EP2981781A1 - Caloduc comportant un bouchon gazeux de coupure - Google Patents

Caloduc comportant un bouchon gazeux de coupure

Info

Publication number
EP2981781A1
EP2981781A1 EP14718664.7A EP14718664A EP2981781A1 EP 2981781 A1 EP2981781 A1 EP 2981781A1 EP 14718664 A EP14718664 A EP 14718664A EP 2981781 A1 EP2981781 A1 EP 2981781A1
Authority
EP
European Patent Office
Prior art keywords
fluid
temperature
volume
gas
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14718664.7A
Other languages
German (de)
English (en)
Other versions
EP2981781B1 (fr
Inventor
Christian Tantolin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority to PL14718664T priority Critical patent/PL2981781T3/pl
Publication of EP2981781A1 publication Critical patent/EP2981781A1/fr
Application granted granted Critical
Publication of EP2981781B1 publication Critical patent/EP2981781B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor

Definitions

  • the invention relates to heat transfer devices by phase transition of a fluid, including heat pipes.
  • a heat pipe is a heat transfer device which comprises a sealed enclosure, that is to say not letting pass liquids or gases, conventionally made in the form of a tube or several coaxial tubes, which contains a fluid called "coolant”, whose liquid phase is in equilibrium with the vapor phase, also called “diphasic system”.
  • the enclosure consists of an evaporator, located at one end thereof and intended to be heated by a hot source, a condenser located at the other end of the enclosure and intended to be cooled by a cold source , and an intermediate zone called “adiabatic”, located between the evaporator and the condenser.
  • the liquid contained in the evaporator vaporizes and the vapor thus produced migrates to the condenser in which it condenses by transferring heat to the cold source.
  • the condensed liquid then returns to the evaporator for a new evaporation cycle.
  • heat pipes are conventional and can take different names depending on the mechanism used to return the condensed liquid to the evaporator.
  • heat pipe heat pipe
  • heat pipe is used as a generic term regardless of the liquid return mechanism used.
  • Heat pipes find many applications.
  • the heat pipe has the function of heating a cold source by transferring heat supplied by a hot source.
  • heat pipes are intended to heat water for domestic use of a building using solar radiation.
  • a solar collector or "solar water heater” comprises a heat pipe, a so-called “primary” circuit in which circulates a coolant and a storage tank of the water to be heated.
  • a first portion of the primary circuit is in heat exchange with the heat pipe condenser, and thus forms the cold source for the latter, and a second portion of the primary circuit is in heat exchange with the storage tank.
  • the heat transfer fluid of the primary circuit flowing between these two parts thus transfers heat from the heat pipe to the water of the flask.
  • Heat pipes are also conventionally used to transfer heat from a hot source to Peltier effect modules.
  • the heat pipe has the function of cooling a hot source by taking heat and transferring the heat taken to a cold source. This is the case, for example, with applications for cooling electronic components. The components transfer their heat to the heat pipe, which in turn transmits it to the cooling fluid (water, air, etc.). This type of cooling is widely used in the railway field or for cooling laptops.
  • heat pipes are often designed to capture and store as much heat as possible from the hot source.
  • the evaporator of a heat pipe is enclosed in several layers of transparent materials to solar radiation between which vacuum is formed.
  • the solar radiation is thus trapped in the heat pipe and the heat carried by the incident solar radiation is transferred substantially completely to the liquid present in the evaporator.
  • Temperatures above 250 ° C can thus be reached in the evaporator, even for low temperatures.
  • This fluid of the primary circuit is generally made of propylene glycol.
  • the heat transfer fluids usually used for heat pipes, as well as the heat transfer fluids of the primary circuits withstand high temperatures with difficulty for a long time without degrading.
  • the primary circuit fluid oxidizes and loses its heat transport capabilities. Without special precautions, there is thus a decrease in the efficiency of the heat pipes and / or the efficiency of the primary circuit, and therefore of the solar collector as a whole, sometimes at after a few months, while the solar collectors are usually intended to operate over a period of 20 years.
  • the oxidation of the primary circuit fluid can also lead to chemical attack of the pipes and pipes.
  • a heat pipe is associated with a device forming the cold source may be damaged by excessive heating, or it includes and / or it is in contact with materials that can degrade due to such heating .
  • a reservoir accessible to the heat transfer fluid for temperatures above a threshold temperature makes it possible to obtain such a result. Indeed, as the heat transfer fluid accumulates in the tank, the heat transfer efficiency of the heat pipe decreases to be substantially zero when no liquid phase remains in the evaporator.
  • the reservoir and the mechanism for opening and closing the passage between the condenser and the reservoir thus implement a function of cutting the heat pipe.
  • the operation thereof is stopped.
  • the problem arises in any device provided with a sealed enclosure enclosing a two-phase system whose liquid phase is to be stored partially or entirely in a tank located outside the functional portion of the enclosure for temperatures greater than a predetermined threshold temperature.
  • GB 1 542 277 describes in its embodiment of Figure 2 a two-phase heat pipe, used in a vertical position, comprising a hermetic enclosure whose condenser is extended by a reservoir with which it is in communication through a reduced diameter pipe.
  • a non-condensable gas immiscible with the heat transfer fluid is introduced into the heat pipe in the high position and allows or prevents the access of the tank to the vapor of the heat transfer fluid depending on the temperature. Beyond a given temperature, the non-condensable gas releases the passage to the tank where vapor of the coolant condenses to be stored.
  • a passage is further provided for the return of the coolant fluid to the condenser, this passage being chosen so that the mass flow of the liquid coolant escaping from the reservoir to the condenser is equal to the mass flow rate of the fluid vapor coolant entering the tank from the condenser.
  • the combination of the non-condensable gas, the reservoir and the liquid return passageway thus regulates the heat transfer rate which is set to a constant value independent of the temperature of the heat source.
  • Document JP 2001-153575 describes a heat pipe comprising a hermetic enclosure including the condenser and in communication with a tank.
  • a gas that is non-condensable and immiscible with the heat-transfer fluid is introduced into the heat pipe in the high position and makes it possible to control the rate of heat transfer of the heat pipe as a function of its position in the condenser to reach a maximum transfer rate when the gas: non-condensable is fully stored in its tank.
  • the tank has the sole function of storing the non-condensable gas, nothing being provided for storing in the tank the coolant in its liquid phase.
  • the purpose of this document is to prevent heat transfer fluid from entering the tank and thus avoid cutting the heat pipe for high temperatures.
  • the passage between the reservoir and the condenser is bent and opens on a side wall of the condenser, and parallel walls are housed in the tank.
  • the object of the present invention is to solve the above-mentioned reliability problem by proposing a device equipped with a liquid storage tank, whose access is controlled as a function of temperature without using a mechanical part, and implementing a device shutdown function for high temperatures.
  • the invention relates to a device comprising a sealed enclosure containing a fluid whose liquid phase is in equilibrium with the vapor phase in a predetermined range of temperatures, the chamber being divided into a first and a second volume communicating through a first fluid flow passage, allowing the vapor phase of the coolant to enter the second volume by ascension the second volume comprising a reservoir in communication with said flow passage, and adapted to contain fluid in liquid phase when the device is in a predetermined position with respect to the direction of gravity.
  • the second volume contains a non-condensable gas within the predetermined range of temperatures and insoluble in the fluid of the liquid phase
  • the reservoir is adapted to contain all of the fluid in its liquid phase to a second predetermined temperature (7 ° ⁇ "p) of the temperature range, greater than the first temperature ();
  • the device comprises a second passage allowing the passage of the liquid phase of heat transfer fluid from the reservoir to the first volume by gravity with a pressure drop, leading to a mass flow is strictly lower liquid phase to the mass flow of the defined vapor by the circulation passage of the fluid, so as to induce storage of the liquid phase of the coolant in the tank for a temperature greater than the second predetermined temperature max) ⁇
  • the chamber is divided into two volumes, the first volume defining the useful volume of the device where the evaporation / condensation cycles take place in the presence of hot and cold sources, the second volume defining a fluid storage space for subtracting the fluid from the first volume.
  • the device comprises at least one position allowing such storage, for example defined with respect to the direction of gravity, the device being usually designed to operate in certain positions.
  • the reservoir which corresponds to part or all of the second volume, is accessible through a passage whose opening is controlled by a gaseous plug, that is to say a volume of gas whose function is to form a plug “mobile” depending on the temperature by occupying a variable portion of the tank, and therefore by a mechanism that has no mechanical part.
  • a gaseous plug that is to say a volume of gas whose function is to form a plug “mobile” depending on the temperature by occupying a variable portion of the tank, and therefore by a mechanism that has no mechanical part.
  • the gas forming the plug Being non-condensable in a range of operating temperatures of the device, and not so much in the liquid phase of the fluid, the gas forming the plug remains located mainly at the second volume and maintains a substantially constant mass.
  • the gas and the vapor phase of the fluid are immiscible, that is to say that the vapor and the gas substantially do not mix, thus essentially defining two distinct volumes, apart from a small transition zone between the vapor and the gas in which there may be a mixture thereof.
  • the fluid and the gas are respectively polar and apolar, or vice versa.
  • liquid phase of the fluid is saturated with non-condensable gas so that it can not absorb additional amount of it.
  • the pressure of the vapor phase of the fluid becomes more and more important. Since the mass of non-condensable gas is constant, the increase in fluid pressure will result in a reduction in the volume occupied by the non-condensable gas. The non-condensable gas is thus pushed back into the second volume, thus freeing the passage towards the latter. The vapor then enters the second volume where it condenses, the condensed vapor being stored in the reservoir provided in the second volume.
  • the reservoir is designed to accommodate all of the liquid phase of the fluid, and the second passage has a low flow rate so that the liquid escaping therefrom is immediately vaporized, and thus goes up to the reservoir.
  • the release of the passage to the second volume is performed for a single threshold temperature of the fluid and gas, depending on the characteristics of the gas, the fluid and the enclosure, this temperature can be estimated using laws simple thermodynamics.
  • the first and second volumes are separated by at least one solid plug through which an opening in said first passage passes, in particular an opening opening on an inner tube to the second volume.
  • the reservoir is thus delimited in a simple manner by the walls of the enclosure, the solid stopper and the tube.
  • the plug is formed of a material capable of allowing the liquid phase of the fluid to pass from the second volume to the first volume with a high pressure drop which leads to a mass flow rate lower than the mass flow rate defined by the passage of fluid circulation.
  • the plug may be a porous material and / or comprise at least one capillary capable of allowing the liquid phase of the fluid to pass from the second volume to the first volume with a mass flow rate lower than the mass flow rate defined by the fluid circulation passage.
  • the flow rate via the pores or the capillaries of the stopper is less than 10% of the flow rate defined by the fluid flow passage, for example equal to 5%
