WO2010134244A1 - 変換体モジュール及びその製造方法 - Google Patents

変換体モジュール及びその製造方法 Download PDF

Info

Publication number
WO2010134244A1
WO2010134244A1 PCT/JP2010/001633 JP2010001633W WO2010134244A1 WO 2010134244 A1 WO2010134244 A1 WO 2010134244A1 JP 2010001633 W JP2010001633 W JP 2010001633W WO 2010134244 A1 WO2010134244 A1 WO 2010134244A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
substrate
main surface
semiconductor device
converter module
Prior art date
Application number
PCT/JP2010/001633
Other languages
English (en)
French (fr)
Inventor
飯高正裕
内海勝喜
藤井恭子
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010134244A1 publication Critical patent/WO2010134244A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00865Multistep processes for the separation of wafers into individual elements
    • B81C1/00896Temporary protection during separation into individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0257Microphones or microspeakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/01Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS
    • B81B2207/012Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS the micromechanical device and the control or processing electronics being separate parts in the same package
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/05Temporary protection of devices or parts of the devices during manufacturing
    • B81C2201/053Depositing a protective layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones

Definitions

  • the present invention relates to a converter module and a manufacturing method thereof, and more particularly, to a MEMS (Micro Electro Mechanical Systems) microphone semiconductor device and a manufacturing method thereof.
  • MEMS Micro Electro Mechanical Systems
  • the converter module examples include a sound pressure sensor, a pressure sensor, and a MEMS microphone semiconductor device such as a sensor device having a vibrating electrode.
  • Such converter modules all have a fragile diaphragm structure.
  • a MEMS microphone semiconductor device a MEMS semiconductor element and a CMOS (Complementary Metal Oxide Semiconductor) semiconductor element are generally mounted on a substrate and covered with a case.
  • CMOS Complementary Metal Oxide Semiconductor
  • the semiconductor device is manufactured by forming a plurality of semiconductor devices at the same time and then dividing them into individual pieces.
  • the division is performed by a dicing method or a processing method of cutting with a mold.
  • dicing method In the dicing method, generally, an annular dicing saw to which particles of diamond or CBN (Cubic Boron Nitride) are fixed is rotated at high speed to be crushed. In the dicing method, the above processing is performed while flowing cutting water for removing crushed debris and suppressing frictional heat.
  • CBN Cubic Boron Nitride
  • the diaphragm structure and the beam structure of the MEMS semiconductor element are fragile structures, if the cutting water enters from the sound hole, it may be destroyed by the invading cutting water or cutting waste.
  • electronic components are becoming smaller as mounting density increases, and the penetration of cutting water or cutting chips into sound holes during the dicing method (individualization) becomes an increasingly problematic issue. It is coming.
  • the cutting waste is scattered, and the scattered cutting waste is scattered near the sound hole or in the sound hole (intrusion), which adversely affects the vibration of the diaphragm structure and affects the sound quality. May have an effect.
  • Patent Document 1 Several methods for suppressing the penetration of such cutting water or cutting waste into the sound holes have been proposed (for example, see Patent Document 1 and Patent Document 2 below).
  • Patent Document 1 discloses a structure in which an electret silicon oxide film formed on a silicon substrate is sandwiched between an insulating film and a metal film so that the silicon oxide film is not exposed. At this time, immediately before the metal film is formed by sputtering, the silicon oxide film is electretized using plasma in the vacuum chamber of the sputtering apparatus. With such a structure, moisture absorption to the MEMS microphone chip which is a MEMS semiconductor element is suppressed.
  • an acoustic hole is formed on the metal case or the substrate side, the substrate on which the connection pattern for joining the metal case, the metal case, the MEMS microphone chip mounted on the substrate, and the special case is provided.
  • a silicon condenser microphone formed of an objective semiconductor (ASIC: Application Specific Integrated Circuit) chip and an adhesive that joins a metal case and a substrate.
  • Patent Document 2 when a plurality of semiconductor devices are divided (divided into individual pieces) by a dicing method, cutting water enters the sound hole to remove crushed debris and suppress frictional heat. As a result, the diaphragm structure or beam structure of the MEMS microphone semiconductor element may be destroyed.
  • this invention solves the said problem, and can provide the converter module which can suppress the penetration
  • a converter module according to the present invention is fixed to a substrate, one or more semiconductor elements mounted on the first main surface of the substrate, and the first main surface of the substrate.
  • the through hole has a shape that suppresses intrusion water from the outside.
  • the through hole may be provided with one or more constricted shapes in which the diameter of the through hole gradually narrows toward the center of the thickness of the substrate or the case.
  • a taper shape in which the diameter of the through hole gradually narrows toward the first main surface or the second main surface of the substrate may be provided.
  • the through hole may have a shape with a stepped cross section, and the through hole may have a shape having two or more bent portions.
  • the through hole may have a shape having an oblique structure inclined at a predetermined angle from a direction perpendicular to the first main surface of the substrate.
  • the converter module is prevented from entering, for example, one or more constricted shapes, tapered shapes, stepped shapes, shapes having two or more bent portions, or oblique shapes with respect to the through holes provided in the substrate or case. Shape is applied.
  • the through-hole wall distance is longer than the intrusion path of the cutting water or cutting waste when the intrusion path of the cutting water or cutting waste when the converter module is separated into pieces does not have the intrusion prevention shape. It is possible to prevent water and cutting waste from entering the through hole.
  • the through-hole may further be provided with a porous film having a porous hole with a diameter of 1 to 100 ⁇ m.
  • the porous film is made of alumina ceramic, stainless steel, porous silicon, organic polymer porous material, resin porous material. You may consist of either.
  • the converter module which concerns on this invention is fixed to the main surface of the board
  • a resist film applied to a region other than the through hole and the contact-side electrode on the second main surface of the substrate, and the resist film is applied 0 to 50 ⁇ m lower than the height of the connection electrode.
  • the resist film may be formed around the through hole in the second main surface of the substrate.
  • the resist is provided on the substrate surface so that the step between the plurality of connection electrodes on the mounting surface and the substrate surface on the mounting surface side is within 0 to 50 ⁇ m, or the resist is provided only around the through hole.
  • the resist film may be further provided with a concavo-convex structure that is concavo-convex on the surface opposite to the surface in contact with the substrate.
  • the penetration path to the through hole in the cutting water or cutting waste during dicing becomes longer, so that it is possible to prevent the cutting water and cutting waste from entering the through hole. it can. Therefore, a high quality converter module can be realized.
  • FIG. 1 is a cross-sectional view of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 2A is a diagram for explaining the method for manufacturing the semiconductor device in the first embodiment of the present invention.
  • FIG. 2B is a diagram for explaining the method for manufacturing the semiconductor device in the first embodiment of the present invention.
  • FIG. 2C is a diagram for describing the method for manufacturing the semiconductor device according to Embodiment 1 of the present invention.
  • FIG. 2D is a diagram for describing the method for manufacturing the semiconductor device according to Embodiment 1 of the present invention.
  • FIG. 2E is a diagram for describing the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 2A is a diagram for explaining the method for manufacturing the semiconductor device in the first embodiment of the present invention.
  • FIG. 2B is a diagram for explaining the method for manufacturing the semiconductor device in the first embodiment of the present invention.
  • FIG. 2C is a diagram for describing the method for manufacturing the semiconductor device according to Em
  • FIG. 2F is a diagram for describing the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 2G is a diagram for describing the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 2H is a diagram for describing the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a semiconductor device according to another aspect of the first embodiment of the present invention.
  • FIG. 4A is a diagram for explaining the method for manufacturing the semiconductor device according to another aspect of the first embodiment of the present invention.
  • FIG. 4B is a diagram for explaining the method for manufacturing the semiconductor device according to another aspect of the first embodiment of the present invention.
  • FIG. 4C is a diagram for describing the method for manufacturing the semiconductor device according to another aspect of the first embodiment of the present invention.
  • FIG. 4D is a diagram for describing the method for manufacturing the semiconductor device according to another mode of the first embodiment of the present invention.
  • FIG. 4E is a diagram for describing the method for manufacturing the semiconductor device according to another aspect of the first embodiment of the present invention.
  • FIG. 4F is a diagram for describing the method for manufacturing the semiconductor device according to another mode of the first embodiment of the present invention.
  • FIG. 4G is a diagram for describing the method of manufacturing the semiconductor device according to another aspect of the first embodiment of the present invention.
  • FIG. 4H is a diagram for describing the method for manufacturing the semiconductor device according to another mode of the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a semiconductor device according to Modification 1 of Embodiment 1 of the present invention.
  • FIG. 6 is a cross-sectional view of a semiconductor device according to another aspect of modification 1 of the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a semiconductor device according to Modification 2 of Embodiment 1 of the present invention.
  • FIG. 8 is a cross-sectional view of a semiconductor device according to another aspect of modification 2 of the first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a semiconductor device of Modification 3 according to Embodiment 1 of the present invention.
  • FIG. 10 is a cross-sectional view of a semiconductor device according to another aspect of modification 3 of the first embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of a semiconductor device according to Modification 4 of Embodiment 1 of the present invention.
  • FIG. 12 is a cross-sectional view of a semiconductor device according to another aspect of modification 4 of the first embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of a semiconductor device according to Modification 5 of Embodiment 1 of the present invention.
  • FIG. 14 is a cross-sectional view of a semiconductor device according to another aspect of modification 5 of the first embodiment of the present invention.
  • FIG. 15 is a cross-sectional view of the semiconductor device according to the second embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of a semiconductor device according to another aspect of the second embodiment of the present invention.
  • FIG. 17 is a cross-sectional view of the semiconductor device according to the third embodiment of the present invention.
  • FIG. 18 is a cross-sectional view of the semiconductor device according to the third embodiment of the present invention.
  • FIG. 19 is a cross-sectional view of a semiconductor device according to Modification 1 of Embodiment 3 of the present invention.
  • FIG. 20 is a cross-sectional view of the semiconductor device of Modification 1 according to Embodiment 3 of the present invention.
  • FIG. 21 is a cross-sectional view of the semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 22 is a cross-sectional view of the semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of the semiconductor device according to the first embodiment of the present invention.
  • the semiconductor device 100 is typically a MEMS microphone semiconductor device, and includes a cap 1, a semiconductor element 2, a semiconductor element 4, an adhesive 5, a substrate 6, and an electrode 7.
  • FIG. 1 shows a state in which the semiconductor device 100 before being singulated is fixed by the dicing tape 9.
  • the cap 1 covers the semiconductor element 2 and the semiconductor element 4 fixed to the substrate 6, and is fixed to the substrate 6 with an adhesive 5.
  • the cap 1 may be made of any material having good heat resistance. For example, it may be made of a metal such as Cu, Al, or Mg, or an alloy thereof. Further, it may be made of non-metal such as plastic or ceramic. Thus, the material of the cap 1 is not particularly limited, but if it is a non-metallic material, it is desirable that the surface is plated with Sn or Ni.
  • the semiconductor element 2 is a MEMS microphone semiconductor element having a diaphragm structure 3 or a beam structure such as a sensor device having a vibrating electrode, and is fixed to the substrate 6. Further, the semiconductor element 2 is electrically connected to the substrate 6 or the semiconductor element 4 by the wire portion 10.
  • the semiconductor element 4 is, for example, a CMOS semiconductor element, is fixed to the substrate 6, and is electrically connected to the substrate 6 or the semiconductor element 2 by the wire portion 10.
  • the semiconductor element 4 is a CMOS semiconductor element in which, for example, an analog IC, a logic IC, a memory IC or the like is used, but is not particularly limited thereto.
  • the adhesive 5 is an adhesive that joins the cap 1 and the substrate 6 and includes, for example, any one of conductive epoxy, non-conductive epoxy, silver paste, silicon, urethane, acrylic, and solder paste.
  • the substrate 6 is composed of a glass cloth laminated epoxy substrate (glass epoxy substrate), a glass cloth laminated polyimide substrate, an aramid nonwoven fabric substrate, or the like.
  • the semiconductor element 2 and the semiconductor element 4 are fixed to the first main surface 16, and the cap 1 is bonded by the adhesive 5 so as to cover the fixed semiconductor element 2 and the semiconductor element 4.
  • the substrate 6 is electrically connected to the fixed semiconductor element 2, the semiconductor element 4, and the wire portion 10.
  • the substrate 6 is provided with a through hole 8, and the electrode 7 is formed on the surface opposite to the main surface.
  • the through hole 8 is typically used as a sound hole.
  • the electrode 7 is an electrode made of Cu, for example, and is an electrode for electrical connection to the mother substrate.
  • the electrode 7 is formed on a surface (second main surface 17) opposite to the first main surface 16 (surface on which the semiconductor element 2 and the semiconductor element 4 are fixed). Further, the surface treatment of the electrode 7 is preferably water-soluble heat-resistant preflux or Au / Ni plating.
  • the through hole 8 is provided in the substrate 6 as a sound hole, for example.
  • the through hole 8 provided in the substrate 6 is provided with an intrusion prevention shape that does not inhibit air vibration such as sound but can inhibit the ingress of cutting water during dicing.
  • the through hole 8 is provided with an intrusion prevention shape having one or more constricted portions, for example.
