WO2010135859A1 - 金属陶瓷材料的精密成型方法 - Google Patents

金属陶瓷材料的精密成型方法 Download PDF

Info

Publication number
WO2010135859A1
WO2010135859A1 PCT/CN2009/071963 CN2009071963W WO2010135859A1 WO 2010135859 A1 WO2010135859 A1 WO 2010135859A1 CN 2009071963 W CN2009071963 W CN 2009071963W WO 2010135859 A1 WO2010135859 A1 WO 2010135859A1
Authority
WO
WIPO (PCT)
Prior art keywords
blank
hours
degreasing
cermet material
temperature
Prior art date
Application number
PCT/CN2009/071963
Other languages
English (en)
French (fr)
Inventor
李北
舒诚
鲍贤勇
陈杰
严明
Original Assignee
Li Bei
Shu Cheng
Bao Xianyong
Chen Jie
Yan Ming
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Bei, Shu Cheng, Bao Xianyong, Chen Jie, Yan Ming filed Critical Li Bei
Priority to PCT/CN2009/071963 priority Critical patent/WO2010135859A1/zh
Publication of WO2010135859A1 publication Critical patent/WO2010135859A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/10Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on titanium carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a precision molding method of a cermet material, and more particularly to a precision molding method of a cermet material containing TiC, TiN, M, and Mo as main components.
  • the commonly used cermet materials are mainly concentrated on tungsten carbide.
  • the main components are tungsten carbide and certain binder phase metals (nickel, molybdenum, etc.).
  • Tungsten carbide has good properties in terms of hardness, toughness and flexural strength.
  • the density of tungsten carbide materials has been an important obstacle to its application.
  • titanium carbide-based cermets were successfully developed and used in metal cutting tools. Titanium carbide-based cermets have a density less than one-third that of tungsten carbide, and have high red hardness, good corrosion resistance, thermal conductivity, and friction coefficient.
  • China due to the complicated manufacturing technology of high-performance titanium carbide-based cermets, China has not yet formed shaped grades and standards.
  • thermoplastic polymers are structurally inferior to other engineering materials (such as steel), they still get Widely used, mainly because these products are not only inexpensive but also complex in shape.
  • Filling the polymer with a dispersing metal or ceramic powder and then injecting it is considered to be a way to increase the strength.
  • the latest development of this method is to maximize the solid powder content and to exclude the polymer binder during sintering.
  • the method can produce products with complicated shapes, low cost and superior performance.
  • Metal powder injection molding technology is a high-tech molding technology combining traditional powder metallurgy technology and plastic injection molding technology. It breaks through the limitations of the traditional metal powder molding method in the shape of the product, can produce complex shapes in large quantities and high efficiency, and reduces subsequent processing steps.
  • the steps of manufacturing the product by powder injection molding are as follows: selecting and arranging the desired powder; mixing the powder with an appropriate amount of the binder; preparing the mixture of the powder and the binder into a uniform granule feed; The feed is injected into the closed cavity to form a blank; the binder in the formed blank is removed (degreasing); the blank is densified by high temperature sintering; and further densified after sintering.
  • the main advantage of powder injection molding is the economical manufacture of high-performance parts of complex shapes.
  • the method has the following characteristics: The ability to form the final geometry minimizes machining; the surface morphology of the product is better; the pressure due to the friction between the powder and the mold wall can be reduced compared to conventional compression molding. The case where the density of the billet is not uniform.
  • the binder In the process of binder mixing and injection molding of the blank, the binder is a short-lived carrier which uniformly fills the powder into the desired shape and maintains the shape until the start of sintering.
  • the binder must be mixed with the powder to form a uniform feed for injection molding.
  • the binder affects particle packing, agglomeration, mixing, forming, degreasing, dimensional accuracy, defects, and the final chemical properties of the formed blank. Coordinator for each requirement factor.
  • the product blank is subjected to several different degreasing methods to remove the organic binder in the blank and maintain the original blank geometry in proportion.
  • Degreasing removes the binder, and improper degreasing before sintering can cause various defects such as foaming, deformation, cracking, etc. Removal of the binder without destroying the shape of the blank requires a skillful process. For a simple binder system, degreasing is the most difficult without damaging the blank. The single component binder must be further removed over a small temperature range and the blank is easily destroyed.
  • the degreased product blank is sintered and densified in a vacuum sintering furnace to form a product billet, which is further densified by hot isostatic pressing to form a final product after sintering.
  • the sintering quality depends on the particle size, the size and shape of the preform, the sintering atmosphere, the sintering temperature, the holding time, and the heating and cooling rate.
  • the technical problem to be solved by the present invention is to provide a precision molding method which can overcome the deficiencies in the processing of the cermet material and the high manufacturing cost existing in the prior art, and can realize the metal in batches conveniently and at low cost.
  • the precision molding of ceramic materials makes the processed products high quality and low cost.
  • the immersion temperature and time in the first degreasing, and the heating temperature and time in the second degreasing are proportional to the wall thickness of the blank.
  • the step S6 includes the following steps:
  • the step S6 includes the following steps:
  • a cermet material prepared by the method of the present invention comprises the following components by weight: Carbon C: 10. 04% - 16. 04%; Titanium Ti: 60. 07% - 67. 07%; Nickel Ni: 9. 00% - 11. 00%; Molybdenum Mo: 7. 50% - 12. 50%; Nitrogen N: 1. 60% - 5. 20%.
  • the setting of the binder improves the fluidity of the powder in the mold and increases the plasticity of the powder molding process, and is commonly used in the prior art. Compared with the agent, it has the advantages of high strength, non-swelling cracking after solvent degreasing, and the wall thickness of the injected blank can be greater than 5 mm.