  • the device comprises a plurality of plugs disposed between the first and second volumes and each traversed by an opening, the openings of the plugs being angularly offset relative to one another, in particular three plugs respectively comprising three openings. angularly separated by 120 °. In this way, the positioning errors of the device during its installation are minimized or even eliminated.
  • the non-condensable gas is neutral with respect to the materials with which it is in contact in the enclosure, which makes it possible to extend the life of the device.
  • a more efficient gas in terms of controlling access to the tank and / or in terms of non-dissolution or miscibility, but reacting with the materials with which it is present, can be used if the application requires it, for example as part of a shorter life device.
  • the non-condensable gas is immiscible with the fluid.
  • the coolant is water or an alkane, especially butane, pentane or hexane
  • the non-condensable gas is air, nitrogen, carbon dioxide or a rare gas , especially argon.
  • the first volume is divided between a condenser, in communication with the first fluid circulation passage, and an evaporator, in communication with the condenser, and, when the device is in the predetermined position, the gas non-condensable at least partially occupies the condenser when the temperature of the gas is lower than a third predetermined temperature of the predetermined range of fluid temperatures, said third temperature being lower than the first predetermined temperature.
  • the non-condensable gas occupies the entire condenser when the temperature thereof is lower than a fourth temperature of the predetermined temperature range, said fourth temperature being lower than the third predetermined temperature.
  • the non-condensable gas also makes it possible to protect the heat transfer fluid for low temperatures deemed to be harmful for the device.
  • the quantity of non-condensable gas is chosen so that the latter completely occupies the volume of the condenser, advantageously for negative temperatures in the field of the solar collectors, thus forcing the coolant to remain in the evaporator, and thus to occupy the the coldest part of the device.
  • This also makes it possible to protect the elements with which the heat pipe is in contact with temperatures considered too low. In particular, in the context of solar collectors with a primary circuit, this also limits the risks of freezing the fluid of the primary circuit.
  • the device In operation, the device is thus positioned in the predetermined position, a hot source is applied to the evaporator, and a cold source is applied at least to the condenser, and preferably also to the second volume.
  • the gaseous plug according to the invention thus makes it possible to effectively define a range of operating temperatures for the device, namely a high temperature of the fluid beyond which the latter is stored in the reservoir, and a low limit of the fluid. below which the latter is stored in the evaporator, the device being disabled for any temperature of the fluid outside this range.
  • FIG. 1 is a schematic sectional view of a device according to a first embodiment of the invention.
  • FIGS. 2A, 2B and 2C are schematic sectional views of the first embodiment according to the invention illustrating a nominal operating thereof;
  • Figures 3A, 3B and 3C are schematic sectional views of the first embodiment according to the invention illustrating the cut-off of the device when the temperature exceeds a high threshold temperature;
  • Figures 4A, 4B and 4C are schematic sectional views of the first embodiment according to the invention illustrating the cutting of the first embodiment when the temperature is below a low threshold temperature;
  • FIG. 5 is a schematic sectional view of a tank cap with a restart mechanism according to a first variant according to the invention
  • FIG. 6 is a schematic sectional view of a tank cap with a restart mechanism according to a second variant of the invention
  • Figures 7A and 7B are schematic sectional views of the first embodiment provided with a tank cap with a restart mechanism illustrating restarting of the device
  • FIG. 8 is a schematic sectional view of a device according to a second embodiment
  • FIG. 9A is a schematic sectional view of a device according to a third embodiment.
  • FIG. 9B is a schematic view illustrating the angular distribution of openings in the plugs of the third embodiment.
  • FIG. 10 is a graph showing the effectiveness of the heat transfer device according to the invention when the temperature exceeds the temperature high limit.
  • a heat pipe 10 or thermosiphon, comprises a sealed chamber 12 formed of a low tubular portion 14 and a tubular portion 16 high coaxial and in communication, the upper part being for example of larger diameter than the lower part.
  • the lower tubular portion 14 comprises at least in its lower part an evaporator 18 intended to receive heat from a hot source 20, for example solar radiation, and an adiabatic portion 22 disposed between the evaporator 18 and the high tubular portion 16.
  • the high tubular portion 16 is for its part to be cooled by a cold source 24, for example a piping system in which circulates a coolant, or primary circuit, carrying the heat collected to a balloon of storage of cold water to be heated.
  • the adiabatic portion is optional, or of very short length, the low tubular portion 14 being for example exposed along its length to the hot source 20.
  • the upper portion 16 is divided between a condenser 26, disposed in the extension of the lower tubular portion 14, and a retention volume 28, positioned at the top, the condenser and the retention volume being separated by a solid plug 30.
  • the plug 30 is sealingly sealed around the inner wall of the upper tubular portion 16, and is traversed, for example in its center, by an opening 32 extending through an inner tube 34, preferably straight, for example cylindrical.
  • the part tubular low 14 and the lower portion 26 of the high tubular portion 16 thus form the useful part of the heat pipe in which is implemented the heat transfer by evaporation / condensation cycles.
  • the reservoir 36 is capable of storing the entire liquid phase of the coolant, thus allowing a cut-off function of the heat pipe 10, as will be explained in more detail below.
  • a coolant 38 for example water, or an alkane, in particular butane, pentane or hexane, is also present in the heat pipe 10 and forms a two-phase system in which the liquid phase and the vapor phase fluid are in equilibrium at least within a predetermined range of fluid temperatures [T m i n ; T max ].
  • a gas 40 that is non-condensable and insoluble in the liquid phase of the coolant 38 in said temperature range is also provided above the fluid 38.
  • the gas 40 is, for example, air, nitrogen, nitrogen, carbon dioxide, or a rare gas, in particular argon.
  • the gas 40 is immiscible in the fluid 38, the fluid and the gas being, for example, respectively polar and apolar fluids, or the liquid phase of the fluid is saturated with gas 40 so that it can not absorb any additional quantity of said fluid. gas. Being non-condensable and not soluble in the fluid 38, the mass of gas 40 is therefore substantially constant and remains permanently located above the fluid 38.
  • the non-condensable gas 40 in particular its mass, as well as the position of the plug 30, and therefore the retention volume 28, are chosen so as to define different temperature operating ranges for the heat pipe 10.
  • the different operating ranges in the range [T m i n ; T max ] are in particular: a temperature range of the fluid 38; 7 ⁇ ], wherein the heat pipe 10 has a nominal operation, in particular a variable thermal efficiency.
  • the non-condensable gas 40 occupies at most a limited or zero volume in the condenser 26 at the lower temperature of the range ⁇ ⁇ ⁇ ' while obstructing the passage formed by the opening 32 and the tube 34 ( Figure 2A).
  • the condenser 26 thus has a minimal condensing surface and therefore the heat pipe 10 has a minimum thermal efficiency.
  • the coolant 38 contained in the evaporator 18 vaporizes under the effect of the heat supplied by the hot source 20, and the vapor rises in the condenser 26 where it condenses on the wall portion of the condenser 26 free gas 40 by conductive transfer of heat to the cold source 24 through said wall.
  • the condensed liquid then returns by gravity in the evaporator following mainly the wall of the heat pipe 10.
  • the non-condensable gas 40 is pushed back to the retention volume 28, thereby releasing a larger surface of the condenser 26, while continuing to obstruct the passage 32, 34 to the volume. 28 ( Figure 2B).
  • the heat pipe 10 then has an increasing thermal efficiency until it becomes maximum at the upper temperature of the range T ⁇ x when the entire condenser is released from the gas 40.
  • the non-condensable gas 40 is entirely contained in the retention volume 28 and is flush with the outlet of the inner tube 34, and thus still opposes the passage of the steam towards the volume of retention 28 (Figure 2C).
  • the length of the passage formed by the opening 32 and the inner tube 34 is chosen to adjust the temperature range of the fluid in which the heat efficiency of the heat pipe 10 is constant. Indeed, once the gas 40 removed from the condenser 26, the gas 40 occupies the passage 32, 34 over a predetermined temperature range depending in particular on the length of the passage 32, 34, and the heat pipe 10 therefore has a constant and maximum efficiency on this temperature range.
  • ⁇ a temperature range of the fluid ⁇ £ TM ⁇ ; ⁇ ⁇ ⁇ ⁇ ⁇ of reduction of thermal efficiency of the heat pipe 10.
  • the pressure of the vapor phase of the coolant is sufficient to push the non-condensable gas 40 out of the passage 32, 34, thus allowing the vapor of the heat transfer fluid contained in the condenser 26 of ascending into the retention volume 28.
  • the retention volume 28 being in contact with the cold source and / or the condenser 26, the vapor condenses on the wall of the retention volume 28 and the liquid then accumulates by gravity in the reservoir 36.
  • the evaporation / condensation cycle continues to be exercised in the heat pipe with degraded efficiency (FIG. 3A). Indeed, as the temperature of the fluid increases, the vapor pressure of the coolant increases and expels an increasing amount of the non-condensable gas 40 in the reservoir 36. The volume that can occupy the condensed liquid in the retention volume 28 thus increases as a function of temperature, so that an increasing amount of liquid is stored in the reservoir 36 ( Figure 3B). The amount of fluid in the evaporator decreasing in proportion, the effective length of the heat pipe, that is to say the length of the evaporator portion whose wall is covered with fluid in its liquid phase, decreases, and therefore the thermal efficiency of the heat pipe decreases.
  • the pressure of the vapor of the coolant is sufficient to release a volume of the reservoir 36 corresponding to the total amount of liquid phase of the coolant, which is then stored entirely in the reservoir 36 and only the vapor of the fluid is contained in the evaporator 18, the adiabatic zone 22 and the condenser 26 (FIG 3C), the heat transfer between the hot source 20 and the cold source 24 is thus interrupted by the disappearance of the The heat pipe 10 is thus cut off and the fluid is stored at the cold source where it is protected from overheating.
  • the mass of gas 40 is advantageously chosen so that at a temperature ⁇ TM ⁇ , the gas occupies the entire volume of the condenser 26 ( Figure 4C).
  • the condensation surface being zero, the evaporation / condensation cycle is then stopped, the heat pipe 10 is consequently cut off.
  • the coolant is further stored in the evaporator 18 and the adiabatic zone 22, which protects in particular the fluid of the primary circuit from excessive cooling.
  • the invention allows using a single non-moving element, for example in the form of the solid plug 30, and a constant non-condensable gas mass, to effectively adjust the operation of the heat pipe 10, and this for several temperature ranges.
  • the temperature ranges are chosen according to the intended application, including the nature of the coolant and / or hot and cold sources.
  • the maximum temperature 7 ⁇ ° " p at which the heat pipe is cut is between 100 ° C. and 200 ° C., and preferably 150 ° C., which makes it possible to protect in particular the fluid of the primary circuit from excessive heating, and the minimum temperature ⁇ TM ⁇ at which the heat pipe is also cut is between 0 and 10 ° C, which protects in particular the fluid of the primary circuit of the gel.
  • the heat pipe 10 is provided with an automatic restart mechanism from the cut-off state, for which the fluid is stored in the tank 36 when the temperature of the fluid falls below a predetermined temperature.
