WO2010139914A1 - Test d'etancheite d'un reservoir multi-membrane - Google Patents

Test d'etancheite d'un reservoir multi-membrane Download PDF

Info

Publication number
WO2010139914A1
WO2010139914A1 PCT/FR2010/051113 FR2010051113W WO2010139914A1 WO 2010139914 A1 WO2010139914 A1 WO 2010139914A1 FR 2010051113 W FR2010051113 W FR 2010051113W WO 2010139914 A1 WO2010139914 A1 WO 2010139914A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary
membrane
space
gas
temperature
Prior art date
Application number
PCT/FR2010/051113
Other languages
English (en)
French (fr)
Inventor
Julien Glory
Jean Marc Quenez
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to SG2011086063A priority Critical patent/SG176195A1/en
Priority to CN201080024340.8A priority patent/CN102460103B/zh
Priority to KR1020127000267A priority patent/KR101378455B1/ko
Priority to JP2012513665A priority patent/JP5658241B2/ja
Publication of WO2010139914A1 publication Critical patent/WO2010139914A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/002Investigating fluid-tightness of structures by using thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators

Definitions

  • the present invention relates to the leak test of a multi-membrane reservoir.
  • the present invention relates to a method for testing the tightness of the secondary membrane of a multi-membrane reservoir, without having to dismantle the primary membrane.
  • STATE OF THE ART Multi-diaphragm tanks are used industrially in various fields to contain gaseous, liquid or solid materials of different types.
  • This type of reservoir comprises a support structure which provides the mechanical rigidity, a primary membrane intended to be in contact with the product contained in the reservoir, and a secondary membrane arranged between the primary membrane and the carrier structure.
  • the secondary membrane is intended to retain the product in case of leakage into the primary membrane.
  • FR 2,531,516 describes a method for detecting leaks in the secondary membrane of a liquefied gas tank, in which carbon dioxide ice cubes solidified on the outer face of the primary membrane at-160 ° C. are detected as points. cold during heating of the primary membrane due to their thermal inertia.
  • an object of the invention is to locate a nonconformity of the secondary membrane, without requiring disassembly of the primary membrane or the carrier structure.
  • Another object of the invention is to make it possible to locate a nonconformity of the secondary membrane with a simple structure, in particular without requiring numerous channels.
  • the solution proposed by one embodiment of the invention is a leaktightness test method of a reservoir, said reservoir comprising a carrier structure, a primary membrane intended to be in contact with a product contained in the reservoir, and a secondary membrane arranged between the primary membrane and the supporting structure, in which the space between the primary membrane and the secondary membrane is called primary space and the space between the secondary membrane and the supporting structure is called secondary space, the space primary containing a first incondensable gas or having a condensing temperature lower than the average temperature of the primary membrane.
  • This method comprises the steps of:
  • the second gas in case of non-compliance of the secondary membrane, the second gas escapes into the primary space and comes into contact with the primary membrane, close to the leak. Since it has a condensation temperature higher than the average temperature of the primary membrane, the second gas condenses and. in doing so, it transfers energy in the form of heat, corresponding to its latent heat of change of state, to the membrane primary. A hot spot is generated on the primary membrane. The detection of this hot point from the inside of the tank allows the location of the nonconformity of the secondary membrane.
  • the detection is carried out during a detection period which is substantially simultaneous with the generation of overpressure in the secondary space or immediately after this generation, but before the temperatures are fully equilibrated between the different zones of the membrane.
  • the second gas may be selected to condense in a solid or liquid form.
  • the formation of a liquid phase has the advantage of allowing a flow of the condensed gas deposit as the formation of the deposit to the right of the leak.
  • the condensation reaction can be more easily maintained by maintaining the pressure in the secondary space for a significant time, for example one or more minutes.
  • the ability to maintain absi over time the hot spot resulting from the condensation reaction greatly facilitates the detection of this hot spot, especially if it has a limited contrast.
  • the overpressure is maintained in the secondary space for a duration greater than 10 minutes.
  • the method comprises cooling the primary membrane to an average temperature below room temperature.
  • the process is carried out at an average membrane temperature above -5 ° C. preferably greater than 0 ° C.
  • the second gas is a mixture, the process comprising generating the mixture according to a composition which depends on the average temperature of the primary membrane. This makes it possible to adapt the condensation temperature as a function, for example, of the ambient temperature or the average temperature of the primary membrane.
  • the condensation temperature of second gas thus obtained is between the average temperature and the ambient temperature.
  • the second gas is a mixture of pentane and / or perfluoropentane and nitrogen. These gases are particularly suitable for a test in which, initially, the secondary space is at ambient temperature and where it is desired to obtain a liquid phase in contact with the primary membrane.
  • the possible hot spots or spots of the primary membrane are detected using at least one temperature sensor and / or at least one infrared detector, arranged inside the tank.
  • the surface of the primary membrane inside the tank is temporarily covered with a coating capable of substantially eliminating the specular reflectivity of the surface, and the hot spots are detected using a thermal camera. .
  • the coating may include water droplets.
  • the method comprises the steps of evacuating the first gas from the primary space and the second gas from the secondary space, and heating the primary membrane to room temperature. This allows, after the test, to repair the tank or put it into operation, if no nonconformity has been detected.
  • the invention also proposes a reservoir comprising a supporting structure, a primary membrane intended to be in contact with a product contained in the reservoir, and a secondary membrane arranged between the primary membrane and the supporting structure, in which the space between the membrane primary and the secondary membrane is called primary space and the space between the secondary membrane and the supporting structure is called secondary space, characterized in that it comprises:
  • a first injector capable of injecting a first incondensable gas or having a condensation temperature lower than the average temperature of the primary membrane in the primary space
  • a second injector capable of injecting a second gas having a condensation temperature higher than the average temperature of the primary membrane in the secondary space
  • a pressurization device capable of generating an overpressure in the secondary space with respect to the primary space
  • This reservoir is suitable for putting a work of the test method according to one embodiment of the invention.
  • said second gas is a mixture, said second injector being capable of producing said mixture according to a composition determined as a function of the average temperature of the primary membrane.
  • said primary space and said secondary space contain a thermally insulating material, said reservoir being able to contain liquefied natural gas.
  • the tank may be for example a land tank or a tank integrated with a ship, Brief description of the figures
  • FIG. 1 is a diagram illustrating the principle of forced condensation
  • FIG. 2 is a graph illustrating the condensation temperature of a gas as a function of its concentration in a gaseous mixture
  • FIG. 3 is a sectional view of a tank wall whose tightness is tested
  • FIG. 4 is a diagram of a tank suitable for implementing the test method according to one embodiment of the invention.
  • FIG. 5 schematically shows one of the components of Figure 4.
  • FIG. 1 represents a wall 1 whose average temperature is Tm.
  • a gas at the pressure P is brought into contact with the wall 1, as shown by arrow 2. If the condensation temperature Tc of FIG. The gas will be condensed in the form of a liquid or solid deposit 3. In doing so, the gas transfers energy in the form of heat, corresponding to its latent heat of condensation, to the wall. 1. This heat transfer is represented by the arrows 4.
  • the wall I has a temperature T greater than Tm. It is called forced condensation when the temperature Tm, the pressure P and the nature of the gas are controlled.
  • the gas can be:
  • the reservoir 5 comprises a carrier structure 6 which provides the mechanical rigidity, a primary membrane 8 intended to be in contact with the product contained in the reservoir 5, and a secondary membrane 7 arranged between the primary membrane 8 and the supporting structure 6.
  • the space between the primary membrane 8 and the secondary membrane 7 is called the primary space 10.
  • the space between the secondary membrane 7 and the carrier structure 6 is called the secondary space 9.
  • the construction of the tank 5 will not be described in detail because several possibilities are known to those skilled in the art.
  • This may be, for example, a tank for LNG made according to a known technique.
  • thermally insulating material is present in the primary space 10 and in the secondary space 9.
  • the reservoir 5 also comprises an injector 11 connected to the primary space 10 by a pipe 12, an injector 13 connected to the secondary space 14 via a pipe 14, a cooling device 15 connected to the inside of the tank 5 by a pipe 16, and pipes 17 respectively connecting the interior of the tank, the primary space 10 and the secondary space 9 to an exhaust and pressure management device.
  • the aforementioned components can detect and locate a leak 18 in the secondary membrane 7, as described below.
  • the sealing test method according to one embodiment of the invention successively involves the conditioning of the tank for the test, the actual test, then the deconditioning of the tank,
  • the tank conditioning for the test includes: - Set the temperature of the primary membrane to reach a desired temperature. This can be achieved by cooling devices or by injecting a coolant into the reservoir 5. For example, the cooling device 15 injects the liquid nitrogen in the tank 5. Ideally "after this step, the membrane temperature primary is uniform. However, due to various thermal stresses, the primary membrane may have a slightly non-uniform temperature. Thus, below, we speak of the average temperature Tm of the primary membrane.
  • neutral gas is meant a gas that does not condense at the temperature Tm, either because it is an incondensable gas or because its condensation temperature is less than Tm. This can be achieved by the injector 11 or, in the case of ambient air, by placing the primary space in communication with the atmosphere. - Inject a reactive gas into the secondary space 9.
  • Reactive gas means a gas that condenses at a temperature above Tm. As explained above, it may be a pure gas or a mixed. This can be achieved by means of the injector 13.
  • the above three steps can be performed simultaneously or consecutively, in any order.
  • the actual test comprises placing the reactive gas in overpressure in the secondary space 9 and detecting any hot spots on the primary membrane 8, advantageously from the inside of the tank.
  • the reactive gas escapes into the primary space 10, due to the pressure difference between the secondary space 9 and the primary space 10. This is symbolized by the cloud 19 and the arrow 20.
  • the reactive gas comes into contact with the primary membrane 8 and forms condensation 21.
  • the reactive gas transfers heat to the primary membrane 8, which is therefore locally warmer than the temperature Tm.
  • the hot spot detection 22 can be performed for example by temperature sensor or by detecting the infrared radiation emitted, arranged inside the tank.
  • the deconditioning of the reservoir for the test includes:
  • the neutral gas is nitrogen and the reactive gas is a mixture of 50% by volume of nitrogen and 50% by volume of pentane.
  • Pentane is liquid at atmospheric pressure and ambient temperature. Its vaporization temperature is 36 ° C. In the aforementioned mixture, its condensation temperature in the liquid phase drops to about 18 0 C.
  • the tank 5 to be tested is for example a tank of LNG tanker whose primary membrane 8 is at ambient temperature of 25 ° C.
  • the inside of the tank is cooled so that. the primary membrane has a mean temperature of a Tm of 10 ° C.
  • the temperature in the secondary space 9 is greater than 20 ° C.
  • the nitrogen / pentane mixture can be injected into space secondary 9 without risk of condensation.
  • an overpressure of a few millibars is generated.
  • the nitrogen / pentane mixture passes into the primary space 10 at the level of the leak 18 and condenses in contact with the primary membrane 8, generating a hot spot.
  • the dilution rate of pentane in nitrogen can be modified to adapt the condensing temperature of pentane.
  • the ambient temperature is, for example, 35 ° C. or 10 ° C., it is possible to carry out the test by adapting the temperature Tm and the pentane dilution ratio.
  • the injector 13 allows a mixture to be produced according to a desired rate.
  • the injector 13 comprises a reservoir 23 intended to contain the carrier gas (nitrogen in the abovementioned example) and a reservoir 24 intended to contain, in liquid form, the condensable gas ( pentane in the above example).
  • These two tanks are connected, respectively via a pipe 25 and a pipe 26, to an evaporator 30 in which the mixing is carried out.
  • the evaporator 30 is connected to the secondary space 9 via the pipe 14.
  • a control device 29 makes it possible to control the dilution ratio of the pentane by acting on the evaporator 30 and on two flow meters 27 and 28 respectively arranged on the pipes 25 and 26.
  • Many other gases can be selected depending on the desired condensation temperatures. For example perfluoropentane may at least partially replace pentane in the above example and proves safer because of its poor flammability.
  • the primary membrane is at a positive temperature and an infrared camera is used to detect hot spots
  • a diffusing or opacifying coating can improve the measurement of the local emissivity of the membrane surface by means of an infrared camera.
PCT/FR2010/051113 2009-06-05 2010-06-04 Test d'etancheite d'un reservoir multi-membrane WO2010139914A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG2011086063A SG176195A1 (en) 2009-06-05 2010-06-04 Leak testing of a multi-membrane tank
CN201080024340.8A CN102460103B (zh) 2009-06-05 2010-06-04 一种多膜舱体的泄漏检测方法
KR1020127000267A KR101378455B1 (ko) 2009-06-05 2010-06-04 다중-멤브레인 탱크의 누출 테스트
JP2012513665A JP5658241B2 (ja) 2009-06-05 2010-06-04 多層タンクの漏れ試験

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0953715A FR2946428B1 (fr) 2009-06-05 2009-06-05 Test d'etancheite d'un reservoir multi-membrane
FR0953715 2009-06-05

Publications (1)

Publication Number Publication Date
WO2010139914A1 true WO2010139914A1 (fr) 2010-12-09

Family

ID=41571560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/051113 WO2010139914A1 (fr) 2009-06-05 2010-06-04 Test d'etancheite d'un reservoir multi-membrane

Country Status (9)

Country Link
JP (1) JP5658241B2 (es)
KR (1) KR101378455B1 (es)
CN (1) CN102460103B (es)
ES (1) ES2389088B2 (es)
FR (1) FR2946428B1 (es)
MY (1) MY161967A (es)
SG (1) SG176195A1 (es)
TW (1) TWI436046B (es)
WO (1) WO2010139914A1 (es)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207180A (zh) * 2013-03-15 2013-07-17 大连海事大学 一种观察lng 水域爆发沸腾发生过程的观察系统
WO2016128696A1 (fr) 2015-02-13 2016-08-18 Gaztransport Et Technigaz Gestion des fluides dans une cuve etanche et thermiquement isolante
USD800591S1 (en) 2016-03-31 2017-10-24 Homeserve Plc Flowmeter
WO2019092331A1 (fr) * 2017-11-10 2019-05-16 Gaztransport Et Technigaz Méthode de détermination d'une valeur optimale d'au moins un paramètre de mise en oeuvre d'un procédé de mise en froid d'une cuve étanche et thermiquement isolante
US10508966B2 (en) 2015-02-05 2019-12-17 Homeserve Plc Water flow analysis
US10704979B2 (en) 2015-01-07 2020-07-07 Homeserve Plc Flow detection device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101915021B1 (ko) * 2016-07-28 2018-11-06 삼성중공업(주) 액화가스 저장탱크의 균열 검출 장치
FR3079301B1 (fr) * 2018-03-21 2020-10-30 Gaztransport Et Technigaz Procede de diffusion d'un gaz traceur et procede de test de l'etancheite d'une membrane
FR3090872B1 (fr) 2018-12-21 2021-04-23 Gaztransport Et Technigaz Procédé de contrôle de l’étanchéité d’une cuve étanche et thermiquement isolante de stockage d’un fluide
CN110056769B (zh) * 2019-04-19 2021-04-30 兰州理工大学 高含硫天然气埋地集输管道泄漏模拟实验装置及测试方法
CN109974950B (zh) * 2019-05-10 2021-02-05 青岛理工大学 一种建筑空气渗透部位快速检测方法及系统
CN112498582B (zh) * 2020-10-30 2021-09-03 沪东中华造船(集团)有限公司 一种lng船及其薄膜型围护系统
CN115283773A (zh) * 2022-07-21 2022-11-04 瑞泰精密科技(沭阳)有限公司 一种均温板腔体密封工艺及均温板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1101544A (en) * 1966-06-15 1968-01-31 Air Reduction Method of detecting leaks
FR2294439A1 (fr) * 1974-12-13 1976-07-09 Technigaz Procede de controle de l'etancheite aux fluides d'une paroi
FR2515347A1 (fr) * 1981-10-26 1983-04-29 Nguyen Tan Chuong Procede de detection et de localisation de micro-fuites dans une paroi et notamment dans la barriere secondaire des cuves de methaniers
FR2517802A1 (fr) 1981-12-04 1983-06-10 Gaz Transport Cuve destinee au stockage d'un gaz liquefie comportant une detection de fuite et procede de detection de fuite correspondant
FR2531516A1 (fr) 1982-08-03 1984-02-10 Applied Thermodynamics Lng Ser Reservoir de gaz liquefie a basse temperature comprenant une barriere secondaire et procede de detection des fuites eventuelles de la barriere secondaire
US20060137525A1 (en) * 2004-11-30 2006-06-29 Rae Ian F Method and system for testing the integrity of green plugged honeycomb structure
WO2007144458A2 (en) 2006-06-16 2007-12-21 Aker Mtw Werft Gmbh Method and arrangement for monitoring and detecting leaks from a container
EP1939606A1 (fr) * 2006-12-27 2008-07-02 Aker Yards S.A. Procédé de mesure de la porosité réelle de la barrière d'étanchéité d'une cuve de confinement de fluide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2502289A1 (fr) * 1981-03-19 1982-09-24 Applied Thermodynamics Lonog S Reservoir de gaz naturel liquefie, notamment de methane
JPH0440334A (ja) * 1990-06-05 1992-02-10 Nkk Corp Lngタンクの欠陥検知方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1101544A (en) * 1966-06-15 1968-01-31 Air Reduction Method of detecting leaks
FR2294439A1 (fr) * 1974-12-13 1976-07-09 Technigaz Procede de controle de l'etancheite aux fluides d'une paroi
FR2515347A1 (fr) * 1981-10-26 1983-04-29 Nguyen Tan Chuong Procede de detection et de localisation de micro-fuites dans une paroi et notamment dans la barriere secondaire des cuves de methaniers
FR2517802A1 (fr) 1981-12-04 1983-06-10 Gaz Transport Cuve destinee au stockage d'un gaz liquefie comportant une detection de fuite et procede de detection de fuite correspondant
FR2531516A1 (fr) 1982-08-03 1984-02-10 Applied Thermodynamics Lng Ser Reservoir de gaz liquefie a basse temperature comprenant une barriere secondaire et procede de detection des fuites eventuelles de la barriere secondaire
US20060137525A1 (en) * 2004-11-30 2006-06-29 Rae Ian F Method and system for testing the integrity of green plugged honeycomb structure
WO2007144458A2 (en) 2006-06-16 2007-12-21 Aker Mtw Werft Gmbh Method and arrangement for monitoring and detecting leaks from a container
EP1939606A1 (fr) * 2006-12-27 2008-07-02 Aker Yards S.A. Procédé de mesure de la porosité réelle de la barrière d'étanchéité d'une cuve de confinement de fluide

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207180A (zh) * 2013-03-15 2013-07-17 大连海事大学 一种观察lng 水域爆发沸腾发生过程的观察系统
US10704979B2 (en) 2015-01-07 2020-07-07 Homeserve Plc Flow detection device
US10942080B2 (en) 2015-01-07 2021-03-09 Homeserve Plc Fluid flow detection apparatus
US11209333B2 (en) 2015-01-07 2021-12-28 Homeserve Plc Flow detection device
US10508966B2 (en) 2015-02-05 2019-12-17 Homeserve Plc Water flow analysis
WO2016128696A1 (fr) 2015-02-13 2016-08-18 Gaztransport Et Technigaz Gestion des fluides dans une cuve etanche et thermiquement isolante
FR3032776A1 (fr) * 2015-02-13 2016-08-19 Gaztransport Et Technigaz Gestion des fluides dans une cuve etanche et thermiquement isolante
USD800591S1 (en) 2016-03-31 2017-10-24 Homeserve Plc Flowmeter
WO2019092331A1 (fr) * 2017-11-10 2019-05-16 Gaztransport Et Technigaz Méthode de détermination d'une valeur optimale d'au moins un paramètre de mise en oeuvre d'un procédé de mise en froid d'une cuve étanche et thermiquement isolante
FR3073602A1 (fr) * 2017-11-10 2019-05-17 Gaztransport Et Technigaz Methode de determination d'une valeur optimale d'au moins un parametre de mise en oeuvre d'un procede de mise en froid d'une cuve etanche et themiquement isolante
US11879598B2 (en) 2017-11-10 2024-01-23 Gaztransport Et Technigaz Method for determining an optimal value of at least one parameter for implementing a method for cooling a watertight and thermally insulating tank

Also Published As

Publication number Publication date
MY161967A (en) 2017-05-15
TWI436046B (zh) 2014-05-01
FR2946428B1 (fr) 2011-08-05
CN102460103A (zh) 2012-05-16
ES2389088A1 (es) 2012-10-23
KR101378455B1 (ko) 2014-04-04
KR20120027464A (ko) 2012-03-21
JP5658241B2 (ja) 2015-01-21
ES2389088B2 (es) 2014-06-05
JP2012529026A (ja) 2012-11-15
FR2946428A1 (fr) 2010-12-10
CN102460103B (zh) 2015-09-30
TW201104235A (en) 2011-02-01
SG176195A1 (en) 2012-01-30

Similar Documents

Publication Publication Date Title
WO2010139914A1 (fr) Test d'etancheite d'un reservoir multi-membrane
JP2012529026A6 (ja) 多層タンクの漏れ試験
EP2642267B1 (fr) Appareil de dépôt sous vide à cellules à vanne comportant un dispositif de détection de fuite et procédé de détection d'une fuite dans un appareil de dépôt sous vide
FR2533304A1 (fr) Appareil de refrigeration pour le refroidissement rapide de specimens, en particulier, biologiques
WO2015155377A1 (fr) Cuve etanche et thermiquement isolante logee dans un ouvrage flottant
EP3899472A1 (fr) Procede de controle de l'etancheite d'une cuve etanche et thermiquement isolante de stockage d'un fluide
EP0102865B1 (fr) Réservoir de gaz liquéfié muni d'un dispositif de détection des fuites de sa barrière secondaire et procédé correspondant de détection des fuites
FR2945327A1 (fr) Procede et equipement de transmission d'energie mecanique par compression et/ou detente quasi-isotherme d'un gaz
FR2945326A1 (fr) Procede et equipement de stockage d'energie mecanique par compression et detente quasi-isotherme d'un gaz
WO2016128696A1 (fr) Gestion des fluides dans une cuve etanche et thermiquement isolante
EP3899350A1 (fr) Procede de detection de fuite sur une cuve etanche et thermiquement isolante
FR2910965A1 (fr) Procede de mesure de la porosite reelle de la barriere d'etancheite d'une cuve de confinement de fluide.
Kulev et al. Drop tower experiments on non-isothermal reorientation of cryogenic liquids
FR3045775A1 (fr) Procede et systeme pour calculer en temps reel la duree d'autonomie d'une cuve non refrigeree contenant du gnl
FR2662800A1 (fr) Procede de detection d'un defaut dans un reservoir de gaz liquides liquefies.
FR2967695A1 (fr) Dispositif formant un joint d'etancheite entre deux espaces de gaz reactifs entre eux, application aux electrolyseurs de vapeur d'eau a haute temperature (evht) et aux piles a combustible de type sofc
FR2876183A1 (fr) Procede et dispositif de controle d'etancheite d'une enceinte contenant un gaz sous pression
EP3809132B1 (fr) Procede d'analyse in situ de goudrons dans un gaz
WO2011151564A1 (fr) Epreuve d'etancheite d'un reservoir par rapport a un gaz presentant une signature infrarouge
FR2954764A1 (fr) Creuset en silice
FR2840971A1 (fr) Procede de stockage en phase gazeuse d'un fluide compressible et dispositif de stockage correspondant
EP3189224A1 (fr) Moteur à pressions d'évaporation différentielles
FR2554762A1 (fr) Procede de controle de l'uniformite des proprietes d'une mousse de matiere plastique
EP2981781A1 (fr) Caloduc comportant un bouchon gazeux de coupure
CN115427726A (zh) 复合压力容器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080024340.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10734240

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: P201190069

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 2012513665

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127000267

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10734240

Country of ref document: EP

Kind code of ref document: A1