WO2010137587A1 - 表面欠陥密度が少ないsos基板 - Google Patents
表面欠陥密度が少ないsos基板 Download PDFInfo
- Publication number
- WO2010137587A1 WO2010137587A1 PCT/JP2010/058824 JP2010058824W WO2010137587A1 WO 2010137587 A1 WO2010137587 A1 WO 2010137587A1 JP 2010058824 W JP2010058824 W JP 2010058824W WO 2010137587 A1 WO2010137587 A1 WO 2010137587A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- bonded
- sos
- sapphire
- thin film
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 174
- 230000007547 defect Effects 0.000 title claims abstract description 42
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 66
- 239000010980 sapphire Substances 0.000 claims abstract description 66
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 64
- 239000010703 silicon Substances 0.000 claims abstract description 64
- 239000010409 thin film Substances 0.000 claims abstract description 35
- 239000004065 semiconductor Substances 0.000 claims abstract description 24
- 150000002500 ions Chemical class 0.000 claims abstract description 16
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 230000004913 activation Effects 0.000 claims abstract description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 62
- 239000010408 film Substances 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 30
- 238000005468 ion implantation Methods 0.000 claims description 27
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 20
- 125000004429 atom Chemical group 0.000 claims description 19
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 14
- -1 hydrogen atom ions Chemical class 0.000 claims description 14
- 238000005498 polishing Methods 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- 238000005530 etching Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 8
- 238000000137 annealing Methods 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 238000010884 ion-beam technique Methods 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 4
- 238000003486 chemical etching Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000009832 plasma treatment Methods 0.000 claims description 2
- 150000001793 charged compounds Chemical class 0.000 claims 1
- 238000012546 transfer Methods 0.000 description 17
- 239000007789 gas Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 229910052724 xenon Inorganic materials 0.000 description 9
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 230000035939 shock Effects 0.000 description 6
- 238000001994 activation Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 235000018734 Sambucus australis Nutrition 0.000 description 3
- 244000180577 Sambucus australis Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Chemical compound [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 2
- 230000005465 channeling Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000005224 laser annealing Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 230000005457 Black-body radiation Effects 0.000 description 1
- HEMINMLPKZELPP-UHFFFAOYSA-N Phosdiphen Chemical compound C=1C=C(Cl)C=C(Cl)C=1OP(=O)(OCC)OC1=CC=C(Cl)C=C1Cl HEMINMLPKZELPP-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000005842 heteroatom Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1203—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/2658—Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/268—Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76254—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/84—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
- H01L21/86—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body the insulating body being sapphire, e.g. silicon on sapphire structure, i.e. SOS
Definitions
- the present invention relates to an SOS substrate having a low surface defect density.
- SOS silicon on sapphire
- SOI silicon on insulator
- the surface defect density of the heteroepi SOS is determined by the Secco defect detection method (K 2 Cr 2 O 7 or a mixed solution of Cr 2 O 3 and HF) or the selective etching defect detection method (mixture of HF, KI, I, and CH 3 OH). In the case of (solution), etc., it is reported that it is about 10 9 pieces / cm 2 (for example, see Non-Patent Document 1).
- the defect density is about 10 6 to 10 7 pieces / cm 2 , and it is difficult to manufacture a leading-edge device that has been miniaturized in recent years. It is also difficult to produce a relatively large device such as a system chip that incorporates many functions. This can be said to be rooted in the essential problem of heteroepi growth (epi growth of materials having different lattice constants).
- the present invention has an object to provide an SOS substrate having a low defect density by overcoming the problem of an increase in defect density due to mismatch of lattice constants between silicon and sapphire.
- the present invention is a method for manufacturing an SOS substrate by forming a single crystal silicon layer on the surface of a sapphire substrate (handle), and implanting ions into a silicon substrate or a silicon substrate with an oxide film to form an ion implantation layer.
- Forming a surface applying a surface activation process to at least one of the surface of the sapphire substrate and the surface of the silicon substrate or oxide-coated silicon substrate into which the ions have been implanted, with the silicon substrate or the oxide film
- a heat treatment is performed at 200 ° C. or more and 350 ° C.
- the step of transferring the down thin film on sapphire substrate is a manufacturing method of the SOS substrate including in that order.
- the present invention SOI equivalent bonding defect density (10 4 / cm 2 about: see Non-Patent Document 2), and the integrated device can be realized.
- the SOS substrate according to the present invention includes a single crystal silicon thin film on a sapphire substrate, and the surface defect density of the single crystal silicon thin film measured by the Secco defect detection method and the selective etching defect detection method is 10 4. / Cm 2 or less.
- the Secco defect detection method and the selective etching defect detection method are detection techniques known to those skilled in the art, and will not be described here. These detection methods are generally performed after the single crystal silicon thin film is made to have a predetermined thickness by CMP polishing.
- the thickness of the single crystal silicon thin film can be a value exceeding 100 nm.
- the defect density in the bulk portion is not so high as compared to the vicinity of the interface between the silicon thin film and the sapphire substrate, and there is an advantage that the defect is not easily affected by defects near the interface.
- the silicon thin film is thick, there is an advantage that it is easy to handle because the electric characteristics are relatively insensitive to the thickness variation.
- As an upper limit of thickness it can be 500 nm, for example.
- the thickness variation of the single crystal silicon thin film can be 20 nm or less.
- the silicon thin film is thick, there is an advantage that the electrical characteristics are relatively insensitive to the thickness variation, so that it is easy to handle, but the SOS substrate according to the present invention further improves the electrical properties by the small thickness variation. Can do.
- the film thickness of the single crystal silicon thin film is a value measured by an optical interference film thickness meter and averaged within a diameter of about 1 mm which is the spot diameter of the measurement beam light.
- the thickness variation is a value defined by the square root of the square sum of the film thickness displacement from the average value by providing 361 measurement points radially.
- the SOS substrate according to the present invention preferably has a silicon oxide film sandwiched between the single crystal silicon thin film and the sapphire substrate. This is because an effect of suppressing channeling of implanted ions can be obtained.
- Such an SOS substrate can be obtained, for example, by forming an insulating film such as a silicon oxide film on the surface of the silicon wafer prior to the ion implantation step in the bonding method described later.
- the SOS substrate according to the present invention can be particularly suitably used for manufacturing various devices in which the SOI layer is allowed to function as partial depletion.
- semiconductor devices include, for example, CPUs and system chips incorporating many arithmetic processing functions; high-frequency devices such as microwave devices and millimeter-wave devices that are required to have low dielectric loss; and electrical engineering equipment such as liquid crystal devices. Examples include substrates.
- the SOS substrate according to the present invention has a defect density within the above range even if the diameter is 100 mm or more. If a diameter is in the said range, an upper limit can be 300 mm, for example.
- the SOS substrate is preferably manufactured by a bonding method.
- the bonding method there is an advantage that the correlation between the defect density in the vicinity of the sapphire / silicon interface and the defect density in the bulk portion can be reduced as compared with the epi growth method.
- the bonding method for example, the bonded body is heat-treated at about 500 ° C. in an inert gas atmosphere, and thermal peeling is performed by the effect of crystal rearrangement and the aggregation effect of injected hydrogen bubbles; A method of peeling at the hydrogen ion implantation interface or the like by applying a temperature difference between them may be employed, but it is preferable to employ the method for manufacturing the SOS substrate according to the present invention.
- the manufacturing method of the SOS substrate concerning this invention is demonstrated in detail based on FIG.
- an ion implantation layer 2 is formed by implanting ions into a silicon substrate or a silicon substrate 1 with an oxide film (hereinafter simply referred to as a silicon wafer unless otherwise distinguished).
- the ion implantation layer 2 is formed in a silicon wafer.
- a predetermined dose of hydrogen ions (H + ) or hydrogen molecular ions (H 2 + ) is implanted with an implantation energy that can form an ion implantation layer at a desired depth from the surface.
- the implantation energy can be set to 30 to 100 keV.
- the dose of hydrogen ions (H + ) implanted into the silicon wafer is preferably 1.0 ⁇ 10 16 atoms / cm 2 to 1.0 ⁇ 10 17 atoms / cm 2 . If it is less than 1.0 ⁇ 10 16 atom / cm 2 , the interface may not be embrittled. If it exceeds 1.0 ⁇ 10 17 atom / cm 2 , bubbles are transferred during heat treatment after bonding. It may become defective. A more preferable dose amount is 6.0 ⁇ 10 16 atoms / cm 2 . When hydrogen molecular ions (H 2 + ) are used as implanted ions, the dose is preferably 5.0 ⁇ 10 15 atoms / cm 2 to 5.0 ⁇ 10 16 atoms / cm 2 .
- the interface may not be embrittled. If it exceeds 5.0 ⁇ 10 16 atoms / cm 2 , bubbles are transferred during heat treatment after bonding. It may become defective.
- a more preferable dose amount is 2.5 ⁇ 10 16 atoms / cm 2 .
- an insulating film such as a silicon oxide film of about several to 500 nm is formed on the surface of the silicon wafer in advance and hydrogen ions or hydrogen molecular ions are implanted therethrough, the effect of suppressing channeling of the implanted ions can be obtained. can get.
- the surface of the silicon wafer 1 and / or the surface of the sapphire substrate 3 is activated.
- the surface activation treatment include plasma treatment, ozone water treatment, UV ozone treatment, and ion beam treatment.
- a silicon wafer and / or sapphire substrate cleaned by RCA cleaning or the like is placed in a vacuum chamber, a plasma gas is introduced under reduced pressure, and a high-frequency plasma of about 100 W is applied to 5 to 10 plasma. The surface is exposed to plasma for about 2 seconds.
- plasma gas when processing a silicon wafer, when oxidizing the surface, plasma of oxygen gas, when not oxidizing, hydrogen gas, argon gas, or a mixed gas thereof or a mixed gas of hydrogen gas and helium gas Can be used.
- any gas may be used.
- organic substances on the surface of the silicon wafer and / or sapphire substrate are oxidized and removed, and OH groups on the surface are increased and activated.
- the treatment is more preferably performed on both the ion-implanted surface of the silicon wafer and the bonding surface of the sapphire substrate, but only one of them may be performed.
- ozone When processing with ozone, it is a method characterized by introducing ozone gas into pure water and activating the wafer surface with active ozone.
- the surface When performing UV ozone treatment, the surface is activated by applying short-wave UV light (at a wavelength of about 195 nm) to the atmosphere or oxygen gas to generate active ozone.
- short-wave UV light at a wavelength of about 195 nm
- oxygen gas oxygen gas
- surface activation is performed by exposing an ion beam such as Ar to the wafer surface in a high vacuum ( ⁇ 1 ⁇ 10 ⁇ 6 Torr) to expose a dangling bond having high activity.
- the surface of the silicon wafer that is subjected to the surface activation treatment is preferably an ion-implanted surface.
- the thickness of the silicon wafer is not particularly limited, but a silicon wafer in the vicinity of a normal SEMI / JEIDA standard is easy to handle because of handling. It is desirable that the sapphire substrate has a small energy loss before reaching the ion implantation layer of the silicon wafer to which light in the visible light region (wavelength 400 nm to 700 nm) is bonded, and the transmittance in the visible light region is high.
- the thickness of the sapphire substrate is not particularly limited, but a substrate in the vicinity of a normal SEMI / JEIDA standard is easy to handle because of handling.
- the surface of the silicon wafer 1 and the surface of the sapphire substrate 3 treated with plasma and / or ozone are bonded together as a bonding surface.