  • the binder of the present invention can be removed stepwise, and at each stage, the remaining binder retains the integrity of the blank. Solvent extraction can be used to remove the first component of the binder without substantially changing the volume, which can minimize the damage to the blank.
  • the titanium carbide-based cermet can be used for manufacturing parts such as watch cases, watch bands, and the like, as well as gas dynamic pressure bearing parts, precision tools and tools.
  • the titanium carbide-based cermet has high hardness and difficulty in processing.
  • the ceramic powder injection molding technology is used to reduce the processing difficulty, realize mass production, and save manufacturing cost.
  • the products manufactured by the above materials and molding methods are characterized by high hardness and light weight.
  • the method of the present invention also effectively solves the problem that it is difficult to achieve mass production due to the high hardness of the cermet material, and the prior art has the problems of difficulty in processing and high manufacturing cost.
  • TiC-based cermets are carbide cermets that have been extensively studied and applied after WC cermets.
  • the present invention mixes a portion of TiN in the TiC powder to significantly improve the flexural strength and the morphology of the pores.
  • the Ni+Mo system is used as the binder metal, and the binder ratio of the TiC-based cermet is formulated, and the composition of the materials as shown in the following table is obtained:
  • the cermet material of the above composition can achieve the following properties: density 5 ⁇ 6g/cm3,
  • the hardness is not less than 1600kg/mm2
  • the flexural strength is not less than 1400Mpa
  • the elastic modulus is not less than 480Gpa. And achieve the porosity of A02.
  • the titanium carbide-based cermet of the present invention can be mainly used in the manufacture of watch cases, watch bands and the like, as well as gas dynamic bearing parts, precision tools and tools.
  • the present invention employs a lower cost injection molding technique, which mainly includes the following steps: preparing a binder, obtaining an injection molded blank, degreasing a blank, and sintering And post-treatment, in addition, before the processing, a raw material, a metal alloy powder of the above materials such as titanium carbide TiC or titanium nitride TiN is prepared.
  • Multi-component system Includes three waxes (56# wax + microcrystalline wax + palm wax), four polymers (high density polyethylene + polypropylene + polyvinyl acetate + dibutyl phenyl benzoate), a plasticizer ( Stearic acid).
  • the 56# wax content is between 20° ⁇ 250%, the microcrystalline wax content is between 20° ⁇ 25%, the palm wax content is between 15° ⁇ 25%, and the high density polyethylene content is between 8° ⁇ 12%,
  • the propylene content is between 6 ° ⁇ 10%, the polyvinyl acetate content is between 5%, the butyl propylene dicarboxylate content is between 5% and the stearic acid content of the plasticizer is 5 ° ⁇ 15 Between %, the plasticizer content is adjusted according to the powder formulation.
  • the root cause is that after the cermet is pressed, the filling density of the ceramic phase can only reach 50-70%, and after sintering, it can reach 99. More than %, this process is completed by volumetric shrinkage.
  • the invention finds the law of dimensional deformation by reasoning the packing density of the blank part, the change in the process of degreasing and sintering, and the shrinkage amount in the sintering process, and rationally designing the mold. Make the parts meet the design accuracy requirements.
  • the degreasing of the blank combines the advantages of solvent degreasing and heat degreasing to form a two-step degreasing process.
  • the present invention employs a multi-component binder, and the degreasing process can be carried out in stages. At each step of degreasing, the remaining binder will contribute to the integrity of the blank. But for injections with multiple component binders For the forming of blanks, the destruction of the blanks is often easy to occur during the first step of degreasing. Solvent extraction can be used to remove the first component of the binder in a small volume change. To a lesser extent, the destruction of the blank by the degreasing process is reduced.
  • the blank degreasing method of the present invention is designed as
  • the first degreasing uses solvent degreasing, mainly to remove wax grease. Immerse the blank in an organic solvent (n-ethane or trichloroethane) at 50 ⁇ ( ⁇ 65 V
  • the soaking time is proportional to the wall thickness of the part. Normally, when the wall thickness of the blank is 5m, the soaking temperature is 6 (T65.C)
  • time 3 ( ⁇ 32 hours; when the blank wall thickness is 2 hidden, the soaking temperature is 5 ( ⁇ 55 V
  • Time 2CT24 hours the specific data is also related to other parameters.
  • the second degreasing uses heat degreasing, mainly to remove other organic polymers in the binder. This step can be combined with the subsequent sintering process in one step.
  • the degreased blank is placed in a vacuum sintering furnace and heated to 320 °C at 400 °C in a vacuum atmosphere.
  • heat preservation 0. 5 2 hours.
  • the heating temperature and heating time are proportional to the wall thickness of the part. Normally, when the wall thickness of the blank is 5, the heating temperature is 36CT380 °C.
  • the time is 1.25 hours; when the wall thickness of the blank is 2, the heating temperature is 33CT350.
  • the time is 0.75 hours; the specific data is also related to other parameters.
  • sintering and post-treatment are carried out by vacuum sintering or low-pressure hot isostatic pressing.
  • the heating degreasing and sintering process of the present invention is completed in one step, and the sintered blank is subjected to hot isostatic pressing to eliminate voids in the blank to achieve full densification of the material.
  • the blank obtained after powder injection molding needs to be further refined by a sintering method to meet the physical, chemical, mechanical and other properties of the final product.
  • the first step of vacuum sintering, the sintering process and the previous process of heating degreasing can be completed in one step, the degreased blank is first placed in a vacuum sintering furnace, heated to 320 V in a vacuum environment of 0.1 ⁇ 25 ⁇ 400 V , heat preservation 0. 5 2 hours, complete the heating degreasing process, after which, continue to heat up to 1400 V 1450 °C
  • the insulation is wide for 3 hours, the holding time is proportional to the wall thickness of the part; finally the blank is cooled with the furnace.
  • the second step is the hot isostatic pressing of the post-sintering treatment.
  • the part is placed in an argon atmosphere and gradually pressurized to 6 (Tl). 80Mpa, and gradually heat up to 1250 °C 1450 °C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Description