  • the heat pipe 10 comprises a mechanism which implements a leakage of the liquid stored in the tank 36 with a low flow rate, preferably controlled by a circulation through a medium with a high pressure drop, in particular a porous medium, or having wicks. Due to the low leakage rate, the mechanism does not preclude the total storage of the liquid phase of the heat transfer fluid in the tank.
  • the plug 30 is made of a porous material defining fluid passages, then in the liquid phase, from the tank 36 to the condenser 26. In particular, the plug 30 is made into a sintered metal powder.
  • the plug 30 is made of a sealed material and is traversed, in addition to the opening 32, at least one capillary 50 preferably formed closest to the wall of the heat pipe 10, in particular between the plug 30 and the wall of the heat pipe 10.
  • a capillary is a passage whose chosen diameter is very small so as to cause high pressure losses in order to limit the flow rate of liquid.
  • the medium or high pressure loss media are, for example, through holes of small diameter, porous media or metal webs woven very finely.
  • Such fabrics also known as "locks", consist of a fabric of metal wires with a diameter of less than 100 micrometers, for example 40 micrometers.
  • the leakage paths in the plug 30 are advantageously chosen to define a mass flow rate strictly less than the mass flow rate through the passage 32 through which the heat transfer fluid vapor ascends into the retention volume 28, in a very small manner with respect to the mass flow rate at the through the opening 32 of the plug 30, namely a flow rate of less than 10% of the flow rate through the opening 32, and preferably a flow rate equal to 5%.
  • FIGS. 7A and 7B which illustrate, for example, the variant based on capillaries, in operation, when the temperature of the heat transfer fluid is greater than or equal to 7 ° C. , and that consequently the liquid phase of the coolant is stored in the reservoir 36 (FIG. 7A), liquid flows through the stopper 30.
  • the quantity of liquid that has leaked from the reservoir 36 is instantly vaporized, the quantity of additional vapor thus produced being the retention volume 28 to be condensed, in this way all of the coolant in its liquid phase remains stored in the reservoir 36, the heat transfer rate remaining zero for the temperatures above
  • the liquid stored in the reservoir 36 leaks through the stopper 30 and flows along the heat pipe wall to join the evaporator 18. After a predetermined duration depending on the leakage flow, the heat pipe 10 is thus again fully operational.
  • the duration of restarting of the heat pipe can be high, of the order of a few minutes, without that following damaging in view of the significant inertia found in the field of solar collectors and more generally in the field of heat transfer.
  • the invention applies to heat pipes intended to be used in a horizontal or near horizontal position, for example in a position inclined with respect to the direction of gravity with an angle greater than 60 °, as illustrated. to the schematic sectional view of Figure 8 wherein a heat pipe 60 is positioned perpendicular to the gravity g.
  • the inner tube 34 may also be omitted.
  • the plug 30 differs by the position of the opening 32 which is off-center, the opening 32 being made in an upper portion of the plug 30, above the axis A of the tubular portions 12, 14, when the heat pipe 60 is correctly positioned. Decentering the opening 32 makes it possible to store a larger quantity of liquid in the reservoir 62 formed by the wall of the retention volume 28 and the stopper 30.
  • the positioning of the opening 32 is important for implementing the gaseous plug mechanism described above.
  • several solid plugs are provided with openings angularly offset relative to one another. Referring, for example, to FIGS. 9A and 9B, the stopper 30 previously described is replaced by three plugs 70, 72, 74, each provided with a through opening 76, 78, 80 formed at the periphery of the plug, and preferably formed on the edge of the cap.
  • the openings are angularly separated by an angle of 120 °, so that for any position of the heat pipe, there is always an opening positioned above the axis A of the heat pipe, whose access is controlled by the condensable gas.
  • a larger number of plugs may also be envisaged, for example four plugs whose openings are angularly spaced 90 °, five plugs whose openings are angularly spaced 72 °, etc ...
  • the liquid phase of the coolant is contained entirely in the tank for temperatures above a high threshold temperature.
  • only a part of the liquid phase can be stored, for example to define a minimum effective length of the evaporator and / or to allow the use of two different upper and lower hot springs and that we want to draw profit only from the upper source.
  • the tank volume is designed to contain only part of the liquid phase of the coolant.
  • heat pipes having a shutdown mechanism for temperatures below a low threshold temperature.
  • the mass of non-condensable gas introduced into the heat pipe is not sufficient to occupy the entire volume of the condenser, but only for example a minority portion thereof.
  • the process is then continued by the choice of the non-condensable gas.
  • This choice is for example made according to its non-condensable nature at operating temperatures of the heat pipe, as well as its immiscibility properties with the heat transfer fluid, or the toxicity or dangerousness of this gas.
  • the gas may also be selected as being neutral with respect to the materials with which it is in contact in the heat pipe so as to obtain a cutoff mechanism which is stable over a long period of time. period.
  • the retention volume is chosen as low as possible so as to limit the size of the heat pipe.
  • the non-condensable gases having the lowest possible pressure ratio between the cut-off temperatures ⁇ TM ⁇ and Tmax are selected, and therefore gases that are used far from their critical point for the temperature range and temperature. range of operating pressures of the heat pipe.
  • the mass of the latter and the retention volume are chosen as a function of the particular geometry of the heat pipe and the properties of the coolant.
  • the mass of the non-condensable gas and the volume of retention satisfy the following relationships:
  • M g is the mass of the non-condensable gas, this mass being constant since the gas is immiscible in the coolant;
  • p g (T, P) is the volume density of the non-condensable gas as a function of temperature and pressure
  • V ret is the retention volume
  • Vcond is I and volume of the condenser
  • Vcaio I e is the volume of the functional part of the heat pipe (evaporator and condenser section adiabatic);
  • Mfiuide is a mass of heat transfer fluid in the heat pipe
  • Psat, vap (T) is the volume density of the vapor phase of the coolant as a function of temperature
  • Psat, Uq (T) is the volume density of the liquid phase of the coolant as a function of temperature
  • P S at (T) is the pressure of the vapor phase of the coolant. Since the heat transfer fluid is a two-phase system in which the liquid phase is in equilibrium with the vapor phase, the saturation pressure is therefore dependent solely on the temperature. In addition, the gas being in equilibrium with the coolant, the pressure of the gas is therefore also that of the vapor of the coolant. In addition, it is stated that the temperature of the non-condensable gas is equal to that of the vapor of the coolant. Indeed, a large retention volume 28 may possibly induce temperature differences of the order of a few degrees, but the inventors have found that such variations have little influence on the results of the calculations.
  • the relation (1) expresses that, at the temperature ⁇ TM ⁇ , the non-condensable gas is confined in the volume of retention that it occupies in totality.
  • the relation (2) expresses that, at the temperature ⁇ TM ⁇ , the non-condensable gas occupies exactly the retention volume and the condenser.
  • Relation (3) expresses the fact that at the temperature 70 ° p the retention volume divides substantially between the volume of the non-condensable gas and the volume corresponding to the total quantity of the liquid phase of the coolant. that during the phase of accumulation of the coolant in the tank, the amount of vapor present in the retention volume is minimal, this volume being in fact substantially filled with the liquid and the non-condensable gas.
  • the density of the non-condensable gas is, for example, approximated by a model of perfect fluids, in particular gases ideal for gases, the inventors having noted that this type of model makes it possible to design a heat pipe with sufficient precision. Obviously, for a more important precision sought, it is possible to choose more complex models. On the other hand, the properties of the liquid and vapor phases of the coolant are taken under saturation conditions.
  • the relations (1) and (2) form a system of two equations with two unknowns, namely the mass M g of non-condensable gas, and the retention volume V ret , and are easily solvable.
  • the temperature ⁇ ⁇ ⁇ ⁇ of total cutoff of the heat pipe is then given by the relation (3).
  • the user imposes the temperatures ⁇ TM ⁇ and 7 ⁇ ° p as predetermined temperatures, the values M g and V ret are then determined using the relations (1) and (3), and the temperature 7 ⁇ from which coolant begins to be stored in the retention volume is then given by relation (2).
  • the user imposes the retention volume and one of the temperatures ⁇ TM ⁇ , 7 ⁇ , ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the mass M g is then determined according to the relation among the relations (1), (2) and (3) involving the chosen temperature, the other two temperatures then being given by the remaining relationships.
  • the effective length of the heat pipe to a temperature between 7 and Tmax ⁇ P was calculated to be as follows.
  • the effective length determines in particular the percentage of heating power received by the heat pipe that is effectively transmitted to the condenser, and therefore the maximum thermal efficiency of the heat pipe. For example, if the sun-exposed portion of a heat pipe has a length of 2 meters but the effective length of the heat pipe is 1 meter, only half of the heat output received is transferred to the condenser.
  • the amount of liquid phase of the coolant in a heat pipe is preferably chosen to be minimal.
  • this quantity is chosen to just saturate the capillary networks used in a capillary heat pipe, and in the thermosyphon setting, the liquid phase is substantially only present in the form of a liquid film on the wall of the heat pipe.
  • thermosiphon of circular geometry whose tubular parts are of identical diameter
  • mass of liquid is expressed according to the relation:
  • ⁇ D cal0 is the diameter of the heat pipe
  • ⁇ L cal0 is the length of the functional part of the heat pipe
  • ⁇ M is I e caio volume of the functional part of the heat pipe; and ⁇ efiim is the thickness of the liquid phase film covering the wall of the functional part of the heat pipe, this thickness being constant but dependent on the heat transfer fluid, the inclination of the heat pipe and the temperature.
  • FIG. 10 is a diagram illustrating the effective length as a function of the temperature of a heat pipe according to the state of the art and according to the invention, the heat pipe having a cylindrical section evaporator of 8 mm internal diameter and 10 mm of external diameter and length equal to 2000 mm, no adiabatic zone, a condenser with a cylindrical section of 25 mm internal diameter and 27 mm external diameter and length equal to 84 mm.
  • the heat pipe according to the invention also has a retention volume of the same section as the condenser and of length equal to 36 mm. 7 ⁇ temperature is 90 ° C and the temperature m ° ⁇ is equal to 115 ° C.
  • the effective length begins to decrease from 90 ° C to zero at 115 ° C. At this temperature, the heat pipe is cut so that the heat pipe no longer transfers power beyond this temperature except the power corresponding to the flow rate of the plug 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Un dispositif comporte une enceinte étanche (18, 22, 26, 28) renfermant un fluide (38) dont la phase liquide est en équilibre avec la phase vapeur, l'enceinte (18, 22, 26, 28) étant divisée entre un premier volume (18, 22, 26) et un second volume (28) communiquant au travers d'un passage (32, 34), le second volume (28) comportant un réservoir (36) en communication avec le passage (32, 34) et apte à contenir du fluide en phase liquide lorsque le dispositif est dans une position prédéterminée (D). Le second volume (28) renferme un gaz non condensable (40) et non soluble dans la phase liquide du fluide (38), et ledit gaz (40) et le second volume (28) sont choisis de sorte que, lorsque le dispositif est placé dans la position prédéterminée (D), ledit gaz (40): o remplit au moins partiellement le passage (32, 34) lorsque la température du gaz est inférieure à une première température prédéterminée (Τlim max ) de la gamme de températures; et o libère le passage (32, 34) lorsque la température du gaz est supérieure à la première température prédéterminée (Τlim max ) de la gamme de températures.

