WO2010136222A1 - Mikromechanische struktur - Google Patents

Mikromechanische struktur Download PDF

Info

Publication number
WO2010136222A1
WO2010136222A1 PCT/EP2010/050634 EP2010050634W WO2010136222A1 WO 2010136222 A1 WO2010136222 A1 WO 2010136222A1 EP 2010050634 W EP2010050634 W EP 2010050634W WO 2010136222 A1 WO2010136222 A1 WO 2010136222A1
Authority
WO
WIPO (PCT)
Prior art keywords
micromechanical structure
counter
seismic mass
stop element
substrate
Prior art date
Application number
PCT/EP2010/050634
Other languages
English (en)
French (fr)
Inventor
Stefan Liebing
Dietrich Schubert
Wolfgang Fuerst
Stefan Rurlaender
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2012512261A priority Critical patent/JP5606523B2/ja
Priority to CN2010800229006A priority patent/CN102449488A/zh
Priority to US13/259,392 priority patent/US20120073370A1/en
Priority to EP10702076A priority patent/EP2435786A1/de
Publication of WO2010136222A1 publication Critical patent/WO2010136222A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type

Definitions

  • the invention is based on a micromechanical structure according to the preamble of claim 1.
  • an acceleration sensor which has a substrate, a spring element and a seismic mass.
  • the spring element is connected to a first end on the substrate and to a second end on the seismic mass, so that an acceleration of the acceleration sensor parallel to a surface of the substrate
  • a spring stop is provided which limits a deformation of the spring element at an acceleration parallel to the surface of the substrate.
  • the spring stop must be firmly connected to the substrate.
  • a similar acceleration sensor is known from the publication DE 100 38 761 A1, which also has stops for limiting the deflection of the seismic mass, wherein the stops are formed here as part of the spring element.
  • the micromechanical structures according to the independent claims have the advantage over the prior art that the interaction of the stop element and the counterstop element effectively limits a deflection of the seismic mass relative to the substrate, without a separate substrate connection for the stop element. is required and without the spring properties of the spring element are influenced by the stop element.
  • the stop element is formed as part of the anchoring element, while the complementary counter-stop element is formed as part of the seismic mass.
  • the anchoring element simultaneously serves to fasten the seismic mass, as well as to secure the stop element to the substrate in each case.
  • the spring elements serve to ensure the mobility of the seismic mass relative to the substrate and also with respect to the anchoring element. The maximum deflection of the seismic mass relative to the substrate is limited by a mechanical contact between the stop element and the counter-stop element.
  • the stop element and the counterstop element are in particular at the same electrical potential, so that a force effect and in particular adhesion between the stop element and the counterstop element due to electrostatic interactions is reliably excluded .
  • the integration of the stop element in the anchoring element also has the advantage over the prior art that a comparatively space-compact integration of the stop element is realized, whereby in particular the manufacturing costs are reduced by the saving of wafer area. Furthermore, the
  • the stop element does not require its own substrate anchoring.
  • the stop element is not arranged in the region of the spring element or is not part of the spring element, since in this case, the spring properties, especially with regard to desired and undesirable vibration modes, greatly changed and thus new Spring geometries would be required.
  • the design of the spring element remains uninfluenced by the stop element, so that the micromechanical structure is to be equipped with already known and proven spring geometries.
  • the anchoring element does not only comprise a plane perpendicular to the substrate. indirectly connected to the substrate region, but also a connection region between this perpendicular to the substrate directly connected to the substrate region and the spring element, said connection region is formed, for example, freestanding or undercut.
  • the stop element and the counterstop element are arranged opposite one another along and / or perpendicular to a sensing direction of the micromechanical structure.
  • a maximum deflection of the micromechanical structure relative to the substrate along the sensing direction is thus limited.
  • the sensing direction corresponds, for example, to the direction along which an acceleration is measured.
  • the stop element are formed as a bulge of the anchoring element and / or the counter-stop element as a bulge of the seismic mass.
  • the stop element and the counter-stop element are realized in a comparatively simple and space-compact manner.
  • the stop element and / or the counter stop element on a non-stick coating, which prevents sticking of the stop and counter-stop element.
  • the stop element and / or the counter-stop element is partially elastic and preferably L-shaped.
  • kinetic energy of the seismic mass is thereby converted into deformation energy shortly before reaching the maximum deflection of the seismic mass, and thus the seismic mass is braked before reaching the maximum deflection.
  • the anchoring element is arranged in a central region of the micromechanical structure.
  • a comparatively space-compact design of the micromechanical structure is thus made possible.
  • a mirror-symmetrical structure of the micromechanical structure is realized with respect to a plane of symmetry, the plane of symmetry being perpendicular to the substrate plane and parallel or perpendicular to the sensing direction, and the measurement accuracy of the micromechanical structure as a whole is increased by such a mirror-symmetric structure.
  • the micromechanical structure has fixed electrodes for interaction with counterelectrodes of the seismic mass, wherein the fixed electrodes and the counterelectrodes are preferably designed as comb electrodes meshing perpendicular to the sensing direction.
  • the Sensierraum runs in particular parallel to the substrate plane. As the acceleration sensor accelerates along the sensing direction, the seismic mass moves anti-parallel to the acceleration due to inertial forces relative to the substrate. This leads to a change in distance between the fixed electrodes and the counterelectrodes parallel to the sensing direction, whereby a measurable change in the electrical capacitance between the fixed electrodes and the counterelectrodes is caused, which serves as a measure of the acceleration.
  • a further subject of the present invention is a micromechanical structure, in particular an acceleration sensor, comprising a substrate, a seismic mass movable relative to the substrate and at least one anchoring element firmly connected to the substrate, the seismic mass being fixed to the substrate by means of the anchoring element and between at least one spring element is arranged in the seismic mass and the anchoring element, the micromechanical structure having fixed electrodes for interacting with counterelectrodes of the seismic mass, the seismic mass having at least one further stop element and at least one further counterstop element, and wherein the further counterstop element is firmly connected to a fixed electrode is.
  • the further counterstop element is thus firmly connected to the fixed electrode structure, which is fastened to the substrate in particular by means of a further anchoring element.
  • the further stop element and / or the further counter stop element is preferably elastic and particularly preferably L-shaped, so that advantageously a more cautious braking of the seismic mass is achieved before reaching the maximum deflection.
  • the further counter-stop element comprises a fixed electrode and / or a further anchoring element, wherein the further anchoring element is preferably provided for fastening the fixed electrodes to the substrate, so that the
  • the further stop element extends substantially parallel to the fixed electrodes and the counterelectrodes and in particular along the sensing direction is arranged between at least one fixed electrode and the further anchoring element.