  • the through hole 8 has a diameter A of the diaphragm structure 3, a diameter of the through hole 8 on the first main surface 16 side of the substrate 6, a b in the through hole 8, and a second diameter of the substrate 6.
  • the diameter of the through hole 8 on the main surface 17 side is c
  • an intrusion prevention shape having a constricted portion in which b is minimum as compared with a and c, that is, the diameter of the through hole 8 gradually narrows toward the center is provided. ing.
  • the wall distance of the through hole 8 is increased as compared with the case where the constricted portion is not provided. Thereby, the infiltration path of the cutting water at the time of dicing becomes long, and it is possible to suppress the intrusion of the cutting water into the through hole 8.
  • the dicing tape 9 is a dicing tape that is used when a plurality of semiconductor devices 100 are simultaneously formed and then divided (divided into pieces).
  • a pressure sensitive tape or a UV tape is used as the dicing tape 9, but the dicing tape 9 is not particularly limited.
  • the paste material thickness is 1 to 50 ⁇ m and the base material thickness is 50 to 200 ⁇ m.
  • the wire portion 10 is for electrically connecting the semiconductor element 2 and the semiconductor element 4, the semiconductor element 2 and the substrate 6, and the semiconductor element 4 and the substrate 6.
  • the semiconductor device 100 is configured as described above.
  • FIGS 2A to 2H are diagrams for explaining the method of manufacturing the semiconductor device in the first embodiment.
  • the electrode 7 is provided on the second main surface 17 of the substrate 6 having the through holes 8 (FIG. 2A), and the semiconductor element 2 and the semiconductor element 4 having the diaphragm structure 3 are mounted on the first main surface 18 of the substrate 6. (FIG. 2B).
  • substrate 6 is formed in the semiconductor element 2 and the semiconductor element 4, the semiconductor element 2 and the board
  • the cap 1 is joined to the substrate 6 using the adhesive 5 (FIG. 2D) (FIG. 2E).
  • the substrate 6 is fixed by the dicing tape 9 (FIG. 2F), and the plurality of semiconductor devices 100 are separated into pieces by the dicing blade 14 (FIG. 2G). Then, the dicing tape 9 is peeled off (FIG. 2H). In this way, the semiconductor device 100 is manufactured.
  • the through hole 8 is provided with an intrusion deterrent shape that deters the ingress of cutting water during dicing until it is separated into individual pieces.
  • FIG. 3 is a cross-sectional view of another aspect of the semiconductor device according to the first embodiment of the present invention. Elements similar to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the semiconductor device 101 shown in FIG. 3 differs from the semiconductor device 100 shown in FIG. 1 in that, for example, a through hole 81 serving as a sound hole is provided in the cap 1 instead of the substrate 6.
  • FIG. 3 shows a state in which the cap 1 of the semiconductor device 101 before being singulated is fixed by the dicing tape 9.
  • the through hole 81 is provided in the cap 1.
  • the through-hole 8 provided in the cap 1 is provided with an intrusion prevention shape that does not inhibit air vibration such as sound but inhibits ingress of cutting water during dicing.
  • the through-hole 81 is provided with an intrusion prevention shape having, for example, one or more constricted portions.
  • the through hole 81 provided in the cap 1 has a d through hole diameter on the first main surface 18 side of the cap 1 and a through hole diameter on the second main surface 19 side of the cap 1 d and
  • An intrusion suppression shape having a constricted portion in which b is minimum as compared with e, that is, the diameter of the through hole 81 gradually narrows toward the vicinity of the center of the cap 1 is provided.
  • the penetration preventing shape having the constricted portion in the through hole 81 the wall surface distance of the through hole 81 is increased as compared with the case where the constricted portion is not provided. Thereby, the penetration path of the cutting water at the time of dicing becomes long, and it can suppress that cutting water penetrate
  • the semiconductor device 101 is configured as described above.
  • 4A to 4H are diagrams for explaining a method for manufacturing a semiconductor device according to another aspect of the first embodiment.
  • the electrode 7 is provided on the second main surface 17 of the substrate 6 (FIG. 4A), and the semiconductor element 2 and the semiconductor element 4 having the diaphragm structure 3 are mounted on the first main surface 18 of the substrate 6 (FIG. 4B).
  • substrate 6 is formed in the semiconductor element 2 and the semiconductor element 4, the semiconductor element 2 and the board
  • the cap 1 having the through hole 81 is joined to the substrate 6 using the adhesive 5 (FIG. 4D) (FIG. 4E).
  • the cap 1 side is fixed by the dicing tape 9 (FIG. 4F), and the plurality of semiconductor devices 101 are separated into pieces by the dicing blade 14 (FIG. 4G). Then, the dicing tape 9 is peeled off (FIG. 4H). In this way, the semiconductor device 101 is manufactured.
  • the through hole 81 is provided with an intrusion suppression shape that suppresses intrusion of cutting water during dicing before being divided into individual pieces.
  • the semiconductor device and a method for manufacturing the semiconductor device that can suppress the intrusion of cutting water and cutting waste during the process of singulation and improve the reliability.
  • an intrusion suppression shape that forms a constricted portion is applied to, for example, the through hole 8 or the through hole 81 serving as a sound hole provided in the substrate 6 or the cap 1 of the semiconductor device 100.
  • the through hole wall surface distance that is, the intrusion path of cutting water or cutting waste, becomes longer than when no intrusion prevention shape is applied, and the intrusion of cutting water or cutting waste during dicing into the through hole 8 can be suppressed. Therefore, the diaphragm structure 3 in the semiconductor device 100 can be protected.
  • a constriction portion is provided as an intrusion suppression shape in a through hole formed as a sound hole, for example, is described, but the present invention is not limited to this.
  • modifications 1 to 5 other examples of the intrusion prevention shape will be described.
  • FIG. 5 is a cross-sectional view of a semiconductor device according to Modification 1 of Embodiment 1 of the present invention. Elements similar to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the semiconductor device 102 shown in FIG. 5 is different from the semiconductor device 100 shown in FIG. 1 in the intrusion prevention shape applied to the through hole 82 provided in the substrate 6.
  • the through hole 82 is provided in the substrate 6 as a sound hole, for example, and is provided with an intrusion suppression shape having a tapered shape in which the diameter of the through hole 82 gradually decreases toward the second main surface 17 of the substrate 6. ing.
  • an intrusion suppression shape having a tapered shape as shown in FIG. 5
  • the wall surface distance of the through hole 82 is increased as compared with the case where the tapered shape is not provided. Thereby, the infiltration path of the cutting water during dicing becomes long, and it is possible to suppress the intrusion of the cutting water into the through hole 82.
  • the through hole 82 is preferably provided with an intrusion suppression shape having a tapered shape in which the through hole diameter a on the first main surface 16 side and the diameter A of the diaphragm structure 3 are A> a. . This is because it is more effective against the penetration of cutting waste into the diaphragm structure 3.
  • the through hole 82 to which the above-described intrusion prevention shape is applied is not limited to the case where the substrate 6 is provided.
  • the cap 1 may be provided as the through hole 83.
  • FIG. 6 is a cross-sectional view of a semiconductor device according to another aspect of the first modification of the first embodiment of the present invention.
  • the same elements as those in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the semiconductor device 102 shown in FIG. 5 is different from the semiconductor device 102 shown in FIG. 1 in that, for example, a through hole 83 serving as a sound hole is provided in the cap 1 instead of the substrate 6.
  • the through-hole 83 is provided in the cap 1 and is provided with an intrusion suppression shape having a tapered shape in which the diameter of the through-hole 83 gradually decreases toward the first main surface 18 of the cap 1.
  • an intrusion suppression shape having a tapered shape as in the semiconductor device 103 of FIG. 6, the wall surface distance of the through hole 83 is increased as compared with the case where the tapered shape is not provided. Thereby, the infiltration path of the cutting water at the time of dicing becomes long, and the intrusion of the cutting water into the through hole 83 can be suppressed.
  • the through hole 83 has an intrusion prevention shape having a tapered shape in which the diameter A of the diaphragm structure 3 is larger than the through hole diameter e on the second main surface 19 side of the cap 1, that is, A> e. Preferably it is done. This is because it is more effective against the penetration of cutting waste into the diaphragm structure 3.
  • FIG. 7 is a cross-sectional view of a semiconductor device according to Modification 2 of Embodiment 1 of the present invention.
  • the same elements as those in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the semiconductor device 104 shown in FIG. 7 is different from the semiconductor device 102 shown in FIG. 5 in the shape of intrusion prevention applied to the through hole 84 provided in the substrate 6.
  • the through hole 84 is provided in the substrate 6 as a sound hole, for example, and is provided with an intrusion suppression shape having a tapered shape in which the diameter of the through hole 84 gradually decreases toward the first main surface 16 of the substrate 6. ing.
  • the penetration suppression shape having a tapered shape is applied to the through hole 84, so that the wall surface distance of the through hole 84 is increased as compared with the case where the tapered shape is not provided. Thereby, the infiltration path of the cutting water at the time of dicing becomes long, and it is possible to suppress the intrusion of the cutting water into the through hole 84.
  • the through hole 84 is preferably provided with an intrusion prevention shape having a tapered shape in which the through hole diameter c on the second main surface 17 side and the diameter A of the diaphragm structure 3 are A> c. . This is because it is more effective against the penetration of cutting waste into the diaphragm structure 3.
  • the through hole 84 to which the above-described intrusion prevention shape is applied is not limited to the case where the substrate 6 is provided.
  • the cap 1 may be provided as the through hole 85.
  • FIG. 8 is a cross-sectional view of a semiconductor device according to another aspect of Modification 2 of Embodiment 1 of the present invention.
  • symbol is attached
  • the semiconductor device 105 shown in FIG. 8 differs from the semiconductor device 104 shown in FIG. 7 in that, for example, a through hole 85 serving as a sound hole is provided in the cap 1 instead of the substrate 6.
  • the through-hole 85 is provided in the cap 1 as, for example, a sound hole, and an intrusion prevention shape having a tapered shape in which the diameter of the through-hole 85 gradually decreases toward the second main surface 19 of the cap 1 is applied. ing.
  • the through hole 83 By providing the through hole 83 with an intrusion prevention shape having a tapered shape as shown in FIG. 8, the wall surface distance of the through hole 85 is increased as compared with the case where the tapered shape is not provided. Thereby, the infiltration path of the cutting water at the time of dicing becomes long, and it is possible to prevent the cutting water from entering the through hole 85.
  • the through hole 85 has an intrusion prevention shape having a taper shape in which the diameter A of the diaphragm structure 3 is larger than the through hole diameter d on the first main surface 18 side of the cap 1, that is, A> d. Preferably it is done. This is because it is more effective against the penetration of cutting waste into the diaphragm structure 3.
  • FIG. 9 is a cross-sectional view of a semiconductor device of Modification 3 according to Embodiment 1 of the present invention. Elements similar to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the semiconductor device 106 shown in FIG. 9 is different from the semiconductor device 100 shown in FIG. 1 in the intrusion prevention shape applied to the through hole 86 provided in the substrate 6.
  • the through-hole 86 is provided in the substrate 6 as a sound hole, for example, and is provided with an intrusion suppression shape having an oblique shape inclined at a certain angle from the direction perpendicular to the first main surface 16 of the substrate 6. As shown in FIG. 9, when the penetration preventing shape having an oblique shape is applied to the through hole 86, the wall surface distance of the through hole 86 is increased as compared with the case where the oblique shape is not provided. Thereby, the infiltration path of the cutting water during dicing becomes long, and the intrusion of the cutting water into the through hole 86 can be suppressed.
  • the through-hole 86 to which the above-described intrusion prevention shape is applied is not limited to the case where the substrate 6 is provided.
  • the cap 1 may be provided as the through hole 87.
  • FIG. 10 is a cross-sectional view of a semiconductor device according to another mode of Modification 3 in Embodiment 1 of the present invention.
  • symbol is attached
  • the semiconductor device 107 shown in FIG. 10 is different from the semiconductor device 106 shown in FIG. 9 in that, for example, a through hole 87 serving as a sound hole is provided in the cap 1 instead of the substrate 6.
  • the through-hole 87 is provided in the cap 1 as a sound hole, for example, and is provided with an intrusion suppression shape having an oblique shape inclined at a certain angle from the first main surface 18 of the cap 1 in a perpendicular direction.
  • an intrusion suppression shape having an oblique shape as shown in FIG. 10
  • the wall surface distance of the through hole 87 is increased as compared with the case without the oblique shape. Thereby, the infiltration path of the cutting water at the time of dicing becomes long, and it is possible to suppress the intrusion of the cutting water into the through hole 87.
  • FIG. 11 is a cross-sectional view of a semiconductor device according to Modification 4 of Embodiment 1 of the present invention. Elements similar to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the semiconductor device 108 shown in FIG. 11 is different from the semiconductor device 100 shown in FIG. 1 in the shape of intrusion prevention applied to the through hole 88 provided in the substrate 6.
  • the through-hole 88 is provided in the substrate 6 as a sound hole, for example, and an intrusion suppression shape having a step shape is provided on both side surfaces of the through-hole 88.
  • an intrusion suppression shape having a step shape is provided on both side surfaces of the through-hole 88.
  • the present invention is not limited to this, and by reducing either the through-hole diameter a on the first main surface 16 side and the through-hole diameter c on the second main surface 17 side from the diameter A of the diaphragm structure 3, or both, It is also possible to suppress the penetration of cutting waste.
  • the diameter b in the through hole 88 may have a diameter different from a and c. In that case, it is possible to provide a constricted portion or a tapered shape in the staircase shape, which is more effective for the invasion of cutting waste into the diaphragm structure 3.
  • the through-hole 88 in which the above-described intrusion prevention shape is applied is not limited to being provided in the substrate 6.
  • the cap 1 may be provided as the through hole 89.
  • FIG. 12 is a cross-sectional view of a semiconductor device according to another aspect of Modification 4 of Embodiment 1 of the present invention.
  • symbol is attached
  • the semiconductor device 109 shown in FIG. 12 is different from the semiconductor device 108 shown in FIG. 9 in that, for example, a through hole 89 serving as a sound hole is provided in the cap 1 instead of the substrate 6.
  • the through-hole 89 is provided in the cap 1 as a sound hole, for example, and an intrusion prevention shape having a step shape is provided on both side surfaces of the through-hole 89.
  • an intrusion prevention shape having a stepped shape as shown in FIG. 12
  • the wall surface distance of the through hole 89 is increased as compared with the case without the stepped shape. Thereby, the infiltration path of the cutting water at the time of dicing becomes long, and it is possible to suppress the intrusion of the cutting water into the through hole 89.
  • the present invention is not limited thereto, and either the through-hole diameter d on the first main surface 18 side of the cap 1 and the through-hole diameter e on the second main surface 19 side of the cap 1 with respect to the diameter A of the diaphragm structure 3 or both.
  • the diameter b in the through hole 89 may have a diameter different from d and e. In that case, it is possible to provide a constricted portion or a tapered shape in the staircase shape, which is more effective for the invasion of cutting waste into the diaphragm structure 3.
  • FIG. 13 is a cross-sectional view of a semiconductor device according to Modification 5 of Embodiment 1 of the present invention. Elements similar to those in FIG. 12 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the semiconductor device 109 shown in FIG. 13 is different from the semiconductor device 108 shown in FIG. 12 in the intrusion prevention shape applied to the through hole 90 provided in the substrate 6.
  • the through-hole 90 is provided in the substrate 6 as a sound hole, for example, and is provided with an intrusion suppression shape having two or more bent portions having, for example, two U-shaped cross sections.
  • an intrusion prevention shape having a U-shape as shown in FIG. 13
  • the wall distance of the through-hole 90 is increased as compared with the case where the U-shape is not provided. Thereby, the infiltration path of the cutting water at the time of dicing becomes long, and it is possible to prevent the cutting water from entering the through hole 90.
  • the present invention is not limited to this, and by reducing either the through-hole diameter a on the first main surface 16 side, the through-hole diameter c on the second main surface 17 side, or both from the diameter A of the diaphragm structure 3, cutting waste It is also possible to prevent the intrusion.
  • the diameter b in the through hole 90 may have a diameter different from a and c. In that case, it is possible to provide a constricted portion or a tapered shape in the U-shape, which is more effective for the penetration of cutting waste into the diaphragm structure 3.
  • the through hole 90 to which the above-described intrusion prevention shape is applied is not limited to being provided in the substrate 6.
  • the cap 1 may be provided as the through hole 91.
  • FIG. 14 is a cross-sectional view of a semiconductor device according to another aspect of Modification 5 of Embodiment 1 of the present invention. Elements similar to those in FIG. 13 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the semiconductor device 111 shown in FIG. 14 is different from the semiconductor device 110 shown in FIG. 13 in that, for example, a through hole 91 serving as a sound hole is provided in the cap 1 instead of the substrate 6.
  • the through-hole 91 is provided in the cap 1 as a sound hole, for example, and is provided with an intrusion suppression shape in which the cross-sectional shape of the through-hole 91 is a U-shape.
  • the penetration preventing shape having a U shape is applied to the through hole 91 as shown in FIG. 14, the wall surface distance of the through hole 91 is increased as compared with the case where the U shape is not provided. Thereby, the infiltration path of the cutting water during dicing becomes long, and the intrusion of the cutting water into the through hole 91 can be suppressed.
  • an intrusion suppression shape is applied to, for example, a through hole that is a sound hole, for example, provided in a substrate or cap of a semiconductor device that is a MEMS microphone semiconductor device
  • the intrusion suppression shape is not applied.
  • the through hole wall surface distance, that is, the intrusion path of the cutting water and the cutting waste becomes longer. Thereby, it can suppress that the cutting water at the time of dicing or cutting waste penetrate
  • the first embodiment it is possible to realize a semiconductor device and a method for manufacturing the semiconductor device that can suppress the intrusion of cutting water and cutting waste during the process of singulation and improve the reliability.
  • Embodiment 2 In Embodiment 1, the example in which the intrusion prevention shape is provided in the through hole has been described, but the present invention is not limited thereto. Anything that does not suppress the vibration of air such as sound but can suppress the ingress of cutting water during dicing is acceptable. In the second embodiment, an example will be described.
  • FIG. 15 is a cross-sectional view of the semiconductor device according to the second embodiment of the present invention. Elements similar to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a porous film 11 is provided in the through hole 8 serving as a sound hole instead of an intrusion suppressing shape.
  • the through-hole 8 is provided in the substrate 6 as a sound hole, for example.
  • a part of the through-hole 8 allows a propagating substance such as air to pass therethrough but allows the cutting water to enter during dicing. It has a porous film 11 to prevent it.
  • the porous film 11 has a large number of pores having a pore diameter of 1 to 100 ⁇ m, and the composition is made of alumina ceramic, stainless steel, porous silicon, organic polymer porous material, or resin porous material.
  • the through-hole 8 having the porous film 11 can prevent the cutting water from entering the through-hole 8 during dicing. Moreover, it is more effective against the penetration of cutting waste.
  • the through hole 8 to which the porous film is applied is not limited to being provided in the substrate 6.
  • the cap 1 may be provided.
  • FIG. 16 is a cross-sectional view of a semiconductor device according to another aspect of the second embodiment of the present invention. Elements similar to those in FIG. 15 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a through hole 208 serving as a sound hole is provided in the cap 1 instead of the substrate 6.
  • the through-hole 208 is provided in the cap 1 as a sound hole, for example, and allows a propagation substance such as air to permeate a part of the through-hole 208 provided in the cap 1, but prevents the penetration of cutting water during dicing.
  • a porous film 11 is provided.
  • the through-hole 208 has the porous film 11 as shown in FIG. 16, it is possible to prevent the cutting water from entering the through-hole 208 during dicing. Furthermore, it is possible to prevent the penetration of cutting waste.
  • a porous film in, for example, a through hole serving as a sound hole provided in a substrate or cap of a semiconductor device that is typically a MEMS microphone semiconductor device, cutting water or cutting waste during dicing penetrates. Intrusion into the hole 8 can be prevented. Therefore, the diaphragm structure in the semiconductor device can be protected.
  • the second embodiment it is possible to realize a semiconductor device and a method for manufacturing the semiconductor device that can suppress the intrusion of cutting water and cutting waste during the process of singulation and improve the reliability.
  • FIG. 17 and 18 are cross-sectional views of the semiconductor device according to the third embodiment of the present invention. Elements similar to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a semiconductor device 300 shown in FIG. 17 has the same structure as that of the semiconductor device 100 shown in FIG. 1 in order to suppress the ingress of cutting water during dicing, for example, in the through-hole 8 serving as a sound hole, instead of the dicing tape 9 and the substrate. 6 is different in configuration from that of FIG.
  • the resist film 312 is provided between the dicing tape 9 and the substrate 6 in order to suppress the entry of cutting water during dicing.
  • the resist film 312 is formed to be thinner (lower) by t (for example, 0 to 50 ⁇ m) than the thickness (height) of the electrode 7 in the direction perpendicular to the first main surface 16 of the substrate 6.
  • the resist film 312 is provided between the dicing tape 9 and the substrate 6 so that the electrode 7 has a convex amount t of 0 to 50 ⁇ m from the resist film 312.
  • the resist film 312 is provided on the second main surface 17 of the substrate 6 so that the electrode 7 has a convex amount t of 0 to 50 ⁇ m from the resist film 312, so that the adhesive material of the dicing tape 9 is the electrode. 7 can be buffered. That is, the step (projection amount t) between the electrode 7 and the resist film 312 can be absorbed by the thickness of the adhesive material (adhesive material) of the dicing tape 9. Therefore, the semiconductor device 300 can seal the through-hole 8 by increasing the contact area between the substrate 6 and the dicing tape 9 via the resist film 312 and the electrode 7. Intrusion of cutting waste can be prevented.
  • the thickness of the adhesive material of the dicing tape 9 is T 9
  • the thickness (height) of the electrode 7 is T 7
  • the thickness (height) of the resist film 312 is T 312
  • T 7 -T 312 ⁇ T 9 The resist film 312 and the electrode 7 are preferably formed so as to satisfy the relationship “
  • T 7 ⁇ T 312 convex amount t.
  • the resist film 312 may have unevenness 313 of about 1 to 49 ⁇ m on the surface opposite to the substrate 6. In that case, since the cutting water intrusion route to the through hole 8 is further increased, it is possible to prevent the cutting water and cutting waste during dicing from entering the through hole 8.
  • the resist film 312 may be removed from the dicing tape 9 and may be included in the semiconductor device 300 or may remain on the dicing tape 9.
  • Modification 1 19 and 20 are cross-sectional views of the semiconductor device of Modification 1 according to Embodiment 3 of the present invention. Note that the same elements as those in FIG. 17 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the semiconductor device 302 shown in FIG. 19 is different from the semiconductor device 300 shown in FIG. 17 in the configuration of a resist film 314 provided to suppress the ingress of cutting water during dicing. That is, the resist film 314 differs in that it is formed not only on the entire second main surface side of the substrate 6 but particularly around the through-hole 8.
  • the resist film 314 is provided around the through hole 8 so that the electrode 7 has a convex amount t of 0 to 50 ⁇ m from the resist film 314.
  • the resist film 314 is provided between the dicing tape 9 and the substrate 6 and between the electrodes 7 on the second main surface 17 of the substrate 6 around the through hole 8 in the second main surface 17 of the substrate 6. It is formed so as to have a continuously connected pattern.
  • the resist film 312 in which the electrode 7 has a convex amount t of 0 to 50 ⁇ m from the resist film 314 is provided only around the through hole 8 as described above, so that the glue material of the dicing tape 9 is obtained.
  • the thickness of the adhesive material of the dicing tape 9 is T 9
  • the thickness (height) of the electrode 7 is T 7
  • the thickness (height) of the resist film 314 is T 314
  • the resist film 312 and the electrode 7 are preferably formed so as to satisfy the relationship “
  • T 7 -T 314 projection amount t.
  • the resist film 314 may have unevenness 313 of about 1 to 49 ⁇ m on the surface opposite to the substrate 6. In that case, since the cutting water intrusion route to the through hole 8 is further increased, it is possible to prevent the cutting water and cutting waste during dicing from entering the through hole 8.
  • the resist film 314 may be removed from the dicing tape 9 and may be included in the semiconductor device 302 or may remain on the dicing tape 9.
  • the through-hole 8 is sealed during dicing by providing a resist film between the dicing tape 9 and the substrate 6 in order to suppress the intrusion of cutting water during dicing, cutting during dicing is performed. Water or cutting waste can be prevented from entering the through hole 8. Therefore, the diaphragm structure in the semiconductor device can be protected.
  • the third embodiment it is possible to realize a semiconductor device and a method for manufacturing the semiconductor device that can suppress the intrusion of cutting water and cutting waste during the process of singulation and improve the reliability.
  • the cap 1 has been described as an example to cover the semiconductor element 2 and the semiconductor element 4 fixed to the substrate of the semiconductor device.
  • the present invention is not limited to this.
  • a rib and a plate cap may be used instead of the cap 1, a rib and a plate cap may be used.
  • the fourth embodiment an example in which a rib and a plate cap are used will be described.
  • FIGS. 21 and 22 are cross-sectional views of the semiconductor device according to the fourth embodiment of the present invention. Elements similar to those in FIGS. 1 and 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • rib 451 and a plate cap 453 are fixed to the substrate 6 by an adhesive 5 instead of the cap 1.
  • the rib 451 and the plate cap 453 cover the semiconductor element 2 and the semiconductor element 4 fixed to the substrate 6, and are fixed to the substrate 6 by the adhesive 5.
  • the rib 451 is disposed around the semiconductor element 2 and the semiconductor element 4 on the first main surface 16 of the substrate 6, and is fixed to the substrate 6 with the adhesive 5.
  • the plate cap 453 is a flat plate.
  • the plate cap 453 is installed on the rib 451 and fixed to the rib 451 by the adhesive 5 so as to cover the semiconductor element 2 and the semiconductor element 4 fixed to the substrate 6.
  • the adhesive 5 is cured by heat (thermosetting) after the rib 451 and the plate cap 453 are installed. Thereby, the adhesive 5 fixes the substrate 6, the rib 451, the rib 451, and the plate cap 453.
  • the substrate 6 is provided with, for example, a through hole 8 serving as a sound hole, and the electrode 7 is formed on a surface opposite to the main surface.
  • the through hole 8 is provided in the substrate 6 as a sound hole, for example.
  • the through hole 8 provided in the substrate 6 is provided with an intrusion prevention shape that does not inhibit air vibration such as sound but can inhibit the ingress of cutting water during dicing.
  • the semiconductor device 400 is configured as described above.
  • the fourth embodiment it is possible to realize a semiconductor device and a method for manufacturing the semiconductor device that can suppress the intrusion of cutting water and cutting waste during the process of singulation and improve the reliability.
  • the intrusion prevention shape is provided in the through hole.
  • the air vibration such as sound is not suppressed, but the intrusion of cutting water during dicing is suppressed, the intrusion is suppressed in the through hole.
  • the present invention is not limited to the case where the shape is provided, and can be applied to any of the cases described in the first to fourth embodiments.
  • the present invention is not limited to the case where the substrate 6 is provided with the through-hole 8 serving as a sound hole, for example.
  • a through hole 81 serving as a sound hole may be provided in the plate cap 453.
  • a MEMS microphone semiconductor device formed using a MEMS (Micro Electro Mechanical Systems) technology is exemplified, but the present invention is not limited thereto. Sound pressure sensors and pressure sensors having a fragile diaphragm structure are also included within the scope of the present invention.
  • the present invention can be used for a converter module and a manufacturing method thereof, and is particularly vulnerable to a MEMS microphone semiconductor device, a sound pressure sensor, a pressure sensor, and the like formed using a MEMS (Micro Electro Mechanical Systems) technology such as a sensor device having a vibrating electrode. It can utilize for the conversion body module which has an easy diaphragm structure, and its manufacturing method.
  • MEMS Micro Electro Mechanical Systems

Abstract

個片化を行う加工の際の切削水や切断屑の浸入を抑制でき、信頼性が向上する変換体モジュールは、基板(6)と、基板(6)の第1主面に実装される1つ以上半導体素子(4)と、その基板(6)の第1主面に固定され、1つ以上の半導体素子(4)をカバーするキャップ(1)と、基板(6)またはキャップ(1)に形成された貫通孔(8)と、基板の第1主面と反対の面である第2主面に形成される複数の電極(7)とを備え、貫通孔(8)は、外部からの浸水をする形状が施されている。

Description

変換体モジュール及びその製造方法
 本発明は、変換体モジュール及びその製造方法に関し、特に、MEMS(Micro Electro Mechanical Systems)マイクロフォン半導体装置及びその製造方法に関する。
 変換体モジュールとして、例えば、音圧センサと、圧力センサと、振動電極を有するセンサーデバイスなどのMEMSマイクロフォン半導体装置となどがある。このような変換体モジュールでは、いずれも脆弱なダイヤフラム構造を有している。例えば、MEMSマイクロフォン半導体装置では、MEMS半導体素子とCMOS(Complementary Metal Oxide Semiconductor)半導体素子とが基板に実装されており、ケースでカバーされているのが一般的な構造である。この半導体装置では、音波が、外部から基板またはケースに形成された貫通孔を通ってその内部に入り、MEMS半導体素子のダイヤフラム構造により、電気信号に変換され出力される。
 また、この半導体装置は、複数個同時に形成した後に、個々に分割され個片化されることにより製造される。ここでの分割は、ダイシング法または金型で切断する加工方法で行われる。
 ダイシング法では、一般的に、ダイヤモンドやCBN(Cubic Boron Nitride:立方晶窒化ホウ素)の粒子が固着された環状のダイシングソーを高速回転させて破砕する加工が行われる。ダイシング法では、破砕屑を除去し摩擦熱を抑えるための切削水を流しながら上記の加工が行われる。しかし、MEMS半導体素子が有するダイヤフラム構造や梁構造は脆弱な構造であるため、切削水が音孔から浸入してしまうと浸入した切削水や切断屑によって破壊されることがある。特に、実装の高密度化が進む中、電子部品の小型化が進んでおり、ダイシング法による分割(個片化)の際における切削水または切断屑の音孔への浸入はますます問題となってきている。
 一方、金型で切断する加工方法では、切断屑が飛び散ってしまい、その飛び散った切断屑が、音孔付近または音孔内に飛び散り(浸入し)、ダイヤフラム構造の振動に悪影響を与え、音質に影響を及ぼすことがある。
 このような切削水または切断屑の音孔への浸入を抑制する方法がいくつか提案されている(例えば、下記特許文献1及び特許文献2参照。)。
 特許文献1にはシリコン基板上に形成したエレクトレットシリコン酸化膜を、絶縁膜と金属膜とにて挟み込み、シリコン酸化膜を露出させない構造が開示されている。このとき、金属膜をスパッタで形成する直前に、スパッタ装置の真空チャンバー内でプラズマを用いてシリコン酸化膜のエレクトレット化を行う。このような構造により、MEMS半導体素子であるMEMSマイクロフォンチップへの吸湿を抑制している。
 特許文献2には、金属ケースまたは基板側に音響ホールが形成されており、金属ケースと、金属ケースと接合するための接続パターンが形成された基板と、基板に実装されたMEMSマイクロフォンチップと特殊目的型半導体(ASIC:Application Specific Integrated Circuit)チップと、金属ケースと基板とを接合する接着剤とで形成されるシリコンコンデンサーマイクロフォンが開示されている。このように、MEMS半導体素子であるMEMSマイクロフォンチップを金属ケースで覆うことにより、切削水または切断屑の音孔への浸入を抑制する。
特開2005-183437号公報 特開2007-82233号公報
 しかしながら、特許文献1に開示されている構造では、湿度などの特性に影響を及ぼす対策が半導体素子での対策に言及しているのみであり、切削水または切断屑の浸入を抑制するには不十分である。
 また、特許文献2に開示されている構造では、ダイシング法により複数の半導体装置を分割(個片化)する際、ダイシングの破砕屑を除去し摩擦熱を抑えるための切削水が音孔に浸入してしまい、MEMSマイクロフォン半導体素子のダイヤフラム構造や梁構造は破壊されてしまうことがある。
 同様に、金型で切断する加工方法では、そこで発生する切断屑が音孔に浸入してしまい、ダイヤフラム構造の振動に悪影響を与え、音質に影響を及ぼしてしまうことがある。
 そこで、本発明は、上記問題を解決するものであり、個片化を行う加工の際の切削水や切断屑の浸入を抑制でき、信頼性が向上する変換体モジュール及びその製造方法を提供することを目的とする。
 上記課題を解決するために、本発明に係る変換体モジュールは、基板と、前記基板の第1主面に実装される1つ以上の半導体素子と、前記基板の前記第1主面に固定され、前記1つ以上の半導体素子をカバーするケースと、前記基板または前記ケースに形成され、貫通孔と、前記基板の前記第1主面と反対の面である第2主面に形成される複数の接続電極とを備え、前記貫通孔は、外部からの浸入水を抑止する形状が施されている。
 この構成により、個片化を行う加工の際の切削水や切断屑の浸入を抑制でき、信頼性が向上する変換体モジュールを実現することができる。
 ここで、前記貫通孔には、前記貫通孔の径が前記基板または前記ケースの厚みの中央に向けて漸次狭くなる1つ以上のくびれ形状が施されていてもよく、前記貫通孔には、前記貫通孔の径が前記基板における前記第1主面または前記第2主面に向けて漸次狭くなるテーパー形状が施されていてもよい。また、前記貫通孔には、断面が階段状となる形状が施されていてもよく、前記貫通孔には、屈曲部を2以上有する形状が施されていてもよい。また、前記貫通孔には、前記基板における前記第1主面の垂直方向から所定の角度傾斜した斜め構造を有する形状が施されてもよい。
 このように、変換体モジュールは、その基板またはケースに設けられた貫通孔に対して例えば1つ以上のくびれ形状、テーパー形状、階段形状、屈曲部を2以上有する形状または斜め形状などの浸入抑止形状が施される。それにより変換体モジュールを個片化する際の切削水または切削屑の浸入経路が上記浸入抑止形状を持たない場合の切削水または切削屑の浸入経路よりも貫通孔壁面距離が長くなるので、切削水や切削屑が貫通孔内に浸入することを抑止することができる。
 また、前記貫通孔には、さらに、直径1~100μmのポーラス孔を有するポーラス膜が設けられていてもよく、前記ポーラス膜は、アルミナセラミック、ステンレス、ポーラスシリコン、有機高分子多孔体、樹脂ポーラスのいずれかからなってもよい。
 この構成により、基板またはキャップに設置される貫通孔に、空気など伝播物質は透過させ、変換体モジュールを個片化する際の切削水または切断屑の浸入を防ぐようなポーラス状の保護膜が設けられることにより、ダイヤフラム構造が保護される。それにより信頼性の高い変換体モジュールを実現することができる。
 また、上記課題を解決するために、本発明に係る変換体モジュールは、基板と、前記基板の第1主面に実装される1つ以上の半導体素子と、前記基板の主面に固定され、前記1つ以上の半導体素子をカバーするケースと、前記基板に形成され、貫通孔と、前記基板の前記第1主面と反対の面である第2主面に形成される複数の接続電極と、前記基板の前記第2主面における前記貫通孔及び前記接側電極以外の領域に塗布されるレジスト膜とを備え、前記レジスト膜は、前記接続電極の高さより0~50μm低く塗布されている。また、前記レジスト膜は、前記基板の前記第2主面における前記貫通孔の周りに形成されてもよい。
 このように、実装面の複数の接続電極と実装面側の基板表面との段差が0~50μm以内になるようにレジストを基板表面に設けたり、貫通孔の回りのみにレジストを設けたりすることにより、ダイシングテープと変換体モジュールとの密着性向上を可能にする。それにより、分割際の切削水や切断屑が貫通孔内に浸入することを抑制することができるので、信頼性の高い変換体モジュールを実現することができる。
 また、前記レジスト膜は、さらに、前記基板の接する面と反対側の面に凹凸となる凹凸構造が設けられてもよい。
 このように、レジストに凹凸構造を設けることにより、ダイシング時の切削水または切断屑における貫通孔に対する浸入経路が長くなるので、切削水や切断屑が貫通孔内に浸入することを抑止することができる。したがって、高品質の変換体モジュールを実現することができる。
 本発明によれば、個片化を行う加工の際の切削水や切断屑の浸入を抑制でき、信頼性が向上する変換体モジュール及びその製造方法を実現することができる。
図1は、本発明の実施の形態1における半導体装置の断面図である。 図2Aは、本発明の実施の形態1における半導体装置の製造方法を説明するための図である。 図2Bは、本発明の実施の形態1における半導体装置の製造方法を説明するための図である。 図2Cは、本発明の実施の形態1における半導体装置の製造方法を説明するための図である。 図2Dは、本発明の実施の形態1における半導体装置の製造方法を説明するための図である。 図2Eは、本発明の実施の形態1における半導体装置の製造方法を説明するための図である。 図2Fは、本発明の実施の形態1における半導体装置の製造方法を説明するための図である。 図2Gは、本発明の実施の形態1における半導体装置の製造方法を説明するための図である。 図2Hは、本発明の実施の形態1における半導体装置の製造方法を説明するための図である。 図3は、本発明の実施の形態1における別の態様の半導体装置の断面図である。 図4Aは、本発明の実施の形態1における別の態様の半導体装置の製造方法を説明するための図である。 図4Bは、本発明の実施の形態1における別の態様の半導体装置の製造方法を説明するための図である。 図4Cは、本発明の実施の形態1における別の態様の半導体装置の製造方法を説明するための図である。 図4Dは、本発明の実施の形態1における別の態様の半導体装置の製造方法を説明するための図である。 図4Eは、本発明の実施の形態1における別の態様の半導体装置の製造方法を説明するための図である。 図4Fは、本発明の実施の形態1における別の態様の半導体装置の製造方法を説明するための図である。 図4Gは、本発明の実施の形態1における別の態様の半導体装置の製造方法を説明するための図である。 図4Hは、本発明の実施の形態1における別の態様の半導体装置の製造方法を説明するための図である。 図5は、本発明の実施の形態1における変形例1の半導体装置の断面図である。 図6は、本発明の実施の形態1における変形例1の別の態様の半導体装置の断面図である。 図7は、本発明の実施の形態1における変形例2の半導体装置の断面図である。 図8は、本発明の実施の形態1における変形例2の別の態様の半導体装置の断面図である。 図9は、本発明の実施の形態1における変形例3の半導体装置の断面図である。 図10は、本発明の実施の形態1における変形例3の別の態様の半導体装置の断面図である。 図11は、本発明の実施の形態1における変形例4の半導体装置の断面図である。 図12は、本発明の実施の形態1における変形例4の別の態様の半導体装置の断面図である。 図13は、本発明の実施の形態1における変形例5の半導体装置の断面図である。 図14は、本発明の実施の形態1における変形例5の別の態様の半導体装置の断面図である。 図15は、本発明の実施の形態2における半導体装置の断面図である。 図16は、本発明の実施の形態2における別の態様の半導体装置の断面図である。 図17は、本発明の実施の形態3における半導体装置の断面図である。 図18は、本発明の実施の形態3における半導体装置の断面図である。 図19は、本発明の実施の形態3における変形例1の半導体装置の断面図である。 図20は、本発明の実施の形態3における変形例1の半導体装置の断面図である。 図21は、本発明の実施の形態4における半導体装置の断面図である。 図22は、本発明の実施の形態4における半導体装置の断面図である。
 以下、本発明の実施の形態について図面を参照しながら説明する。なお、本発明の実施の形態についての図面では、稜線は未記載である。また、変換体モジュールとして半導体装置を例に挙げて説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1における半導体装置の断面図である。図1に示すように、半導体装置100は、典型的にはMEMSマイクロフォン半導体装置であり、キャップ1と、半導体素子2と、半導体素子4と、接着剤5と、基板6と、電極7とを備える。図1では、個片化される前の半導体装置100がダイシングテープ9により固定されている様子を示している。
 キャップ1は、基板6に固定されている半導体素子2と半導体素子4とをカバーするものであり、接着剤5により基板6に固定されている。キャップ1の材質は、耐熱性のよいものであればよい。例えばCu、AlまたはMgの金属からなっていてもよいし、これらの合金であってもよい。また、例えばプラスチックまたはセラミックの非金属からなってもよい。このように、キャップ1の材質は、特に限定されていないが、非金属のものであれば、表面にはSnやNiめっきされていることが望ましい。
 半導体素子2は、例えば振動電極を有するセンサーデバイスなどダイヤフラム構造3または梁構造を有するMEMSマイクロフォン半導体素子であり、基板6に固定されている。また、半導体素子2は、ワイヤー部10により基板6または半導体素子4と電気的に接続している。
 半導体素子4は、例えばCMOS半導体素子であり、基板6に固定されており、ワイヤー部10により基板6または半導体素子2と電気的に接続している。半導体素子4は、例えばアナログIC、ロジックIC、メモリIC等が用いられるCMOS半導体素子であるが、それらに特に限定されるものではない。
 接着剤5は、キャップ1と基板6を接合する接着剤であり、例えば導電性エポキシ、非導電性エポキシ、シルバーペースト、シリコン、ウレタン、アクリル及びはんだペーストのうちのいずれかからなる。
 基板6は、ガラス布積層エポキシ基板(ガラエポ基板)、ガラス布積層ポリイミド基板、またはアラミド不織布基板などで構成されている。基板6では、その第1主面16に半導体素子2と半導体素子4とが固定されており、固定されている半導体素子2と半導体素子4とをカバーするようにキャップ1が接着剤5により接合されている。基板6は、上述したように、固定されている半導体素子2と半導体素子4とワイヤー部10により電気的に接続されている。
 また、基板6には、貫通孔8が設けられており、電極7が主面とは反対の面に形成されている。ここで、貫通孔8は、典型的には音孔として用いられる。
 電極7は、例えばCuからなる電極であり、マザー基板への電気的接続を図るための電極である。電極7は、第1主面16(半導体素子2と半導体素子4とが固定されている面)とは反対の面(第2主面17)に形成されている。また、電極7の表面処理は水溶性耐熱プリフラックスやAu/Niめっきが望ましい。
 貫通孔8は、例えば音孔として基板6に設けられている。そして、基板6に設けられた貫通孔8には、音のような空気の振動は抑止しないがダイシング時の切削水の浸入は抑止し得る浸入抑止形状が設けられている。
 貫通孔8は、図1に示すように、例えば1つ以上のくびれ部を有する浸入抑止形状が施されている。具体的には、貫通孔8は、ダイヤフラム構造3の直径をA、基板6の第1主面16側の貫通孔8の径をa、貫通孔8内の直径をb、基板6の第2主面17側の貫通孔8の径をcとすると、a及びcと比較してbが最小すなわち貫通孔8の径が中央付近に向けて漸次狭くなるくびれ部を有する浸入抑止形状が設けられている。貫通孔8にくびれ部を有する浸入抑止形状を設けることにより、くびれ部を設けない場合よりも貫通孔8の壁面距離が増大する。それにより、ダイシング時の切削水の浸入経路が長くなり、切削水が貫通孔8内に浸入することを抑止することができる。
 なお、第1主面16側の貫通孔直径aと第2主面17側の貫通孔直径cとダイヤフラム構造3の直径Aとは、同じすなわちA=a=cであってもよい。しかし、それに限らずA=c>a、A=a>cまたはA>a=cであってもよい。その場合、ダイヤフラム構造3への切削屑の浸入抑止に対してより効果的である。
 ダイシングテープ9は、半導体装置100を同時に複数形成した後に、個々に分割(個片化)することで製造される場合に使用されるダイシングテープである。ダイシングテープ9には、例えば感圧テープもしくはUVテープが用いられるが、特に限定されるものではない。また、ダイシングテープ9において、その糊材厚みは1~50μm、その基材厚みは50~200μmであるのが望ましい。
 ワイヤー部10は、半導体素子2及び半導体素子4、半導体素子2及び基板6、並びに、半導体素子4及び基板6を電気的に接続するものである。
 以上のようにして、半導体装置100は構成される。
 次に、貫通孔8を有している基板6を備える半導体装置100の製造方法について説明する。
 図2A~図2Hは、実施の形態1における半導体装置の製造方法を説明するための図である。
 まず、貫通孔8を有する基板6の第2主面17に電極7を設け(図2A)、基板6の第1主面18にダイヤフラム構造3を有する半導体素子2と半導体素子4とを搭載する(図2B)。次に、基板6と電気的に接続するためのワイヤー部10を半導体素子2及び半導体素子4、半導体素子2及び基板6、並びに、半導体素子4及び基板6に形成する(図2C)。ワイヤー部10を形成した後、接着剤5を用い(図2D)、キャップ1を基板6に接合する(図2E)。次に、複数の半導体装置100を固定するためダイシングテープ9で基板6を固定し(図2F)、ダイシングブレード14で複数の半導体装置100を個片化する(図2G)。そしてダイシングテープ9を剥離する(図2H)。このようにして、半導体装置100を製造する。
 なお、図示していないが、貫通孔8には、個片化する際までに、ダイシング時の切削水の浸入を抑止する浸入抑止形状が施されている。
 また、上記では、貫通孔8が基板6に設けられる場合について説明したがそれに限らない。例えば音孔となる貫通孔81がキャップ1に設けられている場合も同様である。以下、それについて説明する。
 図3は、本発明の実施の形態1における別の態様の半導体装置の断面図である。なお、図1と同様の要素には同一の符号を付しており、詳細な説明は省略する。
 図3に示す半導体装置101は、図1に示す半導体装置100と、例えば音孔となる貫通孔81が基板6でなくキャップ1に設けられている点で構成が異なる。また、図3では、個片化される前の半導体装置101のキャップ1がダイシングテープ9により固定されている様子を示している。
 貫通孔81は、キャップ1に設けられている。そして、キャップ1に設けられた貫通孔8には、音のような空気の振動は抑止しないがダイシング時の切削水の浸入は抑止する浸入抑止形状が設けられている。
 貫通孔81は、図3に示すように、例えば1つ以上のくびれ部を有する浸入抑止形状が施されている。具体的には、キャップ1に設けられた貫通孔81は、キャップ1の第1主面18側の貫通孔径をd、キャップ1の第2主面19側の貫通孔径をeとすると、d及びeと比較してbが最小すなわち貫通孔81の径がキャップ1の中央付近に向けて漸次狭くなるくびれ部を有する浸入抑止形状が設けられている。貫通孔81にくびれ部を有する浸入抑止形状を設けることにより、くびれ部を設けない場合よりも貫通孔81の壁面距離が増大する。それにより、ダイシング時の切削水の浸入経路が長くなり、切削水が貫通孔内に浸入することを抑止することができる。
 なお、キャップ1の第1主面18側の貫通孔直径dとキャップ1の第2主面19側の貫通孔直径eとダイヤフラム構造3の直径Aとは、同じすなわちA=d=eであってもよい。しかし、それに限らず、A=d>e、A=e>dまたはA>d=eであってもよい。その場合、ダイヤフラム構造3への切削屑の浸入抑止に対してより効果的である。
 以上のようにして、半導体装置101は構成される。
 次に、貫通孔81を有しているキャップ1を備える半導体装置101の製造方法について説明する。
 図4A~図4Hは、実施の形態1の別の態様における半導体装置の製造方法を説明するための図である。
 まず、基板6の第2主面17に電極7を設け(図4A)、基板6の第1主面18にダイヤフラム構造3を有する半導体素子2と半導体素子4とを搭載する(図4B)。次に、基板6と電気的に接続するためのワイヤー部10を半導体素子2及び半導体素子4、半導体素子2及び基板6、並びに、半導体素子4及び基板6に形成する(図4C)。ワイヤー部10を形成した後、接着剤5を用い(図4D)、貫通孔81を有するキャップ1を基板6に接合する(図4E)。次に、複数の半導体装置101を固定するためダイシングテープ9でキャップ1側を固定し(図4F)、ダイシングブレード14で複数の半導体装置101を個片化する(図4G)。そしてダイシングテープ9を剥離する(図4H)。このようにして、半導体装置101を製造する。
 なお、図示していないが、貫通孔81には、個片化する際までに、ダイシング時の切削水の浸入を抑止する浸入抑止形状が施される。
 以上、実施の形態1によれば、個片化を行う加工の際の切削水や切断屑の浸入を抑制でき、信頼性が向上する半導体装置及びその製造方法を実現することができる。具体的には、半導体装置100の基板6またはキャップ1に設けられた例えば音孔となる貫通孔8または貫通孔81に、くびれ部をする浸入抑止形状を施す。それにより浸入抑止形状が施されない場合に比べ貫通孔壁面距離すなわち切削水や切断屑の浸入経路が長くなり、ダイシング時の切削水または切断屑が貫通孔8内に浸入するのを抑止することができるので、半導体装置100におけるダイヤフラム構造3を守ることができる。
 なお、実施の形態1では、例えば音孔として形成されている貫通孔に浸入抑止形状としてくびれ部が設けられている例を説明したが、それに限定されない。以下、変形例1~5として、浸入抑止形状の他の例について説明する。
 (変形例1)
 図5は、本発明の実施の形態1における変形例1の半導体装置の断面図である。なお、図1と同様の要素には同一の符号を付しており、詳細な説明は省略する。
 図5に示す半導体装置102は、図1に示す半導体装置100と、基板6に設けられた貫通孔82に施された浸入抑止形状が異なる。
 貫通孔82は、例えば音孔として基板6に設けられており、貫通孔82の径が基板6の第2主面17に向けて漸次狭くなるテーパー形状を有している浸入抑止形状が施されている。貫通孔82に、図5のようにテーパー形状を有する浸入抑止形状が施されることにより、テーパー形状を設けない場合よりも貫通孔82の壁面距離が増大する。それにより、ダイシング時の切削水の浸入経路が長くなり、切削水が貫通孔82内に浸入することを抑止することができる。
 なお、貫通孔82には、第1主面16側の貫通孔直径aとダイヤフラム構造3の直径AとがA>aであるテーパー形状を有している浸入抑止形状が施されるのが好ましい。それは、ダイヤフラム構造3への切削屑の浸入に対してより効果的であるからである。
 また、上記の浸入抑止形状が施される貫通孔82は基板6に設けられる場合に限られない。貫通孔83としてキャップ1に設けられていてもよい。
 図6は、本発明の実施の形態1における変形例1の別の態様の半導体装置の断面図である。なお、図5と同様の要素には同一の符号を付しており、詳細な説明は省略する。
 図5に示す半導体装置102は、図1に示す半導体装置102と、例えば音孔となる貫通孔83が基板6でなくキャップ1に設けられている点で構成が異なる。
 貫通孔83は、キャップ1に設けられており、貫通孔83の径がキャップ1の第1主面18に向けて漸次狭くなるテーパー形状を有している浸入抑止形状が施されている。貫通孔83に、図6の半導体装置103ようにテーパー形状を有する浸入抑止形状が施されることにより、テーパー形状を設けない場合よりも貫通孔83の壁面距離が増大する。それにより、ダイシング時の切削水の浸入経路が長くなり、切削水が貫通孔83内に浸入することを抑止することができる。
 なお、貫通孔83には、キャップ1の第2主面19側の貫通孔直径eよりもダイヤフラム構造3の直径Aが大きいすなわちA>eであるテーパー形状を有している浸入抑止形状が施されるのが好ましい。それは、ダイヤフラム構造3への切削屑の浸入に対してより効果的であるからである。
 (変形例2)
 図7は、本発明の実施の形態1における変形例2の半導体装置の断面図である。なお、図5と同様の要素には同一の符号を付しており、詳細な説明は省略する。
 図7に示す半導体装置104は、図5に示す半導体装置102と、基板6に設けられた貫通孔84に施された浸入抑止形状が異なる。
 貫通孔84は、例えば音孔として基板6に設けられており、貫通孔84の径が基板6の第1主面16に向けて漸次狭くなるテーパー形状を有している浸入抑止形状が施されている。図7のように貫通孔84にテーパー形状を有する浸入抑止形状が施されることにより、テーパー形状を設けない場合よりも貫通孔84の壁面距離が増大する。それにより、ダイシング時の切削水の浸入経路が長くなり、切削水が貫通孔84内に浸入することを抑止することができる。
 なお、貫通孔84には、第2主面17側の貫通孔直径cとダイヤフラム構造3の直径AとがA>cであるテーパー形状を有している浸入抑止形状が施されるのが好ましい。それは、ダイヤフラム構造3への切削屑の浸入に対してより効果的であるからである。
 また、上記の浸入抑止形状が施される貫通孔84は基板6に設けられる場合に限られない。貫通孔85としてキャップ1に設けられていてもよい。
 図8は、本発明の実施の形態1における変形例2の別の態様の半導体装置の断面図である。なお、図7と同様の要素には同一の符号を付しており、詳細な説明は省略する。
 図8に示す半導体装置105は、図7に示す半導体装置104と、例えば音孔となる貫通孔85が基板6でなくキャップ1に設けられている点で構成が異なる。
 貫通孔85は、例えば音孔としてキャップ1に設けられており、貫通孔85の径がキャップ1の第2主面19に向けて漸次狭くなるテーパー形状を有している浸入抑止形状が施されている。貫通孔83に、図8のようにテーパー形状を有する浸入抑止形状が施されることにより、テーパー形状を設けない場合よりも貫通孔85の壁面距離が増大する。それにより、ダイシング時の切削水の浸入経路が長くなり、切削水が貫通孔85内に浸入することを抑止することができる。
 なお、貫通孔85には、キャップ1の第1主面18側の貫通孔直径dよりもダイヤフラム構造3の直径Aが大きいすなわちA>dであるテーパー形状を有している浸入抑止形状が施されるのが好ましい。それは、ダイヤフラム構造3への切削屑の浸入に対してより効果的であるからである。
 (変形例3)
 図9は、本発明の実施の形態1における変形例3の半導体装置の断面図である。なお、図1と同様の要素には同一の符号を付しており、詳細な説明は省略する。
 図9に示す半導体装置106は、図1に示す半導体装置100と、基板6に設けられた貫通孔86に施された浸入抑止形状が異なる。
 貫通孔86は、例えば音孔として基板6に設けられており、基板6の第1主面16と垂直方向から一定の角度傾斜した斜め形状を有している浸入抑止形状が施されている。図9のように貫通孔86に斜め形状を有する浸入抑止形状が施されることにより、斜め形状を有しない場合よりも貫通孔86の壁面距離が増大する。それにより、ダイシング時の切削水の浸入経路が長くなり、切削水が貫通孔86内に浸入することを抑止することができる。
 なお、貫通孔86には、第1主面16側の貫通孔直径aと第2主面17側の貫通孔直径cとダイヤフラム構造3の直径Aとは、A=a=cであってもよい。しかし、それに限らず、ダイヤフラム構造3の直径Aより第1主面16側の貫通孔直径aと第2主面17側の貫通孔直径cとが小さい、すなわち、A>a=cであってもよい。その場合、ダイヤフラム構造3への切削屑の浸入に対してより効果的である。
 また、上記の浸入抑止形状が施される貫通孔86は基板6に設けられる場合に限られない。貫通孔87としてキャップ1に設けられていてもよい。
 図10は、本発明の実施の形態1における変形例3の別の態様の半導体装置の断面図である。なお、図9と同様の要素には同一の符号を付しており、詳細な説明は省略する。
 図10に示す半導体装置107は、図9に示す半導体装置106と、例えば音孔となる貫通孔87が基板6でなくキャップ1に設けられている点で構成が異なる。
 貫通孔87は、例えば音孔としてキャップ1に設けられており、キャップ1の第1主面18と垂直方向から一定の角度傾斜した斜め形状を有している浸入抑止形状が施されている。貫通孔87に、図10のように斜め形状を有する浸入抑止形状が施されることにより、斜め形状を有しない場合よりも貫通孔87の壁面距離が増大する。それにより、ダイシング時の切削水の浸入経路が長くなり、切削水が貫通孔87内に浸入することを抑止することができる。
 なお、貫通孔87には、キャップ1の第1主面18側の貫通孔直径dとキャップ1の第2主面19の貫通孔直径eとダイヤフラム構造3の直径Aとは、A=d=eであってもよい。しかし、それに限らず、ダイヤフラム構造3の直径Aよりキャップ1の第1主面18側の貫通孔直径dとキャップ1の第2主面19側の貫通孔直径eとが小さい、すなわち、A>d=eであってもよい。その場合、ダイヤフラム構造3への切削屑の浸入に対してより効果的である。
 (変形例4)
 図11は、本発明の実施の形態1における変形例4の半導体装置の断面図である。なお、図1と同様の要素には同一の符号を付しており、詳細な説明は省略する。
 図11に示す半導体装置108は、図1に示す半導体装置100と、基板6に設けられた貫通孔88に施された浸入抑止形状が異なる。
 貫通孔88は、例えば音孔として基板6に設けられており、貫通孔88の両側面に階段形状を有している浸入抑止形状が施されている。貫通孔88に、図11のように階段形状を有する浸入抑止形状が施されることにより、階段形状を有しない場合よりも貫通孔88の壁面距離が増大する。それにより、ダイシング時の切削水の浸入経路が長くなり、切削水が貫通孔内に浸入することを抑止することができる。
 なお、貫通孔88において、第1主面16側の貫通孔直径aと第2主面17側の貫通孔直径cとダイヤフラム構造3の直径AとはA=a=cであってもよい。しかし、それに限らず、ダイヤフラム構造3の直径Aより第1主面16側の貫通孔直径aと第2主面17側の貫通孔直径cと、または、双方のいずれかを小さくすることにより、切削屑の浸入を抑止することも可能である。また、貫通孔88内の直径bが、a及びcと異なる径を有するようにしてもよい。その場合には、階段形状内にくびれ部やテーパー形状を設けることも可能であり、ダイヤフラム構造3への切削屑の浸入に対してより効果的である。
 なお、上記の浸入抑止形状が施される貫通孔88は基板6に設けられる場合に限られない。貫通孔89としてキャップ1に設けられていてもよい。
 図12は、本発明の実施の形態1における変形例4の別の態様の半導体装置の断面図である。なお、図11と同様の要素には同一の符号を付しており、詳細な説明は省略する。
 図12に示す半導体装置109は、図9に示す半導体装置108と、例えば音孔となる貫通孔89が基板6でなくキャップ1に設けられている点で構成が異なる。
 貫通孔89は、例えば音孔としてキャップ1に設けられており、貫通孔89の両側面に階段形状を有している浸入抑止形状が施されている。貫通孔89に、図12のように階段形状を有する浸入抑止形状が施されることにより、階段形状を有しない場合よりも貫通孔89の壁面距離が増大する。それにより、ダイシング時の切削水の浸入経路が長くなり、切削水が貫通孔89内に浸入することを抑止することができる。
 なお、貫通孔89において、キャップ1の第1主面18側の貫通孔直径dとキャップ1の第2主面19側の貫通孔直径eとダイヤフラム構造3の直径AとはA=d=eであってもよい。しかし、それに限らず、ダイヤフラム構造3の直径Aよりキャップ1の第1主面18側の貫通孔直径dとキャップ1の第2主面19側の貫通孔直径eと、または双方のいずれかを小さくすることにより、切削屑の浸入を抑止することも可能である。また、貫通孔89内の直径bが、d及びeと異なる径を有するようにしてもよい。その場合には、階段形状内にくびれ部やテーパー形状を設けることも可能であり、ダイヤフラム構造3への切削屑の浸入に対してより効果的である。
 (変形例5)
 図13は、本発明の実施の形態1における変形例5の半導体装置の断面図である。なお、図12と同様の要素には同一の符号を付しており、詳細な説明は省略する。
 図13に示す半導体装置109は、図12に示す半導体装置108と、基板6に設けられた貫通孔90に施された浸入抑止形状が異なる。
 貫通孔90は、例えば音孔として基板6に設けられており、例えば断面形状に2つU字形状をもつような屈曲部を2以上有する浸入抑止形状が施されている。貫通孔90に、図13のようにU字形状を有する浸入抑止形状が施されることにより、U字形状を有しない場合よりも貫通孔90の壁面距離が増大する。それにより、ダイシング時の切削水の浸入経路が長くなり、切削水が貫通孔90内に浸入することを抑止することができる。
 なお、貫通孔90において、第1主面16側の貫通孔直径aと第2主面17側の貫通孔直径cとダイヤフラム構造3の直径AとはA=a=cであってもよい。しかし、それに限らず、ダイヤフラム構造3の直径Aより第1主面16側の貫通孔直径aと第2主面17側の貫通孔直径cと、または双方のいずれか小さくすることにより、切削屑の浸入を抑止することも可能である。また、貫通孔90内の直径bが、a及びcと異なる径を有するようにしてもよい。その場合には、U字形状内にくびれ部やテーパー形状を設けることも可能であり、ダイヤフラム構造3への切削屑の浸入に対してより効果的である。
 なお、上記の浸入抑止形状が施される貫通孔90は基板6に設けられる場合に限られない。貫通孔91としてキャップ1に設けられていてもよい。
 図14は、本発明の実施の形態1における変形例5の別の態様の半導体装置の断面図である。なお、図13と同様の要素には同一の符号を付しており、詳細な説明は省略する。
 図14に示す半導体装置111は、図13に示す半導体装置110と、例えば音孔となる貫通孔91が基板6でなくキャップ1に設けられている点で構成が異なる。
 貫通孔91は、例えば音孔としてキャップ1に設けられており、貫通孔91の断面形状がU字形状となる浸入抑止形状が施されている。貫通孔91に、図14のようにU字形状を有する浸入抑止形状が施されることにより、U字形状を有しない場合よりも貫通孔91の壁面距離が増大する。それにより、ダイシング時の切削水の浸入経路が長くなり、切削水が貫通孔91内に浸入することを抑止することができる。
 なお、貫通孔91において、キャップ1の第1主面18側の貫通孔直径dとキャップ1の第2主面19側の貫通孔直径eとダイヤフラム構造3の直径AとはA=d=eであってもよい。しかし、それに限らず、ダイヤフラム構造3の直径Aよりキャップ1の第1主面18側の貫通孔直径dとキャップ1の第2主面19側の貫通孔直径eと、または双方のいずれかを小さくすることにより、切削屑の浸入を抑止することも可能である。また、貫通孔91内の直径bが、d及びeと異なる径を有するようにしてもよい。その場合には、U字形状内にくびれ部やテーパー形状を設けることも可能であり、ダイヤフラム構造3への切削屑の浸入に対してより効果的である。
 以上のように、典型的にはMEMSマイクロフォン半導体装置である半導体装置の基板またはキャップに設けられた例えば音孔となる貫通孔に浸入抑止形状が施されることにより、浸入抑止形状が施されない場合に比べ貫通孔壁面距離すなわち切削水や切断屑の浸入経路が長くなる。それにより、ダイシング時の切削水または切断屑が貫通孔8内に浸入(浸水)するのを抑止することができる。そのため、半導体装置におけるダイヤフラム構造を守ることができる。
 以上、実施の形態1によれば、個片化を行う加工の際の切削水や切断屑の浸入を抑制でき、信頼性が向上する半導体装置及びその製造方法を実現することができる。
 (実施の形態2)
 実施の形態1では、浸入抑止形状が貫通孔に設けられている場合の例を説明したが、それに限られない。音のような空気の振動は抑止しないがダイシング時の切削水の浸入を抑止できるものならよい。実施の形態2では、その例について説明する。
 図15は、本発明の実施の形態2における半導体装置の断面図である。なお、図1と同様の要素には同一の符号を付しており、詳細な説明は省略する。
 図15に示す半導体装置200は、図1に示す半導体装置100と、例えば音孔となる貫通孔8に浸入抑止形状でなくポーラス膜11が設けられている点で構成が異なる。
 貫通孔8は、図15に示すように、例えば音孔として基板6に設けられており、その貫通孔8の一部に、空気などの伝播物質は透過させるがダイシング時の切削水の浸入を防ぐようなポーラス膜11を有している。
 ポーラス膜11は、孔径が直径1~100μmの多数の細孔を有しており、その組成はアルミナセラミック、ステンレス、ポーラスシリコン、有機高分子多孔体または樹脂ポーラスからなる。
 図15のように、貫通孔8がポーラス膜11を有することにより、貫通孔8にダイシング時の切削水が浸入することを防ぐことができる。また、切削屑の浸入に対してもより効果的である。
 なお、上記のポーラス膜が施される貫通孔8は基板6に設けられる場合に限られない。キャップ1に設けられていてもよい。
 図16は、本発明の実施の形態2における別の態様の半導体装置の断面図である。なお、図15と同様の要素には同一の符号を付しており、詳細な説明は省略する。
 図16に示す半導体装置201は、図15に示す半導体装置200と、例えば音孔となる貫通孔208が基板6でなくキャップ1に設けられている点で構成が異なる。
 貫通孔208は、例えば音孔としてキャップ1に設けられており、キャップ1に設けられた貫通孔208の一部に空気などの伝播物質は透過させるがダイシング時の切削水の浸入を防ぐようなポーラス膜11を有している。
 図16のように貫通孔208がポーラス膜11を有することにより、貫通孔208にダイシング時の切削水が浸入することを防ぐことができる。さらに、切削屑の浸入を防ぐこともできる。
 以上のように、典型的にはMEMSマイクロフォン半導体装置である半導体装置の基板またはキャップに設けられた例えば音孔となる貫通孔にポーラス膜を設けることにより、ダイシング時の切削水または切断屑が貫通孔8内に浸入するのを防止することができる。そのため、半導体装置におけるダイヤフラム構造を守ることができる。
 以上、実施の形態2によれば、個片化を行う加工の際の切削水や切断屑の浸入を抑制でき、信頼性が向上する半導体装置及びその製造方法を実現することができる。
 (実施の形態3)
 実施の形態3では、半導体装置の基板またはキャップに設けられた例えば音孔となる貫通孔に個片化を行う加工の際の切削水や切断屑の浸入を抑制する別の態様について説明する。
 図17及び図18は、本発明の実施の形態3における半導体装置の断面図である。なお、図1と同様の要素には同一の符号を付しており、詳細な説明は省略する。
 図17に示す半導体装置300は、図1に示す半導体装置100と、ダイシング時の切削水の浸入を抑制するための構造を例えば音孔となる貫通孔8に設けるのではなくダイシングテープ9と基板6との間に設けられている点で構成が異なる。
 レジスト膜312は、ダイシング時の切削水の浸入を抑制するために、ダイシングテープ9と基板6との間に設けられているものである。レジスト膜312は、基板6の第1主面16の垂直方向における電極7の厚さ(高さ)よりもt(例えば0~50μm)薄く(低く)形成されている。言い換えると、レジスト膜312は、電極7がレジスト膜312より0~50μmの凸量tを有するようダイシングテープ9と基板6との間に設けられている。
 図17のように、電極7がレジスト膜312より0~50μmの凸量tを有するようにレジスト膜312を基板6の第2主面17に設けられることにより、ダイシングテープ9の糊材が電極7におけるレジスト膜312からの凸量tを緩衝することができる。つまり、電極7とレジスト膜312との段差(凸量t)をダイシングテープ9の糊材(粘着材)の厚みで吸収することができる。したがって、半導体装置300は、レジスト膜312と電極7とを介して基板6とダイシングテープ9との密着面積を増大させることにより、貫通孔8を密閉することができるので、ダイシング時の切削水及び切削屑の浸入を防ぐことができる。
 なお、電極7とレジスト膜312との段差(凸量t)をダイシングテープ9の糊材の厚みで吸収するためには、ダイシングテープ9の糊材の厚みとレジスト膜312と、電極7の高さとの関係が重要である。そのため、ダイシングテープ9の糊材の厚みをT、電極7の厚み(高さ)をT、レジスト膜312の厚み(高さ)をT312とすると、「T-T312≦T」の関係を満たすようにレジスト膜312と、電極7とを形成するのが好ましい。ここで、T-T312=凸量tである。
 また、レジスト膜312は、図18に示すように、基板6と反対側の面に1~49μmの程度の凹凸313を有していてもよい。その場合、貫通孔8への切削水浸入経路がさらに増大することになるので、ダイシング時の切削水及び切削屑が貫通孔8へ浸入することを防ぐことができる。
 また、このレジスト膜312はダイシングテープ9から剥す工程で、半導体装置300が有するようにしても良いし、ダイシングテープ9に残るようにしても良い。
 (変形例1)
 図19及び図20は、本発明の実施の形態3における変形例1の半導体装置の断面図である。なお、図17と同様の要素には同一の符号を付しており、詳細な説明は省略する。
 図19に示す半導体装置302は、図17に示す半導体装置300と、ダイシング時の切削水の浸入を抑制するために設けられるレジスト膜314の構成が異なる。すなわち、レジスト膜314は、基板6の第2主面側全体にではなく特に貫通孔8の回りのみに形成されている点が異なる。
 レジスト膜314は、電極7がレジスト膜314より0~50μmの凸量tを有するよう貫通孔8の回りに設けられている。図中、レジスト膜314は、基板6の第2主面17における貫通孔8の回りに、ダイシングテープ9と基板6との間でかつ、基板6の第2主面17における電極7の間を連続的につないだパターンを有するように形成されている。
 図18のように、電極7がレジスト膜314より0~50μmの凸量tを有するようなレジスト膜312を上記のように特に貫通孔8回りのみに設けられることにより、ダイシングテープ9の糊材が電極7の凸量tを緩衝することができる。つまり、電極7とレジスト膜314との段差(凸量t)をダイシングテープ9の糊材の厚みで吸収することができる。したがって、半導体装置300は、レジスト膜314と電極7とを介して貫通孔8回りにおける基板6とダイシングテープ9との密着面積を増大させることにより、貫通孔8を密閉することができる。それにより、ダイシング時の切削水及び切削屑の浸入を防ぐことができる。
 なお、上記同様、電極7とレジスト膜314との段差(凸量t)をダイシングテープ9の糊材の厚みで吸収するためには、ダイシングテープ9の糊材の厚みとレジスト膜312と、電極7の高さとの関係が重要である。そのため、ダイシングテープ9の糊材の厚みをT、電極7の厚み(高さ)をT、レジスト膜314の厚み(高さ)をT314とすると、「T-T314≦T」の関係を満たすようにレジスト膜312と、電極7とを形成するのが好ましい。ここで、T-T314=凸量tである。
 また、レジスト膜314は、図20に示すように、基板6と反対側の面に1~49μmの程度の凹凸313を有していてもよい。その場合、貫通孔8への切削水浸入経路がさらに増大することになるので、ダイシング時の切削水及び切削屑が貫通孔8へ浸入することを防ぐことができる。
 また、このレジスト膜314はダイシングテープ9から剥す工程で、半導体装置302に有するようにしても良いし、ダイシングテープ9に残るようにしても良い。
 以上のように、ダイシング時の切削水の浸入を抑制するために、ダイシングテープ9と基板6との間にレジスト膜を設けることによりダイシング時には貫通孔8が密封されているので、ダイシング時の切削水または切断屑が貫通孔8内に浸入するのを防止することができる。そのため、半導体装置におけるダイヤフラム構造を守ることができる。
 以上、実施の形態3によれば、個片化を行う加工の際の切削水や切断屑の浸入を抑制でき、信頼性が向上する半導体装置及びその製造方法を実現することができる。
 (実施の形態4)
 実施の形態1~3では、半導体装置の基板に固定されている半導体素子2と半導体素子4とをカバーするものとしてキャップ1を例に挙げて説明したが、それに限らない。例えばキャップ1の代わりにリブと板キャップとを用いてもよい。以下、実施の形態4として、リブと板キャップとを用いる場合の例を説明する。
 図21及び図22は、本発明の実施の形態4における半導体装置の断面図である。なお、図1及び図4と同様の要素には同一の符号を付しており、詳細な説明は省略する。
 図21に示す半導体装置400は、図1に示す半導体装置100に対してキャップ1の代わりに、リブ451と板キャップ453とが接着剤5により基板6に固定される点が異なる。
 リブ451と板キャップ453とは、基板6に固定されている半導体素子2と半導体素子4とをカバーするものであり、接着剤5により基板6に固定されている。
 リブ451は、基板6の第1主面16における半導体素子2及び半導体素子4の周囲に設置されており、接着剤5により基板6と固定されている。
 板キャップ453は、平面板である。板キャップ453は、基板6に固定されている半導体素子2と半導体素子4とを覆うよう、リブ451上に設置されて接着剤5によりリブ451と固定されている。
 なお、接着剤5は、リブ451と板キャップ453とが設置された後に熱により硬化(熱硬化)される。それにより、接着剤5は、基板6及びリブ451並びにリブ451及び板キャップ453を固定する。
 また、基板6には、例えば音孔となる貫通孔8が設けられており、電極7が主面とは反対の面に形成されている。
 貫通孔8は、例えば音孔として基板6に設けられている。そして、基板6に設けられた貫通孔8には、音のような空気の振動は抑止しないがダイシング時の切削水の浸入は抑止し得る浸入抑止形状が設けられている。
 以上のようにして、半導体装置400は構成される。
 以上、実施の形態4によれば、個片化を行う加工の際の切削水や切断屑の浸入を抑制でき、信頼性が向上する半導体装置及びその製造方法を実現することができる。
 なお、上記では、浸入抑止形状が貫通孔に設けられている例を説明したが、音のような空気の振動は抑止しないがダイシング時の切削水の浸入は抑止するものなら貫通孔に浸入抑止形状を設ける場合に限らない、実施の形態1~4で説明したいずれの場合も適用できるのはいうまでもない。
 また、例えば音孔となる貫通孔8が基板6に設けられる場合に限らない。図22に示すように例えば音孔となる貫通孔81が板キャップ453に設けられていてもよい。
 以上、本発明の変換体モジュール及びその製造方法について、半導体装置を例示として実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
 例えば、本発明の変換体モジュールの典型例として、MEMS(Micro Electro Mechanical Systems)技術を用いて形成するMEMSマイクロフォン半導体装置を例示として挙げたが、それに限られない。脆弱なダイヤフラムの構造を有する音圧センサや圧力センサも本発明の範囲内に含まれる。
 本発明は、変換体モジュール及びその製造方法に利用でき、特に振動電極を有するセンサーデバイスなどのMEMS(Micro Electro Mechanical Systems)技術を用いて形成するMEMSマイクロフォン半導体装置と音圧センサと圧力センサなど脆弱なダイヤフラム構造を有する変換体モジュール及びその製造方法に利用することができる。
  1 キャップ
  2 半導体素子
  3 ダイヤフラム構造
  4 半導体素子
  5 接着剤
  6 基板
  7 電極
  8、81、82、83、84、85、86、87、88、89、90、91、208 貫通孔
  9 ダイシングテープ
  10 ワイヤー部
  11 ポーラス膜
  14 ダイシングブレード
  16、18 第1主面
  17、19 第2主面
  100、101、102、103、104、105、106、107、108、109、110、111、200、201、300、302、400、401 半導体装置
  312、314 レジスト膜
  313 凹凸
  451 リブ
  453 板キャップ

Claims (15)

  1.  基板と、
     前記基板の第1主面に実装される1つ以上の半導体素子と、
     前記基板の前記第1主面に固定され、前記1つ以上の半導体素子をカバーするケースと、
     前記基板または前記ケースに形成され、貫通孔と、
     前記基板の前記第1主面と反対の面である第2主面に形成される複数の接続電極とを備え、
     前記貫通孔は、外部からの浸水を抑止する形状が施されている
     変換体モジュール。
  2.  前記貫通孔には、前記貫通孔の径が前記基板または前記ケースの厚みの中央に向けて漸次狭くなる1つ以上のくびれ形状が施されている
     請求項1に記載の変換体モジュール。
  3.  前記貫通孔には、前記貫通孔の径が前記基板における前記第1主面または前記第2主面に向けて漸次狭くなるテーパー形状が施されている
     請求項1に記載の変換体モジュール。
  4.  前記貫通孔には、断面が階段状となる形状が施されている
     請求項1に記載の変換体モジュール。
  5.  前記貫通孔には、屈曲部を2以上有する形状が施されている
     請求項1に記載の変換体モジュール。
  6.  前記貫通孔には、前記基板における前記第1主面の垂直方向から所定の角度傾斜した斜め構造を有する形状が施されている
     請求項1に記載の変換体モジュール。
  7.  前記貫通孔には、さらに、直径1~100μmのポーラス孔を有するポーラス膜が設けられている
     請求項1に記載の変換体モジュール。
  8.  前記ポーラス膜は、アルミナセラミック、ステンレス、ポーラスシリコン、有機高分子多孔体、樹脂ポーラスのいずれかからなる
     請求項7に記載の変換体モジュール。
  9.  基板と、
     前記基板の第1主面に実装される1つ以上の半導体素子と、
     前記基板の主面に固定され、前記1つ以上の半導体素子をカバーするケースと、
     前記基板に形成され、貫通孔と、
     前記基板の前記第1主面と反対の面である第2主面に形成される複数の接続電極と、
     前記基板の前記第2主面における前記貫通孔及び前記接側電極以外の領域に塗布されるレジスト膜とを備え、
     前記レジスト膜は、前記接続電極の高さより0~50μm低く塗布されている
     変換体モジュール。
  10.  前記接続電極の高さと前記レジスト膜の高さとの差は、前記半導体装置を製造する場合に使用されるダイシングテープの糊材の厚み以下である
     請求項9に記載の変換体モジュール。
  11.  前記レジスト膜は、前記基板の前記第2主面における前記貫通孔の周りに形成されている
     請求項9に記載の変換体モジュール。
  12.  前記レジスト膜は、さらに、前記基板の接する面と反対側の面に凹凸となる凹凸構造が設けられている
     請求項9に記載の変換体モジュール。
  13.  基板と、
     前記基板の第1主面に実装される1つ以上半導体素子と、
     前記基板の前記第1主面における前記半導体素子の周囲に固定されるリブと、
     平面板であり、前記半導体素子を覆うように前記リブに固定される板キャップと、
     前記基板または前記板キャップに形成され、貫通孔と、
     前記基板の前記第1主面と反対の面である第2主面に形成される複数の接続電極とを備え、
     前記貫通孔は、外部からの浸水を抑止する形状が施されている
     変換体モジュール。
  14.  前記貫通孔には、前記貫通孔の径が前記基板または前記板キャップの中央に向けて漸次狭くなる1つ以上のくびれ形状が施されている
     請求項13に記載の変換体モジュール。
  15.  変換体モジュールの製造方法であって、
     基板の第1主面に、1つ以上の半導体素子を実装する第1工程と、
     前記1つ以上の半導体素子をカバーするケースを、前記基板の前記第1主面に固定する第2工程と、
     前記基板または前記ケースに貫通孔を形成する第3工程と、
     前記基板における前記第1主面と反対の面である第2主面に複数の接続電極を形成する第4工程を含み、
     前記第3工程において、前記貫通孔に外部からの浸水を抑止する形状を施す
     製造方法。
     
PCT/JP2010/001633 2009-05-18 2010-03-09 変換体モジュール及びその製造方法 WO2010134244A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009120418A JP2010268412A (ja) 2009-05-18 2009-05-18 Memsマイクロフォン半導体装置及びその製造方法
JP2009-120418 2009-05-18

Publications (1)

Publication Number Publication Date
WO2010134244A1 true WO2010134244A1 (ja) 2010-11-25

Family

ID=43125938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001633 WO2010134244A1 (ja) 2009-05-18 2010-03-09 変換体モジュール及びその製造方法

Country Status (2)

Country Link
JP (1) JP2010268412A (ja)
WO (1) WO2010134244A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104760924A (zh) * 2015-04-20 2015-07-08 歌尔声学股份有限公司 一种mems麦克风芯片及其封装结构、制造方法
JP2020120282A (ja) * 2019-01-24 2020-08-06 パナソニックIpマネジメント株式会社 マイクロフォン

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5831122B2 (ja) 2010-10-18 2015-12-09 三菱化学株式会社 三次元集積回路用の層間充填材組成物、塗布液及び三次元集積回路の製造方法
US8644530B2 (en) 2011-09-29 2014-02-04 Nokia Corporation Dust protection of sound transducer
US9078063B2 (en) * 2012-08-10 2015-07-07 Knowles Electronics, Llc Microphone assembly with barrier to prevent contaminant infiltration
US20150117681A1 (en) * 2013-10-30 2015-04-30 Knowles Electronics, Llc Acoustic Assembly and Method of Manufacturing The Same
CN105731361A (zh) * 2014-12-10 2016-07-06 中芯国际集成电路制造(上海)有限公司 一种mems器件及其制备方法、电子装置
JP2020013835A (ja) * 2018-07-13 2020-01-23 Tdk株式会社 センサー用パッケージ基板及びこれを備えるセンサーモジュール並びに電子部品内臓基板
DE112019003716T5 (de) * 2018-07-23 2021-06-02 Knowles Electronics, Llc Mikrofonvorrichtung mit induktiver filterung
JP7110888B2 (ja) * 2018-10-03 2022-08-02 Tdk株式会社 センサー用パッケージ基板及びこれを備えるセンサーモジュール
US20230269543A1 (en) 2020-07-31 2023-08-24 Kyocera Corporation Package, microphone device, and electronic apparatus
KR102539840B1 (ko) * 2021-09-29 2023-06-07 재단법인 나노기반소프트일렉트로닉스연구단 부착형 마이크로폰 및 그의 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187607A (ja) * 2007-01-31 2008-08-14 Yamaha Corp 半導体装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187607A (ja) * 2007-01-31 2008-08-14 Yamaha Corp 半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104760924A (zh) * 2015-04-20 2015-07-08 歌尔声学股份有限公司 一种mems麦克风芯片及其封装结构、制造方法
JP2020120282A (ja) * 2019-01-24 2020-08-06 パナソニックIpマネジメント株式会社 マイクロフォン
JP7340769B2 (ja) 2019-01-24 2023-09-08 パナソニックIpマネジメント株式会社 マイクロフォン及び車載用マイクロフォン

Also Published As

Publication number Publication date
JP2010268412A (ja) 2010-11-25

Similar Documents

Publication Publication Date Title
WO2010134244A1 (ja) 変換体モジュール及びその製造方法
US11662236B2 (en) Sensor package with ingress protection
KR101561316B1 (ko) Mems 소자, mems 소자를 제조하는 방법 및 mems 소자를 처리하는 방법
US20090034760A1 (en) Electronic component, fabrication method for the same and electronic device having the same
US8553920B2 (en) Arrangement comprising a microphone
US20120057729A1 (en) Mems microphone package
US20120001275A1 (en) Semiconductor device
JP2009064839A (ja) 光学デバイス及びその製造方法
JP2009038732A5 (ja)
US20120018820A1 (en) Semiconductor device
JP2007174622A (ja) 音響センサ
CN102075849B (zh) 微机电系统麦克风封装系统
JP4366666B1 (ja) 半導体装置
JP2010056180A (ja) 回路モジュール
JP2010147955A (ja) 空洞部を有する回路基板およびその製造方法
JP2010141870A (ja) シリコンマイクロホンモジュール及びその製造方法
CN110902642A (zh) Mems封装件及制造其的方法
WO2011104784A1 (ja) 変換体モジュール及びその製造方法
JP2009267484A (ja) 弾性表面波デバイスとその製造方法
JP2007071821A (ja) 半導体装置
JP2009055198A (ja) マイクロホン装置
WO2020255745A1 (ja) センサー用パッケージ基板及びこれを備えるセンサーモジュール、並びに、センサー用パッケージ基板の製造方法
JP2009081624A (ja) 半導体センサ装置
KR20040075750A (ko) 컨덴서 마이크로폰
JP2007165949A (ja) 表面弾性波デバイス、表面弾性波デバイスの製造方法、表面弾性波デバイスを搭載した通信端末。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777484

Country of ref document: EP

Kind code of ref document: A1