Description

CALODUC COMPORTANT UN BOUCHON GAZEUX DE COUPURE
DOMAINE DE L'INVENTION
L'invention concerne des dispositifs de transfert de chaleur par transition de phase d'un fluide, notamment des caloducs.
ETAT DE LA TECHNIQUE
Comme cela est connu en soi, un caloduc est un dispositif de transfert de chaleur qui comprend une enceinte étanche, c'est-à-dire ne laissant passer ni les liquides ni les gaz, classiquement réalisée sous la forme d'un tube ou plusieurs tubes coaxiaux, qui contient un fluide dit « caloporteur », dont la phase liquide est en équilibre avec la phase vapeur, également nommé « système diphasique ». L'enceinte se compose d'un évaporateur, localisé à une extrémité de celle-ci et destiné à être chauffé par une source chaude, un condenseur, localisé à l'autre extrémité de l'enceinte et destiné à être refroidi par une source froide, et d'une zone intermédiaire dite « adiabatique », localisée entre l'évaporateur et le condenseur. Sous l'effet de la chaleur de la source chaude, le liquide contenu dans l'évaporateur se vaporise et la vapeur ainsi produite migre vers le condenseur dans lequel elle se condense en transférant de la chaleur à la source froide. Le liquide condensé retourne alors vers l'évaporateur pour un nouveau cycle d'évaporation.
Les caloducs sont classiques et peuvent prendre différentes dénominations en fonction du mécanisme utilisé pour faire revenir le liquide condensé vers l'évaporateur. Ainsi, lorsque la gravité est utilisée, on parle plutôt de « thermosiphons », alors que le terme « caloduc » (« heat pipe » en anglais) est utilisé plutôt pour les mécanismes différents de la gravité, comme par exemple la capillarité, des forces centripètes, électrocinétiques, magnétiques ou osmo tiques.
Dans ce qui suit, le terme de « caloduc » est utilisé comme un terme générique quel que soit le mécanisme de retour de liquide utilisé. Pour plus de détails sur les différents types de caloducs et leur fonctionnement, on pourra par exemple se référer au manuel « Heat Pipes, Theory, Design and Application » de David Reay et Peter Kew, 5eme édition, Butterworth-Heinemann, Oct. 2006. Les caloducs trouvent de nombreuses applications. Dans un premier type d'application, le caloduc a pour fonction de réchauffer une source froide en lui transférant de la chaleur fournie par une source chaude. Par exemple, dans les capteurs solaires, les caloducs sont prévus pour chauffer de l'eau à usage domestique d'un bâtiment à l'aide du rayonnement solaire. Comme cela est connu en soi, un capteur solaire, ou « chauffe-eaux solaires », comporte un caloduc, un circuit dit « primaire » dans lequel circule un fluide caloporteur et un ballon de stockage de l'eau à chauffer. Une première partie du circuit primaire est en échange thermique avec le condenseur du caloduc, et forme ainsi la source froide pour ce dernier, et une seconde partie du circuit primaire est en échange thermique avec le ballon de stockage. Le fluide caloporteur du circuit primaire circulant entre ces deux parties transfert ainsi la chaleur du le caloduc à l'eau du ballon. Les caloducs sont également classiquement utilisés pour transférer de la chaleur depuis une source chaude à des modules à effet Peltier. Dans un second type d'application, le caloduc a pour fonction de refroidir une source chaude en lui prélevant de la chaleur et en transférant la chaleur prélevée à une source froide. C'est le cas par exemple des applications de refroidissement de composants électroniques. Les composants transfèrent leur chaleur au caloduc qui la transmet à son tour au fluide de refroidissement (eau, air...). Ce type de refroidissement est largement utilisé dans le domaine du ferroviaires ou pour le refroidissement des ordinateurs portables.
Toutefois, pour des raisons d'efficacité thermique, les caloducs sont souvent conçus pour capter et emmagasiner un maximum de chaleur en provenance de la source chaude. Ainsi par exemple dans le domaine des capteurs solaires, l'évaporateur d'un caloduc est enfermé dans plusieurs couches de matériaux transparents aux rayonnements solaires entre lesquelles du vide est formé. Le rayonnement solaire se retrouve ainsi piégé dans le caloduc et la chaleur véhiculée par le rayonnement solaire incident est transférée sensiblement en totalité au liquide présent dans l'évaporateur. Des températures supérieures à 250°C peuvent ainsi être atteintes dans l'évaporateur, et ce même pour des ensoleillements faibles. Ces niveaux de température sont alors transmis au fluide du circuit primaire destiné à assurer le transfert entre le caloduc et le ballon de stockage. Ce fluide du circuit primaire est généralement constitué de propylène glycol.
Toutefois, les fluides caloporteurs usuellement utilisés pour les caloducs, ainsi que les fluides caloporteurs des circuits primaires, supportent difficilement les fortes températures sur une longue période sans se dégrader. Notamment, le fluide du circuit primaire s'oxyde et perd ses capacités de transport de chaleur. Sans précautions particulières, on observe ainsi une diminution de l'efficacité des caloducs et/ou de l'efficacité du circuit primaire, et donc du capteur solaire dans son ensemble, parfois au bout de quelques mois, alors que les capteurs solaires sont usuellement destinés à fonctionner sur une période de 20 ans. L'oxydation du fluide du circuit primaire peut également conduire à une attaque chimique des canalisations et des conduites.
Pour pallier ce problème, certains constructeurs, comme par exemple la société Thermomax Ltd., ont conçu un caloduc équipé d'un réservoir de protection ménagé dans le prolongement du condenseur. Le réservoir communique avec ce dernier au travers d'un mécanisme à base de valve thermique qui s'ouvre lorsque la température du caloduc est supérieure à une température prédéterminée. La vapeur du fluide caloporteur entre alors dans le réservoir où elle se condense et est stockée. Etant stocké loin de l'évaporateur, et proche de la source froide, le liquide caloporteur est ainsi protégé des températures excessives. Par ailleurs, la réduction du volume de fluide caloporteur disponible entraîne un assèchement du tube caloduc, ce qui limite la puissance transférée au fluide du circuit primaire et donc sa température. Toutefois, cette solution utilise des pièces mécaniques, c'est-à-dire des organes physiques qui s'ouvrent et se ferment en fonction de la température. Or, des pièces mécaniques s'usent, se grippent, s'oxydent, etc ., ce qui posent un problème de fiabilité sur le long terme. Cette perte de fiabilité, induite par la présence desdites pièces, contrebalance le gain en fiabilité réalisé par ailleurs par la protection apportée au fluide caloporteur.
On notera qu'un problème similaire se pose quel que soit le type d'application envisagée. Notamment, dans de nombreuses applications, un caloduc est associé à un dispositif formant la source froide susceptible d'être endommagée par un chauffage excessif, ou bien il comprend et/ou il est en contact avec des matériaux pouvant se dégrader suite à un tel chauffage. Dans de tels cas, il convient de prévoir un mécanisme de sécurité qui stoppe de manière efficace le transfert de chaleur depuis la source chaude vers la source froide. Un réservoir accessible au fluide caloporteur pour des températures supérieures à une température seuil permet d'obtenir un tel résultat. En effet, à mesure que le fluide caloporteur s'accumule dans le réservoir, l'efficacité du transfert thermique du caloduc diminue jusqu'à être sensiblement nulle lorsqu'il ne reste plus de phase liquide dans l'évaporateur. Le réservoir et le mécanisme d'ouverture et de fermeture du passage entre le condenseur et le réservoir mettent ainsi en œuvre une fonction de coupure du caloduc. Ainsi, une fois la fonction de coupure du caloduc mise en œuvre, le fonctionnement de celui-ci s'arrête. Il n'y a donc plus de transport de chaleur. Plus généralement, le problème se pose dans tout dispositif pourvu d'une enceinte étanche renfermant un système diphasique dont on souhaite stocker la phase liquide en partie ou en totalité dans un réservoir situé hors de la portion fonctionnelle de l'enceinte pour des températures supérieures à une température de seuil prédéterminée.
Le document GB 1 542 277 décrit dans son mode de réalisation de la figure 2 un caloduc diphasique, utilisé en position verticale, comprenant une enceinte hermétique dont le condenseur se prolonge par un réservoir avec lequel il est en communication par une conduite de diamètre réduit. Un gaz non condensable et non miscible avec le fluide caloporteur est introduit dans le caloduc en position haute et autorise ou interdit l'accès du réservoir à la vapeur du fluide caloporteur en fonction de la température. Au-delà d'une température donnée, le gaz non condensable libère le passage vers le réservoir où de la vapeur du fluide caloporteur se condense pour être stockée. Un passage est en outre prévu pour le retour du liquide du fluide caloporteur vers le condenseur, ce passage étant choisi pour que le débit massique du liquide du fluide caloporteur s' échappant du réservoir vers le condenseur soit égal au débit massique de la vapeur du fluide caloporteur entrant dans le réservoir depuis le condenseur. La combinaison du gaz non condensable, du réservoir et du passage de retour de liquide réalise ainsi la régulation du taux de transfert de la chaleur qui est réglé sur une valeur constante indépendante de la température de la source de chaleur. Si ce document prévoit une certaine mesure de protection contre les surchauffes en régulant la quantité de chaleur fournie à la source froide, il ne peut cependant mettre structurellement en œuvre une fonction de coupure du caloduc pour les hautes températures en raison de l'égalité entre la masse de fluide caloporteur entrante dans le réservoir et la masse de fluide caloporteur sortant du réservoir.
Le document JP 2001-153575 décrit un caloduc comprenant une enceinte hermétique dont le condenseur et en communication avec un réservoir. Un gaz non condensable et non miscible avec le fluide caloporteur est introduit dans le caloduc en position haute et permet de contrôler le taux de transfert de chaleur du caloduc en fonction de sa position dans le condenseur pour atteindre un taux de transfert maximal lorsque le gaz: non condensable est entièrement stocké dans son réservoir. Dans ce document, le réservoir a pour unique fonction de stocker le gaz non condensable, rien n'étant prévu pour stocker dans le réservoir le fluide caloporteur dans sa phase liquide. En outre, le but de ce document est d'éviter que du fluide caloporteur n'entre dans le réservoir et ainsi éviter une coupure du caloduc pour de hautes températures. A cet effet, le passage entre le réservoir et le condenseur est coudé et débouche sur une paroi latérale du condenseur, et des parois parallèles sont logées dans le réservoir.
FEUILLE RECTIFIÉE (RÈGLE 91) ISA/EP EXPOSE DE L'INVENTION
Le but de la présente invention est de résoudre le problème de fiabilité susmentionné en proposant un dispositif équipé d'un réservoir de stockage du liquide, dont l'accès est commandé en fonction de la température sans utiliser de pièce mécanique, et mettant en œuvre une fonction de coupure du dispositif pour les hautes températures.
A cet effet, l'invention a pour objet un dispositif comportant une enceinte étanche renfermant un fluide dont la phase liquide est en équilibre avec la phase vapeur dans une gamme prédéterminée de températures, l'enceinte étant divisée en un premier et un second volumes communiquant au travers d'un premier passage de circulation du fluide, permettant à de la phase vapeur du fluide caloporteur de pénétrer dans le second volume par ascension le second volume comportant un réservoir en communication avec ledit passage de circulation, et apte à contenir du fluide en phase liquide lorsque le dispositif est dans une position prédéterminée par rapport à la direction de la gravité.
Selon une caractéristique supplémentaire du dispositif :
le second volume renferme un gaz non condensable dans la gamme prédéterminée de températures et non soluble dans la phase liquide du fluide; et
ledit gaz et le second volume sont choisis de sorte que, lorsque le dispositif est placé dans la position prédéterminée, ledit gaz :
- remplit au moins partiellement le premier passage de circulation lorsque la température du gaz est inférieure à une première température prédéterminée de la gamme de températures; et
- libère le premier passage de circulation lorsque la température du gaz est supérieure à la première température prédéterminée de la gamme de températures.
Selon l'invention :
le réservoir est apte à contenir la totalité du fluide dans sa phase liquide pour une seconde température prédéterminée (7^°"p) de la gamme de températures, supérieure à la première température ( ) ; et