说明书 金属陶瓷材料的精密成型方法
[1] 本发明涉及一种金属陶瓷材料的精密成型方法, 更具体地说, 本发明涉及一种 以 TiC、 TiN、 M、 Mo为主要组份的金属陶瓷料的精密成型方法。
[2] 目前常用的金属陶瓷材料主要集中在碳化钨上, 其主要成分是碳化钨和一定的 粘结相金属 (镍、 钼等) 组成。 碳化钨在硬度、 韧性和抗弯强度等方面都具有 较好性能, 但是由于钨本身密度很高, 碳化钨材料的密度一直是局限其应用的 重要阻碍。 1950年研制成功了碳化钛基金属陶瓷, 并将其用于金属切削工具。 碳化钛基金属陶瓷的密度不到碳化钨的三分之一, 同时具有较高的红硬性、 较 好的耐腐蚀性能、 导热率和摩擦系数。 但是由于高性能碳化钛基金属陶瓷制备 技术复杂, 我国尚未形成定型的牌号和标准。
[3] 此外, 注射成型技术已广泛应用, 特别是注射成型技术制得的低成本、 形状复 杂的塑料制品, 尽管这些热塑性聚合物在结构上劣于其它工程材料 (如钢材) , 但仍然得到广泛应用, 主要是由于这些产品不仅价格低廉而且形状复杂。 在 聚合物中填入弥散的金属或者陶瓷粉末再进行注射被认为是提高强度的一个途 径, 该方法的最新进展就是使得固体粉末含量达到最大并在烧结时将聚合物粘 结剂排除。 该方法可以制取形状复杂、 成本低和性能优越的产品。 金属粉末注 射成型技术, 是传统的粉末冶金技术和塑料注射成型技术相结合的一种高新成 型技术。 它突破传统金属粉末模压成型方法在产品形状上的限制, 能大批量、 高效率的生产形状复杂的零件, 并减少后续加工工序。
[4] 用粉末注射成型法制造产品的步骤如下: 选择和配置所需的粉末; 将粉末和适 量的粘结剂混合; 将粉末与粘结剂的混合料制成均匀的颗粒喂料; 将喂料注射 到封闭模腔内形成坯件; 脱除成型坯件中的粘结剂 (脱脂) ; 通过高温烧结使 坯件致密化; 烧结后进一步致密化处理。
[5] 粉末注射成型法的主要优势是经济地制造复杂形状的高性能零件。 除了主要优 势以外, 该方法还有以下特征: 形成最终几何形状的能力, 将机械加工降到最 少程度; 产品表面形态较好; 相比普通模压成型, 可以减少由于粉末和模壁之 间摩擦形成的压坯密度不均匀的情况。
[6] 在粘结剂混合喂粒并注射成型坯件的过程中, 粘结剂是一种短时存在的载体, 它使粉末均匀装填成所需形状, 并使该形状保持到烧结开始。 粘结剂须与粉末 混合成供注射成型用的均匀喂料, 粘结剂会影响颗粒装填、 团聚、 混料、 成型 、 脱脂、 尺寸精度、 缺陷以及成型坯的最终化学性能, 粘结剂成为各要求因素 的协调剂。
[7] 在坯件脱脂过程中, 产品毛坯经过几次不同的脱脂方法, 将毛坯中的有机粘结 剂除掉, 并按比例保持原毛坯的几何形状。 脱脂即脱去粘结剂, 烧结前脱脂的 不当会导致毛坯起泡、 变形、 开裂等多种缺陷, 在不破坏毛坯形状的情况下脱 除粘结剂是需要技巧的过程。 对于简单的粘结剂体系, 在不破坏毛坯的情况下 脱脂是最困难的, 单组元的粘结剂必须在一小段温度范围内进一步被脱除, 毛 坯容易被破坏。
[8] 在烧结及后处理过程中, 将脱脂后的产品毛坯在真空烧结炉中烧结致密化形成 产品精坯, 并在烧结后采用热等静压进行进一步致密化形成最终产品。 烧结本 质上依赖粉末粒度、 成型坯尺寸和形状、 烧结气氛、 烧结温度、 保温时间和加 热降温速率等。 对烧结后坯件的空隙已闭合后的加压处理, 即热等静压, 在烧 结后处理来消除孔隙。
[9] 本发明要解决的技术问题是, 提供一种精密成型方法, 可以克服现有技术存在 的对金属陶瓷材料加工困难、 制造成本高的不足, 能够便利地、 低成本地批量 地实现金属陶瓷材料的精密成型, 使加工出的产品高品质、 低成本。
[10] 本发明上述技术问题这样解决, 构造一种金属陶瓷材料的精密成型方法, 包括 以下步骤:
[11] Sl、 制备碳化钛 TiC、 氮化钛 TiN金属合金粉末;
[12] S2、 以重量上 20°Γ25%的 56#蜡、 20% 25%的微晶蜡、 15% 25%的棕榈蜡、 8°Γΐ2% 的高密度聚乙烯、 6°Γ10%的聚丙烯、 5°Γ9%的聚醋酸乙烯脂、 5°Γ9%的邻苯丙甲 酸二丁脂, 以及作为增塑剂的 5°Γ15%的硬脂酸, 配制粘接劑;
[ 13] S3、 将步骤 S2配制的粘结剂与步骤 S1制备的粉末在 100 。C 〜200 V
