WO2023004837A1 - 低密度金属及其制造方法 - Google Patents

低密度金属及其制造方法 Download PDF

Info

Publication number
WO2023004837A1
WO2023004837A1 PCT/CN2021/110059 CN2021110059W WO2023004837A1 WO 2023004837 A1 WO2023004837 A1 WO 2023004837A1 CN 2021110059 W CN2021110059 W CN 2021110059W WO 2023004837 A1 WO2023004837 A1 WO 2023004837A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
density metal
metal
manufacturing
product
Prior art date
Application number
PCT/CN2021/110059
Other languages
English (en)
French (fr)
Inventor
史广星
许晶
周运波
Original Assignee
昆山思瑞奕电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山思瑞奕电子有限公司 filed Critical 昆山思瑞奕电子有限公司
Publication of WO2023004837A1 publication Critical patent/WO2023004837A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler

Definitions

  • the invention relates to a metal manufacturing method, in particular to a low-density metal and a manufacturing method thereof.
  • materials with better thermal conductivity are often used to realize the heating of liquid into gaseous state to meet other purposes.
  • a certain device needs to use a material with gaps and heat conduction, so that the liquid medium can enter the gap and quickly atomize from liquid to gas, so as to achieve other functional purposes required in the future; on the contrary, the condensation effect is the same.
  • ceramic materials are also used.
  • the processing technology is pressing, and there are also defects in the pressing process.
  • the voids after molding are unevenly distributed, resulting in poor capillary function, and some even have closed and non-circulating phenomena.
  • ceramic materials have poor thermal conductivity, long gasification delay, and low efficiency.
  • the present invention provides a low-density metal with uniform and continuous voids and a manufacturing method thereof.
  • a low-density metal manufacturing method the steps have:
  • the above-mentioned degreased embryo is solidified and formed into a finished product at high temperature, and the metal powder particles are connected to increase the strength of the product.
  • the pore size distribution of the voids is between 10-350 microns.
  • the pore size of the voids is concentrated between 20-150 microns.
  • the curing temperature is between 900-1300 degrees.
  • the void volume accounts for 20-70%.
  • the metal powder material is a stainless steel powder material.
  • a low-density metal which includes a product formed of metal material, and several apertures are formed on the product, and the apertures are connected to each other to form voids.
  • the pore size of the voids is between 10-350 microns.
  • the pore size of the voids is concentrated between 20-150 microns.
  • the void volume accounts for 20-70%.
  • the metal material is stainless steel.
  • the present invention has the following beneficial effects: the green embryo is formed by co-injection after mixing the metal material and the polymer material, and then the polymer material is removed through the degreasing process, and interconnected The voids are uniform and continuous. Compared with the prior art, the present invention can realize stable production of products with low density and complex configurations, and greatly maximizes the use of metal materials.
  • Fig. 1 is the three-dimensional schematic diagram after the low-density metal of the present invention forms a product
  • Fig. 2 is a microscopic view of a partial section of the product shown in Fig. 1;
  • Figure 3 is a low-density metal product.
  • FIG. 1 shows a formed low-density metal microstructure, which includes a product 1 formed of a metal material, and the product has a metal material 2 and several apertures 3 , and the apertures 3 are interconnected to form voids 4 .
  • the metal material is a stainless steel material, that is, the metal powder material as described below is a stainless steel powder material. There is corrosion resistance.
  • FIG. 2 the partial cross-sectional microscopic view of the processed product in Figure 1, wherein, observed under a microscope, it can be found that the pore diameter of the void is between 10-350 microns, and the pore diameter is concentrated It is between 20-150 microns, and after counting the voids, it is found that the volume of the voids accounts for 20-70%, which greatly realizes the low density of the product and improves the utilization rate of the material.
  • the products 10 includes a storage tank 11 on the upper side and a fixing hole 12 at one end, which is convenient for holding the product for subsequent operation; wherein, the product can be used for multiple purposes, for example, it can be used for a liquid heat cycle on a certain equipment
  • the carrier has a heating device on the lower side of the product. When the liquid flows in from the upper storage tank 11, the liquid penetrates into the product through the gap 4.
  • the liquid in the gap 4 is heated and volatilized into For gas, because the voids in the product are uniform and continuous, the liquid is easily volatilized by heat.
  • the present invention solves the technical defect that the liquid cannot volatilize stably and rapidly when heated.
  • the above-mentioned multi-porous metal materials have the characteristics of both structural materials and functional materials, and can be widely used in the fields of electronic communication, aerospace, mechanical engineering, chemical engineering, environmental protection engineering, etc., and will not be repeated here.
  • the above-mentioned multi-aperture 3 and continuous void 4 can also be divided into two types according to the shape of the holes: independent hole type and continuous hole type.
  • the independent type material has low density, good strength, good vibration absorption and sound absorption performance.
  • the continuous material also has the characteristics of permeability and good air permeability, which greatly solves the problems existing in the existing technology and improves the versatility of metal materials.
  • the above products can also achieve the technical effect of rapid condensation of gas into liquid.
  • the gaseous medium quickly enters the product through the gap 4 on the product surface, and quickly condenses into liquid on the surface of the metal 2 inside the product. , and flow out through the gap 4 to achieve recycling, which greatly solves the problem of energy recovery and utilization.
  • a kind of low-density metal of the present invention is formed by following manufacturing method, wherein, described low-density metal manufacturing method step has:
  • the above-mentioned degreased embryo is solidified and formed into a finished product at high temperature, and the metal powder particles are connected to increase the strength of the product.
  • the molding method is injection molding, and the curing temperature is between 900-1300 degrees, which greatly improves the strength of the product; compared with the compression molding of the prior art, various required product configurations can be realized,
  • the molding is simple, and the granular structure is convenient for injection molding. For example, it is convenient to suck the material into the injection machine and improve the automation performance of product manufacturing.
  • the purpose of high-temperature curing is to form a joint neck between independent metal powders to increase product strength.
  • the metal powder material is stainless steel powder material, which is more corrosion-resistant than other metal materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种低密度金属制造方法,步骤具有:提供金属粉末材料及高分子材料,将两者相互混合在一起,并形成颗粒状;将上述颗粒状送入注射机内形成需要的生胚,并脱脂,然后高温固化形成产品。所述脱脂和固化过程以去除生胚中的高分子材料并联结金属粉末颗粒,产品上形成孔径,该孔径相互连通形成空隙。通过将金属材料与高分子材料混合后再共同注射形成生胚,再以脱脂工序去除高分子材料,且去除高分子材料后形成相互连通的空隙,该空隙均匀、连续,相对于现有技术,可实现低密度、复杂化构型产品的稳定生产,大大发挥了金属材料的用途。