le dispositif comprend un second passage permettant le passage de la phase liquide du fluide caloporteur depuis le réservoir vers le premier volume par gravité avec une perte de charge conduisant à un débit massique de la phase liquide strictement inférieur au débit massique de la phase vapeur défini par le passage de circulation du fluide, de manière à induire stockage de la phase liquide du fluide caloporteur dans le réservoir pour une température supérieure à la seconde température prédéterminée max ) En d'autres termes, l'enceinte est divisée en deux volumes, le premier volume définissant le volume utile du dispositif où se déroulent les cycles d'évaporation/condensation en présence de sources chaude et froide, le second volume définissant quant à lui un espace de stockage du fluide permettant de soustraire le fluide du premier volume. Le dispositif comporte au moins une position permettant un tel stockage, par exemple définie par rapport à la direction de la gravité, le dispositif étant usuellement conçu pour fonctionner dans certaines positions.
Avantageusement, le réservoir, qui correspond à une partie, ou à la totalité, du second volume, est accessible au travers d'un passage dont l'ouverture est contrôlée par un bouchon gazeux, c'est-à-dire un volume de gaz dont la fonction est de former un bouchon « mobile » en fonction de la température en occupant une partie variable du réservoir, et donc par un mécanisme qui ne comporte aucune pièce mécanique.
Etant non condensable dans une gamme de températures de fonctionnement du dispositif, et non so lubie dans la phase liquide du fluide, le gaz formant le bouchon reste donc localisé principalement au niveau du second volume et conserve une masse sensiblement constante.
Avantageusement, le gaz et la phase vapeur du fluide sont non miscibles, c'est-à-dire que la vapeur et le gaz ne se mélangent sensiblement pas, définissant ainsi essentiellement deux volumes bien distincts, hormis une faible zone de transition entre la vapeur et le gaz dans laquelle il peut exister un mélange de ceux-ci. Par exemple, le fluide et le gaz sont respectivement polaire et apolaire, ou vice versa.
En variante, la phase liquide du fluide est saturée en gaz non condensable de sorte qu'elle ne peut absorber de quantité supplémentaire de celui-ci.
Ainsi, à mesure que la température du fluide et du gaz non condensable augmente, la pression de la phase vapeur du fluide devient de plus en plus importante. Comme la masse de gaz non condensable est constante, l'augmentation de la pression du fluide va se traduire par une réduction du volume occupé par le gaz non condensable. Le gaz non condensable est donc repoussé dans le second volume, libérant ainsi le passage vers ce dernier. La vapeur pénètre alors dans le second volume où elle se condense, la vapeur ainsi condensée étant stockée dans le réservoir prévu dans le second volume. Par ailleurs, lorsque le réservoir est conçu pour accueillir la totalité de la phase liquide du fluide, et le second passage a un faible débit de sorte que le liquide s 'échappant par celui- ci est immédiatement vaporisé, et remonte donc vers le réservoir. On obtient alors une fonction de coupure du dispositif. En effet, une fois la phase liquide stockée dans le réservoir, l'évaporateur ne contient que de la phase vapeur, rendant donc impossible le transfert de chaleur au moyen des cycles d'évaporation et de condensation. Le second passage est employé pour remettre en marche le caloduc lorsque la température diminue jusqu'à ce que le gaz non condensable interdise à nouveau l'accès au second volume.
De plus, la libération du passage vers le second volume est réalisée pour une température de seuil unique du fluide et du gaz, dépendant des caractéristiques du gaz, du fluide et de l'enceinte, cette température pouvant être estimée à l'aide de lois simples de la thermodynamique.
Selon un mode de réalisation, le premier et le second volumes sont séparés par au moins un bouchon solide traversé par une ouverture appartenant audit premier passage, notamment une ouverture débouchant sur un tube interne au second volume. Le réservoir est ainsi délimité de manière simple par les parois de l'enceinte, le bouchon solide et le tube.
Notamment, le bouchon est formé d'un matériau apte à permettre le passage de la phase liquide du fluide depuis le second volume vers le premier volume avec une forte perte de charge qui conduit à un débit massique inférieur au débit massique défini par le passage de circulation du fluide. Le bouchon peut être un matériau poreux et/ou comporter au moins un capillaire apte à permettre le passage de la phase liquide du fluide depuis le second volume vers le premier volume avec un débit massique inférieur au débit massique définit par le passage de circulation du fluide. Avantageusement, le débit via les pores ou les capillaires du bouchon est inférieur à 10% du débit défini par le passage de circulation du fluide, par exemple égal à 5%
De cette manière, il existe une faible fuite de liquide depuis le réservoir vers le premier volume, ce qui permet au dispositif de redémarrer de manière automatique une fois la température du fluide redescendue en dessous de la température de seuil. En variante, le bouchon est totalement étanche, hormis l'ouverture le traversant, et le redémarrage du dispositif est réalisé manuellement. Selon un mode de réalisation, le dispositif comporte plusieurs bouchons disposés entre le premier et le second volumes et traversés chacun par une ouverture, les ouvertures des bouchons étant décalées angulairement l'une par rapport à l'autre, notamment trois bouchons comportant respectivement trois ouvertures séparées angulairement de 120°. De cette manière, les erreurs de positionnement du dispositif lors de son installation sont minimisées, voire éliminées.
Selon un mode de réalisation, le gaz non condensable est neutre vis-à-vis des matériaux avec lequel il est en contact dans l'enceinte, ce qui permet de prolonger la durée de vie du dispositif. En variante, un gaz plus efficace en termes de contrôle de l'accès au réservoir et/ou en termes de non dissolution ou miscibilité, mais réagissant avec les matériaux avec lesquels il est en présence, peut être utilisé si l'application le nécessite, par exemple dans le cadre d'un dispositif de plus courte durée de vie.
Selon un mode de réalisation, le gaz non condensable est non miscible avec le fluide. Notamment, le fluide caloporteur est de l'eau ou un alcane, notamment du butane, du pentane ou de l'hexane, et le gaz non condensable est de l'air, de l'azote, du dioxyde de carbone ou un gaz rare, notamment de l'argon.
Selon un mode de réalisation particulier, le premier volume est divisé entre un condenseur, en communication avec le premier passage de circulation du fluide, et un évaporateur, en communication avec le condenseur, et, lorsque le dispositif est dans la position prédéterminée, le gaz non condensable occupe au moins partiellement le condenseur lorsque la température du gaz est inférieure à une troisième température prédéterminée de la gamme prédéterminée de températures du fluide, ladite troisième température étant inférieure à la première température prédéterminée. Notamment, le gaz non condensable occupe la totalité du condenseur lorsque la température de celui-ci est inférieure à une quatrième température de la gamme prédéterminée de température, ladite quatrième température étant inférieure à la troisième température prédéterminée.
En d'autres termes, le gaz non condensable permet également de protéger le fluide caloporteur pour des températures basses jugées dommageable pour le dispositif. Ainsi, à mesure que la température du fluide diminue et s'approche d'une température basse, de moins en moins de surface du condenseur est accessible au fluide, protégeant de ce fait une partie de plus en plus importante de ce dernier de la partie la plus froide du dispositif. Avantageusement, la quantité de gaz non condensable est choisie pour que ce dernier occupe totalement le volume du condenseur, avantageusement pour des températures négatives concernant le domaine des capteurs solaires, obligeant ainsi le fluide caloporteur à rester dans l'évaporateur, et donc à occuper la partie la plus froide du dispositif. Ceci permet également de protéger de températures jugées trop basses des éléments avec lequel le caloduc est au contact. Notamment, dans le cadre de capteurs solaires à circuit primaire, ceci limite également les risques de gel du fluide du circuit primaire.
En fonctionnement, le dispositif est donc positionné dans la position prédéterminée, une source chaude est appliquée à l'évaporateur, et une source froide est appliquée au moins au condenseur, et de préférence également au second volume.
Le bouchon gazeux selon l'invention permet ainsi de définir de manière efficace une gamme de températures de fonctionnement pour le dispositif, à savoir une température haute du fluide au-delà de laquelle ce dernier est stocké dans le réservoir, et une limite basse du fluide en deçà de laquelle ce dernier est stocké dans l'évaporateur, le dispositif étant désactivé pour toute température du fluide en dehors de cette gamme.
BRÈVE DESCRIPTION DES FIGURES
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et réalisée en relation avec les dessins annexés, dans lesquels :
la figure 1 est une vue en coupe schématique d'un dispositif selon un premier mode de réalisation de l'invention ;
les figures 2A, 2B et 2C sont des vues en coupe schématiques du premier mode de réalisation selon l'invention illustrant un fonctionnement nominal de celui-ci ;
les figures 3A, 3B et 3C sont des vues en coupe schématiques du premier mode de réalisation selon l'invention illustrant la coupure du dispositif lorsque la température est supérieure une température de seuil haute ;
les figures les figures 4A, 4B et 4C sont des vues en coupe schématiques du premier mode de réalisation selon l'invention illustrant la coupure du premier mode de réalisation lorsque la température est inférieure une température de seuil basse ;
la figure 5 est une vue schématique en coupe d'un bouchon de réservoir muni d'un mécanisme de redémarrage selon une première variante selon l'invention ;
la figure 6 est une vue schématique en coupe d'un bouchon de réservoir muni d'un mécanisme de redémarrage selon une seconde variante selon l'invention ; les figures 7A et 7B sont des vues schématiques en coupe du premier mode de réalisation pourvu d'un bouchon de réservoir muni d'un mécanisme de redémarrage illustrant le redémarrage du dispositif ;
la figure 8 est une vue schématique en coupe d'un dispositif selon un second mode de réalisation ;
la figure 9A est une vue schématique en coupe d'un dispositif selon un troisième mode de réalisation ;
la figure 9B est une vue schématique illustrant la répartition angulaire des ouvertures ménagées dans des bouchons du troisième mode de réalisation ; et
la figure 10 est une courbe illustrant l'efficacité du transfert de chaleur du dispositif selon l'invention lorsque la température dépasse la température de limite haute.
DESCRIPTION DÉTAILLÉE DE L'INVENTION
Dans ce qui suit, pour des raisons de simplicité de description, les termes « haut », « bas » « au-dessus » et « en dessous » se réfèrent à l'orientation des figures.
En se référant à la figure 1, un caloduc à gravité 10, ou thermosiphon, comprend une enceinte étanche 12 formée d'une partie tubulaire basse 14 et d'une partie tubulaire haute 16 coaxiales et en communication, la partie haute étant par exemple de plus grand diamètre que la partie basse.
La partie tubulaire basse 14 comporte au moins dans sa partie la plus basse un évaporateur 18 destiné à recevoir de la chaleur d'une source chaude 20, par exemple un rayonnement solaire, ainsi qu'une portion adiabatique 22 disposée entre l'évaporateur 18 et la partie tubulaire haute 16. La partie tubulaire haute 16 est quant à elle destinée à être refroidie par une source froide 24, par exemple un système de tuyauterie dans lequel circule un fluide caloporteur, ou circuit primaire, transportant la chaleur collectée à un ballon de stockage d'eau froide à chauffer. La portion adiabatique est optionnelle, ou de très faible longueur, la partie tubulaire basse 14 étant par exemple exposée sur toute sa longueur à la source chaude 20.
La partie haute 16 est divisée entre un condenseur 26, disposé dans le prolongement de la partie tubulaire basse 14, et un volume de rétention 28, positionné en partie haute, le condenseur et le volume de rétention étant séparés par un bouchon solide 30. Le bouchon 30 est scellé de manière étanche sur le pourtour de la paroi interne de la partie tubulaire haute 16, et est traversé, par exemple en son centre, par une ouverture 32 se prolongeant par un tube interne 34, avantageusement droit, par exemple cylindrique. La partie tubulaire basse 14 et la portion basse 26 de la partie tubulaire haute 16 forment donc la partie utile du caloduc dans laquelle est mis en œuvre le transfert de chaleur par des cycles d'évaporation/condensation.
La paroi du volume de rétention 28, le bouchon 30 et le tube interne 34 forment conjointement un réservoir 36 apte à contenir du liquide lorsque le caloduc 10 est dans une position de fonctionnement prédéterminée D, par exemple définie par rapport à la gravité g, plus particulièrement une position D d'angle Θ par rapport à la gravité g appropriée au fonctionnement par gravité du caloduc, par exemple une position D comprise entre Θ = 0 et Θ = 30°, comme cela est connu en soi de l'état de la technique. De préférence, le réservoir 36 est apte à stocker la totalité de la phase liquide du fluide caloporteur, autorisant ainsi une fonction de coupure du caloduc 10, comme cela sera expliqué plus en détail ci-dessous.
Un fluide caloporteur 38, par exemple de l'eau, ou un alcane, notamment du butane, du pentane ou de l'hexane, est en outre présent dans le caloduc 10 et forme un système diphasique dans lequel la phase liquide et la phase vapeur du fluide sont en équilibre au moins dans une gamme prédéterminée de températures du fluide [Tmin ; Tmax].
Enfin, un gaz 40 non condensable et non soluble dans la phase liquide du fluide caloporteur 38 dans ladite gamme de températures est également prévu au-dessus du fluide 38. Le gaz 40 est par exemple de l'air, de l'azote, du dioxyde de carbone, ou un gaz rare, notamment de l'argon.
Le gaz 40 est non miscible dans le fluide 38, le fluide et le gaz étant par exemple respectivement des fluides polaire et apolaire, ou bien la phase liquide du fluide est saturée en gaz 40 de sorte qu'elle ne peut absorber de quantité supplémentaire dudit gaz. Etant non condensable et non soluble dans le fluide 38, la masse de gaz 40 est donc sensiblement constante et reste en permanence localisée au-dessus du fluide 38.
Plus particulièrement, le gaz non condensable 40, notamment sa masse, ainsi que la position du bouchon 30, et donc le volume de rétention 28, sont choisis de manière à définir différentes plages de fonctionnement en température pour le caloduc 10.
En se référant également aux figures 2, 3 et 4, les différentes plages de fonctionnement dans la gamme [Tmin ; Tmax] sont notamment : une plage de températures du fluide 38 ; 7^ ] , dans laquelle le caloduc 10 présente un fonctionnement nominal, notamment une efficacité thermique variable.
Dans cette plage de températures, le gaz non condensable 40 occupe au maximum un volume limité ou nul dans le condenseur 26 à la température inférieure de la gamme ^πύη ' tout en obstruant le passage formé de l'ouverture 32 et du tube 34 (figure 2A).
Le condenseur 26 présente ainsi une surface de condensation minimale et par conséquent le caloduc 10 présente une efficacité thermique minimale.
En fonctionnement, le liquide caloporteur 38 contenu dans l'évaporateur 18 se vaporise sous l'effet de la chaleur communiquée par la source chaude 20, et la vapeur monte dans le condensateur 26 où elle se condense sur la portion de paroi du condenseur 26 libre de gaz 40 en transférant par conduction de la chaleur à la source froide 24 au travers de ladite paroi. Le liquide condensé retourne alors par gravité dans l'évaporateur en suivant principalement la paroi du caloduc 10.
A mesure que la température du fluide caloporteur augmente, le gaz non condensable 40 est repoussé vers le volume de rétention 28, libérant de ce fait une surface plus importante du condenseur 26, tout en continuant d'obstruer le passage 32, 34 vers le volume 28 (figure 2B). Le caloduc 10 a alors une efficacité thermique croissante jusqu'à devenir maximale à la température supérieure de la gamme T^x lorsque la totalité du condenseur est libéré du gaz 40.
A la température supérieure de la gamme Τ ™χ , le gaz non condensable 40 est entièrement contenu dans le volume de rétention 28 et affleure à la sortie du tube interne 34, et s'oppose donc encore au passage de la vapeur vers le volume de rétention 28 (figure 2C).
Dans une variante avantageuse, la longueur du passage formé de l'ouverture 32 et du tube interne 34 est choisie pour régler la plage de températures du fluide dans laquelle l'efficacité thermique du caloduc 10 est constante. En effet, une fois le gaz 40 chassé du condenseur 26, le gaz 40 occupe le passage 32, 34 sur une plage de températures prédéterminée dépendant notamment de la longueur du passage 32, 34, et le caloduc 10 a donc une efficacité constante et maximale sur cette plage de températures. une plage de températures du fluide ] τ£™χ ; Ύ^αχ \ de diminution d'efficacité thermique du caloduc 10.
Lorsque la température du fluide est supérieure à la température , la pression de la phase vapeur du fluide caloporteur est suffisante pour repousser le gaz non condensable 40 hors du passage 32, 34, permettant ainsi à la vapeur du fluide caloporteur contenue dans le condenseur 26 de pénétrer par ascension dans le volume de rétention 28. Le volume de rétention 28 étant au contact de la source froide et/ou du condenseur 26, la vapeur se condense sur la paroi du volume de rétention 28 et le liquide s'accumule alors par gravité dans le réservoir 36.
Parallèlement, le cycle d'évaporation/condensation continue de s'exercer dans le caloduc avec une efficacité dégradée (figure 3A). En effet, à mesure que la température du fluide augmente, la pression de la vapeur du fluide caloporteur augmente et chasse une quantité croissante du gaz non condensable 40 dans le réservoir 36. Le volume que peut occuper le liquide condensé dans le volume de rétention 28 augmente donc en fonction de la température, de sorte qu'une quantité croissante de liquide est stockée dans le réservoir 36 (figure 3B). La quantité de fluide dans l'évaporateur diminuant en proportion, la longueur efficace du caloduc, c'est-à-dire la longueur de la portion d'évaporateur dont la paroi est recouverte de fluide dans sa phase liquide, diminue, et par conséquent l'efficacité thermique du caloduc diminue.
une plage de températures du fluide T≥ Ύ^αχ Pour laquelle le caloduc 10 est coupé.
A la température 7^°"p, la pression de la vapeur du fluide caloporteur est suffisante pour libérer un volume du réservoir 36 correspondant à la quantité totale de phase liquide du fluide caloporteur. Ce dernier est alors stocké en totalité dans le réservoir 36 et seule de la vapeur du fluide est contenu dans l'évaporateur 18, la zone adiabatique 22 et le condenseur 26 (figure 3C). Le transfert de chaleur entre la source chaude 20 et la source froide 24 est ainsi interrompu par la disparition du cycle d'évaporation/condensation du fluide caloporteur. Le caloduc 10 est donc coupé. En outre, le fluide est stocké au niveau de la source froide où il est protégé d'un échauffement excessif.
une plage de températures du fluide ] Τ^Ρ) Τ^ 1 [ de diminution de l'efficacité thermique du caloduc 10. Lorsque la température du fluide caloporteur 38 et du gaz non condensable 40 décroit depuis la température (figure 4A), le gaz 40 occupe une portion de plus en plus importante du condenseur 26, de sorte que la surface de condensation diminue, et corollairement l'efficacité thermique du caloduc 10 qui devient inférieure aux performances nominales du caloduc (figure 4B).
une plage de températures de fluide T≤ 7^°^p pour laquelle le caloduc est coupé.
La masse de gaz 40 est avantageusement choisie pour qu'à une température Τ™ ρ, le gaz occupe la totalité du volume du condenseur 26 (figure 4C). La surface de condensation étant nulle, le cycle d'évaporation/condensation est alors stoppé, le caloduc 10 étant par conséquent coupé. Le fluide caloporteur est en outre stocké dans l'évaporateur 18 et la zone adiabatique 22, ce qui protège notamment le fluide du circuit primaire d'un refroidissement excessif.
Comme on peut le constater, l'invention permet à l'aide d'un seul élément non mobile, par exemple prenant la forme du bouchon solide 30, et d'une masse de gaz non condensable constante, de régler de manière efficace le fonctionnement du caloduc 10, et ce pour plusieurs plages de températures.
Les plages de températures sont choisies en fonction de l'application visée, notamment de la nature du fluide caloporteur et/ou des sources chaude et froide.
Concernant les capteurs solaires, la température maximale 7^°"pà laquelle le caloduc est coupé est comprise entre 100 °C et 200 °C, et de préférence 150 °C, ce qui permet de protéger notamment le fluide du circuit primaire d'un échauffement excessif, et la température minimale Τ™ ρ à laquelle le caloduc est également coupé est comprise entre 0 et 10 °C, ce qui protège notamment le fluide du circuit primaire du gel.
De manière avantageuse, le caloduc 10 est muni d'un mécanisme de redémarrage automatique depuis l'état coupé, pour lequel le fluide est stocké dans le réservoir 36 lorsque la température du fluide descend au-dessous d'une température prédéterminée. Plus particulièrement, le caloduc 10 comporte un mécanisme qui met en œuvre une fuite du liquide stocké dans le réservoir 36 avec un débit faible, de préférence contrôlé par une circulation au travers d'un milieu à forte perte de charge, notamment un milieu poreux, ou comportant des mèches. En raison du faible débit de fuite, le mécanisme ne s'oppose pas au stockage total de la phase liquide du fluide caloporteur dans le réservoir. Dans une première variante, illustrée à la vue en coupe schématique 5, le bouchon 30 est réalisé en un matériau poreux définissant des passages de fluide, alors en phase liquide, depuis le réservoir 36 vers le condenseur 26. Notamment, le bouchon 30 est réalisé en une poudre métallique frittée.
Dans une seconde variante, illustrée à la vue en coupe schématique 6, le bouchon 30 est réalisé en un matériau étanche et est traversé, outre par l'ouverture 32, d'au moins un capillaire 50 formé de préférence au plus proche de la paroi du caloduc 10, notamment entre le bouchon 30 et la paroi du caloduc 10. Comme cela est connu en soi, un capillaire est un passage dont le diamètre choisi est très faible de manière à provoquer de fortes pertes de charges afin de limiter le débit de liquide. Le ou les milieux à fortes pertes de charge sont par exemple des trous traversant de faibles diamètre, des milieux poreux ou des toiles métalliques tissées très finement. De telles toiles, également connues sous le nom de « mèches », consistent en un tissu de fils métalliques d'un diamètre inférieur à 100 micromètres, par exemple 40 micromètres.
Les chemins de fuite dans le bouchon 30 sont avantageusement choisis pour définir un débit massique strictement inférieur au débit massique par le passage 32 par lequel monte la vapeur de fluide caloporteur dans le volume de rétention 28, de manière privilégié faible par rapport au débit massique au travers de l'ouverture 32 du bouchon 30, à savoir un débit inférieur à 10% du débit au travers de l'ouverture 32, et de préférence un débit égal à 5%.
En se référant aux figures 7A et 7B qui illustrent par exemple la variante à base de capillaires, en fonctionnement, lorsque la température du fluide caloporteur est supérieure ou égale à 7^°"p, et que par conséquent la phase liquide du fluide caloporteur est stockée dans le réservoir 36 (figure 7A), du liquide s'écoule au travers du bouchon 30. Toutefois en raison du faible débit, la quantité de liquide ayant fui du réservoir 36 est instantanément vaporisée, la quantité de vapeur supplémentaire ainsi produite remontant dans le volume de rétention 28 pour être condensée. De cette manière, la totalité du fluide caloporteur dans sa phase liquide reste stocké dans le réservoir 36, le taux de transfert de chaleur restant nul pour les températures supérieures à
Lorsque la température du fluide diminue pour être inférieure à la température de fermeture du passage 32, 34 par le gaz non condensable 40 (figure 7B), le liquide stocké dans le réservoir 36 fuit au travers du bouchon 30 et s'écoule le long de la paroi de caloduc pour rejoindre l'évaporateur 18. Après une durée prédéterminée dépendant du débit de fuite, le caloduc 10 est ainsi à nouveau pleinement opérationnel. La durée de redémarrage du caloduc peut être élevée, de l'ordre de quelques minutes, sans que cela suit dommageable compte tenu de l'inertie importante constatée dans le domaine des capteurs solaires et de manière plus générale dans le domaine des transferts thermiques.
Il a été décrit des caloducs à gravité. Bien entendu, le mécanisme de coupure décrit ci- dessus s'applique à tout type de caloduc, le fonctionnement de ce mécanisme étant en effet indépendant du phénomène utilisé pour le retour du fluide caloporteur vers l'évaporateur.
De même, il a été décrit un caloduc dont la position de fonctionnement est proche de la verticale. L'invention s'applique bien évidemment quel que soit le type d'orientation du caloduc.
