WO2010137346A1 - 表示媒体用粒子およびこの表示媒体用粒子を用いた情報表示用パネル - Google Patents

表示媒体用粒子およびこの表示媒体用粒子を用いた情報表示用パネル Download PDF

Info

Publication number
WO2010137346A1
WO2010137346A1 PCT/JP2010/003618 JP2010003618W WO2010137346A1 WO 2010137346 A1 WO2010137346 A1 WO 2010137346A1 JP 2010003618 W JP2010003618 W JP 2010003618W WO 2010137346 A1 WO2010137346 A1 WO 2010137346A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
display medium
external additive
particle
display
Prior art date
Application number
PCT/JP2010/003618
Other languages
English (en)
French (fr)
Inventor
安西 弘行
利晃 荒井
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN2010800335490A priority Critical patent/CN102460294A/zh
Priority to JP2011515911A priority patent/JPWO2010137346A1/ja
Priority to US13/322,853 priority patent/US20120074359A1/en
Priority to EP10780306A priority patent/EP2437113A4/en
Publication of WO2010137346A1 publication Critical patent/WO2010137346A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • G02F1/1681Gaskets; Spacers; Sealing of cells; Filling or closing of cells having two or more microcells partitioned by walls, e.g. of microcup type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F2001/1678Constructional details characterised by the composition or particle type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present invention relates to a technology related to an information display panel in which a display medium is sealed between two substrates, at least one of which is transparent, and the display medium is moved to display information such as an image.
  • the particles for display medium (hereinafter referred to as particles for display medium) are particles for display medium in a form in which an external additive is attached to the surface of mother particles that are the main body of the particles.
  • a liquid crystal display is widely used as an information display device.
  • liquid crystal display devices have drawbacks such as large power consumption and narrow viewing angle. Therefore, as an alternative to the liquid crystal display device, a plurality of cells partitioned by partition walls are formed between two substrates (for example, glass substrates) at least one of which is transparent, and a display medium configured as a particle group in the cells is provided.
  • a display medium configured as a particle group in the cells.
  • an information display panel that encloses and moves the display medium to display information such as images.
  • the information display panel as described above displays a desired image or the like by, for example, electrically moving a display medium between substrates in accordance with information such as an image.
  • the display medium particles particles (particle groups) repeatedly move in the space between the substrates in accordance with the information requested to be displayed. Then, while an electric field for rewriting is not applied again after the movement, the state can be maintained and images and the like can be stably displayed, so that power consumption can be suppressed.
  • Patent Document 1 discloses display medium particles in which an external additive is attached to mother particles formed with a certain level of rigidity. As a result, excessive burying of the external additive in the mother particles can be suppressed, so that necessary charging characteristics, fluidity, etc. are ensured, and durability for repeated display and rewriting is improved.
  • an object of the present invention is to propose particles for a display medium that can be driven at a low voltage over a long period in a form in which an external additive is adhered.
  • the purpose is to display an information image by moving a display medium by enclosing a display medium having optical reflectivity and chargeability between two substrates, at least one of which is transparent, and applying a charge to the display medium.
  • the display medium particles used in the information display panel have a form in which an external additive is attached to the surface of the base particle as the particle body, and the external additive has an average particle diameter of 7 to 8 nm.
  • the first external additive particles having a small particle size formed so that 80 wt% or more of the whole is contained within ⁇ 2 nm and the particles having a particle size of 10 nm or less are formed to be 10 wt% or less of the whole. It can be achieved by particles for a display medium characterized by containing second external additive particles having a particle size.
  • the mixing ratio of the second external additive particles is 20 wt% or more and 80 wt% or less with respect to the entire external additive when the average particle diameter of the second external additive is 30 nm or more and 40 nm or less. Is preferable.
  • the mixing ratio of the second external additive particles is 30 wt% or more and 80 wt% or less with respect to the entire external additive when the average particle diameter of the second external additive is 20 nm or more and less than 30 nm. Is preferable.
  • the mixing ratio of the second external additive particles is 20 wt% or more and 70 wt% with respect to the entire external additive when the average particle diameter of the second external additive is larger than 40 nm and 100 nm or less. The following is preferable.
  • the total blending ratio of the external additives is preferably 2 to 5 wt% with respect to the mother particles.
  • the first external additive particles and the second external additive particles are preferably both silica fine particles.
  • the display media particles can be provided as a display device that can be manufactured at a low cost and can be driven for a long time at a low voltage.
  • the first external additive particles having a small particle size improve the fluidity and chargeability. Therefore, the function of driving the particles with a lower driving voltage (the function of lowering the driving voltage). ).
  • the display medium particles using the external additive formed of these two types of particles have a low voltage for a long time due to a low driving voltage by the small additive particle and a small particle protection by the large particle size. It can be driven with.
  • An information display panel employing such display medium particles can be provided at a low price because the manufacturing cost can be suppressed.
  • (A), (b) is the figure shown in order to demonstrate the principle structure of the information display panel of the charged particle movement system used as an example using the particle
  • (A), (b) is the figure shown in order to demonstrate the other fundamental structure of the information display panel of the charged particle movement system used as an example using the particle
  • the charged particle movement type information display panel includes a group of particles composed of composite mother particles having chargeability sealed in a space between two opposing substrates, and composite display medium particles having child particles on the surface thereof. An electric field is applied. The display medium particles are attracted by the electric field force or the Coulomb force along the applied electric field direction, and the display medium particles are moved by the change in the electric field direction, thereby displaying information such as an image. Therefore, it is necessary to design the information display panel so that the particles for the display medium move uniformly and can maintain the stability when the display information is rewritten or when the display information is continuously displayed. is there.
  • the force applied to the display medium particles constituting the display medium includes the force due to the electric field, the force attracted by the Coulomb force between the particles, the electric mirror image force between the electrode and the substrate, the intermolecular force, the liquid cross-linking force, gravity, etc. Can be considered.
  • FIGS. 1A and 1B include at least two types having different optical reflectivity and charging characteristics that are configured as a particle group including particles for display medium having at least optical reflectivity and chargeability.
  • the display medium (here, a white display medium 3W configured as a particle group including negatively charged white particles 3Wa and a black display medium 3B configured as a particle group including positively charged black particles 3Ba are shown) Is generated by applying a voltage between an electrode pair formed by the electrode 5 (pixel electrode with TFT) provided on the substrate 1 and the electrode 6 (common electrode) provided on the substrate 2 in each cell formed in (1).
  • the substrate is moved perpendicular to the substrates 1 and 2 according to the electric field.
  • the white display medium 3W is visually recognized by the observer as shown in FIG. 1A, or the black display medium 3B is visually recognized by the observer as shown in FIG. 1B.
  • black and white dot matrix display can be performed.
  • FIG. 1A black and white dot matrix display
  • the electrodes 5 and 6 may be provided outside the substrates 1 and 2, inside the substrate, or embedded in the substrate. Although an example in which a pixel (dot) and a cell are associated with each other on a one-to-one basis is shown, the pixel and the cell may not be associated with each other.
  • the display medium (here, the white display medium 3W configured as a particle group including the negatively charged white particles 3Wa and the black display medium 3B configured as a particle group including the positively charged black particles 3Ba) is shown by the partition walls 4.
  • a voltage is applied between a pair of pixel electrodes formed by an electrode 5 (line electrode) provided on the substrate 1 and an electrode 6 (line electrode) provided on the substrate 2 at an opposing orthogonal intersection.
  • the substrate is moved perpendicular to the substrates 1 and 2 in accordance with the generated electric field.
  • the white display medium 3W is visually recognized by the observer as shown in FIG. 2A, or the black display medium 3B is visually recognized by the observer as shown in FIG. 2B.
  • a black and white dot matrix display is possible.
  • the partition in front is abbreviate
  • the electrodes 5 and 6 may be provided outside the substrates 1 and 2, inside the substrate, or embedded in the substrate. Although an example in which a pixel (dot) and a cell are associated with each other on a one-to-one basis is shown, the pixel and the cell may not be associated with each other.
  • substrates such as a glass substrate, a resin sheet board
  • substrates such as a glass substrate, a resin sheet board
  • substrate can be used as said board
  • substrates such as a glass substrate, a resin sheet board
  • substrate can be used as said board
  • substrates such as a glass substrate, a resin sheet board
  • an electrode for applying a voltage having a predetermined voltage and polarity (positive / negative) common electrode or line electrode 5 described in FIG. 1 or the like
  • TFTs thin film transistors
  • grains used as the object of this invention are demonstrated in detail.
  • the particles for display medium of the present invention can be applied to the information display panel shown in FIGS. 1A and 1B and FIGS. 2A and 2B, and the like. A display medium is formed between them and enclosed.
  • the display medium particles of the present invention are particles having a form in which an external additive is attached to the surface of the base particles.
  • an external additive has been used to improve the fluidity and chargeability of the display medium particles, and generally one size (particle size) has been adopted.