- the bonded substrate 6 is subjected to heat treatment at a maximum temperature of 200 ° C. or higher and 350 ° C. or lower to obtain a bonded body 6.
- the reason for performing the heat treatment is to prevent the introduction of crystal defects due to a shift in the bonding interface 9 due to a rapid temperature rise when the bonding interface 9 becomes high temperature by irradiation with visible light in a subsequent process.
- the reason why the maximum temperature is 200 ° C. or higher and 350 ° C. or lower is that the bonding strength does not increase when the temperature is lower than 200 ° C., and the bonded substrate may be damaged when the temperature exceeds 350 ° C.
- the heat treatment time is preferably 12 hours to 72 hours depending on the temperature to some extent.
- mechanical impact may be applied to the vicinity of the bonding interface 9 at the terminal end of the bonded body 6 prior to irradiation with visible light.
- visible light refers to light having a maximum wavelength in the range of 400 to 700 nm. Visible light may be either coherent light or incoherent light.
- the temperature of the joined body 6 at the time of visible light irradiation is preferably 30 ° C. to 100 ° C. higher than the temperature at the time of bonding.
- the reason why it is desirable to perform light irradiation at a high temperature is not intended to limit the technical scope of the present invention, but can be explained as follows. That is, when a substrate bonded at a high temperature is heated and returned to room temperature after sufficient bonding strength is obtained, the substrate warps due to the difference in expansion coefficient between the two substrates. When this substrate is irradiated with light, the stress is suddenly released during thin film transfer, so that the substrate returns to a flat state, and defects are introduced into the transferred semiconductor thin film.
- the laser light passes through the sapphire substrate 3 and is hardly absorbed, it reaches the silicon substrate 1 without heating the sapphire substrate 3.
- the laser beam that has reached is selectively heated only in the vicinity of the silicon bonding interface 9 (including the bonding interface), in particular, the portion that has been made amorphous by hydrogen ion implantation, and promotes embrittlement at the ion implantation site. Further, when a very small part of the silicon substrate 1 (only silicon in the vicinity of the bonding interface 9) is instantaneously heated, the substrate is not cracked or warped after cooling.
- the wavelength of the laser used here is a wavelength that is relatively easily absorbed by silicon (700 nm or less), and amorphous silicon so that the portion that has been made amorphous by hydrogen ion implantation can be selectively heated. It is desirable that the wavelength be absorbed by the single crystal silicon portion and hardly be absorbed by the single crystal silicon portion.
- RTA Rapid Thermal Anneal
- spike annealing may be performed instead of the laser annealing as described above.
- RTA is a device that uses a halogen lamp as a light source and can heat a target wafer by reaching a target temperature at a very high speed of 30 ° C./second to 200 ° C./second.
- the wavelength emitted by the halogen lamp at this time follows black body radiation and has a high emission intensity in the visible light region.
- Spike annealing is not particularly drawn, and RTA has a particularly high rate of temperature rise (for example, 100 ° C./second or more).
- the wavelength of the flash lamp used here it is inevitable that there is a certain wavelength range as long as it is a lamp, but in the wavelength range of 400 nm to 700 nm (wavelength range that is efficiently absorbed by silicon), the peak intensity is It is desirable to have. This is because even if it is less than 400 nm, even single crystal silicon has a high absorption coefficient, and if it exceeds 700 nm, the absorption coefficient is low even for amorphous silicon.
- a suitable wavelength region is about 400 nm to 700 nm.
- heating by a xenon lamp is generally used.
- the peak intensity (at 700 nm or less) of the xenon lamp is around 500 nm, which meets the object of the present invention.
- a filter having a high absorption coefficient in single crystal silicon and blocking visible light of 450 nm or less is also effective for process stabilization.
- a mechanical shock is applied to the end portion of the bonded SOS substrate and the vicinity of the bonding surface, and the heat shock caused by the irradiation of the xenon lamp light starts from the starting portion of the mechanical shock at the end portion. It is important to cause destruction at the ion implantation interface over the entire surface of the bonded SOS substrate.
- the transfer of the silicon thin film to the sapphire substrate cannot be confirmed after laser light irradiation, RTA or flash lamp irradiation, mechanical impact is applied to the interface of the ion-implanted layer, and peeling is performed along the interface, and single crystal silicon Transfer thin film to sapphire substrate.
- a mechanical impact to the interface of the ion-implanted layer for example, a jet of a fluid such as a gas or a liquid may be sprayed continuously or intermittently from the side surface of the wafer.
- mechanical peeling occurs due to the impact.
- the method is not particularly limited. By the peeling process, the SOS substrate 8 of the present invention in which the single crystal silicon thin film 4 is formed on the sapphire substrate 3 is obtained.
- the etching solution used for the chemical etching is preferably one or a combination of two or more selected from the group consisting of ammonia peroxide, ammonia, KOH, NaOH, CsOH, TMAH, EDP, and hydrazine.
- an organic solvent has a slower etching rate than an alkaline solution, and is therefore suitable when precise etching amount control is required.
- CMP polishing is performed in order to make the surface a mirror surface, polishing of 30 nm or more is generally performed. After the CMP polishing and mirror finish polishing, cleaning by a wet process such as RCA cleaning or spin cleaning; and / or cleaning by a dry process such as UV / ozone cleaning or HF vapor cleaning may be performed.
- a wet process such as RCA cleaning or spin cleaning
- a dry process such as UV / ozone cleaning or HF vapor cleaning
- a silicon substrate (thickness: 625 um) having an oxide film grown in advance with a thickness of 200 nm is implanted with hydrogen ions at 57 keV and a dose of 6.0 ⁇ 10 16 atoms / cm 2 , and ion beam activation is performed on both surfaces of the sapphire substrate.
- the film was processed at 150 ° C.
- the substrate was heat-treated at 225 ° C. for 24 hours for temporary bonding, and then irradiated with a green laser having a wavelength of 532 nm from the sapphire substrate side at 200 ° C.
- the laser condition at this time is 20 J / cm 2 .
- the silicon thin film was transferred to sapphire by applying mechanical impact to the bonding interface and peeling off.
- the transfer of the silicon thin film to the entire surface of the substrate was confirmed.
- the silicon layer of this substrate was subjected to CMP polishing to a thickness of 200 nm, and the number of defects was counted by the Seco defect detection method / selective etching method at the center and outer periphery of the substrate.
- the number of pits confirmed by an optical microscope was 3 ⁇ 10 3 / It was about from cm 2 to 5 ⁇ 10 3 pieces / cm 2 .
- An appearance photograph of the bonded SOS produced by this method is shown in FIG.
- peeling / transfer is defined at the ion implantation interface, the film thickness variation after transfer is suppressed, and it is 5 nm or less.
- the film thickness variation after mirror finishing (CMP) was 20 nm or less.
- a silicon substrate (thickness: 625 um) having a diameter of 150 mm on which an oxide film has been grown in advance is implanted with hydrogen ions at 57 keV and a dose of 6.0 ⁇ 10 16 atoms / cm 2 to activate plasma on both surfaces of the sapphire substrate. It processed and bonded together at 200 degreeC.
- the substrate was heat-treated at 225 ° C. for 24 hours for temporary bonding, and then irradiated with a xenon flash lamp from the sapphire substrate side at 250 ° C. After irradiating the entire surface of the substrate, the silicon thin film was transferred to sapphire by applying mechanical impact to the bonding interface and peeling off. The transfer of the silicon thin film to the entire surface of the substrate was confirmed.
- the film thickness variation after transfer was suppressed and was 5 nm or less.
- the film thickness variation after mirror finishing (CMP) was 20 nm or less.
- a silicon substrate having a diameter of 150 mm (thickness: 625 um) having an oxide film grown in advance of 200 nm is implanted with hydrogen ions at 57 keV and a dose of 6.0 ⁇ 10 16 atoms / cm 2 , and UV ozone activity is applied to both surfaces of the sapphire substrate.
- the paste was treated at 100 ° C.
- the substrate was heat-treated at 225 ° C. for 24 hours for temporary bonding, and then irradiated with a xenon flash lamp from the sapphire substrate side at 175 ° C. After irradiating the entire surface of the substrate, the silicon thin film was transferred to sapphire by applying mechanical impact to the bonding interface and peeling off.
- EDP and CMP polishing were performed to make the film thickness about 250 nm. Since peeling and transfer are defined at the ion implantation interface, the film thickness variation after the transfer was suppressed, and it was 5 nm or less. The film thickness variation after mirror finishing (CMP) was 20 nm or less.
- a cross-sectional TEM (transmission electron microscope) photograph of this substrate was taken at two locations, the center and the outer periphery. No defects were observed in the narrow field of view at the TEM level. This photograph is shown in FIG.
- the paste was treated at 100 ° C.
- the substrate was heat-treated at 225 ° C. for 24 hours to perform temporary bonding, and then subjected to RTA treatment from the sapphire substrate side at 175 ° C.
- the temperature rising rate was 50 ° C./second, and the temperature was lowered when the silicon layer reached 800 ° C.
- the silicon thin film was transferred to sapphire by applying mechanical impact to the bonding interface and peeling off.
- EDP and CMP polishing were performed to make the film thickness about 250 nm. Since peeling and transfer are defined at the ion implantation interface, the film thickness variation after the transfer was suppressed, and it was 5 nm or less. The film thickness variation after mirror finishing (CMP) was 20 nm or less.
- the paste was processed and pasted.
- the substrate was heat-treated at 225 ° C. for 24 hours for temporary bonding, and then irradiated with a halogen lamp from the sapphire substrate side and spike annealed at 100 ° C./second. After irradiating the entire surface of the substrate, the silicon thin film was transferred to sapphire by applying mechanical impact to the bonding interface and peeling off.
- CMP polishing was performed to a film thickness of about 250 nm. Since peeling and transfer are defined at the ion implantation interface, the film thickness variation after the transfer was suppressed, and it was 5 nm or less. The film thickness variation after mirror finish (CMP) was 20 nm or less.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Recrystallisation Techniques (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Element Separation (AREA)
Abstract
Description
すなわち、本発明は、サファイア基板(ハンドル)の表面に単結晶シリコン層を形成してSOS基板を製造する方法であって、シリコン基板もしくは酸化膜付きシリコン基板にイオンを注入してイオン注入層を形成する工程、前記サファイア基板の前記表面、および、前記イオンを注入したシリコン基板もしくは酸化膜付きシリコン基板の前記表面の少なくとも一方の面に表面活性化処理を施す工程、前記シリコン基板もしくは酸化膜付きシリコン基板と前記サファイア基板とを貼り合わせた後に200℃以上350℃以下の熱処理を加え、接合体を得る工程、ならびに、前記接合体のサファイア基板側から前記シリコン基板もしくは酸化膜付きシリコン基板のイオン注入層に向けて可視光を照射して前記イオン注入層の界面を脆化し、シリコン薄膜をサファイア基板に転写する工程をこの順に含むSOS基板の製造方法である。
2 イオン注入層
3 サファイア基板
4 薄膜層
5 シリコンウエーハ
6 接合体
7 酸化膜
8 貼り合わせSOS基板
9 貼り合わせ界面
Secco(セコ)欠陥検出法および選択エッチング欠陥検出法は当業者に公知の検出技術であり、ここでは説明を割愛する。これらの検出法は、CMP研磨によって単結晶シリコン薄膜を所定の厚さにした後、行うのが一般的である。
単結晶シリコン薄膜の膜厚は、光干渉式膜厚計で測定され、測定ビーム光のスポット径である直径約1mm内において平均化された値である。厚さバラツキは、測定点を放射状に361点設け、平均値からの膜厚変位の二乗和の平方根によって定義される値である。
かかる半導体デバイスとしては、例えば、多くの演算処理機能を盛り込んだCPUやシステムチップ;誘電損失が少ないことが要求されるマイクロ波デバイス、ミリ波デバイス等の高周波デバイス;液晶装置等の電気工学装置用基板等が挙げられる。
以下、本発明にかかるSOS基板の製造方法について図1に基づいて詳細に説明する。
まず、半導体基板として、例えば、シリコン基板もしくは酸化膜付きシリコン基板1(以下、区別しない限り単にシリコンウェーハと称する)にイオンを注入してイオン注入層2を形成する。
イオン注入層2は、シリコンウエーハ中に形成する。この際、その表面から所望の深さにイオン注入層を形成できるような注入エネルギーで、所定の線量の水素イオン(H+)または水素分子イオン(H2 +)を注入する。このときの条件として、例えば、注入エネルギーは30~100keVとできる。
注入イオンとして水素分子イオン(H2 +)を用いる場合、そのドーズ量は5.0×1015atoms/cm2~5.0×1016atoms/cm2であることが好ましい。5.0×1015atoms/cm2未満であると、界面の脆化が起こらない場合があり、5.0×1016atoms/cm2を超えると、貼り合わせ後の熱処理中に気泡となり転写不良となる場合がある。より好ましいドーズ量は、2.5×1016atom/cm2である。
また、シリコンウエーハの表面にあらかじめ数nm~500nm程度のシリコン酸化膜等の絶縁膜を形成しておき、それを通して水素イオンまたは水素分子イオンの注入を行えば、注入イオンのチャネリングを抑制する効果が得られる。
プラズマで処理をする場合、真空チャンバ中にRCA洗浄等の洗浄をしたシリコンウエーハ及び/又はサファイア基板を載置し、プラズマ用ガスを減圧下で導入した後、100W程度の高周波プラズマに5~10秒程度さらし、表面をプラズマ処理する。プラズマ用ガスとしては、シリコンウエーハを処理する場合、表面を酸化する場合には酸素ガスのプラズマ、酸化しない場合には水素ガス、アルゴンガス、又はこれらの混合ガスあるいは水素ガスとヘリウムガスの混合ガスを用いることができる。サファイア基板を処理する場合はいずれのガスでもよい。
プラズマで処理することにより、シリコンウエーハおよび/又はサファイア基板の表面の有機物が酸化して除去され、さらに表面のOH基が増加し、活性化する。処理はシリコンウエーハのイオン注入した表面、および、サファイア基板の貼り合わせ面の両方について行うのがより好ましいが、いずれか一方だけ行ってもよい。
オゾンで処理をする場合は、純水中にオゾンガスを導入し、活性なオゾンでウェーハ表面を活性化することを特徴とする方法である。
UVオゾン処理をする場合、大気もしくは酸素ガスに短波長のUV光(波長195nm程度)を当て、活性なオゾンを発生させることで表面を活性化することを特徴とする。
イオンビーム処理をする場合、高真空中(<1x10-6Torr)でArなどのイオンビームをウェーハ表面に当てることで、活性度の高いダングリングボンドを露出させることで行う表面活性化である。
本発明においては、シリコンウエーハの厚さは、特に限定されないが、通常のSEMI/JEIDA規格近傍のものがハンドリングの関係から扱いやすい。
サファイア基板は、可視光領域(波長400nm~700nm)の光が貼り合わせたシリコンウェーハのイオン注入層に到達するまでに、エネルギー損失が少ないものであることが望ましく、上記可視光領域の透過率が70%以上の基板であれば特に限定されないが、なかでも絶縁性・透明性にすぐれる点で、石英、ガラスまたはサファイアのいずれかであることが好ましい。
本発明においては、サファイア基板の厚さは、特に限定されないが、通常のSEMI/JEIDA規格近傍のものがハンドリングの関係から扱いやすい。
熱処理時間としては、温度にもある程度依存するが12時間~72時間が好ましい。
本明細書において、「可視光」とは、400~700nmの範囲に極大波長を有する光をいう。可視光は、コヒーレント光またはインコヒーレント光のいずれであってもよい。
光照射を高温下で行うことが望ましい理由は、本発明の技術的範囲を何ら制約するものではないが、以下のように説明が出来る。すなわち、高温で貼り合わせた基板は加熱し充分な結合強度が得られた後に室温に戻した際に、両基板の膨張率の差から基板が反ってしまう。この基板に光を照射すると薄膜転写の際に急激に応力が開放され、基板が平坦な状態に戻ろうとすることで、転写される半導体薄膜に欠陥が導入されることや、場合によっては基板そのものが破損してしまうことがあることが本発明者らの実験により判明したからである。
光照射を高温下で行うことにより、かかる基板破損を回避することができる。
基板を平坦な状態で光照射をするためには、貼り合わせ時と同じ温度近くまで加温するのが望ましい。重要な点は、照射時にウェーハが加熱されている点にある。
またシリコン基板1のごく一部(貼り合わせ界面9の近傍のシリコンのみ)を瞬間的に加熱することで、基板の割れ、冷却後の反りも生じないという特徴を有する。
レーザーの照射条件としては、出力50W~100Wで発振周波数が25mJ@3kHzのものを用いる場合、面積当たりの照射エネルギーが、経験上5J/cm2~30J/cm2であることが望ましい。5J/cm2未満であるとイオン注入界面での脆化が起こらない可能性があり、30J/cm2を超えると脆化が強すぎて基板が破損する可能性があるためである。照射はスポット状のレーザー光をウェーハ上で走査するために、時間で規定することは難しいが、処理後の照射エネルギーが上記の範囲に入っていることが望ましい。
なお、キセノンランプ光を用いる場合、可視光域外の光をカットする波長フィルタを介して照射を行ってもよい。また、単結晶シリコンでの吸収係数の高い、450nm以下の可視光を遮るフィルタなどもプロセスの安定化のために有効である。前述のブリスターの発生を抑えるためには、本キセノンランプ光で貼り合わせSOS基板全面の一括照射を行うことが望ましい。一括照射により、貼り合わせSOS基板の応力局在化を防ぎ、貼り合わせSOS基板の破壊を防ぐことが容易となる。よって、熱剥離を発生させない程度にキセノンランプ光を照射し、然る後に機械剥離を行うことが肝要である。或いは、キセノンランプ光の照射に先立ち、機械的衝撃を貼り合わせSOS基板の端部、貼り合わせ面近傍に与えておき、キセノンランプ光照射による熱の衝撃が端部の機械的衝撃の起点部から貼り合わせSOS基板全面にわたってイオン注入界面に破壊を生ぜしめることが肝要となる。
イオン注入層の界面に機械的衝撃を与えるためには、例えばガスや液体等の流体のジェットを接合したウエーハの側面から連続的または断続的に吹き付ければよいが、衝撃により機械的剥離が生じる方法であれば特に限定はされない。
上記剥離工程により、サファイア基板3上に単結晶シリコン薄膜4が形成された本発明のSOS基板8が得られる。
上記化学的なエッチングに用いるエッチング溶液としては、アンモニア過水、アンモニア、KOH、NaOH、CsOH、TMAH、EDPおよびヒドラジンからなる群より選択される1種または2種以上の組み合わせであることが好ましい。一般に有機溶剤はアルカリ溶液を比較するとエッチング速度が遅いので、正確なエッチング量制御が必要な際には適している。
CMP研磨は、表面を鏡面化するために行うので、通常は30nm以上の研磨を行うのが一般的である。
上記CMP研磨および鏡面仕上げ研磨の後、RCA洗浄やスピン洗浄等のウェットプロセスによる洗浄;および/または、UV/オゾン洗浄やHFベーパー洗浄等のドライプロセスによる洗浄を施してもよい。
Claims (18)
- サファイア基板上に単結晶シリコン薄膜を備え、Secco(セコ)欠陥検出法および選択エッチング欠陥検出法により測定される前記単結晶シリコン薄膜の表面の欠陥密度が、104個/cm2以下であるシリコン・オン・サファイア(SOS)基板。
- 前記単結晶シリコン薄膜の厚さが、100nmを超えることを特徴とする請求項1に記載のSOS基板。
- 前記単結晶シリコン薄膜と前記サファイア基板との間に、シリコン酸化膜が挟まれていることを特徴とする請求項1または2に記載のSOS基板。
- 前記単結晶シリコン薄膜の厚さバラツキが、20nm以下であることを特徴とする請求項1または2に記載のSOS基板。
- 貼り合わせ法により得られたことを特徴とする請求項1または2に記載のSOS基板。
- サファイア基板の表面に半導体薄膜を備えた貼り合わせSOS基板であって、
前記サファイア基板と半導体基板を提供する工程と、
前記半導体基板の表面からイオンを注入してイオン注入層を形成する工程、
前記サファイア基板の前記表面、および、前記イオンを注入した半導体基板の前記表面の少なくとも一方の面に表面活性化処理を施す工程、
前記半導体基板の前記表面と前記サファイア基板の前記表面とを50℃以上350℃以下で貼り合わせる工程、
前記貼り合わせた基板に、最高温度として200℃以上350℃以下の熱処理を加え、接合体を得る工程、
前記接合体を前記貼り合わせ温度より高温状態に設置し、サファイア基板側または半導体基板側から前記半導体基板のイオン注入層に向けて可視光を照射して前記イオン注入層の界面を脆化し、前記半導体薄膜を転写する工程により得られた貼り合わせSOS基板。 - 前記表面活性化処理が、オゾン水処理、UVオゾン処理、イオンビーム処理、プラズマ処理のいずれか、または、これらの2種以上の組み合わせで行われることを特徴とする請求項6に記載の貼り合わせSOS基板。
- 前記可視光照射時の基板温度が、貼り合わせ時の温度よりも30℃から100℃高温であることを特徴とする請求項6または7に記載の貼り合わせSOS基板。
- 前記可視光照射の後、イオン注入層の界面に機械的衝撃を加え、該界面に沿って貼り合わせた基板を剥離する工程を含むことを特徴とする請求項6または7に記載の貼り合わせSOS基板。
- 前記可視光照射に先立ち、前記接合体の終端部の貼り合わせ界面近傍に機械的衝撃を加える工程を含むことを特徴とする請求項6または7に記載の貼り合わせSOS基板。
- 前記半導体基板が、単結晶シリコンもしくは酸化膜を成長させたシリコンであることを特徴とする請求項6または7に記載の貼り合わせSOS基板。
- 前記可視光が、レーザー光であることを特徴とする請求項6または7に記載の貼り合わせSOS基板。
- 前記可視光が、スパイクアニールを含むRTA(Rapid Thermal Anneal)であることを特徴とする請求項6または7に記載の貼り合わせSOS基板。
- 前記可視光が、フラッシュランプ光であることを特徴とする請求項6または7に記載の貼り合わせSOS基板。
- 前記注入イオンが、水素原子イオン(H+)であり、ドーズ量が1×1016atoms/cm2以上1×1017atoms/cm2以下であることを特徴とする請求項6または7に記載の貼り合わせSOS基板。
- 前記注入イオンが、水素原分子イオン(H2 +)であり、ドーズ量が5×1015atoms/cm2以上5×1016atoms/cm2以下であることを特徴とする請求項6または7に記載の貼り合わせSOS基板。
- 前記転写する工程の後、さらに前記半導体薄膜のケミカルエッチング、及び/又は、研磨を行う工程により得られた請求項6または7に記載の貼り合わせSOS基板。
- 請求項1ないし17のいずれかに記載のSOS基板を含む半導体デバイス。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/320,655 US20120119323A1 (en) | 2009-05-29 | 2010-05-25 | Sos substrate having low surface defect density |
EP10780542.6A EP2437281B1 (en) | 2009-05-29 | 2010-05-25 | Method for preparing an sos substrate having low surface defect density |
KR1020117027138A KR101685727B1 (ko) | 2009-05-29 | 2010-05-25 | 표면 결함 밀도가 적은 sos기판 |
US13/946,206 US9214380B2 (en) | 2009-05-29 | 2013-07-19 | SOS substrate having low surface defect density |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-130969 | 2009-05-29 | ||
JP2009130969A JP2010278337A (ja) | 2009-05-29 | 2009-05-29 | 表面欠陥密度が少ないsos基板 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/320,655 A-371-Of-International US20120119323A1 (en) | 2009-05-29 | 2010-05-25 | Sos substrate having low surface defect density |
US13/946,206 Division US9214380B2 (en) | 2009-05-29 | 2013-07-19 | SOS substrate having low surface defect density |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010137587A1 true WO2010137587A1 (ja) | 2010-12-02 |
Family
ID=43222695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/058824 WO2010137587A1 (ja) | 2009-05-29 | 2010-05-25 | 表面欠陥密度が少ないsos基板 |
Country Status (5)
Country | Link |
---|---|
US (2) | US20120119323A1 (ja) |
EP (1) | EP2437281B1 (ja) |
JP (1) | JP2010278337A (ja) |
KR (1) | KR101685727B1 (ja) |
WO (1) | WO2010137587A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014017368A1 (ja) * | 2012-07-25 | 2014-01-30 | 信越化学工業株式会社 | Sos基板の製造方法及びsos基板 |
WO2014017369A1 (ja) * | 2012-07-25 | 2014-01-30 | 信越化学工業株式会社 | ハイブリッド基板の製造方法及びハイブリッド基板 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010278338A (ja) * | 2009-05-29 | 2010-12-09 | Shin-Etsu Chemical Co Ltd | 界面近傍における欠陥密度が低いsos基板 |
SG11201404039UA (en) * | 2012-01-12 | 2014-10-30 | Shinetsu Chemical Co | Thermally oxidized heterogeneous composite substrate and method for manufacturing same |
JP6086031B2 (ja) * | 2013-05-29 | 2017-03-01 | 信越半導体株式会社 | 貼り合わせウェーハの製造方法 |
US10065395B2 (en) | 2013-05-31 | 2018-09-04 | Kyocera Corporation | Composite substrate and method for manufacturing same |
JP6083404B2 (ja) * | 2014-03-17 | 2017-02-22 | 信越半導体株式会社 | 半導体基板の評価方法 |
JP6165127B2 (ja) * | 2014-12-22 | 2017-07-19 | 三菱重工工作機械株式会社 | 半導体装置及び半導体装置の製造方法 |
US10304739B2 (en) * | 2015-01-16 | 2019-05-28 | Sumitomo Electric Industries, Ltd. | Method for manufacturing semiconductor substrate, semiconductor substrate, method for manufacturing combined semiconductor substrate, combined semiconductor substrate, and semiconductor-joined substrate |
FR3034252B1 (fr) * | 2015-03-24 | 2018-01-19 | Soitec | Procede de reduction de la contamination metallique sur la surface d'un substrat |
US10026642B2 (en) * | 2016-03-07 | 2018-07-17 | Sunedison Semiconductor Limited (Uen201334164H) | Semiconductor on insulator structure comprising a sacrificial layer and method of manufacture thereof |
JP7160943B2 (ja) * | 2018-04-27 | 2022-10-25 | グローバルウェーハズ カンパニー リミテッド | 半導体ドナー基板からの層移転を容易にする光アシスト板状体形成 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005005711A (ja) * | 2003-06-12 | 2005-01-06 | Siltronic Ag | Soiウェーハおよびその製造方法 |
JP2007227415A (ja) * | 2006-02-21 | 2007-09-06 | Shin Etsu Chem Co Ltd | 貼り合わせ基板の製造方法および貼り合わせ基板 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5310446A (en) * | 1990-01-10 | 1994-05-10 | Ricoh Company, Ltd. | Method for producing semiconductor film |
JP3500063B2 (ja) * | 1998-04-23 | 2004-02-23 | 信越半導体株式会社 | 剥離ウエーハを再利用する方法および再利用に供されるシリコンウエーハ |
US6224668B1 (en) * | 1998-06-02 | 2001-05-01 | Shin-Etsu Handotai Co., Ltd. | Method for producing SOI substrate and SOI substrate |
TW452866B (en) * | 2000-02-25 | 2001-09-01 | Lee Tien Hsi | Manufacturing method of thin film on a substrate |
US6335263B1 (en) * | 2000-03-22 | 2002-01-01 | The Regents Of The University Of California | Method of forming a low temperature metal bond for use in the transfer of bulk and thin film materials |
TWI226139B (en) * | 2002-01-31 | 2005-01-01 | Osram Opto Semiconductors Gmbh | Method to manufacture a semiconductor-component |
EP1482548B1 (en) * | 2003-05-26 | 2016-04-13 | Soitec | A method of manufacturing a wafer |
WO2006033822A2 (en) * | 2004-09-07 | 2006-03-30 | Massachusetts Institute Of Technology | Fabrication of electronic and photonic systems on flexible substrates by layer transfer method |
US7416924B2 (en) * | 2004-11-11 | 2008-08-26 | Samsung Electronics Co., Ltd. | Organic light emitting display with single crystalline silicon TFT and method of fabricating the same |
JP5064692B2 (ja) * | 2006-02-09 | 2012-10-31 | 信越化学工業株式会社 | Soi基板の製造方法 |
JP5064695B2 (ja) * | 2006-02-16 | 2012-10-31 | 信越化学工業株式会社 | Soi基板の製造方法 |
KR101335713B1 (ko) * | 2007-02-28 | 2013-12-04 | 신에쓰 가가꾸 고교 가부시끼가이샤 | 접합 기판의 제조방법 및 접합 기판 |
JP5442224B2 (ja) * | 2007-07-23 | 2014-03-12 | 株式会社半導体エネルギー研究所 | Soi基板の製造方法 |
JP2009105315A (ja) * | 2007-10-25 | 2009-05-14 | Shin Etsu Chem Co Ltd | 半導体基板の製造方法 |
US20090179160A1 (en) * | 2008-01-16 | 2009-07-16 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor substrate manufacturing apparatus |
JP5420968B2 (ja) | 2009-05-07 | 2014-02-19 | 信越化学工業株式会社 | 貼り合わせウェーハの製造方法 |
JP2010278338A (ja) * | 2009-05-29 | 2010-12-09 | Shin-Etsu Chemical Co Ltd | 界面近傍における欠陥密度が低いsos基板 |
-
2009
- 2009-05-29 JP JP2009130969A patent/JP2010278337A/ja active Pending
-
2010
- 2010-05-25 WO PCT/JP2010/058824 patent/WO2010137587A1/ja active Application Filing
- 2010-05-25 US US13/320,655 patent/US20120119323A1/en not_active Abandoned
- 2010-05-25 KR KR1020117027138A patent/KR101685727B1/ko active IP Right Grant
- 2010-05-25 EP EP10780542.6A patent/EP2437281B1/en active Active
-
2013
- 2013-07-19 US US13/946,206 patent/US9214380B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005005711A (ja) * | 2003-06-12 | 2005-01-06 | Siltronic Ag | Soiウェーハおよびその製造方法 |
JP2007227415A (ja) * | 2006-02-21 | 2007-09-06 | Shin Etsu Chem Co Ltd | 貼り合わせ基板の製造方法および貼り合わせ基板 |
Non-Patent Citations (3)
Title |
---|
"Science of SOI", REALIZE SCIENCE&ENGINEERING CENTER CO., LTD. |
See also references of EP2437281A4 * |
YOSHII ET AL., JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 21, no. 21-1, 1982, pages 175 - 179 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014017368A1 (ja) * | 2012-07-25 | 2014-01-30 | 信越化学工業株式会社 | Sos基板の製造方法及びsos基板 |
WO2014017369A1 (ja) * | 2012-07-25 | 2014-01-30 | 信越化学工業株式会社 | ハイブリッド基板の製造方法及びハイブリッド基板 |
KR20150033687A (ko) * | 2012-07-25 | 2015-04-01 | 신에쓰 가가꾸 고교 가부시끼가이샤 | 하이브리드 기판의 제조 방법 및 하이브리드 기판 |
US20150179506A1 (en) * | 2012-07-25 | 2015-06-25 | Shin-Etsu Chemical Co., Ltd. | Method for producing sos substrates, and sos substrate |
JPWO2014017368A1 (ja) * | 2012-07-25 | 2016-07-11 | 信越化学工業株式会社 | Sos基板の製造方法及びsos基板 |
JPWO2014017369A1 (ja) * | 2012-07-25 | 2016-07-11 | 信越化学工業株式会社 | ハイブリッド基板の製造方法及びハイブリッド基板 |
US9646873B2 (en) | 2012-07-25 | 2017-05-09 | Shin-Etsu Chemical Co., Ltd. | Method for producing SOS substrates, and SOS substrate |
US9837301B2 (en) | 2012-07-25 | 2017-12-05 | Shin-Etsu Chemical Co., Ltd. | Method for producing hybrid substrates, and hybrid substrate |
TWI609434B (zh) * | 2012-07-25 | 2017-12-21 | 信越化學工業股份有限公司 | SOS substrate manufacturing method and SOS substrate |
KR102104147B1 (ko) | 2012-07-25 | 2020-04-23 | 신에쓰 가가꾸 고교 가부시끼가이샤 | 하이브리드 기판의 제조 방법 및 하이브리드 기판 |
Also Published As
Publication number | Publication date |
---|---|
KR20120041164A (ko) | 2012-04-30 |
US20140030870A1 (en) | 2014-01-30 |
EP2437281A4 (en) | 2013-01-16 |
KR101685727B1 (ko) | 2016-12-12 |
EP2437281A1 (en) | 2012-04-04 |
EP2437281B1 (en) | 2014-06-18 |
US9214380B2 (en) | 2015-12-15 |
JP2010278337A (ja) | 2010-12-09 |
US20120119323A1 (en) | 2012-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010137588A1 (ja) | 界面近傍における欠陥密度が低いsos基板 | |
WO2010137587A1 (ja) | 表面欠陥密度が少ないsos基板 | |
JP5643509B2 (ja) | 応力を低減したsos基板の製造方法 | |
JP5420968B2 (ja) | 貼り合わせウェーハの製造方法 | |
JP5455595B2 (ja) | 貼り合わせウェーハの製造方法 | |
JP5496608B2 (ja) | Soi基板の作製方法 | |
JP5389627B2 (ja) | ワイドバンドギャップ半導体を積層した複合基板の製造方法 | |
JP5859496B2 (ja) | 表面欠陥密度が少ないsos基板の製造方法 | |
JP5859497B2 (ja) | 界面近傍における欠陥密度が低いsos基板の製造方法 | |
JP2014220508A (ja) | 貼り合わせ基板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10780542 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20117027138 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010780542 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13320655 Country of ref document: US |