Notamment, l'invention s'applique à des caloducs destinés à être utilisé dans une position horizontale ou proche de l'horizontale, par exemple dans une position inclinée par rapport à la direction de la gravité avec un angle supérieur à 60°, comme illustré à la vue en coupe schématique de la figure 8 dans laquelle un caloduc 60 est positionné perpendiculairement par rapport à la gravité g.
Un tel caloduc reprend par exemple les éléments décrits précédemment, le tube 34 interne pouvant en outre être omis. De préférence, le bouchon 30 diffère par la position de l'ouverture 32 qui est décentrée, l'ouverture 32 étant réalisé dans une portion haute du bouchon 30, au-dessus de l'axe A des parties tubulaires 12, 14, lorsque le caloduc 60 est correctement positionné. Décentrer l'ouverture 32 permet de stocker une quantité plus importante de liquide dans le réservoir 62 formé de la paroi du volume de rétention 28 et du bouchon 30. Lorsque le diamètre de la partie tubulaire 14 est plus important que le diamètre de la partie tubulaire 12, une quantité de liquide 66 reste à demeure dans le réservoir 62, et la quantité de liquide stockée dans le réservoir une fois que le gaz non condensable 40 libère l'ouverture 32 correspond au volume 66 situé au-dessus du volume occupé par la quantité de liquide à demeure.
Contrairement au caloduc destiné à fonctionner à la verticale, ou dans une position proche de la verticale, le positionnement de l'ouverture 32 est important pour mettre en œuvre le mécanisme de bouchon gazeux décrit précédemment. Afin de minimiser les erreurs de positionnement, plusieurs bouchons solides sont prévus avec des ouvertures décalées angulairement les unes par rapport aux autres. En se référant par exemple aux figures 9A et 9B, le bouchon 30 décrit précédemment est remplacé par trois bouchons 70, 72, 74, chacun pourvu d'une ouverture traversante 76, 78, 80 réalisée en périphérie du bouchon, et de préférence formée sur le bord du bouchon. Les ouvertures sont séparées angulairement d'un angle de 120°, de sorte que pour toute position du caloduc, il existe toujours une ouverture positionnée au-dessus de l'axe A du caloduc, dont l'accès est contrôlé par le gaz condensable. Un nombre plus important de bouchons peut également être envisagé, par exemple quatre bouchons dont les ouvertures sont angulairement espacées de 90°, cinq bouchons dont les ouvertures sont angulairement espacées de 72°, etc...
Il a été décrit des caloducs dans lesquels la phase liquide du fluide caloporteur est contenue entièrement dans le réservoir pour des températures supérieures à une température de seuil haute. En variante, seule une partie de la phase liquide peut être stockée, afin par exemple de définir une longueur efficace minimale de l'évaporateur et/ou de permettre l'utilisation de deux sources chaudes supérieure et inférieure différentes et que l'on veuille tirer profit uniquement de la source supérieure. Notamment, le volume du réservoir est conçu pour ne contenir qu'une partie seulement de la phase liquide du fluide caloporteur.
De même, il a été décrit des caloducs ayant un mécanisme de coupure pour des températures inférieures à une température de seuil basse. En variante, la masse de gaz non condensable introduite dans le caloduc n'est pas suffisante pour occuper la totalité du volume du condenseur, mais uniquement par exemple une partie minoritaire de celui-ci.
Il va à présent être décrit en relation avec l'organigramme de la figure 10, un procédé de conception d'un caloduc selon un premier mode de réalisation.
Le procédé débute par le choix de la géométrie de la partie fonctionnelle du caloduc, à savoir l'évaporateur, le cas échéant la portion adiabatique, et le condenseur, le choix du fluide caloporteur ainsi que le choix des températures Τ ™χ définissant la coupure du caloduc, ces paramètres étant usuellement dictés par l'application visée
Le procédé se poursuit ensuite par le choix du gaz non condensable. Ce choix est par exemple réalisé en fonction de son caractère non condensable aux températures de fonctionnement du caloduc, ainsi que ses propriétés de non miscibilité avec le fluide caloporteur, ou encore la toxicité ou la dangerosité de ce gaz. Le gaz peut également être choisi comme étant neutre vis-à-vis des matériaux avec lesquels il est en contact dans le caloduc de manière à obtenir un mécanisme de coupure qui soit stable sur une longue période. De préférence, le volume de rétention est choisi le plus faible possible de manière à limiter l'encombrement du caloduc. A cet effet, les gaz non condensables ayant un rapport de pression le plus faible possible entre les températures de coupure Τ™ ρ et Tmax sont choisis, et par conséquent des gaz qui sont utilisés loin de leur point critique pour la gamme de températures et la gamme de pressions de fonctionnement du caloduc.
Une fois le gaz non condensable sélectionné, la masse de ce dernier ainsi que le volume de rétention sont choisis en fonction de la géométrie particulière du caloduc et les propriétés du fluide caloporteur.
Plus particulièrement, la masse du gaz non condensable et le volume de rétention satisfont aux relations suivantes :
Mg— Vret * Pg (Ττηαχ ' Psat ftmax ^)) 0)
Mg = {Vret + Vcond) * pg Psat( )) (2) v _ (Mfluide -vcalo*Psat,vap(Tmax )) , % ^ ret — . fTcoup, τ s coup D (rrcoup )
Psat q 'm x > Pg lmax ' sat .'max ))
Mg est la masse du gaz non condensable, cette masse étant constante puisque le gaz est non miscible dans le fluide caloporteur ;
pg (T, P) est la densité volumique du gaz non condensable en fonction de la température et de la pression ;
Vret est le volume de rétention ;
Vcond est Ie volume du condenseur ;
Vcaio est Ie volume de la partie fonctionnelle du caloduc (évaporateur, partie adiabatique et condenseur) ;
Mfiuide est la niasse du fluide caloporteur dans le caloduc ;
Psat,vap (T) est la densité volumique de la phase vapeur du fluide caloporteur en fonction de la température ;
Psat,Uq (T) est la densité volumique de la phase liquide du fluide caloporteur en fonction de la température ; et
PSat(T) est la pression de la phase vapeur du fluide caloporteur. Le fluide caloporteur étant un système diphasique dans lequel la phase liquide est en équilibre avec la phase vapeur, la pression de saturation est donc fonction uniquement de la température. En outre, le gaz étant en équilibre avec le fluide caloporteur, la pression du gaz est donc également celle de la vapeur du fluide caloporteur. En outre, il est posé que la température du gaz non condensable est égale à celle de la vapeur du fluide caloporteur. En effet, un grand volume de rétention 28 peut éventuellement induire des écarts de température de l'ordre de quelques degrés, mais les inventeurs ont constaté que de tels écarts influences peu les résultats des calculs.
La relation (1) exprime, qu'à la température Τ ™χ , le gaz non condensable est confiné dans le volume de rétention qu'il occupe en totalité.
La relation (2) exprime, qu'à la température Τ™ ρ, le gaz non condensable occupe exactement le volume de rétention et le condenseur.
La relation (3) exprime, qu'à la température 7^°"p, le volume de rétention se divise sensiblement entre le volume du gaz non condensable et le volume correspondant à la quantité totale de la phase liquide du fluide caloporteur. On notera que pendant la phase d'accumulation du liquide caloporteur dans le réservoir, la quantité de vapeur présente dans le volume de rétention est minime, ce volume étant en effet essentiellement rempli du liquide et du gaz non condensable.
La densité du gaz non condensable est par exemple approximée par un modèle de fluides parfaits, notamment de gaz parfaits pour les gaz, les inventeurs ayant constaté que ce type de modèle permet de concevoir un caloduc avec suffisamment de précision. Evidemment, pour une précision recherchée plus importante, il est possible de choisir des modèles plus complexes. Par contre les propriétés des phases liquides et vapeur du fluide caloporteur sont prises dans les conditions de saturation.
Ainsi, les relations (1) et (2) forment un système de deux équations à deux inconnues, à savoir la masse Mg de gaz non condensable, et le volume de rétention Vret, et sont solvables aisément. La température Ύ^αχ de coupure totale du caloduc est alors donnée par la relation (3). Selon un second mode de réalisation du procédé de conception, l'utilisateur impose comme températures fixées à l'avance, les températures Τ™ ρ et 7^°"p . Les valeurs Mg et Vret sont alors déterminées à l'aide des relations (1) et (3), et la température 7^ à partir de laquelle du liquide caloporteur commence à être stocké dans le volume de rétention est alors donnée par la relation (2).
Selon un troisième mode de réalisation du procédé de conception, l'utilisateur impose le volume de rétention et l'une des températures Τ™ ρ , 7^ , Ύ^αχ ■ La masse Mg est alors déterminée selon la relation parmi les relations (1), (2) et (3) faisant intervenir la température choisie, les deux autres températures étant alors données par les relations restantes.
En outre, la longueur efficace du caloduc pour une température comprise entre 7^ et Tmax Peut être calculée de la manière suivante. Comme cela est connu, la longueur efficace détermine notamment le pourcentage de puissance calorifique reçue par le caloduc qui est effectivement transmise au condenseur, et par conséquent l'efficacité thermique maximale du caloduc. Par exemple, si la portion exposée au soleil d'un caloduc a une longueur de 2 mètres mais que la longueur efficace du caloduc est égale à 1 mètre, seule la moitié de la puissance calorifique reçue est transférée au condenseur.
De manière connue en soi, la quantité de phase liquide du fluide caloporteur dans un caloduc, quel que soit son mécanisme de retour de la vapeur condensée, est choisie de préférence pour être minimale. Notamment, cette quantité est choisie pour juste saturer les réseaux de capillaires utilisée dans un caloduc à capillarité, et dans le cadre de thermosiphon, la phase liquide est sensiblement uniquement présente sous la forme d'un film liquide sur la paroi du caloduc.
Par exemple dans le cas d'un thermosiphon de géométrie circulaire, dont les parties tubulaires sont de diamètre identique, la masse de liquide s'exprime selon la relation :
M fluide ~ * Dcai0 * 6fnm * i>calo * Psat,liq (4) où :
Dcal0 est le diamètre du caloduc ;
Lcal0 est la longueur de la partie fonctionnelle du caloduc ;
M caio est Ie volume de la partie fonctionnelle du caloduc ; et efiim est l'épaisseur du film de phase liquide recouvrant la paroi de la partie fonctionnelle du caloduc, cette épaisseur étant constante mais dépendante du fluide caloporteur, de l'inclinaison du caloduc et de la température.
La longueur efficace Leff du caloduc pour une température T comprise entre 7^ et m°inp est ainsi calculable en fonction des relations suivantes :
M fluide Vpiege (T) * Psat.liq (^) — 71 * ^calo * efilm * Leff * Psat.liq ( ) ^calo * Psat.vap (T) (6) ou Vpiege est Ie volume de liquide caloporteur stocké dans le volume de rétention à la température T.
A titre d'exemples numériques d'un caloduc à gravité utilisant de l'azote comme gaz non condensable, présentant une température Τ™ ρ = 60°C, une température 7^ = 100°C et une température m°^ = 150°C, et :
ayant un condenseur de volume Vcond = 16 cm3, un volume de rétention Vret = 4 cm3, utilisant de l'eau comme fluide caloporteur, on obtient un volume disponible de stockage pour le liquide caloporteur égal à 3,2 cm3 ;
ayant un condenseur de volume Vcond = 13,8 cm3, un volume de rétention Vret = 6,2 cm3, utilisant de l'hexane comme fluide caloporteur, on obtient un volume disponible de stockage pour le liquide caloporteur égal à 4 cm3
La figure 10 est un tracé illustrant la longueur efficace en fonction de la température d'un caloduc selon l'état de la technique et selon l'invention, le caloduc ayant un évaporateur de section cylindique de 8 mm de diamètre interne et de 10 mm de diamètre externe et de longueur égale à 2000 mm, pas de zone adiabatique, un condenseur de section cylindrique de 25 mm de diamètre interne et de 27 mm de diamètre externe et de longueur égale à 84 mm. Le caloduc selon l'invention dispose en outre d'un volume de rétention de même section que le condenseur et de longueur égale à 36mm. La température 7^ est égale à 90°C, et la température m°^ est égale à 115°C. Comme, on peut l'observer à la vue de la courbe « Edt » illustrant la longueur efficace du caloduc selon l'état de la technique, celle-ci reste constante pour toute température, de sorte que le caloduc fonctionne à puissance maximale, le fluide caloporteur, comme le condenseur, étant ainsi porté à des températures très importantes.
Selon l'invention, illustrée par la courbe « Inv », la longueur efficace commence à décroître dès 90°C pour être nulle à 115°C. A cette température, le caloduc est coupé de sorte que le caloduc ne transfère plus de puissance au-delà de cette température hormis la puissance correspondant au débit de fluite du bouchon 30.