  • the external additive is a fine particle having a particle size of nm (nano) level, it is impossible to manage the external additive with a predetermined particle size.
  • one type here means that particles having a particle size within a certain range (for example, 7 to 8 nm) were used.
  • the particles for display medium according to the present invention employ, as the external additive, those containing the first external additive particle having a small particle size and the second external additive particle having a large particle size. ing.
  • the display medium particles according to the present invention are formed not only to improve fluidity and chargeability to enable driving at a low current but also to maintain them for a long period of time.
  • the display medium particles according to the present invention will be described in order.
  • the mother particles that are the main body of the display medium particles will be described.
  • a charge control agent, a colorant, an inorganic additive, and the like can be included in the base resin that is the main component of the mother particles. Examples of resins, charge control agents, colorants, and other additives will be given below.
  • the base particles of the display medium particles include a pigment as a colorant in the base resin as a main component thereof, and may further include a charge control agent, an inorganic additive, and the like as necessary. Examples of resins, charge control agents, colorants, and other additives will be given below.
  • the resin for the mother particles examples include urethane resin, urea resin, acrylic resin, polyester resin, acrylic urethane resin, acrylic urethane silicone resin, acrylic urethane fluororesin, acrylic fluororesin, silicone resin, acrylic silicone resin, epoxy resin, Examples thereof include polystyrene resin, styrene acrylic resin, polyolefin resin, butyral resin, vinylidene chloride resin, melamine resin, phenol resin, fluororesin, polycarbonate resin, polysulfone resin, polyether resin, polyamide resin, and the like. Two or more of these may be mixed. Moreover, what grind
  • the charge control agent is not particularly limited.
  • the negative charge control agent include salicylic acid metal complexes, metal-containing azo dyes, metal-containing oil-soluble dyes (including metal ions and metal atoms), and quaternary ammonium salt systems. Examples thereof include compounds, calixarene compounds, boron-containing compounds (benzyl acid boron complexes), and nitroimidazole derivatives.
  • the positive charge control agent include nigrosine dyes, triphenylmethane compounds, quaternary ammonium salt compounds, polyamine resins, imidazole derivatives, and the like.
  • metal oxides such as ultrafine silica, ultrafine titanium oxide, ultrafine alumina, nitrogen-containing cyclic compounds such as pyridine and derivatives and salts thereof, various organic pigments, resins containing fluorine, chlorine, nitrogen, etc. are also charged. It can also be used as a control agent.
  • colorant various organic or inorganic pigments and dyes as exemplified below can be used.
  • black colorant include carbon black, copper oxide, manganese dioxide, aniline black, activated carbon and the like.
  • blue colorants include C.I. I. Pigment blue 15: 3, C.I. I. Pigment Blue 15, Bituminous Blue, Cobalt Blue, Alkaline Blue Lake, Victoria Blue Lake, Phthalocyanine Blue, Metal-free Phthalocyanine Blue, Phthalocyanine Blue Partial Chlorides, Fast Sky Blue, Indanthrene Blue BC, and the like.
  • red colorants include bengara, cadmium red, red lead, mercury sulfide, cadmium, permanent red 4R, resol red, pyrazolone red, watching red, calcium salt, lake red D, brilliant carmine 6B, eosin lake, rhodamine lake B, Alizarin Lake, Brilliant Carmine 3B, C.I. I. Pigment Red 2 etc.
  • Yellow colorants include yellow lead, zinc yellow, cadmium yellow, yellow iron oxide, mineral first yellow, nickel titanium yellow, navel yellow, naphthol yellow S, Hansa yellow G, Hansa yellow 10G, benzidine yellow G, and benzidine yellow.
  • GR Quinoline Yellow Lake, Permanent Yellow NCG, Tartrazine Lake, C.I. I. Pigment Yellow 12 etc.
  • green colorants include chrome green, chromium oxide, pigment green B, C.I. I. Pigment Green 7, Malachite Green Lake, Final Yellow Green G, etc.
  • orange colorant examples include red chrome yellow, molybdenum orange, permanent orange GTR, pyrazolone orange, Vulcan orange, indanthrene brilliant orange RK, benzidine orange G, indanthrene brilliant orange GK, C.I. I. Pigment Orange 31 etc.
  • purple colorants include manganese purple, first violet B, and methyl violet lake.
  • white colorants include zinc white, titanium oxide, antimony white, and zinc sulfide.
  • extender pigments examples include barite powder, barium carbonate, clay, silica, white carbon, talc, and alumina white.
  • various dyes such as basic, acidic, disperse, and direct dyes include nigrosine, methylene blue, rose bengal, quinoline yellow, and ultramarine blue.
  • inorganic additives include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, cadmium orange, titanium yellow, Examples include bitumen, ultramarine blue, cobalt blue, cobalt green, cobalt violet, iron oxide, carbon black, manganese ferrite black, cobalt ferrite black, copper powder, and aluminum powder. These pigments and inorganic additives can be used alone or in combination. Of these, carbon black is particularly preferable as the black pigment, and titanium oxide is preferable as the white pigment.
  • the above colorant can be blended to produce mother particles that are display medium particle precursors of a desired color.
  • the mother particle serving as the particle body in the display medium particle of the present application may be a single particle or a composite particle formed by arranging other particles (child particles) on the surface thereof. May be.
  • the child particles are fixed or embedded on the surface of the large mother particle main body, and the smallest external additive is adhered to the outer side to form the display medium particles.
  • the display medium particle according to the present invention is a novel form in which two types of external additives having a large particle size and a small particle size are attached to the surface of the mother particle.
  • an external additive including a first external additive particle group having a small particle size and a second external additive particle group having a large particle size is employed.
  • the first external additive particle group having a small particle diameter has an average particle diameter (primary particle diameter) of 7 to 8 nm, and 80 wt% or more of the whole falls within ⁇ 2 nm from the median value.
  • the second external additive particle group having a large particle diameter particles having a particle diameter of 10 nm or less are formed to 10 wt% or less of the whole.
  • silica can be suitably employed.
  • silica having a small particle size can be synthesized by a flame method using SiCl 4, and silica having a large particle size can be prepared by a precipitation method or a wet method using silica gel.
  • These silica external additives are preferably subjected to a hydrophobic treatment.
  • the mixing ratio of the second external additive particles having a large diameter is preferably 20 to 80 wt% with respect to the entire external additive. When the external additive having a large diameter is 20 wt% or less, the particles are easily aggregated. When the external additive is 80 wt% or more, the fluidity is impaired, and as a result, the particles are similarly easily aggregated.
  • the mixing ratio of the second external additive particles is preferably 20 wt% or more and 80 wt% or less with respect to the entire external additive when the average particle diameter is 30 nm or more and 40 nm or less.
  • the average particle size is 20 nm or more and less than 30 nm, it is preferably 30 wt% or more and 80 wt% or less with respect to the entire external additive.
  • the average particle diameter is larger than 40 nm and 100 nm or less, it is preferable that the average particle diameter is 20 wt% or more and 70 wt% or less with respect to the entire external additive.
  • the total blending ratio of the external additives is preferably 2 to 5 wt% with respect to the mother particles. If it is 2 wt% or less, sufficient fluidity cannot be obtained, and if it is 5 wt%, it is preferable to be in this range because defects such as desorption from the mother particles are significant.
  • the present inventors have observed the state of the external additive adhering to the surface of the mother particle, and the conventional external additive can improve the fluidity and the like, thus contributing to the low voltage drive of the particle. It was confirmed that it was easily damaged by long-term use. When the display is repeatedly rewritten, if the external additive is damaged, it tends to aggregate, so that the problem of increase in the driving voltage pointed out above occurs.
  • the display medium particles according to the present application are small particles that function to improve fluidity and the like in the same manner as conventional external additives, and particles that are larger than this, for example, 1.5 times to 10 times. A particle having a particle size larger than double is mixed to form an external additive, and this mixture is adhered to the surface of the mother particle.
  • the external additive for small-sized particles sufficiently functions to improve the fluidity and drive the particles with a low driving voltage, and the external additive for large-sized particles breaks the small-sized particles. It plays the function of preventing it.
  • the display medium particles according to the present invention become display medium particles that can not only drive the particles with a low driving voltage but also maintain the particles for a long period of time.
  • At least one substrate is a transparent substrate on which the color of the display medium can be confirmed from the outside of the panel, and a material having high visible light transmittance and good heat resistance is suitable.
  • the back substrate as the other substrate may be transparent or opaque.
  • substrate materials include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethylene (PE), polycarbonate (PC), polyimide (PI), polyethersulfine (PES), and organic polymer substrates such as acrylic.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PE polyethylene
  • PC polycarbonate
  • PI polyimide
  • PES polyethersulfine
  • organic polymer substrates such as acrylic.
  • a glass sheet, a quartz sheet, a metal sheet, or the like is used, and a transparent one is used on the display surface side.
  • the thickness of the substrate is preferably 2 to 2000 ⁇ m, and more preferably 5 to 1000 ⁇ m. If it is too thin, it will be
  • the material for forming the electrode provided on the substrate includes metals such as aluminum, silver, nickel, copper, and gold, indium tin oxide (ITO), indium zinc oxide (IZO), and zinc aluminum oxide (AZO). And conductive metal oxides such as indium oxide, conductive tin oxide, antimony tin oxide (ATO), and conductive zinc oxide, and conductive polymers such as polyaniline, polypyrrole, and polythiophene. Can be used.
  • metals such as aluminum, silver, nickel, copper, and gold
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • AZO zinc aluminum oxide
  • conductive metal oxides such as indium oxide, conductive tin oxide, antimony tin oxide (ATO), and conductive zinc oxide
  • conductive polymers such as polyaniline, polypyrrole, and polythiophene.