  • the further counter-stop element is automatically formed in this case by the fixed electrodes and / or the further anchoring element, so that no further structures are required for the realization of the further counter-stop element.
  • FIGS. 2a and 2b show a schematic plan view and a schematic detail view of a micromechanical structure according to a first embodiment of the present invention
  • FIGS. 3a and 3b a schematic top view and a schematic detail view of a micromechanical structure according to a third embodiment of the present invention
  • FIGS. 5a and 5b show a schematic top view and a schematic detail view of a micromechanical structure according to a sixth embodiment 6 a and 6 b show a schematic plan view and a schematic detail view of a micromechanical structure according to a seventh embodiment of the present invention.
  • FIG. 1 shows a schematic plan view of a micromechanical structure V in the form of an acceleration sensor according to the prior art, the micromechanical structure 1 'having a substrate 2 and a seismic mass 3 connected to the substrate 2 via two anchoring elements 4.
  • the seismic mass 3 is designed to be movable relative to the substrate 2 along a sensing direction 100 parallel to the substrate plane 101.
  • the fixed electrodes 8 are connected to the substrate 2 via a further anchoring element 12.
  • the fixed electrodes 8 and the counter electrodes 9 are formed as interdigitated comb electrodes, wherein the fingers of the comb electrodes in the sensing direction 100 overlap each other and are spaced from each other.
  • the seismic mass 3 moves relative to the substrate 2 in anti-parallel to the direction of acceleration due to inertial forces. This leads to a change in distance between the fixed electrodes 8 and the counter electrodes 9 parallel to the sensing direction 100, whereby a measurable
  • the micro-mechanical structure 100 comprises two stop units 20 which each comprise an additional anchoring element 20 'for anchoring to the substrate 2 and which in each case in a recess 21 the seismic mass 3 is arranged.
  • the deflection of the seismic mass 3 is limited by a mechanical contact between the stop unit 20 and the edge of the seismic mass 3 in the region of the recess 21.
  • the micromechanical structure 1 according to the prior art therefore needs to provide the recesses 21 an enlarged seismic mass 3 and moreover two additional anchoring elements 20 '.
  • FIG. 2 a shows a schematic plan view of a micromechanical structure 1 according to a first embodiment of the present invention, which essentially corresponds to the micromechanical structure according to the prior art shown in FIG. 1, furthermore the micromechanical structure 1 according to the first embodiment of the present invention has two stop elements 6, which are each formed as part of one of the two anchoring elements 4. These stop elements 6 are formed as a bulge in the respective anchoring element 4. Each of the stop elements 6 cooperate with a complementary counter stop element 7 of the seismic mass 3, which is formed opposite the stop element 6 along the sensing direction 100, so that the deflection of the seismic mass 3 relative to the substrate 2 and parallel to the sensing direction 100 is limited.
  • the counter-stop elements 7 are therefore designed as complementary bulges in the seismic mass 3.
  • FIG. 1 shows a schematic plan view of a micromechanical structure 1 according to a first embodiment of the present invention, which essentially corresponds to the micromechanical structure according to the prior art shown in FIG. 1, furthermore the micromechanical structure 1 according to the first embodiment of the present invention has two stop
  • FIG. 2b shows an enlarged partial view 102 of the micromechanical structure 1 depicted in FIG. 2a according to the first embodiment of the present invention.
  • FIG. 2c shows a schematic detail view of a micromechanical structure 1 according to a second embodiment of the present invention, which is essentially identical to the first embodiment illustrated in FIG. 2b, wherein each of the two anchoring elements 4 has two stop elements 6, each with two complementary counter stop elements 7 of the seismic mass 3 cooperate.
  • the micromechanical structure 1 in the sense of the present invention can alternatively also be realized with any other arbitrary plurality of stop and counterstop elements 6, 7.
  • FIGS. 3a and 3b show a schematic top view and a schematic detail view 103 of a micromechanical structure 1 according to a third embodiment of the present invention, the third embodiment being substantially identical to the first embodiment illustrated in FIGS. 2a and 2b, wherein FIG Anchoring elements 4 next to itself with
  • FIG. 3c shows a schematic detailed view 103 of a micromechanical structure 1 according to a fourth embodiment of the present invention which is essentially identical to the third embodiment illustrated in FIG. 3b, wherein only the number of stop and counter stop elements 6, 7, 6 ', T is different.
  • FIG. 4 is a schematic plan view of a micromechanical structure 1 according to a fifth embodiment of the present invention, wherein the fifth embodiment is substantially identical to one of the first, second, third or fourth embodiment, wherein the micromechanical structure 1 according to the fifth embodiment, no stop units 20th in that case the maximum deflection of the seismic mass 3 relative to the substrate 2 is limited parallel and / or perpendicular to the sensing direction 100 by the plurality of cooperating abutment and counterstop elements 6, 7 6 ', T. Furthermore, no additional anchoring elements 20 'and no recesses 21 are required due to the saving of the abutment units 20, so that the micromechanical structure 1 is designed to be significantly less bulky overall without a change in functionality.
  • FIGS. 5a and 5b show a schematic top view and a schematic detailed view 104 of a micromechanical structure 1 according to a sixth
  • the counter-stop elements 1 1 are formed as part of the further anchoring elements 12, which serve for fastening the fixed electrodes 8 to the substrate 2, and in particular comprise a further recess 1 V on the further anchoring elements 12.
  • the further stop elements 10 comprise an elastic L-shape, which in each case proceeding from the seismic mass 3 perpendicular to the sensing direction 100 and parallel to the
  • a movement of seismic Mass 3 along the Sensierraum 100 is braked before reaching the maximum deflection, ie in particular before the formation of a mechanical contact between parallel to the Sensiercardi 100 stop and counter-stop elements 6, 7, from the other stop and counter-Antsch elements 10, 11.
  • the anchoring elements 4 are arranged in particular in a central region of the micromechanical structure 1, wherein on each side of the anchoring elements 4 comb electrode structures and in particular each exactly a few of further stop and counter-stop elements 10, 11 are arranged.
  • FIGS. 6a and 6b show a schematic plan view and a schematic detail view 105 of a micromechanical structure 1 according to a seventh embodiment of the present invention, the seventh embodiment substantially corresponding to the sixth embodiment illustrated in FIGS. 5a and 5b, wherein on each side the anchoring elements 4 two
  • Pairs of further stop and counter-stop elements 10, 1 1 are arranged.
  • the stop and counter-stop elements 10, 1 1 are thus arranged mirror-symmetrically with respect to a plane of symmetry perpendicular to the substrate plane and centrally along the respective further anchoring element 12, so that when the seismic beam is decelerated

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

Es wird eine mikromechanische Struktur, insbesondere ein Beschleunigungssensor, mit einem Substrat, einer relativ zum Substrat beweglichen seismischen Masse und wenigstens einem fest mit dem Substrat verbundenen Verankerungselement vorgeschlagen, wobei die seismische Masse mittels des Verankerungselements am Substrat befestigt ist und wobei zwischen der seismischen Masse und dem Verankerungselement wenigstens ein Federelement angeordnet ist und wobei ferner das Verankerungselement wenigstens ein Anschlagselement zum Zusammenwirken mit wenigstens einem Gegenanschlagselement der seismischen Masse aufweist.