Description

低密度金属及其制造方法 技术领域
本发明涉及一种金属制造方法,尤其涉及一种低密度金属及其制造方法。
背景技术
在电子通讯或医疗设备中,经常采用导热性能较好的材料,来实现液体受热成气态,满足其它用途。例如:在某种设备上需要使用一种具备空隙且可导热的材料,方便液体介质进入空隙内快速由液态雾化成气态,达成后续所需的其他功能用途;反之,冷凝效果也一样。
目前市场上有采用金属材料,使用压制成型或粉浆浇注成型做成有空隙的产品。因压制成型产品表征关键性能的空隙分布较差,密度不均匀,且粉浆浇注成型零件,其不具备连续的空隙或存在无空隙现象,起不到渗透作用。由于受压制和浇注工艺特点的限制,也无法做出各种高复杂构型的产品,即上述现有技术无法满足市场需求。
另外,也有采用陶瓷材料,其加工工艺是压制,也同样存在压制工艺的缺陷,成型后的空隙分布不均匀,造成毛细功能差,甚至有的会存在封闭不循环现象。同时,陶瓷材料导热性能差,气化延时长,效率较低。
所以,确有必要提供一种新的低密度金属材料及其制造工艺来解决上述问题。
发明内容
为解决上述技术问题,本发明提供一种空隙均匀且连续的低密度金属及其制造方法。
为实现上述目的,本发明采用如下技术方案:一种低密度金属制造方法,步骤具有:
第一,提供金属粉末材料及高分子材料,将两者相互混合在一起,并形 成颗粒状;
第二,将上述颗粒状通过注射机注射到模具中,成型所需构型的生胚;
第三,将生胚进行脱脂,去除高分子材料,保留金属粉末骨架的脱脂胚,且去除高分子材料后在脱脂胚内形成孔径,该孔径在脱脂胚内形成相互连通的空隙;
第四,对上述脱脂胚在高温下进行固化成型为成品,联结金属粉末颗粒,增加产品强度。
在优选的实施方式中,所述空隙的孔径分布在10-350微米之间。
在优选的实施方式中,所述空隙的孔径集中在20-150微米之间。
在优选的实施方式中,所述固化温度在900-1300度之间。
在优选的实施方式中,所述空隙体积占比20-70%。
在优选的实施方式中,所述金属粉末材料为不锈钢粉末材料。
为实现上述目的,本发明也采用如下技术方案:一种低密度金属,其包括金属材料形成的产品,且产品上形成数个孔径,该孔径相互连通形成空隙。
在优选的实施方式中,所述空隙的孔径在10-350微米之间。
在优选的实施方式中,所述空隙的孔径集中在20-150微米之间。
在优选的实施方式中,所述空隙体积占比20-70%。
在优选的实施方式中,所述金属材料为不锈钢材料。
与现有技术相比,本发明具有如下有益效果:通过将金属材料与高分子材料混合后再共同注射形成生胚,然后通过脱脂工序去除高分子材料,且去除高分子材料后形成相互连通的空隙,该空隙均匀、连续,相对于现有技术,本发明可实现低密度、复杂化构型产品的稳定生产,大大发挥了金属材料的用途。
附图说明
图1是本发明的低密度金属形成产品后的立体示意图;
图2是图1所示为产品局部截面显微视图;
图3是低密度金属产品。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施例并不代表与本申请相一致的所有实施例。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。除非另作定义,本申请使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。本申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一对”等类似词语也不表示数量限制,而是表示存在至少一对。“多个”或者“数个”表示两个及两个以上。除非另行指出,“前端”、“后端”、“下排”和/或“上排”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“包括”等类似词语意指出现在“包括”前面的元件或者物件涵盖出现在“包括”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。在本申请说明书和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
请参阅图1所示,展示了成型后的一种低密度金属微观结构,其包括金属材料形成的产品1,且产品具有金属材料2及数个孔径3,该孔径3相互连通形成空隙4。在本实施方式中,所述金属材料为不锈钢材料,也即 如下所述金属粉末材料为不锈钢粉末材料,所称不锈钢材料或不锈钢粉末材料只是应用场合不一样的称呼,且不锈钢相对其它金属材料更有耐腐性。
请再参阅图2所示,对图1的产品进行处理后的局部截面显微视图,其中,在显微镜下观察可以发现,所述空隙的孔径在10-350微米之间,并且所述孔径集中在20-150微米之间,且将空隙统计后发现,所述空隙体积占比20-70%,大大实现了产品的低密度,材料的利用率也提高了。
请再参阅图3所示,并结合图1,展现了将上述低密度金属做成的产品,当然也可成型其它结构,通过注射成型,可以实现各种所需的产品构型,所述产品10包括位于上侧的收容槽11及一端固定孔12,该固定孔方便固持产品,以后续操作使用;其中,该产品可以用于多种用途,例如,可以用于某设备上的液体热循环载体,在产品的下侧有发热装置,当液体自上侧的收容槽11流入后,该液体经空隙4渗透入产品内,所述液体在受热状态下,位于空隙4内的液体受热挥发成气体,由于,产品内的空隙均匀、连续,液体很容易受热挥发,相对现有技术,本发明解决了液体受热不能稳定快速挥发的技术缺陷。当然,上述多空隙的金属材料同时具有结构材料及功能材料的特点,可以广泛应用于电子通讯、航空航天、机械工程、化学工程、环境保护工程等领域,在此不再一一赘述。
再者,上述多孔径3及连续的空隙4还可以根据其孔洞的形态分为独立孔洞型的和连续孔洞型的二大类,独立型的材料具有密度小、强度好、吸振、吸音性能好等特点,连续型的材料除了具有上述特点之外,还具有浸透性、通气性好等特点,大大解决了现有技术存在的问题,提升了金属材料的多用性。
当然,上述产品也可以达成气体快速冷凝成液体的技术效果,将产品放入介质气氛中,所述气态介质通过产品表面的空隙4快速进入产品内部,在产品内部的金属2表面快速冷凝为液体,并经由空隙4流出,实现循环利用,大大解决了能源回收利用的问题。
本发明的一种低密度金属通过如下制造方法形成,其中,所述低密度 金属制造方法步骤具有:
第一,提供金属粉末材料及高分子材料,将两者相互混合在一起,并形成颗粒状;
第二,将上述颗粒状通过注射机注射到模具中,成型所需构型的生胚;
第三,将生胚进行脱脂,去除高分子材料,保留金属粉末骨架的脱脂胚,且去除高分子材料后在脱脂胚内形成孔径3,该孔径在脱脂胚内形成相互连通的空隙4;
第四,对上述脱脂胚在高温下进行固化成型为成品,联结金属粉末颗粒,增加产品强度。
在本实施方式中,所述成型方式为注射成型,固化温度在900-1300度之间,大大提高了产品的强度;相对现有技术的压制成型,可以实现各种所需的产品构型,成型简单,且颗粒状结构方便注射成型,例如便于将材料吸入注射机内,提升产品制造的自动化性能,且高温固化的目的是在于相互独立的金属粉末之间形成联结颈,增加产品强度。在本实施方式中,所述金属粉末材料为不锈钢粉末材料,相对其它金属材料更有耐腐性。
综上所述,以上仅为本发明的较佳实施例而已,不应以此限制本发明的范围,即凡是依发明权利要求书及说明书内容所作的简单的等效变化与修饰,皆应仍属本发明专利涵盖的范围。

Claims (11)

  1. 一种低密度金属制造方法,步骤具有:
    第一,提供金属粉末材料及高分子材料,将两者相互混合在一起,并形成颗粒状;
    第二,将上述颗粒状通过注射机注射到模具中,成型所需构型的生胚;
    第三,将生胚进行脱脂,去除高分子材料,保留金属粉末骨架的脱脂胚,且去除高分子材料后在脱脂胚内形成孔径,该孔径在脱脂胚内形成相互连通的空隙;
    第四,对上述脱脂胚在高温下进行固化成型为成品,联结金属粉末颗粒,增加产品强度。
  2. 根据权利要求1所述的低密度金属制造方法,其特征在于:所述空隙的孔径在10-350微米之间。
  3. 根据权利要求2所述的低密度金属制造方法,其特征在于:所述空隙的孔径集中在20-150微米之间。
  4. 根据权利要求1所述的低密度金属制造方法,其特征在于:所述固化温度在900-1300度之间。
  5. 根据权利要求1所述的低密度金属制造方法,其特征在于:所述空隙体积占比20-70%。
  6. 根据权利要求1所述的低密度金属制造方法,其特征在于:所述金属粉末材料为不锈钢粉末材料。
  7. 一种低密度金属,其包括金属材料形成的产品,且产品上形成数个孔径,该孔径相互连通形成空隙。
  8. 根据权利要求7所述的低密度金属,其特征在于:所述空隙的孔径在10-350微米之间。
  9. 根据权利要求8所述的低密度金属,其特征在于:所述空隙的孔径集中在20-150微米之间。
  10. 根据权利要求7所述的低密度金属,其特征在于:所述空隙体积 占比20-70%。
  11. 根据权利要求7所述的低密度金属,其特征在于:所述金属材料为不锈钢材料。
PCT/CN2021/110059 2021-07-27 2021-08-02 低密度金属及其制造方法 WO2023004837A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110852120.4A CN113547121A (zh) 2021-07-27 2021-07-27 低密度金属及其制造方法
CN202110852120.4 2021-07-27

Publications (1)

Publication Number Publication Date
WO2023004837A1 true WO2023004837A1 (zh) 2023-02-02

Family

ID=78132953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110059 WO2023004837A1 (zh) 2021-07-27 2021-08-02 低密度金属及其制造方法

Country Status (2)

Country Link
CN (1) CN113547121A (zh)
WO (1) WO2023004837A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072556A (ja) * 1998-08-27 2000-03-07 Citizen Watch Co Ltd 射出成形による粉末焼結体およびその製造方法
US20090142529A1 (en) * 2007-11-29 2009-06-04 Far East University Volatile liquid loadable porous metal or ceramic container and manufacturing method
WO2010135859A1 (zh) * 2009-05-25 2010-12-02 Li Bei 金属陶瓷材料的精密成型方法
CN107584124A (zh) * 2016-07-10 2018-01-16 浙江火科技股份有限公司 一种梭架新型合金材料的金属注射成形生产方法
CN107775003A (zh) * 2016-08-31 2018-03-09 浙江火科技股份有限公司 一种利用金属注射生产旋梭弹簧座的方法
CN109732083A (zh) * 2019-03-13 2019-05-10 河源富马硬质合金股份有限公司 一种硬质合金胚料低压成型工艺

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691004B (zh) * 2011-09-29 2015-03-11 重庆润泽医药有限公司 医用多孔金属植入材料的制备方法
CN102794053B (zh) * 2012-08-21 2015-04-22 韶关市贝瑞过滤科技有限公司 梯度多层复合结构粉末烧结滤芯及其生产方法
KR20160058719A (ko) * 2013-10-14 2016-05-25 월풀 에쎄.아. 다공성 부재 및 다공성 성분의 제조방법
CN104625071B (zh) * 2015-01-28 2016-09-28 东莞劲胜精密组件股份有限公司 一种粉末注射成型表面孔隙材料的制备方法
CN105234414A (zh) * 2015-10-15 2016-01-13 湖南省民鑫新材料有限公司 一种低压注射成型制造过滤器元件工艺
CN105499574B (zh) * 2015-12-16 2018-09-14 北京科技大学 一种制备孔隙均匀异型多孔钨制品的方法
CN110449586B (zh) * 2019-08-29 2021-09-10 上海材料研究所 一种低压注射成型制备金属蜂窝材料的方法
CN112846169B (zh) * 2020-12-31 2022-09-13 广东省科学院新材料研究所 一种多孔金属粉末注射成形喂料及其制备方法、多孔金属异形零部件
CN112872355B (zh) * 2021-01-11 2022-04-08 上海交通大学 一种具有多级孔结构的金属吸液芯材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072556A (ja) * 1998-08-27 2000-03-07 Citizen Watch Co Ltd 射出成形による粉末焼結体およびその製造方法
US20090142529A1 (en) * 2007-11-29 2009-06-04 Far East University Volatile liquid loadable porous metal or ceramic container and manufacturing method
WO2010135859A1 (zh) * 2009-05-25 2010-12-02 Li Bei 金属陶瓷材料的精密成型方法
CN107584124A (zh) * 2016-07-10 2018-01-16 浙江火科技股份有限公司 一种梭架新型合金材料的金属注射成形生产方法
CN107775003A (zh) * 2016-08-31 2018-03-09 浙江火科技股份有限公司 一种利用金属注射生产旋梭弹簧座的方法
CN109732083A (zh) * 2019-03-13 2019-05-10 河源富马硬质合金股份有限公司 一种硬质合金胚料低压成型工艺

Also Published As

Publication number Publication date
CN113547121A (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
CN104308072B (zh) 用于选择性激光烧结的碳纤维基覆膜砂材料及其制备方法
CN101358304B (zh) NiAl金属间化合物多孔材料及其制备方法
CN104004954B (zh) 一种泡沫钢的制备方法
CN103343266B (zh) 高导热石墨高硅铝基复合材料及其制备工艺
CN103589884B (zh) 一种高性能钨铜复合材料的低温制备方法
CN110355993B (zh) 一种基于复合材料喷雾式3d打印装置及方法
CN101089209A (zh) 一种制备高铌钛铝多孔材料的方法
CN105568027A (zh) 一种微纳米颗粒混杂增强铝基复合材料及其制备方法
CN105921753A (zh) 金刚石-铜复合材料制备复杂形状近终形零件的方法
CN109280833A (zh) 一种钨铜复合材料的制备方法
CN105385876A (zh) 纳米SiC颗粒增强7075铝基复合材料半固态浆料的成型装置和成型方法
CN102554228B (zh) 一种超薄壁多孔金属管件的成形方法
CN108084484B (zh) 一种轻量化导电隔热复合材料及其制备方法、系统
CN103896561A (zh) 具有规整层状结构的二氧化硅隔热材料制备方法
CN103157389B (zh) 一种非对称多孔金属膜的制备方法
WO2023004837A1 (zh) 低密度金属及其制造方法
CN104073673A (zh) 一种陶瓷增强金属基复合材料的制备方法
US7998381B2 (en) Process for manufacturing a masterbatch for injection moulding or for extrusion
CN113878113B (zh) 一种陶瓷-不锈钢复合材料及其制备方法
CN114807640A (zh) 一种金属基陶瓷增强复合材料及其制备方法与应用
CN103849790B (zh) 一种原位生成均质纳米级陶瓷-金属复合材料及其制备方法
CN100519009C (zh) 一种定向增强铝基复合材料的制备方法
CN110899703B (zh) 一种高空隙率金属膜的制备方法
CN1817511A (zh) 一种复杂形状多孔钛的凝胶注模成型方法
CN109108288B (zh) 一种粉末注射成形制备空心球金属基轻质复合材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE