a thermosetting resin thin film may be formed on the surface of the protruding conductive particles 43 as long as the effect of the present invention is not impaired (not shown).
- the surface electrode 31 is formed on the heating stage 21 of the second chamber 16 of the decompression laminator defined by the flexible sheet 14 from the first chamber 15.
- a sheet 37 or a glass plate (not shown) is sequentially stacked, but when the conductive adhesive film 41 is stacked on the surface electrode 31, the conductive adhesive film 41 is stacked so that the conductive particle protruding surface is on the surface electrode 31 side. .
- the solar battery cell 32 is heated by the heating stage 21. Thereby, the surface electrode 31 of the solar battery cell 32 and the tab wire 34 are conductively connected, and the connection region of the solar battery cell 32 is resin-sealed with the sealing resin layer 36. Thereby, the solar cell module 40 can be obtained (FIG. 4D).
- a third aspect of the present invention is a method for manufacturing a solar cell module in which a solar cell having a surface electrode to which a tab wire is connected is resin-sealed using a reduced pressure laminator. First, the case where the convex part is formed in the tab line is demonstrated.
- thermosetting adhesive layer 53 is formed on one side of the metal base 52 as the tab wire 51, and the metal base 52 is formed from the thermosetting adhesive layer 53.
- the protrusion 52a is used so that it can be connected to the surface electrode.
- the convex part 52a of the metal base material 52 protrudes from the thermosetting adhesive layer 53, the crushed convex part 52a is accommodated in the gap
- the thermosetting adhesive thin film may be formed in the surface of the convex part 52a in the range which does not impair the hardening of this invention (not shown).
- the surface electrode 31 is formed on the heating stage 21 of the second chamber 16 of the decompression laminator defined by the flexible sheet 14 from the first chamber 15.
- the tab wire 51 is laminated on the surface electrode 31, the tab wire 51 is laminated so that the convex portion 52 a surface of the metal substrate 52 is on the surface electrode 31 side.
- the solar battery cell 32 is heated by the heating stage 21. Thereby, the surface electrode 31 and the tab wire 51 of the solar battery cell 32 are conductively connected, and the connection region of the solar battery cell 32 is resin-sealed with the sealing resin layer 36. Thereby, the solar cell module 50 can be obtained (FIG. 5D).
- the third aspect of the present invention in which convex portions are formed on the surface electrode is the production of a solar cell module in which a solar cell having a surface electrode connected with a tab wire is sealed with a resin using a reduced pressure laminator.
- a method As a tab line, use a metal substrate with a thermosetting adhesive layer formed on one side, A convex portion is formed in the area of the surface electrode connected to the tab wire, A heating stage that has a first chamber and a second chamber partitioned by a flexible sheet as a decompression laminator, each chamber can be independently adjusted for internal pressure, and can be heated in the second chamber
- the method for forming the convex portion on the surface electrode of the solar battery cell is not particularly limited, and a plating method, a photolithographic method, a press method using a mold, or the like can be employed.
- the solar cell module manufacturing method in which the tab wires are connected to one side of the solar cell and the resin sealing is performed in a batch has been described in detail.
- the present invention is not limited thereto.
- tab wires for series connection are connected to each of both surfaces of a solar cell using a crystalline photoelectric conversion element, and resin sealing is performed.
- FIG. 8B for extracting power to the photoelectric conversion elements at both ends of a solar cell module in which long thin film photoelectric conversion elements are directly connected in the lateral direction.
- It is also within the scope of the present invention to connect the tab and seal with resin see FIGS. 3 and 4 of JP-A-2000-340811).
- a plurality of solar cells are prepared, and the other end of the tab wire 34 whose one end is temporarily attached to an electrode (not shown) on the back surface of the solar cell 32 a is adjacent to the solar cell. It is temporarily attached to an electrode (not shown) on the surface of the cell 32b by applying room temperature pressure or low temperature (about 30 to 120 ° C.) via an adhesive.
- the solar cell unit 100 is obtained by performing this temporary pasting pattern on a plurality of solar cells.
- the solar battery unit 100 is replaced with the solar battery cell 32 in FIGS. 3A to 3C, 4B to 4D, and 5B to 5D, so that the solar battery unit can be replaced with a solar battery. You can get a module.
- thin film solar cells 32 made of thin film photoelectric conversion elements are arrayed in series in a planar direction on a substrate 38, and a surface electrode (not shown) of one end solar cell 32c. 2) and the surface electrode (not shown) of the solar cell 32d at the other end, a tab wire 34 for taking out power is applied at room temperature or low temperature (about 30 to 120 ° C.) via an adhesive.
- the solar cell unit 100 is obtained by temporary sticking by pressing.
- the solar battery unit 100 is replaced with the solar battery cell 32 in FIGS. 3A to 3C, 4B to 4D, and 5B to 5D, so that the solar battery unit can be replaced with a solar battery. You can get a module.
- a pressure film in which lead wires are laminated in advance may be used.
- Example 1 As a substitute for the solar battery cell, the following materials were used to carry out the first aspect of the present invention.