Claims

REVENDICATIONS
1. Dispositif comportant une enceinte étanche (18, 22, 26, 28) renfermant un fluide (38) dont la phase liquide est en équilibre avec la phase vapeur dans une gamme prédéterminée de températures, l'enceinte (18, 22, 26, 28) étant divisée entre un premier volume (18, 22, 26) et un second volume (28) communiquant au travers d'un premier passage de circulation du fluide (32, 34) permettant à de la phase vapeur du fluide caloporteur de pénétrer dans le second volume par ascension, le second volume (28) comportant un réservoir (36) en communication avec le passage (32, 34) et apte à contenir du fluide en phase liquide lorsque le dispositif est dans une position prédéterminée (D) par rapport à la direction de la gravité (g), dispositif dans lequel:
le second volume (28) renferme un gaz non condensable (40) dans la gamme prédéterminée de températures et non so lubie dans la phase liquide du fluide (38);
ledit gaz (40) et le second volume (28) sont choisis de sorte que, lorsque le dispositif est placé dans la position prédéterminée (D), ledit gaz (40): o remplit au moins partiellement le premier passage de circulation (32, 34) lorsque la température du gaz est inférieure à une première température prédéterminée ( 7^ ) de la gamme de températures; et
o libère le premier passage de circulation (32, 34) lorsque la température du gaz est supérieure à la première température prédéterminée (7^ ) de la gamme de températures,
caractérisé :
en ce que le réservoir (36) est apte à contenir la totalité du fluide dans sa phase liquide pour une seconde température prédéterminée (7^°"p) de la gamme de températures, supérieure à la première température ( 7^ ) ;
et en ce que le dispositif comprend un second passage (30, 50) permettant le passage de la phase liquide du fluide caloporteur depuis le réservoir vers le premier volume par gravité avec une perte de charge conduisant à un débit massique de la phase liquide strictement inférieur au débit massique de la phase vapeur défini par le passage de circulation du fluide (32, 34), de manière à induire stockage de la phase liquide du fluide caloporteur dans le réservoir pour une température supérieure à la seconde température prédéterminée max )
2. Dispositif selon la revendication 1, caractérisé en ce que le premier volume (18, 22, 26) et le second volume (28) sont séparés par au moins un bouchon solide (30) traversé par une ouverture (32) appartenant audit premier passage de circulation du fluide, notamment une ouverture débouchant sur un tube (34) interne au second volume (28).
3. Dispositif selon la revendication 2, caractérisé en ce que le bouchon (30) est formé d'un matériau apte à permettre le passage de la phase liquide du fluide (38) depuis le second volume (28) vers le premier volume (18, 22, 26) avec une perte de charge conduisant à un débit massique inférieur au débit massique défini par le passage de circulation du fluide (32, 34), et de préférence un débit inférieur à 10% du débit défini par le passage de circulation du fluide.
4. Dispositif selon la revendication 3, caractérisé en ce que le bouchon (30) est formé par un matériau poreux et/ou comporte au moins un capillaire (50).
5. Dispositif selon l'une quelconque des revendications 2 à 4, caractérisé qu'il comporte plusieurs bouchons (70, 72, 74) disposés entre le premier volume (18, 22, 26) et le second volume (28) et traversés chacun par une ouverture (76, 78, 80), les ouvertures des bouchons étant décalées angulairement l'une par rapport à l'autre, notamment trois bouchons comportant respectivement trois ouvertures séparées angulairement de 120°.
6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit gaz (40) est neutre vis-à-vis des matériaux avec lequel il est en contact dans l'enceinte.
7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit gaz (40) est non miscible avec la phase liquide du fluide (38).
8. Dispositif selon la revendication 7, caractérisé en ce que le fluide (38) est choisi parmi au moins l'eau, le butane et l'hexane, et en ce que ledit gaz (40) est choisi parmi au moins de l'air, l'azote, l'argon et le dioxyde de carbone.
9. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier volume (18, 22, 28) est divisé entre un condenseur (18), en communication avec le premier passage de circulation du fluide (32, 34), et un évaporateur (26), en communication avec le condenseur (18), et en ce que, lorsque le dispositif est dans la position prédéterminée (D), le gaz non condensable (40) occupe au moins partiellement le condenseur (26) lorsque la température du gaz est inférieure à une troisième température prédéterminée (Γ,¾ ) de la gamme prédéterminée de températures, ladite troisième température ( -j^ ) étant inférieure à la première température prédéterminée (Τ ™χ ).
Dispositif selon la revendication 9, caractérisé en ce que le gaz non condensable occupe la totalité du condenseur (18) lorsque la température de celui-ci est inférieure à une quatrième température (Τ™ ρ) de la gamme prédéterminée de température, ladite quatrième température (Τ™ ρ) étant inférieure à la troisième température prédéterminée ).
EP14718664.7A 2013-03-25 2014-03-24 Caloduc comportant un bouchon gazeux de coupure Active EP2981781B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL14718664T PL2981781T3 (pl) 2013-03-25 2014-03-24 Rura cieplna zawierająca odcinającą zatyczkę gazową

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1352659A FR3003636B1 (fr) 2013-03-25 2013-03-25 Caloduc comportant un bouchon gazeux de coupure
PCT/FR2014/050674 WO2014154984A1 (fr) 2013-03-25 2014-03-24 Caloduc comportant un bouchon gazeux de coupure

Publications (2)

Publication Number Publication Date
EP2981781A1 true EP2981781A1 (fr) 2016-02-10
EP2981781B1 EP2981781B1 (fr) 2019-06-12

Family

ID=48521316

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14718664.7A Active EP2981781B1 (fr) 2013-03-25 2014-03-24 Caloduc comportant un bouchon gazeux de coupure

Country Status (4)

Country Link
EP (1) EP2981781B1 (fr)
FR (1) FR3003636B1 (fr)
PL (1) PL2981781T3 (fr)
WO (1) WO2014154984A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3031582B1 (fr) * 2015-01-13 2018-11-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Caloduc comprenant un fluide caloporteur et un gaz absorbable ou adsorbable, et un materiau poreux

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1542277A (en) 1920-04-10 1925-06-16 Ira H Spencer Gas engine
GB1542277A (en) * 1976-03-17 1979-03-14 Secretary Industry Brit Control of sealed evaporation/condensation systems
GB1602093A (en) * 1977-06-14 1981-11-04 Secretary Industry Brit Two-phase thermosiphons
JP2001153575A (ja) * 1999-11-29 2001-06-08 Furukawa Electric Co Ltd:The 可変コンダクタンスヒートパイプ
US20090294117A1 (en) * 2008-05-28 2009-12-03 Lucent Technologies, Inc. Vapor Chamber-Thermoelectric Module Assemblies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014154984A1 *

Also Published As

Publication number Publication date
EP2981781B1 (fr) 2019-06-12
PL2981781T3 (pl) 2019-09-30
FR3003636B1 (fr) 2017-01-13
WO2014154984A1 (fr) 2014-10-02
FR3003636A1 (fr) 2014-09-26

Similar Documents

Publication Publication Date Title
EP2956729B1 (fr) Dispositif de transport de chaleur à fluide diphasique
EP2032440B1 (fr) Dispositif de regulation thermique passive a base de boucle fluide diphasique a pompage capillaire avec capacite thermique
EP3589906B1 (fr) Dispositif thermique a evacuation de securite
EP2795226B1 (fr) Dispositif de refroidissement
EP2756252B1 (fr) Dispositif de transport de chaleur à pompage capillaire
EP1431638A2 (fr) Dispositif de vanne cryogénique à actionneur pneumatique
FR2723187A1 (fr) Systeme de transfert d'energie entre une source chaude et une source froide
EP3004773A1 (fr) Dispositif de transport de chaleur à fluide diphasique
EP2476301B1 (fr) Systeme de controle thermique d'un equipement
EP2981781B1 (fr) Caloduc comportant un bouchon gazeux de coupure
WO2011045507A1 (fr) Dispositif de climatisation perfectionne
FR2991031A1 (fr) Dispositif ameliore de transport de chaleur en boucle fermee
FR2918051A1 (fr) Dispositif evaporateur
EP3194874B1 (fr) Caloduc et procédé de réalisation d'un caloduc.
EP3537026B1 (fr) Systeme, dispositif et procede de regulation de la pression d'un reservoir de fluide
CA1227978A (fr) Systeme de chauffage solaire par changement de phases
EP0767081B1 (fr) Dispositif de récupération de la chaleur des gaz d'échappement d'un véhicule
EP4323711B1 (fr) Dispositif diphasique de transfert de chaleur à réservoir d'excédent de liquide
EP3045837B1 (fr) Caloduc comprenant un fluide caloporteur et un gaz absorbable ou adsorbable, et un materiau poreux
FR3009018B1 (fr) Circuit de refroidissement d'un moteur thermique de vehicule automobile et procede de gestion associe
FR3010776A1 (fr) Systeme de production d'eau chaude sanitaire et de rafraichissement par energie solaire
BE448680A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150921

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 15/06 20060101AFI20181116BHEP

Ipc: F28D 15/04 20060101ALI20181116BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1143106

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014048157

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190612

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190913

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190912

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1143106

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191014

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191012

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014048157

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

26N No opposition filed

Effective date: 20200313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 11

Ref country code: GB

Payment date: 20240318

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240321

Year of fee payment: 11

Ref country code: PL

Payment date: 20240308

Year of fee payment: 11

Ref country code: IT

Payment date: 20240329

Year of fee payment: 11

Ref country code: FR

Payment date: 20240320

Year of fee payment: 11