  • a method of forming the electrode As a method of forming the electrode, a method of patterning and forming the above-exemplified materials into a thin film by sputtering, vacuum deposition, CVD (chemical vapor deposition), coating, or the like, or a method of laminating metal foil (for example, rolled copper foil) Method) and a method of forming a pattern by mixing a conductive agent with a solvent or a synthetic resin binder and applying it.
  • the electrodes provided on the information display screen region of the viewing side (display surface side) substrate need to be transparent, but the electrodes provided outside the information display screen region and on the back side substrate do not need to be transparent.
  • the above-mentioned material that is conductive and capable of pattern formation can be suitably used.
  • the electrode thickness may be 0.01 to 10 ⁇ m, preferably 0.05 to 5 ⁇ m, as long as conductivity is ensured and light transmittance is not hindered.
  • the material and thickness of the electrode provided on the back side substrate are the same as those of the electrode provided on the display surface side substrate described above, but need not be transparent.
  • the shape of the partition provided on the substrate is appropriately set according to the type of display medium involved in display, the shape and arrangement of the electrodes to be arranged, and is not limited in general.
  • the width of the partition is 2 to 100 ⁇ m, preferably 3 ⁇ 50 ⁇ m.
  • the height of the partition wall can be within the inter-substrate gap, the substrate gap securing portion being the same as the inter-substrate gap, and the other cell forming portions being the same or lower than the inter-substrate gap.
  • a both-rib method in which ribs are formed on each of the opposing substrates 1 and 2 and then bonded, and a single-rib method in which ribs are formed only on one substrate are conceivable.
  • any method is preferably used.
  • the height of the partition wall is adjusted to the distance between the substrates, but may be partially lower than the distance between the substrates.
  • the cells formed by the partition walls made of these ribs are exemplified by, for example, a square shape, a triangular shape, a line shape, a circular shape, and a hexagonal shape as viewed from the plane of the substrate. The shape is illustrated. It is better to make the portion corresponding to the cross section of the partition wall visible from the display surface side (the area of the cell frame portion) as small as possible, and the clearness of the display state can be increased.
  • Examples of the method for forming the partition include a mold transfer method, a screen printing method, a sand blast method, a photolithography method, and an additive method. Any of these methods can be suitably used for an information display panel mounted on the information display device of the present invention, and among these, a photolithography method using a resist film and a mold transfer method are preferably used.
  • the particles for display medium have an average particle diameter d (0.5) in the range of 1 to 20 ⁇ m and are uniform and uniform. If the average particle diameter d (0.5) is larger than this range, the display is not clear. If the average particle diameter d (0.5) is smaller than this range, the cohesive force between the particles becomes too large, which hinders movement as a display medium.
  • the particle size distribution of each display medium particle it is desirable that the particle size distribution Span represented by the following formula is less than 5, preferably less than 3.
  • Span (d (0.9) ⁇ d (0.1)) / d (0.5) (However, d (0.5) is a numerical value expressing the particle diameter in ⁇ m that 50% of the particles are larger than this and 50% is smaller than this, and d (0.1) is a particle in which the ratio of the smaller particles is 10%.
  • the average grain of the display media having the larger average particle diameter d (0.5) It is important that the ratio between the diameter and the average particle diameter of the display medium having the smaller average particle diameter d (0.5) is 10 or less. Even if the particle size distribution Span is reduced, the display medium particles with different charging polarities move in the opposite directions, so the particle sizes of each other are the same, and the display medium particles move easily in the opposite directions. It is preferable to be able to do this, and this is the range.
  • the particle size distribution and the particle size can be obtained from a laser diffraction / scattering method or the like.
  • a light intensity distribution pattern of diffracted / scattered light is spatially generated, and since this light intensity pattern has a corresponding relationship with the particle diameter, the particle diameter and particle diameter distribution can be measured.
  • the particle size and particle size distribution in the present invention are obtained from a volume-based distribution. For example, using a Mastersizer 2000 (Sysmex Corp.) measuring instrument, particles can be introduced into a nitrogen stream and the particle size and particle size distribution can be measured with the attached analysis software.
  • the gas in the gap surrounding the display medium between the substrates which contributes to improved display stability.
  • the relative humidity at 25 ° C. is 60% RH or less, preferably 50% RH or less with respect to the humidity of the gas in the void portion.
  • the gaps are defined as electrodes 5 and 6 (electrodes on the substrate).
  • a gas portion in contact with a so-called display medium excluding an occupied portion of the display medium 3, an occupied portion of the partition wall 4, and a seal portion of the information display panel is meant.
  • the gas in the gap is not limited as long as it is in the humidity region described above, but dry air, dry nitrogen, dry argon, dry helium, dry carbon dioxide, dry methane, and the like are preferable.
  • This gas needs to be sealed in an information display panel so that the humidity is maintained, for example, filling a display medium, assembling an information display panel, etc. in a predetermined humidity environment, It is important to apply a sealing material and a sealing method that prevent moisture from entering from the outside.
  • the distance between the substrates may be such that the display medium can be moved and the contrast can be maintained, but is usually 10 to 500 ⁇ m, preferably 10 to 200 ⁇ m.
  • the thickness is adjusted to 10 to 100 ⁇ m, preferably 10 to 50 ⁇ m.
  • the volume occupation ratio of the display medium in the gas space between the opposing substrates is preferably 5 to 70%, more preferably 5 to 60%. Note that if it exceeds 70%, the movement of the display medium is hindered, and if it is less than 5%, the contrast tends to be unclear.
  • the external additive particle size distribution is measured by using a transmission electron microscope (TEM) to take an image with a resolution at which the primary additive primary particle size can be confirmed, and from the image, the primary particle size is larger than the primary particle size.
  • TEM transmission electron microscope
  • the volume average is set as a representative value of the particle diameter of the external additive.
  • the primary particles of 10 nm or more are generally 30 wt% or less of the whole, and further 12 wt.
  • the primary particles of 10 nm or less are 10 wt% of the whole.
  • External additives were prepared by combining the small and large particle diameters shown in Examples 1 to 8 as examples and Comparative Examples 1 to 29 as comparative examples. These were combined with the positively charged mother particles produced as described below and sealed between the display panel substrates (glass substrates) 1 and 2 to produce an information display panel and evaluated by contrast.
  • the white particles A1 and the black particles B2 are mixed and stirred in an equivalent amount to perform tribocharging, and are arranged via a 100 ⁇ m spacer, one of which is treated with inner ITO and connected to a power source, and the other.
  • Contrast 10 ⁇ (Black density-White density) That is, the contrast value is obtained using the difference between the black density and the white density as an index value. This contrast value> 5 was determined to be acceptable.
  • Table 2 the results of Examples 1 to 8 and Comparative Examples 1 to 29 are collectively shown.
  • the initial contrast and the contrast after 200 page rewriting are all acceptable ( ⁇ ).
  • Comparative Examples 1 to 29 the contrast was unacceptable (x) at the initial stage or during durability.
  • the initial case is shown in Table 3 below, and the 200 page rewriting endurance case is shown in Table 4.
  • the external additive having a large diameter is 20 wt% or less, the particles are aggregated after endurance and the display performance is deteriorated.
  • the external additive is 80 wt% or more, the initial fluidity is impaired. confirmed.
  • the large particle diameter is preferably 20 to 100 nm in combination with small particle (7 to 8 nm).
  • the case where the first external additive particles having a small particle diameter are those having a primary particle diameter of 7 nm is exemplified.
  • the agent particles were 8 nm
  • the same follow-up test was performed and the same result as above was obtained.
  • the total blending ratio of the external additives is 3 wt% with respect to the mother particles, but the present inventor conducted a similar additional test when the total blending ratio was 2 wt% and 5 wt%. The same results as above are obtained even in the range of 2 to 5 wt%.
  • the information display panel employing the composite display medium particles according to the present invention is a display for mobile devices such as notebook computers, electronic notebooks, portable information devices called PDA (Personal Digital Assistants), mobile phones, and handy terminals.
  • mobile devices such as notebook computers, electronic notebooks, portable information devices called PDA (Personal Digital Assistants), mobile phones, and handy terminals.
  • Departments electronic books, electronic newspapers, electronic papers such as electronic manuals (electronic instruction manuals), signboards, posters, bulletin boards such as blackboards and whiteboards, electronic desk calculators, display units for home appliances, automobile supplies, point cards,
  • card displays such as IC cards, electronic advertisements, information boards, electronic POPs (Point Of Presence, Point Of Purchase advertising), electronic price tags, electronic shelf labels, electronic scores, RF-ID device displays, POS terminals, It is suitably used for display units of various electronic devices such as car navigation devices and watches.
  • the display panel can be suitably used as a display panel that performs display rewriting by an external electric field forming unit or a display panel that performs display rewriting by connecting to an external display rewriting unit (both are so-called rewritable papers).
  • a simple matrix driving method and a static driving method that do not use a switching element in the panel itself a three-terminal switching element represented by a thin film transistor (TFT), or a thin film diode (TFD).
  • TFT thin film transistor
  • TFD thin film diode
  • driving methods such as an active matrix driving method using a representative two-terminal switching element and an external electric field driving method using an external electric field forming means can be applied.

Abstract

 少なくとも一方が透明な2枚の基板間に光学的反射率および帯電性を有する表示媒体を封入し、表示媒体に帯電を付与することによって、表示媒体を移動させて情報画像を表示する情報表示用パネルで使用される表示媒体用粒子において、粒子本体となる母粒子の表面に外添剤を付着させた形態であり、前記外添剤が、平均粒子径が7~8nmであり±2nmの間に全体の80wt%以上が入るように形成してある小粒径の第1の外添剤粒子と、粒子径が10nm以下のものが全体の10wt%以下に形成してある大粒径の第2の外添剤粒子とを含んでいる。

Description

表示媒体用粒子およびこの表示媒体用粒子を用いた情報表示用パネル
 本発明は、少なくとも一方が透明な2枚の基板間に表示媒体を封入し、この表示媒体を移動させて画像等の情報を表示する情報表示用パネルに係る技術に関し、より詳細には表示媒体を構成する粒子(以下、表示媒体用粒子)であり、その粒子本体となる母粒子の表面に外添剤を付着させた形態の表示媒体用粒子に関する。
 情報表示装置として液晶表示装置(LCD)が広く普及している。しかし、一般に液晶表示装置は電力消費量が大きく、視野角が狭いなどの欠点があることが知られていた。そこで、液晶表示装置に代わるものとして、少なくとも一方が透明な2枚の基板(例えばガラス基板)間に隔壁によって仕切られた複数のセルを形成し、このセル内に粒子群として構成した表示媒体を封入し、この表示媒体を移動させて画像等の情報を表示する情報表示用パネルについて提案がある。
 上記のような情報表示用パネルは、例えば基板間の表示媒体を、画像等の情報に応じて電気的に移動させることにより所期の画像等を表示するようにしている。ここでは、表示要求のあった情報に応じて、表示媒体用粒子(粒子群)が基板間の空間を繰り返し移動する。そして、移動後に改めて書き換えのための電界が印加されない間は、その状態を維持して画像等を安定して表示し続けることができるので電力消費量を抑えることができる。
 上記のように情報表示用パネルで採用される表示媒体用粒子に関しては、電気特性の安定化、また場合の流動性や帯電特性などを改善する目的で、母粒子の表面に外添剤を付着させた粒子については従来から検討されている。例えば、特許文献1は、一定以上の剛性をもって形成してある母粒子に外添剤を付着させる表示媒体用粒子について開示する。これにより、母粒子への外添剤の過度な埋没を抑制できるので、必要な帯電特性や流動性などを確保して、繰り返し表示、書き換えを行う使用耐久性を改善している。
特開2006-64815号公報
 ところが、情報表示用パネルで表示の書き換えのため内部の表示媒体用粒子を移動するときには、その粒子に様々な力が作用している。例えば、粒子同士が凝集しようとする凝集力、粒子が電極基板に付着する付着力などが作用している。情報表示用パネルでは、所定位置に設けた電極間に電圧を印加することにより表示媒体用粒子を電界方向に駆動させて表示を行う。よって、表示書き換えのときに表示媒体用粒子を反転し、移動させるためには、情報表示用パネル側で発生させる電圧に基づく駆動力を粒子の凝集力や付着力より大きくすることが必要である。
 上記駆動力は印加する電圧に比例するため、表示媒体用粒子の凝集力、付着力が強い場合には駆動のため高電圧が必要となるので、ディスプレイ駆動回路の設計が高電圧仕様となるので、情報表示用パネルの製造コストが上昇してしまう。更に、一般に、ディスプレイ設計に用いられる駆動電圧ドライバー部品は仕様電圧が高いほど高額なものとなるので、この点でも製造コストが上昇することになる。
 そこで、低電圧で駆動ができる情報表示用パネル用の表示媒体用粒子を設計することがコスト低減のために重要であるが、満足できる表示媒体用粒子が未だ提供されていないというのが実情である。更には、長期使用での耐久性を備えて、初期の低駆動電圧で安定な表示を行える表示媒体用粒子が望まれる。
 よって、本発明の目的は、外添剤を付着させた形態で、長期にわたり低電圧で駆動ができる表示媒体用粒子を提案することである。
 上記目的は、少なくとも一方が透明な2枚の基板間に光学的反射率および帯電性を有する表示媒体を封入し、表示媒体に帯電を付与することによって、表示媒体を移動させて情報画像を表示する情報表示用パネルで使用される表示媒体用粒子において、粒子本体となる母粒子の表面に外添剤を付着させた形態であり、前記外添剤が、平均粒子径が7~8nmであり±2nmの間に全体の80wt%以上が入るように形成してある小粒径の第1の外添剤粒子と、粒子径が10nm以下のものが全体の10wt%以下に形成してある大粒径の第2の外添剤粒子とを含んでいる、ことを特徴とする表示媒体用粒子により達成できる。
 また、前記第2の外添剤粒子の混合率は、当該第2の外添剤の平均粒子径が30nm以上かつ40nm以下の場合で、外添剤全体に対して20wt%以上かつ80wt%以下とするのが好ましい。
 また、前記第2の外添剤粒子の混合率は、当該第2の外添剤の平均粒子径が20nm以上かつ30nm未満の場合で、外添剤全体に対して30wt%以上かつ80wt%以下とするのが好ましい。
 また、前記第2の外添剤粒子の混合率は、当該第2の外添剤の平均粒子径が40nmより大きくかつ100nm以下の場合で、外添剤全体に対して20wt%以上かつ70wt%以下とするのが好ましい。
 また、前記外添剤の総配合率は、前記母粒子に対して2~5wt%とするのが好ましい。
 また、前記第1の外添剤粒子および前記第2の外添剤粒子は共にシリカの微粒子とすることが好ましい。
 そして、上記のような表示媒体用粒子を用いた情報表示用パネルであれば、表示媒体用粒子を低電圧で長期に駆動できる低コストで製造か可能な表示装置として提供できる。
 本発明による表示媒体用粒子では、小粒径である第1の外添剤粒子が流動性や帯電性を改善するので、これより低い駆動電圧で粒子を駆動させる機能(低駆動電圧化の機能)を果たす。そして、大粒径である第2の外添剤粒子が、第1の外添剤粒子が壊れるのを防止するように作用する機能(小粒子保護の機能)を果たす。このような2種類の粒子で形成してある外添剤を用いる表示媒体用粒子は、小粒径の外添剤粒子による低駆動電圧化と、大粒径による小粒子保護により長期に低電圧で駆動できる。このような表示媒体用粒子を採用する情報表示用パネルは、製造コストを抑制できるので低価格で提供できる。
(a)、(b)は本発明の製造方法で作製した表示媒体用粒子を用いた一例となる帯電粒子移動方式の情報表示用パネルの原理的構成を説明するために示した図である。 (a)、(b)は本発明の製造方法で作製した表示媒体用粒子を用いた一例となる帯電粒子移動方式の情報表示用パネルの他の原理的構成を説明するために示した図である。
 以下、本発明の一実施形態に係る表示媒体用粒子に好適な粒子の構成を、図面に基づき詳細に説明する。ここでは、本発明の理解を容易とするため、表示媒体用粒子として帯電型の粒子を採用し、この表示媒体用粒子を移動して画像等を表示する移動方式の情報表示用パネルを一例として、その概略構成を先ず説明する。
 前記帯電粒子移動方式の情報表示用パネルは、対向する2枚の基板間の空間に封入した帯電性を有する母粒子およびその表面に子粒子を有する複合型の表示媒体用粒子で構成した粒子群に電界が付与される。付与された電界方向に沿って、表示媒体用粒子が電界による力やクーロン力などによって引き寄せられ、表示媒体用粒子が電界方向の変化によって移動することにより、画像等の情報表示がなされる。従って、表示媒体用粒子が、均一に移動し、かつ、繰り返し表示情報を書き換える時、或いは表示情報を継続して表示する時の安定性を維持できるように、情報表示用パネルを設計する必要がある。ここで、表示媒体を構成する表示媒体用粒子にかかる力は、電界による力、粒子同士のクーロン力により引き付けあう力、電極や基板との電気鏡像力、分子間力、液架橋力、重力などが考えられる。
 本発明の表示媒体用粒子を表示媒体として用いる前記情報表示用パネルの例を、図1(a)、(b)および図2(a)、(b)を参照して説明する。
 図1(a)、(b)に示す例は、少なくとも光学的反射率および帯電性を有する表示媒体用粒子を含んだ粒子群として構成される互いに光学的反射率および帯電特性が異なる少なくとも2種類の表示媒体(ここでは負帯電性白色粒子3Waを含んだ粒子群として構成した白色表示媒体3Wと正帯電性黒色粒子3Baを含んだ粒子群として構成した黒色表示媒体3Bを示す)を、隔壁4で形成された各セルにおいて、基板1に設けた電極5(TFT付き画素電極)と基板2に設けた電極6(共通電極)とで形成する電極対の間に電圧を印加することにより発生する電界に応じて、基板1、2と垂直に移動させる。そして、図1(a)に示すように白色表示媒体3Wを観察者に視認させて白色表示、あるいは、図1(b)に示すように黒色表示媒体3Bを観察者に視認させて黒色表示をするなど、白黒ドットマトリックス表示をすることができる。
 なお、図1(a)、(b)においては、手前にある隔壁は省略している。各電極5、6は、基板1、2の外側に設けても、基板の内側に設けても、基板内部に埋め込むように設けてもよい。画素(ドット)とセルとを1対1に対応させた例を示しているが、画素とセルとは対応させなくてもよい。
 また、図2(a)、(b)に示す例では、少なくとも光学的反射率および帯電性を有する粒子を含んだ粒子群として構成される互いに光学的反射率および帯電特性が異なる少なくとも2種類の表示媒体(ここでは負帯電性白色粒子3Waを含んだ粒子群として構成した白色表示媒体3Wと正帯電性黒色粒子3Baを含んだ粒子群として構成した黒色表示媒体3Bを示す)を、隔壁4で形成された各セルにおいて、基板1に設けた電極5(ライン電極)と基板2に設けた電極6(ライン電極)とが対向直交交差に形成する画素電極対の間に電圧を印加することにより発生する電界に応じて、基板1、2と垂直に移動させる。そして、図2(a)に示すように白色表示媒体3Wを観察者に視認させて白色表示、あるいは、図2(b)に示すように黒色表示媒体3Bを観察者に視認させて黒色ドット表示をするなど、白黒のドットマトリックス表示をすることができる。
 なお、図2(a)、(b)において、手前にある隔壁は省略している。各電極5、6は、基板1、2の外側に設けても、基板の内側に設けても、基板内部に埋め込むように設けてもよい。画素(ドット)とセルとを1対1に対応させた例を示しているが、画素とセルとは対応させなくてもよい。
 なお、上記基板1、2としては、ガラス基板、樹脂シート基板、樹脂フィルム基板等の基板を用いることができる。表示面側(観察側)とする基板2は、透明基板とする。この基板2の情報表示画面領域に、所定の電圧および極性(正・負)を有する電圧を印加するための電極(図1などで説明した、共通電極またはライン電極5)を配設する場合には透明電極とする。図1及び図2に示した情報表示用パネルを構成する基板1の表面には、マトリックス状電極対を構成するように薄膜トランジスタ(TFT)付き画素電極もしくはライン電極が形成されている。この対向電極対に電圧を印加したときに、表示媒体(粒子群)に電界が印加されることによって移動して所望の表示を行う前述の構造を実現できる。
 さらに、本発明の対象となる表示媒体用粒子について詳細に説明する。本発明の表示媒体用粒子は、図1(a)、(b)及び図2(a)、(b)の情報表示用パネルなどに適用することができ少なくとも一方が透明な2枚の基板の間に表示媒体を構成して封入されるものである。
 そして、特に、本発明の表示媒体用粒子は、母粒子の表面に外添剤を付着させた形態の粒子である。前述したように、従来から、表示媒体用粒子の流動性や帯電性を改善するため外添剤が使用され、一般にその大きさ(粒径)は一種類のものが採用されていた。ただし、外添剤は、その粒径がnm(ナノ)レベルの微粒子であるので、所定値の粒径で管理することには無理がある。よって、ここでの一種類とは一定範囲内の粒径(例えば7~8nm)のものが使用されていたということである。
 上記に対して、本願発明による表示媒体用粒子は、外添剤として、小粒径の第1の外添剤粒子と大粒径の第2の外添剤粒子とを含んだものを採用している。これにより、本願発明に係る表示媒体用粒子は、流動性や帯電性を改善して低電流での駆動を可能にするだけでなく、これを長期に維持するように形成したものである。以下、本願発明に係る表示媒体用粒子を順に説明する。
 ここで、表示媒体用粒子の本体となる母粒子について説明する。母粒子の主成分となるベース樹脂に、必要に応じて、荷電制御剤、着色剤、無機添加剤等を含めることができる。以下で樹脂、荷電制御剤、着色剤、その他添加剤を例示する。
 表示媒体用粒子の母粒子は、その主成分となるベース樹脂に着色剤として顔料を含み、更に必要に応じて、荷電制御剤、無機添加剤等を含ませることができる。以下に、樹脂、荷電制御剤、着色剤、その他添加剤を例示する。
 母粒子用の樹脂の例としては、ウレタン樹脂、ウレア樹脂、アクリル樹脂、ポリエステル樹脂、アクリルウレタン樹脂、アクリルウレタンシリコーン樹脂、アクリルウレタンフッ素樹脂、アクリルフッ素樹脂、シリコーン樹脂、アクリルシリコーン樹脂、エポキシ樹脂、ポリスチレン樹脂、スチレンアクリル樹脂、ポリオレフィン樹脂、ブチラール樹脂、塩化ビニリデン樹脂、メラミン樹脂、フェノール樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリスルフォン樹脂、ポリエーテル樹脂、ポリアミド樹脂等が挙げることができる。これらを、2種以上混合してもよい。また、予め重合した樹脂を粉砕処理したものを使用してもよいし、懸濁重合で形成したもの使用してもよい。なお、懸濁重合の場合、その容易さからアクリル樹脂、アクリルフッ素樹脂、ポリスチレン樹脂、スチレンアクリル樹脂が好適である。
 荷電制御剤としては、特に制限はないが、負荷電制御剤としては例えば、サリチル酸金属錯体、含金属アゾ染料、含金属(金属イオンや金属原子を含む)の油溶性染料、4級アンモニウム塩系化合物、カリックスアレン化合物、含ホウ素化合物(ベンジル酸ホウ素錯体)、ニトロイミダゾール誘導体等が挙げられる。正荷電制御剤としては例えば、ニグロシン染料、トリフェニルメタン系化合物、4級アンモニウム塩系化合物、ポリアミン樹脂、イミダゾール誘導体等が挙げられる。その他、超微粒子シリカ、超微粒子酸化チタン、超微粒子アルミナ等の金属酸化物、ピリジン等の含窒素環状化合物及びその誘導体や塩、各種有機顔料、フッ素、塩素、窒素等を含んだ樹脂等も荷電制御剤として用いることもできる。
 着色剤としては、以下に例示するような、有機または無機の各種、各色の顔料、染料が使用可能である。黒色着色剤としては、カーボンブラック、酸化銅、二酸化マンガン、アニリンブラック、活性炭等がある。青色着色剤としては、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15、紺青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシアニンブルー、無金属フタロシアニンブルー、フタロシアニンブルー部分塩素化物、ファーストスカイブルー、インダンスレンブルーBC等がある。赤色着色剤としては、ベンガラ、カドミウムレッド、鉛丹、硫化水銀、カドミウム、パーマネントレッド4R、リソールレッド、ピラゾロンレッド、ウォッチングレッド、カルシウム塩、レーキレッドD、ブリリアントカーミン6B、エオシンレーキ、ローダミンレーキB、アリザリンレーキ、ブリリアントカーミン3B、C.I.ピグメントレッド2等がある。
 また、黄色着色剤としては、黄鉛、亜鉛黄、カドミウムイエロー、黄色酸化鉄、ミネラルファーストイエロー、ニッケルチタンイエロー、ネーブルイエロー、ナフトールイエローS、ハンザイエローG、ハンザイエロー10G、ベンジジンイエローG、ベンジジンイエローGR、キノリンイエローレーキ、パーマネントイエローNCG、タートラジンレーキ、C.I.ピグメントイエロー12等がある。緑色着色剤としては、クロムグリーン、酸化クロム、ピグメントグリーンB、C.I.ピグメントグリーン7、マラカイトグリーンレーキ、ファイナルイエローグリーンG等がある。橙色着色剤としては、赤色黄鉛、モリブデンオレンジ、パーマネントオレンジGTR、ピラゾロンオレンジ、バルカンオレンジ、インダンスレンブリリアントオレンジRK、ベンジジンオレンジG、インダンスレンブリリアントオレンジGK、C.I.ピグメントオレンジ31等がある。紫色着色剤としては、マンガン紫、ファーストバイオレットB、メチルバイオレットレーキ等がある。白色着色剤としては、亜鉛華、酸化チタン、アンチモン白、硫化亜鉛等がある。
 体質顔料としては、バライト粉、炭酸バリウム、クレー、シリカ、ホワイトカーボン、タルク、アルミナホワイト等がある。また、塩基性、酸性、分散、直接染料等の各種染料として、ニグロシン、メチレンブルー、ローズベンガル、キノリンイエロー、ウルトラマリンブルー等がある。
 無機系添加剤の例としては、酸化チタン、亜鉛華、硫化亜鉛、酸化アンチモン、炭酸カルシウム、鉛白、タルク、シリカ、ケイ酸カルシウム、アルミナホワイト、カドミウムイエロー、カドミウムレッド、カドミウムオレンジ、チタンイエロー、紺青、群青、コバルトブルー、コバルトグリーン、コバルトバイオレット、酸化鉄、カーボンブラック、マンガンフェライトブラック、コバルトフェライトブラック、銅粉、アルミニウム粉などが挙げられる。
 これらの顔料および無機系添加剤は、単独であるいは複数組み合わせて用いることができる。このうち特に黒色顔料としてカーボンブラックが、白色顔料として酸化チタンが好ましい。上記着色剤を配合して所望の色の表示媒体用粒子前駆体である母粒子を作製できる。
 なお、本願表示媒体用粒子における粒子本体となる母粒子は、単独の粒子であってもよいし、その表面に他の粒子(子粒子)を配置して形成してある複合型の粒子であってもよい。複合型とした場合は、例えば大きい母粒子本体の表面に子粒子が固着或いは埋め込まれた形態となり、その外側に最も小さい外添剤を付着して表示媒体用粒子が形成される。
 本願発明に係る表示媒体用粒子は、母粒子の表面に、大粒径・小粒径2種類の外添剤を付着させた新規な形態である。ここで、具体的には外添剤として、小粒径の第1の外添剤粒子群と大粒径の第2の外添剤粒子群とを含むものを採用している。小粒径の第1の外添剤粒子群としては平均粒子径(一次粒子径)が7~8nmであるもので、その中央値から±2nmの間に全体の80wt%以上が入るもの、また大粒径の第2の外添剤粒子群としては粒子径が10nm以下のものが全体の10wt%以下に形成してあるものである。それぞれの外添剤としては、シリカを好適に採用できる。
 外添剤とするシリカは、例えば小粒径のものはSiClを用いた火炎法による合成、また大粒径シリカは沈降法かシリカゲルを用いた湿式法により作製が可能である。これらのシリカ外添剤は疎水処理を施しておくのが好ましい。
 そして、大径である第2の外添剤粒子の混合率は、外添剤全体に対して20~80wt%とするのが好ましい。大径の外添剤が20wt%以下の場合は粒子が凝集し易くなり、80wt%以上では流動性が損なわれその結果として同様に粒子が凝集し易くなってしまう。例えば、第2の外添剤粒子の混合率は、平均粒子径が30nm以上かつ40nm以下の場合で、外添剤全体に対して20wt%以上かつ80wt%以下とするのが好ましい。また、平均粒子径が20nm以上かつ30nm未満の場合で、外添剤全体に対して30wt%以上かつ80wt%以下とするのが好ましい。また、平均粒子径が40nmより大きくかつ100nm以下の場合で、外添剤全体に対して20wt%以上かつ70wt%以下とするのが好ましい。
 更に、外添剤の総配合率は、母粒子に対して2~5wt%とするのが好ましい。
2wt%以下では十分な流動性が得られず、5wt%では母粒子から脱離するなどの不具合が顕著であるという理由から、この範囲とするのが好ましい。
 本発明者等は、母粒子の表面に付着する外添剤の状態を観察して、従来の外添剤は流動性等を向上させることがでるので粒子の低電圧駆動に寄与しているが、長時間の使用で破損し易いことを確認した。繰り返し表示の書き換えを行ったときに、外添剤が破損すると凝集し易くなるので、先に指摘した駆動電圧増加の問題が生じることになる。
 本願に係る表示媒体用粒子は、従来の外添剤と同様に流動性等を改善するように機能する小粒径の粒子に、これよりも大粒径の粒子、例えば1.5倍~10倍以上とした大粒径の粒子を混合して外添剤とし、この混合物を母粒子の表面に付着させてある。これにより、小粒径の粒子の外添剤は流動性を改善して低い駆動電圧で粒子を駆動させる機能を十分に果たし、大粒径の粒子の外添剤は小粒径の粒子が破損するのを防止するという機能を果たしている。
 これにより、本願発明に係る表示媒体用粒子は、低い駆動電圧で粒子を駆動だけでなく、これを長期にわたり維持できる表示媒体用粒子となる。
 以下では、更に、本発明による表示媒体用粒子を用いる情報表示用パネルを構成する各部材について説明する。
 前述した基板としては、少なくとも一方の基板はパネル外側から表示媒体の色が確認できる透明基板であり、可視光の透過率が高くかつ耐熱性の良い材料が好適である。もう一方の基板となる背面基板は透明でも不透明でもかまわない。基板材料を例示すると、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエチレン(PE)、ポリカーボネート(PC)、ポリイミド(PI)、ポリエーテルサルフィン(PES)、アクリル等の有機高分子系基板や、ガラスシート、石英シート、金属シート等を用い、表示面側にはこのうち透明なものを用いる。基板の厚みは、2~2000μmが好ましく、さらに5~1000μmが好適であり、薄すぎると、強度、基板間の間隔均一性を保ちにくくなり、2000μmより厚いと、薄型情報表示用パネルとする場合に不都合となる。
 必要に応じて、上記基板に設ける電極の形成材料としては、アルミニウム、銀、ニッケル、銅、金等の金属類や酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛アルミニウム(AZO)、酸化インジウム、導電性酸化錫、アンチモン錫酸化物(ATO)、導電性酸化亜鉛等の導電金属酸化物類、ポリアニリン、ポリピローラ、ポリチオフェンなどの導電性高分子類を例示でき、これらを適宜に選択して用いることができる。電極の形成方法としては、上記例示の材料をスパッタリング法、真空蒸着法、CVD(化学蒸着)法、塗布法等で薄膜状にパターニング形成する方法や、金属箔をラミネートする方法(例えば圧延銅箔法)や、導電剤を溶媒や合成樹脂バインダーに混合して塗布してパターニング形成する方法を用いることができる。
 視認側(表示面側)基板の情報表示画面領域に設ける電極は透明である必要があるが、情報表示画面領域外や背面側基板に設ける電極は透明である必要がない。いずれの場合もパターン形成可能である導電性である上記材料を好適に用いることができる。なお、電極厚みは、導電性が確保でき光透過性に支障がなければ良く、0.01~10μm、好ましくは0.05~5μmが好適である。背面側基板に設ける電極の材質や厚みなどは上述した表示面側基板に設ける電極と同様であるが、透明である必要はない。
 基板に設ける隔壁については、その形状は表示にかかわる表示媒体の種類や、配置する電極の形状、配置により適宜最適設定され、一概には限定されないが、隔壁の幅は2~100μm、好ましくは3~50μmである。隔壁の高さは、基板間ギャップ以内で、基板用ギャップ確保用部分は基板間ギャップと同じに、それ以外のセル形成用部分は基板間ギャップと同じか、それよりも低くすることができる。また、隔壁を形成するにあたり、対向する両基板1、2の各々にリブを形成した後に接合する両リブ法、片側の基板上にのみリブを形成する片リブ法が考えられる。この発明では、いずれの方法も好適に用いられる。隔壁の高さは、基板間距離に合わせるが、部分的に基板間距離よりも低くすることもできる。
 これらのリブからなる隔壁により形成されるセルは、その形状として例えば基板平面方向からみて四角状、三角状、ライン状、円形状、六角状が例示され、配置としては格子状やハニカム状や網目状が例示される。表示面側から見える隔壁断面部分に相当する部分(セルの枠部の面積)はできるだけ小さくした方がよく、表示状態の鮮明さを増すことができる。
 ここで、隔壁の形成方法を例示すると、金型転写法、スクリーン印刷法、サンドブラスト法、フォトリソ法、アディティブ法が挙げられる。いずれの方法もこの発明の情報表示装置に搭載する情報表示用パネルに好適に用いることができるが、これらのうち、レジストフィルムを用いるフォトリソ法や金型転写法を好適に用いられる。
 また、表示媒体用粒子は平均粒子径d(0.5)が、1~20μmの範囲であり、均一で揃っていることが好ましい。平均粒子径d(0.5)がこの範囲より大きいと表示上の鮮明さに欠け、この範囲より小さいと粒子同士の凝集力が大きくなり過ぎるために表示媒体としての移動に支障をきたすようになる。
 さらに本発明では、各表示媒体用粒子の粒子径分布に関して、下記式に示される粒子径分布Span(スパン)を5未満、好ましくは3未満とするのが望ましい。
Span=(d(0.9)-d(0.1))/d(0.5)
(但し、d(0.5)は粒子の50%がこれより大きく、50%がこれより小さいという粒子径をμmで表した数値、d(0.1)はこれ以下の粒子の比率が10%である粒子径をμmで表した数値、d(0.9)はこれ以下の粒子が90%である粒子径をμmで表した数値である。)
Spanを5以下の範囲に納めることにより、各粒子のサイズが揃い、均一な表示媒体としての移動が可能となる。
 さらにまた、帯電極性が互いに異なる2種類の表示媒体用粒子を用いて構成した2種類の表示媒体を用いた情報表示用パネルでは、平均粒子径d(0.5)が大きい方の表示媒体の平均粒径と平均粒子径d(0.5)が小さい方の表示媒体の平均粒径との比を10以下とすることが肝要である。たとえ粒子径分布Spanを小さくしたとしても、互いに帯電極性の異なる表示媒体用粒子が互いに反対方向に動くので、互いの粒子サイズを同程度にし、互いの表示媒体用粒子が反対方向に容易に移動できるようにするのが好適であり、それがこの範囲となる。
 なお、上記の粒子径分布および粒子径は、レーザ回折/散乱法などから求めることができる。測定対象となる粒子にレーザ光を照射すると空間的に回折/散乱光の光強度分布パターンが生じ、この光強度パターンは粒子径と対応関係があることから、粒子径および粒子径分布が測定できる。
 ここで、本発明における粒子径および粒子径分布は、体積基準分布から得られたものである。例えば、Mastersizer2000(シスメックス(株))測定機を用いて、窒素気流中に粒子を投入し、付属の解析ソフトにて、粒子径および粒子径分布の測定を行うことができる。
 さらに、表示媒体用粒子で構成する表示媒体を気体中空間で駆動させる乾式の情報表示用パネルでは、基板間の表示媒体を取り巻く空隙部分の気体の管理が重要であり、表示安定性向上に寄与する。具体的には、空隙部分の気体の湿度について、25℃における相対湿度を60%RH以下、好ましくは50%RH以下とすることが重要である。
 この空隙部分とは、上記図1(a)、(b)、図2(a)、(b)において、対向する基板1、基板2に挟まれる部分から、電極5、6(電極を基板の内側に設けた場合)、表示媒体3の占有部分、隔壁4の占有部分、情報表示用パネルのシール部分を除いた、いわゆる表示媒体が接する気体部分を指すものとする。空隙部分の気体は、先に述べた湿度領域であれば、その種類は問わないが、乾燥空気、乾燥窒素、乾燥アルゴン、乾燥ヘリウム、乾燥二酸化炭素、乾燥メタンなどが好適である。この気体は、その湿度が保持されるように情報表示用パネルに封入することが必要であり、例えば、表示媒体の充填、情報表示用パネルの組み立てなどを所定湿度環境下にて行い、さらに、外からの湿度侵入を防ぐシール材、シール方法を施すことが肝要である。
 本発明による表示媒体用粒子が採用される情報表示用パネルにおける基板と基板との間隔は、表示媒体が移動できて、コントラストを維持できればよいが、通常10~500μm、好ましくは10~200μmに、帯電粒子移動方式の情報表示用パネルでは10~100μm、好ましくは10~50μmに調整される。
 対向する基板間の気体中空間における表示媒体の体積占有率は5~70%が好ましく、さらに好ましくは5~60%である。なお、70%を超える場合には表示媒体の移動に支障をきたし、5%未満の場合にはコントラストが不明確となり易い。
 以下、更に、本発明の実施例として表示媒体用粒子の製造方法を説明するが、本発明は下記の実施例に何ら限定されるものではない。
(負帯電粒子の製造)
 負帯電母粒子としてシクロオレフィン樹脂(ゼオネックス330R:日本ゼオン(株)製)100重量部、二酸化チタン(タイペークCR-90:石原産業(株)製)100重量部とを2軸混錬機により溶融混錬し、ジェットミル(ラボジェットミルIDS-LJ型:日本ニューマチック工業(株)製)で細かく粉砕し、分級機(MDS-2:日本ニューマチック工業(株)製)を用いて分級し、溶融球状化装置(MR-10:日本ニューマチック工業(株)製)を用いて溶融球状化し平均粒子径R0=8.1μmの負帯電母粒子Aを得た。
 この粒子Aに用いる外添剤として表1に示すように負帯電白粒子用に大・小のものを準備し、これらを混合してから、表面付着させて負帯電白色粒子A1を製造した。
Figure JPOXMLDOC01-appb-T000001
 なお、外添剤粒度分布の測定方法は、透過型電子顕微鏡(TEM)を用いて、外添剤1次粒子径が確認できる解像度で画像撮影を行い、画像より一次粒子径を多数の一次粒子にて計測して、統計分布を求める。そして、一次粒子が真球状であると仮定し、体積平均からその外添剤の粒径の代表値とする。なお、例えば平均粒子径7~8nmの外添剤は、一般に10nm以上の一次粒子が全体の30wt%以下で、更に12nm以上では10wt%以下となる。また、平均粒子径20nm以上の外添剤では、10nm以下の一次粒子が全体の10wt%である。
 実施例として実施例1~実施例8、又比較例として比較例1~29に示す小粒径、大粒径のものを組み合わせた外添剤を調整した。
 これらを下記のように製造した正帯電母粒子と組み合わせて表示用パネルの基板(ガラス基板)1、2間に封入して情報表示用パネルを製造して、コントラストで評価した。
(正帯電粒子の製造)
 正帯電母粒子としては、メチルメタクリレ-ト(関東化学試薬)65重量部及び、1分子中に重合反応基を複数持つ多官能性モノマーとしてエチレングリコ-ルジメタクリレ-ト(和光純薬試薬)35重量部に、正帯電性の荷電制御剤としてニグロシン化合物(ボントロンN07:オリエント化学(株)製)3重量部及び、黒色着色剤として、カ-ボンブラック(スペシャルブラック5:デグッサ(株)製)5重量部を、サンドミルにより分散させた後、さらに重合の開始剤として、アゾビスイソブチロニトリル(V-60:和光純薬製)2重量部を溶解させた液を、界面活性剤としてポリオキシエチレンアルキルエ-テル硫酸ナトリウム(ラテムルE-118B:花王(株)製)を0.5wt%添加した精製水に懸濁、重合させ、濾過、乾燥させた後、分級機(MDS-2:日本ニュ-マチック工業(株))を用いて分級を行い、平均粒子径9.1μmの正帯電母粒子Bを得た。
 この粒子Bにも、外添剤として大小のシリカ微粒子を添加して正帯電黒色粒子B2を製造した。これについても前記表1の下段に合わせて示した。小粒径となるWacker社の
H3050は母粒子に対して3wt%、大粒径となるDegussa社のNA50Yは母粒子に対して2wt%とした。
 上記白色粒子A1と黒色粒子B2とを当量混合攪拌して摩擦帯電を行い、100μmのスペ-サ-を介して配置された、一方が内側ITO処理され電源に接続されたガラス基板と、もう一方が銅基板であるセル中に体積占有率30%で充填し、表示用パネルを得た。ITOガラス基板、銅基板それぞれを電源に接続し、ITOガラス基板を低電位に、銅基板を高電位となる様に直流電圧をかけると、黒色粒子は低電位極側に、白色粒子は高電位極側にそれぞれ移動する。
 ここで黒色粒子は正帯電、白色粒子が負帯電であるので、ガラス基板を通して黒色の表示状態が観察され、次に印可電圧の電位を逆にすると、粒子はそれぞれ逆方向に移動して、白色の表示状態が観察される。
 ここでは情報表示用パネルに配置した電極間距離は40μmとして、70Vで電圧駆動における評価とした。そして、表示性能はパネル表示における黒、白表示の差異が大きいほど良性能として、光学濃度測定によって行った。光学濃度計はGretag Macbes社(独)のRD19を用いた。黒白表示性能の差の定量値として、ここではコントラストを次のように定義した。
 コントラスト=10(黒濃度-白濃度)
 すなわち、黒濃度と白濃度との差を指数値としてコントラスト値を得ている。このコントラスト値>5を合格○とした。
 下記表2に、実施例1~8、比較例1~29の結果をまとめて示すように、実施例1~8の場合は初期、200ページ書き換え後のコントラストがいずれにおいても合格(○)であったが、比較例1~29の場合は初期または耐久時にコントラスト不合格(×)であった。なお、初期の場合の場合を下記表3、200ページ書き換え耐久の場合を書き表4に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 なお、大径の外添剤が20wt%以下の場合は耐久後に粒子が凝集して表示性能が低下し、80wt%以上では初期流動性が損なわれるため、同じく粒子凝集が発生していることが確認された。また、上記実施例から小径の粒子(7~8nm)との組み合わせて、大径の粒子径は20~100nmとするのが好ましいことが確認できる。
 上記実施例では、小粒径の第1の外添剤粒子として一次粒子径が7nmであるものを用いた場合を例示したが、本発明者は他に、小粒径の第1の外添剤粒子を8nmとした場合について、同様の追試験を行って上記と同様の結果を得ている。
 更には、上記では外添剤の総配合率が母粒子に対して3wt%としたが、本発明者は他に総配合率を2wt%、5wt%とした場合について同様の追試験を行って、2~5wt%の範囲でも上記と同様の結果を得ている。
 以上本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 本発明に係る複合型の表示媒体用粒子を採用する情報表示用パネルは、ノートパソコン、電子手帳、PDA(Personal Digital Assistants)と呼ばれる携帯型情報機器、携帯電話、ハンディターミナル等のモバイル機器の表示部、電子書籍、電子新聞、電子マニュアル(電子取扱説明書)等の電子ペーパー、看板、ポスター、黒板やホワイトボード等の掲示板、電子卓上計算機、家電製品、自動車用品等の表示部、ポイントカード、ICカード等のカード表示部、電子広告、情報ボード、電子POP(Point Of Presence、Point Of Purchase advertising)、電子値札、電子棚札、電子楽譜、RF-ID機器の表示部のほか、POS端末、カーナビゲーション装置、時計など様々な電子機器の表示部に好適に用いられる。他に、外部電界形成手段で表示書換えを行う表示パネルや外部表示書換え手段に接続して表示書換えを行う表示パネル(いずれも、いわゆるリライタブルペーパー)としても好適に用いられる。
 なお、情報表示用パネルの駆動方式については、パネル自体にスイッチング素子を用いない単純マトリックス駆動方式やスタティック駆動方式、また、薄膜トランジスタ(TFT)で代表される三端子スイッチング素子あるいは薄膜ダイオード(TFD)で代表される二端子スイッチング素子を用いたアクティブマトリックス駆動方式や、外部電界形成手段を用いた外部電界駆動方式など、種々のタイプの駆動方式が適用できる。

Claims (7)

  1.  少なくとも一方が透明な2枚の基板間に光学的反射率および帯電性を有する表示媒体を封入し、表示媒体に帯電を付与することによって、表示媒体を移動させて情報画像を表示する情報表示用パネルで使用される表示媒体用粒子において、
     粒子本体となる母粒子の表面に外添剤を付着させた形態であり、
     前記外添剤が、平均粒子径が7~8nmであり±2nmの間に全体の80wt%以上が入るように形成してある小粒径の第1の外添剤粒子と、粒子径が10nm以下のものが全体の10wt%以下に形成してある大粒径の第2の外添剤粒子とを含んでいる、ことを特徴とする表示媒体用粒子。
  2.  前記第2の外添剤粒子の混合率は、当該第2の外添剤の平均粒子径が30nm以上かつ40nm以下の場合で、外添剤全体に対して20wt%以上かつ80wt%以下である、ことを特徴とする請求項1に記載の表示媒体用粒子。
  3.  前記第2の外添剤粒子の混合率は、当該第2の外添剤の平均粒子径が20nm以上かつ30nm未満の場合で、外添剤全体に対して30wt%以上かつ80wt%以下である、ことを特徴とする請求項1に記載の表示媒体用粒子。
  4.  前記第2の外添剤粒子の混合率は、当該第2の外添剤の平均粒子径が40nmより大きくかつ100nm以下の場合で、外添剤全体に対して20wt%以上かつ70wt%以下である、ことを特徴とする請求項1に記載の表示媒体用粒子。
  5.  前記外添剤の総配合率は、前記母粒子に対して2~5wt%ある、ことを特徴とする請求項1に記載の表示媒体用粒子。
  6.  前記第1の外添剤粒子および前記第2の外添剤粒子は、共にシリカの微粒子である、ことを特徴とする請求項1から5のいずれかに記載の表示媒体用粒子。
  7.  請求項1から6のいずれかに記載の表示媒体用粒子を用いたことを特徴とする情報表示用パネル。
PCT/JP2010/003618 2009-05-29 2010-05-28 表示媒体用粒子およびこの表示媒体用粒子を用いた情報表示用パネル WO2010137346A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800335490A CN102460294A (zh) 2009-05-29 2010-05-28 显示介质用颗粒及使用了该显示介质用颗粒的信息显示用面板
JP2011515911A JPWO2010137346A1 (ja) 2009-05-29 2010-05-28 表示媒体用粒子およびこの表示媒体用粒子を用いた情報表示用パネル
US13/322,853 US20120074359A1 (en) 2009-05-29 2010-05-28 Particle for display medium and information display panel using the particle for display medium
EP10780306A EP2437113A4 (en) 2009-05-29 2010-05-28 PARTICLES FOR DISPLAY MEDIUM AND PANEL FOR DISPLAYING INFORMATION USING THESE PARTICLES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009131236 2009-05-29
JP2009-131236 2009-05-29

Publications (1)

Publication Number Publication Date
WO2010137346A1 true WO2010137346A1 (ja) 2010-12-02

Family

ID=43222472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003618 WO2010137346A1 (ja) 2009-05-29 2010-05-28 表示媒体用粒子およびこの表示媒体用粒子を用いた情報表示用パネル

Country Status (5)

Country Link
US (1) US20120074359A1 (ja)
EP (1) EP2437113A4 (ja)
JP (1) JPWO2010137346A1 (ja)
CN (1) CN102460294A (ja)
WO (1) WO2010137346A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770307A (zh) * 2017-06-20 2020-02-07 日产化学株式会社 非水性墨液组合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064815A (ja) 2004-08-25 2006-03-09 Bridgestone Corp 画像表示媒体用粒子及びそれを用いた画像表示装置
JP2007171482A (ja) * 2005-12-21 2007-07-05 Bridgestone Corp 表示媒体用粒子、その製造方法および情報表示用パネル
JP2008026702A (ja) * 2006-07-24 2008-02-07 Bridgestone Corp 表示媒体用粒子およびそれを用いた情報表示用パネル
JP2008129322A (ja) * 2006-11-21 2008-06-05 Bridgestone Corp 表示媒体用粒子、情報表示用パネルおよび情報表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7483201B2 (en) * 2004-04-09 2009-01-27 Bridgestone Corporation Particles for display media, information display panel and information display device, utilizing the particles for display media
JP5191388B2 (ja) * 2005-10-26 2013-05-08 チバ ホールディング インコーポレーテッド 電気泳動ディスプレーのための着色粒子
JP4593675B2 (ja) * 2007-08-06 2010-12-08 株式会社ブリヂストン 表示媒体用粒子およびそれを用いた情報表示用パネル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064815A (ja) 2004-08-25 2006-03-09 Bridgestone Corp 画像表示媒体用粒子及びそれを用いた画像表示装置
JP2007171482A (ja) * 2005-12-21 2007-07-05 Bridgestone Corp 表示媒体用粒子、その製造方法および情報表示用パネル
JP2008026702A (ja) * 2006-07-24 2008-02-07 Bridgestone Corp 表示媒体用粒子およびそれを用いた情報表示用パネル
JP2008129322A (ja) * 2006-11-21 2008-06-05 Bridgestone Corp 表示媒体用粒子、情報表示用パネルおよび情報表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2437113A4

Also Published As

Publication number Publication date
US20120074359A1 (en) 2012-03-29
CN102460294A (zh) 2012-05-16
EP2437113A1 (en) 2012-04-04
EP2437113A4 (en) 2012-12-19
JPWO2010137346A1 (ja) 2012-11-12

Similar Documents

Publication Publication Date Title
JP2007322587A (ja) タッチパネル一体型情報表示装置
JP2011248011A (ja) 表示媒体用粒子およびこれを用いた情報表示用パネル
JP4925608B2 (ja) 情報表示用パネル及び情報表示装置
WO2010137346A1 (ja) 表示媒体用粒子およびこの表示媒体用粒子を用いた情報表示用パネル
JP5052104B2 (ja) 表示媒体用粒子、情報表示用パネルおよび情報表示装置
JP2007328329A (ja) 表示媒体用粒子およびそれを用いた情報表示用パネル
JP2008026469A (ja) 表示媒体用粒子およびそれを用いた情報表示用パネル
JP2011170199A (ja) 表示媒体用粒子およびこれを用いた情報表示用パネル
JP2009020359A (ja) 情報表示用パネルの駆動方法
JP5087319B2 (ja) 表示媒体用粒子および情報表示用パネル
JP2007322805A (ja) 情報表示用パネル
JP2008224725A (ja) 情報表示用パネル
JP2007310537A (ja) タッチパネル一体型情報表示装置
JP2007322657A (ja) 情報表示用パネル
JP2008102188A (ja) 情報表示モジュール
JP5134775B2 (ja) 表示媒体用粒子および情報表示用パネル
JP2006058544A (ja) 画像表示用パネルおよびその製造方法
JP2008139682A (ja) 情報表示用パネル
JP2010262066A (ja) 表示媒体用粒子
JP2010276875A (ja) 表示媒体用粒子の製造方法およびその表示媒体用粒子を用いた情報表示用パネル
JP4863762B2 (ja) 表示媒体用粒子および情報表示用パネル
JP2008102231A (ja) 表示媒体用粒子およびそれを用いた情報表示用パネル
JP2010276884A (ja) 表示媒体用粒子の製造方法およびその表示媒体用粒子を用いた情報表示用パネル
JP2010276877A (ja) 表示媒体用粒子の製造方法およびこの表示媒体用粒子を用いた情報表示用パネル
WO2010125830A1 (ja) 表示媒体用粒子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033549.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011515911

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13322853

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010780306

Country of ref document: EP