- Glass substrate 30mm x 80mm x 0.7mm thickness
- Tab wire Sn-Ag-Cu lead-free solder dip-plated to a thickness of 20 ⁇ m on both sides of a 2 mm wide ⁇ 0.15 mm thick Cu wire
- Conductive adhesive film 50 parts by mass of epoxy resin (EP828, Japan Epoxy Resin Co., Ltd.), 20 parts by mass of phenoxy resin (YP50, Toto Kasei Co., Ltd.), 20 parts by mass of curing agent (HX3941, Asahi Kasei Chemicals Co., Ltd.) , 10 parts by weight of conductive particles having an average particle size of 10 ⁇ m (AUL, Sekisui Chemical Co., Ltd.), and a mixture obtained by adding toluene to a solid content concentration of 30% using a roll coater.
- epoxy resin EP828, Japan Epoxy Resin Co., Ltd.
- YP50 Toto Kasei Co., Ltd.
- curing agent HX3941, Asahi Kas
- Pressure film 30mm x 40mm x 85 ⁇ m (thickness) polyimide film
- Sealing resin sheet 30 mm x 80 mm x 0.5 mm ethylene-vinyl acetate copolymer sheet
- Moisture-proof backsheet Polyethylene terephthalate film (35 ⁇ m thick) as a substitute for moisture-proof backsheet
- a glass substrate is placed on the heating stage in the second chamber of the vacuum laminator in FIG. 1, a conductive adhesive film (width 2 mm, length 5 mm, thickness 0.05 mm) is placed on the surface, and a tab wire is placed thereon.
- the film for pressurization, the sealing resin sheet, and the moisture-proof back sheet were further stacked.
- both the first chamber and the second chamber were depressurized to 133 Pa, and then the atmosphere was introduced into the first chamber while maintaining the depressurization of the second chamber to atmospheric pressure. After maintaining this state for 5 minutes, the atmosphere was introduced into the second chamber to be atmospheric pressure.
- the obtained laminate was observed with a microscope from the back surface (glass surface), it was confirmed that the conductive particles were crushed (FIG. 6A).
- Example 2 instead of the conductive adhesive film, 50 parts by mass of an epoxy resin (EP828, Japan Epoxy Residue Co., Ltd.), 40 parts by mass of a curing agent (HX3941, Asahi Kasei Chemicals Co., Ltd.), and conductive particles (AUL, Sekisui) having an average particle size of 10 ⁇ m
- an epoxy resin EP828, Japan Epoxy Residue Co., Ltd.
- a curing agent HX3941, Asahi Kasei Chemicals Co., Ltd.
- conductive particles AUL, Sekisui having an average particle size of 10 ⁇ m
- a conductive adhesive paste obtained by mixing 10 parts by mass of Chemical Industry Co., Ltd., and apply the conductive adhesive paste to the surface of the glass substrate so that the width is 2 mm, the length is 5 mm, and the thickness is 0.05 mm.
- a laminate was obtained in the same manner as in Example 1. When the obtained laminate was observed with a microscope from the back surface (glass surface
- Comparative Example 1 A laminate was obtained by repeating the same operation as in Example 1 except that no pressure film was used. When the obtained laminate was observed with a microscope from the back surface (glass surface), the collapse of the conductive particles could not be confirmed (FIG. 6B).
- Example 3 As a substitute for the solar battery cell, the following material was used to implement the second aspect of the present invention.
- a glass substrate with ITO is placed on the heating stage in the second chamber of the vacuum laminator in FIG. 1, and the tab wire is placed so that the conductive adhesive film (the type in which the conductive particles protrude from the film surface) faces the ITO electrode on the surface.
- a sealing resin sheet and an 80 ⁇ m thick polyethylene terephthalate film were further stacked.
- both the first chamber and the second chamber were decompressed to 133 Pa, and then the atmosphere was introduced into the first chamber while maintaining the decompression of the second chamber to atmospheric pressure. After maintaining this state for 5 minutes, the atmosphere was introduced into the second chamber to be atmospheric pressure.
- the obtained laminate was observed with a microscope from the back surface (glass surface), it was confirmed that the conductive particles were crushed (FIG. 7A). When the resistance value was measured, it was 5 m ⁇ .
- Comparative Example 2 A laminate was obtained by repeating the same operation as in Example 2 except that the same conductive adhesive film as that prepared in Example 1 was used. When the obtained laminate was observed with a microscope from the back surface (glass surface), the collapse of the conductive particles could not be confirmed (FIG. 7B). When the resistance value was measured, measurement was impossible and electrical connection could not be obtained.
- Example 4 As a substitute for the solar battery cell, the following materials were used to carry out the third aspect of the present invention.
- Glass substrate with ITO 30mm x 80mm x 0.7mm thickness
- Tab wire Cu wire having a width of 2 mm ⁇ 0.12 mm and formed with protrusions (height 10 ⁇ m) on one side with a mat surface treatment technology at a density of about 50,000 pieces / mm 2
- Thermosetting adhesive layer The thermosetting adhesive (phenoxy resin 20 parts by mass (YP50, Toto Kasei Co., Ltd. and epoxy resin 50 parts by mass (EP 828, EP Japan Epoxy Resin Co., Ltd.