下充分混合广 3小时, 混合完毕后冷却, 8〜16小时后进行粉碎制成注射成型喂 粒: 随后将喂料粒子在成型机注射枪管中加热到熔化温度, 采用往复运动的螺 杆来聚集、 均匀化和加压混合料, 并最终获得注射成型毛坯;
[ 14] S4、 将毛坯在 50 V 〜65 V
温度下的正乙烷或者三氯乙烷的有机溶剂内浸泡 18-36小时, 進行第一次脱脂;
[ 15] S5、 将溶剂脱脂后的坯件置于真空烧结炉内, 在 0. 1ΡεΓ25Ρει的真空环境下, 加 热至 320 。C 〜400 V , 保温 0. 5〜2小时, 进行第二次脱脂;
[ 16] S6、 对脱脂后的坯件烧结;
[ 17] S7、 后处理。
[ 18] 在上述金属陶瓷材料的精密成型方法中, 第一次脱脂中的浸泡温度、 时间, 以 及第二次脱脂中的加热温度和时间与毛坯壁厚成正比。
[ 19] 在上述金属陶瓷材料的精密成型方法中, 当所述毛坯壁厚为 5mm时, 第一次脱 脂时的浸泡温度为 6CT65
oC、 时间 3(Γ32小时, 以及第二次脱脂时的加热温度为 36CT380 V
、 时间 1. 25小时。
[20] 在上述金属陶瓷材料的精密成型方法, 当所述毛坯壁厚为 2mm时, 第一次脱脂 时的浸泡温度为 5(Γ55 V
、 时间 2CT24小时, 以及第二次脱脂时的加热温度为 33CT350 。C
、 时间 0. 75小时。
[21] 在上述金属陶瓷材料的精密成型方法中, 所述步骤 S6包括以下步骤:
[22] 在真空烧结炉内升温到 1400 。C 〜1450 V , 保温广 3小时;
[23] 让坯件随烧结炉冷却;
[24] 在上述金属陶瓷材料的精密成型方法中, 所述步骤 S6包括以下步骤:
[25] 将坯件置于氩气环境中, 逐步加压到 6(Tl80Mpa, 并逐步升温至 1250 V 〜1450
后, 保持压力和温度广 2小时; 再逐步减压并随炉冷却。
[26] 在利用本发明所述方法制备的金属陶瓷材料, 重量上包含以下组分: 碳 C: 10. 04%—— 16. 04%; 钛 Ti : 60. 07%—— 67. 07%; 镍 Ni : 9. 00%—— 11. 00%; 钼 Mo : 7. 50%—— 12. 50%; 氮 N: 1. 60%—— 5. 20%。
[27] 实施本发明提供的金属陶瓷材料的精密成型方法, 对于粘结剂的设定改善了粉 末在模具内的流动性并增加了粉末成型过程的可塑性, 与现有技术中常用的粘 结剂相比, 具有强度高、 可溶剂脱脂后不溶胀开裂、 注射毛坯壁厚可大于 5mm的 优点。 而且, 本发明的粘结剂可以分步脱除, 在每一阶段, 剩余的粘结剂都保 持毛坯的完整性。 采用溶剂萃取方法可以使毛坯在体积基本没有变化的情况下 脱出粘结剂的第一组元, 可以最大程度的减少对毛坯的破坏。 以本发明的成型 方法, 可以将碳化钛基金属陶瓷用于制造手表表壳、 表带等零配件, 以及气体 动压轴承零件、 精密刀具及工具等多个领域。 该碳化钛基金属陶瓷由于硬度高 、 加工困难, 为了提高成品的成型精度, 减少加工余量, 采用陶瓷粉末注射成 型技术, 降低了加工难度, 实现了批量化生产, 具有节省制造成本的特点。 而 采用上述材料及成型方法制造的产品具有硬度高、 质量轻的特点。 本发明的方 法还有效解决了由于金属陶瓷料硬度较高而难于实现批量生产, 现有技术具有 加工困难、 制造成本高的问题。
[28] 下面结合具体实施例详细说明本发明一种金属陶瓷材料精密成型方法。
[29] TiC基金属陶瓷是仅次于 WC金属陶瓷而被大量研究和应用的碳化物金属陶瓷。
本发明在 TiC粉末中混合部分的 TiN, 可以明显提高抗弯强度和孔隙的形态。 而 本发明采用 Ni+Mo系作为粘结金属, 并调配出 TiC基金属陶瓷的粘结剂比例, 得 到其成份如下表所示的材料组合:
[30]
Figure imgf000005_0001
[31] 上述成分的金属陶瓷材料, 其性能可达到如下标准: 密度 5〜6g/cm3、
[32] 硬度不小于 1600kg/mm2、 抗弯强度不小于 1400Mpa、 弹性模量不小于 480Gpa, 以及达到 A02的孔隙率。
[33] 本发明碳化钛基金属陶瓷主要可用于制造手表表壳、 表带等配件, 以及气体动 压轴承零件、 精密刀具及工具等领域。 在通过精密成型方法利用上述成分的金 属陶瓷材料制造产品中, 本发明采用了一种成本较低的注射成型技术, 主要包 括以下工序: 配制粘结剂、 获得注射成型毛坯、 坯件脱脂、 烧结及后处理, 此 夕卜, 在加工之前, 准备原材料, 包括碳化钛 TiC、 氮化钛 TiN等上述材料的金属 合金粉末。
[34] 首先, 在粉末注射成型之前, 需要添加一定量的粘结剂, 粘结剂在粉末成型制 造产品的转化过程中起到决定性的作用, 而本发明的粘结剂包含多种添加相的 多组分体系。 包括三种蜡 (56#蜡+微晶蜡 +棕榈蜡) 、 四种聚合物 (高密度聚乙 烯 +聚丙烯 +聚醋酸乙烯脂 +邻苯丙甲酸二丁脂) 、 一种增塑剂 (硬脂酸) 。 其中 56#蜡含量在 20°Γ250%之间、 微晶蜡含量在 20°Γ25%之间、 棕榈蜡含量在 15°Γ25% 之间、 高密度聚乙烯含量在 8°Γ12%之间、 聚丙烯含量在 6°Γ10%之间、 聚醋酸乙 烯脂含量在 5% %之间、 邻苯丙甲酸二丁脂含量在 5% %之间、 作为增塑剂的硬 脂酸含量在 5°Γ15%之间, 增塑剂的含量根据粉末配方进行调整。
[35] 其次, 精密成型获得注射成型毛坯。 将粘结剂与合金粉末在 100ο(Γ200 V 下充分混合广 3小时, 混合时间和温度与粉末数量和增塑剂的含量成正比, 混合 完毕后冷却, 8〜16小时后进行粉碎制成注射成型喂粒: 随后将喂料粒子在成型 机注射枪管中加热到熔化温度, 采用往复运动的螺杆来聚集、 均匀化和加压混 合料, 并最终获得注射成型毛坯。 金属陶瓷制备过程中, 体积变化是十分显著 的, 可以高达百分之十到二十。 产生的根本原因是金属陶瓷压型后, 陶瓷相的 填充密度只能达到 50—70%, 而烧结后, 则基本可以达到 99%以上, 这个过程是 通过体积收縮完成的。 本发明通过毛坯制件的填充密度、 脱脂烧结过程中的变 化以及烧结过程中的收縮量等几方面, 找出尺寸变形的规律, 合理设计模具, 使制件达到设计精度要求。
[36] 再次, 坯件脱脂, 结合了溶剂脱脂和加热法脱脂两种方法的优点而形成的两步 脱脂方法。 本发明采用多组元粘结剂, 脱脂过程可以分步进行。 在脱脂的每一 步, 剩余的粘结剂将有助于毛坯完整性的保持。 但对采用多组元粘结剂的注射 成型毛坯, 毛坯的破坏往往很容易在脱脂的第一步过程中发生, 采用溶剂萃取 方法可以使毛坯在体积变化很小的情况下, 将粘结剂中的第一组元脱出, 从而 在最大程度上减少脱脂过程对毛坯的破坏。 本发明所述的坯件脱脂方法设计为
[37] 第一次脱脂采用溶剂脱脂, 主要对蜡脂进行脱除。 将毛坯浸没在有机溶剂内 ( 正乙烷或者三氯乙烷) , 在 50ο(Γ65 V
之间浸泡 1 36小时, 浸泡时间与零件壁厚成正比。 通常情况, 当毛坯壁厚为 5m m时, 浸泡温度 6(T65 。C
、 时间 3(Γ32小时; 当毛坯壁厚为 2隱时, 浸泡温度 5(Γ55 V
、 时间 2CT24小时, 具体数据也与其它参数有关。
[38] 第二次脱脂采用加热脱脂, 主要对粘结剂中的其它有机聚合物进行脱除。 该步 骤可以与此后的烧结过程结合, 一步完成。 将溶剂脱脂后的坯件至于真空烧结 炉内, 在真空环境下, 加热至 320 °C 400 °C
, 保温 0. 5 2小时。 加热温度、 加热时间与零件壁厚成正比。 通常情况, 当毛坯 壁厚为 5隱时, 加热温度为 36CT380 °C
、 时间为 1. 25小时; 当毛坯壁厚为 2隱时, 加热温度 33CT350 。C
、 时间为 0. 75小时; 具体数据也与其它参数有关。
[39] 最后, 烧结及后处理, 采用真空烧结或者低压热等静压烧结进行成品烧结。 本 发明加热脱脂和烧结工序一步完成, 并对烧结后的坯件进行热等静压处理, 来 消除坯件中的孔隙达到材料的全致密化。 粉末注射成型后获得的毛坯, 需要进 一步地通过烧结方法来提高其致密度, 从而满足最终产品的物理、 化学、 机械 等性能的要求。
[40] 第一步真空烧结, 此烧结工序与上一工序的加热脱脂可以一步完成, 先将溶剂 脱脂后的坯件至于真空烧结炉内, 在 0. 1ΡεΓ25Ρει的真空环境下, 加热到 320 V 400 V , 保温 0. 5 2小时, 完成加热脱脂工序, 此后, 继续升温到 1400 V 1450 °C
, 保温广 3小时, 保温时间与零件的壁厚成正比; 最后坯件随炉冷却。
[41] 第二步作为烧结后处理的热等静压, 将零件置于氩气环境中, 逐步加压到 6(Tl 80Mpa, 并逐步升温至 1250 °C 1450°C
后, 保持压力和温度广 2小时; 再逐步减压并随炉冷却, 最终得到完全致密化的 金属陶瓷产品。

Claims

权利要求书
U] 1、 一种金属陶瓷材料的精密成型方法, 其特征在于, 包括以下步骤:
51、 制备碳化钛 TiC、 氮化钛 TiN金属陶瓷合金粉末;
52、 以重量上 20%~25%的 56#蜡、 20%~25%的微晶蜡、 15%~25%的棕榈蜡 、 8%~ 12%的高密度聚乙烯、 6%~10%的聚丙烯、 5%~9%的聚醋酸乙烯脂
、 5<¾~9%的邻苯丙甲酸二丁脂, 以及作为增塑剂的 5%~15%的硬脂酸, 配 制粘接劑;
53、 将步骤 S2配制的粘结剂与步骤 S 1制备的粉末在 100°C ~200°C
下充分混合 1~3小时, 混合完毕后冷却, 8〜16小时后进行粉碎制成注射成 型喂粒: 随后将喂料粒子在注射成型机注射枪管中加热到熔化温度, 采用 往复运动的螺杆来聚集、 均匀化和加压混合料, 并最终获得注射成型毛坯
54、 将毛坯在 50°C~65。C温度下的正乙垸或者三氯乙垸的有机溶剂内浸泡 18 -36小吋, 進行第一次脱脂;
55、 将溶剂脱脂后的坯件置于真空烧结炉内, 在 0.1Pa~25Pa的真空环境下 , 加热至 320°C~400°C, 保温 0.5~2小时, 进行第二次脱脂;
56、 对脱脂后的坯件烧结;
57、 后处理。
[2] 2、 根据权利要求 1所述金属陶瓷材料的精密成型方法, 其特征在于, 第一 次脱脂中的浸泡温度、 时间, 以及第二次脱脂中的加热温度和吋间与毛坯 壁厚成正比。
[3] 3、 根据权利要求 2所述金属陶瓷材料的精密成型方法, 其特征在于, 当所 述毛坯壁厚为 5mm吋, 第一次脱脂时的浸泡温度为 60~65°C
、 时间 30~32小吋, 以及第二次脱脂时的加热温度为 360~380°C 、 时间 1.25小吋。
[4] 4、 根据权利要求 2所述金属陶瓷材料的精密成型方法, 其特征在于, 当所 述毛坯壁厚为 2mmB寸, 第一次脱脂吋的浸泡温度为 50~55。C
、 时间 20~24小时, 以及第二次脱脂时的加热温度为 330〜350°C 、 时间 0. 75小时。
更正页 (细则第 91条) [5] 5、 根据权利要求 1所述金属陶瓷材料的精密成型方法, 其特征在于, 所述 步骤 S6包括以下步骤:
在真空烧结炉内升温到 1400°C 〜1450°C , 保温广 3小时;
让坯件随烧结炉冷却。
[6] 6、 根据权利要求 1所述金属陶瓷材料的精密成型方法, 其特征在于, 所述 步骤 S6包括以下步骤:
将坯件置于氩气环境中, 逐步加压到 6(Tl80Mpa, 并逐步升温至 1250°C 〜1450°C 后, 保持压力和温度广 2小时; 再逐步减压并随炉冷却。
[7] 7、 一种利用权利要求 1所述方法制备的金属陶瓷材料, 主要由碳化钛 TiC相 构成, 其特征在于, 构成所述金属陶瓷材料的物相还包括氮化钛 TiN相以及 主要由镍 Ni、 钼 Mo构成的金属粘结相; 所述金属陶瓷材料的主要成分为: 碳 C: 10. 04%—— 16. 04%,
钛 Ti : 60. 07%—— 67. 07%,
镍 M : 9. 00%—— 11. 00%,
钼 Mo: 7. 50%—— 12. 50%,
氮 N: 1. 60%—— 5. 20%
PCT/CN2009/071963 2009-05-25 2009-05-25 金属陶瓷材料的精密成型方法 WO2010135859A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/071963 WO2010135859A1 (zh) 2009-05-25 2009-05-25 金属陶瓷材料的精密成型方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/071963 WO2010135859A1 (zh) 2009-05-25 2009-05-25 金属陶瓷材料的精密成型方法

Publications (1)

Publication Number Publication Date
WO2010135859A1 true WO2010135859A1 (zh) 2010-12-02

Family

ID=43222109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071963 WO2010135859A1 (zh) 2009-05-25 2009-05-25 金属陶瓷材料的精密成型方法

Country Status (1)

Country Link
WO (1) WO2010135859A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106977184A (zh) * 2017-03-14 2017-07-25 深圳市星迪伟业科技有限公司 一种陶瓷零件及其生产工艺
CN112408952A (zh) * 2020-12-03 2021-02-26 厦门钨业股份有限公司 一种高热导薄壁陶瓷管及其制造方法
CN112475287A (zh) * 2020-11-28 2021-03-12 苏州创卓精密制造有限公司 一种金属粉末成型工艺
CN113957316A (zh) * 2021-09-17 2022-01-21 昆山卡德姆新材料科技有限公司 相变硬化不锈钢产品及相变硬化不锈钢产品的制作方法
CN114247888A (zh) * 2021-12-08 2022-03-29 蓝山县金山川粉末冶金有限公司 一种粉末冶金制作传动齿轮的方法
CN114472891A (zh) * 2022-01-10 2022-05-13 江苏精研科技股份有限公司 一种高精密小模数齿轮高效成形方法
CN114682778A (zh) * 2022-02-23 2022-07-01 北京科技大学 基于微细球形钛基粉末制备钛基制件的方法、钛基制件
WO2023004837A1 (zh) * 2021-07-27 2023-02-02 昆山思瑞奕电子有限公司 低密度金属及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056041A (ja) * 1983-09-05 1985-04-01 Nachi Fujikoshi Corp サ−メツト
JPS6112846A (ja) * 1984-06-27 1986-01-21 Kyocera Corp 切削工具用サ−メツト
CN1172168A (zh) * 1996-07-30 1998-02-04 大韩重石株式会社 用于手表和装饰的超硬合金
CN1346816A (zh) * 2001-11-07 2002-05-01 华中科技大学 复合金属陶瓷及其制备方法
WO2003039792A1 (fr) * 2001-11-05 2003-05-15 Centre National De La Recherche Scientifique Procede de fabrication de plaques en composite metal/ceramique
US20030185698A1 (en) * 2002-03-28 2003-10-02 Jenn-Shing Wang Manufacturing technique of powder metallurgy
CN1814838A (zh) * 2005-02-04 2006-08-09 李北 一种金属陶瓷材料及其成型工艺
CN101423901A (zh) * 2007-10-29 2009-05-06 比亚迪股份有限公司 一种金属陶瓷材料的制备方法
CN101435047A (zh) * 2008-12-19 2009-05-20 华中科技大学 含Ni-Cr粘结剂的金属陶瓷及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056041A (ja) * 1983-09-05 1985-04-01 Nachi Fujikoshi Corp サ−メツト
JPS6112846A (ja) * 1984-06-27 1986-01-21 Kyocera Corp 切削工具用サ−メツト
CN1172168A (zh) * 1996-07-30 1998-02-04 大韩重石株式会社 用于手表和装饰的超硬合金
WO2003039792A1 (fr) * 2001-11-05 2003-05-15 Centre National De La Recherche Scientifique Procede de fabrication de plaques en composite metal/ceramique
CN1346816A (zh) * 2001-11-07 2002-05-01 华中科技大学 复合金属陶瓷及其制备方法
US20030185698A1 (en) * 2002-03-28 2003-10-02 Jenn-Shing Wang Manufacturing technique of powder metallurgy
CN1814838A (zh) * 2005-02-04 2006-08-09 李北 一种金属陶瓷材料及其成型工艺
CN101423901A (zh) * 2007-10-29 2009-05-06 比亚迪股份有限公司 一种金属陶瓷材料的制备方法
CN101435047A (zh) * 2008-12-19 2009-05-20 华中科技大学 含Ni-Cr粘结剂的金属陶瓷及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106977184A (zh) * 2017-03-14 2017-07-25 深圳市星迪伟业科技有限公司 一种陶瓷零件及其生产工艺
CN112475287A (zh) * 2020-11-28 2021-03-12 苏州创卓精密制造有限公司 一种金属粉末成型工艺
CN112408952A (zh) * 2020-12-03 2021-02-26 厦门钨业股份有限公司 一种高热导薄壁陶瓷管及其制造方法
WO2023004837A1 (zh) * 2021-07-27 2023-02-02 昆山思瑞奕电子有限公司 低密度金属及其制造方法
CN113957316A (zh) * 2021-09-17 2022-01-21 昆山卡德姆新材料科技有限公司 相变硬化不锈钢产品及相变硬化不锈钢产品的制作方法
CN114247888A (zh) * 2021-12-08 2022-03-29 蓝山县金山川粉末冶金有限公司 一种粉末冶金制作传动齿轮的方法
CN114247888B (zh) * 2021-12-08 2024-04-09 蓝山县金山川粉末冶金有限公司 一种粉末冶金制作传动齿轮的方法
CN114472891A (zh) * 2022-01-10 2022-05-13 江苏精研科技股份有限公司 一种高精密小模数齿轮高效成形方法
CN114472891B (zh) * 2022-01-10 2023-11-24 江苏精研科技股份有限公司 一种高精密小模数齿轮高效成形方法
CN114682778A (zh) * 2022-02-23 2022-07-01 北京科技大学 基于微细球形钛基粉末制备钛基制件的方法、钛基制件

Similar Documents

Publication Publication Date Title
WO2010135859A1 (zh) 金属陶瓷材料的精密成型方法
CN110935878B (zh) 一种钛合金零件的注射成形方法
CN100419105C (zh) 一种金属陶瓷材料及其成型工艺
CN104668565B (zh) 粉末注射成型喂料制备方法及粉末注射成型生产方法
CN100581690C (zh) 注射成形制备高铌钛铝合金零部件的方法
CN101844227B (zh) 硬质合金注射成形用黏结剂的应用
WO2000012248A1 (en) Powder metal injection molding process for forming an article from the nickel-based superalloy &#39;hastelloy x&#39;
CN109576545B (zh) 一种具有混晶结构的Ti(C,N)基金属陶瓷及其制备方法
CN108607989A (zh) 异形复杂零件的注射成形方法
CN1309547C (zh) 一种制备高尺寸精度异型钼零部件的方法
CN105290404A (zh) 一种注射成形硬质合金产品的制备方法
CN106118588A (zh) 用于钛合金粉末注射成型的粘结剂以及注射成形钛合金零件的方法
CN102717081A (zh) 一种用粉末微注射成形方法制备微型模具的方法
CN113149002B (zh) 一种基于光固化成型的金刚石-陶瓷复合材料的制备方法
CN111822699A (zh) 一种max相金属陶瓷间接增材制造方法
CN114101678B (zh) 一种金属-陶瓷复合材料的制备方法
CN108101541A (zh) 一种无粘结相硬质合金的注射成形方法
CN108620574B (zh) 成型剂、喂料及其制备方法、坯体及其制备方法
CN113878113B (zh) 一种陶瓷-不锈钢复合材料及其制备方法
CN106031949A (zh) 一种复杂形状硬质合金产品的制备方法
KR100509938B1 (ko) 금속사출성형법을 이용한 티타늄 알루미나이드금속간화합물 물품의 제조 방법
CN106513688A (zh) 一种加工义齿用合金坯体的制备方法
JPH0244882B2 (zh)
LU501913B1 (en) Low-cost stainless steel indirect additive manufacturing method
JPH0820803A (ja) 焼結体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04-05-2012 )

122 Ep: pct application non-entry in european phase

Ref document number: 09845077

Country of ref document: EP

Kind code of ref document: A1