WO2010134396A1 - 運転支援装置、及び運転支援方法 - Google Patents

運転支援装置、及び運転支援方法 Download PDF

Info

Publication number
WO2010134396A1
WO2010134396A1 PCT/JP2010/056434 JP2010056434W WO2010134396A1 WO 2010134396 A1 WO2010134396 A1 WO 2010134396A1 JP 2010056434 W JP2010056434 W JP 2010056434W WO 2010134396 A1 WO2010134396 A1 WO 2010134396A1
Authority
WO
WIPO (PCT)
Prior art keywords
initiative
driver
degree
vehicle
risk
Prior art date
Application number
PCT/JP2010/056434
Other languages
English (en)
French (fr)
Inventor
光紀 太田
健 木村
拓 鈴木
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US13/321,092 priority Critical patent/US8788148B2/en
Priority to EP10777631.2A priority patent/EP2434467A4/en
Priority to CN201080022331.5A priority patent/CN102439645B/zh
Publication of WO2010134396A1 publication Critical patent/WO2010134396A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/30Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
    • B60R2300/302Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing combining image information with GPS information or vehicle data, e.g. vehicle speed, gyro, steering angle data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/30Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
    • B60R2300/304Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing using merged images, e.g. merging camera image with stored images
    • B60R2300/305Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing using merged images, e.g. merging camera image with stored images merging camera image with lines or icons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/80Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
    • B60R2300/804Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for lane monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/22Psychological state; Stress level or workload
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/0969Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • the present invention relates to a driving support device and a driving support method.
  • LDP lane departure prevention control
  • MB headway control
  • VDC stability control
  • An object of the present invention is to more effectively display the risk and the control state so that the driver can easily understand the situation.
  • the driving assistance apparatus controls vehicle travel when detecting a risk of vehicle travel, and displays at least one of the vehicle travel risk and its control state as visual information. Do. In addition, the driver's initiative for driving the vehicle is calculated, and the display form of the visual information is changed according to the calculated initiative.
  • the display mode of the visual information is changed according to the driver's initiative, thereby displaying the risk and the control state more effectively than displaying it uniformly. be able to. Therefore, the driver can easily understand the situation.
  • FIG. 1 is a schematic configuration of a driving support device.
  • FIG. 2 is a flowchart showing display control processing.
  • FIG. 3 is visual information showing a control state of lane departure prevention control.
  • FIG. 4 is visual information indicating the control state of the headway maintenance control for the traffic lane (lane).
  • FIG. 5 is visual information which shows the control state of the space
  • FIG. 6 is visual information indicating the control state of stability control.
  • FIG. 7 is visual information indicating a control state of slope start control.
  • FIG. 8 is visual information showing a control state of downhill road vehicle speed control.
  • FIG. 9 is a map for determining the additive color mixture of the action state figure in accordance with the initiative degree.
  • FIG. 3 is visual information showing a control state of lane departure prevention control.
  • FIG. 4 is visual information indicating the control state of the headway maintenance control for the traffic lane (lane).
  • FIG. 5 is visual information which shows the control state of the space
  • FIG. 10 is a map for determining the luminance of the action state graphic in accordance with the driver's initiative.
  • FIG. 11 is a map for determining the blinking speed of the action state figure in accordance with the driver's initiative.
  • FIG. 12 is a map for determining the additive color mixture of the risk figure according to the initiative degree.
  • FIG. 13 is a map for determining the brightness of the risk figure according to the initiative degree.
  • FIG. 14 is a map for determining the blink rate of the risk figure in accordance with the initiative degree.
  • FIG. 15 is a flowchart showing the display control process of the second embodiment.
  • FIG. 16 is a time chart showing changes in the driver's initiative D.
  • FIG. 17 is a map for determining the initiative D in accordance with the control amount of each control.
  • FIG. 18 is a map for determining the display angle of view in accordance with the driver's initiative D.
  • FIG. 19 is a future situation representing the risk when going out of a lane.
  • FIG. 20 is a current situation showing the vehicle behavior according to the operation of the lane departure prevention control.
  • FIG. 21 is a past situation showing the operation of the lane departure prevention control.
  • FIG. 22 is a display example of a road surface having a low road surface friction coefficient.
  • FIG. 23 is a display example of a school zone.
  • FIG. 24 is a schematic configuration diagram of a driving support device.
  • FIG. 25 is a flowchart showing display control processing of the fifth embodiment.
  • FIG. 26 is an example of a flowchart showing operation frequency calculation processing.
  • FIG. 27 is a graph showing the relationship between the operation frequency and the initiative degree.
  • FIG. 28 is a graph showing the relationship between the operation frequency and the initiative degree.
  • FIG. 29 is a map used for calculation of initiative.
  • FIG. 30 shows various maps for determining the display form according to the driver's initiative.
  • FIG. 31 is a flowchart showing the display control process of the sixth embodiment.
  • FIG. 32 is a graph showing the relationship between the operation frequency and the initiative degree.
  • FIG. 33 shows various maps for determining the display mode according to the driver's initiative.
  • FIG. 34 is a flowchart showing display control processing of the seventh embodiment.
  • FIG. 35 is an example of a flowchart showing an awakening degree calculation process.
  • FIG. 36 is a map used for calculation of initiative.
  • FIG. 35 is an example of a flowchart showing an awakening degree calculation process.
  • FIG. 37 shows various maps for determining the display mode according to the driver's initiative.
  • FIG. 38 is a flowchart showing the display control process of the eighth embodiment.
  • FIG. 39 is a graph showing the relationship between the degree of familiarity and the degree of initiative.
  • FIG. 40 shows various maps for determining the display mode according to the driver's initiative.
  • FIG. 41 is a flowchart showing the display control process of the ninth embodiment.
  • FIG. 42 is a graph showing the relationship between the degree of congestion and the degree of initiative.
  • FIG. 43 shows various maps for determining the display mode according to the driver's initiative.
  • FIG. 44 is a flowchart showing the display control process of the tenth embodiment.
  • FIG. 45 is a graph showing the relationship between the traffic jam ratio and the degree of initiative.
  • FIG. 46 shows various maps for determining the display mode according to the driver's initiative.
  • FIG. 47 is a flowchart showing display control processing of the eleventh embodiment.
  • FIG. 48 is a graph showing the relationship between the own vehicle speed and the initiative degree.
  • FIG. 49 shows various maps for determining the display mode according to the driver's initiative.
  • FIG. 50 is a flowchart showing the display control process of the twelfth embodiment.
  • FIG. 51 is a graph showing the relationship between the number of surrounding vehicles and the degree of initiative.
  • FIG. 52 shows various maps for determining the display mode according to the driver's initiative.
  • FIG. 53 is a flowchart showing the initiative degree correction process in the thirteenth embodiment.
  • FIG. 54 is a graph showing a correction amount according to on / off of the drive assist device switch.
  • FIG. 54 is a graph showing a correction amount according to on / off of the drive assist device switch.
  • FIG. 55 is a graph showing the relationship between the difference in the operation frequency and the correction amount with respect to the appropriate frequency.
  • FIG. 56 is a flowchart showing the initiative degree correction process in the fourteenth embodiment.
  • FIG. 57 is an example of a flowchart showing an operation number counting process.
  • FIG. 58 is a graph showing the relationship between the number of actuations of the low risk driving assistance device and the correction amount.
  • FIG. 59 is a graph showing the relationship between the number of operations of the high risk driving assistance device and the correction amount.
  • FIG. 60 is a flowchart showing the initiative degree correction process in the fifteenth embodiment.
  • FIG. 61 is a graph showing the relationship between the driving duration and the correction amount.
  • FIG. 62 is a flowchart showing the initiative degree correction process in the sixteenth embodiment.
  • FIG. 63 is an example of a graph showing the relationship between the driving time and the correction amount.
  • FIG. 64 is a flowchart showing the initiative degree correction process in the seventeenth embodiment.
  • FIG. 1 is a schematic configuration of a driving support device.
  • FIG. 2 is a flowchart showing display control processing.
  • the laser radar 1 detects the position and distance of a front object present in front of the vehicle, and inputs it to the controller 10.
  • the camera 2 captures an image in front of the vehicle, and the image processing device 3 recognizes the traveling environment based on the image data captured by the camera 2 and inputs it to the controller 10.
  • the vehicle speed sensor 4 detects the vehicle speed of the host vehicle and inputs the detected vehicle speed to the controller 10.
  • the controller 10 determines various risks to be described later with respect to the vehicle behavior and the surrounding environment in the own vehicle, drives and controls the brake actuator 6 according to the risks, creates the risk information and control information, and displays this Provide to the driver through 7.
  • the brake actuator 6 includes hydraulic devices such as a solenoid valve and a pump, and by driving and controlling them by the controller 10, the hydraulic pressure of each wheel cylinder can be individually controlled regardless of the driver's brake operation. .
  • the display 7 uses a display monitor of a navigation system, a combination meter, a head-up display (HUD) that projects an image by projecting a display light beam on a predetermined area of a front window glass, or the like.
  • a display monitor of a navigation system a combination meter, a head-up display (HUD) that projects an image by projecting a display light beam on a predetermined area of a front window glass, or the like.
  • HUD head-up display
  • the controller 10 includes lane departure prevention control (LDP), distance maintenance control (Magic Bumper), stability control (VDC: Vehicle Dynamics Control), hill start control (HSA: Hill Start Assist), downhill speed control (HDC: Hill Descent Control) and other control systems.
  • LDP lane departure prevention control
  • Magic Bumper distance maintenance control
  • VDC Vehicle Dynamics Control
  • HSA hill Start control
  • HDC Hill Descent Control
  • lane departure prevention control for example, when a departure tendency of the host vehicle from the traveling lane is detected, a yaw moment in the opposite departure direction is generated by the braking force difference between the left and right wheels to suppress departure from the traveling lane. .
  • the repulsive force when the virtual spring is compressed is Produce in a pseudo manner. If it is the repulsive force in the front-rear direction, the braking force may be increased, or the driving force may be decreased by engine control or shift control. At this time, when there is an accelerator operation by the driver, the pedal reaction force of the accelerator pedal may be increased.
  • the braking force difference between the left and right wheels generates a yaw moment in the direction opposite to the side object, or applies a steering torque to the steering wheel in the direction opposite to the side object. do it.
  • a yaw moment in the oversteer suppression direction or understeer suppression direction is generated by the braking force difference between the left and right wheels, or the steering wheel is oversteer suppression direction.
  • steering torque in the understeer suppression direction to stabilize the vehicle behavior.
  • the controller 10 executes the display control process of FIG. 2 and provides the driver with the above-mentioned risk information and control information via the display device 7.
  • step S1 risk information is acquired. That is, the deviation tendency of the host vehicle with respect to the traveling lane, the approaching tendency with the front object or the side object, the oversteer tendency of the host vehicle, the understeer tendency, the road surface gradient and the like are acquired.
  • step S2 the driver's initiative degree D with respect to the traveling (driving operation) of the vehicle is calculated as shown in the following equation (1).
  • D (D1 + D2) / 2 ...
  • D1 A / (A + B)
  • D2 E / (E + F)
  • A is a vehicle behavior by the driver's driving operation
  • B is a vehicle behavior by vehicle control
  • a + B is a vehicle behavior generated in the vehicle.
  • E is a predicted vehicle behavior after a predetermined time by the driver's driving operation
  • F is a predicted vehicle behavior after a predetermined time by vehicle control
  • E + F is a predicted vehicle behavior after a predetermined time occurring in the vehicle.
  • D1 is a ratio of the driver's driving operation in the current vehicle behavior
  • D2 is a ratio of the driver's driving operation in the predicted vehicle behavior after a predetermined time.
  • a value obtained by adding D1 and D2 is defined as the driver's initiative D.
  • the higher the driver's initiative D the lower the intervention degree of various controls, and the vehicle behavior depends on the driver's driving operation.
  • the lower the driver's initiative D the higher the intervention degree of various controls, and the vehicle behavior does not depend on the driver's driving operation.
  • the yaw rate ⁇ is calculated based on the equivalent two-wheel model, and this is taken as the vehicle behavior A.
  • V is a vehicle speed
  • Sf is a stability factor
  • L is a wheel base
  • is a tire turning angle.
  • the vehicle behavior (A + B) generated in the vehicle is a value measured by the yaw rate sensor.
  • the predicted vehicle behavior E after a predetermined time by the driving operation first estimates the steering operation amount after the predetermined time. Assuming that the average value of the steering operation amount a predetermined time before the current time is d n and the previous average value of the steering operation amount is d n -1 , the predicted value ⁇ d of the steering operation amount after the predetermined time is the following equation (3) Is represented by
  • t is a time interval between d n and d n -1
  • T is a time interval after a predetermined time.
  • produces in a vehicle is calculated
  • F may be estimated by inputting E calculated in the above (3) to the control logic of the actuator, and vehicle behavior (E + F) after a predetermined time may be calculated.
  • the longitudinal behavior of the vehicle it is calculated from the vehicle behavior A by the current driver operation and the actual vehicle behavior (A + B), and the vehicle behavior E by the driver predicted operation amount after a predetermined time and the predicted vehicle behavior (E + F) Do.
  • the display method of the risk information and the control information is determined according to the driver's initiative D, and this is provided to the driver via the display device 7.
  • the driver's initiative D is divided into, for example, three levels, and the method of providing risk information and control information is determined according to each level. For example, a low level of 0 to 30%, a middle level of 30 to 60%, and a high level of 60 to 100%.
  • the control state that is, the state in which departure from the traveling lane is suppressed is indicated by an arrow in the anti-departure direction.
  • the arrow is set to “blue”, for example, because the risk of increasing the tendency to deviate is not high.
  • the driver's initiative D is at a medium level, the risk that the declination tendency increases is somewhat increased, so the arrow is set to, for example, “red”.
  • the driver's initiative D is at a low level, the risk of increasing the tendency to deviate increases, so for example, the arrow is set to “red” and the size thereof is increased.
  • a virtual spring protruding toward the side of the vehicle is displayed, as shown in FIG. Change the shape and color of the virtual spring.
  • the virtual springs are drawn as a plurality of straight lines in the longitudinal direction of the vehicle body which are arranged along the vehicle width direction (in the form of ripples). For example, when the driver's initiative D is at a high level, the virtual spring is set to, for example, "light blue" because the risk of increasing the tendency to approach the traffic lane is not high.
  • the virtual spring is set to "yellow”, for example.
  • the distance between the plurality of straight lines aligned along the vehicle width direction is reduced.
  • the virtual spring is drawn as a plurality of arcs arranged in an oblique direction from the center of the vehicle body (in the form of ripples).
  • the virtual spring is set to, for example, "light blue” because the risk of increasing the tendency to approach surrounding objects is not high.
  • the driver's initiative D is at a medium level, the risk of increasing the tendency to approach surrounding objects is slightly increased, so at least the virtual spring in the direction in which the surrounding objects are detected is set to “yellow”, for example.
  • the virtual spring in the direction in which the surrounding objects are detected is set to "yellow", for example. Further, in order to express a state in which a virtual spring is compressed, the intervals of a plurality of arcs arranged in a diagonal direction from the center of the vehicle body are reduced.
  • the arrow in the direction of applying the yaw moment to the control state that is, the state suppressing the oversteer tendency and the understeer tendency.
  • the driver's initiative D is at a high level, the risk of increasing the oversteer tendency or the understeer tendency is not high, so the arrow is set to “blue”, for example.
  • the driver's initiative D is at a medium level, the risk of an increase in the oversteer tendency or the understeer tendency is slightly increased, so the arrow is set to “red”, for example.
  • the driver's initiative D is at a low level, the risk of increasing the oversteer tendency or the understeer tendency is increased, so the arrow is set to, for example, “red” and the size thereof is increased.
  • slope start control HSA
  • the operation state is displayed, that is, the state in which the backward movement of the vehicle is suppressed in a steep uphill, by an arrow pushing the vehicle from behind
  • the size (including the length and thickness) and the color of the arrow in accordance with the driver's initiative D.
  • the driver's initiative D is at a high level
  • the arrow is set to “blue”, for example.
  • the driver's initiative D is at the middle level
  • the arrow is set to, for example, "red”.
  • the driver's initiative D is at a low level, the arrow is set to "red", for example, and the size thereof is increased.
  • an arrow indicating the operation state that is, a state in which an increase in vehicle speed is suppressed on a steep down slope
  • an arrow directed to the rear of the vehicle and change the size (including the length and thickness) and the color of the arrow in accordance with the driver's initiative D.
  • the driver's initiative D is at a high level
  • the arrow is set to “blue”, for example.
  • the driver's initiative D is at the middle level
  • the arrow is set to, for example, "red”.
  • the driver's initiative D is at a low level, the arrow is set to "red", for example, and the size thereof is increased.
  • the driver's initiative D with respect to the traveling (driving operation) of the vehicle is calculated (step S2), and the display method of the control information is determined according to the initiative D. This is provided to the driver via the display device 7 (step S3).
  • the initiative degree D is a ratio D1 of the vehicle behavior A according to the driver's operation amount among the vehicle behavior (A + B) occurring in the vehicle, and a predicted vehicle occurring in the vehicle after a predetermined time Of the behavior (E + F), it is an average value of the ratio D2 occupied by the predicted vehicle behavior E according to the driver's operation amount after a predetermined time.
  • the driver's initiative D with respect to the traveling of the vehicle can be calculated by a simple calculation.
  • Visual information representing the control state is displayed by an arrow representing a force acting on the vehicle by operation of various controls or a virtual spring. This makes it easy for the driver to easily understand the control state.
  • the arrow is turned "blue". That is, if the driver's awareness of the travel of the vehicle is high, the risk of increasing the tendency to deviate is low even if the driver is not alerted more than necessary, so that the display is cold (blue-green or other blue-based hue). Thereby, it is possible to perform alerting suitable for the driver's sense.
  • the arrow is made “red”. That is, when the driver's awareness of the vehicle travel starts to decrease, the risk of increasing the tendency to deviate increases slightly, so the warning color (red hue such as red, orange, yellow, etc.) is displayed. . Thereby, it is possible to perform alerting suitable for the driver's sense.
  • the driver's initiative D is at a low level, not only the arrow is made “red” but also the size is increased. That is, when the driver's awareness of the vehicle travel is lowered, the risk of an increase in the declination tendency is high, and therefore, the arrow is further emphasized and displayed than when the driver's initiative D is at the middle level. Thereby, it is possible to perform alerting suitable for the driver's sense.
  • the virtual spring is made "light blue". That is, if the driver's awareness of vehicle travel is high, there is a low risk that the approach tendency to the passing line will increase even if the driver is not alerted more than necessary, so that it is cold (blue, green and other blue hues) Display with. Thereby, it is possible to perform alerting suitable for the driver's sense.
  • the virtual spring is made "yellow".
  • the warning color red, orange, yellow, etc. red hue
  • the driver's initiative D is at a low level, it not only makes the virtual spring "yellow” but also expresses a compressed state. That is, when the driver's awareness of the vehicle travel is lowered, the risk of approaching the passing lane line is high, so the virtual spring is emphasized and displayed more than when the driver's initiative D is at the middle level. Do. Thereby, it is possible to perform alerting suitable for the driver's sense.
  • the inter-vehicle maintenance control (MB) operates on an object around the own vehicle, such as another vehicle traveling in an adjacent lane, as shown in FIG. 5, it projects diagonally from four corners of the vehicle Display a virtual spring.
  • the virtual spring is made "light blue". That is, if the driver's awareness of the vehicle's driving is high, the risk of approaching the surrounding objects is low without raising the attention more than necessary, so that the color is cold (blue, green and other blue hues) Display with. Thereby, it is possible to perform alerting suitable for the driver's sense.
  • the virtual spring is made "yellow".
  • the warning color red, orange, yellow and other red hues
  • the driver's initiative D is at a low level, it not only makes the virtual spring "yellow" but also expresses a compressed state. That is, if the driver's awareness of vehicle travel is lowered, there is a high risk that the approach tendency to the surrounding objects is increased, the virtual spring is further emphasized and displayed than when the driver's initiative D is at a medium level. Do. Thereby, it is possible to perform alerting suitable for the driver's sense.
  • VDC stability control
  • the arrow is turned "blue". That is, if the driver's awareness of the vehicle travel is high, the risk of increasing the oversteer tendency or the understeer tendency is low without raising the attention more than necessary, so that the cold color (blue-green and other blue hues) Display with. Thereby, it is possible to perform alerting suitable for the driver's sense.
  • the arrow is made “red”. That is, when the driver's awareness of the vehicle travel starts to decrease, the risk of increasing the oversteer tendency or the understeer tendency is slightly increased, so the warning color (red, orange, yellow, etc. red hue) Display with). Thereby, it is possible to perform alerting suitable for the driver's sense.
  • the driver's initiative D is at a low level, not only the arrow is made “red” but also the size is increased. That is, when the driver's awareness of the vehicle travel is lowered, the risk of increasing the oversteer tendency or the understeer tendency is high, and therefore, the arrow is displayed more emphatically than when the driver's initiative D is at the middle level. Thereby, it is possible to perform alerting suitable for the driver's sense.
  • the arrow is turned "blue". That is, if the driver's awareness of the travel of the vehicle is high, the driver can shift to the quick accelerator operation without raising the attention more than necessary, and therefore, the display is performed in a cold color (blue-green or other blue-based hue). Thereby, it is possible to perform alerting suitable for the driver's sense.
  • the arrow is made “red”. That is, if the driver's awareness of the vehicle travel starts to decrease, the transition to the accelerator operation may be delayed, so the warning color (red hue such as red, orange, yellow, etc.) is displayed. . Thereby, it is possible to perform alerting suitable for the driver's sense.
  • the driver's initiative D is at a low level, not only the arrow is made “red” but also the size is increased. That is, if the driver's awareness of the vehicle travel is lowered, there is a high possibility that the transition to the accelerator operation will be delayed, so that the arrow is further emphasized and displayed than when the driver's initiative D is at the middle level. Thereby, it is possible to perform alerting suitable for the driver's sense.
  • the arrow is turned "blue". That is, if the driver's awareness of the vehicle travel is high, the risk of an increase in the vehicle speed is low even if the driver is not alerted more than necessary, so that the display is cold (blue-green or other blue-based hue). Thereby, it is possible to perform alerting suitable for the driver's sense.
  • the arrow is made “red”. That is, when the driver's awareness of the vehicle travel starts to decrease, the risk of an increase in the vehicle speed is slightly increased, so the warning color (red hue such as red, orange, yellow, etc.) is displayed. Thereby, it is possible to perform alerting suitable for the driver's sense.
  • the driver's initiative D is at a low level, not only the arrow is made “red” but also the size is increased. That is, when the driver's awareness of the travel of the vehicle is lowered, the risk of an increase in the vehicle speed is increased. Therefore, the arrow is displayed more emphatically than when the driver's initiative D is at the middle level. Thereby, it is possible to perform alerting suitable for the driver's sense.
  • the average value of D1 and D2 is calculated as the degree of initiative D
  • the sum of D1 and D2 is set as the degree of initiative D
  • the select low value of D1 and D2 is set as the degree of initiative D.
  • the subjectivity D may be an added value obtained by weighting each of D1 and D2.
  • one of D1 and D2 may be used as the subjectivity D as it is.
  • the driver's initiative D is divided into three stages of high level, middle level and low level, and the display form of action state figures such as arrows and springs is changed, but may be subdivided.
  • the display form of action state figures such as arrows and springs is changed, but may be subdivided.
  • the display form of action state figures such as arrows and springs
  • the display mode is continuously steplessly displayed. You may change it. According to this, it is possible to finely adjust the display mode.
  • the color of the action state figure such as the arrow and the spring is changed according to the driver's initiative D.
  • the brightness and the blinking speed of the action state figure may be changed. That is, as shown in FIG. 10, the lower the driver's initiative D, the higher the luminance of the action state graphic may be. Further, as shown in FIG. 11, the lower the driver's initiative D, the faster the blinking speed of the action state graphic may be. According to this, it is possible to arbitrarily adjust the emphasis degree of the action state figure, and it is possible to perform the alerting suitable for the driver's sense.
  • the display form of only the action state graphic is changed according to the driver's initiative D, but the display form of the risk graphic representing the risk to the vehicle traveling may be changed. That is, in lane departure prevention control (LDP), the traffic demarcation line is a risk figure, in inter-vehicle maintenance control (MB) a surrounding figure is a risk figure, or in stability control (VDC) the own vehicle is a risk figure.
  • LDP lane departure prevention control
  • MB inter-vehicle maintenance control
  • VDC stability control
  • the driver can grasp a lot of visual information. Therefore, as shown in FIG. 12, the driver can be effectively recognized the risk figure which is a risk for the vehicle by darkening the blue among the three primary colors displaying the risk figure as the initiative degree D is higher.
  • the risk may increase. Therefore, as shown in FIG. 14, by increasing the blinking speed, the driver can sense the driver by emphasizing the risk figure that is a risk to the vehicle. You may be alerted to
  • the controller 10 corresponds to the "control means”
  • the display device 7 corresponds to the "display means”
  • the process of step S2 corresponds to the "calculation means”
  • the process of step S3 corresponds to the "change means” Do.
  • the arrows in FIGS. 3 and 6 to 8 and the imaginary springs in FIGS. 4 and 5 correspond to the “operation state figure”.
  • a plurality of control means for controlling the traveling of the vehicle when the risk of traveling the vehicle is detected, and at least one of the risk of traveling of the vehicle and the operating state of the control means when at least one of the control means operates.
  • Display means for displaying as visual information, calculation means for calculating driver's initiative degree with respect to vehicle travel, changing means for changing the display form of visual information by the display means according to the self-regulation degree calculated by the calculation means And.
  • the calculation means calculates the degree of initiative based on the ratio of the vehicle behavior corresponding to the driver's driving operation amount among the vehicle behavior occurring in the vehicle.
  • the driver's initiative D with respect to the vehicle traveling can be calculated by a simple calculation.
  • the calculation means calculates the initiative degree based on the proportion of the predicted vehicle behavior according to the driver's driving operation amount after the predetermined time among the predicted vehicle behaviors generated in the vehicle after the predetermined time Do.
  • the driver's initiative D with respect to the vehicle traveling can be calculated by a simple calculation.
  • the display means displays an action state figure representing a force acting on the vehicle by the operation of the control means as visual information, and the change means reduces the size of the action state figure as the subjectivity is lower. Enlarge.
  • the display means displays an action state figure representing a force acting on the vehicle by the operation of the control means as visual information, and the change means displays the action state figure as the initiative degree is lower. Of the three primary colors, darken the red.
  • the display means displays an action state figure representing a force acting on the vehicle by the operation of the control means as visual information, and the change means decreases the luminance of the action state figure as the subjectivity is lower. Make it higher.
  • the display means displays, as visual information, an action state figure representing a force acting on the vehicle by the operation of the control means, and the changing means decreases the blink rate of the action state figure as the subjectivity is lower. Make it faster.
  • the display means displays, as visual information, a risk figure representing a risk to vehicle travel, and the change means darkens blue among the three primary colors displaying the risk figure, as the initiative degree is higher.
  • the display means displays a risk figure representing a risk to vehicle travel as visual information, and the change means increases the brightness of the risk figure as the initiative degree is higher.
  • the display means displays a risk figure representing a risk to vehicle travel as visual information, and the change means makes the blinking speed of the risk figure faster as the initiative degree is lower.
  • the vehicle travel control is performed when the vehicle travel risk is detected, and at least one of the vehicle travel risk and the control state is displayed as visual information, and the driver's initiative degree with respect to the vehicle travel is The display mode of the visual information is changed according to the calculated and calculated initiative.
  • FIG. 15 is a flowchart showing an initiative degree calculation process.
  • step S21 it is determined whether or not stability control (VDC) is in operation. If stability control is operating, the process proceeds to step S22. On the other hand, if the stability control is not in operation, the process proceeds to step S23.
  • VDC stability control
  • step S23 it is determined whether lane departure prevention control (LDP) is in operation. If the lane departure prevention control is activated, the process proceeds to step S24. On the other hand, if the lane departure prevention control is not in operation, the process proceeds to step S25.
  • LDP lane departure prevention control
  • step S25 it is determined whether inter-vehicle maintenance control (MB) is in operation. If the inter-vehicle maintenance control is activated, the process proceeds to step S26. On the other hand, if the inter-vehicle distance maintenance control is not in operation, the process proceeds to step S27.
  • MB inter-vehicle maintenance control
  • the driver's initiative D with respect to the vehicle travel can be estimated to some extent from the operation state of various controls. For example, if only the inter-vehicle maintenance control (MB) is activated, it can be estimated that the driver's initiative D is still at a relatively high level, and if the lane departure prevention control (LDP) is activated, the driver's initiative D up to the middle level If the stability control (VDC) is activated, it can be estimated that the driver's initiative D has dropped to a low level. That is, by defining the relationship between the operation of each control and the initiative D in advance, the initiative D is calculated (estimated) according to the operation state of each control. As described above, the driver's initiative D with respect to vehicle travel can be calculated by a simple method.
  • LDP lane departure prevention control
  • MB inter-vehicle maintenance control
  • VDC stability control
  • the driver's initiative D is 90%, and the control state of the MB is displayed as visual information. Then, while LDP is operating from time t1 to t2, priority is given to this to set the initiative D to 50%, and the display of visual information is switched to the LDP control state. Further, while LDP is in the inactive state at time t2 to t3, the initiative D returns to 90%, and the display of the visual information is switched to the control state of the MB. Also, while VDC is operating at time t3 to t5, priority is given to this to set the driver's initiative D to 20%, and the display of visual information is switched to the control state of VDC.
  • the initiative D is more finely estimated based on each control amount. It is also good. That is, as shown in FIG. 17, first, when MB alone operates, the subjectivity D is set to 60 to 100%, and when LDP is activated, the subjectivity D is set to 30 to 60%, and VDC operates. Sometimes, the initiative degree D is set to 0 to 30%. Then, when the control amount by MB increases in the range from 0 to the maximum value, the driver's initiative D is set to decrease in the range from 100 to 60.
  • the degree of initiative D is set to decrease in the range of 60 to 30.
  • the driver's initiative D is set to decrease in the range from 30 to 0. According to this, it is possible to estimate the initiative D more accurately.
  • the calculation means predetermines the relationship between the operation of the control means and the subjectivity, and calculates the subjectivity according to the operation state of the control means. Thereby, the driver's initiative degree D with respect to the vehicle traveling can be calculated by a simple method.
  • the calculation means calculates the initiative degree D in accordance with the control amount when the control means is operated.
  • the display area is changed according to the driver's initiative D.
  • the display angle of view is determined according to the driver's initiative D with reference to the map of FIG. 18.
  • the display angle of view centered on the host vehicle is narrowed, that is, the host vehicle is zoomed up and displayed.
  • effect (1) The display means zooms in on the host vehicle as the driver's initiative D is lower.
  • the present embodiment proposes another display form of visual information.
  • LDP lane departure prevention control
  • FIG. a future situation representing the risk of vehicle travel is shown in FIG. That is, the future risk of departing from the driving lane is expressed by a blue frame displayed diagonally in front of the host vehicle.
  • the blue frame is made thicker as the driver's initiative D is higher, in the same way as the risk figure shown in the application example of the first embodiment described above.
  • FIG. 20 shows a current situation representing the vehicle behavior according to the operation of the lane departure prevention control (LDP). That is, a state in which the departure from the traveling lane is suppressed is indicated by an arrow in the reverse departure direction, and the size (including the length and thickness) and the color of the arrow are changed according to the initiative degree D.
  • the arrow is set to “blue”, for example, because the risk of increasing the tendency to deviate is not high.
  • the driver's initiative D is at a medium level, the risk that the declination tendency increases is somewhat increased, so the arrow is set to, for example, “red”.
  • the driver's initiative D is at a low level, the risk of increasing the tendency to deviate increases, so for example, the arrow is set to “red” and the size thereof is increased.
  • the past situation representing the operation of lane departure prevention control (LDP) is shown in FIG.
  • the past situation indicates the reason why the situation of FIG. 20 is reached, and indicates the situation before the situation of FIG. 20 is reached. That is, for example, when there is a tendency to deviate to the left side, a yaw moment to the right is applied by the braking force difference between the left and right wheels, so a state where the braking force is applied to the right wheel is indicated by the arrow to the tire rear of the right wheel. Display and change the size (including length and thickness) and color of the arrow according to the driver's initiative D.
  • the arrow when the driver's initiative D is at a high level, the arrow is set to “blue”, for example, because the risk of increasing the tendency to deviate is not high.
  • the driver's initiative D when the driver's initiative D is at a medium level, the risk that the declination tendency increases is somewhat increased, so the arrow is set to, for example, “red”.
  • the driver's initiative D when the driver's initiative D is at a low level, the risk of increasing the tendency to deviate increases, so for example, the arrow is set to “red” and the size thereof is increased.
  • the visual information may be displayed.
  • road surface information having a low road surface friction coefficient ⁇ such as a puddle
  • a figure such as a puddle is displayed in front of the host vehicle as shown in FIG.
  • school route information is acquired from the navigation system
  • a road figure different from that of the general road (non-school zone) is displayed, or as shown in FIG. According to this, it is possible to support the driver's travel in various travel scenes.
  • the display means is any one of a future situation indicating a risk of vehicle travel, a current situation indicating a vehicle behavior according to the operation of the control means, and a past situation indicating the operation of the control means indicate.
  • FIG. 24 is a schematic configuration diagram of a driving support device.
  • the driver operation detection device 8 detects various operation states of the driver such as an accelerator operation, a brake operation, a shift operation, a steering operation, a navigation operation, operations of instruments, etc., and inputs them to the controller 10.
  • the navigation system 9 also inputs map information and road information of the current location of the vehicle and its surroundings to the controller 10.
  • the navigation system 9 receives traffic information around the vehicle from the FM multiplex broadcasting and the light and radio beacons using a road traffic information communication system (VICS: Vehicle Information and Communication System).
  • VICS Vehicle Information and Communication System
  • FIG. 25 is a flowchart showing display control processing of the fifth embodiment.
  • step S51 various operation states of the driver are detected.
  • step S52 the frequency h of the driver's various operations is calculated.
  • FIG. 26 is an example of a flowchart showing operation frequency calculation processing.
  • step S53 the driver's initiative D is calculated according to the operation frequency h.
  • the driver's initiative D is calculated according to the following equation.
  • a and b are coefficients, and there is a relation of a ⁇ b, and the lower the operation frequency h, the lower the driver's initiative D is set.
  • the initiative degree D is set to 100 as shown in the following equation.
  • FIG. 27 is a graph showing the relationship between the operation frequency and the initiative degree.
  • the appropriate frequency H is not a unique value, but may have a certain width.
  • the driver's initiative D is calculated according to the following equation.
  • FIG. 28 is a graph showing the relationship between the operation frequency h and the driver's initiative D.
  • the initiative degree D becomes the maximum value.
  • the driver's initiative D may be calculated from the map with the driver operation frequency h as an input.
  • FIG. 29 is a map used to calculate the driver's initiative D.
  • the driver's initiative D may be calculated according to the operation frequency h.
  • step S54 the display form corresponding to the driver's initiative D is determined.
  • FIG. 30 shows various maps for determining the display mode according to the driver's initiative D.
  • the brightness, the additive color mixture, the blinking speed, and the amount of display information are determined according to the driver's initiative D. For example, as the driver's initiative D is higher, the brightness is suppressed, the blinking speed is suppressed, and the amount of display information is suppressed.
  • step S55 the information is provided to the driver via the display device 7 in accordance with the determined display form, and then the process returns to the predetermined main program.
  • the display viewpoint may be adjusted according to the driver's initiative D.
  • ⁇ Operation As the driver's operation frequency h is closer to the aptitude frequency H, it is considered that the driver is more concentrated in driving, so the driver's initiative D is calculated according to the operation frequency h (step S53).
  • the display mode is changed according to the degree D (steps S54 and S55). For example, as the driver's initiative D is higher, the brightness is suppressed, the blinking speed is suppressed, and the amount of display information is suppressed. That is, when the driver initiative degree D is high, it is considered that the positive display is not necessary, the brightness of the entire display screen and the color arrangement of the display content are set to be dark, and the display information amount is set small.
  • the calculation means calculates the frequency h of the driver's driving operation and calculates the initiative degree D in accordance with the calculated frequency h.
  • the driver's initiative D is calculated from the driver's intention.
  • FIG. 31 is a flowchart showing the display control process of the sixth embodiment.
  • step S61 for reading the switch operation state of the driving assistance device is added before processing step S53, the common processing is performed. The description is omitted.
  • step S61 the ON / OFF state of the driving assistance device switch is read.
  • the driving assistance device switch is, for example, a switch that can forcibly turn off (turn off) LDP, MB, VDC, HSA, HDC and the like.
  • step S53 when the driver explicitly turns off the driving assistance device switch, the driver's initiative D is calculated by the following equation.
  • a is set as the driver's initiative D at the normal time of the driver, and is calculated from the average value of the driver initiative D.
  • a 0.
  • FIG. 32 is a graph showing the relationship between the operation frequency h and the driver's initiative D.
  • the degree of initiative D increases as the operation frequency h increases.
  • step S54 the display form corresponding to the driver's initiative D is determined.
  • FIG. 33 shows various maps for determining the display mode according to the driver's initiative D.
  • the brightness, the additive color mixture, the blinking speed, and the amount of display information are determined according to the driver's initiative D. For example, as the driver's initiative D is higher, the brightness is suppressed, the blinking speed is suppressed, and the amount of display information is suppressed.
  • the display viewpoint may be adjusted according to the driver's initiative D.
  • step S61 the operation state of the driving assistance device switch is read (step S61), the calculation method of the initiative degree D is switched according to the operation frequency h, and the initiative degree D is calculated according to the graph of FIG. 32 (step S53).
  • the display mode is changed according to the degree D (step S54). For example, as the driver's initiative D is higher, the brightness is suppressed, the blinking speed is suppressed, and the amount of display information is suppressed. That is, when the driver initiative degree D is high, it is considered that the positive display is not necessary, the brightness of the entire display screen and the color arrangement of the display content are set to be dark, and the display information amount is set small.
  • the driver's initiative D is calculated. With this, it is possible to calculate the driver's initiative D for the vehicle traveling in a wider scene and by a simple calculation.
  • the display content is changed in accordance with the driver's awakening state (e.g., a driving mode).
  • the driver's awakening state e.g., a driving mode
  • FIG. 34 is a flowchart showing display control processing of the seventh embodiment.
  • step S71 the driver's driving operation condition such as steering operation by the driver, heart rate / body temperature / myoelectricity of the driver, camera information for photographing the driver (movement of the eyelid, movement of the head, change of sight) , And detects at least one of the driver's biological reaction and the driver's behavior.
  • the driver's driving operation condition such as steering operation by the driver, heart rate / body temperature / myoelectricity of the driver, camera information for photographing the driver (movement of the eyelid, movement of the head, change of sight) , And detects at least one of the driver's biological reaction and the driver's behavior.
  • the awakening degree W of the driver is calculated from the read various information.
  • the awakening degree W of the driver is in the range of 0 to 1.0, and is defined as 1.0 in the awake state.
  • FIG. 35 is an example of a flowchart showing an awakening degree calculation process.
  • the awakening degree W is calculated according to the time during which the eyes are closed for a predetermined time or the frequency of the steering operation.
  • step S73 the driver initiative D is calculated according to the awakening degree W according to the following equation.
  • driver initiative degree 1-(1-W) 2 x 100 [%]
  • driver awakening degree W may be input, and driver initiative degree may be computed from the map.
  • FIG. 36 is a map used to calculate the driver's initiative D.
  • FIG. 36 is a map used to calculate the driver's initiative D.
  • the initiative degree D may be calculated with reference to such a map.
  • step S74 the display form corresponding to the driver's initiative D is determined.
  • FIG. 37 shows various maps for determining the display mode according to the driver's initiative D.
  • the brightness, the additive color mixture, the blinking speed, and the amount of display information are determined according to the initiative D while distinguishing between the entire screen and the attention target. For example, for the entire screen, the higher the driver's initiative D, the more the brightness and the blink rate are suppressed, but the amount of displayed information is increased, and the color mixture is darker (stronger) Do. With regard to the target object, the higher the driver's initiative D, the lower the brightness and the blink speed, and the lower the driver's initiative D, the darker (more intense) the red and green and the lighter the blue. (Weak)
  • step S75 the information is provided to the driver through the display device 7 in accordance with the determined display form, and then the process returns to the predetermined main program.
  • the display viewpoint may be adjusted according to the driver's initiative D.
  • the initiative degree D is calculated according to the awakening degree W (step S73), and the display form according to the initiative degree D Are changed (steps S74 and S75).
  • the driver's initiative D is lower, the brightness is increased, the color tone is emphasized, and the blinking speed is increased, but the amount of display information is suppressed. That is, when the driver's initiative D is low, the brightness of the entire screen is set to be bright, and the color arrangement is made to be an intense color.
  • effect (1) The calculation means calculates the awakening degree W of the driver, and calculates the initiative degree D in accordance with the calculated awakening degree W.
  • the display content is changed according to the traveling route and the number of times of traveling (the number of times of passage) i.
  • FIG. 38 is a flowchart showing the display control process of the eighth embodiment.
  • step S81 the current position of the vehicle is read from the navigation system 9.
  • step S82 the number of times of travel i of the corresponding section is calculated from the current position.
  • the driver initiative D is calculated according to the number of times of travel i at the current location.
  • the initiative degree D is calculated according to the following equation.
  • D 100-a (th1-i)
  • the initiative degree D is set to 100 as shown in the following equation.
  • FIG. 39 is a graph showing the relationship between the degree of habituation and the degree of initiative D. As shown in FIG.
  • the degree of initiative D increases as the road gets used to.
  • step S84 the display form according to the driver's initiative D is determined.
  • FIG. 40 shows various maps for determining the display mode according to the driver's initiative D.
  • the brightness, the additive color mixture, the blinking speed, and the amount of display information are determined according to the initiative D while distinguishing between the entire screen and the attention target. For example, for the entire screen, regardless of the driver's initiative D, the brightness, the color, the blinking speed, and the display information amount are made constant. On the other hand, with regard to the target of interest, the higher the driver's initiative D, the brighter the light becomes, and the blue is darkened (stronger), and the blinking speed is slower.
  • step S85 the information is provided to the driver via the display device 7 in accordance with the determined display form, and then the process returns to the predetermined main program.
  • the display viewpoint may be adjusted according to the driver's initiative D.
  • the driver's initiative D is calculated according to the number of times of passage i (step S83), and the display mode is changed according to the initiative D (step S84). , S85). For example, as the driver's initiative D is higher, the brightness is increased or the color tone is emphasized. Conversely, when traveling on an unfamiliar road, the driver's initiative D is low, and not only the operating state of the device but also surrounding risk information is actively displayed. That is, regardless of the driver initiative D, the brightness and color arrangement of the entire screen are set to be dark. In addition, when the initiative degree D is low, risk information is also positively displayed as a target of attention.
  • effect (1) The calculation means calculates the number of times of travel i in the past on the route while traveling, and calculates the degree of initiative D in accordance with the calculated number of times of travel i.
  • the ninth embodiment "Constitution"
  • the contents to be displayed are switched according to the congestion state of the road.
  • FIG. 41 is a flowchart showing the display control process of the ninth embodiment.
  • step S91 the current position of the vehicle is read from the navigation system 9.
  • step S92 the current position is referred to, and the degree of congestion (degree of congestion, degree of congestion) G determined for each section of the road is read.
  • the initiative degree D is calculated according to the congestion degree G.
  • the initiative degree is set to 100%.
  • FIG. 42 is a graph showing the relationship between the degree of congestion G and the degree of initiative D.
  • step S94 the display form corresponding to the driver's initiative D is determined.
  • FIG. 43 shows various maps for determining the display form according to the driver's initiative D.
  • the brightness, the additive color mixture, the blinking speed, and the amount of display information are determined according to the driver's initiative D. For example, as the driver's initiative D is higher, the brightness is suppressed and the blinking speed is suppressed, and in the additive color mixture, as the driver's initiative D is lower, the red is darker (stronger).
  • step S95 the information is provided to the driver via the display device 7 in accordance with the determined display form, and then the process returns to the predetermined main program.
  • the display viewpoint may be adjusted according to the driver's initiative D.
  • the driver's initiative D is lowered as the road congestion degree G is higher (step S93), and the display mode is changed according to the initiative D (steps S94 and S95). For example, as the driver's initiative D is lower, the brightness is increased, the blink speed is increased, or the color tone is emphasized. That is, the display information amount is set to be large regardless of the driver's initiative D, and when the driver's initiative D is low, the brightness and color arrangement of the entire screen are set to be bright.
  • risk information can be emphasized rather than just displaying the operating status of the device.
  • effect (1) The calculation means detects the congestion degree G of the road, and calculates the initiative degree D in accordance with the detected congestion degree G.
  • the driver's initiative D is calculated from the traffic jam condition on the entire route.
  • FIG. 44 is a flowchart showing the display control process of the tenth embodiment.
  • step S101 the current position of the vehicle is read from the navigation system 9.
  • step S102 traffic jam information is read from the VICS information of the navigation system 9.
  • the distance L to the destination is calculated by the navigation system 9.
  • the congestion distance Lc to the destination is calculated from the VICS information of the navigation system 9.
  • step S105 the driver's initiative D is calculated according to the following equation according to the traffic congestion distance Lc which occupies the distance L to the destination.
  • FIG. 45 is a graph showing the relationship between the traffic jam ratio and the initiative D. As shown in FIG.
  • step S106 the display form according to the driver's initiative D is determined.
  • FIG. 46 shows various maps for determining the display mode according to the driver's initiative D.
  • the brightness, the additive color mixture, the blinking speed, and the amount of display information are determined according to the driver's initiative D. For example, as the driver's initiative D is higher, the brightness is suppressed and the blinking speed is suppressed, but the amount of display information is increased.
  • the additive color mixture darkens (strongens) red as the subject degree D decreases.
  • step S107 the information is provided to the driver via the display device 7 in accordance with the determined display form, and then the process returns to the predetermined main program.
  • the display viewpoint may be adjusted according to the driver's initiative D.
  • the driver's initiative D is lowered as the traffic jam ratio increases (step S105), and the display mode is changed according to the initiative D (steps S94, S95). For example, as the driver's initiative D is lower, the brightness is increased, the blink speed is increased, or the color tone is emphasized. That is, when the driver's degree D is high, the display information amount is set large, and when the driver's degree D is low, the brightness and color arrangement of the entire screen are set brighter.
  • risk information can be emphasized as well as simply displaying the operating status of the device.
  • the initiative degree D is calculated according to the traffic congestion distance Lc which occupies the distance L to the destination.
  • the driver's initiative D is calculated from the speed limit Vr.
  • FIG. 47 is a flowchart showing display control processing of the eleventh embodiment.
  • step S111 the current position of the vehicle is read from the navigation system 9.
  • step S112 the host vehicle speed (actual vehicle speed) Vv is read.
  • the speed limit Vr of the currently traveling road is read from the navigation system 9.
  • the speed set for each road is 60 km / h for a general road, and 100 km / h for an expressway. If you can get it from the infrastructure, read it.
  • step S114 the driver's initiative D is calculated according to the following equation in accordance with the difference between the host vehicle speed Vv and the speed limit vehicle Vr.
  • the coefficient a is set as 1, it may be changed depending on whether the vehicle speed Vv is higher or lower than the speed limit Vr. For example, when the host vehicle speed Vv is higher than the limit vehicle speed Vr, a ⁇ 1 (for example, 0.5) is set, and when the host vehicle speed Vv is lower than the limit vehicle speed Vr, a> 1 (for example 1.1) Set to be
  • FIG. 48 is a graph showing the relationship between the host vehicle speed Vv and the driver's initiative D.
  • step S115 the display form according to the driver's initiative D is determined.
  • FIG. 49 shows various maps for determining the display form according to the driver's initiative D.
  • the brightness, the additive color mixture, the blinking speed, and the amount of display information are determined according to the driver's initiative D. For example, as the driver's initiative D is higher, the brightness is suppressed and the blinking speed is suppressed.
  • the additive color mixture darkens (strongens) red as the subject degree D decreases.
  • step S116 according to the determined display form, the driver is provided with information via the display device 7, and then the process returns to the predetermined main program.
  • the display viewpoint may be adjusted according to the driver's initiative D.
  • the initiative degree D is calculated according to the difference between the own vehicle speed Vv and the speed limit Vr of the road currently being traveled (step S114), and the display form is changed according to the initiative degree D (steps S115 and S116). ). For example, as the driver's initiative D is lower, the brightness is increased, the blink speed is increased, or the color tone is emphasized. That is, when the driver's initiative D is high, the brightness and color arrangement of the entire screen are set to be dark.
  • the calculation means calculates the driver's initiative D in accordance with the speed limit Vr of the road on which the vehicle is traveling.
  • FIG. 50 is a flowchart showing the display control process of the twelfth embodiment.
  • step S121 a surrounding vehicle detected by the laser radar 1 is detected.
  • step S122 it is calculated whether the position of the surrounding vehicle is forward or backward or left or right with respect to the position of the host vehicle. For example, from the position of the surrounding vehicle that exists within a certain range from the own vehicle "forward P_front”, “back P_rear”, “right P_right”, “left P_left” and grouping, 1 if there are other vehicles in each direction In case of 0.
  • the driver's initiative D is calculated according to the following equation according to the presence or absence of the surrounding vehicle in each direction.
  • FIG. 51 is a graph showing the relationship between the number of surrounding vehicles and the degree of initiative D.
  • the movement degree of the own vehicle is limited, so as shown in this figure, the initiative degree D decreases as the number of surrounding vehicles increases.
  • the display form corresponding to the driver's initiative D is determined.
  • FIG. 52 shows various maps for determining the display mode according to the driver's initiative D.
  • the brightness, the additive color mixture, the blinking speed, and the amount of display information are determined according to the initiative D while distinguishing between the entire screen and the attention target.
  • the higher the driver's initiative D, the lower the brightness and the blink speed, and the additive color mixture darkens the blue as the driver's initiative D is higher, and the red as the driver's initiative D is lower.
  • the green color initially increases as the degree of initiative D increases, and decreases after reaching the maximum value.
  • step S125 the information is provided to the driver through the display device 7 in accordance with the determined display form, and then the process returns to the predetermined main program.
  • the display viewpoint may be adjusted according to the driver's initiative D.
  • the driver's initiative D is lowered as the number of surrounding vehicles increases (step S123), and the display mode is changed according to the initiative D (steps S124 and S125). For example, as the driver's initiative D is lower, the brightness is increased, the blink speed is increased, or the color tone is emphasized. That is, when the driver's initiative D is high, the brightness and color arrangement of the entire screen are set to be dark, and the amount of display information is set to be small. When the driver's initiative D is low, a large amount of display information is set, and at the same time the risk information is positively displayed as a target of attention, and the brightness and color arrangement of the risk information are set bright.
  • effect (1) The calculation means detects the number of surrounding vehicles present around the host vehicle, and calculates the initiative degree D in accordance with the detected number of surrounding vehicles.
  • FIG. 53 is a flowchart showing the initiative degree correction process in the thirteenth embodiment.
  • step S131 the ON / OFF state of the drive assist device switch is read.
  • the driving assistance device switch forcibly prohibits lane departure prevention control (LDP), headway distance control (MB), stability control (VDC), slope start control (HSA), downhill speed control (HDC), etc. It is a switch that can be turned on (off).
  • step S132 the correction amount C of the driver's initiative D is calculated.
  • C -25%
  • the driver intentionally turns off the driving assistance device In order to highly correct the initiative D, for example, C is set to 25%.
  • C is set to 25%.
  • the correction amount C is calculated only when this switch is turned OFF. You may do so.
  • the correction value of the driver's initiative D is set in the range of -25% to 25%.
  • FIG. 54 is a graph showing the correction amount C according to ON / OFF of the drive assist device switch.
  • the correction amount C when the drive assist device switch is ON, the correction amount C is set to a predetermined value on the minus side, and when the drive assist device switch is OFF, the correction amount C is set to a predetermined value on the plus side.
  • the operation frequency h of various operations such as driver's accelerator operation, brake operation, shift operation, steering operation, navigation operation, operation of instruments, etc. is calculated as in the fifth embodiment described above.
  • the correction amount C is calculated according to the relationship between the operation frequency h and the appropriate frequency H. That is, if the difference between the operation frequency h and the appropriate frequency H is within a predetermined range (for example, within ⁇ 10%), the correction amount C is set to zero. In addition, the correction amount C is increased on the positive side as the operation frequency h is larger than the appropriate frequency H and the difference is larger. Conversely, the correction amount C is larger as the operation frequency h is smaller than the appropriate frequency H and the difference is larger. Increase to the minus side.
  • FIG. 55 is a graph showing the relationship between the correction amount C and the difference between the operation frequency h and the appropriate frequency H.
  • the correction amount C is increased to the positive side as the operation frequency h becomes relatively larger than the appropriate frequency H, and conversely, the correction amount C is set to the negative side as the operation frequency h becomes relatively smaller. Make it bigger.
  • step S135 the above-mentioned correction amounts C are added to the already calculated degree of initiative D, so that the degree of initiative D is corrected and then the process returns to the predetermined main program.
  • the limiter process is performed with 0% as the lower limit and with 100% as the upper limit.
  • the driver when the operation frequency h is a driver near the appropriate frequency H, the driver is considered to be a good driver, and the driver's initiative D is corrected to be high.
  • the driver turns off the driving assistance device itself and the operation frequency h is far from the appropriate frequency H, the driver is considered to be a poor driver and the driver's initiative D is corrected to be low.
  • the driver's initiative D is corrected in accordance with the number of control interventions of the driving assistance device.
  • FIG. 56 is a flowchart showing the initiative degree correction process in the fourteenth embodiment.
  • step S141 the operating state of the driving assistance device is detected.
  • the degree of risk at the time of control intervention is classified into “low risk” and “high risk” for each driving assistance device.
  • the inter-vehicle maintenance control (MB) is “low risk”
  • the antilock braking system (ABS) and the stability control (VDC) are “high risk.”
  • the number of times the risk driving assistance device has been activated is counted.
  • FIG. 57 is an example of a flowchart showing an operation number counting process.
  • the driving assistance device when the driving assistance device is activated, it is discriminated whether it is a low risk driving assistance device or a high risk driving assistance device, and the number of actuations is counted.
  • the correction amount C is calculated individually in accordance with the number of times the low risk driving assistance device is activated and the number of times the high risk driving assistance device is activated.
  • Each correction amount C is set at a value of -50 to 50%.
  • the correction amount C is set to 0 when the number of actuations is 0, and when the number of actuations increases in a range up to a reasonable reference number for low risk (for example 5) To lower the correction amount C to the negative side. Then, if the reference number is exceeded, the negative amount of the correction amount C is reduced as the operation number increases thereafter, and then it is increased to the positive side in order to increase the driver's initiative D with 0 as the boundary. .
  • FIG. 58 is a graph showing the relationship between the number of actuations and the correction amount C in the low risk driving assistance device.
  • the correction amount C is set to the largest negative side (for example, -25%), and the more the reference number, the smaller the negative amount. ing.
  • the correction amount C is set to 0 when the number of operations is zero, and the correction amount C is increased to the negative side as the number of operations increases.
  • the gradient is changed until the appropriate reference number (for example, 3 times) for high risk is reached and after the reference number is exceeded, and a limit is applied with -50% as the lower limit value.
  • FIG. 59 is a graph showing the relationship between the number of actuations and the correction amount C in the high risk driving assistance device.
  • the correction amount C is set to decrease in the range of 0 to -50% as the number of operations increases.
  • step S143 the above-mentioned correction amounts C are added to the already calculated degree of initiative D, so that the degree of initiative D is corrected and then the process returns to the predetermined main program.
  • the limiter process is performed with 0% as the lower limit and with 100% as the upper limit.
  • the driver's initiative D becomes lower until the reference number of times, and thereafter, as the number of operations increases, it is regarded as a driver who is allowed to actively intervene in control and travels. Correct the driver's initiative D high. Also, in the case of a high-risk driving assistance device, the driver's initiative D is corrected to be lower as the number of operations increases.
  • FIG. 60 is a flowchart showing the initiative degree correction process in the fifteenth embodiment.
  • the driving continuation time (driving elapsed time) T is detected. This is, for example, the elapsed time since the engine was turned on.
  • step S152 the correction amount C is calculated in accordance with the operation continuation time T.
  • the correction value is set at a value of -50 to 50%.
  • the correction amount C is set to 0 as shown below.
  • FIG. 61 is a graph showing the relationship between the driving duration T and the correction amount C.
  • the correction amount C is maintained at 0, and as the operation continuation time T increases beyond the reference time T1, the correction amount C is reduced from 0 It is set to grow to the side.
  • the correction amount C is added to the degree of initiative D already calculated to correct the degree of initiative D, and then the process returns to the predetermined main program.
  • the limiter process is performed with 0% as the lower limit and with 100% as the upper limit.
  • the driving continuation time T after the start of driving has a correlation with the driver's initiative D. Therefore, the driving continuation time T is measured (step S151), the correction amount C is calculated according to the driving continuation time T (step S152), and the driver's initiative D is calculated by adding this to the calculated driving degree D. It corrects (step S153).
  • the driver's initiative D can be calculated with higher accuracy.
  • FIG. 62 is a flowchart showing the initiative degree correction process in the sixteenth embodiment.
  • step S161 the current time is detected.
  • the correction amount C is calculated according to whether or not the time of operation is different from the time zone of normal operation.
  • the correction value is set in the range of 0 to 1.0.
  • the correction amount C is set to the negative side.
  • the total time Td for driving in the daytime and the total time Tn for driving in the night are counted in advance, and the correction term is calculated by the following equation.
  • the correction amount C is calculated according to the following equation.
  • the correction amount C may be simply calculated from the operation time.
  • FIG. 63 is an example of a graph showing the relationship between the driving time and the correction amount C.
  • the correction amount C may be increased to the negative side and the driver's initiative D may be decreased when driving at night only.
  • step S163 the correction amount C is added to the degree of initiative D already calculated to correct the degree of initiative D, and then the process returns to the predetermined main program.
  • the limiter process is performed with 0% as the lower limit and with 100% as the upper limit.
  • the driving time zone is correlated with the driver's initiative D. Therefore, the time of driving is detected (step S161), the correction amount C is calculated according to whether or not the current time is different from the time zone of normal driving (step S162), and this is calculated.
  • the driver's initiative D is corrected by adding to the driver's initiative D (step S163).
  • the driver's initiative D decreases, so in consideration of whether there is much daytime driving or many nighttime driving, the time zone different from usual is considered When driving, the driver's initiative D is corrected to be low.
  • the display content may be calculated from the initiative degree D and the map, and only the display content may be displayed by the selection high of the weight among the display contents weighted in advance.
  • FIG. 64 is a flowchart showing the initiative degree correction process in the seventeenth embodiment.
  • step S171 an average of past values of the initiative degree D before correction in a predetermined time is calculated.
  • step S172 the correction amount C is calculated according to the following equation using the past average value.
  • the initiative degree correction value is set to a value of -50 to 50%.
  • the limiter process is performed with 0% as the lower limit and with 100% as the upper limit.
  • the correction amount C is calculated according to the past average value before correction (step S172), and is added to the calculated initiative degree D to correct the initiative degree D (step S173).
  • Each display map may be read from the calculation method of the initiative D, and each display content may be determined from the calculated initiative D D and the map.
  • the initiative degree D is corrected according to the past average value of the initiative degree.
  • the display mode of the visual information is changed according to the driver's initiative, thereby displaying the risk and the control state more effectively than displaying it uniformly. be able to. Therefore, the driver can easily understand the situation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Instrument Panels (AREA)

Abstract

 運転者が事態を把握しやすいように、リスクや制御状態を効果的に表示する。 車両走行のリスクを検出したときに車両走行を制御すると共に、車両走行のリスクとその制御状態の少なくとも一方を視覚情報として表示する。また、車両走行に対する運転者の主体度を算出し(ステップS2)、算出した主体度に応じて視覚情報の表示形態を変更する(ステップS3)。例えば、車線逸脱防止制御が作動するときには、走行車線からの逸脱を抑制している状態を、反逸脱方向の矢印で表示し、主体度Dに応じて矢印のサイズ(長さ・太さを含む)や色を変化させる。ここで、主体度Dが低レベルのときには、逸脱傾向が増加するリスクが高まっているので、矢印を例えば『赤色』に設定し、そのサイズを大きくする。

Description

運転支援装置、及び運転支援方法
 本発明は、運転支援装置、及び運転支援方法に関するものである。
 自車両周囲の走行環境に基づいてリスクポテンシャルを算出し、このリスクポテンシャルを図形や数値などの視覚情報としてモニタに表示し、運転者の注意を喚起するものがあった(特許文献1参照)。
特開2007-182224号公報
 ところで、車線逸脱防止制御(LDP)、車間維持制御(MB)、スタビリティ制御(VDC)など、複数の制御を統合したシステムにおいて、例えばリスクの低い状態から何れかの制御介入があったとする。このとき、リスクや制御状態を画一的に表示すると、運転者の状況によっては、かえって事態を把握しにくい可能性がある。
 本発明の課題は、運転者が事態を把握しやすいように、リスクや制御状態をより効果的に表示することである。
 上記の課題を解決するために、本発明に係る運転支援装置は、車両走行のリスクを検出したときに車両走行を制御すると共に、車両走行のリスクとその制御状態の少なくとも一方を視覚情報として表示する。また、車両走行に対する運転者の主体度を算出し、算出した主体度に応じて視覚情報の表示形態を変更する。
 本発明に係る運転支援装置によれば、運転者の主体度に応じて視覚情報の表示形態を変更することで、それを画一的に表示するよりも効果的にリスクや制御状態を表示することができる。したがって、運転者が事態を把握しやすくなる。
図1は、運転支援装置の概略構成である。 図2は、表示制御処理を示すフローチャートである。 図3は、車線逸脱防止制御の制御状態を示す視覚情報である。 図4は、通行区分線(レーン)に対する車間維持制御の制御状態を示す視覚情報である。 図5は、周囲の物体に対する車間維持制御の制御状態を示す視覚情報である。 図6は、スタビリティ制御の制御状態を示す視覚情報である。 図7は、坂道発進制御の制御状態を示す視覚情報である。 図8は、降坂路車速制御の制御状態を示す視覚情報である。 図9は、主体度に応じて作用状態図形の加法混色を決定するマップである。 図10は、主体度に応じて作用状態図形の輝度を決定するマップである。 図11は、主体度に応じて作用状態図形の点滅速度を決定するマップである。 図12は、主体度に応じてリスク図形の加法混色を決定するマップである。 図13は、主体度に応じてリスク図形の輝度を決定するマップである。 図14は、主体度に応じてリスク図形の点滅速度を決定するマップである。 図15は、第2実施形態の表示制御処理を示すフローチャートである。 図16は、主体度Dの変化を示すタイムチャートである。 図17は、各制御の制御量に応じて主体度Dを決定するマップである。 図18は、主体度Dに応じて表示画角を決定するマップである。 図19は、車線逸脱するときのリスクを表す将来の状況である。 図20は、車線逸脱防止制御の作動に応じた車両挙動を表す現在の状況である。 図21は、車線逸脱防止制御の作動を表す過去の状況である。 図22は、路面摩擦係数が低い路面の表示例である。 図23は、スクールゾーンの表示例である。 図24は、運転支援装置の概略構成図である。 図25は、第5実施形態の表示制御処理を示すフローチャートである。 図26は、操作頻度算出処理を示すフローチャートの一例である。 図27は、操作頻度と主体度との関係を示すグラフである。 図28は、操作頻度と主体度との関係を示すグラフである。 図29は、主体度の算出に用いるマップである。 図30は、主体度に応じた表示形態を決定する各種マップである。 図31は、第6実施形態の表示制御処理を示すフローチャートである。 図32は、操作頻度と主体度との関係を示すグラフである。 図33は、主体度に応じた表示形態を決定する各種マップである。 図34は、第7実施形態の表示制御処理を示すフローチャートである。 図35は、覚醒度算出処理を示すフローチャートの一例である。 図36は、主体度の算出に用いるマップである。 図37は、主体度に応じた表示形態を決定する各種マップである。 図38は、第8実施形態の表示制御処理を示すフローチャートである。 図39は、慣れ度合と主体度との関係を示すグラフである。 図40は、主体度に応じた表示形態を決定する各種マップである。 図41は、第9実施形態の表示制御処理を示すフローチャートである。 図42は、混雑度と主体度との関係を示すグラフである。 図43は、主体度に応じた表示形態を決定する各種マップである。 図44は、第10実施形態の表示制御処理を示すフローチャートである。 図45は、渋滞割合と主体度との関係を示すグラフである。 図46は、主体度に応じた表示形態を決定する各種マップである。 図47は、第11実施形態の表示制御処理を示すフローチャートである。 図48は、自車速と主体度との関係を示すグラフである。 図49は、主体度に応じた表示形態を決定する各種マップである。 図50は、第12実施形態の表示制御処理を示すフローチャートである。 図51は、周囲車両の数と主体度との関係を示すグラフである。 図52は、主体度に応じた表示形態を決定する各種マップである。 図53は、第13実施形態における主体度補正処理を示すフローチャートである。 図54は、運転補助装置スイッチのオン/オフに応じた補正量を示すグラフである。 図55は、適正頻度に対する操作頻度の差分と補正量との関係を示すグラフである。 図56は、第14実施形態における主体度補正処理を示すフローチャートである。 図57は、作動回数カウント処理を示すフローチャートの一例である。 図58は、低リスク運転補助装置の作動回数と補正量との関係を示すグラフである。 図59は、高リスク運転補助装置の作動回数と補正量との関係を示すグラフである。 図60は、第15実施形態における主体度補正処理を示すフローチャートである。 図61は、運転継続時間と補正量との関係を示すグラフである。 図62は、第16実施形態における主体度補正処理を示すフローチャートである。 図63は、運転時刻と補正量との関係を示すグラフの一例である。 図64は、第17実施形態における主体度補正処理を示すフローチャートである。
 以下、本発明の実施形態を図面に基づいて説明する。
(第1実施形態)
 《構成》
 図1は、運転支援装置の概略構成である。
 図2は、表示制御処理を示すフローチャートである。
 レーザレーダ1は、車両前方に存在する前方物体の位置、及び距離を検出し、コントローラ10に入力する。カメラ2は、車両前方を撮像し、画像処理装置3は、カメラ2で撮像した画像データに基づいて走行環境を認識し、コントローラ10に入力する。車速センサ4は、自車両の車速を検出し、コントローラ10に入力する。
 コントローラ10は、自車両における車両挙動や周囲環境について、後述する各種リスクを判断し、このリスクに応じてブレーキアクチュエータ6を駆動制御すると共に、そのリスク情報や制御情報を作成し、これを表示装置7を介して運転者に提供する。
 ブレーキアクチュエータ6は、ソレノイドバルブやポンプ等の油圧機器を備え、これらをコントローラ10によって駆動制御することにより、運転者のブレーキ操作に関らず各ホイールシリンダの液圧を個別に制御することができる。
 表示装置7には、ナビゲーションシステムの表示モニタや、コンビネーションメータ、またフロントウィンドウガラスの所定範囲に表示光線を投影して画像を映し出すヘッドアップディスプレイ(HUD)などを利用する。
 コントローラ10は、車線逸脱防止制御(LDP: Lane Departure Prevention)、車間維持制御(Magic Bumper)、スタビリティ制御(VDC: Vehicle Dynamics Control)、坂道発進制御(HSA: Hill Start Assist)、降坂路車速制御(HDC: Hill Descent Control)など、複数の制御システムを備える。
 車線逸脱防止制御では、例えば自車両の走行車線からの逸脱傾向を検出したときに、左右輪の制動力差によって反逸脱方向へのヨーモーメントを発生させることで、走行車線からの逸脱を抑制する。
 車間維持制御では、自車両の前方や側方に仮想のバネがあると想定し、自車両が前方物体や側方物体に接近するときに、仮想のバネが圧縮されるときの反発力を、擬似的に演出する。前後方向の反発力であれば、制動力を増加させたりエンジン制御や変速制御によって駆動力を減少させたりすればよい。このとき、運転者のアクセル操作があるときには、アクセルペダルのペダル反力を増加させてもよい。また、横方向の反発力であれば、左右輪の制動力差によって側方物体と反対方向へのヨーモーメントを発生させたり、ステアリングホイールに側方物体と反対方向への操舵トルクを付与したりすればよい。
 スタビリティ制御では、例えば車両のオーバーステア傾向やアンダーステア傾向を検出したときに、左右輪の制動力差によってオーバーステア抑制方向やアンダーステア抑制方向のヨーモーメントを発生させたり、ステアリングホイールにオーバーステア抑制方向やアンダーステア抑制方向の操舵トルクを付与したりして、車両挙動を安定させる。
 坂道発進制御では、急勾配の上り坂で停車し、再び発進するときに、ブレーキ操作からアクセル操作に移行するまでの間、制動力を維持することにより、車両の後退を防ぐ。
 降坂路車速制御では、急勾配を下るときに、制動力を制御することにより、車速の増加を制限する。
 コントローラ10は、図2の表示制御処理を実行し、上記のようなリスク情報や制御情報を、表示装置7を介して運転者に提供する。
 次に、表示制御処理について説明する。
 先ずステップS1では、リスク情報を取得する。すなわち、走行車線に対する自車両の逸脱傾向や、前方物体や側方物体との接近傾向、また自車両のオーバーステア傾向やアンダーステア傾向、さらに路面勾配などを取得する。
 続くステップS2では、下記(1)式に示すように、車両の走行(運転操作)に対する運転者の主体度Dを算出する。
  D=(D1+D2)/2       ………(1)
   D1=A/(A+B)
   D2=E/(E+F)
 Aは運転者の運転操作による車両挙動、Bは車両制御による車両挙動、A+Bは車両に発生する車両挙動である。Eは運転者の運転操作による一定時間後の予測車両挙動、Fは車両制御による一定時間後の予測車両挙動、E+Fは車両に発生する一定時間後の予測車両挙動である。また、D1は現在の車両挙動のうち運転者が運転操作している割合、D2は一定時間後の予測車両挙動のうち運転者が運転操作している割合である。これらD1とD2とを加算した値を、運転者の主体度Dと定義する。
 したがって、主体度Dが高いほど、各種制御の介入度が低く、車両挙動が運転者の運転操作に依存している状態を指す。一方、主体度Dが低いほど、各種制御の介入度が高く、車両挙動が運転者の運転操作に依存してない状態を指す。
 ここで、車両挙動の一例として、例えばヨーレートを用いた場合を説明する。
 先ず、下記(2)式に示すように、等価2輪モデルに基づいてヨーレートγを算出し、これを車両挙動Aとする。ここで、Vは車速、Sfはスタビリティファクタ、Lはホイールベース、θはタイヤ転舵角である。
Figure JPOXMLDOC01-appb-M000001
 また、車両に発生した車両挙動(A+B)は、ヨーレートセンサで実測した値とする。
 また、運転操作による一定時間後の予測車両挙動Eは、先ず一定時間後のステアリング操作量を推定する。現時点から一定時間前のステアリング操作量の平均値をd、ステアリング操作量の前回平均値をdn-1とすると、一定時間後のステアリング操作量の予測値θは、下記(3)式で表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、tはdとdn-1の時間間隔,Tは一定時間後の時間間隔である。このステアリング操作量の予測値θを、転舵角θとして前記(2)式に代入することで、一定時間後の予測車両挙動Eを算出する。
 また、車両に発生する一定時間後の車両挙動(E+F)は、過去数件の車両挙動から前記(3)式と同等の方法で求める。又は、アクチュエータの制御ロジックへ前記(3)で算出したEを入力することでFを推定し、一定時間後の車両挙動(E+F)を算出してもよい。
 なお、車両の前後挙動の場合も同様に、現在のドライバ操作による車両挙動Aと実際の車両挙動(A+B)、一定時間後のドライバ予測操作量による車両挙動Eと予測車両挙動(E+F)から算出する。
 続くステップS3では、運転者の主体度Dに応じて、リスク情報や制御情報の表示方法を決定し、これを表示装置7を介して運転者に提供する。ここでは、運転者の主体度Dを例えば三段階のレベルに区分けし、各レベルに応じてリスク情報や制御情報の提供方法を決定する。例えば0~30%を低レベル、30~60%を中レベル、60~100%を高レベルとする。
 各レベルに応じて制御情報の表示方法を、図3~図8に基づいて説明する。
 なお、何れの場合も自車両を上方から見下ろした俯瞰図とし、各種制御の作動によって車両に作用する力を表示した制御情報を作成する。
 先ず、車線逸脱防止制御(LDP)が作動するときには、図3に示すように、その制御状態を、つまり走行車線からの逸脱を抑制している状態を、反逸脱方向の矢印で表示し、主体度Dに応じて矢印のサイズ(長さ・太さを含む)や色を変化させる。例えば、主体度Dが高レベルのときには、逸脱傾向が増加するリスクは高くないので、矢印を例えば『青色』に設定する。また、主体度Dが中レベルのときには、逸脱傾向が増加するリスクがやや高まっているので、矢印を例えば『赤色』に設定する。そして、主体度Dが低レベルのときには、逸脱傾向が増加するリスクが高まっているので、矢印を例えば『赤色』に設定し、そのサイズを大きくする。
 また、通行区分線(レーン)に対して車間維持制御(MB)が作動するときには、図4に示すように、車両の側方に向かって突出する仮想のバネを表示し、主体度Dに応じて仮想のバネの形状や色を変化させる。なお、仮想のバネは、車幅方向に沿って並んだ車体前後方向の複数の直線として描いている(波紋状)。例えば、主体度Dが高レベルのときには、通行区分線への接近傾向が増加するリスクは高くないので、仮想のバネを例えば『水色』に設定する。また、主体度Dが中レベルのときには、通行区分線への接近傾向が増加するリスクがやや高まっているので、仮想のバネを例えば『黄色』に設定する。そして、主体度Dが低レベルのときには、通行区分線への接近傾向が増加するリスクが高まっているので、仮想のバネを例えば『黄色』に設定する。また、仮想のバネが圧縮している状態を表現するために、車幅方向に沿って並んだ複数の直線の間隔を縮める。
 また、自車両の周囲の物体に対して車間維持制御(MB)が作動するときには、図5に示すように、車両の四隅から斜め四方に向かって突出する仮想のバネを表示し、主体度Dに応じて仮想のバネの形状や色を変化させる。なお、仮想のバネは、車体中心から斜め方向に沿って並んだ複数の円弧として描いている(波紋状)。例えば、主体度Dが高レベルのときには、周囲の物体への接近傾向が増加するリスクは高くないので、仮想のバネを例えば『水色』に設定する。また、主体度Dが中レベルのときには、周囲の物体への接近傾向が増加するリスクがやや高まっているので、少なくとも周囲の物体を検出した方向の仮想のバネを例えば『黄色』に設定する。そして、主体度Dが低レベルのときには、周囲の物体への接近傾向が増加するリスクが高まっているので、少なくとも周囲の物体を検出した方向の仮想のバネを例えば『黄色』に設定する。また、仮想のバネが圧縮している状態を表現するために、車体中心から斜め方向に沿って並んだ複数の円弧の間隔を縮める。
 また、スタビリティ制御(VDC)が作動するときには、図6に示すように、その制御状態を、つまりオーバーステア傾向やアンダーステア傾向を抑制している状態を、ヨーモーメントを付与している方向の矢印で表示し、主体度Dに応じて矢印のサイズ(長さ・太さを含む)や色を変化させる。例えば、主体度Dが高レベルのときには、オーバーステア傾向やアンダーステア傾向が増加するリスクは高くないので、矢印を例えば『青色』に設定する。また、主体度Dが中レベルのときには、オーバーステア傾向やアンダーステア傾向が増加するリスクがやや高まっているので、矢印を例えば『赤色』に設定する。そして、主体度Dが低レベルのときには、オーバーステア傾向やアンダーステア傾向が増加するリスクが高まっているので、矢印を例えば『赤色』に設定し、そのサイズを大きくする。
 また、坂道発進制御(HSA)が作動するときには、図7に示すように、その作動状態を、つまり急な上り坂で車両の後退を抑制している状態を、車両を後方から押す矢印で表示し、主体度Dに応じて矢印のサイズ(長さ・太さを含む)や色を変化させる。例えば、主体度Dが高レベルのときには、矢印を例えば『青色』に設定する。また、主体度Dが中レベルのときには、矢印を例えば『赤色』に設定する。そして、主体度Dが低レベルのときには、矢印を例えば『赤色』に設定し、そのサイズを大きくする。
 また、降坂路車速制御(HDC)が作動するときには、図8に示すように、その作動状態を、つまり急な下り坂で車速の増加を抑制している状態を、車両後方に向かう矢印で表示し、主体度Dに応じて矢印のサイズ(長さ・太さを含む)や色を変化させる。例えば、主体度Dが高レベルのときには、矢印を例えば『青色』に設定する。また、主体度Dが中レベルのときには、矢印を例えば『赤色』に設定する。そして、主体度Dが低レベルのときには、矢印を例えば『赤色』に設定し、そのサイズを大きくする。
 《作用》
 車線逸脱防止制御(LDP)、車間維持制御(MB)、スタビリティ制御(VDC)など、複数の制御を統合したシステムにおいて、何れかの制御介入があったとすると、そのリスク内容や制御状態を画一的に表示すると、運転者の状況によっては、かえって事態を把握しにくい可能性がある。
 本実施形態では、各種制御が作動するときに、車両の走行(運転操作)に対する運転者の主体度Dを算出し(ステップS2)、この主体度Dに応じて制御情報の表示方法を決定し、これを表示装置7を介して運転者に提供する(ステップS3)。
 ここで、主体度Dは、車両に発生している車両挙動(A+B)のうち、運転者の運転操作量に応じた車両挙動Aが占める割合D1と、所定時間後の車両に発生する予測車両挙動(E+F)のうち、所定時間後における運転者の運転操作量に応じた予測車両挙動Eが占める割合D2との平均値としている。このように、簡易な演算で、車両走行に対する運転者の主体度Dを算出することができる。
 制御状態を表す視覚情報は、各種制御の作動によって車両に作用する力を表す矢印や仮想のバネで表示する。これにより、運転者は制御状態を容易に理解しやすくなる。
 ここで、各種制御が作動したときに、主体度Dに応じた視覚情報の表示形態について説明する。
 先ず、車線逸脱防止制御(LDP)が作動したときには、図3に示すように、反逸脱方向の矢印を表示する。
 このとき、主体度Dが高レベルであれば、矢印を『青色』にする。すなわち、車両走行に対する運転者の意識が高ければ、必要以上に注意を喚起しなくても、逸脱傾向が増加するリスクが低いので、寒色(青・緑などの青系の色相)で表示する。これにより、運転者の感覚に適した注意喚起を行うことができる。
 また、主体度Dが中レベルであれば、矢印を『赤色』にする。すなわち、車両走行に対する運転者の意識が低下し始めた状態にあると、逸脱傾向が増加するリスクがやや高まっているので、警告色(赤・オレンジ・黄などの赤系の色相)で表示する。これにより、運転者の感覚に適した注意喚起を行うことができる。
 また、主体度Dが低レベルであれば、矢印を『赤色』にするだけではなく、サイズを大きくする。すなわち、車両走行に対する運転者の意識が低下していると、逸脱傾向が増加するリスクが高いので、主体度Dが中レベルのときよりも、さらに矢印を強調して表示する。これにより、運転者の感覚に適した注意喚起を行うことができる。
 次に、通行区分線に対して車間維持制御(MB)が作動したときには、図4に示すように、車両の側方に向かって突出する仮想のバネを表示する。
 このとき、主体度Dが高レベルであれば、仮想のバネを『水色』にする。すなわち、車両走行に対する運転者の意識が高ければ、必要以上に注意を喚起しなくても、通行区分線に対する接近傾向が増加するリスクが低いので、寒色(青・緑などの青系の色相)で表示する。これにより、運転者の感覚に適した注意喚起を行うことができる。
 また、主体度Dが中レベルであれば、仮想のバネを『黄色』にする。すなわち、車両走行に対する運転者の意識が低下し始めた状態にあると、通行区分線に対する接近傾向が増加するリスクがやや高まっているので、警告色(赤・オレンジ・黄などの赤系の色相)で表示する。これにより、運転者の感覚に適した注意喚起を行うことができる。
 また、主体度Dが低レベルであれば、仮想のバネを『黄色』にするだけではなく、圧縮している状態を表現する。すなわち、車両走行に対する運転者の意識が低下していると、通行区分線に対する接近傾向が増加するリスクが高いので、主体度Dが中レベルのときよりも、さらに仮想のバネを強調して表示する。これにより、運転者の感覚に適した注意喚起を行うことができる。
 次に、隣接車線を走行する他車両など、自車両の周囲の物体に対して車間維持制御(MB)が作動したときには、図5に示すように、車両の四隅から斜め四方に向かって突出する仮想のバネを表示する。
 このとき、主体度Dが高レベルであれば、仮想のバネを『水色』にする。すなわち、車両走行に対する運転者の意識が高ければ、必要以上に注意を喚起しなくても、周囲の物体に対する接近傾向が増加するリスクが低いので、寒色(青・緑などの青系の色相)で表示する。これにより、運転者の感覚に適した注意喚起を行うことができる。
 また、主体度Dが中レベルであれば、仮想のバネを『黄色』にする。すなわち、車両走行に対する運転者の意識が低下し始めた状態にあると、周囲の物体に対する接近傾向が増加するリスクがやや高まっているので、警告色(赤・オレンジ・黄などの赤系の色相)で表示する。これにより、運転者の感覚に適した注意喚起を行うことができる。
 また、主体度Dが低レベルであれば、仮想のバネを『黄色』にするだけではなく、圧縮している状態を表現する。すなわち、車両走行に対する運転者の意識が低下していると、周囲の物体に対する接近傾向が増加するリスクが高いので、主体度Dが中レベルのときよりも、さらに仮想のバネを強調して表示する。これにより、運転者の感覚に適した注意喚起を行うことができる。
 次に、スタビリティ制御(VDC)が作動したときには、図6に示すように、ヨーモーメントを付与している方向の矢印を表示する。
 このとき、主体度Dが高レベルであれば、矢印を『青色』にする。すなわち、車両走行に対する運転者の意識が高ければ、必要以上に注意を喚起しなくても、オーバーステア傾向やアンダーステア傾向が増加するリスクが低いので、寒色(青・緑などの青系の色相)で表示する。これにより、運転者の感覚に適した注意喚起を行うことができる。
 また、主体度Dが中レベルであれば、矢印を『赤色』にする。すなわち、車両走行に対する運転者の意識が低下し始めた状態にあると、オーバーステア傾向やアンダーステア傾向が増加するリスクがやや高まっているので、警告色(赤・オレンジ・黄などの赤系の色相)で表示する。これにより、運転者の感覚に適した注意喚起を行うことができる。
 また、主体度Dが低レベルであれば、矢印を『赤色』にするだけではなく、サイズを大きくする。すなわち、車両走行に対する運転者の意識が低下していると、オーバーステア傾向やアンダーステア傾向が増加するリスクが高いので、主体度Dが中レベルのときよりも、さらに矢印を強調して表示する。これにより、運転者の感覚に適した注意喚起を行うことができる。
 次に、坂道発進制御(HSA)が作動したときには、図7に示すように、車両を後方から押す矢印を表示する。
 このとき、主体度Dが高レベルであれば、矢印を『青色』にする。すなわち、車両走行に対する運転者の意識が高ければ、必要以上に注意を喚起しなくても、速やかなアクセル操作へと移行できるので、寒色(青・緑などの青系の色相)で表示する。これにより、運転者の感覚に適した注意喚起を行うことができる。
 また、主体度Dが中レベルであれば、矢印を『赤色』にする。すなわち、車両走行に対する運転者の意識が低下し始めた状態にあると、アクセル操作への移行が遅れる可能性があるので、警告色(赤・オレンジ・黄などの赤系の色相)で表示する。これにより、運転者の感覚に適した注意喚起を行うことができる。
 また、主体度Dが低レベルであれば、矢印を『赤色』にするだけではなく、サイズを大きくする。すなわち、車両走行に対する運転者の意識が低下していると、アクセル操作への移行が遅れる可能性が高いので、主体度Dが中レベルのときよりも、さらに矢印を強調して表示する。これにより、運転者の感覚に適した注意喚起を行うことができる。
 次に、降坂路車速制御(HDC)が作動したときには、図8に示すように、車両後方に向かう矢印を表示する。
 このとき、主体度Dが高レベルであれば、矢印を『青色』にする。すなわち、車両走行に対する運転者の意識が高ければ、必要以上に注意を喚起しなくても、車速が増加するリスクは低いので、寒色(青・緑などの青系の色相)で表示する。これにより、運転者の感覚に適した注意喚起を行うことができる。
 また、主体度Dが中レベルであれば、矢印を『赤色』にする。すなわち、車両走行に対する運転者の意識が低下し始めた状態にあると、車速が増加するリスクがやや高まっているので、警告色(赤・オレンジ・黄などの赤系の色相)で表示する。これにより、運転者の感覚に適した注意喚起を行うことができる。
 また、主体度Dが低レベルであれば、矢印を『赤色』にするだけではなく、サイズを大きくする。すなわち、車両走行に対する運転者の意識が低下していると、車速が増加するリスクが高まっているので、主体度Dが中レベルのときよりも、さらに矢印を強調して表示する。これにより、運転者の感覚に適した注意喚起を行うことができる。
 《応用例》
 また、本実施形態では、D1とD2との平均値を主体度Dとして算出しているが、D1とD2の加算値を主体度Dとしたり、D1とD2のセレクトロー値を主体度Dとしたり、D1とD2の夫々に重み付けをした加算値を主体度Dとしたりしてもよい。さらには、D1及びD2の何れか一方を、そのまま主体度Dとしてもよい。
 また、本実施形態では、主体度Dを高レベル・中レベル・低レベルの三段階に分け、矢印やバネなどの作用状態図形の表示形態を変更しているが、細分化してもよい。例えば、加法混色、つまり光の三原色によって作用状態図形を表示する場合、図9に示すように、主体度Dが低いほど、赤色を濃く(強く)することにより、連続的無段階で表示形態を変更してもよい。これによれば、きめ細かく表示形態を調整することができる。
 また、本実施形態では、主体度Dに応じて、矢印やバネなどの作用状態図形の色を変更しているが、他にも作用状態図形の輝度や点滅速度を変更してもよい。すなわち、図10に示すように、主体度Dが低いほど、作用状態図形の輝度を高くしてもよい。また、図11に示すように、主体度Dが低いほど、作用状態図形の点滅速度を早めてもよい。これによれば、作用状態図形の強調度合を任意に調整することができ、運転者の感覚に適した注意喚起を行うことができる。
 また、本実施形態では、運転者の主体度Dに応じて作用状態図形のみの表示形態を変更しているが、車両走行に対するリスクを表すリスク図形の表示形態を変更してもよい。すなわち、車線逸脱防止制御(LDP)では通行区分線をリスク図形としたり、車間維持制御(MB)では周囲の物体をリスク図形としたり、スタビリティ制御(VDC)では自車両そのものをリスク図形としたりする。一般に、運転者の主体度Dが高ければ、運転者は多くの視覚情報を把握することができる。それで、図12に示すように、主体度Dが高いほど、リスク図形を表示した三原色のうち、青色を濃くすることで、自車両にとってリスクとなっているリスク図形を効果的に運転者に認識させてもよい。また、図13に示すように、主体度Dが高いほど、リスク図形の輝度を高くすることで、自車両にとってリスクとなっているリスク図形を効果的に運転者に認識させてもよい。但し、主体度Dが低いほど、リスクが高まる可能性があるので、図14に示すように、点滅速度を早めることで、自車両にとってリスクとなっているリスク図形を強調し、運転者の感覚に適した注意喚起を行ってもよい。
 《効果》
 以上より、コントローラ10が「制御手段」に対応し、表示装置7が「表示手段」に対応し、ステップS2の処理が「算出手段」に対応し、ステップS3の処理が「変更手段」に対応する。また、図3、図6~図8の矢印、及び図4、図5の仮想のバネが「作用状態図形」に対応する。
(1)車両走行のリスクを検出したときに車両走行を制御する複数の制御手段と、該制御手段の少なくとも一つが作動するときに、車両走行のリスク及び当該制御手段の作動状態の少なくとも一方を視覚情報として表示する表示手段と、車両走行に対する運転者の主体度を算出する算出手段と、該算出手段が算出した主体度に応じて前記表示手段による視覚情報の表示形態を変更する変更手段と、を備える。
 これによれば、運転者の主体度Dに応じて視覚情報の表示形態を変更することで、それを画一的に表示するよりも効果的にリスクや制御状態を表示することができる。したがって、運転者が事態を把握しやすくなる。
(2)前記算出手段は、車両に発生している車両挙動のうち、運転者の運転操作量に応じた車両挙動が占める割合に基づいて、前記主体度を算出する。
 これにより、簡易な演算で、車両走行に対する運転者の主体度Dを算出することができる。
(3)前記算出手段は、所定時間後の車両に発生する予測車両挙動のうち、所定時間後における運転者の運転操作量に応じた予測車両挙動が占める割合に基づいて、前記主体度を算出する。
 これにより、簡易な演算で、車両走行に対する運転者の主体度Dを算出することができる。
(4)前記表示手段は、前記制御手段の作動によって車両に作用する力を表す作用状態図形を視覚情報として表示し、前記変更手段は、前記主体度が低いほど、前記作用状態図形のサイズを大きくする。
 これにより、運転者の感覚に適した注意喚起を行うことができる。
(5)前記表示手段は、前記制御手段の作動によって車両に作用する力を表す作用状態図形を視覚情報として表示し、前記変更手段は、前記主体度が低いほど、前記作用状態図形を表示した三原色のうち、赤色を濃くする。
 これにより、運転者の感覚に適した注意喚起を行うことができる。
(6)前記表示手段は、前記制御手段の作動によって車両に作用する力を表す作用状態図形を視覚情報として表示し、前記変更手段は、前記主体度が低いほど、前記作用状態図形の輝度を高くする。
 これにより、運転者の感覚に適した注意喚起を行うことができる。
(7)前記表示手段は、前記制御手段の作動によって車両に作用する力を表す作用状態図形を視覚情報として表示し、前記変更手段は、前記主体度が低いほど、前記作用状態図形の点滅速度を早くする。
 これにより、運転者の感覚に適した注意喚起を行うことができる。
(8)前記表示手段は、車両走行に対するリスクを表すリスク図形を視覚情報として表示し、前記変更手段は、前記主体度が高いほど、前記リスク図形を表示した三原色のうち、青色を濃くする。
 これにより、自車両にとってリスクとなっている事態を、効果的に運転者に認識させることができる。
(9)前記表示手段は、車両走行に対するリスクを表すリスク図形を視覚情報として表示し、前記変更手段は、前記主体度が高いほど、前記リスク図形の輝度を高くする。
 これにより、自車両にとってリスクとなっている事態を、効果的に運転者に認識させることができる。
(10)前記表示手段は、車両走行に対するリスクを表すリスク図形を視覚情報として表示し、前記変更手段は、前記主体度が低いほど、前記リスク図形の点滅速度を早くする。
 これにより、運転者の感覚に適した注意喚起を行うことができる。
(11)車両走行のリスクを検出したときに車両走行を制御すると共に、車両走行のリスク及び当該制御状態の少なくとも一方を視覚情報として表示するものであって、車両走行に対する運転者の主体度を算出し、算出した主体度に応じて前記視覚情報の表示形態を変更する。
 これによれば、運転者の主体度Dに応じて視覚情報の表示形態を変更することで、それを画一的に表示するよりも効果的にリスクや制御状態を表示することができる。したがって、運転者が事態を把握しやすくなる。
(第2実施形態)
 《構成》
 本実施形態では、主体度Dの他の算出方法を示す。
 図15は、主体度算出処理を示すフローチャートである。
 先ずステップS21では、スタビリティ制御(VDC)が作動しているか否かを判定する。スタビリティ制御が作動していればステップS22に移行する。一方、スタビリティ制御が非作動であればステップS23に移行する。
 ステップS22では、運転者の主体度をD=20%と推定してから所定のメインプログラムに復帰する。
 ステップS23では、車線逸脱防止制御(LDP)が作動しているか否かを判定する。車線逸脱防止制御が作動していればステップS24に移行する。一方、車線逸脱防止制御が非作動であればステップS25に移行する。
 ステップS24では、運転者の主体度をD=50%と推定してから所定のメインプログラムに復帰する。
 ステップS25では、車間維持制御(MB)が作動しているか否かを判定する。車間維持制御が作動していればステップS26に移行する。一方、車間維持制御が非作動であればステップS27に移行する。
 ステップS26では、運転者の主体度をD=90%と推定してから所定のメインプログラムに復帰する。
 ステップS27では、運転者の主体度をD=100%と推定してから所定のメインプログラムに復帰する。
 《作用》
 車両走行に対する運転者の主体度Dは、各種制御の作動状態から、ある程度推定することができる。例えば、車間維持制御(MB)だけが作動していれば、主体度Dが比較的まだ高レベルにあると推定でき、車線逸脱防止制御(LDP)が作動すれば、主体度Dが中レベルまで低下していると推定でき、スタビリティ制御(VDC)が作動すれば、主体度Dが低レベルまで低下していると推定できる。すなわち、各制御の作動と主体度Dとの関係を予め定めておくことで、各制御の作動状態に応じて主体度Dを算出(推定)する。このように、簡易な手法で、車両走行に対する運転者の主体度Dを算出することができる。
 また、複数の制御が同時に作動するときには、図16に示すように、車間維持制御(MB)よりも車線逸脱防止制御(LDP)、車線逸脱防止制御よりもスタビリティ制御(VDC)を優先して主体度Dを設定する。
 先ず、MBが作動状態にあると、主体度Dは90%となり、MBの制御状態を視覚情報として表示する。そして、時点t1~t2でLDPが作動している間は、これを優先して主体度Dを50%とし、視覚情報の表示をLDPの制御状態に切替える。また、時点t2~t3でLDPが非作動状態にある間は、主体度Dは90%に戻り、視覚情報の表示をMBの制御状態に切替える。また、時点t3~t5でVDCが作動している間は、これを優先して主体度Dを20%とし、視覚情報の表示をVDCの制御状態に切替える。時点t4~t6でLDPが作動しても、VDCが作動している時点t4~t5では、視覚情報の表示をVDCの制御状態のまま維持し、VDCが非作動になった以降の時点t5~t6で、視覚情報の表示をLDPの制御状態に切替える。
 《応用例》
 なお、本実施形態では、単に各種制御の作動状態(ON/OFF)に基づいて主体度Dの概数を推定しているが、夫々の制御量に基づいて、より細かく主体度Dを推定してもよい。すなわち、図17に示すように、先ず、MBだけが作動するときに、主体度Dを60~100%とし、LDPが作動するときに、主体度Dを30~60%とし、VDCが作動するときに、主体度Dを0~30%と定める。そして、MBによる制御量が0から最大値までの範囲で増加するときに、主体度Dが100から60までの範囲で減少するように設定する。また、LDPによる制御量が0から最大値までの範囲で増加するときに、主体度Dが60から30までの範囲で減少するに設定する。また、VDCによる制御量が0から最大値までの範囲で増加するときに、主体度Dが30から0までの範囲で減少するように設定する。これによれば、より高精度に主体度Dを推定することができる。
 《効果》
 以上より、ステップS21~S27の処理が「算出手段」に対応する。
(1)前記算出手段は、前記制御手段の作動と前記主体度との関係を予め定めておき、前記制御手段の作動状態に応じて前記主体度を算出する。これにより、簡易な手法で、車両走行に対する運転者の主体度Dを算出することができる。
(2)前記算出手段は、前記制御手段が作動したときの制御量に応じて前記主体度Dを算出する。
 これにより、より高精度に主体度Dを算出することができる。
(第3実施形態)
 《構成》
 本実施形態は、主体度Dに応じて表示領域を変更するものである。
 すなわち、前述したステップS3の処理を実行する際に、図18のマップを参照し、主体度Dに応じて表示画角を決定する。このマップは、主体度Dが低いほど、自車両を中心とする表示画角を狭くする、つまり自車両をズームアップして表示する。
 《作用》
 一般に、運転者の主体度Dが高ければ、運転者は多くの視覚情報を把握することができる。それで、主体度Dが高いときほど、表示画角を広くすることで、多くの情報提供を可能にする。一方、主体度Dが低いときほど、表示画角を狭くすることで、いま運転者に最も認識して欲しい情報だけに限定して、運転者の感覚に適した注意喚起を行うことができる。
 《効果》
(1)前記表示手段は、前記主体度Dが低いほど、自車両をズームアップすることを特徴とする。
 これにより、運転者の感覚に適した注意喚起を行うことができる。
(第4実施形態)
 《構成》
 本実施形態は、視覚情報の他の表示形態を提案するものである。
 すなわち、視覚情報を時系列で分類した表示形態である。なお、本実施形態では、車線逸脱防止制御(LDP)を例に説明する。
 先ず、車両走行のリスクを表す将来の状況を図19に示す。すなわち、走行車線から逸脱するという将来のリスクを、自車両の斜め前方に表示した青色の枠で表現する。この場合、前述した第1実施形態の応用例で示したリスク図形と同様の主旨により、主体度Dが高いほど、青色の枠を太くする。
 また、車線逸脱防止制御(LDP)の作動に応じた車両挙動を表す現在の状況を図20に示す。すなわち、走行車線からの逸脱を抑制している状態を、反逸脱方向の矢印で表示し、主体度Dに応じて矢印のサイズ(長さ・太さを含む)や色を変化させる。例えば、主体度Dが高レベルのときには、逸脱傾向が増加するリスクは高くないので、矢印を例えば『青色』に設定する。また、主体度Dが中レベルのときには、逸脱傾向が増加するリスクがやや高まっているので、矢印を例えば『赤色』に設定する。そして、主体度Dが低レベルのときには、逸脱傾向が増加するリスクが高まっているので、矢印を例えば『赤色』に設定し、そのサイズを大きくする。
 また、車線逸脱防止制御(LDP)の作動を表す過去の状況を図21に示す。ここで、過去の状況というのは、図20の状態に至った理由を示すものであり、図20の状態に至る前の状態を指している。すなわち、例えば左側への逸脱傾向がある場合、左右輪の制動力差によって右方向へのヨーモーメントを付与するので、右輪に制動力を付与した状態を、右輪のタイヤ後方への矢印で表示し、主体度Dに応じて矢印のサイズ(長さ・太さを含む)や色を変化させる。例えば、主体度Dが高レベルのときには、逸脱傾向が増加するリスクは高くないので、矢印を例えば『青色』に設定する。また、主体度Dが中レベルのときには、逸脱傾向が増加するリスクがやや高まっているので、矢印を例えば『赤色』に設定する。そして、主体度Dが低レベルのときには、逸脱傾向が増加するリスクが高まっているので、矢印を例えば『赤色』に設定し、そのサイズを大きくする。
 《作用》
 本実施形態では、視覚情報を時系列で分類し、将来の状況、現在の状況、過去の状況の何れかを表示する。このように、様々な表示形態を用意することで、運転者の好みに合わせて表示形態を変化させたり、その場の状況に適した情報提供が可能になる。
 《応用例》
 なお、路面摩擦係数μの低い路面やスクールゾーンを検出したときに、これらの視覚情報を表示してもよい。例えば、水溜りなど路面摩擦係数μの低い路面情報をインフラストラクチャから取得したときには、図22に示すように、自車両前方に水溜りなどの図形を表示する。また、通学路情報をナビゲーションシステムから取得したときには、一般路(非スクールゾーン)と異なる道路図形を表示したり、又は図23に示すように、スクールゾーンの標識図形を表示したりする。これによれば、様々な走行シーンで運転者の走行を支援することができる。
 《効果》
(1)前記表示手段は、車両走行のリスクを表す将来の状況、前記制御手段の作動に応じた車両挙動を表す現在の状況、前記制御手段の作動を表す過去の状況の何れか一つを表示する。
 これにより、運転者の好みに合わせて表示形態を変化させたり、その場の状況に適した情報提供が可能になる。
(第5実施形態)
 《構成》
 本実施形態は、ドライバが集中して走行している場合、不要な情報を表示しないように表示内容を変更するものである。
 図24は、運転支援装置の概略構成図である。
 ここでは、ドライバ操作検出装置8と、ナビゲーションシステム9とを追加したことを除いては、前述した図1と同様の構成を有するので、共通する構成については説明を省略する。
 先ず、ドライバ操作検出装置8は、例えばアクセル操作、ブレーキ操作、シフト操作、ステアリング操作、ナビ操作、計器類の操作など、運転者の各種操作状態を検出し、コントローラ10に入力する。また、ナビゲーションシステム9は、自車両の現在地と、その周辺の地図情報及び道路情報をコントローラ10に入力する。なお、ナビゲーションシステム9は、道路交通情報通信システム(VICS:Vehicle Information and Communication System)を利用してFM多重放送や光・電波ビーコンから車両周囲の交通情報を受信する。
 図25は、第5実施形態の表示制御処理を示すフローチャートである。
 先ずステップS51では、運転者の各種操作状態を検出する。
 続くステップS52では、運転者の各種操作の頻度hを算出する。
 ある所定時間(例えば運転開始時から現在まで)のうちドライバのアクセル操作、ブレーキ操作、シフト操作、ステアリング操作、ナビ操作、計器類の操作など、何れかの操作が成された割合から(操作量の時間微分値が一定値以上)、ドライバ操作頻度hを下記式によって算出する。ここでは、何れかが操作されている場合にX=1、何れも非操作であるときにX=0とし、操作頻度hは0≦h≦1.0の範囲で算出する。
Figure JPOXMLDOC01-appb-M000003
 図26は、操作頻度算出処理を示すフローチャートの一例である。
 この図のように、前回値との差分が閾値以上となるときだけ、操作ありと判断し、一定時間における操作頻度を算出する。
 続くステップS53では、操作頻度hに応じて運転者の主体度Dを算出する。
 ここで、ドライバ操作頻度hが、予め算出した適性頻度H(例えば0.7)より大きいときには、下記式に従って主体度Dを算出する。
  D=100-a(h-H)[%]
 一方、操作頻度hが、予め算出した適性頻度Hより小さいときには、下記式に従って主体度Dを算出する。
  D=100-b(H-h)[%]
 上記a及びbは係数であり、a<bの関係にあり、操作頻度hが低いほど、主体度Dが低くなるように設定されている。係数a及びbの範囲は0~100とし、例えばa=50、b=100である。
 また、操作頻度hが、適正頻度Hと同じときには、下記式に示すように、主体度Dを100とする。
  D=100[%]
 図27は、操作頻度と主体度との関係を示すグラフである。
 この図のように、操作頻度hが適正頻度Hと一致するときに、主体度Dが最大値となる。
 なお適正頻度Hは一意の値ではなく、ある幅を持たせてもよい。この場合、適正頻度はHl≦h≦Hhの範囲となり、例えばHl=0.6、Hh=0.8と設定する。
 ここで、ドライバ操作頻度hが、予め算出した適性頻度Hの上限値Hhより大きいときには、下記式に従って主体度Dを算出する。
  D=100-a(h-Hh)[%]
 一方、ドライバ操作頻度hが、予め算出した適性頻度Hの下限値Hlより小さいときには、下記式に従って主体度Dを算出する。
  D=100-b(Hl-h)[%]
 また、操作頻度hが、Hl≦h≦Hhの範囲内にあるときには、下記式に示すように、主体度Dを100とする。
  D=100[%]
 図28は、操作頻度hと主体度Dとの関係を示すグラフである。
 この図のように、操作頻度hが適正頻度Hl~Hhの範囲内にあるときに、主体度Dが最大値となる。
 さらに、上記以外にも、予めドライバ主体度D算出のマップを持ち、ドライバ操作頻度hを入力として、そのマップからドライバ主体度Dを算出してもよい。
 図29は、主体度Dの算出に用いるマップである。
 このようなマップを参照し、操作頻度hに応じて主体度Dを算出してもよい。
 続くステップS54では、主体度Dに応じた表示形態を決定する。
 図30は、主体度Dに応じた表示形態を決定する各種マップである。
 この図のように、主体度Dに応じて、明るさ、加法混色、点滅速度、表示情報量を決定する。例えば、主体度Dが高いほど、明るさを抑制し、点滅速度を抑制し、表示情報量を抑制する。
 続くステップS55では、決定した表示形態に従って、表示装置7を介して運転者に情報提供してから所定のメインプログラムに復帰する。
 なお、主体度Dに応じて、表示視点を調整してもよい。
 《作用》
 運転者の操作頻度hが適性頻度Hに近似しているほど、運転者が運転に集中していると考えられるので、操作頻度hに応じて主体度Dを算出し(ステップS53)、この主体度Dに応じて表示形態を変更する(ステップS54、S55)。例えば、主体度Dが高いほど、明るさを抑制したり、点滅速度を抑制したり、表示情報量を抑制する。すなわち、ドライバ主体度Dが高い場合、積極的な表示が必要ないとみなし、表示画面全体の明るさ・表示内容の配色を暗めに設定し、表示情報量を少なく設定する。
 こうして、運転者が運転に集中しているシーンでは、装置の作動状態など、必要な情報のみを表示することができる。
 《効果》
(1)前記算出手段は、運転者による運転操作の頻度hを算出し、算出した頻度hに応じて前記主体度Dを算出する。
 これにより、より幅広いシーンで、且つ簡易な演算で、車両走行に対する運転者の主体度Dを算出することができる。
(第6実施形態)
 《構成》
 本実施形態は、ドライバの意図から主体度Dを算出するものである。
 図31は、第6実施形態の表示制御処理を示すフローチャートである。
 ここでは、前記ステップS53を処理する前に、運転補助装置のスイッチ操作状態を読込むステップS61を追加したことを除いては、前述した図25と同様の処理を実行するので、共通する処理については説明を省略する。
 ステップS61では、運転補助装置スイッチのON/OFF状態を読込む。運転補助装置スイッチとは、例えばLDP、MB、VDC、HSA、HDCなどを強制的に非作動状態(OFF)にできるスイッチである。
 続くステップS53では、ドライバが運転補助装置スイッチを明示的にOFFにしたときには、下記式にて主体度Dを算出する。
  D={a+(100-a)h}
 ここでaはそのドライバの通常時における主体度Dとして設定し、ドライバ主体度Dの平均値から算出する。通常時の主体度Dが設定されていない場合a=0とする。
 図32は、操作頻度hと主体度Dとの関係を示すグラフである。
 この図のように、操作頻度hが増加するほど、主体度Dが増加する。
 続くステップS54では、主体度Dに応じた表示形態を決定する。
 図33は、主体度Dに応じた表示形態を決定する各種マップである。
 この図のように、主体度Dに応じて、明るさ、加法混色、点滅速度、表示情報量を決定する。例えば、主体度Dが高いほど、明るさを抑制し、点滅速度を抑制し、表示情報量を抑制する。
 なお、主体度Dに応じて、表示視点を調整してもよい。
 《作用》
 運転者が運転補助装置スイッチをOFFにしていれば、運転者が自らの運転を楽しもうとしていると考えられるので、操作頻度hの多さを主体度Dの大きさと考えられる。そこで、運転補助装置スイッチの操作状態を読込み(ステップS61)、操作頻度hに応じて主体度Dを算出方法を切換えて、図32のグラフに従って主体度Dを算出し(ステップS53)、この主体度Dに応じて表示形態を変更する(ステップS54)。例えば、主体度Dが高いほど、明るさを抑制したり、点滅速度を抑制したり、表示情報量を抑制する。すなわち、ドライバ主体度Dが高い場合、積極的な表示が必要ないとみなし、表示画面全体の明るさ・表示内容の配色を暗めに設定し、表示情報量を少なく設定する。
 こうして、運転者が自らの運転を楽しもうとしているシーンでは、必要最低限の情報のみを表示することができる。
 《効果》
 運転補助装置のスイッチ操作に応じて、主体度Dを算出する これにより、より幅広いシーンで、且つ簡易な演算で、車両走行に対する運転者の主体度Dを算出することができる。
(第7実施形態)
 《構成》
 本実施形態は、ドライバの覚醒状態(漫然運転等)に応じて表示内容を変更するものである。
 図34は、第7実施形態の表示制御処理を示すフローチャートである。
 先ずステップS71では、運転者のステアリング操作、運転者の心拍数・体温・筋電、ドライバを撮影するカメラ情報(まぶたの動き、頭部の動き、視線の変化)等、運転者の運転操作状態、運転者の生体反応、運転者の挙動の少なくとも一つを検出する。
 続くステップS72では、読込んだ各種情報から運転者の覚醒度Wを算出する。ドライバの覚醒度Wは0~1.0の範囲とし、覚醒状態であれば1.0と定義する。
 図35は、覚醒度算出処理を示すフローチャートの一例である。
 この図のように、所定時間における目を閉じている時間や、ステアリング操作の周波数に応じて覚醒度Wを算出する。
 続くステップS73では、下記式に従って、覚醒度Wに応じてドライバ主体度Dを算出する。
  D=1-(1-W)×100[%]
 なお、予めドライバ主体度算出のマップを持ち、ドライバ覚醒度Wを入力として、そのマップからドライバ主体度を算出してもよい。
 図36は、主体度Dの算出に用いるマップである。
 このようなマップを参照し、覚醒度Wに応じて主体度Dを算出してもよい。
 続くステップS74では、主体度Dに応じた表示形態を決定する。
 図37は、主体度Dに応じた表示形態を決定する各種マップである。
 ここでは、画面全体と注目対象とを区別しながら、主体度Dに応じて、明るさ、加法混色、点滅速度、表示情報量を決定する。例えば、画面全体については、主体度Dが高いほど、明るさを抑制し、点滅速度を抑制するが、表示情報量は増加させ、また加法混色は主体度Dが低いほど赤色を濃く(強く)する。また、注目対象については、主体度Dが高いほど、明るさを抑制し、点滅速度を抑制し、また加法混色は主体度Dが低いほど赤色と緑色を濃く(強く)し、且つ青色は薄く(弱く)する。
 続くステップS75では、決定した表示形態に従って、表示装置7を介して運転者に情報提供してから所定のメインプログラムに復帰する。
 なお、主体度Dに応じて、表示視点を調整してもよい。
 《作用》
 運転者の覚醒度Wが低いほど、運転者が漫然運転をしていると考えられるので、覚醒度Wに応じて主体度Dを算出し(ステップS73)、この主体度Dに応じて表示形態を変更する(ステップS74、S75)。例えば、主体度Dが低いほど、明るさを増加させたり、色合いを強調したり、点滅速度を速くしたりするが、表示情報量については抑制する。すなわち、主体度Dが低い場合、画面全体の明るさを明るく設定し、配色は強烈な色とする。
 こうして、運転者が漫然運転しているシーンでは、装置の作動状態など、表示内容を強調することができる。
 《効果》
(1)前記算出手段は、運転者の覚醒度Wを算出し、算出した覚醒度Wに応じて前記主体度Dを算出する。
 これにより、より幅広いシーンで、且つ簡易な演算で、車両走行に対する運転者の主体度Dを算出することができる。
(第8実施形態)
 《構成》
 本実施形態は、走行経路と走行回数(通過回数)iに応じて、表示内容を変更するものである。
 図38は、第8実施形態の表示制御処理を示すフローチャートである。
 先ずステップS81では、ナビゲーションシステム9より自車両の現在位置を読込む。
 続くステップS82では、現在地から該当区間の走行回数iを算出する。
 続くステップS83では、現在地の走行回数iに応じてドライバ主体度Dを算出する。
 ここで、走行回数iが、予め算出しておいた『不慣れ』判断閾値th1(例えばth1=3)より小さい場合は、下記式に従って主体度Dを算出する。
  D=100-a(th1-i)
 一方、走行回数iが、予め算出しておいた『慣れ』判断閾値th2(例えばth2=10)より小さい場合は、
  D=100-a(th2-i)
 また、走行回数iが、『慣れ』判断閾値th2以上のときには、下記式に示すように、主体度Dを100とする。
  D=100
 図39は、慣れ度合と主体度Dとの関係を示すグラフである。
 この図のように、慣れた道ほど、主体度Dが大きくなる。
 続くステップS84では、主体度Dに応じた表示形態を決定する。
 図40は、主体度Dに応じた表示形態を決定する各種マップである。
 ここでは、画面全体と注目対象とを区別しながら、主体度Dに応じて、明るさ、加法混色、点滅速度、表示情報量を決定する。例えば、画面全体については、主体度Dに係らず、明るさ、色合い、点滅速度、表示情報量を一定にする。一方、注目対象については、主体度Dが高いほど、明るさを増加させ、青色を濃く(強く)し、点滅速度は遅くする。
 続くステップS85では、決定した表示形態に従って、表示装置7を介して運転者に情報提供してから所定のメインプログラムに復帰する。
 なお、主体度Dに応じて、表示視点を調整してもよい。
 《作用》
 不慣れな道ほど、運転者の主体度Dは低くなると考えられるので、通行回数iに応じて主体度Dを算出し(ステップS83)、この主体度Dに応じて表示形態を変更する(ステップS84、S85)。例えば、主体度Dが高いほど、明るさを増加させたり、色合いを強調したりする。逆に、不慣れな道を走行しているときには、主体度Dが低くなり、装置の作動状態だけでなく、周囲のリスク情報も積極的に表示する。すなわち、ドライバ主体度Dによらず、画面全体の明るさ・配色を暗めに設定する。また、主体度Dが低い場合、注目対象としてリスク情報も積極的に表示する。
 《効果》
(1)前記算出手段は、走行中の経路で過去における走行回数iを算出し、算出した走行回数iに応じて前記主体度Dを算出する。
 これにより、より幅広いシーンで、且つ簡易な演算で、車両走行に対する運転者の主体度Dを算出することができる。
(第9実施形態)
 《構成》
 本実施形態は、道路の混雑状況に応じて表示する内容を切替えるものである。
 図41は、第9実施形態の表示制御処理を示すフローチャートである。
 先ずステップS91では、ナビゲーションシステム9より自車両の現在位置を読込む。
 続くステップS92では、現在地を参照し、道路の各区間ごとに定まっている混雑度(混雑度合、渋滞度)Gを読込む。
 続くステップS93では、混雑度Gに応じて主体度Dを算出する。
 ここで、混雑度Gが第一の閾値より低い(例えば1.0以下)ときには、ほとんど渋滞は無く走行可能なことから下記式に示すように、主体度を100%とする。
  D=100
 一方、混雑度Gが第一の閾値より高く、第二の閾値より低い(例えば1.75未満)のときには、ほぼ渋滞しているため、下記式に従って主体度Dを算出する。
  D={(1.75-C)×100}[%]
 また、混雑度Gが第二の閾値を上回っているときには、下記式に示すように、0とする。
  D=0
 図42は、混雑度Gと主体度Dとの関係を示すグラフである。
 この図のように、混雑度Gが高くなるほど、主体度Dが小さくなる。
 続くステップS94では、主体度Dに応じた表示形態を決定する。
 図43は、主体度Dに応じた表示形態を決定する各種マップである。
 この図のように、主体度Dに応じて、明るさ、加法混色、点滅速度、表示情報量を決定する。例えば、主体度Dが高いほど、明るさを抑制し、点滅速度を抑制し、また加法混色は主体度Dが低いほど、赤色を濃く(強く)する。
 続くステップS95では、決定した表示形態に従って、表示装置7を介して運転者に情報提供してから所定のメインプログラムに復帰する。
 なお、主体度Dに応じて、表示視点を調整してもよい。
 《作用》
 道路の混雑度Gが高いほど、装置の作動状況だけでなく、リスク情報も積極的に表示することが望ましい。そこで、道路の混雑度Gが高いほど、運転者の主体度Dを低くし(ステップS93)、この主体度Dに応じて表示形態を変更する(ステップS94、S95)。例えば、主体度Dが低いほど、明るさを増加させたり、点滅速度を早くしたり、色合いを強調したりする。すなわち、主体度Dによらず表示情報量を多く設定し、主体度Dが低い場合、画面全体の明るさ・配色を明るく設定する。
 こうして、混雑している道路を走行している場合には、単に装置の作動状況を表示するだけではなく、リスク情報を強調することができる。
 《効果》
(1)前記算出手段は、道路の混雑度Gを検出し、検出した混雑度Gに応じて前記主体度Dを算出する。
 これにより、より幅広いシーンで、且つ簡易な演算で、車両走行に対する運転者の主体度Dを算出することができる。
(第10実施形態)
 《構成》
 本実施形態は、経路全体の渋滞状況から主体度Dを算出するものである。
 図44は、第10実施形態の表示制御処理を示すフローチャートである。
 先ずステップS101では、ナビゲーションシステム9より自車両の現在位置を読込む。
 続くステップS102では、ナビゲーションシステム9のVICS情報より渋滞情報を読込む。
 続くステップS103では、ナビゲーションシステム9より目的地までの距離Lを算出する。
 続くステップS104では、ナビゲーションシステム9のVICS情報より目的地までの渋滞距離Lcを算出する。
 続くステップS105では、目的地までの距離Lに占める渋滞距離Lcに応じて下記式に従って主体度Dを算出する。
  D={(L-Lc)/L}×100[%]
 図45は、渋滞割合と主体度Dとの関係を示すグラフである。
 この図のように、渋滞割合が高くなるほど、主体度Dが低くなる。
 続くステップS106では、主体度Dに応じた表示形態を決定する。
 図46は、主体度Dに応じた表示形態を決定する各種マップである。
 この図のように、主体度Dに応じて、明るさ、加法混色、点滅速度、表示情報量を決定する。例えば、主体度Dが高いほど、明るさを抑制し、点滅速度を抑制するが、表示情報量は増加させる。また加法混色は主体度Dが低いほど、赤色を濃く(強く)する。
 続くステップS107では、決定した表示形態に従って、表示装置7を介して運転者に情報提供してから所定のメインプログラムに復帰する。
 なお、主体度Dに応じて、表示視点を調整してもよい。
 《作用》
 目的地に到着するまでに、渋滞している割合が高いほど、装置の作動状態だけでなく、リスク情報も積極的に表示することが望ましい。そこで、渋滞している割合が高いほど、運転者の主体度Dを低くし(ステップS105)、この主体度Dに応じて表示形態を変更する(ステップS94、S95)。例えば、主体度Dが低いほど、明るさを増加させたり、点滅速度を早くしたり、色合いを強調したりする。すなわち、主体度Dが高い場合、表示情報量を多く設定し、主体度Dが低い場合、画面全体の明るさ・配色を明るめに設定する。
 こうして、渋滞している割合が高いシーンでは、単に装置の作動状況を表示するだけではなく、リスク情報を強調することができる。
 《効果》
 目的地までの距離Lに占める渋滞距離Lcに応じて主体度Dを算出する。
 これにより、より幅広いシーンで、且つ簡易な演算で、車両走行に対する運転者の主体度Dを算出することができる。
(第11実施形態)
 《構成》
 本実施形態は、制限速度Vrから主体度Dを算出するものである。
 図47は、第11実施形態の表示制御処理を示すフローチャートである。
 先ずステップS111では、ナビゲーションシステム9より自車両の現在位置を読込む。
 続くステップS112では、自車速(実車速)Vvを読込む。
 続くステップS113では、ナビゲーションシステム9より現在走行中の道路の制限速度Vrを読込む。例えば、一般道路であれば60km/h、高速道路であれば100km/h等と、各道路ごとに設定されている速度である。なお、インフラストラクチャから取得可能であれば、それを読込む。
 続くステップS114では、自車速Vvと制限車速Vrとの差分に応じて、下記式に従って主体度Dを算出する。
Figure JPOXMLDOC01-appb-M000004
 ここでは、係数a=1として設定するが、制限車速Vrに対して自車速Vvが高い場合と低い場合とで変更してもよい。例えば制限車速Vrに対して自車速Vvが高い場合は、a<1(例えば0.5)と設定し、制限車速Vrに対して自車速Vvが遅い場合はa>1(例えば1.1)となるように設定する。
 図48は、自車速Vvと主体度Dとの関係を示すグラフである。
 この図のように、自車速Vvが制限速度Vrに近似するほど、主体度Dが大きくなる。
 続くステップS115では、主体度Dに応じた表示形態を決定する。
 図49は、主体度Dに応じた表示形態を決定する各種マップである。
 この図のように、主体度Dに応じて、明るさ、加法混色、点滅速度、表示情報量を決定する。例えば、主体度Dが高いほど、明るさを抑制し、点滅速度を抑制する。また加法混色は主体度Dが低いほど、赤色を濃く(強く)する。
 続くステップS116では、決定した表示形態に従って、表示装置7を介して運転者に情報提供してから所定のメインプログラムに復帰する。
 なお、主体度Dに応じて、表示視点を調整してもよい。
 《作用》
 運転者が法定速度を遵守しているときは、運転者の主体度Dが高いと考えられる。そこで、自車速Vvと、現在走行中の道路の制限速度Vrとの差分に応じて主体度Dを算出し(ステップS114)、この主体度Dに応じて表示形態を変更する(ステップS115、S116)。例えば、主体度Dが低いほど、明るさを増加させたり、点滅速度を早くしたり、色合いを強調したりする。すなわち、主体度Dが高い場合、画面全体の明るさ・配色を暗めに設定する。
 こうして、主体度Dが低くなるシーンでは、単に装置の作動状況を表示するだけではなく、リスク情報を強調することができる。
 《効果》
(1)前記算出手段は、走行中の道路の制限速度Vrに応じて前記主体度Dを算出する。
 これにより、より幅広いシーンで、且つ簡易な演算で、車両走行に対する運転者の主体度Dを算出することができる。
(第12実施形態)
 《構成》
 本実施形態は、周囲を車両に囲まれている場合、表示内容を変更するものである。
 図50は、第12実施形態の表示制御処理を示すフローチャートである。
 先ずステップS121では、レーザレーダ1で検出した周囲車両を検出する。
 続くステップS122では、周囲車両の位置が、自車位置に対して前方か後方か、又は左方か右方かを算出する。例えば、自車から一定範囲内に存在する周囲車両の位置から「前方P_front」「後方P_rear」「右P_right」「左P_left」とグルーピングし、各方向に他車が存在する場合は1、存在しない場合は0とする。
 続くステップS123では、各方向における周囲車両の有無に応じて、下記式に従って主体度Dを算出する。
  D=100-25×(P_front+P_rear+P_right+P_left)
 図51は、周囲車両の数と主体度Dとの関係を示すグラフである。
 自車周辺に車両が存在する場合、自車の移動を制限するため、この図のように、周囲車両の数が多いほど主体度Dが小さくなる。
 続くステップS124では、主体度Dに応じた表示形態を決定する。
 図52は、主体度Dに応じた表示形態を決定する各種マップである。
 ここでは、画面全体と注目対象とを区別しながら、主体度Dに応じて、明るさ、加法混色、点滅速度、表示情報量を決定する。例えば、画面全体については、主体度Dが高いほど、明るさを抑制し、点滅速度を抑制し、また加法混色は主体度Dが低いほど赤色を濃く(強く)する。また、注目対象については、主体度Dが高いほど、明るさを抑制し、点滅速度を抑制し、また加法混色は、主体度Dが高いほど青色を濃くし、主体度Dが低いほど赤色を濃くし、主体度Dが増加するにつれて緑色が最初は増加し、最大値に達した後は減少する。
 続くステップS125では、決定した表示形態に従って、表示装置7を介して運転者に情報提供してから所定のメインプログラムに復帰する。
 なお、主体度Dに応じて、表示視点を調整してもよい。
 《作用》
 周囲車両が多いときには、積極的にリスク情報を表示することが望ましい。そこで、周囲車両の数が多いほど、運転者の主体度Dを低くし(ステップS123)、この主体度Dに応じて表示形態を変更する(ステップS124、S125)。例えば、主体度Dが低いほど、明るさを増加させたり、点滅速度を早くしたり、色合いを強調したりする。すなわち、主体度Dが高い場合、画面全体の明るさ・配色を暗めに設定し、表示情報量を少なく設定する。主体度Dが低い場合、表示情報量を多く設定すると共に注目対象としてリスク情報も積極的に表示をし、リスク情報の明るさ・配色を明るく設定する。
 こうして、周囲車両が多いシーンでは、単に装置の作動状況を表示するだけではなく、リスク情報を強調することができる。
 《効果》
(1)前記算出手段は、自車両の周囲に存在する周囲車両の数を検出し、検出した周囲車両の数に応じて前記主体度Dを算出する。
 これにより、より幅広いシーンで、且つ簡易な演算で、車両走行に対する運転者の主体度Dを算出することができる。
(第13実施形態)
 《構成》
 本実施形態は、ドライバスイッチ操作からドライバの意図を推定し、算出した主体度Dを補正するものである。
 図53は、第13実施形態における主体度補正処理を示すフローチャートである。
 先ずステップS131では、運転補助装置スイッチのON/OFF状態を読込む。運転補助装置スイッチとは、例えば車線逸脱防止制御(LDP)、車間維持制御(MB)、スタビリティ制御(VDC)、坂道発進制御(HSA)、降坂路車速制御(HDC)などを強制的に非作動状態(OFF)にできるスイッチである。
 続くステップS132では、主体度Dの補正量Cを算出する。
 ここで、ドライバが意図的に運転補助装置をONにした場合、主体度Dを低く補正するために、例えばC=-25%に設定し、ドライバが意図的に運転補助装置をOFFにした場合、主体度Dを高く補正するために、例えばC=25%に設定する。なお、例えばVDCのように、通常時にON状態となっている運転補助装置の場合、これを強制的にOFFにするスイッチがあるので、このスイッチがOFFにされたときだけ補正量Cを算出するようにしてもよい。
 主体度Dの補正値は-25%~25%の範囲で設定する。
 図54は、運転補助装置スイッチのON/OFFに応じた補正量Cを示すグラフである。
 この図のように、運転補助装置スイッチがONのときには、補正量Cをマイナス側の所定値に設定し、運転補助装置スイッチがOFFのときには、補正量Cをプラス側の所定値に設定する。
 続くステップS133では、前述した第5実施形態と同様に、ドライバのアクセル操作、ブレーキ操作、シフト操作、ステアリング操作、ナビ操作、計器類の操作など、各種操作の操作頻度hを算出する。
 続くステップS134では、操作頻度hと適正頻度Hとの関係に従って、補正量Cを算出する。すなわち、操作頻度hが適正頻度Hとの差分が、所定範囲内(例えば±10%以内)であれば、補正量Cを0に設定する。また、操作頻度hが適正頻度Hより大きく、その差分が大きいほど、補正量Cをプラス側に大きくし、逆に操作頻度hが適正頻度Hより小さく、その差分が大きいほど、補正量Cをマイナス側に大きくする。
 図55は、適正頻度Hに対する操作頻度hの差分と補正量Cとの関係を示すグラフである。
 この図のように、適正頻度Hに対して操作頻度hが相対的に大きくなるほど、補正量Cをプラス側に大きくし、逆に操作頻度hが相対的に小さくなるほど、補正量Cをマイナス側に大きくする。
 続くステップS135では、既に算出している主体度Dに、上記の各補正量Cを加算することで、主体度Dの補正を行ってから所定のメインプログラムに復帰する。
 なお、補正した結果が0%を下回る場合は0%を下限とし、100%を上回る場合は100%を上限とし、リミッタ処理を行う。
 《作用》
 運転補助装置スイッチのON/OFF状態と、各種操作の頻度hとは、運転者の主体度Dと相関がある。そこで、運転補助装置のスイッチ操作と、その他の各種操作頻度hとに応じた補正量Cを算出し(ステップS132、S134)、これを算出済の主体度Dに加算することで、主体度Dを補正する(ステップS135)。
 すなわち、操作頻度hが適正頻度H付近のドライバの場合、運転が上手なドライバであるとみなし、主体度Dを高く補正する。また、ドライバ自ら運転補助装置をオフにし、かつ、操作頻度hが適正頻度Hから離れたドライバの場合は運転が下手なドライバであるとみなし、主体度Dを低く補正する。
 《効果》
 運転補助装置のスイッチ操作に応じて主体度Dを補正する。
 これにより、ドライバの意図を反映した主体度Dを算出することができる。
(第14実施形態)
 《構成》
 本実施形態は、運転補助装置の制御介入回数に応じて主体度Dを補正するものである。
 図56は、第14実施形態における主体度補正処理を示すフローチャートである。
 先ずステップS141では、運転補助装置の作動状態を検出する。
 具体的には、制御介入があったときのリスク度合を、各運転補助装置ごとに「低リスク」「高リスク」で分類しておく。例えば、車間維持制御(MB)は「低リスク」、アンチロックブレーキシステム(ABS)やスタビリティ制御(VDC)は「高リスクとする。そして、低リスクの運転補助装置が介入した回数と、高リスクの運転補助装置が作動した回数とを夫々カウントする。
 図57は、作動回数カウント処理を示すフローチャートの一例である。
 この図のように、運転補助装置が作動したときには、それが低リスクの運転補助装置であるか、又は高リスクの運転補助装置であるかを区別して、その作動回数をカウントしてゆく。
 続くステップS142では、低リスクの運転補助装置が作動した回数と、高リスクの運転補助装置が作動した回数とに応じて、個別に補正量Cを算出する。各補正量Cは-50~50%の値で設定する。
 低リスクの運転補助装置の場合、作動回数が0のときに補正量Cを0とし、低リスク用の適度な基準回数(例えば5回)までの範囲で作動回数が増加するときには、主体度Dを低くするために補正量Cをマイナス側に大きくする。そして、基準回数を超えると、それ以降は作動回数が増えるほど、補正量Cのマイナス分を小さくしてゆき、0を境に今度は主体度Dを高くするためにプラス側へ大きくしてゆく。
 図58は、低リスクの運転補助装置における作動回数と補正量Cとの関係を示すグラフである。
 この図のように、作動回数が基準回数に近似するときに、補正量Cは最もマイナス側に大きくなり(例えば-25%)、基準回数から離れるほど、そのマイナス分が小さくなるように設定されている。
 高リスクの運転補助装置の場合、作動回数が0のときに補正量Cを0とし、作動回数が増加するほど、補正量Cをマイナス側に大きくする。ここで、高リスク用の適度な基準回数(例えば3回)に達するまでと、その基準回数を超えた後とで、勾配を変え、-50%を下限値としてリミットをかける。
 図59は、高リスクの運転補助装置における作動回数と補正量Cとの関係を示すグラフである。
 この図のように、作動回数が増加するほど、補正量Cが0~-50%の範囲で減少するように設定されている。
 続くステップS143では、既に算出している主体度Dに、上記の各補正量Cを加算することで、主体度Dの補正を行ってから所定のメインプログラムに復帰する。
 なお、補正した結果が0%を下回る場合は0%を下限とし、100%を上回る場合は100%を上限とし、リミッタ処理を行う。
 《作用》
 運転補助装置の作動回数は、運転者の主体度Dと相関がある。そこで、低リスクの運転補助装置の作動回数と、高リスクの運転補助装置の作動回数とを個別に算出し(ステップS141)、夫々の作動回数に応じた補正量Cを算出し(ステップS142)、これを算出済の主体度Dに加算することで、主体度Dを補正する(ステップS143)。
 すなわち、低リスクの運転補助装置の場合には、基準回数までは主体度Dが低くなるように補正するが、それ以降は作動回数が多くなるほど、積極的に制御介入させて走行するドライバと見なし、主体度Dを高く補正する。また、高リスクの運転補助装置の場合には、作動回数が増加するほど、主体度Dを低く補正する。
 《効果》
 運転補助装置の制御作動回数に応じて主体度Dを補正する。
 これにより、より高精度に主体度Dを算出することができる。
(第15実施形態)
 《構成》
 本実施形態は、運転時間に応じて主体度Dを補正するものである。
 図60は、第15実施形態における主体度補正処理を示すフローチャートである。
 先ずステップS151では、運転継続時間(運転経過時間)Tを検出する。これは、例えばエンジンをONにしてからの経過時間である。
 続くステップS152では、運転継続時間Tに応じて補正量Cを算出する。
 補正値は-50~50%の値で設定する。
 ここで、運転継続時間T[min]が、基準時間T1[min]より小さい場合には、下記に示すように補正量Cを0にする。
  C=0
 一方、運転継続時間T[min]が、基準時間T1[min]より大きい場合には、下記式に従って補正量Cを算出する。ここで、aは係数であり、例えば-0.1である。
  C=a(T-T1)
 図61は、運転継続時間Tと補正量Cとの関係を示すグラフである。
 この図のように、運転継続時間Tが基準時間T1未満であるときには、補正量Cが0を維持し、運転継続時間Tが基準時間T1を超えて増加するほど、補正量Cが0からマイナス側へと大きくなるように設定されている。
 続くステップS153では、既に算出している主体度Dに、上記の補正量Cを加算することで、主体度Dの補正を行ってから所定のメインプログラムに復帰する。
 なお、補正した結果が0%を下回る場合は0%を下限とし、100%を上回る場合は100%を上限とし、リミッタ処理を行う。
 《作用》
 運転を開始してからの運転継続時間Tは、運転者の主体度Dと相関がある。そこで、運転継続時間Tを計測し(ステップS151)、運転継続時間Tに応じて補正量Cを算出し(ステップS152)、これを算出済の主体度Dに加算することで、主体度Dを補正する(ステップS153)。
 すなわち、長時間に渡って運転を継続すると、運転者の主体度Dが低下すると考えられるので、運転継続時間Tが長くなるほど、主体度Dを低く補正する。
 《効果》
 運転継続時間Tに応じて主体度Dを補正する。
 これにより、主体度Dをより高精度に算出することができる。
(第16実施形態)
 《構成》
 本実施形態は、時間帯に応じて主体度Dを補正するものである。
 図62は、第16実施形態における主体度補正処理を示すフローチャートである。
 先ずステップS161では、現在の時刻を検出する。
 続くステップS162では、運転している時刻が、通常運転している時間帯と異なっているか否かに応じて補正量Cを算出する。
 補正値は0~1.0の範囲で設定する。
 ここで、例えば通常運転している時間が『昼間』のドライバが『夜間』に運転している場合は、補正量Cをマイナス側に設定する。
 具体的には、昼間に運転している通算時間Tdと、夜間に運転している通算時間Tnとを予めカウントしておき、以下の式にて補正項を算出する。
 夜間の運転が多くTn>Tdとなるドライバが、昼間に運転している場合には、下記式に従って補正量Cを算出する。
  C=Td/(Td+Tn)
 一方、昼間の運転が多くTn<Tdとなるドライバが、夜間に運転している場合には、下記式に従って補正量Cを算出する。
  C=Tn/(Td+Tn)
 上記以外の場合には、補正量C=1とする。
 上記で算出した補正値に重み係数a(例:a=1.0)を乗算してもよい。
 なお、簡略的に単に運転時刻から補正量Cを算出してもよい。
 図63は、運転時刻と補正量Cとの関係を示すグラフの一例である。
 この図のように、単に夜間運転のときに補正量Cをマイナス側に大きくし、主体度Dを低くするようにしてもよい。
 続くステップS163では、既に算出している主体度Dに、上記の補正量Cを加算することで、主体度Dの補正を行ってから所定のメインプログラムに復帰する。
 なお、補正した結果が0%を下回る場合は0%を下限とし、100%を上回る場合は100%を上限とし、リミッタ処理を行う。
 《作用》
 運転をしている時間帯は、運転者の主体度Dと相関がある。そこで、運転している時刻を検出し(ステップS161)、現在の時刻が、普段運転している時間帯と異なっているか否かに応じて補正量Cを算出し(ステップS162)、これを算出済の主体度Dに加算することで、主体度Dを補正する(ステップS163)。
 すなわち、普段と違う時間帯に運転をすると、運転者の主体度Dが低下すると考えられるので、普段は昼間の運転が多いのか、又は夜間の運転が多いのかを考慮し、普段と異なる時間帯に運転しているときには、主体度Dを低く補正する。
 なお、主体度Dとマップから表示内容を算出し、予め重み付けされた各表示内容のうち、その重みのセレクトハイによって表示内容のみを表示するようにしてもよい。
 《効果》
 運転する時間帯に応じて主体度Dを補正する。
 これにより、より幅広いシーンで、且つ簡易な演算で、車両走行に対する運転者の主体度Dを算出することができる。
(第17実施形態)
 《構成》
 本実施形態は、主体度算出自体を補正するものである。
 図64は、第17実施形態における主体度補正処理を示すフローチャートである。
 先ずステップS171では、ある所定時間における、補正前の主体度Dの過去値平均を算出する。
 続くステップS172では、過去平均値を用いて、下記式に従って補正量Cを算出する。
Figure JPOXMLDOC01-appb-M000005
 主体度補正値は-50~50%の値で設定する。
 なお、算出した補正値Cに重み係数a(例:a=1.0)を乗算してもよい。
 なお、補正した結果が0%を下回る場合は0%を下限とし、100%を上回る場合は100%を上限とし、リミッタ処理を行う。
 《作用》
 主体度Dを補正するにあたって、補正前の主体度Dの過去平均を考慮することも望ましい。そこで、補正前の過去平均値に応じて補正量Cを算出し(ステップS172)、これを算出済の主体度Dに加算することで、主体度Dを補正する(ステップS173)。
 すなわち、過去平均を考慮することで、主体度Dの急変を抑制する。
 なお、主体度Dの算出方法から各々の表示マップを読込み、算出した主体度Dとマップから各表示内容を決定してもよい。
 《効果》
 主体度の過去の平均値に応じて主体度Dを補正する。
 これにより、誤差を低減した主体度Dを算出することができる。
 日本国特許出願2009-122846(出願日2009年5月21日)と日本国特許出願2010-017992(出願日2010年1月29日)の全内容がここに援用され、誤訳や記載漏れから保護される。
 以上、第1~17実施形態によって本発明の内容を記載したが、本発明はこれら記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者に自明である。
 本発明に係る運転支援装置によれば、運転者の主体度に応じて視覚情報の表示形態を変更することで、それを画一的に表示するよりも効果的にリスクや制御状態を表示することができる。したがって、運転者が事態を把握しやすくなる。

Claims (21)

  1.  車両走行のリスクを検出したときに車両走行を制御する複数の制御手段と、
     該制御手段の少なくとも一つが作動するときに、車両走行のリスク及び当該制御手段の作動状態の少なくとも一方を視覚情報として表示する表示手段と、
     車両走行に対する運転者の主体度を算出する算出手段と、
     該算出手段が算出した該主体度に応じて前記表示手段による視覚情報の表示形態を変更する変更手段と、
     を備えることを特徴とする運転支援装置。
  2.  前記算出手段は、車両に発生している車両挙動のうち、運転者の運転操作量に応じた車両挙動が占める割合に基づいて、前記主体度を算出することを特徴とする請求項1に記載の運転支援装置。
  3.  前記算出手段は、所定時間後の車両に発生する予測車両挙動のうち、所定時間後における運転者の運転操作量に応じた予測車両挙動が占める割合に基づいて、前記主体度を算出することを特徴とする請求項1又は2に記載の運転支援装置。
  4.  前記算出手段は、前記制御手段の作動と前記主体度との関係を予め定めておき、前記制御手段の作動状態に応じて前記主体度を算出することを特徴とする請求項1~3の何れか一項に記載の運転支援装置。
  5.  前記算出手段は、前記制御手段が作動したときの制御量に応じて前記主体度を算出することを特徴とする請求項4に記載の運転支援装置。
  6.  前記表示手段は、前記制御手段の作動によって車両に作用する力を表す作用状態図形を視覚情報として表示し、
     前記変更手段は、前記主体度が低いほど、前記作用状態図形のサイズを大きくすることを特徴とする請求項1~5の何れか一項に記載の運転支援装置。
  7.  前記表示手段は、前記制御手段の作動によって車両に作用する力を表す作用状態図形を視覚情報として表示し、
     前記変更手段は、前記主体度が低いほど、前記作用状態図形を表示した三原色のうち、赤色を濃くすることを特徴とする請求項1~6の何れか一項に記載の運転支援装置。
  8.  前記表示手段は、前記制御手段の作動によって車両に作用する力を表す作用状態図形を視覚情報として表示し、
     前記変更手段は、前記主体度が低いほど、前記作用状態図形の輝度を高くすることを特徴とする請求項1~7の何れか一項に記載の運転支援装置。
  9.  前記表示手段は、前記制御手段の作動によって車両に作用する力を表す作用状態図形を視覚情報として表示し、
     前記変更手段は、前記主体度が低いほど、前記作用状態図形の点滅速度を早くすることを特徴とする請求項1~8の何れか一項に記載の運転支援装置。
  10.  前記表示手段は、車両走行に対するリスクを表すリスク図形を視覚情報として表示し、
     前記変更手段は、前記主体度が高いほど、前記リスク図形を表示した三原色のうち、青色を濃くすることを特徴とする請求項1~9の何れか一項に記載の運転支援装置。
  11.  前記表示手段は、車両走行に対するリスクを表すリスク図形を視覚情報として表示し、
     前記変更手段は、前記主体度が高いほど、前記リスク図形の輝度を高くすることを特徴とする請求項1~10の何れか一項に記載の運転支援装置。
  12.  前記表示手段は、車両走行に対するリスクを表すリスク図形を視覚情報として表示し、
     前記変更手段は、前記主体度が低いほど、前記リスク図形の点滅速度を早くすることを特徴とする請求項1~11の何れか一項に記載の運転支援装置。
  13.  前記表示手段は、前記主体度が低いほど、自車両をズームアップすることを特徴とする請求項1~12の何れか一項に記載の運転支援装置。
  14.  前記表示手段は、車両走行のリスクを表す将来の状況、前記制御手段の作動に応じた車両挙動を表す現在の状況、前記制御手段の作動を表す過去の状況の何れか一つを表示することを特徴とする請求項1~13の何れか一項に記載の運転支援装置。
  15.  前記算出手段は、運転者による運転操作の頻度を算出し、算出した頻度に応じて前記主体度を算出することを特徴とする請求項1~14の何れか一項に記載の運転支援装置。
  16.  前記算出手段は、運転者の覚醒度を算出し、算出した覚醒度に応じて前記主体度を算出することを特徴とする請求項1~15の何れか一項に記載の運転支援装置。
  17.  前記算出手段は、走行中の経路で過去における走行回数を算出し、算出した走行回数に応じて前記主体度を算出することを特徴とする請求項1~16の何れか一項に記載の運転支援装置。
  18.  前記算出手段は、道路の混雑度を検出し、検出した混雑度に応じて前記主体度を算出することを特徴とする請求項1~17の何れか一項に記載の運転支援装置。
  19.  前記算出手段は、走行中の道路の制限速度に応じて前記主体度を算出することを特徴とする請求項1~18の何れか一項に記載の運転支援装置。
  20.  前記算出手段は、自車両の周囲に存在する周囲車両の数を検出し、検出した周囲車両の数に応じて前記主体度を算出することを特徴とする請求項1~19の何れか一項に記載の運転支援装置。
  21.  車両走行のリスクを検出したときに車両走行を制御すると共に、車両走行のリスク及び当該制御状態の少なくとも一方を視覚情報として表示するものであって、車両走行に対する運転者の主体度を算出し、算出した主体度に応じて前記視覚情報の表示形態を変更することを特徴とする運転支援方法。
PCT/JP2010/056434 2009-05-21 2010-04-09 運転支援装置、及び運転支援方法 WO2010134396A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/321,092 US8788148B2 (en) 2009-05-21 2010-04-09 Driver assistance system and driver assistance method
EP10777631.2A EP2434467A4 (en) 2009-05-21 2010-04-09 DRIVING HELP DEVICE AND FAILSAFE PROCEDURE
CN201080022331.5A CN102439645B (zh) 2009-05-21 2010-04-09 驾驶辅助装置和驾驶辅助方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-122846 2009-05-21
JP2009122846 2009-05-21
JP2010017992A JP5287746B2 (ja) 2009-05-21 2010-01-29 運転支援装置、及び運転支援方法
JP2010-017992 2010-01-29

Publications (1)

Publication Number Publication Date
WO2010134396A1 true WO2010134396A1 (ja) 2010-11-25

Family

ID=43126084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056434 WO2010134396A1 (ja) 2009-05-21 2010-04-09 運転支援装置、及び運転支援方法

Country Status (5)

Country Link
US (1) US8788148B2 (ja)
EP (1) EP2434467A4 (ja)
JP (1) JP5287746B2 (ja)
CN (1) CN102439645B (ja)
WO (1) WO2010134396A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130103294A1 (en) * 2010-06-29 2013-04-25 Honda Motor Co., Ltd Method of displaying traffic congestion estimation
WO2018029789A1 (ja) * 2016-08-09 2018-02-15 日産自動車株式会社 自動運転車両の制御方法及び制御装置
WO2019138851A1 (ja) * 2018-01-10 2019-07-18 日立オートモティブシステムズ株式会社 運転支援装置、運転支援方法及び運転支援システム

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120007772A1 (en) * 2009-03-16 2012-01-12 Paerssinen Aarno Tapio Controller for a Directional Antenna and Associated Apparatus and Methods
JP5782726B2 (ja) * 2011-02-04 2015-09-24 日産自動車株式会社 覚醒低下検出装置
US9292471B2 (en) 2011-02-18 2016-03-22 Honda Motor Co., Ltd. Coordinated vehicle response system and method for driver behavior
US8698639B2 (en) 2011-02-18 2014-04-15 Honda Motor Co., Ltd. System and method for responding to driver behavior
EP2736028B1 (en) 2011-07-21 2019-05-22 Toyota Jidosha Kabushiki Kaisha Vehicle information transmitting apparatus
EP2784763A4 (en) * 2011-11-25 2015-08-19 Honda Motor Co Ltd DEVICE FOR MONITORING THE SURROUNDINGS OF A VEHICLE
US9206562B2 (en) * 2012-03-08 2015-12-08 Caterpillar Paving Products Inc. Grade propulsion system and method
WO2013150662A1 (ja) * 2012-04-02 2013-10-10 トヨタ自動車株式会社 運転支援装置
US9666077B2 (en) * 2012-09-03 2017-05-30 Toyota Jidosha Kabushiki Kaisha Collision determination device and collision determination method
WO2014108988A1 (ja) * 2013-01-11 2014-07-17 日産自動車株式会社 車両用表示制御装置及び車両用表示制御方法
MX343132B (es) * 2013-01-11 2016-10-26 Nissan Motor Dispositivo de control de deslpliegue para vehiculo y metodo de control de despliegue para vehiculo.
US20140257659A1 (en) * 2013-03-11 2014-09-11 Honda Motor Co., Ltd. Real time risk assessments using risk functions
US9751534B2 (en) 2013-03-15 2017-09-05 Honda Motor Co., Ltd. System and method for responding to driver state
DE102013209729A1 (de) * 2013-05-24 2014-11-27 Robert Bosch Gmbh Fahrerassistenzsystem mit zusätzlichen Informationen zu einer Straßenkarte
JP5987791B2 (ja) * 2013-06-28 2016-09-07 株式会社デンソー ヘッドアップディスプレイ及びプログラム
JP2015016719A (ja) * 2013-07-09 2015-01-29 矢崎総業株式会社 表示装置
JP5924312B2 (ja) 2013-07-22 2016-05-25 トヨタ自動車株式会社 車線維持支援装置
JP5895904B2 (ja) 2013-07-22 2016-03-30 トヨタ自動車株式会社 車線維持支援装置
JP5917472B2 (ja) * 2013-11-08 2016-05-18 本田技研工業株式会社 運転支援装置
JP6476546B2 (ja) * 2014-01-22 2019-03-06 株式会社豊田中央研究所 覚醒維持装置及びプログラム
BR112016021015B1 (pt) * 2014-03-12 2022-04-26 Nissan Motor Co. Ltd Dispositivo de operação de veículo utilizado em um veículo autônomo controlado de maneira autônoma para conduzir ao longo de uma rota de condução determinada e método de operação de veículo para um veículo autônomo controlado de maneira autônoma para conduzir ao longo de uma rota de condução determinada
JP6497158B2 (ja) * 2014-05-16 2019-04-10 株式会社リコー 表示装置、移動体
KR102214604B1 (ko) * 2014-09-05 2021-02-10 현대모비스 주식회사 운전 보조 영상 표시 방법
US9239244B1 (en) * 2014-09-15 2016-01-19 E-Lead Electronics Co., Ltd. Device capable of showing both navigation and safe driving warning information
CN105751846B (zh) * 2014-12-18 2018-07-03 马鞍山奕代电动车辆科技有限公司 一种空气悬架和视频画面联动的控制系统和控制方法
MX359055B (es) * 2015-01-13 2018-09-13 Nissan Motor Dispositivo de control de desplazamiento.
CA2992687A1 (en) * 2015-07-21 2017-01-26 Nissan Motor Co., Ltd. Drive planning device, travel assistance apparatus, and drive planning method
JP6707829B2 (ja) * 2015-10-01 2020-06-10 日産自動車株式会社 情報提示装置、走行支援システム、及び情報提示方法
DE102015219465A1 (de) * 2015-10-08 2017-04-13 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Ermittlung der adaptiven Reaktionszeit des Fahrers eines Kraftfahrzeugs
JP6613795B2 (ja) * 2015-10-16 2019-12-04 株式会社デンソー 表示制御装置および車両制御装置
JP6493196B2 (ja) 2015-12-17 2019-04-03 株式会社デンソー 制御装置、制御方法
US9905131B2 (en) * 2015-12-29 2018-02-27 Thunder Power New Energy Vehicle Development Company Limited Onboard vehicle notification system
JP6236099B2 (ja) * 2016-02-16 2017-11-22 株式会社Subaru 車両の走行制御装置
JP6699831B2 (ja) * 2016-04-28 2020-05-27 トヨタ自動車株式会社 運転意識推定装置
JP2017215650A (ja) * 2016-05-30 2017-12-07 アイシン精機株式会社 警報装置
KR101816423B1 (ko) * 2016-07-12 2018-01-08 현대자동차주식회사 사이드 미러 대체 디스플레이 장치 및 이의 출력 밝기 제어 방법
JP6776058B2 (ja) * 2016-08-26 2020-10-28 シャープ株式会社 自律走行車両制御装置、自律走行車両制御システム及び自律走行車両制御方法
US10053091B2 (en) * 2016-10-25 2018-08-21 Baidu Usa Llc Spring system-based change lane approach for autonomous vehicles
JP6792704B2 (ja) * 2017-06-02 2020-11-25 本田技研工業株式会社 自動運転車の制御のための車両制御装置及び方法
JP6834861B2 (ja) * 2017-09-07 2021-02-24 トヨタ自動車株式会社 ヘッドアップディスプレイシステム
JP7028609B2 (ja) * 2017-11-08 2022-03-02 フォルシアクラリオン・エレクトロニクス株式会社 画像表示装置、及び画像表示システム
CN110550044A (zh) * 2018-05-14 2019-12-10 上海汽车集团股份有限公司 一种辅助驾驶方法及装置
US10940870B1 (en) * 2018-11-28 2021-03-09 BlueOwl, LLC Systems and methods for visualizing predicted driving risk

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11129783A (ja) * 1997-10-28 1999-05-18 Yazaki Corp 速度表示方法、及びそれを用いた速度表示装置
JP2002269683A (ja) * 2001-03-08 2002-09-20 Natl Inst For Land & Infrastructure Management Mlit 走行支援道路システム
JP2005234773A (ja) * 2004-02-18 2005-09-02 Toyota Central Res & Dev Lab Inc ドライバ状態推定装置及び警報制御装置
JP2007122142A (ja) * 2005-10-25 2007-05-17 Nippon Seiki Co Ltd 運転支援装置
JP2007182224A (ja) 2003-06-10 2007-07-19 Nissan Motor Co Ltd 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP2008305096A (ja) * 2007-06-06 2008-12-18 Toyota Motor Corp 運転支援装置
JP2008307951A (ja) * 2007-06-12 2008-12-25 Fuji Heavy Ind Ltd 車両の運転支援装置
JP2009122846A (ja) 2007-11-13 2009-06-04 New Cosmos Electric Corp 火災警報器
JP2010017992A (ja) 2008-07-14 2010-01-28 Tombow Pencil Co Ltd 文房具

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7840342B1 (en) * 1997-10-22 2010-11-23 Intelligent Technologies International, Inc. Road physical condition monitoring techniques
US20040073449A1 (en) * 2000-12-08 2004-04-15 Ping Yang Catering mobile pick up station
US6636801B2 (en) * 2001-04-23 2003-10-21 Sun Microsystems, Inc. Delivering location-dependent services to automobiles
JP3620532B2 (ja) * 2002-11-12 2005-02-16 日産自動車株式会社 車両用報知装置
SE524510C2 (sv) * 2002-12-30 2004-08-17 Volvo Lastvagnar Ab Metod och anordning för start i uppförsbacke
JP4841425B2 (ja) 2003-06-06 2011-12-21 ボルボ テクノロジー コーポレイション 運転者の行動解釈に基づいて自動車のサブシステムを制御する方法および機構
DE102004028822B4 (de) * 2004-06-15 2006-07-06 Daimlerchrysler Ag Verfahren zur Erkennung einer Ausrichtungsänderung eines Umgebungsfahrzeugs
JP4169022B2 (ja) 2005-08-05 2008-10-22 日産自動車株式会社 車両用運転操作補助装置および車両用運転操作補助装置を備える車両
JP4752679B2 (ja) 2005-10-13 2011-08-17 日産自動車株式会社 車両用運転操作補助装置
CN101287634B (zh) * 2005-10-13 2012-08-15 日产自动车株式会社 车辆驾驶辅助系统
JP4887980B2 (ja) 2005-11-09 2012-02-29 日産自動車株式会社 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
CN1967147B (zh) 2005-11-09 2011-08-17 日产自动车株式会社 车辆用驾驶操作辅助装置及具有该装置的车辆
CN101466305B (zh) * 2006-06-11 2012-05-30 沃尔沃技术公司 用于确定和分析视觉兴趣位置的方法
US8224564B2 (en) 2007-02-14 2012-07-17 Fuji Jukogyo Kabushiki Kaisha Vehicle drive assist system
JP2008296740A (ja) * 2007-05-31 2008-12-11 Hitachi Ltd 車両挙動制御装置
JP5251216B2 (ja) * 2007-07-31 2013-07-31 日産自動車株式会社 車両用走行制御装置および車両用走行制御方法
US8612109B2 (en) 2007-07-31 2013-12-17 Nissan Motor Co., Ltd. Vehicular running control apparatus and vehicular running control method
US8446470B2 (en) * 2007-10-04 2013-05-21 Magna Electronics, Inc. Combined RGB and IR imaging sensor
JP4770946B2 (ja) * 2009-02-27 2011-09-14 トヨタ自動車株式会社 車載表示システム
US20130145279A1 (en) * 2011-11-16 2013-06-06 Flextronics Ap, Llc Removable, configurable vehicle console

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11129783A (ja) * 1997-10-28 1999-05-18 Yazaki Corp 速度表示方法、及びそれを用いた速度表示装置
JP2002269683A (ja) * 2001-03-08 2002-09-20 Natl Inst For Land & Infrastructure Management Mlit 走行支援道路システム
JP2007182224A (ja) 2003-06-10 2007-07-19 Nissan Motor Co Ltd 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP2005234773A (ja) * 2004-02-18 2005-09-02 Toyota Central Res & Dev Lab Inc ドライバ状態推定装置及び警報制御装置
JP2007122142A (ja) * 2005-10-25 2007-05-17 Nippon Seiki Co Ltd 運転支援装置
JP2008305096A (ja) * 2007-06-06 2008-12-18 Toyota Motor Corp 運転支援装置
JP2008307951A (ja) * 2007-06-12 2008-12-25 Fuji Heavy Ind Ltd 車両の運転支援装置
JP2009122846A (ja) 2007-11-13 2009-06-04 New Cosmos Electric Corp 火災警報器
JP2010017992A (ja) 2008-07-14 2010-01-28 Tombow Pencil Co Ltd 文房具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2434467A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130103294A1 (en) * 2010-06-29 2013-04-25 Honda Motor Co., Ltd Method of displaying traffic congestion estimation
US9443424B2 (en) * 2010-06-29 2016-09-13 Honda Motor Co., Ltd. Method of displaying traffic congestion estimation
WO2018029789A1 (ja) * 2016-08-09 2018-02-15 日産自動車株式会社 自動運転車両の制御方法及び制御装置
KR20190034331A (ko) * 2016-08-09 2019-04-01 닛산 지도우샤 가부시키가이샤 자동 운전 차량의 제어 방법 및 제어 장치
KR102101867B1 (ko) * 2016-08-09 2020-04-20 닛산 지도우샤 가부시키가이샤 자동 운전 차량의 제어 방법 및 제어 장치
US10671071B2 (en) 2016-08-09 2020-06-02 Nissan Motor Co., Ltd. Control method and control device of automatic driving vehicle
WO2019138851A1 (ja) * 2018-01-10 2019-07-18 日立オートモティブシステムズ株式会社 運転支援装置、運転支援方法及び運転支援システム
JPWO2019138851A1 (ja) * 2018-01-10 2020-11-26 日立オートモティブシステムズ株式会社 運転支援装置、運転支援方法及び運転支援システム
US11458964B2 (en) 2018-01-10 2022-10-04 Hitachi Astemo, Ltd. Driver assistance device, driver assistance method, and driver assistance system

Also Published As

Publication number Publication date
US20120072097A1 (en) 2012-03-22
EP2434467A1 (en) 2012-03-28
EP2434467A4 (en) 2015-07-01
US8788148B2 (en) 2014-07-22
CN102439645A (zh) 2012-05-02
JP5287746B2 (ja) 2013-09-11
CN102439645B (zh) 2014-07-30
JP2011001049A (ja) 2011-01-06

Similar Documents

Publication Publication Date Title
WO2010134396A1 (ja) 運転支援装置、及び運転支援方法
US8818708B2 (en) Optimum driving path on full windshield display
US11256260B2 (en) Generating trajectories for autonomous vehicles
US9092987B2 (en) Lane change assist information visualization system
JP4602444B2 (ja) ドライバ運転技能支援装置及びドライバ運転技能支援方法
US10535268B2 (en) Inter-vehicle management apparatus and inter-vehicle management method
US7653472B2 (en) Devices, systems and methods for prohibition of acceleration for cooperative speed control system
CN108688674B (zh) 车辆驾驶支援系统以及车辆驾驶支援方法
DE102015117381A1 (de) Systeme und Verfahren zum Anpassen von Merkmalen in einer Head-Up-Anzeige
US20140074356A1 (en) Lane change assist system
US20200215917A1 (en) Method for operating a driver assistance system of a transportation vehicle and transportation vehicle
US20220144083A1 (en) Method for Operating a Driver Information System in an Ego-Vehicle and Driver Information System
US10343694B2 (en) Vehicle drive assistance system
US20180022327A1 (en) Vehicle speed management apparatus and vehicle speed management method
EP2785571A1 (en) Safety system for a vehicle
JP2008030729A (ja) 車両用表示装置
CN111837067A (zh) 用于借助显示单元显示交通工具或者对象前方的轨迹走向的方法、用于执行该方法的装置
JP6132392B2 (ja) 運転支援制御装置
KR102208225B1 (ko) 적응형 순항 장치 및 적응형 순항 방법
WO2020090221A1 (ja) 車両用表示装置
EP3145782A1 (en) Method and system for safe driving when driving a vehicle in a curve
KR102365271B1 (ko) 스마트 크루즈 컨트롤 시스템 및 이의 정보 표시방법
WO2024079956A1 (ja) 運転支援装置、運転支援システム、及び運転支援方法
EP4258237A1 (en) Interior vehicle alerting based on an object of interest and an environment of a host vehicle
JP7029908B2 (ja) 視界制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080022331.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777631

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13321092

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010777631

Country of ref document: EP