Description

Beschreibung
Titel
Mikromechanische Struktur
Stand der Technik
Die Erfindung geht aus von einer mikromechanischen Struktur nach dem Oberbegriff des Anspruchs 1 .
Solche mikromechanischen Strukturen sind allgemein bekannt. Beispielsweise ist aus der Druckschrift DE 198 17 357 A1 ein Beschleunigungssensor bekannt, welcher ein Substrat ein Federelement und eine seismische Masse aufweist. Das Federelement ist mit einem ersten Ende am Substrat und mit einem zweiten Ende an der seismischen Masse verbunden, so dass durch eine Beschleunigung des Beschleunigungssensors parallel zu einer Oberfläche des Substrats eine
Bewegung der Masse relativ zum Substrat verursachbar ist. Für das Federelement ist ein Federanschlag vorgesehen, der eine Verformung des Federelements bei einer Beschleunigung parallel zur Oberfläche des Substrats begrenzt. Der Federanschlag muss dabei fest mit dem Substrat verbunden sein. Ein ähnlicher Beschleunigungssensor ist aus der Druckschrift DE 100 38 761 A1 bekannt, welcher zur Ausschlagbegrenzung der seismischen Masse ebenfalls Anschläge aufweist, wobei die Anschläge hierbei als Teil des Federelements ausgebildet sind.
Offenbarung der Erfindung
Die erfindungsgemäßen mikromechanischen Strukturen gemäß den nebengeordneten Ansprüchen haben gegenüber dem Stand der Technik den Vorteil, dass durch das Zusammenwirken des Anschlagselements und des Gegenanschlags- elements eine Auslenkung der seismischen Masse relativ zum Substrat wirksam begrenzt wird, ohne dass für das Anschlagselement eine eigene Substratanbin- dung erforderlich ist und ohne dass die Federeigenschaften des Federelements von dem Anschlagselement beeinflusst werden. Durch die Einsparung der eigenen Substratanbindung und die mögliche Verwendung von Standardfederelementen wird eine im Vergleich zum Stand der Technik deutlich bauraumkompak- tere und kostengünstigere Herstellung der erfindungsgemäßen mikromechanischen Struktur ermöglicht. Dies wird dadurch erreicht, dass das Anschlagselement als Teil des Verankerungselements ausgebildet ist, während das komplementäre Gegenanschlagselement als Teil der seismischen Masse ausgebildet ist. In vorteilhafter Weise dient das Verankerungselement gleichzeitig der Befes- tigung der seismischen Masse, als auch der Befestigung des Anschlagselements jeweils am Substrat. Die Federelemente dienen dazu, die Beweglichkeit der seismischen Masse gegenüber dem Substrat und auch gegenüber dem Verankerungselement zu gewährleisten. Die maximale Auslenkung der seismischen Masse gegenüber dem Substrat wird durch einen mechanischen Kontakt zwi- sehen dem Anschlagselement und dem Gegenanschlagselement begrenzt.
Durch die Verbindung zwischen der seismischen Masse und dem Verankerungselement in Form des Federelements liegen das Anschlagselement und das Gegenanschlagselement insbesondere auf dem gleichen elektrischen Potential, so dass eine Kraftwirkung und insbesondere eine Haftung zwischen dem An- schlagselement und dem Gegenanschlagselement aufgrund von elektrostatischen Wechselwirkungen sicher ausgeschlossen wird. Die Integration des Anschlagselements in das Verankerungselement hat ferner gegenüber dem Stand der Technik den Vorteil, dass eine vergleichsweise bauraumkompakte Integration des Anschlagselements realisiert wird, wodurch insbesondere die Herstellungs- kosten durch die Einsparung von Waferfläche reduziert werden. Ferner wird der
Herstellungsprozess der mikromechanischen Struktur vereinfacht, da das Anschlagselement keine eigene Substratverankerung benötigt. Ein weiterer Vorteil gegenüber dem Stand der Technik ist, dass das Anschlagselement nicht im Bereich des Federelements angeordnet ist bzw. nicht ein Teil des Federelements ist, da in diesem Fall die Federeigenschaften, insbesondere im Hinblick auf gewünschte und ungewünschte Schwingungsmoden, stark verändert und somit neue Federgeometrien erforderlich würden. Bei der erfindungsgemäßen mikromechanischen Struktur bleibt das Design des Federelements von dem Anschlagselement unbeeinflusst, so dass die mikromechanische Struktur mit bereits bekannten und bewährten Federgeometrien auszustatten ist. Das Verankerungselement umfasst insbesondere nicht nur einen senkrecht zum Substrat un- mittelbar mit dem Substrat verbundenen Bereich, sondern auch einen Verbindungsbereich zwischen diesem senkrecht zum Substrat unmittelbar mit dem Substrat verbundenen Bereich und dem Federelement, wobei dieser Verbindungsbereich beispielsweise freistehend bzw. unterätzt ausgebildet ist.
Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind den Unteransprüchen, sowie der Beschreibung unter Bezugnahme auf die Zeichnungen entnehmbar.
Gemäß einer bevorzugten Weiterbildung ist vorgesehen, dass das Anschlagselement und das Gegenanschlagselement entlang und/oder senkrecht zu einer Sensierrichtung der mikromechanischen Struktur gegenüberliegend angeordnet ist. In vorteilhafter Weise wird somit eine maximale Auslenkung der mikromechanischen Struktur gegenüber dem Substrat entlang der Sensierrichtung begrenzt. Bei einem Beschleunigungssensor entspricht die Sensierrichtung beispielsweise derjenigen Richtung, entlang welcher eine Beschleunigung gemessen wird. Durch die Begrenzung der maximalen Auslenkung wird insbesondere eine Beschädigung der mikromechanischen Struktur durch zu große Beschleunigungskräfte unterbunden, wobei zu große Beschleunigungskräfte beispielsweise ein Abreißen der Federelemente oder die Ausbildung einer mechanischen oder elektrostatischen Haftung zwischen den Festelektroden und den Gegenelektroden nach einem mechanischen Kontakt zwischen den Festelektroden und den Gegenelektroden, wodurch die seismische Masse nicht mehr in ihre Nulllage zurückkehren kann, bewirken können. Alternativ oder zusätzlich ist eine maximale Auslenkung der seismischen Masse senkrecht zur Sensierrichtung mittels eines
Anschlagselements und eines Gegenanschlagselements realisierbar, welche senkrecht zur Sensierrichtung gegenüberliegend angeordnet sind, wodurch beispielsweise die Wirkungen von mechanischen und/oder elektrostatischen äußeren Kräften auf den Beschleunigungssensor reduziert werden.
Gemäß einer weiteren bevorzugten Weiterbildung ist vorgesehen, dass das Anschlagselement als Ausbuchtung des Verankerungselements und/oder das Gegenanschlagselement als Ausbuchtung der seismischen Masse ausgebildet sind. In vorteilhafter weise werden das Anschlagselement und das Gegenanschlags- element in einer vergleichsweise einfachen und bauraumkompakten Weise realisiert. In einer bevorzugten Ausführungsform weisen das Anschlagselement und/oder das Gegenanschlagselement eine Antihaftbeschichtung auf, welche ein Aneinanderhaften des Anschlags- und Gegenanschlagselement unterbindet.
Gemäß einer weiteren bevorzugten Weiterbildung ist vorgesehen, dass das An- schlagselement und/oder das Gegenanschlagselement teilweise elastisch und vorzugsweise L-förmig ausgebildet ist. In vorteilhafter Weise wird dadurch kurz vor dem Erreichen der Maximalauslenkung der seismischen Masse kinetische Energie der seismischen Masse in Verformungsenergie umgewandelt und somit die seismische Masse vor dem Erreichen der Maximalauslenkung abgebremst. Die auf die mikromechanische Struktur einwirkenden mechanischen Kräfte beim
Erreichen der Maximalauslenkung werden folglich reduziert.
Gemäß einer weiteren bevorzugten Weiterbildung ist vorgesehen, dass das Verankerungselement in einem Zentralbereich der mikromechanischen Struktur an- geordnet ist. In vorteilhafter Weise wird somit eine vergleichsweise bauraum- kompakte Ausbildung der mikromechanischen Struktur ermöglicht. Darüberhi- naus wird ein gegenüber einer Symmetrieebene spiegelsymmetrischer Aufbau der mikromechanischen Struktur realisiert, wobei die Symmetrieebene einerseits senkrecht zur Substratebene und andererseits parallel oder senkrecht zur Sen- sierrichtung verläuft und wobei durch einen derartig spiegelsymmetrischen Aufbau die Messgenauigkeit der mikromechanischen Struktur insgesamt erhöht wird.
Gemäß einer weiteren bevorzugten Weiterbildung ist vorgesehen, dass die mik- romechanische Struktur Festelektroden zum Zusammenwirken mit Gegenelektroden der seismischen Masse aufweist, wobei die Festelektroden und die Gegenelektroden vorzugsweise als senkrecht zur Sensierrichtung ineinandergreifende Kammelektroden ausgebildet sind. Die Sensierrichtung verläuft dabei insbesondere parallel zur Substratebene. Bei einer Beschleunigung des Beschleu- nigungssensors entlang der Sensierrichtung bewegt sich die seismische Masse relativ zum Substrat antiparallel zur Beschleunigung aufgrund von Trägheitskräften. Dies führt zu einer Abstandsänderung zwischen den Festelektroden und den Gegenelektroden parallel zur Sensierrichtung, wodurch eine messbare Änderung der elektrischen Kapazität zwischen den Festelektroden und den Gegenelektro- den hervorgerufen wird, welche als Maß für die Beschleunigung dient. Ein weiterer Gegenstand der vorliegenden Erfindung ist eine mikromechanische Struktur, insbesondere ein Beschleunigungssensor, mit einem Substrat, einer relativ zum Substrat beweglichen seismischen Masse und wenigstens einem fest mit dem Substrat verbundenen Verankerungselement, wobei die seismische Masse mittels des Verankerungselements am Substrat befestigt ist und wobei zwischen der seismischen Masse und dem Verankerungselement wenigstens ein Federelement angeordnet ist, wobei die mikromechanische Struktur Festelektroden zum Zusammenwirken mit Gegenelektroden der seismischen Masse aufweist, wobei die seismische Masse wenigstens ein weiteres Anschlagselement und wenigstens ein weiteres Gegenanschlagselement aufweist und wobei das weitere Gegenanschlagselement fest mit einer Festelektrode verbunden ist. In vorteilhafter weise ist somit das weitere Gegenanschlagselement fest mit der Festelektrodenstruktur verbunden, welche insbesondere mittels eines weiteren Verankerungselements am Substrat befestigt ist. Durch die Anbindung des weite- ren Gegenanschlagselement an die Festelektrodenstruktur wird für die Befestigung des weiteren Gegenanschlagselements keine weitere Substratanbindung benötigt, so dass eine im Vergleich zum Stand der Technik erheblich einfachere, kostengünstigere und bauraumkompaktere Ausbildung der mikromechanischen Struktur ermöglicht wird.
Gemäß einer bevorzugten Weiterbildung ist vorgesehen, dass das weitere Anschlagselement und/oder das weitere Gegenanschlagselement bevorzugt elastisch und besonders bevorzugt L-förmig ausgebildet ist, so dass in vorteilhafter Weise ein behutsameres Abbremsen der seismischen Masse vor dem Erreichen der Maximalauslenkung erzielt wird.
Gemäß einer weiteren bevorzugten Weiterbildung ist vorgesehen, dass das weitere Gegenanschlagselement eine Festelektrode und/oder ein weiteres Verankerungselement umfasst, wobei das weitere Verankerungselement vorzugsweise zur Befestigung der Festelektroden am Substrat vorgesehen ist, so dass das
Gegenanschlagselement in vorteilhafter weise keine eigene Substratanbindung benötigt.
Gemäß einer weiteren bevorzugten Weiterbildung ist vorgesehen, dass sich das weitere Anschlagselement im Wesentlichen parallel zur den Festelektroden und den Gegenelektroden erstreckt und entlang der Sensierrichtung insbesondere zwischen wenigstens einer Festelektrode und dem weiteren Verankerungselement angeordnet ist. In vorteilhafter Weise wird das weitere Gegenanschlagselement in diesem Fall automatisch von der Festelektroden und/oder dem weiteren Verankerungselement gebildet, so dass keine weiteren Strukturen für die Realisierung des weiteren Gegenanschlagselement benötigt werden.
Ausführungsbeispiele der vorliegenden Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.
Kurze Beschreibung der Zeichnungen
Es zeigen
Figur 1 eine schematische Aufsicht einer mikromechanischen Struktur gemäß dem Stand der Technik, Figuren 2a und 2b eine schematische Aufsicht und eine schematische Detailansicht einer mikromechanischen Struktur gemäß einer ersten Ausführungsform der vorliegenden Erfindung,
Figur 2c eine schematische Detailansicht einer mikromechanischen Struktur gemäß einer zweiten Ausführungsform der vorliegenden Erfindung, Figuren 3a und 3b eine schematische Aufsicht und eine schematische Detailansicht einer mikromechanischen Struktur gemäß einer Dritten Ausführungsform der vorliegenden Erfindung,
Figur 3c eine schematische Detailansicht einer mikromechanischen Struktur gemäß einer vierten Ausführungsform der vorliegenden Erfindung, Figur 4 eine schematische Aufsicht einer mikromechanischen Struktur gemäß einer fünften Ausführungsform der vorliegenden Erfindung, Figuren 5a und 5b eine schematische Aufsicht und eine schematische Detailansicht einer mikromechanischen Struktur gemäß einer sechsten Ausführungsform der vorliegenden Erfindung und Figuren 6a und 6b eine schematische Aufsicht und eine schematische Detailansicht einer mikromechanischen Struktur gemäß einer siebten Ausführungsform der vorliegenden Erfindung. Ausführungsformen der Erfindung
In den verschiedenen Figuren sind gleiche Teile stets mit den gleichen Bezugszeichen versehen und werden daher in der Regel auch jeweils nur einmal be- nannt bzw. erwähnt.
In Figur 1 ist eine schematische Aufsicht einer mikromechanischen Struktur V in Form eines Beschleunigungssensors gemäß dem Stand der Technik dargestellt, wobei die mikromechanische Struktur 1 ' ein Substrat 2 und eine mit dem Substrat 2 über zwei Verankerungselemente 4 verbundene seismische Masse 3 aufweist.
Zwischen dem jeweiligen Verankerungselement 4 und der seismischen Masse 3 sind Federelemente 5 angeordnet, so dass die seismische Masse 3 entlang einer zur Substratebene 101 parallelen Sensierrichtung 100 gegenüber dem Substrat 2 beweglich ausgebildet ist. Ferner weist die mikromechanische Struktur 1 ' mit dem Substrat 2 fest verbundene Festelektroden 8 auf, welche zum Zusammenwirken mit komplementären Gegenelektroden 9 der seismischen Masse 3 vorgesehen sind. Die Festelektroden 8 sind über ein weiteres Verankerungselement 12 mit dem Substrat 2 verbunden. Die Festelektroden 8 und die Gegenelektroden 9 sind als ineinandergreifende Kammelektroden ausgebildet, wobei sich die Finger der Kammelektroden in Sensierrichtung 100 gegenseitig überlappen und voneinander beabstandet sind. Bei einer Beschleunigung des Beschleunigungssensors entlang der Sensierrichtung 100 bewegt sich die seismische Masse 3 relativ zum Substrat 2 antiparallel zur Beschleunigungsrichtung aufgrund von Trägheitskräften. Dies führt zu einer Abstandsänderung zwischen den Festelektroden 8 und den Gegenelektroden 9 parallel zur Sensierrichtung 100, wodurch eine messbare
Änderung der elektrischen Kapazität zwischen den Festelektroden 8 und den Gegenelektroden 9 hervorgerufen wird, welche als Maß für die Beschleunigung dient. Um die Auslenkung der seismischen Masse 3 gegenüber dem Substrat 2 senkrecht und parallel zur Sensierrichtung 100 zu begrenzen umfasst die mikro- mechanische Struktur 100 zwei Anschlagseinheiten 20, welche jeweils ein zusätzliches Verankerungselement 20' zu Verankerung am Substrat 2 umfasst und welche jeweils in einer Aussparung 21 der seismischen Masse 3 angeordnet ist. Die Auslenkung der seismischen Masse 3 wird durch einen mechanischen Kontakt zwischen der Anschlagseinheit 20 und dem Rand der seismischen Masse 3 im Bereich der Aussparung 21 begrenzt. Die mikromechanische Struktur 1 gemäß dem Stand der Technik benötigt daher zur Bereitstellung der Aussparungen 21 eine vergrößerte seismische Masse 3 und darüberhinaus zwei zusätzliche Verankerungselemente 20'.
In Figur 2a ist eine schematische Aufsicht einer mikromechanischen Struktur 1 gemäß einer ersten Ausführungsform der vorliegenden Erfindung dargestellt, welche im Wesentlichen der in Figur 1 dargestellten mikromechanischen Struktur gemäß dem Stand der Technik entspricht, wobei darüberhinaus die mikromechanische Struktur 1 gemäß der ersten Ausführungsform der vorliegenden Erfindung zwei Anschlagselemente 6 aufweist, welche jeweils als Teil eines der bei- den Verankerungselemente 4 ausgebildet sind. Diese Anschlagselemente 6 sind als Ausbuchtung im jeweiligen Verankerungselement 4 ausgebildet. Jedes der Anschlagselemente 6 wirken dabei mit einem komplementären Gegenanschlagselement 7 der seismischen Masse 3 zusammen, welches dem Anschlagselement 6 entlang der Sensierrichtung 100 gegenüberliegend ausgebildet ist, so dass die Auslenkung der seismischen Masse 3 relativ zum Substrat 2 und parallel zur Sensierrichtung 100 begrenzt wird. Die Gegenanschlagselemente 7 sind daher als komplementäre Ausbuchtungen in der seismischen Masse 3 ausgebildet. In Figur 2b ist eine vergrößerte Teilansicht 102 der in Figur 2a abgebildeten mikromechanischen Struktur 1 gemäß der ersten Ausführungsform der vorliegenden Erfindung dargestellt. In Figur 2c ist eine schematische Detailansicht einer mikromechanischen Struktur 1 gemäß einer zweiten Ausführungsform der vorliegenden Erfindung dargestellt, welche im Wesentlichen der in Figur 2b illustrierten ersten Ausführungsform identisch ist, wobei jedes der beiden Verankerungselemente 4 zwei Anschlagselemente 6 aufweist, welche jeweils mit zwei komplementären Gegenanschlagselementen 7 der seismischen Masse 3 zusammenwirken. Für einen Fachmann ist selbstverständlich, dass die mikromechanische Struktur 1 im Sinne der vorliegenden Erfindung alternativ auch mit jeder anderen beliebigen Mehrzahl von Anschlags- und Gegenanschlagselementen 6, 7 realisierbar ist.
In den Figuren 3a und 3b sind eine schematische Aufsicht und eine schematische Detailansicht 103 einer mikromechanischen Struktur 1 gemäß einer dritten Ausführungsform der vorliegenden Erfindung dargestellt, wobei die dritte Ausführungsform im Wesentlichen den in Figuren 2a und 2b illustrierten ersten Ausfüh- rungsform identisch ist, wobei die Verankerungselemente 4 neben den sich mit
Gegenanschlagselementen 7 entlang der Sensierrichtung 100 gegenüberliegen- den Anschlagselementen 6 zusätzliche Anschlagselemente 6' aufweisen, welche senkrecht zur Sensierrichtung 100 gegenüber zusätzlichen komplementären Gegenanschlagselementen T der seismischen Masse 3 angeordnet sind, so dass die Auslenkung der seismischen Masse 3 relativ zum Substrat 2 auch senkrecht zur Sensierrichtung 100 begrenzt wird. In Figur 3c ist eine schematische Detailansicht 103 einer mikromechanischen Struktur 1 gemäß einer vierten Ausführungsform der vorliegenden Erfindung dargestellt, welche im Wesentlichen der in Figur 3b illustrierten dritten Ausführungsform identisch ist, wobei lediglich die Anzahl der Anschlags- und Gegenanschlagselemente 6, 7, 6', T unterschiedlich ist.
In Figur 4 ist eine schematische Aufsicht einer mikromechanischen Struktur 1 gemäß einer fünften Ausführungsform der vorliegenden Erfindung, wobei die fünfte Ausführungsform im Wesentlichen einer der ersten, zweiten, dritten oder vierten Ausführungsform identisch ist, wobei die mikromechanische Struktur 1 gemäß der fünften Ausführungsform keine Anschlagseinheiten 20 aufweist, da in diesem Fall die maximale Auslenkung der seismischen Masse 3 relativ zum Substrat 2 parallel und/oder senkrecht zur Sensierrichtung 100 durch die Mehrzahl von zusammenwirkenden Anschlags- und Gegenanschlagselementen 6, 7 6', T begrenzt wird. Durch die Einsparung der Anschlagseinheiten 20 werden ferner auch keine zusätzlichen Verankerungselemente 20' und keine Aussparungen 21 benötigt, so dass die mikromechanische Struktur 1 ohne eine Veränderung der Funktionalität insgesamt deutlich bauraumkompakter ausgebildet ist.
In Figuren 5a und 5b sind eine schematische Aufsicht und eine schematische Detailansicht 104 einer mikromechanischen Struktur 1 gemäß einer sechsten
Ausführungsform der vorliegenden Erfindung dargestellt, wobei die sechste Ausführungsform im Wesentlichen der in Figur 3c dargestellten vierten Ausführungsform entspricht, wobei die seismische Masse 3 zwei weitere Anschlagselemente 10 aufweist, welche mit zwei weiteren Gegenanschlagselement 1 1 zusammen- wirken. Die Gegenanschlagselemente 1 1 sind als Teil der weiteren Verankerungselemente 12, welche zur Befestigung der Festelektroden 8 an dem Substrat 2 dienen, ausgebildet und umfassen insbesondere eine weitere Ausbuchtung 1 V an den weiteren Verankerungselementen 12. Die weiteren Anschlagselemente 10 umfassen eine elastische L-Form, welche sich jeweils ausgehend von der seismischen Masse 3 senkrecht zur Sensierrichtung 100 und parallel zu den
Fest- und Gegenelektroden 8, 9 erstrecken. Eine Bewegung der seismischen Masse 3 entlang der Sensierrichtung 100 wird vor dem Erreichen der Maximalauslenkung, d.h. insbesondere vor der Ausbildung eines mechanischen Kontakts zwischen parallel zur Sensierrichtung 100 gegenüberliegenden Anschlags- und Gegenanschlagselementen 6, 7, von den weiteren Anschlags- und Gegenan- Schlagselementen 10, 11 abgebremst. Die Verankerungselemente 4 sind insbesondere in einem Zentralbereich der mikromechanischen Struktur 1 angeordnet, wobei auf jeder Seite der Verankerungselemente 4 Kammelektrodenstrukturen und insbesondere jeweils genau ein paar von weiteren Anschlags- und Gegenanschlagselementen 10, 11 angeordnet sind.
In Figuren 6a und 6b sind eine schematische Aufsicht und eine schematische Detailansicht 105 einer mikromechanischen Struktur 1 gemäß einer siebten Ausführungsform der vorliegenden Erfindung dargestellt, wobei die siebte Ausführungsform im Wesentlichen der in Figuren 5a und 5b illustrierten sechsten Aus- führungsform entspricht, wobei auf jeder Seite der Verankerungselemente 4 zwei
Paare von weiteren Anschlags- und Gegenanschlagselemente 10, 1 1 angeordnet sind. Besonders vorteilhaft sind die Anschlags- und Gegenanschlagselemente 10, 1 1 somit gegenüber einer senkrecht zur Substratebene und mittig entlang dem jeweiligen weiteren Verankerungselement 12 verlaufenden Symmetrieebene spiegelsymmetrisch angeordnet, so dass beim Abbremsen der seismischen
Masse 3 vor dem Erreichen der Maximalauslenkung kein Drehmoment von den weiteren Anschlags- und Gegenanschlagselementen 10, 1 1 auf die seismische Masse 3 ausgeübt wird.

Claims

Ansprüche
1 . Mikromechanische Struktur (1 ), insbesondere ein Beschleunigungssensor, mit einem Substrat (2), einer relativ zum Substrat (2) beweglichen seismischen Masse (3) und wenigstens einem fest mit dem Substrat (2) verbunde- nen Verankerungselement (4), wobei die seismische Masse (3) mittels des
Verankerungselements (4) am Substrat (2) befestigt ist und wobei zwischen der seismischen Masse (3) und dem Verankerungselement (4) wenigstens ein Federelement (5) angeordnet ist, dadurch gekennzeichnet, dass das Verankerungselement (4) wenigstens ein Anschlagselement (6, 6') zum Zu- sammenwirken mit wenigstens einem Gegenanschlagselement (7, 7') der seismischen Masse (3) aufweist.
2. Mikromechanische Struktur (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass das Anschlagselement (6, 6') und das Gegenanschlagselement (7, 7') entlang und/oder senkrecht zu einer Sensierrichtung (100) der mikromechanischen Struktur (1 ) gegenüberliegend angeordnet ist.
3. Mikromechanische Struktur (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Anschlagselement (6, 6') als Ausbuch- tung des Verankerungselements (4) und/oder das Gegenanschlagselement
(7, 7') als Ausbuchtung der seismischen Masse (3) ausgebildet ist.
4. Mikromechanische Struktur (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Anschlagselement (6, 6') und/oder das Gegenanschlagselement (7, 7') teilweise elastisch und vorzugsweise L- förmig ausgebildet ist.
5. Mikromechanische Struktur (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verankerungselement (4) in einem Zent- ralbereich der mikromechanischen Struktur (1 ) angeordnet ist.
6. Mikromechanische Struktur (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mikromechanische Struktur (1 ) Festelektroden (8) zum Zusammenwirken mit Gegenelektroden (9) der seismischen Masse (3) aufweist, wobei die Festelektroden (8) und die Gegenelektroden (9) vorzugsweise als senkrecht zur Sensierrichtung (100) ineinandergreifende Kammelektroden ausgebildet sind.
7. Mikromechanische Struktur (1 ) nach einem der vorhergehenden Ansprüche und insbesondere nach dem Oberbegriff des Anspruchs 1 , dadurch gekenn- zeichnet, dass die mikromechanische Struktur (1 ) Festelektroden (8) zum
Zusammenwirken mit Gegenelektroden (9) der seismischen Masse (3) aufweist, wobei die seismische Masse (3) wenigstens ein weiteres Anschlagselement (10) und wenigstens ein weiteres Gegenanschlagselement (1 1 ) aufweist und wobei das weitere Gegenanschlagselement (1 1 ) fest mit einer Festelektrode (8) verbunden ist.
8. Mikromechanische Struktur (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das weitere Anschlagselement (10) und/oder das weitere Gegenanschlagselement (1 1 ) bevorzugt elastisch und beson- ders bevorzugt L-förmig ausgebildet ist.
9. Mikromechanische Struktur (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das weitere Gegenanschlagselement (1 1 ) eine Festelektrode (8) und/oder ein weiteres Verankerungselement (12) um- fasst, wobei das weitere Verankerungselement (12) vorzugsweise zur Befestigung der Festelektroden (8) am Substrat (2) vorgesehen ist.
10. Mikromechanische Struktur (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich das weitere Anschlagselement (10) im Wesentlichen parallel zur den Festelektroden (8) und den Gegenelektroden
(9) erstreckt und entlang der Sensierrichtung (100) insbesondere zwischen wenigstens einer Festelektrode (8) und dem weiteren Verankerungselement (12) angeordnet ist.
PCT/EP2010/050634 2009-05-26 2010-01-20 Mikromechanische struktur WO2010136222A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012512261A JP5606523B2 (ja) 2009-05-26 2010-01-20 マイクロマシン構造
CN2010800229006A CN102449488A (zh) 2009-05-26 2010-01-20 微机械结构
US13/259,392 US20120073370A1 (en) 2009-05-26 2010-01-20 Micromechanical structure
EP10702076A EP2435786A1 (de) 2009-05-26 2010-01-20 Mikromechanische struktur

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009026476A DE102009026476A1 (de) 2009-05-26 2009-05-26 Mikromechanische Struktur
DE102009026476.0 2009-05-26

Publications (1)

Publication Number Publication Date
WO2010136222A1 true WO2010136222A1 (de) 2010-12-02

Family

ID=42104344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/050634 WO2010136222A1 (de) 2009-05-26 2010-01-20 Mikromechanische struktur

Country Status (7)

Country Link
US (1) US20120073370A1 (de)
EP (1) EP2435786A1 (de)
JP (1) JP5606523B2 (de)
CN (1) CN102449488A (de)
DE (1) DE102009026476A1 (de)
TW (1) TW201115149A (de)
WO (1) WO2010136222A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2472269A2 (de) * 2010-12-30 2012-07-04 Rosemount Aerospace Inc. Kapazitiver MEMS-Beschleunigungsmesser in der Ebene

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3000484B1 (fr) 2012-12-27 2017-11-10 Tronic's Microsystems Dispositif micro-electromecanique comprenant une masse mobile apte a se deplacer hors du plan
JP2015123526A (ja) * 2013-12-26 2015-07-06 ソニー株式会社 機能素子、加速度センサおよびスイッチ
DE102014215038A1 (de) * 2014-07-31 2016-02-04 Robert Bosch Gmbh Mikromechanischer Sensor und Verfahren zur Herstellung eines mikromechanischen Sensors
DE102015207637A1 (de) * 2015-04-27 2016-10-27 Robert Bosch Gmbh Mikromechanische Struktur für einen Beschleunigungssensor
JPWO2016185808A1 (ja) 2015-05-19 2018-03-08 ソニー株式会社 接点構造、電子デバイス及び電子機器
JP6558110B2 (ja) 2015-07-10 2019-08-14 セイコーエプソン株式会社 物理量センサー、電子機器および移動体
JP6485260B2 (ja) * 2015-07-10 2019-03-20 セイコーエプソン株式会社 物理量センサー、物理量センサー装置、電子機器および移動体
DE102016207866A1 (de) 2016-05-09 2017-11-09 Robert Bosch Gmbh Mikromechanischer Sensor und Verfahren zum Herstellen eines mikromechanischen Sensors
JP6866623B2 (ja) * 2016-12-07 2021-04-28 セイコーエプソン株式会社 物理量センサー、物理量センサーデバイス、電子機器および移動体
JP6922552B2 (ja) * 2017-08-25 2021-08-18 セイコーエプソン株式会社 物理量センサー、物理量センサーデバイス、電子機器、携帯型電子機器および移動体
JP6922594B2 (ja) * 2017-09-22 2021-08-18 セイコーエプソン株式会社 物理量センサー、物理量センサーデバイス、電子機器、携帯型電子機器および移動体
CN109374917B (zh) * 2018-11-15 2020-07-31 中国兵器工业集团第二一四研究所苏州研发中心 蜂窝状微止挡结构设计方法
DE102019200839A1 (de) * 2019-01-24 2020-07-30 Robert Bosch Gmbh Mikromechanischer Inertialsensor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996017253A1 (en) * 1994-12-01 1996-06-06 Analog Devices, Inc. Micromachined structure with minimized stiction
JPH09127151A (ja) * 1995-11-01 1997-05-16 Murata Mfg Co Ltd 加速度センサ
DE19817357A1 (de) 1998-04-18 1999-10-21 Bosch Gmbh Robert Mikromechanisches Bauelement
DE19832905A1 (de) * 1998-07-22 2000-02-10 Karlsruhe Forschzent Kapazitiver Beschleunigungssensor
DE19930779A1 (de) * 1999-07-03 2001-01-04 Bosch Gmbh Robert Mikromechanisches Bauelement
DE10024698A1 (de) * 2000-05-18 2001-11-22 Bosch Gmbh Robert Mikromechanisches Bauelement
DE10038761A1 (de) 2000-08-09 2002-02-21 Bosch Gmbh Robert Beschleunigungssensor
WO2002084303A1 (de) * 2001-04-12 2002-10-24 Robert Bosch Gmbh Vorrichtung zur messung einer beschleunigung und/oder einer drehrate
DE102006033176A1 (de) * 2006-07-18 2008-01-24 Robert Bosch Gmbh Mikromechanisches Bauelement mit einem Anschlagelement

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624944B1 (en) * 1996-03-29 2003-09-23 Texas Instruments Incorporated Fluorinated coating for an optical element
JP2001330623A (ja) * 2000-03-16 2001-11-30 Denso Corp 半導体力学量センサ
DE10051973A1 (de) * 2000-10-20 2002-05-02 Bosch Gmbh Robert Mikromechanisches Bauelement
JP2003344445A (ja) * 2002-05-24 2003-12-03 Mitsubishi Electric Corp 慣性力センサ
US7243545B2 (en) * 2003-03-20 2007-07-17 Denso Corporation Physical quantity sensor having spring
JP4455831B2 (ja) * 2003-03-28 2010-04-21 株式会社デンソー 加速度センサの製造方法
EP1779121A1 (de) * 2004-08-17 2007-05-02 Analog Devices, Inc. Mehrfachachsenbeschleunigungssensor
DE102007047592B4 (de) * 2007-10-05 2022-01-05 Robert Bosch Gmbh Beschleunigungssensor
US8056415B2 (en) * 2008-05-30 2011-11-15 Freescale Semiconductor, Inc. Semiconductor device with reduced sensitivity to package stress

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996017253A1 (en) * 1994-12-01 1996-06-06 Analog Devices, Inc. Micromachined structure with minimized stiction
JPH09127151A (ja) * 1995-11-01 1997-05-16 Murata Mfg Co Ltd 加速度センサ
DE19817357A1 (de) 1998-04-18 1999-10-21 Bosch Gmbh Robert Mikromechanisches Bauelement
DE19832905A1 (de) * 1998-07-22 2000-02-10 Karlsruhe Forschzent Kapazitiver Beschleunigungssensor
DE19930779A1 (de) * 1999-07-03 2001-01-04 Bosch Gmbh Robert Mikromechanisches Bauelement
DE10024698A1 (de) * 2000-05-18 2001-11-22 Bosch Gmbh Robert Mikromechanisches Bauelement
DE10038761A1 (de) 2000-08-09 2002-02-21 Bosch Gmbh Robert Beschleunigungssensor
WO2002084303A1 (de) * 2001-04-12 2002-10-24 Robert Bosch Gmbh Vorrichtung zur messung einer beschleunigung und/oder einer drehrate
DE102006033176A1 (de) * 2006-07-18 2008-01-24 Robert Bosch Gmbh Mikromechanisches Bauelement mit einem Anschlagelement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2435786A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2472269A2 (de) * 2010-12-30 2012-07-04 Rosemount Aerospace Inc. Kapazitiver MEMS-Beschleunigungsmesser in der Ebene
US8656778B2 (en) 2010-12-30 2014-02-25 Rosemount Aerospace Inc. In-plane capacitive mems accelerometer

Also Published As

Publication number Publication date
DE102009026476A1 (de) 2010-12-02
JP2012528305A (ja) 2012-11-12
JP5606523B2 (ja) 2014-10-15
US20120073370A1 (en) 2012-03-29
TW201115149A (en) 2011-05-01
CN102449488A (zh) 2012-05-09
EP2435786A1 (de) 2012-04-04

Similar Documents

Publication Publication Date Title
WO2010136222A1 (de) Mikromechanische struktur
DE102007047592B4 (de) Beschleunigungssensor
EP2027474B1 (de) Beschleunigungssensor
DE19930779A1 (de) Mikromechanisches Bauelement
DE102012200929B4 (de) Mikromechanische Struktur und Verfahren zur Herstellung einer mikromechanischen Struktur
DE102008043753B4 (de) Sensoranordnung und Verfahren zum Betrieb einer Sensoranordnung
DE102009000606A1 (de) Mikromechanische Strukturen
EP2953890B1 (de) Mikromechanisches bauelement mit einer membranstruktur
WO2008071479A2 (de) Mikromechanischer z-sensor
EP1307750B1 (de) Mikromechanisches bauelement
DE102017219901B3 (de) Mikromechanischer z-Inertialsensor
DE102011076008B4 (de) Kraftaufnehmer, insbesondere Wägezelle
DE102014215038A1 (de) Mikromechanischer Sensor und Verfahren zur Herstellung eines mikromechanischen Sensors
WO2015086568A1 (de) Bedieneinrichtung für ein elektrisches gerät, insbesondere für eine fahrzeugkomponente
DE102008054749A1 (de) Drehratensensor und Verfahren zum Betrieb eines Drehratensensors
DE102011006397B4 (de) Mikromechanisches Bauelement mit einer Verhakungsstruktur
DE102009045645B4 (de) Sensorvorrichtung und Herstellungsverfahren für eine Sensorvorrichtung
WO2021083589A1 (de) Mikromechanisches bauelement, insbesondere inertialsensor, mit einer seismischen masse, einem substrat und einer kappe
WO2010034554A1 (de) Sensor und verfahren zur herstellung eines sensors
DE102009045393B4 (de) Mikromechanisches Bauelement
DE102011080982A1 (de) Sensoranordnung
DE102020210121A1 (de) Mikromechanisches System, Verfahren zum Betreiben eines mikromechanischen Systems
DE102020212998A1 (de) Mikromechanischer z-Inertialsensor
DE102006059929A1 (de) Inertialsensor mit einer seismischen Masse
DE2913913C2 (de) Schnappschalter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080022900.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10702076

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010702076

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010702076

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012512261

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13259392

Country of ref document: US