- Moisture-proof backsheet Polyethylene terephthalate film (35 ⁇ m thick) as a substitute for moisture-proof backsheet
- a glass substrate is placed on the heating stage in the second chamber of the decompression laminator shown in FIG. 1, and the tab wire is temporarily attached so that the convex protrusions of the tab wire face the ITO electrode on the surface, and further a sealing resin sheet And an 80 ⁇ m thick polyethylene terephthalate film.
- both the first chamber and the second chamber were decompressed to 133 Pa, and then the atmosphere was introduced into the first chamber while maintaining the decompression of the second chamber to atmospheric pressure. After maintaining this state for 5 minutes, the atmosphere was introduced into the second chamber to be atmospheric pressure.
- the obtained laminate was observed with a microscope from the back surface (glass surface), it was confirmed that the convex protrusions were crushed.
- the resistance value was measured, it was 5 m ⁇ .
- Comparative Example 3 A laminate was obtained by repeating the same operation as in Example 2 except that a flat line having no convex protrusion was used as the tab line. When the resistance value of the obtained laminate was measured, it was open.
- the manufacturing method of the present invention includes a tab line connecting step for connecting a tab wire to the surface electrode and a solar cell in manufacturing a solar cell module in which a solar cell having a surface electrode to which a tab wire is connected is resin-sealed.
- the resin sealing step of sealing the cell with the sealing resin can be performed at a temperature at a relatively low temperature of the resin sealing step. Therefore, it is useful for manufacturing a solar battery unit or a solar battery unit combining a plurality thereof. Specifically, in the case of connection between the inner lead in the crystalline solar cell and the bus bar electrode formed by screen printing of the silver paste, in the connection between the surface electrode and the outer lead in the thin film solar cell, Useful.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Thermal Sciences (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
減圧ラミネーターとして、可撓性シートにより区画された第1室と第2室とを有し、各室はそれぞれ独立的に内圧調整が可能となっており、第2室内に加熱が可能な加熱ステージを有するものを使用し、
減圧ラミネーターの第2室の加熱ステージ上に、表面電極が形成された太陽電池セル、表面電極上に接着剤、接着剤上にタブ線、タブ線上に加圧用フィルム、加圧用フィルム上に封止用樹脂層、封止用樹脂層上に防湿性バックシート又はガラスプレートを順次積層し、
減圧ラミネーターの第2室に対し第1室の内圧を相対的に高くすることにより可撓性シートで防湿性バックシート又はガラスプレートを押圧しつつ、加熱ステージで太陽電池セルを加熱し、それにより太陽電池セルの表面電極とタブ線とを接続し、且つ太陽電池セルを封止用樹脂層で樹脂封止し、それにより太陽電池モジュールを得ることを特徴とする製造方法を提供する。
導電接着フィルムとして、熱硬化性樹脂フィルムべースに、そのべース厚よりも大きな粒径の導電粒子が保持されており、熱硬化性樹脂フィルムべースの少なくとも片面から導電粒子が突出しているものを使用し、
減圧ラミネーターとして、可撓性シートにより区画された第1室と第2室とを有し、各室はそれぞれ独立的に内圧調整が可能となっており、第2室内に加熱が可能な加熱ステージを有するものを使用し、
減圧ラミネーターの第2室の加熱ステージ上に、表面電極が形成された太陽電池セル、表面電極上に導電接着フィルム、導電接着フィルム上にタブ線、タブ線上に封止用樹脂層、封止用樹脂層上に防湿性バックシート又はガラスプレートを順次積層し、但し表面電極上に導電接着フィルムを積層する際、導電接着フィルムの導電粒子突出面がタブ線又は表面電極側になるように積層し、
減圧ラミネーターの第2室に対し第1室の内圧を相対的に高くすることにより可撓性シートで防湿性バックシート又はガラスプレートを押圧しつつ、加熱ステージで太陽電池セルを加熱し、それにより太陽電池セルの表面電極とタブ線とを導電接続させ、且つ太陽電池セルを封止用樹脂層で樹脂封止し、それにより太陽電池モジュールを得ることを特徴とする製造方法を提供する。
タブ線として、金属基材の片面に熱硬化性接着剤層が形成され、熱硬化性接着剤層から金属基材の凸部が表面電極に接続可能となるように突出しているものを使用し、又はタブ線として、金属基材の片面に熱硬化性接着剤層が形成されているものを使用し且つタブ線と接続される表面電極の領域に凸部が形成されており、
減圧ラミネーターとして、可撓性シートにより区画された第1室と第2室とを有し、各室はそれぞれ独立的に内圧調整が可能となっており、第2室内に加熱が可能な加熱ステージを有するものを使用し、
減圧ラミネーターの第2室の加熱ステージ上に、表面電極が形成された太陽電池セル、表面電極上にタブ線、タブ線上に封止用樹脂層、封止用樹脂層上に防湿性バックシート又はガラスプレートを順次積層し、但し表面電極上に金属基材の凸部が熱硬化性接着剤層から突出しているタブ線を積層する際、タブ線の金属基材の凸部面が表面電極側になるように積層し、
減圧ラミネーターの第2室に対し第1室の内圧を相対的に高くすることにより可撓性シートで防湿性バックシート又はガラスプレートを押圧しつつ、加熱ステージで太陽電池セルを加熱し、それにより太陽電池セルの表面電極とタブ線の凸部とを接続させ、且つ太陽電池セルを封止用樹脂シートで樹脂封止し、それにより太陽電池モジュールを得ることを特徴とする製造方法を提供する。
防湿性バックシート”、“ガラスプレート”については、本発明の第1の態様において説明したとおりである。
タブ線として、金属基材の片面に熱硬化性接着剤層が形成されているものを使用し、
タブ線と接続される表面電極の領域に、凸部が形成されており、
減圧ラミネーターとして、可撓性シートにより区画された第1室と第2室とを有し、各室はそれぞれ独立的に内圧調整が可能となっており、第2室内に加熱が可能な加熱ステージを有するものを使用し、
減圧ラミネーターの第2室の加熱ステージ上に、表面電極が形成された太陽電池セル、表面電極上にタブ線、タブ線上に封止用樹脂層、封止用樹脂層上に防湿性バックシート又はガラスプレートを順次積層し、
減圧ラミネーターの第2室に対し第1室の内圧を相対的に高くすることにより可撓性シートで防湿性バックシート又はガラスプレートを押圧しつつ、加熱ステージで太陽電池セルを加熱し、それにより太陽電池セルの表面電極の凸部とタブ線とを接続させ、且つ太陽電池セルを封止用樹脂シートで樹脂封止し、それにより太陽電池モジュールを得ることを特徴とする製造方法である。
太陽電池セルの代用として以下の材料を用い、本発明の第1の態様を実施した。
ガラス基板: 30mm×80mm×0.7mm厚み
タブ線: 2mm幅×0.15mm厚みのCu線の両面にSn-Ag-Cu鉛フリーハンダを20μm厚にディップメッキしたもの
導電接着フィルム: エポキシ樹脂(EP828、ジャパンエポキシレジン(株))50質量部と、フェノキシ樹脂(YP50、東都化成(株))20質量部、硬化剤(HX3941、旭化成ケミカルズ(株))20質量部、平均粒径10μmの導電粒子(AUL、積水化学工業(株))10質量部とを混合し、更にトルエンを固形分濃度30%となるように加えた混合物を、ロールコーターを用いて銅箔上に乾燥厚が25μmとなるように塗布し、80℃のオーブン中で乾燥して得たフィルム
加圧用フィルム: 30mm×40mm×85μm(厚)のポリイミドフィルム
封止用樹脂シート: 30mm×80mm×0.5mmのエチレン-酢酸ビニル共重合体シート
防湿性バックシート: 防湿性バックシートの代用としてポリエチレンテレフタレートフィルム(35μm厚)
導電接着フィルムに代えて、エポキシ樹脂(EP828、ジャパンエポキシレジ(株))50質量部、硬化剤(HX3941、旭化成ケミカルズ(株))40質量部、及び平均粒径10μmの導電粒子(AUL、積水化学工業(株))10質量部とを混合して得た導電接着ペーストを使用し、ガラス基板の表面に導電接着ペーストを巾2mm、長さ5mm、厚み0.05mmとなるように塗布すること以外、実施例1と同様にして積層物を得た。得られた積層物を裏面(ガラス面)から顕微鏡観察したところ、導電粒子が潰れていたことが確認できた。
加圧用フィルムを使用しない以外は、実施例1と同様の操作を繰り返すことにより、積層物を得た。得られた積層物を裏面(ガラス面)から顕微鏡観察したところ、導電粒子の潰れは確認できなかった(図6B)。
太陽電池セルの代用として以下の材料を用い、本発明の第2の態様を実施した。
ITO付きガラス基板: 30mm×80mm×0.7mm厚み
タブ線: 2mm幅×0.12mm厚みのCu線
導電接着フィルム: エポキシ樹脂(EP828、ジャパンエポキシレジン(株))50質量部と、フェノキシ樹脂(YP50、東都化成(株))20質量部と、硬化剤(HX3941、旭化成ケミカルズ(株))20質量部と、平均粒径10μmの導電粒子(AUL、積水化学工業(株))10質量部とを混合し、更にトルエンを固形分濃度30%となるように加えた混合物を、ロールコーターを用いて銅箔上に10μmの厚みで塗布し、80℃のオーブン中で乾燥して得たフィルム(樹脂層厚は3μm)
封止用樹脂シート: 30mm×80mm×0.5mmのエチレン-酢酸ビニル共重合体シート
防湿性バックシート:防湿性バックシートの代用としてポリエチレンテレフタレートフィルム(35μm厚)
導電接着フィルムとして、実施例1で作成したものと同じものを使用すること以外は、実施例2と同様の操作を繰り返すことにより、積層物を得た。得られた積層物を裏面(ガラス面)から顕微鏡観察したところ、導電粒子の潰れは確認できなかった(図7B)。抵抗値を測定したところ、測定不能であり、電気的接続は得られなかった。
太陽電池セルの代用として以下の材料を用い、本発明の第3の態様を実施した。
<使用材料>
ITO付きガラス基板: 30mm×80mm×0.7mm厚み
タブ線: 2mm幅×0.12mm厚みのCu線であって、片面にマット面処理技術により凸状(高さ10μm)の突起を約5万個/mm2の密度で形成したもの
熱硬化性接着剤層: タブ線の凸状突起形成面に塗布/乾燥法により、熱硬化性接着剤(フェノキシ樹脂20質量部(YP50、東都化成(株)とエポキシ樹脂50質量部(EP828、ジャパンエポキシレジン(株)と硬化剤20質量部(HX3941、旭化成ケミカルズ(株))を厚さ7μmとなるように塗布したもの
封止用樹脂シート: 30mm×80mm×0.5mmのエチレン-酢酸ビニル共重合体シート
防湿性バックシート:防湿性バックシートの代用としてポリエチレンテレフタレートフィルム(35μm厚)
タブ線として、凸状突起を形成していないフラットなものを使用すること以外は、実施例2と同様の操作を繰り返すことにより、積層物を得た。得られた積層物について抵抗値を測定したところオープンであった。
11 上部ユニット
12 下部ユニット
13 シール部材
14 可撓性シート
15 第1室
16 第2室
17、17a、17b、18、18a、18b 配管
19、20 切替バルブ
21 加熱ステージ
22 積層物
30、40、50 太陽電池モジュール
31 表面電極
32、32a、32b 32c、32d 太陽電池セル
33 接着剤
34、51 タブ線
35 加圧用フィルム
36 封止用樹脂層
37 防湿性バックシート
38 基材
41 導電接着フィルム
42 熱硬化性樹脂フィルムべース
43 導電粒子
52 金属基材
52a 凸部
53 熱硬化性接着剤層
100 太陽電池ユニット
Claims (20)
- 接着剤でタブ線が接続された表面電極を有する太陽電池セルを、減圧ラミネーターを用いて樹脂封止してなる太陽電池モジュールの製造方法であって、
減圧ラミネーターとして、可撓性シートにより区画された第1室と第2室とを有し、各室はそれぞれ独立的に内圧調整が可能となっており、第2室内に加熱が可能な加熱ステージを有するものを使用し、
減圧ラミネーターの第2室の加熱ステージ上に、表面電極が形成された太陽電池セル、表面電極上に接着剤、接着剤上にタブ線、タブ線上に加圧用フィルム、加圧用フィルム上に封止用樹脂層、封止用樹脂層上に防湿性バックシート又はガラスプレートを順次積層し、
減圧ラミネーターの第2室に対し第1室の内圧を相対的に高くすることにより可撓性シートで防湿性バックシート又はガラスプレートを押圧しつつ、加熱ステージで太陽電池セルを加熱し、それにより太陽電池セルの表面電極とタブ線とを接続し、且つ太陽電池セルを封止用樹脂層で樹脂封止し、それにより太陽電池モジュールを得ることを特徴とする製造方法。 - 減圧ラミネーターの第2室に対し第1室の内圧を相対的に高くする操作が、第1室および第2室の内圧を共に減圧状態とした後、第2室の減圧状態を維持したまま第1室を大気に解放することである請求項1記載の製造方法。
- 接着剤が、導電接着フィルムである請求項1又は2記載の製造方法。
- 加圧用フィルムの周縁が、封止用樹脂層により樹脂封止されている請求項1~3のいずれかに記載の製造方法。
- 封止用樹脂層が、エチレン/酢酸ビニル共重合体シートである請求項1~4のいずれかに記載の製造方法。
- 太陽電池セルが、導電性接着フィルムにより表面電極とタブ線とが接続される薄膜系太陽電池セル又は結晶系太陽電池セルである請求項1~5のいずれかに記載の製造方法。
- 太陽電池セルが、複数連続した太陽電池ユニットを構成している請求項1~6のいずれかに記載の製造方法。
- 接着剤上にタブ線及び加圧用フィルムを順次積層する際に、予めリード線が積層されている加圧用フィルムを使用する請求項1~7のいずれかに記載の製造方法。
- 導電接着フィルムでタブ線が接続された表面電極を有する太陽電池セルを、減圧ラミネーターを用いて樹脂封止してなる太陽電池モジュールの製造方法であって、
導電接着フィルムとして、熱硬化性樹脂フィルムべースに、そのべース厚よりも大きな粒径の導電粒子が保持されており、熱硬化性樹脂フィルムべースの少なくとも片面から導電粒子が突出しているものを使用し、
減圧ラミネーターとして、可撓性シートにより区画された第1室と第2室とを有し、各室はそれぞれ独立的に内圧調整が可能となっており、第2室内に加熱が可能な加熱ステージを有するものを使用し、
減圧ラミネーターの第2室の加熱ステージ上に、表面電極が形成された太陽電池セル、表面電極上に導電接着フィルム、導電接着フィルム上にタブ線、タブ線上に封止用樹脂層、封止用樹脂層上に防湿性バックシート又はガラスプレートを順次積層し、但し表面電極上に導電接着フィルムを積層する際、導電接着フィルムの導電粒子突出面がタブ線又は表面電極側になるように積層し、
減圧ラミネーターの第2室に対し第1室の内圧を相対的に高くすることにより可撓性シートで防湿性バックシート又はガラスプレートを押圧しつつ、加熱ステージで太陽電池セルを加熱し、それにより太陽電池セルの表面電極とタブ線とを導電接続させ、且つ太陽電池セルを封止用樹脂層で樹脂封止し、それにより太陽電池モジュールを得ることを特徴とする製造方法。 - 減圧ラミネーターの第2室に対し第1室の内圧を相対的に高くする操作が、第1室および第2室の内圧を共に減圧状態とした後、第1室の減圧状態を維持したまま第2室を大気に解放することである請求項9記載の製造方法。
- 封止用樹脂層が、エチレン/酢酸ビニル共重合体シートである請求項9~10のいずれかに記載の製造方法。
- 太陽電池セルが、導電性接着フィルムにより表面電極とタブ線とが接続される薄膜系太陽電池セル又は結晶系太陽電池セルである請求項9~11のいずれかに記載の製造方法。
- 接着剤上にタブ線及び加圧用フィルムを順次積層する際に、予めリード線が積層されている加圧用フィルムを使用する請求項9~12のいずれかに記載の製造方法。
- 太陽電池セルが、複数連続した太陽電池ユニットを構成している請求項9~13のいずれかに記載の製造方法。
- タブ線が接続された表面電極を有する太陽電池セルを、減圧ラミネーターを用いて樹脂封止してなる太陽電池モジュールの製造方法であって、
タブ線として、金属基材の片面に熱硬化性接着剤層が形成され、熱硬化性接着剤層から金属基材の凸部が表面電極に接続可能となるように突出しているものを使用し、又はタブ線として、金属基材の片面に熱硬化性接着剤層が形成されているものを使用し且つタブ線と接続される表面電極の領域に凸部が形成されており、
減圧ラミネーターとして、可撓性シートにより区画された第1室と第2室とを有し、各室はそれぞれ独立的に内圧調整が可能となっており、第2室内に加熱が可能な加熱ステージを有するものを使用し、
減圧ラミネーターの第2室の加熱ステージ上に、表面電極が形成された太陽電池セル、表面電極上にタブ線、タブ線上に封止用樹脂層、封止用樹脂層上に防湿性バックシート又はガラスプレートを順次積層し、但し表面電極上に金属基材の凸部が熱硬化性接着剤層から突出しているタブ線を積層する際、タブ線の金属基材の凸部面が表面電極側になるように積層し、
減圧ラミネーターの第2室に対し第1室の内圧を相対的に高くすることにより可撓性シートで防湿性バックシート又はガラスプレートを押圧しつつ、加熱ステージで太陽電池セルを加熱し、それにより太陽電池セルの表面電極とタブ線の凸部とを接続させ、且つ太陽電池セルを封止用樹脂層で樹脂封止し、それにより太陽電池モジュールを得ることを特徴とする製造方法。 - 減圧ラミネーターの第2室に対し第1室の内圧を相対的に高くする操作が、第1室および第2室の内圧を共に減圧状態とした後、第1室の減圧状態を維持したまま第2室を大気に解放することである請求項15記載の製造方法。
- 封止用樹脂層が、エチレン/酢酸ビニル共重合体シートである請求項15または16記載の製造方法。
- 太陽電池セルが、導電性接着フィルムにより表面電極とタブ線とが接続される薄膜系太陽電池セル又は結晶系太陽電池セルである請求項15~17のいずれかに記載の製造方法。
- 接着剤上にタブ線及び加圧用フィルムを順次積層する際に、予めリード線が積層されている加圧用フィルムを使用する請求項15~18のいずれかに記載の製造方法。
- 太陽電池セルが、複数連続した太陽電池ユニットを構成している請求項15~19のいずれかに記載の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10783239.6A EP2439781A4 (en) | 2009-06-03 | 2010-05-14 | METHOD FOR PRODUCING SOLAR CELL MODULES |
US13/319,396 US8415195B2 (en) | 2009-06-03 | 2010-05-14 | Method for manufacturing solar cell module |
CN201080025146.1A CN102460726B (zh) | 2009-06-03 | 2010-05-14 | 太阳能电池模块的制造方法 |
KR1020117028933A KR101322974B1 (ko) | 2009-06-03 | 2010-05-14 | 태양 전지 모듈의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-134055 | 2009-06-03 | ||
JP2009134055A JP5229497B2 (ja) | 2009-06-03 | 2009-06-03 | 太陽電池モジュールの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010140455A1 true WO2010140455A1 (ja) | 2010-12-09 |
Family
ID=43297592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/058177 WO2010140455A1 (ja) | 2009-06-03 | 2010-05-14 | 太陽電池モジュールの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8415195B2 (ja) |
EP (1) | EP2439781A4 (ja) |
JP (1) | JP5229497B2 (ja) |
KR (1) | KR101322974B1 (ja) |
CN (1) | CN102460726B (ja) |
WO (1) | WO2010140455A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102496477A (zh) * | 2011-11-18 | 2012-06-13 | 中国科学院等离子体物理研究所 | 染料敏化太阳电池密封的方法及设备 |
WO2013030993A1 (ja) * | 2011-08-31 | 2013-03-07 | 三洋電機株式会社 | 太陽電池モジュール |
JP2016187061A (ja) * | 2010-12-01 | 2016-10-27 | デクセリアルズ株式会社 | 薄膜系太陽電池モジュール、及び薄膜系太陽電池モジュールの製造方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012204388A (ja) * | 2011-03-23 | 2012-10-22 | Sony Chemical & Information Device Corp | 太陽電池モジュール、太陽電池モジュールの製造方法、タブ線が巻装されたリール巻装体 |
KR101982885B1 (ko) * | 2011-07-29 | 2019-05-27 | 히타치가세이가부시끼가이샤 | 접착제 조성물, 그것을 이용한 필름상 접착제 및 회로 접속 재료, 회로 부재의 접속 구조 및 그의 제조 방법 |
JP5889701B2 (ja) | 2012-04-06 | 2016-03-22 | デクセリアルズ株式会社 | 結晶系太陽電池モジュール及びその製造方法 |
CN103022250A (zh) * | 2012-12-14 | 2013-04-03 | 秦皇岛瑞晶太阳能科技有限公司 | Bipv太阳能组件正压封装设备 |
CN107757051B (zh) * | 2016-08-16 | 2024-05-14 | 阿特斯阳光电力集团股份有限公司 | 光伏组件层压设备及层压方法 |
CN110696471B (zh) * | 2018-06-22 | 2023-05-26 | 紫石能源有限公司 | 一种太阳能组件层压方法 |
CN110931581A (zh) * | 2018-09-18 | 2020-03-27 | 汉能移动能源控股集团有限公司 | 一种太阳能电池及其封装方法 |
JP2024122434A (ja) | 2023-02-28 | 2024-09-09 | パナソニックホールディングス株式会社 | 太陽電池ストリングの製造方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000340811A (ja) | 1999-05-27 | 2000-12-08 | Sharp Corp | 集積型薄膜太陽電池およびその製造方法と製造装置 |
JP2002319691A (ja) | 2001-04-23 | 2002-10-31 | Sharp Corp | 太陽電池モジュール及びその製造方法 |
JP2004179261A (ja) * | 2002-11-25 | 2004-06-24 | Kyocera Corp | 太陽電池モジュールの製造装置及び製造方法 |
JP2004356349A (ja) | 2003-05-28 | 2004-12-16 | Kyocera Corp | 太陽電池モジュールの製造方法 |
JP2008135652A (ja) * | 2006-11-29 | 2008-06-12 | Sanyo Electric Co Ltd | 太陽電池モジュール |
JP2008147567A (ja) * | 2006-12-13 | 2008-06-26 | Sanyo Electric Co Ltd | 太陽電池モジュール及び太陽電池モジュールの製造方法 |
JP2008159895A (ja) * | 2006-12-25 | 2008-07-10 | Sanyo Electric Co Ltd | 太陽電池セル及び太陽電池モジュール |
JP2008205045A (ja) * | 2007-02-16 | 2008-09-04 | Sanyo Electric Co Ltd | 太陽電池モジュールの製造方法 |
JP2008300403A (ja) | 2007-05-29 | 2008-12-11 | Sony Chemical & Information Device Corp | 導体線及びその製造方法、並びに太陽電池 |
JP2009088152A (ja) * | 2007-09-28 | 2009-04-23 | Sanyo Electric Co Ltd | 太陽電池モジュール |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3744126B2 (ja) * | 1997-06-23 | 2006-02-08 | 富士電機ホールディングス株式会社 | 太陽電池モジュールの外部リード接続構造 |
US5951786A (en) * | 1997-12-19 | 1999-09-14 | Sandia Corporation | Laminated photovoltaic modules using back-contact solar cells |
JP2004200518A (ja) * | 2002-12-19 | 2004-07-15 | Kyocera Corp | 太陽電池モジュールの製造装置および製造方法 |
KR101023375B1 (ko) * | 2004-03-03 | 2011-03-18 | 가부시키가이샤 브리지스톤 | 전자파 차폐성 광투과 창재, 표시 패널 및 태양전지 모듈의제조 방법 |
KR100711566B1 (ko) * | 2006-09-08 | 2007-04-27 | 해성쏠라(주) | 자동차 선루프용 태양전지모듈 제조방법 |
-
2009
- 2009-06-03 JP JP2009134055A patent/JP5229497B2/ja active Active
-
2010
- 2010-05-14 CN CN201080025146.1A patent/CN102460726B/zh active Active
- 2010-05-14 WO PCT/JP2010/058177 patent/WO2010140455A1/ja active Application Filing
- 2010-05-14 US US13/319,396 patent/US8415195B2/en active Active
- 2010-05-14 EP EP10783239.6A patent/EP2439781A4/en not_active Withdrawn
- 2010-05-14 KR KR1020117028933A patent/KR101322974B1/ko active IP Right Grant
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000340811A (ja) | 1999-05-27 | 2000-12-08 | Sharp Corp | 集積型薄膜太陽電池およびその製造方法と製造装置 |
JP2002319691A (ja) | 2001-04-23 | 2002-10-31 | Sharp Corp | 太陽電池モジュール及びその製造方法 |
JP2004179261A (ja) * | 2002-11-25 | 2004-06-24 | Kyocera Corp | 太陽電池モジュールの製造装置及び製造方法 |
JP2004356349A (ja) | 2003-05-28 | 2004-12-16 | Kyocera Corp | 太陽電池モジュールの製造方法 |
JP2008135652A (ja) * | 2006-11-29 | 2008-06-12 | Sanyo Electric Co Ltd | 太陽電池モジュール |
JP2008147567A (ja) * | 2006-12-13 | 2008-06-26 | Sanyo Electric Co Ltd | 太陽電池モジュール及び太陽電池モジュールの製造方法 |
JP2008159895A (ja) * | 2006-12-25 | 2008-07-10 | Sanyo Electric Co Ltd | 太陽電池セル及び太陽電池モジュール |
JP2008205045A (ja) * | 2007-02-16 | 2008-09-04 | Sanyo Electric Co Ltd | 太陽電池モジュールの製造方法 |
JP2008300403A (ja) | 2007-05-29 | 2008-12-11 | Sony Chemical & Information Device Corp | 導体線及びその製造方法、並びに太陽電池 |
JP2009088152A (ja) * | 2007-09-28 | 2009-04-23 | Sanyo Electric Co Ltd | 太陽電池モジュール |
Non-Patent Citations (1)
Title |
---|
See also references of EP2439781A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016187061A (ja) * | 2010-12-01 | 2016-10-27 | デクセリアルズ株式会社 | 薄膜系太陽電池モジュール、及び薄膜系太陽電池モジュールの製造方法 |
WO2013030993A1 (ja) * | 2011-08-31 | 2013-03-07 | 三洋電機株式会社 | 太陽電池モジュール |
JPWO2013030993A1 (ja) * | 2011-08-31 | 2015-03-23 | 三洋電機株式会社 | 太陽電池モジュール |
CN102496477A (zh) * | 2011-11-18 | 2012-06-13 | 中国科学院等离子体物理研究所 | 染料敏化太阳电池密封的方法及设备 |
Also Published As
Publication number | Publication date |
---|---|
EP2439781A4 (en) | 2013-07-24 |
KR101322974B1 (ko) | 2013-10-29 |
CN102460726A (zh) | 2012-05-16 |
KR20120012481A (ko) | 2012-02-10 |
EP2439781A1 (en) | 2012-04-11 |
JP2010283059A (ja) | 2010-12-16 |
JP5229497B2 (ja) | 2013-07-03 |
US8415195B2 (en) | 2013-04-09 |
US20120058590A1 (en) | 2012-03-08 |
CN102460726B (zh) | 2015-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5229497B2 (ja) | 太陽電池モジュールの製造方法 | |
JP5707110B2 (ja) | 導電性接着材料、太陽電池モジュール及びその製造方法 | |
JP5446420B2 (ja) | 太陽電池モジュール及びその製造方法 | |
US8981205B2 (en) | Photovoltaic module and method | |
JP5171641B2 (ja) | 太陽電池モジュール | |
CN104419344B (zh) | 导电性粘接剂、太阳电池模块及太阳电池模块的制造方法 | |
JP6567103B2 (ja) | 薄膜系太陽電池モジュール、及び薄膜系太陽電池モジュールの製造方法 | |
JP5960408B2 (ja) | 導電性接着剤、太陽電池モジュール、及び太陽電池モジュールの製造方法 | |
WO2011067875A1 (ja) | 電子部品の製造方法、電子部品および導電性フィルム | |
WO2012077557A1 (ja) | 太陽電池モジュール、太陽電池モジュールの製造方法、太陽電池セル及びタブ線の接続方法 | |
JP6366145B2 (ja) | バックコンタクト型太陽電池パネル及びかかる太陽電池パネルを製造するための方法 | |
US20070226995A1 (en) | System and method for adhering large semiconductor applications to pcb | |
EP2816612A1 (en) | Electrically conductive adhesive agent, solar cell module, and method for producing solar cell module | |
TWI590482B (zh) | 太陽電池模組及其製造方法 | |
WO2012073702A1 (ja) | 太陽電池モジュール及びその製造方法 | |
JP5488489B2 (ja) | 薄膜型太陽電池モジュールの製造方法 | |
WO2014020674A1 (ja) | 太陽電池モジュールの製造方法 | |
JP2019145759A (ja) | 太陽電池モジュールの製造方法、太陽電池セルの配線装置および太陽電池モジュール | |
JP2012124335A (ja) | 太陽電池モジュールの製造方法 | |
JP2016164984A (ja) | 太陽電池モジュール及びその製造方法、並びに導電性接着フィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080025146.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10783239 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 13319396 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010783239 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117028933 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |