WO2010133085A1 - 一种具有额外分流汇流功能的挤出机多级螺杆结构 - Google Patents

一种具有额外分流汇流功能的挤出机多级螺杆结构 Download PDF

Info

Publication number
WO2010133085A1
WO2010133085A1 PCT/CN2010/000644 CN2010000644W WO2010133085A1 WO 2010133085 A1 WO2010133085 A1 WO 2010133085A1 CN 2010000644 W CN2010000644 W CN 2010000644W WO 2010133085 A1 WO2010133085 A1 WO 2010133085A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
section
heating
mixing
mixing section
Prior art date
Application number
PCT/CN2010/000644
Other languages
English (en)
French (fr)
Inventor
刘�英
Original Assignee
上海亦晨信息科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海亦晨信息科技发展有限公司 filed Critical 上海亦晨信息科技发展有限公司
Publication of WO2010133085A1 publication Critical patent/WO2010133085A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/485Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws with three or more shafts provided with screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • B29B7/489Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/41Intermeshing counter-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/42Non-identical or non-mirrored screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/425Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders using three or more screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/435Sub-screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/52Screws with an outer diameter varying along the longitudinal axis, e.g. for obtaining different thread clearance
    • B29C48/525Conical screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/84Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders by heating or cooling the feeding screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/84Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders by heating or cooling the feeding screws
    • B29C48/845Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/84Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders by heating or cooling the feeding screws
    • B29C48/85Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Definitions

  • the present invention relates to a screw structure of an extruder, and more particularly to an extruder multi-stage screw structure having an additional split flow converging function.
  • the extrusion-cutting step is an important part of the production process.
  • a single-screw or twin-screw extruder is used to extrude the hydrate of the grain powder and pass through a certain shape mold to obtain a The desired shape, size of the cereal product is transported on the corresponding conveyor belt until inspection and packaging steps.
  • the grain can be processed into a product with a certain degree of expansion and softness, and is suitable for various foods, nutritional additives, animal feed and the like.
  • International Publication WO 01/72151 discloses an integrated composite grain mixing, extrusion, and forming apparatus. Including raw material mixing equipment, twin-screw extruder, extrusion equipment, cutting and molding equipment.
  • the raw material mixing device and the twin-screw extruder are connected by a continuous vertical conveying pipe, and a control width is provided in the pipe to adjust the speed at which the premixed raw material enters the extruder and the product efficiency.
  • twin-screw extruder two screws threaded into each other are arranged in parallel, and are rotated in opposite directions, so that the material conveyed from top to bottom can be sufficiently compacted and conveyed.
  • extrusion disc At the end of the extruder, there is an extrusion disc, and the extrusion disc is provided with a plurality of extrusion holes, and a cutting device is arranged close to the extrusion hole, and the extruded strip material can be cut into the required strips. Shaped, granulated or flaked products to meet the needs of a variety of cereal composite products.
  • U.S. Patent No. 5,350,585 discloses a twin-screw construction of an extruder.
  • the twin-screw structure is divided into a plurality of sections, and the thread densities are inconsistent to meet the needs of various stages in the extrusion process.
  • a hollow is also formed in the screw to facilitate the mixing of the material in the screw extruder.
  • the products obtained by the traditional extrusion cutting equipment are directly subjected to the heating and drying steps, but they are often in the drying step.
  • the product is ruptured or pulverized due to a sudden loss of water due to the moisture-containing product, resulting in a decrease in yield.
  • the screw of the conventional screw extruder is placed directly in the cavity of elliptical or circular cross section. During the extrusion and conveying process, the material is easy to accumulate in some parts, so that the extrusion effect is reduced.
  • the water and rice flour mixed materials will gel under heating conditions, and the existing conventional extruder can not only produce a suitable degree of gelation but also can not solve the gelation. The problem of increased viscosity of the material coming.
  • the present invention discloses an extruder multi-stage screw structure having an additional split flow confluence function having technical features as described below to solve the prior art problems. Summary of the invention
  • the invention discloses an extruder multi-stage screw structure with an additional split flow confluence function, comprising a lower screw set, an outer screw set and an inner screw set, the three being located in an interconnected lower mixing cavity surrounded by the inner cavity shell And the upper mixing chamber.
  • the lower set of screws includes a first main screw and a second main screw of the same construction, which are engaged with each other and are located in the lower mixing chamber.
  • the outer screw set includes a first secondary screw and a second secondary screw of identical construction with an inner screw set therebetween and located within the upper mixing cavity.
  • the inner set of screws includes a first compensating screw and a second compensating screw of identical construction, both located between the screws of the outer set of screws and within the upper mixing chamber.
  • the first sub-screw, the first compensating screw, the second compensating screw and the second sub-screw are sequentially meshed with each other, and the centers of the four are on the same straight line.
  • the first main screw and the second main screw are located at a lower portion of the first sub-screw, the first compensating screw, the second compensating screw and the second sub-screw, and are respectively meshed with the first sub-screw and the second sub-screw .
  • the first main screw and the second main screw have the same structure, and each comprises the following structure: at least 2 connecting sections, at least 2 adiabatic insulating sections, at least one pre-mixing section, at least one heating mixing section, at least one high temperature Mixing section and 1 discharging section.
  • the first auxiliary screw, the second secondary screw, the first compensation screw and the second compensation screw have the same structure, and both comprise the following structure: at least 2 connecting segments, at least 2 adiabatic isolation segments,
  • At least 1 premixing section, at least 1 heating mixing section and 1 discharging section At least 1 premixing section, at least 1 heating mixing section and 1 discharging section.
  • the connecting section and further includes a first gear and a second gear.
  • the first gear and the second gear have 6 to 16 teeth and are interdigitated by 11.25° to 30°.
  • the respective first gears of the first secondary screw and the first compensation screw, the first compensation screw and the second compensation screw, the second compensation screw, and the second secondary screw are in mesh with each other and the respective second gears mesh with each other.
  • the respective first gears of the first main screw and the first sub-screw are in mesh with each other and the respective second gears mesh with each other.
  • the respective first gears of the second main screw and the second sub-screw are in mesh with each other and the respective second gears mesh with each other.
  • the first gear of the first main screw can only mesh with the first gear of the second main screw, and cannot interact with the second gear of the second main screw. Engagement, so this ensures that the first gears of the first main screw and the second main screw mesh with each other and the second gears mesh with each other, thereby locking the first main screw and the second main screw to fix their relative positions, thereby avoiding The first main screw and the second main screw are misaligned and displaced during the counter-rotation to ensure that the engagement between the first main screw and the second main screw is intact.
  • the respective first gears of the second sub-screw are in mesh with each other and the respective second gears mesh with each other, thereby avoiding misalignment and displacement between the above-mentioned respective screws during the counter-rotation, thereby ensuring that the meshing between the screws is intact.
  • the adiabatic insulation section is a threaded structure made of a heat insulating material, and the premixing section, the heating mixing section, the high temperature mixing section, and the discharging section are threaded structures made of a heat conductive material.
  • the adiabatic insulation section is a threaded structure made of a heat insulating material, and the premixing section, the heating mixing section, and the discharge section are threaded structures made of a heat conductive material.
  • the discharge section is located at the end of the main screw and is connected to one connecting section, and the discharge section is gradually reduced in diameter from the position connected to the connecting section to form a truncated cone structure.
  • the discharge section is located at the end of the main screw and is connected to one connecting section, and the discharge section is gradually reduced in diameter from the position connected to the connecting section to form a truncated cone structure.
  • the connecting section of the first main screw and the second main screw, the adiabatic isolation section, the premixing section, the heating mixing section, the high temperature mixing section and the discharging section are coaxial and have a diameter of ⁇ or the like.
  • the first sub-screw, the second sub-screw, the connecting section of the first compensating screw and the second compensating screw, the adiabatic insulating section, the pre-mixing section, the heating mixing section and the discharging section are coaxial and equal in diameter.
  • the respective connecting sections of the first main screw and the second main screw, the respective adiabatic insulating sections, the respective pre-mixing sections, the respective heating mixing sections, and the respective high-temperature mixing sections are in mesh with each other.
  • the respective connecting sections of the first secondary screw and the first compensating screw, the respective adiabatic insulating sections, the respective pre-mixing sections, and the respective heating mixing sections are in mesh with each other.
  • the respective connecting sections of the first compensating screw and the second compensating screw, the respective adiabatic insulating sections, the respective pre-mixing sections, and the respective heated mixing sections are in mesh with each other.
  • the respective connecting sections of the second compensating screw and the second sub-screw, the respective adiabatic insulating sections, the respective pre-mixing sections, and the respective heated mixing sections are in mesh with each other.
  • the respective connecting sections of the first main screw and the first sub-screw, the respective adiabatic isolation sections, the respective pre-mixing sections, and the respective heating mixing sections are in mesh with each other.
  • the respective connecting sections of the second main screw and the second sub-screw, the respective adiabatic insulating sections, the respective pre-mixing sections, and the respective heating mixing sections are in mesh with each other.
  • the discharge sections of the first secondary screw and the second secondary screw are respectively terminated on the first main screw and the second main screw, and the corresponding materials have been transferred to the first main screw and the second main screw.
  • the discharge sections of the first compensation screw and the second compensation screw are terminated above the first main screw and the second main screw, respectively, and the corresponding material has been transferred to the first main screw and the second main screw.
  • the connecting sections of the first main screw and the second main screw, the adiabatic isolation section, the pre-mixing section, the heating mixing section, the high-temperature mixing section and the discharging section are hollow structures, and the inside thereof has mutually connected and coaxial axes.
  • the cavity, the axial cavity, the axial cavity, the axial cavity, the axial cavity and the axial cavity are provided with a heating system inside each of the axial cavity.
  • the connecting section and the axial cavity of the adiabatic isolation section are equal in diameter.
  • the premixing section, the heating mixing section, the shaft cavity of the high temperature mixing section, and the diameters are equal.
  • the diameter of the shaft cavity is smaller than the diameter of the shaft cavity.
  • the diameter of the shaft cavity of the discharge section varies, as a function of the diameter of the discharge section, increases and/or decreases.
  • the heating system comprises a passageway located in each shaft cavity axis and sequentially passing through each shaft cavity, the passage being a hollow structure made of a heat insulating material, and a plurality of heating circuits connected to the outside are disposed inside the device for Power is supplied to the respective heating resistors located outside the channel and connected to each other.
  • the heating resistor includes heating resistors, and, respectively, located in the premixing section, the heating mixing section, the high temperature mixing section, and the discharge section.
  • the preheating section, the heating mixing section, the high temperature mixing section, and the discharging section are relatively independently independently controlled by the respective heating resistors and under the control of a plurality of sets of heating circuits connected to the outside.
  • the connecting portion of the first auxiliary screw, the second auxiliary screw, the first compensation screw and the second compensation screw, the adiabatic isolation section, the pre-mixing section, the heating mixing section and the discharging section are hollow structures, and the interiors thereof are respectively connected to each other. And a coaxial shaft cavity, a shaft cavity, a shaft cavity, a shaft cavity and a shaft cavity, wherein each of the above axial cavity is provided with a heating system.
  • the connecting section and the axial cavity of the adiabatic isolation section are equal in diameter.
  • the premixing section, the heating mixing section, and the shaft cavity are equal in diameter.
  • the diameter of the shaft cavity is smaller than the diameter of the shaft cavity.
  • the diameter of the shaft cavity of the discharge section varies, as a function of the diameter of the discharge section, increases and/or decreases.
  • the heating system comprises a passageway located in each shaft cavity axis and sequentially passing through each shaft cavity, the passage being a hollow structure made of a heat insulating material, and a plurality of heating circuits connected to the outside are disposed inside the device for Power is supplied to the respective heating resistors located outside the channel and connected to each other.
  • the heating resistor includes heating resistors, respectively, located within the premixing section, the heating mixing section, and the discharge section.
  • the preheating section, the heating mixing section, and the discharging section are relatively independently independently controlled by the respective heating resistors and under the control of a plurality of sets of heating circuits connected to the outside.
  • the temperature relationship, the length relationship and the thread density relationship of the connecting sections of the first main screw and the second main screw, the adiabatic isolation section, the premixing section, the heating mixing section, the high temperature mixing section and the discharging section are:
  • the premixing section temperature is less than the heating mixing section temperature.
  • the temperature of the heated mixing section is lower than the temperature of the high temperature mixing section.
  • the temperature of the high temperature mixing section is greater than the temperature of the discharge section.
  • the length of the heated mixing section is greater than the length of the premixing section and the high temperature mixing section.
  • the thread density of the heated mixing section is less than the thread density of the premixing section.
  • the thread density of the premixing section is less than the thread density of the high temperature mixing section.
  • the thread density of the high temperature mixing section is equal to the thread density of the discharge section.
  • the discharge section is a truncated cone structure, and an angle ⁇ 1 between the bus bar and the axis is 10° to 35°.
  • the temperature of the heated mixing section is greater than the temperature of the discharge section.
  • the length of the heated mixing section is greater than the length of the premixing section.
  • the thread density of the heated mixing section is less than the thread density of the premixing section.
  • the thread density of the discharge section is equal to the high temperature mixing section.
  • the discharge section is a truncated cone structure, and an angle ⁇ 2 between the bus bar and the axis is 5° to 25°.
  • the first main screw and the second main screw respectively further comprise two first heating mixing sections and a second heating mixing section having the same length and thread density but different temperatures, and two lengths and thread densities having the same length but different temperatures.
  • the first high temperature mixing section and the second heating mixing section respectively further comprise two first heating mixing sections and a second heating mixing section having the same length and thread density but different temperatures, and two lengths and thread densities having the same length but different temperatures.
  • the first high temperature mixing section and the second heating mixing section The temperature of each of the heated mixing sections increases in sequence along the flow direction of the material.
  • the temperature of each of the high temperature mixing sections is sequentially decreased in the flow direction of the material.
  • the first secondary screw, the second secondary screw, the first compensation screw, and the second compensation screw respectively further include two first heating mixing sections and second heating mixing sections having the same length and thread density but different temperatures. The temperatures of the respective heated mixing sections are sequentially increased in the flow direction of the material.
  • the first main screw and the second main screw respectively have a premixing section, an adiabatic isolation section, a connecting section, a first heating mixing section, an adiabatic isolation section, a connecting section and a second heating mixing section which are connected to each other.
  • the first auxiliary screw, the second auxiliary screw, the first compensation screw and the second compensation screw respectively have a premixing section, an adiabatic isolation section, a connecting section, a first heating mixing section, and an adiabatic isolation. Segment, connecting section, second heating mixing section, adiabatic isolation section, connecting section and discharging section.
  • the first main screw and the second main screw are rotated, and the first main screw rotates counterclockwise in the direction and the second main screw rotates clockwise in the direction.
  • the first auxiliary screw, the first compensation screw, the second compensation screw and the second auxiliary screw are mutually rotated in turn, and rotate clockwise in the direction, counterclockwise in the direction, clockwise in the direction, and counterclockwise in the direction. Turn.
  • the first main screw, the second main screw, the first sub-screw, the second sub-screw, the first compensating screw and the second compensating screw have a diameter of 40 mm to 300 mm, an effective length to diameter ratio of the screw 12 to 92, and a screw center distance. 40mm ⁇ 300mm, shaft cavity diameter 10mm ⁇ 160mm, thread engagement depth 10mm ⁇ 50mm, pitch 5mm ⁇ 400mm.
  • the diameters of the first main screw and the second main screw are larger than the diameters of the first sub-screw, the second sub-screw, the first compensating screw and the second compensating screw.
  • DRAWINGS BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic view showing the entire structure of an extruder having a multi-pole screw structure of the present invention.
  • Fig. 2a is a schematic longitudinal cross-sectional view taken along line A-A' of Fig. 1;
  • Fig. 2b is a longitudinal sectional view taken along line B-B' of Fig. 1.
  • Figure 3 is a schematic illustration of the flow direction of the material along the longitudinal section of Figure 1A-A'.
  • Figure 4a is a top plan view of the multi-pole screw structure of the extruder of Figure 1.
  • Figure 4b is a side elevational view of the multi-pole screw structure of Figure 4a taken along the C direction.
  • Figure 4c is a schematic view showing the structure and meshing relationship of the lower layer screw of the multi-pole screw structure of Figure 4a.
  • Figure 4d is a schematic view showing the structure and meshing relationship of the upper screw of the multi-pole screw structure of Figure 4a.
  • Figure 5a is a longitudinal cross-sectional view of the main screw of the multi-pole screw structure of the present invention taken along the axial direction.
  • Figure 5b is a longitudinal cross-sectional view of the secondary screw and the compensation screw of the multi-pole screw structure of the present invention in the axial direction.
  • Embodiment 1 the technical solutions of the present invention are specifically as follows: Embodiment 1:
  • an extruder multi-stage screw structure with an additional split flow function includes a lower screw set, an outer screw set and an inner screw set, the three being located by the inner cavity 22
  • the lower mixing chamber 24 and the upper mixing chamber 23 are connected to each other.
  • the lower set of screws includes a first main screw 41a and a second main screw 41b of the same construction, which are engaged with each other and are located in the lower mixing chamber 24.
  • the outer screw group includes a first sub-screw 42a and a second sub-screw 42b of the same structure with an inner screw set therebetween and located in the upper mixing chamber 23.
  • the inner set of screws includes a first compensating screw 43a and a second compensating screw 43b of the same construction, both located between the screws of the outer set of screws and within the upper mixing chamber 23.
  • the first sub-screw 42a, the first compensating screw 43a, the second compensating screw 43b, and the second sub-screw 42b are in turn engaged with each other, and the centers of the four are on the same straight line.
  • the first main screw 41 a and the second main screw 41 b are located at a lower portion of the first sub-screw 42a, the first compensating screw 43a, the second compensating screw 43b, and the second sub-screw 42b, and respectively with the first sub-screw 42a
  • the second sub-screw 42b is engaged with each other.
  • the first main screw 41 a and the second main screw 41 b are identical in structure, and each comprises the following structure: at least 2 connecting segments 51, at least 2 adiabatic insulating segments 52, at least one pre-mixing segment 53, at least one heating Mixing section 54, at least 1 high temperature mixing section 55 and 1 discharge section 56.
  • the first sub-screw 42a, the second sub-screw 42b, the first compensating screw 43a and the second compensating screw 43b are identical in structure, and each comprises the following structure: at least two connecting segments 51', at least two adiabatic insulating segments 52',
  • At least one premixing section 53', at least one heated mixing section 54' and one discharging section 56' At least one premixing section 53', at least one heated mixing section 54' and one discharging section 56'.
  • the first main screw 41a and the second main screw 41b may further include two first heating mixing sections 54a and second heating mixing sections 54b and two having the same length and thread density but different temperatures.
  • the first high temperature mixing section 55a and the second heating mixing section 55b having the same length and thread density but different temperatures.
  • the temperature of each of the heated mixing sections 54 increases in sequence along the flow direction of the material.
  • the temperature of each of the high temperature mixing sections 55 decreases in turn along the flow direction of the material.
  • the first main screw 41a and the second main screw 41b respectively have a premixing section 53, an adiabatic isolation section 52, a connecting section 51, a first heating mixing section 54a, and an adiabatic isolation section which are connected to each other. 52.
  • the first auxiliary screw 42a, the second secondary screw 42b, the first compensation screw 43a and the second compensation screw 43b further comprise two first heating mixing sections 54a having the same length and thread density but different temperatures. 'and the second heating mixing section 54b'. The temperature of each of the heated mixing sections 54' increases in sequence along the flow direction of the material.
  • the first auxiliary screw 42a, the second secondary screw 42b, the first compensation screw 43a and the second compensation screw 43b respectively have a premixing section 53, an adiabatic isolation section 52, and a connecting section 51 which are connected to each other.
  • Each of the first connecting portion 51 of the first main screw 41 a and the second main screw 41 b, each of the respective adiabatic insulating segments 52, each of the corresponding pre-mixing segments 53, the respective first heating mixing segments 54a, and the respective second heating The mixing section 54b, the respective first high temperature mixing sections 55a, and the respective second high temperature mixing sections 55b are engaged with each other.
  • the respective first connecting segments 51' of the first secondary screw 42a and the first compensating screw 43a, the respective adiabatic insulating segments 52', the respective premixing segments 53', and the respective first heating mixing segments 54' are in mesh with each other.
  • the respective connecting sections 51' of the first compensating screw 43a and the second compensating screw 43b, the respective adiabatic insulating sections 52', the respective pre-mixing sections 53', and the respective heated mixing sections 54' are in mesh with each other.
  • the respective connecting sections 51' of the second compensating screw 43b and the second sub-screw 42b, the respective adiabatic insulating sections 52', the respective pre-mixing sections 53', and the respective heated mixing sections 54' are in mesh with each other.
  • the joining sections 54 are in mesh with the respective connecting sections 51' of the first secondary screw 42a, the respective adiabatic insulating sections 52', the respective premixing sections 53', and the respective heating mixing sections 54'.
  • Each connecting section 51 of the second main screw 41 b , each of the adiabatic isolation sections 52 , each pre-mixing section 53 , and each heating mixing section 54 and each connecting section 51 ′ of the second sub-screw 42 b and each adiabatic isolation section 52 ', each premixing section 53', and each heating mixing section 54' mesh with each other.
  • the discharge sections 56' of the first sub-screw 42a and the second sub-screw 42b are respectively terminated on the first main screw 41a and the second main screw 41b, and the corresponding materials have been transferred to the first main screw 41a and the second Main screw 41 b.
  • the discharge sections 56' of the first compensation screw 43a and the second compensation screw 43b terminate above the first main screw 41a and the second main screw 41b, respectively, and the corresponding materials are transferred to the first main screw 41a and the first Two main screws 41 b.
  • the connecting sections 51 and 51' further include a first gear 511 and a second gear 512.
  • the first gear 511 and the second gear 512 have 6 to 16 teeth and are staggered by 11.25° to 30°.
  • the respective first gears 511 of the first main screw 41a and the second main screw 41b are engaged with each other and the respective second gears 512 are engaged with each other.
  • the first sub-screw 42a and the first compensating screw 43a, the first compensating screw 43a and the second compensating screw 43b, the second compensating screw 43b and the second sub-screw 42b are respectively meshed with each other and correspondingly The two gears 512 mesh with each other.
  • the first main screw 41a and the respective first gears 511 of the first sub-screw 42a are engaged with each other and the respective second gears 512 are engaged with each other.
  • the respective first gears 511 of the second main screw 41b and the second sub-screw 42b are engaged with each other and the respective second gears 512 are engaged with each other.
  • the first gear 511 and the second gear 512 are mutually angled, the first gear 511 of the first main screw 41a can only mesh with the first gear 511 of the second main screw 42a, and cannot be combined with the second.
  • the second gears 512 of the main screw 42a are engaged with each other, so that the first main screw 41 and the first main gear 511 of the second main screw 42 are engaged with each other, and the second gear 512 is engaged with each other, thereby the first main screw 41a.
  • Engaged with the second main screw 42a to fix its relative position, avoiding misalignment and displacement of the first main screw 41a and the second main screw 42a during the counter-rotation, thereby ensuring the first main screw 41a and the second main The meshing between the screws 42a is intact.
  • first sub-screw 42a and the first compensating screw 43a, the first compensating screw 43a and the second compensating screw 43b, the second compensating screw 43b and the second sub-screw 42b, the first main screw 41a and the first pair The respective first gears 511 of the screw 42a, the second main screw 41b and the second sub-screw 42b are engaged with each other and the respective second gears 522 are meshed with each other, thereby avoiding misalignment between the above-mentioned respective screws during the reversing process. And the displacement, so as to ensure the meshing between the above screws is intact.
  • the heat insulating partition 52 is a threaded structure made of a heat insulating material, the premixing section 53, the first heating mixing section 54a, the second heating mixing section 54b, the first high temperature mixing section 55a, and the second high temperature mixing section 55b.
  • the discharge section 56 is a threaded structure made of a thermally conductive material. The discharge section 56 is located at the end of the main screw and is connected to a connecting section 51, and the discharge section 56 is gradually reduced in diameter from the position connected to the connecting section 51 to form a truncated cone structure.
  • the second high temperature mixing section 55b and the discharge section 56 are coaxial and equal in diameter.
  • the heat insulating partition 52' is a threaded structure made of a heat insulating material, and the premixing section 53', the first heating mixing section 54a', the second heating mixing section 54b', and the discharging section 56' are made of a heat conductive material. Made of threaded structure.
  • the discharge section 56' is located at the end of the main screw and is connected to a connecting section 51', and the discharge section 56' is gradually reduced in diameter from the position connected to the connecting section 51' to form a truncated cone structure.
  • the second heated mixing section 54b' and the discharge section 56' are coaxial and of equal diameter.
  • the second heating mixing section 54b, the first high temperature mixing section 55a, the second high temperature mixing section 55b, and the discharging section 56 are hollow structures having internal and coaxial cavities 61, a shaft cavities 62, and a shaft cavities 63 respectively.
  • the shaft cavity 64a, the axial cavity 64b, the axial cavity 65a, the axial cavity 65b and the axial cavity 66 are provided with a heating system 7 inside each of the axial cavities.
  • the diameters of the shaft cavities 61 and 62 of the connecting section 51 and the adiabatic insulating section 52 are equal.
  • the axial lengths 63, 64a, 64b, 65a, 65b of the premixing section 53, the first heating mixing section 54a, the second heating mixing section 54b, the first high temperature mixing section 55a, and the second high temperature mixing section 55b are equal in diameter.
  • the diameter of the shaft cavities 61, 62 is smaller than the diameter of the shaft cavities 63, 64a, 64b, 65a, 65b.
  • the diameter of the shaft cavity 66 of the discharge section 56 varies as the diameter of the discharge section 56 changes, increasing and/or decreasing.
  • the heating system 7 includes a passage 70 located at each shaft cavity axis and sequentially passing through the shaft chambers.
  • the passage 70 is a hollow structure made of a heat insulating material, and a plurality of heating circuits connected to the outside are disposed inside. For supplying power to the heating resistors located outside the channel 70 and connected to each other.
  • the heating resistor includes heating resistors 73 respectively located in the premixing section 53, the first heating mixing section 54a, the second heating mixing section 54b, the first high temperature mixing section 55a, the second high temperature mixing section 55b, and the discharge section 56, 74a, 74b, 75a > 75b and 76.
  • the heating resistors 73, 74a, 74b, 75a, 75b, and 76 are relatively independently and independently mixed with the premixing section 53, the first heating mixing section 54a, and the second heating under the control of a plurality of heating circuits connected to the outside.
  • Paragraph 54b, paragraph A high temperature mixing section 55a, a second high temperature mixing section 55b and a discharge section 56 are heated.
  • the premixing section 53', the first heating mixing section 54a', the second heating mixing section 54b', and the discharging section 56' are hollow structures having internal and coaxial shaft cavities 61' and a shaft cavities 62', respectively.
  • the shaft chamber 63', the shaft chamber 64a', the shaft chamber 64' and the shaft chamber 66' are provided with a heating system 7' inside each of the shaft chambers.
  • the connecting sections 51' and the axial cavities 61' and 62' of the adiabatic insulating section 52' are equal in diameter.
  • the axial cavities 63', 64a', 64b' of the premixing section 53', the first heating mixing section 54a', and the second heating mixing section 54b' are equal in diameter.
  • the diameter of the shaft cavities 61', 62' is smaller than the diameter of the shaft cavities 63', 64a', 64b'.
  • the diameter of the shaft cavity 66' of the discharge section 56' varies as the diameter of the discharge section 56' changes, increasing and/or decreasing.
  • the heating system 7' includes a passage 70' located at each shaft cavity axis and sequentially passing through the shaft chambers.
  • the passage 70' is a hollow structure made of a heat insulating material, and the inside thereof is provided with a plurality of connections to the outside.
  • a heating circuit is provided for supplying power to the respective heating resistors located outside of the passage 70' and connected thereto.
  • the heating resistor includes heating resistors 73', 74a', 74b' and 76' located inside the premixing section 53', the first heating mixing section 54a', the second heating mixing section 54b', and the discharging section 56', respectively.
  • the heating resistors 73', 74a', 74b' and 76' are respectively relatively independent of the premixing section 53', the first heating mixing section 54a', and the second under the control of a plurality of heating circuits connected to the outside.
  • the heating section 54b' and the discharge section 56' are heated.
  • Each connecting section 51 of the first main screw 41a and the second main screw 41b, the adiabatic insulating section 52, the pre-mixing section 53, the first heating mixing section 54a, the second heating mixing section 54b, and the first high-temperature mixing section 55a The relationship between the temperature relationship, the length relationship and the thread density of the second high temperature mixing section 55b and the discharge section 56 is:
  • the temperature of the premixing section 53 is lower than the temperature of the first heating mixing section 54a;
  • the temperature of the first heating mixing section 54a is lower than the temperature of the second heating mixing section 54b;
  • the temperature of the second heating mixing section 54b is lower than the temperature of the first high temperature mixing section 55a;
  • the temperature of the first high temperature mixing section 55a is greater than the temperature of the second high temperature mixing section 55b;
  • the temperature of the second high temperature mixing section 55b is greater than the temperature of the discharge section 56;
  • the length of the heated mixing section 54 is greater than the length of the premixing section 53 and the high temperature mixing section 55;
  • the threaded density of the heated mixing section 54 is less than the thread density of the premixing section 53;
  • the thread density of the premixing section 53 is smaller than the thread density of the high temperature mixing section 55;
  • the thread density of the high temperature mixing section 55 is equal to the thread density of the discharge section 56;
  • the discharge section 56 is a truncated cone structure, and the angle ⁇ 1 between the bus bar and the axis is 10° to 35°.
  • the first sub-screw 42a, the second sub-screw 42b, the connecting section 51' of the first compensating screw 43a and the second compensating screw 43b, the adiabatic insulating section 52', the pre-mixing section 53', and the first heating mixing section 54a' The relationship between the temperature relationship, the length relationship and the thread density of the second heated mixing section 54b' and the discharge section 56' is:
  • the temperature of the premixing section 53' is less than the temperature of the first heating mixing section 54a';
  • the temperature of the first heated mixing section 54a' is less than the temperature of the second heated mixing section 54b';
  • the temperature of the second heated mixing section 54b' is greater than the temperature of the discharge section 56';
  • the length of the heated mixing section 54' is greater than the length of the premixing section 53';
  • the thread density of the heated mixing section 54' is less than the thread density of the premixing section 53';
  • the thread density of the discharge section 56' is equal to the high temperature mixing section 55;
  • the discharge section 56' is a truncated cone structure, and the angle ⁇ 2 between the bus bar and the axis is 5° to 25°.
  • the first main screw 41a and the second main screw 41b are rotated, and the first main screw 41a rotates counterclockwise in the direction 81a, and the second main screw 41b rotates clockwise in the direction 81b.
  • the first sub-screw 42a, the first compensating screw 43a, the second compensating screw 43b and the second sub-screw 42b are mutually rotated in turn, and rotate clockwise in the direction 82a, counterclockwise in the direction 83a, and in the direction 83b.
  • the hour hand rotates and rotates counterclockwise in the direction 82b.
  • the diameters of the first main screw 41a, the second main screw 41b, the first sub-screw 42a, the second sub-screw 42b, the first compensation screw 43a and the second compensation screw 43b are 40 mm to 300 mm, and the effective length-to-diameter ratio of the screw 12 ⁇ 92, screw center distance 40mm ⁇ 300mm, shaft cavity diameter 10mm ⁇ 160mm, thread engagement depth 10mm ⁇ 50mm, pitch 5mm ⁇ 400mm.
  • the diameters of the first main screw 41 a and the second main screw 41 b are larger than the diameters of the first sub-screw 42a, the second sub-screw 42b, the first compensating screw 43a, and the second compensating screw 43b.
  • the materials are in the first main screw 41a and the second main screw 41b, the first main screw 41a and the first sub-screw 42a, the second The main screw 41b and the second sub-screw 42b, the first sub-screw 42a and the first compensating screw 43a, the first compensating screw 43a and the second compensating screw 43b, the second compensating screw 43b and the second sub-screw 42b are differently threaded.
  • the density mixing section is subjected to different degrees of extrusion mixing and is heated to different temperatures so that the material is thoroughly mixed in the lower mixing chamber 24 and the upper mixing chamber 23 and heated separately to a suitable temperature, and finally in the lower portion.
  • the mixing chamber 24 is internally mixed and then extruded.
  • FIG. 1 shows an extruder commonly used in the preparation of reconstituted rice, comprising a feed system 1, an extrusion chamber 2 and a discharge system 3.
  • the feed system 1 further includes a stocker 11 and a feed port 12.
  • the stocker 11 and the feed port 12 further include a stocker 11a and a feed port 12a for entering the first group of materials, and a stocker 11b for entering the second group of materials.
  • the feed port 12b The pressing chamber 2 further includes an outer chamber shell 21, an inner chamber shell 22, and an upper mixing chamber 23 and a lower mixing chamber 24 surrounded by the inner chamber shell.
  • the discharge system 3 further includes a discharge port 31, a cutting blade 32, and a die 33.
  • a first sub-screw 42a, a second sub-screw 42b, a first compensating screw 43a and a second compensating screw 43b are provided, in the upper mixing chamber 23 Inside, a first main screw 41 a and a second main screw 41 b are provided.
  • the first set of material falls from the stocker 11a, enters the left side cavity of the upper mixing chamber 23 through the feed port 12a, at the first secondary screw 42a and the first Under the rotation of the compensation screw 43a, the gap between the two is entered.
  • the first sub-screw 42a rotates clockwise in the direction 82a
  • the first compensating screw 43a rotates counterclockwise in the direction 83a.
  • the first group of materials 91a is squeezed and mixed, and then in the first sub-screw.
  • two material streams 921a and 922a are formed.
  • the second group of materials falls from the stocker 11 b, enters the right cavity of the upper mixing chamber 23 through the feed port 12b, and enters the second under the rotation of the second auxiliary screw 42b and the second compensation screw 43b.
  • the pores between the people The second sub-screw 42b rotates counterclockwise in the direction 82b, and the second compensating screw 43b rotates clockwise in the direction 83b.
  • the second group of materials 91b is squeezed and mixed, and then in the second pair.
  • Two streams of material 921b and 922b are formed by the rotation of the screw 42b and the second compensation screw 43b.
  • the first sub-screw 42a rotates clockwise in the direction 82a, and the first main screw 41a rotates counterclockwise in the direction 81a. Under the meshing and turning of the two, the material flow 921a is squeezed and mixed to form a material flow 931a and 932a, which are respectively brought back by the first main screw 41a and the first sub-screw 42a to the lower and upper portions of the two screws to form material streams 941a and 942a.
  • the second sub-screw 42b rotates counterclockwise in the direction 82b
  • the second main screw 41b rotates clockwise in the direction 81b.
  • the material flow 921b is squeezed and mixed to form a material flow.
  • 931b and 932b, respectively, are brought back to the lower and upper portions of the two screws by the second main screw 41b and the second sub-screw 42b to form material streams 941b and 942b.
  • the streams 941a and 941b are subjected to extrusion mixing to form a stream 951a in the direction 81a and a stream 951 in the direction 82a under the action of the first main screw 41a and the second main screw 42b. b and the upward flow 952.
  • the streams 951a and 951b are respectively flowed in accordance with the flow patterns of the streams 921a and 921b, respectively, and are separately squashed and mixed.
  • Material stream 951 merges with streams 922a and 922b to drive material streams 923a and 923b under rotation of first compensating screw 43a and second compensating screw 43b.
  • the flow paths 923a and 923b are in the rotational bands of the first compensating screw 43a and the second compensating screw 43b that are engaged in rotation.
  • the material streams 943a and 943b merge with the 942a, 942b, respectively, and merge with the newly added first group material 91a and the second group material stream 91b, respectively, and then respectively by the first auxiliary screw 42a and the first compensation screw 43a, the second The secondary screw 42b and the second compensation screw 43b are press-mixed.
  • the above material flow process is continuously circulated.
  • the external circuit is turned on, the heating system 7 is energized, and the respective wires and circuits located inside the path 70 are respectively located at the first main screw 41a.
  • Heating resistors inside the respective premixing section 53, the second heating mixing section 54a, the second heating mixing section 54b, the first high temperature mixing section 55a, the second high temperature mixing section 55b and the discharging section 56 of the second main screw 41b 73, 74a, 74b, 75a, 75b and 76 are electrically heated, and each of the corresponding mixing sections is heated and heated, and respectively located on the first sub-screw 42a, the second sub-screw 42b, the first compensating screw 43a and the second compensation
  • the respective pre-mixing section 53' of the screw 43b, the first heating mixing section 54a', the second heating mixing section 54b', and the heating resistors 73', 74a', 74b' and 76' inside the outlet section 56' are electrically heated. The heating of each corresponding mixing section is heated.
  • the material is subjected to the following heating and mixing process:
  • the first group of materials 91a enters the premixing sections 53 and 53' adjacent thereto from the first inlet port 12a, and the first main screw 41a and the first sub-screw 42a, the first sub-screw 42a and the first compensation
  • the intermeshing premixing sections 53 and 53' of the screw 43a are reversely rotated and are squeezed and mixed.
  • the premixing sections 53 and 53' are designed to have a larger thread density to enhance the shearing force, while avoiding excessive gelation of the material under heating conditions.
  • the material is initially heated only, so the temperature of the premixing sections 53 and 53' is designed to be lower.
  • the second group of materials 91b enters the premixing sections 53 and 53' adjacent thereto from the second inlet port 12b, and the second primary screw 41b and the second secondary screw 42b, the second secondary screw 42b and the second compensation
  • the intermeshing premixing sections 53 and 53' of the screw 43b are reversely pressed and mixed.
  • the premixing sections 53 and 53' are designed to have a larger thread density to enhance the shearing force, while avoiding excessive gelation of the material under heating conditions.
  • the material is initially heated only, so the temperature of the premixing sections 53 and 53' is designed to be lower.
  • the first group of materials 91a enters the mutually intermeshing heating mixing section region, and the first main screw 41a and the first sub-screw 42a, the first sub-screw 42a and the first portion having a higher temperature, a smaller thread density, and a longer length
  • the intermeshing first heating mixing sections 54a and 54a', 54a' and 54a' of a compensating screw 43a are press-mixed, and then press-mixed at the second heating mixing sections 54b and 54b', 54b' and 54b'.
  • the second group of materials also correspondingly pass through the first heating mixing sections 54a and 54a', 54a' of the second main screw 41b and the second sub-screw 42b, the second sub-screw 42b and the second compensating screw 43b. It is extrusion-mixed at 54a' and then extrusion-mixed at the second heated mixing sections 54b and 54b', 54b' and 54b'.
  • the material can be fully exchanged on a longer screw, heated by the screw and further squeezed and mixed.
  • the design density is lower. Heating the mixing sections 54a, 54a' and the second heating mixing sections 54b, 54b' so that the gas inside the material and the water vapor can be diffused out to perform ventilation, thereby avoiding more gas inside the material and diffusing gas at the outlet. Too fast, causing cracks and cracks in the finished particles.
  • a plurality of heating mixing sections can be designed as needed, and are not limited to two, and the temperature of each heating mixing section gradually rises along the material flow direction, in this embodiment.
  • the temperature of the second heating mixing section 54b is higher than the temperature of the first heating mixing section 54a and the second heating mixing section 54b' is higher than the first heating mixing section 54a'.
  • the discharge sections 56' of the first secondary screw 42a, the second secondary screw 42b, the first compensation screw 43a and the second compensation screw 43b transfer the material on each screw to the first main screw 41a and the second main screw 41b. .
  • the first group of materials 91a enters the intermeshing high temperature mixing section, the first main screw 41a and the first sub-screw 42a, the first sub-screw 42a and the first in the highest temperature, high thread density, length
  • the intermeshing first high temperature mixing sections 55a and 55a', 55a' and 55a' of the compensating screw 43a are press-mixed, and then press-mixed at the second high temperature mixing sections 55b and 55b', 55b' and 55b'.
  • the second group of materials also correspondingly pass through the first high temperature mixing sections 55a and 55a', 55a' of the second main screw 41b and the second sub-screw 42b, the second sub-screw 42b and the second compensating screw 43b. It is extrusion-mixed at 55a' and then extrusion-mixed at the second high temperature mixing sections 55b and 55b', 55b' and 55b'.
  • the material is further gelatinized at a high temperature, and the thread density is the largest, so that the material is quickly and fully sheared and mixed, so that the material is uniformly mixed, and since the degree of gelation is large, the viscosity of the material increases, so
  • the shorter high temperature mixing section 55 is designed to avoid excessive heating time, excessive gelation, and allow the material to quickly exit the high temperature mixing section 55 to avoid stickiness.
  • the material is then sent to the next set of third mixing section 55b by the adiabatic isolation section 51, the temperature of which is lower, so that the material is further re-squeezed and gradually cooled.
  • the flow direction moves from the front end to the end of each screw.
  • the material is fed into the discharge section 56 of the first main screw 41a and the second main screw 41b, and is slightly squeezed and sent to the discharge port 31.
  • the material is extruded from the discharge port 31 to the die 33 at the outlet, pressed from the extrusion hole of the die 33, and cut rapidly by the cutter 32 to form pellets.
  • Screws 41a and 41 b 40 mm to 300 mm 12 to 72 40 mm to 300 mm 10 ⁇ to 35.
  • Screws 42a and 42b 40mm ⁇ 300mm 12 ⁇ 72 40mm ⁇ 300mm 5° ⁇ 25.
  • Screws 43a and 43b 40mm ⁇ 300mm 12 ⁇ 72 40mm ⁇ 300mm 5° ⁇ 25 0 shaft cavity diameter thread engagement depth pitch temperature
  • Connection section 51 10mm ⁇ 160mm 10mm ⁇ 50mm 5mm ⁇ 400mm
  • Adiabatic isolation section 52 10mm ⁇ 160mm 10mm ⁇ 50mm 5mm ⁇ 400mm
  • Premixing section 53 10mm ⁇ 160mm 10mm ⁇ 50mm 5mm ⁇ 400mm 80 ⁇ 85°C Heating mixing section 54a 10mm ⁇ 160mm 10mm ⁇ 50mm 5mm ⁇ 400mm 85 ⁇ 90°C Heating mixing section 54b 10mm ⁇ 160mm 10mm ⁇ 50mm 5mm ⁇ 400mm 90 ⁇ 95 ° C high temperature mixing section 55a 10mm ⁇ 160mm 10mm ⁇ 50mm 5mm ⁇ 400mm 95 ⁇ 100.
  • C Discharge section 56 10mm ⁇ 160mm 10mm ⁇ 50mm 5mm ⁇ 400mm 85 ⁇ 90°C Connection section 51 ' 10mm ⁇ 160mm 10mm ⁇ 50mm 5mm ⁇ 400mm
  • Adiabatic isolation section 52' 10mm ⁇ 160mm 10mm ⁇ 50mm 5mm ⁇ 400mm
  • Embodiment 2 The first embodiment is used to improve the first embodiment:
  • Screws 43a and 43b 30mm 35 30mm Shaft diameter Thread engagement depth Pitch temperature
  • Adiabatic isolation section 52 20mm 15mm 45mm
  • Screws 43a and 43b 30mm 65 30mm Shaft diameter thread engagement depth pitch temperature Connection section 51 20mm 20mm
  • Adiabatic isolation section 52 20mm 20mm 60mm
  • Premixing section 53 30mm 20mm 60mm 82 °C Heating mixing section 54a 30mm 20mm 80mm 87 °C Heating mixing section 54b 30mm 20mm 80mm 94 °C High temperature mixing section 55a 30mm 20mm 40mm 98 °C High temperature mixing section 55b 30mm 20mm 40mm 96 °C Discharge section 56 30mm 20mm 40mm 88 °C
  • the following technical parameters are used to improve the first embodiment - screw diameter screw effective length to diameter ratio screw center distance screw 41 a and 41 b 90 mm 65 120 mm
  • Adiabatic isolation section 52 20mm 25mm 75mm
  • Embodiment 5 The first embodiment is used to improve the first embodiment: Screw diameter screw effective length to diameter ratio screw center distance screw 41a and 41 b 160mm 25 160mm
  • Adiabatic isolation section 52 20mm 25mm 75mm
  • Premixing section 53 80mm 25mm 75mm 80 °C Heating mixing section 54a 80mm 25mm 100mm 85 °C Heating mixing section 54b 80mm 25mm 100mm 93 °C High temperature mixing section 55a 80mm 25mm 50mm 97 °C High temperature mixing section 55b 80mm 25mm 50mm 95.
  • C discharge section 56 80mm 25mm 50mm 85 °C Example 6: The following technical parameters are used to improve the first embodiment:
  • Screws 42a and 42b 50mm 55 53.33mm
  • Adiabatic isolation section 52 20mm 30mm 90mm
  • Premixing section 53 70mm 30mm 90mm 82 °C Heating mixing section 54a 70mm 30mm 120mm 87 °C Heating mixing section 54b 70mm 30mm 120mm 94 °C High temperature mixing section 55a 70mm 30mm 60mm 98 °C High temperature mixing section 55b 70mm 30mm 60mm 96 °C Discharge section 56 70mm 30mm 60mm 88 °C
  • Example 7 The following technical parameters are used to improve the first embodiment:
  • Screws 42a and 42b 50mm 55 73.33mm
  • Adiabatic isolation section 52 20mm 35mm 105mm
  • Premixing section 53 60mm 35mm 105mm 84 °C Heating mixing section 54a 60mm 35mm 140mm 89 °C Heating mixing section 54b 60mm 35mm 140mm 95 °C High temperature mixing section 55a 60mm 35mm 70mm 99 °C High temperature mixing section 55b 60mm 35mm 70mm 97.
  • C Discharge section 56 60mm 35 mm 70mm 90 °C Example 8: The following technical parameters are used to improve the first embodiment:
  • Screws 43a and 43b 80mm 15 80mm Shaft diameter thread engagement depth pitch temperature Connection section 51 20mm 35mm
  • Adiabatic isolation section 52 20mm 35mm 105mm
  • Premixing section 53 120mm 35mm 105mm 80 °C Heating mixing section 54a 120mm 35mm 140mm 85 °C Heating mixing section 54b 120mm 35mm 140mm 93 °C High temperature mixing section 55a 120mm 35mm 70mm 97 °C High temperature mixing section 55b 120mm 35mm 70mm 95 °C Discharge section 56 120mm 35mm 70mm 85 °C
  • Example 9 The following technical parameters are used to improve the first embodiment:
  • Screws 43a and 43b 80mm 45 80mm Shaft diameter Thread engagement depth Pitch Temperature Connection section 51 20mm 40mm
  • Adiabatic isolation section 52 20mm 40mm 120mm
  • Premixing section 53 110mm 40mm 120mm 82 °C Heating mixing section 54a 110mm 40mm 160mm 87 °C Heating mixing section 54b 110mm 40mm 160mm 94 "C High temperature mixing section 55a 110mm 40mm 80mm 98 °C High temperature mixing section 55b 110mm 40mm 80mm 96 °C Discharge section 56 110mm 40mm 80mm 88 °C
  • the following technical parameters are used to improve the first embodiment Screw diameter screw effective length to diameter ratio screw center distance
  • Adiabatic isolation section 52 20mm 45mm 135mm
  • Premixing section 53 100mm 45mm 135mm 84 °C
  • Heating mixing section 54b 100mm 45mm 180mm 95 °C
  • High temperature mixing section 55b 100mm 45mm 90mm 97 °C
  • Discharge section 56 100mm 45mm 90mm 90 °C
  • Discharge section 56 100mm 45mm 90mm 90 °C

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

说 明 书 一种具有额外分流汇流功能的挤出机多级螺杆结构 技术领域
本发明涉及一种挤出机的螺杆结构, 特别涉及一种具有额外分流汇流功能的挤出机 多级螺杆结构。 背景技术
随着对食品的营养的要求的日益增加, 各种复合营养素的谷物产品及其生产方法也 迅速地发展着, 从早期的酸预蒸法工艺、直接浸吸法和涂膜法等工艺, 发展到如今比较完 备的: 从谷物粉碎→预处理→与营养素混合—挤压→切割成型→干燥→筛选→按比例配 米, 最后得到营养素强化复合谷物的工艺流程。
而其中的挤压-切割成型的步骤是生产过程中的重要环节, 一般采取的单螺杆或者双 螺杆挤压机,将谷物粉末的水合物挤压后通过一定的形状模具,经切割而得到所需要的形 状、 尺寸的谷物类食品, 并在相应的传送带上进行输送, 直至检验和包装步骤。
同时, 由于挤压成型过程的技术流程,能够将谷物加工成具有一定膨化度和松软度的 产品, 适用于各种食品、 营养添加剂、 动物饲料等产品。
参见附图 1, 国际公开文本 WO01/72151公开了一种一体化的复合谷物混合、 挤压、 ,成型设备。 包括原料混合装置, 双螺杆挤压机, 挤出装置, 切割成型设备。其中的原料混 合装置与双螺杆挤压机, 通过连通的垂直输送管道相连, 并且在管道中设有控制阔, 以调 整预混原料进入挤压机的速度以及产品效率。双螺杆挤压机中平行布置有两个螺紋相互咬 合的螺杆, 相向转动, 使由上而下输送的物料能够进行充分地压实和输送。在挤压机的末 端具有挤出盘, 挤出盘上开设有多个挤出孔, 紧贴挤出孔处设置有切割装置, 能够将挤压 出的条状物料切割成所需要的长条状、粒状或片状产品,以符合各种谷物复合产品的需要。
参见附图 2, 美国专利 US5350585公开一种挤压机的双螺杆结构。 所述的双螺杆结 构分为多段, 其螺纹密度均不一致, 以配合挤压过程中的各个阶段的需要。 同时, 螺杆中 也开设有空洞, 以便于物料在螺杆挤压机中充分混合。
然而, 传统的螺杆挤压切割成型机仍有一些不足:
1、 传统的挤压切割设备得到的产品直接进行加热烘干步骤, 然而却往往会在烘干步 骤中, 由于含有水分的产品骤然失水导致产品表面破裂或粉碎, 致使成品率降低。
2、 传统的挤压成型设备的产量和产率难以得到较大的提高。
3、 传统的螺杆挤压机的螺杆直接放置于椭圆形或圆形截面的腔体中, 再挤压和输送 过程中, 物料易于在某些部位产生堆积, 从而使挤压效果降低。
4、 于螺杆腔体内经常有堆积现象, 而长期未能得到充分挤压的这些堆积物, 经过一 段时间后会凝结成块, 从而影响整体产品产出效率以及产品的均匀程度, 需要经常清理。 然而传统的双螺杆挤压机的螺杆更换过程困难, 且在停机之后, 螺杆因相互咬合的结构, 依然会产生机械转动, 容易造成事故。
5、 在制备复原米的过程中, 水和米粉混合的物料在加热条件下会发生胶凝化, 现有 的传统挤压机不仅无法产生合适的胶凝化程度也无法解决胶凝化所带来的物料粘度增大 的问题。
6、 在传统的复原米的制备过程中, 一旦添加了对热敏感的营养素, 如果在低温条件 下混合挤出, 虽然能保证营养素不失活, 但无法实现足够的胶凝化, 制备出的颗粒质量较 差, 如果在高温条件下混合挤出, 虽然胶凝化程度较好, 然而营养素流失以及失活比率过 高, 无法实现增加营养的目的。
鉴于上述不足之处, 本发明公开了一种具有额外分流汇流功能的挤出机多级螺杆结 构, 其具有如下文所述之技术特征, 以解决现有技术问题。 发明内容
本发明公开了一种具有额外分流汇流功能的挤出机多级螺杆结构, 包含下部螺杆组、 外侧螺杆组和内侧螺杆组,三者位于由内腔壳所围成的相互连通的下部混合腔和上部混合 腔内。
所述下层螺杆组包含结构相同的第一主螺杆和第二主螺杆,二者相互啮合对转并位于 下部混合腔内。
所述外侧螺杆组包含结构相同的第一副螺杆和第二副螺杆,二者之间设有内侧螺杆组 并位于上部混合腔内。
所述内侧螺杆组包含结构相同的第一补偿螺杆和第二补偿螺杆,二者位于外侧螺杆组 的螺杆之间并位于上部混合腔内。
所述第一副螺杆、第一补偿螺杆、第二补偿螺杆和第二副螺杆依次相互啮合对转, 四 者圆心位于同一直线上。 所述第一主螺杆和第二主螺杆位于第一副螺杆、第一补偿螺杆、第二补偿螺杆和第二 副螺杆的下部, 并且分别与第一副螺杆和第二副螺杆相互啮合对转。
所述第一主螺杆和第二主螺杆结构相同, 都包含以下结构: 至少 2个连接段、 至少 2 个绝热隔离段、 至少 1个预混合段、 至少 1个加热混合段、 至少 1个高温混合段和 1个 出料段。
所述第一副螺杆、第二副螺杆、第一补偿螺杆和第二补偿螺杆结构相同, 都包含以下 结构: 至少 2个连接段、 至少 2个绝热隔离段、
至少 1个预混合段、 至少 1个加热混合段和 1个出料段。
所述的连接段和进一步包含第一齿轮和第二齿轮。所述第一齿轮和第二齿轮具有 6〜 16个齿并且相互交错 11.25°〜30°。
所述第一主螺杆和第二主螺杆的各相应第一齿轮相互啮合且各相应第二齿轮相互啮 合
所述第一副螺杆和第一补偿螺杆、第一补偿螺杆和第二补偿螺杆、第二补偿螺杆和第 二副螺杆的各相应第一齿轮相互啮合且各相应第二齿轮相互啮合。
所述第一主螺杆和第一副螺杆的各相应第一齿轮相互啮合且各相应第二齿轮相互啮 合。 、 所述第二主螺杆和第二副螺杆的各相应第一齿轮相互啮合且各相应第二齿轮相互啮 合。
由于第一齿轮和第二齿轮相互交错一定角度,这就导致第一主螺杆的第一齿轮只能和 第二主螺杆的第一齿轮相互啮合,而无法与第二主螺杆的第二齿轮相互啮合,所以这就保 证了第一主螺杆和第二主螺杆的第一齿轮相互啮合、第二齿轮相互啮合,从而将第一主螺 杆和第二主螺杆进行锁合以固定其相对位置,避免第一主螺杆和第二主螺杆在对转的过程 中发生错位和位移, 从而保证第一主螺杆和第二主螺杆之间啮合完好。
同理, 所述第一副螺杆和第一补偿螺杆、第一补偿螺杆和第二补偿螺杆、第二补偿螺 杆和第二副螺杆、第一主螺杆和第一副螺杆、第二主螺杆和第二副螺杆的各相应第一齿轮 相互啮合且各相应第二齿轮的相互啮合,也避免上述各螺杆之间在对转的过程中发生错位 和位移, 从而保证上述各螺杆之间啮合完好。
所述绝热隔离段是由绝热材料制成的螺纹结构, 所述预混合段、加热混合段、 高温混 合段和出料段是由导热材料制成的螺纹结构。所述绝热隔离段是由绝热材料制成的螺纹结 构, 所述预混合段、 加热混合段和出料段是由导热材料制成的螺纹结构。 所述出料段位于主螺杆的末端并与 1 个连接段相连, 且所述出料段从与连接段相连 的位置向末端直径逐渐缩小, 形成圆台形结构。 所述出料段位于主螺杆的末端并与 1 个 连接段相连,且所述出料段从与连接段相连的位置向末端直径逐渐缩小,形成圆台形结构。
所述第一主螺杆和第二主螺杆的连接段、绝热隔离段、预混合段、加热混合段、 高温 混合段和出料段同轴并且直径栩等。
所述第一副螺杆、第二副螺杆、第一补偿螺杆和第二补偿螺杆的连接段、绝热隔离段、预 混合段、 加热混合段和出料段同轴并且直径相等。
所述第一主螺杆和第二主螺杆的各相应连接段、各相应绝热隔离段、各相应预混合段、 各相应加热混合段、 各相应高温混合段相互啮合。
所述第一副螺杆和第一补偿螺杆的各相应连接段、各相应绝热隔离段、各相应预混合 段、各相应加热混合段相互啮合。所述第一补偿螺杆和第二补偿螺杆的各相应连接段、各 相应绝热隔离段、各相应预混合段、各相应加热混合段相互啮合。所述第二补偿螺杆和第 二副螺杆的各相应连接段、各相应绝热隔离段、各相应预混合段、各相应加热混合段相互 啮合。
所述第一主螺杆和第一副螺杆的各相应连接段、各相应绝热隔离段、各相应预混合段、 各相应加热混合段相互啮合。所述第二主螺杆和第二副螺杆的各相应连接段、各相应绝热 隔离段、 各相应预混合段、 各相应加热混合段相互啮合。
所述第一副螺杆、第二副螺杆的出料段分别终止在第一主螺杆和第二主螺杆上, 已经 相应物料传输至第一主螺杆和第二主螺杆。所述第一补偿螺杆、第二补偿螺杆的出料段分 别终止在第一主螺杆和第二主螺杆的上方, 已经相应物料传输至第一主螺杆和第二主螺 杆。
所述第一主螺杆和第二主螺杆的各连接段、绝热隔离段、预混合段、加热混合段、 高 温混合段和出料段为中空结构, 其内部分别具有相互连通且同轴的轴腔、轴腔、轴腔、轴 腔、 轴腔和轴腔, 上述各轴腔内部设有加热系统。
所述连接段和绝热隔离段的轴腔和的直径相等。所述预混合段、加热混合段、高温混 合段的轴腔、、 的直径相等。 所述轴腔、 的直径小于轴腔、、 的直径。所述出料段的轴腔的 直径随出料段直径的变化而变化, 增大和 /或减小。
所述加热系统包含位于各轴腔轴心并依次穿过各轴腔的通路,所述通路是由绝热绝缘 材料制成的中空结构,其内部设置有与外界相连的多组加热电路,用于向位于通路外侧并 与其相互连接的各加热电阻供电。 所述加热电阻包括分别位于预混合段、加热混合段、高温混合段和出料段内部的加热 电阻、、和。所述各加热电阻、、和在与外界相连的多组加热电路的控制下, 分别相对独立 地对预混合段、 加热混合段、 高温混合段和出料段进行加热。
所述第一副螺杆、第二副螺杆、第一补偿螺杆和第二补偿螺杆的连接段、绝热隔离段、 预混合段、加热混合段和出料段为中空结构, 其内部分别具有相互连通且同轴的轴腔、轴 腔、 轴腔、 轴腔和轴腔, 上述各轴腔内部设有加热系统。
所述连接段和绝热隔离段的轴腔和的直径相等。所述预混合段、加热混合段、的轴腔、 的直径相等。所述轴腔、 的直径小于轴腔、 的直径。所述出料段的轴腔的直径随出料段直 径的变化而变化, 增大和 /或减小。
所述加热系统包含位于各轴腔轴心并依次穿过各轴腔的通路,所述通路是由绝热绝缘 材料制成的中空结构,其内部设置有与外界相连的多组加热电路,用于向位于通路外侧并 与其相互连接的各加热电阻供电。
所述加热电阻包括分别位于预混合段、加热混合段和出料段内部的加热电阻、和。所 述各加热电阻、 和在与外界相连的多组加热电路的控制下, 分别相对独立地对预混合段、 加热混合段和出料段进行加热。
所述第一主螺杆和第二主螺杆的各连接段、绝热隔离段、 预混合段、加热混合段、 高 温混合段和出料段的温度关系、 长度关系和螺纹密度关系为:
预混合段温度小于加热混合段温度。
加热混合段温度小于高温混合段温度。
高温混合段温度大于出料段温度。
加热混合段的长度大于预混合段和高温混合段的长度。
加热混合段的螺紋密度小于预混合段的螺纹密度。
预混合段的螺纹密度小于高温混合段的螺纹密度。
高温混合段的螺纹密度与出料段的螺紋密度相等。
所述出料段为圆台形结构, 其母线与轴线的夹角 β1为 10°〜35°。
所述第一副螺杆、第二副螺杆、第一补偿螺杆和第二补偿螺杆的连接段、绝热隔离段、 预混合段、 加热混合段和出料段的温度关系、 长度关系和螺紋密度关系为- 预混合段温度小于加热混合段温度。
加热混合段温度大于出料段温度。
加热混合段的长度大于预混合段的长度。 加热混合段的螺纹密度小于预混合段的螺紋密度。
出料段的螺纹密度与高温混合段相等。
所述出料段为圆台形结构, 其母线与轴线的夹角 β2为 5°〜25°。
所述第一主螺杆、 第二主螺杆分别进一步包括 2个长度和螺纹密度相同、 但温度不 同的第一加热混合段和第二加热混合段以及 2个长度和螺紋密度相同、 但温度不同的第 一高温混合段和第二加热混合段。所述各加热混合段的温度沿物料流向依次增加。所述各 高温混合段的温度沿物料流向依次减少。
所述第一副螺杆、 第二副螺杆、 第一补偿螺杆和第二补偿螺杆分别进一步包括 2个 长度和螺纹密度相同、但温度不同的第一加热混合段和第二加热混合段。所述各加热混合 段的温度沿物料流向依次增加。
沿物料流向, 所述第一主螺杆、第二主螺杆分别依次具有相互连接的预混合段、绝热 隔离段、连接段、第一加热混合段、绝热隔离段、连接段、第二加热混合段、绝热隔离段、 连接段、 第一高温混合段、 绝热隔离段、 第二加热混合段、 连接段和出料段。
沿物料流向, 所述第一副螺杆、第二副螺杆、第一补偿螺杆和第二补偿螺杆分别依次 具有相互连接的预混合段、绝热隔离段、连接段、第一加热混合段、绝热隔离段、连接段、 第二加热混合段、 绝热隔离段、 连接段和出料段。
所述第一主螺杆、第二主螺杆对转, 并且第一主螺杆沿方向逆时针转动、第二主螺杆 沿方向顺时针转动。所述第一副螺杆、第一补偿螺杆、第二补偿螺杆和第二副螺杆依次相 互对转, 并分别沿方向顺时针转动、沿方向逆时针转动、沿方向顺时针转动、沿方向逆时 针转动。
所述第一主螺杆、第二主螺杆、第一副螺杆、第二副螺杆、 第一补偿螺杆和第二补偿 螺杆的直径为 40mm~300mm、 螺杆有效长径比 12〜92、 螺杆中心距 40mm〜300mm、 轴腔直径 10mm〜160mm、螺紋啮合深度 10mm〜50mm、螺距 5mm〜400mm。所述第 一主螺杆、第二主螺杆的直径大于、 第一副螺杆、第二副螺杆、第一补偿螺杆和第二补偿 螺杆的直径。
以下,将通过具体的实施例做进一步的说明,然而实施例仅是本发明可选实施方式的 举例,其所公开的特征仅用于说明及阐述本发明的技术方案,并不用于限定本发明的保护 范围。 附图说明 图 1是具有本发明的多极螺杆结构的挤出机的整体结构示意图。
图 2a是沿图 1A-A'方向的纵截面示意图。
图 2b是沿图 1 B-B'方向的纵截面示意图。
图 3是沿图 1A-A'方向的纵截面处的物料流向示意图。
图 4a是图 1挤出机多极螺杆结构的俯视图。
图 4b是图 4a的多极螺杆结构沿 C方向的侧视图。
图 4c是图 4a的多极螺杆结构的下层的螺杆的结构及啮合关系示意图。
图 4d是图 4a的多极螺杆结构的上层的螺杆的结构及啮合关系示意图。
图 5a是本发明的多极螺杆结构的主螺杆沿轴向的纵截面剖视图。
图 5b是本发明的多极螺杆结构的副螺杆、 补偿螺杆沿轴向的纵截面剖视图。
具体实施方式 根据本发明的权利要求和说明书所公开的内容, 本发明的技术方案具体如下所述: 实施例一:
如图 3和图 4a~4d所示, 一种具有额外分流汇流功能的挤出机多级螺杆结构, 包含 下部螺杆组、 外侧螺杆组和内侧螺杆组, 三者位于由内腔壳 22所围成的相互连通的下部 混合腔 24和上部混合腔 23内。
所述下层螺杆组包含结构相同的第一主螺杆 41 a和第二主螺杆 41 b, 二者相互啮合 对转并位于下部混合腔 24内。
所述外侧螺杆组包含结构相同的第一副螺杆 42a和第二副螺杆 42b, 二者之间设有 内侧螺杆组并位于上部混合腔 23内。
所述内侧螺杆组包含结构相同的第一补偿螺杆 43a和第二补偿螺杆 43b, 二者位于 外侧螺杆组的螺杆之间并位于上部混合腔 23内。
所述第一副螺杆 42a、 第一补偿螺杆 43a、 第二补偿螺杆 43b和第二副螺杆 42b依 次相互啮合对转, 四者圆心位于同一直线上。 所述第一主螺杆 41 a和第二主螺杆 41 b位 于第一副螺杆 42a、 第一补偿螺杆 43a、 第二补偿螺杆 43b和第二副螺杆 42b的下部, 并且分别与第一副螺杆 42a和第二副螺杆 42b相互啮合对转。
所述第一主螺杆 41 a和第二主螺杆 41 b结构相同, 都包含以下结构: 至少 2个连接 段 51、 至少 2个绝热隔离段 52、 至少 1个预混合段 53、 至少 1个加热混合段 54、 至少 1个高温混合段 55和 1个出料段 56。
所述第一副螺杆 42a、 第二副螺杆 42b、 第一补偿螺杆 43a和第二补偿螺杆 43b结 构相同, 都包含以下结构: 至少 2个连接段 51 '、 至少 2个绝热隔离段 52'、
至少 1个预混合段 53'、 至少 1个加热混合段 54'和 1个出料段 56'。
根据实际需要, 所述第一主螺杆 41a、 第二主螺杆 41 b可以分别进一步包括 2个长 度和螺纹密度相同、 但温度不同的第一加热混合段 54a和第二加热混合段 54b以及 2个 长度和螺紋密度相同、 但温度不同的第一高温混合段 55a和第二加热混合段 55b。 所述 各加热混合段 54的温度沿物料流向依次增加。 所述各高温混合段 55的温度沿物料流向 依次减少。
这样, 沿物料流向, 所述第一主螺杆 41a、 第二主螺杆 41 b分别依次具有相互连接 的预混合段 53、 绝热隔离段 52、 连接段 51、 第一加热混合段 54a、 绝热隔离段 52、 连 接段 51、 第二加热混合段 54b、 绝热隔离段 52、 连接段 51、 第一高温混合段 55a、 绝热 隔离段 52、 第二加热混合段 55b、 连接段 51和出料段 56。
根据实际需要, 所述第一副螺杆 42a、 第二副螺杆 42b、 第一补偿螺杆 43a和第二 补偿螺杆 43b分别进一步包括 2个长度和螺紋密度相同、 但温度不同的第一加热混合段 54a'和第二加热混合段 54b'。 所述各加热混合段 54'的温度沿物料流向依次增加。
这样, 沿物料流向, 所述第一副螺杆 42a、 第二副螺杆 42b、 第一补偿螺杆 43a和 第二补偿螺杆 43b分别依次具有相互连接的预混合段 53、 绝热隔离段 52、 连接段 51、 第一加热混合段 54a、绝热隔离段 52、连接段 51、第二加热混合段 54b、绝热隔离段 52、 连接段 51和出料段 56。
所述第一主螺杆 41 a和第二主螺杆 41 b的各相应连接段 51、 各相应绝热隔离段 52、 各相应预混合段 53、 各相应第一加热混合段 54a、 各相应第二加热混合段 54b、 各相应 第一高温混合段 55a、 各相应第二高温混合段 55b相互啮合。
所述第一副螺杆 42a和第一补偿螺杆 43a的各相应连接段 51 '、 各相应绝热隔离段 52'、 各相应预混合段 53'、 各相应第一加热混合段 54'相互啮合。
所述第一补偿螺杆 43a和第二补偿螺杆 43b的各相应连接段 51 '、各相应绝热隔离段 52'、 各相应预混合段 53'、 各相应加热混合段 54'相互啮合。
所述第二补偿螺杆 43b和第二副螺杆 42b的各相应连接段 51 '、 各相应绝热隔离段 52'、 各相应预混合段 53'、 各相应加热混合段 54'相互啮合。
所述第一主螺杆 41a的各连接段 51、 各绝热隔离段 52、 各预混合段 53、 各加热混 合段 54分别与第一副螺杆 42a的各连接段 51 '、 各绝热隔离段 52'、 各预混合段 53'、 各 加热混合段 54'相互啮合。
所述第二主螺杆 41 b的各连接段 51、 各绝热隔离段 52、 各预混合段 53、 各加热混 合段 54分别与第二副螺杆 42b的各连接段 51 '、 各绝热隔离段 52'、 各预混合段 53'、 各 加热混合段 54'相互啮合。
所述第一副螺杆 42a、第二副螺杆 42b的出料段 56'分别终止在第一主螺杆 41 a和第 二主螺杆 41 b上, 已经相应物料传输至第一主螺杆 41a和第二主螺杆 41 b。 所述第一补 偿螺杆 43a、 第二补偿螺杆 43b的出料段 56'分别终止在第一主螺杆 41 a和第二主螺杆 41 b的上方, 已经相应物料传输至第一主螺杆 41a和第二主螺杆 41 b。
所述的连接段 51和 51 '进一步包含第一齿轮 511和第二齿轮 512。所述第一齿轮 511 和第二齿轮 512具有 6〜16个齿并且相互交错 11.25°〜30°。
所述第一主螺杆 41 a和第二主螺杆 41 b的各相应第一齿轮 511相互啮合且各相应第 二齿轮 512相互啮合。 所述第一副螺杆 42a和第一补偿螺杆 43a、 第一补偿螺杆 43a和 第二补偿螺杆 43b、 第二补偿螺杆 43b和第二副螺杆 42b的各相应第一齿轮 511相互啮 合且各相应第二齿轮 512相互啮合。 所述第一主螺杆 41 a和第一副螺杆 42a的各相应第 一齿轮 511相互啮合且各相应第二齿轮 512相互啮合。 所述第二主螺杆 41 b和第二副螺 杆 42b的各相应第一齿轮 511相互啮合且各相应第二齿轮 512相互啮合。
由于第一齿轮 511和第二齿轮 512相互交错一定角度, 这就导致第一主螺杆 41 a的 第一齿轮 511只能和第二主螺杆 42a的第一齿轮 511相互啮合,而无法与第二主螺杆 42a 的第二齿轮 512相互啮合, 所以这就保证了第一主螺杆 41和第二主螺杆 42的第一齿轮 511相互啮合、 第二齿轮 512相互啮合, 从而将第一主螺杆 41 a和第二主螺杆 42a进行 锁合以固定其相对位置, 避免第一主螺杆 41a和第二主螺杆 42a在对转的过程中发生错 位和位移, 从而保证第一主螺杆 41 a和第二主螺杆 42a之间啮合完好。 同理, 所述第一 副螺杆 42a和第一补偿螺杆 43a、 第一补偿螺杆 43a和第二补偿螺杆 43b、 第二补偿螺 杆 43b和第二副螺杆 42b、 第一主螺杆 41a和第一副螺杆 42a、 第二主螺杆 41 b和第二 副螺杆 42b的各相应第一齿轮 511相互啮合且各相应第二齿轮 522的相互啮合, 也避免 上述各螺杆之间在对转的过程中发生错位和位移, 从而保证上述各螺杆之间啮合完好。
所述绝热隔离段 52是由绝热材料制成的螺纹结构,所述预混合段 53、第一加热混合 段 54a、 第二加热混合段 54b、 第一高温混合段 55a、 第二高温混合段 55b和出料段 56 是由导热材料制成的螺纹结构。 所述出料段 56位于主螺杆的末端并与 1个连接段 51相连,且所述出料段 56从与连 接段 51相连的位置向末端直径逐渐缩小, 形成圆台形结构。
所述第一主螺杆 41 a和第二主螺杆 41 b的连接段 51、绝热隔离段 52、预混合段 53、 第一加热混合段 54a、 第二加热混合段 54b、 第一高温混合段 55a、 第二高温混合段 55b 和出料段 56同轴并且直径相等。
所述绝热隔离段 52'是由绝热材料制成的螺纹结构, 所述预混合段 53'、 第一加热混 合段 54a'、 第二加热混合段 54b'和出料段 56'是由导热材料制成的螺纹结构。
所述出料段 56'位于主螺杆的末端并与 1个连接段 51 '相连,且所述出料段 56'从与连 接段 51 '相连的位置向末端直径逐渐缩小, 形成圆台形结构。
所述第一副螺杆 42a、 第二副螺杆 42b、 第一补偿螺杆 43a和第二补偿螺杆 43b的 连接段 51 '、绝热隔离段 52'、预混合段 53'、第一加热混合段 54a'、第二加热混合段 54b' 和出料段 56'同轴并且直径相等。
如图 4a〜4d、 图 5a和 5b所示, 所述第一主螺杆 41a和第二主螺杆 41 b的各连接 段 51、 绝热隔离段 52、 预混合段 53、 第一加热混合段 54a、 第二加热混合段 54b、 第一 高温混合段 55a、 第二高温混合段 55b和出料段 56为中空结构, 其内部分别具有相互连 通且同轴的轴腔 61、 轴腔 62、 轴腔 63、 轴腔 64a、 轴腔 64b、 轴腔 65a、 轴腔 65b和 轴腔 66, 上述各轴腔内部设有加热系统 7。
所述连接段 51和绝热隔离段 52的轴腔 61和 62的直径相等。所述预混合段 53、第 一加热混合段 54a、 第二加热混合段 54b、 第一高温混合段 55a、 第二高温混合段 55b 的轴腔 63、 64a、 64b、 65a、 65b的直径相等。 所述轴腔 61、 62的直径小于轴腔 63、 64a、 64b、 65a、 65b的直径。 所述出料段 56的轴腔 66的直径随出料段 56直径的变化 而变化, 增大和 /或减小。
所述加热系统 7包含位于各轴腔轴心并依次穿过各轴腔的通路 70, 所述通路 70是 由绝热绝缘材料制成的中空结构,其内部设置有与外界相连的多组加热电路,用于向位于 通路 70外侧并与其相互连接的各加热电阻供电。
所述加热电阻包括分别位于预混合段 53、第一加热混合段 54a、第二加热混合段 54b、 第一高温混合段 55a、第二高温混合段 55b和出料段 56内部的加热电阻 73、 74a、 74b、 75a > 75b和 76。
所述各加热电阻 73、 74a、 74b, 75a、 75b和 76在与外界相连的多组加热电路的控 制下, 分别相对独立地对预混合段 53、 第一加热混合段 54a、 第二加热混合段 54b、 第 一高温混合段 55a、 第二高温混合段 55b和出料段 56进行加热。
如图 4a〜4d、 图 5a和 5b所示, 所述第一副螺杆 42a、 第二副螺杆 42b、 第一补偿 螺杆 43a和第二补偿螺杆 43b的连接段 51 '、 绝热隔离段 52'、 预混合段 53'、 第一加热 混合段 54a'、第二加热混合段 54b'和出料段 56'为中空结构, 其内部分别具有相互连通且 同轴的轴腔 61 '、 轴腔 62'、 轴腔 63'、 轴腔 64a'、 轴腔 64'和轴腔 66', 上述各轴腔内部 设有加热系统 7'。
所述连接段 51 '和绝热隔离段 52'的轴腔 61 '和 62'的直径相等。所述预混合段 53'、第 一加热混合段 54a'、 第二加热混合段 54b'的轴腔 63'、 64a'、 64b'的直径相等。 所述轴腔 61 '、 62'的直径小于轴腔 63'、 64a'、 64b'的直径。 所述出料段 56'的轴腔 66'的直径随出 料段 56'直径的变化而变化, 增大和 /或减小。
所述加热系统 7'包含位于各轴腔轴心并依次穿过各轴腔的通路 70', 所述通路 70'是 由绝热绝缘材料制成的中空结构,其内部设置有与外界相连的多组加热电路,用于向位于 通路 70'外侧并与其相互连接的各加热电阻供电。
所述加热电阻包括分别位于预混合段 53'、 第一加热混合段 54a'、 第二加热混合段 54b'和出料段 56'内部的加热电阻 73'、 74a'、 74b'和 76'。所述各加热电阻 73'、 74a'、 74b' 和 76'在与外界相连的多组加热电路的控制下, 分别相对独立地对预混合段 53'、 第一加 热混合段 54a'、 第二加热混合段 54b'和出料段 56'进行加热。
所述第一主螺杆 41a和第二主螺杆 41 b的各连接段 51、 绝热隔离段 52、 预混合段 53、 第一加热混合段 54a、 第二加热混合段 54b、 第一高温混合段 55a、 第二高温混合段 55b和出料段 56的温度关系、 长度关系和螺紋密度关系为:
预混合段 53温度小于第一加热混合段 54a温度;
第一加热混合段 54a温度小于第二加热混合段 54b温度;
第二加热混合段 54b温度小于第一高温混合段 55a温度;
第一高温混合段 55a温度大于第二高温混合段 55b温度;
第二高温混合段 55b温度大于出料段 56温度;
加热混合段 54的长度大于预混合段 53和高温混合段 55的长度;
加热混合段 54的螺纹密度小于预混合段 53的螺纹密度;
预混合段 53的螺纹密度小于高温混合段 55的螺纹密度;
高温混合段 55的螺纹密度与出料段 56的螺纹密度相等;
所述出料段 56为圆台形结构, 其母线与轴线的夹角 β1为 10°〜35°。 所述第一副螺杆 42a、 第二副螺杆 42b、 第一补偿螺杆 43a和第二补偿螺杆 43b的 连接段 51 '、绝热隔离段 52'、预混合段 53'、第一加热混合段 54a'、第二加热混合段 54b' 和出料段 56'的温度关系、 长度关系和螺纹密度关系为:
预混合段 53'温度小于第一加热混合段 54a'温度;
第一加热混合段 54a'温度小于第二加热混合段 54b'温度;
第二加热混合段 54b'温度大于出料段 56'温度;
加热混合段 54'的长度大于预混合段 53'的长度;
加热混合段 54'的螺纹密度小于预混合段 53'的螺纹密度;
出料段 56'的螺纹密度与高温混合段 55相等;
所述出料段 56'为圆台形结构, 其母线与轴线的夹角 β2为 5°〜25°。
所述第一主螺杆 41a、 第二主螺杆 41 b对转, 并且第一主螺杆 41a沿方向 81a逆时 针转动、 第二主螺杆 41 b沿方向 81 b顺时针转动。 所述第一副螺杆 42a、 第一补偿螺杆 43a、 第二补偿螺杆 43b和第二副螺杆 42b依次相互对转, 并分别沿方向 82a顺时针转 动、 沿方向 83a逆时针转动、 沿方向 83b顺时针转动、 沿方向 82b逆时针转动。
所述第一主螺杆 41a、 第二主螺杆 41 b、 第一副螺杆 42a、 第二副螺杆 42b、 第一补 偿螺杆 43a和第二补偿螺杆 43b的直径为 40mm~300mm、 螺杆有效长径比 12〜92、螺 杆中心距 40mm〜300mm、 轴腔直径 10mm〜160mm、 螺纹啮合深度 10mm〜50mm、 螺距 5mm〜400mm。 所述第一主螺杆 41 a、 第二主螺杆 41 b的直径大于、 第一副螺杆 42a、 第二副螺杆 42b、 第一补偿螺杆 43a和第二补偿螺杆 43b的直径。
通过上述各混合段的温度、螺纹密度和长度的设定, 沿着物料流向, 物料在第一主螺 杆 41a和第二主螺杆 41 b、 第一主螺杆 41a和第一副螺杆 42a、 第二主螺杆 41 b和第二 副螺杆 42b、 第一副螺杆 42a和第一补偿螺杆 43a、 第一补偿螺杆 43a和第二补偿螺杆 43b、 第二补偿螺杆 43b和第二副螺杆 42b中间被不同螺纹密度的混合段进行不同程度 的挤压混合, 并被加热至不同的温度, 从而所述物料在下部混合腔 24和上部混合腔 23 内达到充分混合并被分别加热到适合的温度, 最后在下部混合腔 24内部混合, 随后被挤 出。
以下进一步阐述, 物料在具有所述螺杆结构的挤出机中, 进行挤压混合的过程。 图 1所示的是一种制备复原米中常见的挤压机,包含进料系统 1、挤压腔体 2和出料 系统 3。其中进料系统 1进一步包括存料器 11和进料口 12。存料器 11和进料口 12进一 步包括用于进第一组物料的存料器 11a和进料口 12a、 用于进第二组物料的存料器 11 b 和进料口 12b。所述挤压腔体 2进一步包括外腔壳 21、 内腔壳 22以及上述内腔壳所围成 的上部混合腔 23和下部混合腔 24。 出料系统 3进一步包括出料口 31、 切割刀 32和模 具 33。
如图 2a、 2b所示,在所述下部混合腔 24内,设有第一副螺杆 42a、第二副螺杆 42b、 第一补偿螺杆 43a和第二补偿螺杆 43b,在所述上部混合腔 23内,设有第一主螺杆 41 a、 第二主螺杆 41 b。
如图 2a、 2b和 图 3所示, 第一组物料从从存料器 11 a处下落, 通过进料口 12a进 入上部混合腔 23的左侧腔体,在第一副螺杆 42a和第一补偿螺杆 43a的转动下,进入二 者之间的孔隙。 第一副螺杆 42a沿方向 82a顺时针转动、 第一补偿螺杆 43a沿方向 83a 逆时针转动, 在二者的啮合对转下, 第一组物料 91a被挤压混合, 并随后在第一副螺杆 42a和第一补偿螺杆 43a的转动带动下, 形成 2个物料流 921a和 922a。
同理第二组物料从从存料器 11 b处下落,通过进料口 12b进入上部混合腔 23的右侧 腔体, 在第二副螺杆 42b和第二补偿螺杆 43b的转动下, 进入二者之间的孔隙。 第二副 螺杆 42b沿方向 82b逆时针转动、 第二补偿螺杆 43b沿方向 83b顺时针转动, 在二者的 啮合对转下,第二组物料 91 b被挤压混合,并随后在第二副螺杆 42b和第二补偿螺杆 43b 的转动带动下, 形成 2个物料流 921 b和 922b。
第一副螺杆 42a沿方向. 82a顺时针转动、 第一主螺杆 41 a沿方向 81a逆时针转动, 在二者的啮合对转下,物料流 921 a被挤压混合后形成物料流 931 a和 932a, 二者分别被 第一主螺杆 41 a和第一副螺杆 42a带动带回至两螺杆的下部和上部, 形成物料流 941 a 和 942a。
同理, 第二副螺杆 42b沿方向 82b逆时针转动、 第二主螺杆 41 b沿方向 81 b顺时针 转动, 在二者的啮合对转下, 物料流 921 b被挤压混合后形成物料流 931 b和 932b, 二者 分别被第二主螺杆 41b和第二副螺杆 42b带动带回至两螺杆的下部和上部, 形成物料流 941 b和 942b。
物料流 941 a和 941 b在啮合对转的第一主螺杆 41 a和第二主螺杆 42b的作用下,经 挤压混合, 形成沿方向 81 a的物料流 951a、 沿方向 82a的物料流 951 b和向上的物料流 952。 所述物料流 951a和 951 b分别按照物料流 921a和 921 b的流动方式, 与上述这两 个物料流分别汇流, 再次被挤压混合。 物料流 951与物料流 922a和 922b汇流, 在第一 补偿螺杆 43a和第二补偿螺杆 43b的转动下, 带动形成物料流 923a和 923b。
物料流 923a和 923b在啮合对转的第一补偿螺杆 43a和第二补偿螺杆 43b的转动带
替换页 (细则第 26条) 动下, 挤压混合, 并形成物料流 933a和 933b, 二者随后被上述两个螺杆分别带动, 分 别沿方向 83a和 83b流动, 形成物料流 943a和 943b。
物料流 943a和 943b分别与 942a、 942b汇流, 并分别与新加入的第一组物料 91a、 第二组物料流 91 b汇流, 随后分别被第一副螺杆 42a和第一补偿螺杆 43a、 第二副螺杆 42b和第二补偿螺杆 43b挤压混合。
上述物料流动过程不断循环。 在在上述过程中, 如图 4a〜4d、 图 5a和 5b所示, 接 通外界电路, 对加热系统 7通电, 通过位于通路 70内部的各个电线及电路, 分别对位于 第一主螺杆 41 a、 第二主螺杆 41 b的各个预混合段 53、 第一加热混合段 54a、 第二加热 混合段 54b、第一高温混合段 55a、第二高温混合段 55b和出料段 56内部的加热电阻 73、 74a、 74b、 75a、 75b和 76通电加热, 并对各相对应的混合段加热升温, 并且分别对位 于第一副螺杆 42a、 第二副螺杆 42b、 第一补偿螺杆 43a和第二补偿螺杆 43b的各个预 混合段 53'、 第一加热混合段 54a'、 第二加热混合段 54b'和出传料段 56'内部的加热电阻 73'、 74a'、 74b'和 76'通电加热, 并对各相对应的混合段加热升温。
所述物料经过如下的加热混合过程:
1、 预混合
第一组物料 91 a从第一进料口 12a进入与其相邻的预混合段 53和 53', 并在第一主 螺杆 41 a和第一副螺杆 42a、 第一副螺杆 42a和第一补偿螺杆 43a的相互啮合的预混合 段 53和 53'的对转下, 被挤压混合。 为了使得进入的物料可以被快速充分的混合, 将预 混合段 53和 53'设计具有较大的螺紋密度, 以增强剪切力, 同时为了避免物料在加热条 件下被胶凝化过度, 此时仅对物料进行初步加热, 故设计预混合段 53和 53'的温度较低。
第二组物料 91 b从第二进料口 12b进入与其相邻的预混合段 53和 53', 并在第二主 螺杆 41 b和第二副螺杆 42b、 第二副螺杆 42b和第二补偿螺杆 43b的相互啮合的预混合 段 53和 53'的对转下, 被挤压混合。 为了使得进入的物料可以被快速充分的混合, 将预 混合段 53和 53'设计具有较大的螺纹密度, 以增强剪切力, 同时为了避免物料在加热条 件下被胶凝化过度, 此时仅对物料进行初步加热, 故设计预混合段 53和 53'的温度较低。
2、 加热混合
随后第一组物料 91a进入各相互啮合的加热混合段区域, 在温度较高、 螺纹密度较 小、长度较长的第一主螺杆 41 a和第一副螺杆 42a、第一副螺杆 42a和第一补偿螺杆 43a 的相互啮合的第一加热混合段 54a和 54a'、 54a'和 54a'处挤压混合, 随后在第二加热混 合段 54b和 54b'、 54b'和 54b'处挤压混合。 同理第二组物料也相应的经过第二主螺杆 41 b和第二副螺杆 42b、 第二副螺杆 42b 和第二补偿螺杆 43b的相互啮合的第一加热混合段 54a和 54a'、54a'和 54a'处挤压混合, 随后在第二加热混合段 54b和 54b'、 54b'和 54b'处挤压混合。
这一过程中,物料可以在较长的螺杆上进行充分的换热,被螺杆加热并进一步挤压混 合, 此时由于加热过程中会带来物料的胶凝化, 故设计密度较低的第一加热混合段 54a、 54a'和第二加热混合段 54b、 54b'以使得物料内部的气体以及水蒸气等可以扩散出去, 进 行换气, 从而避免物料内部具有较多气体, 在出口处气体扩散过快, 带来制成颗粒的破裂 以及裂纹。 - 为了使得各组物料可以被逐渐升温,避免温差过大,所以可以根据需要设计有若干的 加热混合段并不局限于 2 个并且沿物料流向, 各加热混合段温度逐渐上升, 在本实施例 中, 第二加热混合段 54b的温度高于第一加热混合段 54a、 第二加热混合段 54b'的温度 高于第一加热混合段 54a'。
3、 传输
第一副螺杆 42a、 第二副螺杆 42b、 第一补偿螺杆 43a和第二补偿螺杆 43b的出料 段 56'将各螺杆上的物料传输给第一主螺杆 41 a和第二主螺杆 41 b。
4、 高温混合
随后第一组物料 91 a进入各相互啮合的高温混合段区域, 在温度最高、 螺纹密度大、 长度较 ^豆的第一主螺杆 41a和第一副螺杆 42a、 第一副螺杆 42a和第一补偿螺杆 43a的 相互啮合的第一高温混合段 55a和 55a'、 55a'和 55a'处挤压混合, 随后在第二高温混合 段 55b和 55b'、 55b'和 55b'处挤压混合。
同理第二组物料也相应的经过第二主螺杆 41 b和第二副螺杆 42b、 第二副螺杆 42b 和第二补偿螺杆 43b的相互啮合的第一高温混合段 55a和 55a'、55a'和 55a'处挤压混合, 随后在第二高温混合段 55b和 55b'、 55b'和 55b'处挤压混合。
此时物料在高温下进行进一步的胶凝化, 同时螺纹密度最大,使得物料被迅速且充分 的剪切混合, 使得物料混合均匀, 由于此时胶凝化程度较大, 物料粘度增大, 故设计较短 的高温混合段 55以避免加热时间过长、 胶凝化过度, 并使得物料可以迅速离开高温混合 段 55避免粘黏。 随后物料被绝热隔离段 51送入下一组第三混合段 55b, 其温度较低, 从而使得物料被进一步的再次挤压混合, 并逐步降温。
5、 出料
被挤压的物料, 在螺杆的挤压作用下, 以螺旋线的方式, 沿着图 1 和图 4所示的物 料流向运动, 从各螺杆的前端向末端运动, 最后, 物料被送入第一主螺杆 41a和第二主 螺杆 41 b的出料段 56, 稍加挤压后被传送至出料口 31。 物料从出料口 31被挤压至出口 处的模具 33处, 从该模具 33的挤压孔处挤压处, 并被切割刀 32迅速切割, 形成颗粒。
这样可以从不同的进料口投入不同的物料,并且由于两个补偿螺杆的存在,可以有效 的避免四螺杆结构的中间地带所形成的混合真空,避免该处的物料无法进行或很少被搅拌 混合。同时两个补偿螺杆的存在也增加了物料之间的分流和汇流情况,在同等的转述条件 下, 有效的增加了物料之间的交换, 提高了混合效率。 通过上述螺杆结构和挤压过程,物料被充分挤压混合,并根据需要被加热至所需的胶凝 化程度。 各混合段的加热温度独立可控, 可以根据实际需要加以调整。 上述过程中的技术参数如下:
螺杆直径 螺杆有效长径 螺杆中心距 β
螺杆 41a和 41 b 40mm~300mm 12〜72 40mm~300mm 10ο〜35。
螺杆 42a和 42b 40mm~300mm 12〜72 40mm~300mm 5°〜25。
螺杆 43a和 43b 40mm~300mm 12〜72 40mm~300mm 5°〜250 轴腔直径 螺纹啮合深度 螺距 温度
连接段 51 10mm〜160mm 10mm〜50mm 5mm~400mm
绝热隔离段 52 10mm~160mm 10mm~50mm 5mm〜400mm
预混合段 53 10mm~ 160mm 10mm〜50mm 5mm~400mm 80〜85°C 加热混合段 54a 10mm~ 160mm 10mm〜50mm 5mm~400mm 85〜90°C 加热混合段 54b 10mm〜160mm 10mm~50mm 5mm〜400mm 90〜95°C 高温混合段 55a 10mm〜160mm 10mm~50mm 5mm~400mm 95〜100。C 高温混合段 55b 10mm~160mm 10mm~50mm 5mm~400mm 95〜98。C 出料段 56 10mm〜160mm 10mm〜50mm 5mm~400mm 85〜90°C 连接段 51 ' 10mm〜160mm 10mm~50mm 5mm~400mm
绝热隔离段 52' 10mm~ 160mm 10mm〜50mm 5mm~400mm
预混合段 53' 10mm~160mm 10mm〜50mm 5mm~400mm 80〜85°C 加热混合段 54a' 10mm~160mm 10mm~50mm 5mm~400mm 85〜90°C 加热混合段 54b' 10mm~ 160mm 10mm ~50mm 5mm~400mm 90〜95°C 出料段 56' 10mm〜 160mm 10mm ~50mm 5mm~400mm 85〜90。C 实施例二: 采用以下技术参数改进实施例一:
螺杆直径 螺杆有效长径比 螺杆中心距 螺杆 41a和 41 b 90mm 35 90mm
螺杆 42a和 42b 30mm 35 30mm
螺杆 43a和 43b 30mm 35 30mm 轴腔直径 螺纹啮合深度 螺距 温度
连接段 51 20mm 15mm
绝热隔离段 52 20mm 15mm 45mm
40mm
预混合段 53 15mm 45mm 80°C
40mm
加热混合段 54a 15mm 60mm 85 °C
40mm
加热混合段 54b 15mm 60mm 93 °C
40mm
高温混合段 55a 15mm 30mm 97。C
40mm
高温混合段 55b 15mm 30mm 95 °C
出料段 56 40mm 15mm 30mm 85 °C 实施例三: 采用以下技术参数改进实施例一:
螺杆直径 螺杆有效长径比 螺杆中心距 螺杆 41 a和 41 b 90mm 65 90mm
螺杆 42a和 42b 30mm 65 30mm
螺杆 43a和 43b 30mm 65 30mm 轴腔直径 螺紋啮合深度 螺距 温度 连接段 51 20mm 20mm
绝热隔离段 52 20mm 20mm 60mm
预混合段 53 30mm 20mm 60mm 82 °C 加热混合段 54a 30mm 20mm 80mm 87 °C 加热混合段 54b 30mm 20mm 80mm 94 °C 高温混合段 55a 30mm 20mm 40mm 98 °C 高温混合段 55b 30mm 20mm 40mm 96 °C 出料段 56 30mm 20mm 40mm 88 °C 实施例四: 采用以下技术参数改进实施例一- 螺杆直径 螺杆有效长径比 螺杆中心距 螺杆 41 a和 41 b 90mm 65 120mm
螺杆 42a和 42b 30mm 65 40mm
螺杆 43a和 43b 30mm. 65 40mm 轴腔直径 螺纹啮合深度 螺距 温度 连接段 51 20mm 25mm
绝热隔离段 52 20mm 25mm 75mm
预混合段 53 30mm 25mm 75mm 84 °C 加热混合段 54a 30mm 25mm 100mm 89V 加热混合段 54b 30mm 25mm 100mm 95 °C 高温混合段 55a 30mm 25mm 50mm 99 °C 高温混合段 55b 30mm 25mm 50mm 97 V 出料段 56 30mm 25mm 50mm 90。C 实施例五: 采用以下技术参数改进实施例一: 螺杆直径 螺杆有效长径比 螺杆中心距 螺杆 41a和 41 b 160mm 25 160mm
螺杆 42a和 42b 50mm 25 53.33mm
螺杆 43a和 43b 50mm 25 53.33mm 轴腔直径 螺紋啮合深度 螺距 温度 连接段 51 20mm 25mm
绝热隔离段 52 20mm 25mm 75mm
预混合段 53 80mm 25mm 75mm 80 °C 加热混合段 54a 80mm 25mm 100mm 85 °C 加热混合段 54b 80mm 25mm 100mm 93 °C 高温混合段 55a 80mm 25mm 50mm 97 °C 高温混合段 55b 80mm 25mm 50mm 95。C 出料段 56 80mm 25mm 50mm 85 °C 实施例六: 采用以下技术参数改进实施例一:
螺杆直径 螺杆有效长径比 螺杆中心距 螺杆 41 a和 41 b 160mm 55 160mm
螺杆 42a和 42b 50mm 55 53.33mm
螺杆 43a和 43b 50mm 55 53.33mm 轴腔直径 螺纹啮合深度 螺距. 温度 连接段 51 20mm 30mm
绝热隔离段 52 20mm 30mm 90mm
预混合段 53 70mm 30mm 90mm 82 °C 加热混合段 54a 70mm 30mm 120mm 87 °C 加热混合段 54b 70mm 30mm 120mm 94 °C 高温混合段 55a 70mm 30mm 60mm 98 °C 高温混合段 55b 70mm 30mm 60mm 96 °C 出料段 56 70mm 30mm 60mm 88 °C 实施例七: 采用以下技术参数改进实施例一:
螺杆直径 螺杆有效长径比 螺杆中心距 螺杆 41a和 41 b 160mm 55 220mm
螺杆 42a和 42b 50mm 55 73.33mm
螺杆 43a和 43b 50mm 55 73.33mm 轴腔直径 螺纹啮合深度 螺距 温度 连接段 51 20mm 35mm
绝热隔离段 52 20mm 35mm 105mm
预混合段 53 60mm 35mm 105mm 84 °C 加热混合段 54a 60mm 35mm 140mm 89 °C 加热混合段 54b 60mm 35mm 140mm 95 °C 高温混合段 55a 60mm 35mm 70mm 99 °C 高温混合段 55b 60mm 35mm 70mm 97。C 出料段 56 60mm 35 mm 70mm 90 °C 实施例八: 采用以下技术参数改进实施例一:
螺杆直径 螺杆有效长径比 螺杆中心距 螺杆 41a和 41b 240mm 15 240mm
螺杆 42a和 42b 80mm 15 80mm
螺杆 43a和 43b 80mm 15 80mm 轴腔直径 螺紋啮合深度 螺距 温度 连接段 51 20mm 35mm
绝热隔离段 52 20mm 35mm 105mm
预混合段 53 120mm 35mm 105mm 80 °C 加热混合段 54a 120mm 35mm 140mm 85 °C 加热混合段 54b 120mm 35mm 140mm 93 °C 高温混合段 55a 120mm 35mm 70mm 97 °C 高温混合段 55b 120mm 35mm 70mm 95 °C 出料段 56 120mm 35mm 70mm 85 °C 实施例九: 采用以下技术参数改进实施例一:
螺杆直径 螺杆有效长径比 螺杆中心距 螺杆 41a和 41 b 240mm 45 240mm
螺杆 42a和 42b 80mm 45 80mm
螺杆 43a和 43b 80mm 45 80mm 轴腔直径 螺紋啮合深度 螺距 温度 连接段 51 20mm 40mm
绝热隔离段 52 20mm 40mm 120mm
预混合段 53 110mm 40mm 120mm 82 °C 加热混合段 54a 110mm 40mm 160mm 87 °C 加热混合段 54b 110mm 40mm 160mm 94 "C 高温混合段 55a 110mm 40mm 80mm 98 °C 高温混合段 55b 110mm 40mm 80mm 96 °C 出料段 56 110mm 40mm 80mm 88 °C 实施例十: 采用以下技术参数改进实施例一 螺杆直径 螺杆有效长径比 螺杆中心距
螺杆 41a和 41 b 240mm 45 280mm
螺杆 42a和 42b 80mm 45 93.33mm
螺杆 43a和 43b 80mm 45 93.33mm ' 轴腔直径 螺紋啮合深度 螺距 温度 连接段 51 20mm 45mm
绝热隔离段 52 20mm 45mm 135mm
预混合段 53 100mm 45mm 135mm 84 °C
加热混合段 54a 100mm 45mm 180mm 89 °C
加热混合段 54b 100mm 45mm 180mm 95 °C
高温混合段 55a 100mm 45mm 90mm 99 °C
高温混合段 55b 100mm 45mm 90mm 97 °C
出料段 56 100mm 45mm 90mm 90 °C 上述内容为本发明的具体实施例的例举,对于其中未详尽描述的设备和结构,应当理 解为采取本领域已有的通用设备及通用方法来予以实施。

Claims

权 利 要 求 书
1、 一种具有额外分流汇流功能的挤出机多级螺杆结构, 其特征在于, 包含下部螺杆组、 外侧螺杆组和内侧螺杆组,三者位于由内腔壳(22)所围成的相互连通的下部混合腔(24) 和上部混合腔 (23) 内;
所述下层螺杆组包含结构相同的第一主螺杆(41a)和第二主螺杆(41 b), 二者相互啮合 对转并位于下部混合腔 (24) 内;
所述外侧螺杆组包含结构相同的第一副螺杆(42a)和第二副螺杆(42b), 二者之间设有 内侧螺杆组并位于上部混合腔 (23) 内;
所述内侧螺杆组包含结构相同的第一补偿螺杆(43a)和第二补偿螺杆(43b), 二者位于 外侧螺杆组的螺杆之间并位于上部混合腔 (23) 内;
所述第一副螺杆(42a)、第一补偿螺杆(43a)、第二补偿螺杆(43b)和第二副螺杆(42b) 依次相互啮合对转, 四者圆心位于同一直线上;
所述第一主螺杆(41a)和第二主螺杆(41b)位于第一副螺杆(42a)、第一补偿螺杆(43a)、 第二补偿螺杆 (43b) 和第二副螺杆 (42b) 的下部, 并且分别与第一副螺杆 (42a) 和 第二副螺杆 (42b) 相互啮合对转。
2、 如权利要求 1 所述的挤出机多级螺杆结构, 其特征在于, 所述第一主螺杆 (41a) 和 第二主螺杆 (41 b) 结构相同, 都包含以下结构- 至少 2个连接段 (51 );
至少 2个绝热隔离段 (52);
至少 1个预混合段 (53);
至少 1个加热混合段 (54);
至少 1个高温混合段 (55);
1个出料段 (56);
所述第一主螺杆(41a)和第二主螺杆(41 b) 的各相应连接段 (51 )、 各相应绝热隔离段 (52)、 各相应预混合段 (53)、 各相应加热混合段(54)、 各相应高温混合段(55)相互 啮合;
所述第一副螺杆(42a)、第二副螺杆(42b)、第一补偿螺杆(43a)和第二补偿螺杆(43b) 结构相同, 都包含以下结构: 至少 2个连接段 (51');
至少 2个绝热隔离段 (52');
至少 1个预混合段 (53');
至少 1个加热混合段 (54');
1个出料段 (56');
所述第一副螺杆 (42a) 和第一补偿螺杆 (43a) 的各相应连接段 (51')、 各相应绝热隔 离段 (52')、 各相应预混合段 (53')、 各相应加热混合段 (54') 相互啮合;
所述第一补偿螺杆 (43a) 和第二补偿螺杆 (43b) 的各相应连接段 (51')、 各相应绝热 隔离段 (52')、 各相应预混合段 (53')、 各相应加热混合段 (54') 相互啮合;
所述第二补偿螺杆 (43b) 和第二副螺杆 (42b) 的各相应连接段 (51')、 各相应绝热隔 离段 (52')、 各相应预混合段 (53')、 各相应加热混合段 (54') 相互啮合。
3、 如权利要求 2所述的挤出机多级螺杆结构, 其特征在于, 所述第一主螺杆 (41a) 的 各连接段 (51)、 各绝热隔离段(52)、 各预混合段 (53)、 各加热混合段 (54)分别与第 一副螺杆 (42a) 的各连接段 (51')、 各绝热隔离段 (52')、 各预混合段 (53')、 各加热 混合段 (54') 相互啮合;
所述第二主螺杆 (41b) 的各连接段 (51)、 各绝热隔离段 (52)、 各预混合段 (53)、 各 加热混合段 (54) 分别与第二副螺杆 (42b) 的各连接段 (51')、 各绝热隔离段 (52')、 各预混合段 (53')、 各加热混合段 (54') 相互啮合;
所述第一副螺杆(42a)、第二副螺杆(42b)的出料段(56')分别终止在第一主螺杆(41a) 和第二主螺杆(41b)上, 已经相应物料传输至第一主螺杆(41a)和第二主螺杆(41b); 所述第一补偿螺杆 (43a)、 第二补偿螺杆 (43b) 的出料段 (56') 分别终止在第一主螺 杆 (41a) 和第二主螺杆 (41b) 的上方, 已经相应物料传输至第一主螺杆 (41a) 和第 二主螺杆 (41b)。
4、 如权利要求 3所述的挤出机多级螺杆结构, 其特征在于, 所述绝热隔离段 (52) 是由 绝热材料制成的螺纹结构, 所述预混合段 (53)、 加热混合段 (54)、 高温混合段 (55) 和出料段 (56) 是由导热材料制成的螺纹结构;
所述绝热隔离段 (52') 是由绝热材料制成的螺纹结构, 所述预混合段 (53')、 加热混合 段 (54') 和出料段 (56') 是由导热材料制成的螺纹结构; 所述出料段 (56) 位于主螺杆的末端并与 1个连接段 (51 ) 相连, 且所述出料段 (56) 从与连接段 (51 ) 相连的位置向末端直径逐渐缩小, 形成圆台形结构;
所述出料段 (56') 位于主螺杆的末端并与 1个连接段 (51 ') 相连, 且所述出料段 (56') 从与连接段 (51') 相连的位置向末端直径逐渐缩小, 形成圆台形结构;
所述第一主螺杆 (41a) 和第二主螺杆 (41b) 的连接段 (51 )、 绝热隔离段 (52)、 预混 合段 (53)、 加热混合段 (54)、 高温混合段 (55) 和出料段 (56) 同轴并且直径相等; 所述第一副螺杆(42a)、第二副螺杆(42b)、第一补偿螺杆(43a)和第二补偿螺杆(43b) 的连接段(51')、 绝热隔离段(52')、预混合段(53')、加热混合段(54')和出料段(56') 同轴并且直径相等。
5、 如权利要求 4所述的挤出机多级螺杆结构, 其特征在于, 所述第一主螺杆 (41a) 和 第二主螺杆 (41b) 的各连接段 (51 )、 绝热隔离段 (52)、 预混合段 (53)、 加热混合段 (54)、 高温混合段(55)和出料段(56) 为中空结构, 其内部分别具有相互连通且同轴 的轴腔 (61 )、 轴腔 (62)、 轴腔 (63)、 轴腔 (64)、 轴腔 (65) 和轴腔 (66), 上述各 轴腔内部设有加热系统 (7);
所述连接段 (51 ) 和绝热隔离段 (52) 的轴腔 (61 ) 和 (62) 的直径相等;
所述预混合段 (53)、 加热混合段 (54)、 高温混合段 (55) 的轴腔 (63)、 (64)、 (65) 的直径相等;
所述轴腔 (61 )、 (62) 的直径小于轴腔 (63)、 (64)、 (65) 的直径;
所述出料段 (56) 的轴腔 (66) 的直径随出料段 (56) 直径的变化而变化, 增大和 /或减 小;
所述加热系统(7)包含位于各轴腔轴心并依次穿过各轴腔的通路(70), 所述通路(70) 是由绝热绝缘材料制成的中空结构,其内部设置有与外界相连的多组加热电路,用于向位 于通路 (70) 外侧并与其相互连接的各加热电阻供电;
所述加热电阻包括分别位于预混合段 (53)、 加热混合段 (54)、 高温混合段 (55) 和出 料段 (56) 内部的加热电阻 (73)、 (74)、 (75) 和 (76);
所述各加热电阻 (73)、 (74)、 (75) 和 (76) 在与外界相连的多组加热电路的控制下, 分别相对独立地对预混合段 (53)、 加热混合段(54)、 高温混合段(55)和出料段(56) 进行加热。 6、 如权利要求 5所述的挤出机多级螺杆结构, 其特征在于, 所述第一副螺杆 (42a)、 第 二副螺杆 (42b)、 第一补偿螺杆 (43a) 和第二补偿螺杆 (43b) 的连接段 (51')、 绝热 隔离段 (52' )、 预混合段 (53')、 加热混合段 (54') 和出料段 (56') 为中空结构, 其内 部分别具有相互连通且同轴的轴腔 (61' )、 轴腔 (62')、 轴腔 (63')、 轴腔 (64')和轴腔 (66'), 上述各轴腔内部设有加热系统 (7');
所述连接段 (51') 和绝热隔离段 (52') 的轴腔 (61') 和 (62') 的直径相等; 所述预混合段 (53')、 加热混合段 (54' )、 的轴腔 (63' )、 (64') 的直径相等; 所述轴腔 (61 ' )、 (62') 的直径小于轴腔 (63' )、 (64,) 的直径;
所述出料段 (56') 的轴腔 (66') 的直径随出料段 (56') 直径的变化而变化, 增大和 /或 减小;
所述加热系统(7')包含位于各轴腔轴心并依次穿过各轴腔的通路(70'),所述通路(70') 是由绝热绝缘材料制成的中空结构,其内部设置有与外界相连的多组加热电路,用于向位 于通路 (70') 外侧并与其相互连接的各加热电阻供电;
所述加热电阻包括分别位于预混合段 (53' )、 加热混合段 (54') 和出料段 (56') 内部的 加热电阻 (73' )、 (74') 和 (76');
所述各加热电阻(73')、 (74')和 (76')在与外界相连的多组加热电路的控制下, 分别相 对独立地对预混合段 (53')、 加热混合段 (54') 和出料段 (56') 进行加热。
7、 如权利要求 6所述的挤出机多级螺杆结构, 其特征在于, 所述第一主螺杆 (41a) 和 第二主螺杆 (41b) 的各连接段 (51 )、 绝热隔离段 (52)、 预混合段 (53)、 加热混合段
(54)、 高温混合段 (55) 和出料段 (56) 的温度关系、 长度关系和螺纹密度关系为: 预混合段 (53) 温度小于加热混合段 (54) 温度;
加热混合段 (54) 温度小于高温混合段 (55) 温度;
高温混合段 (55) 温度大于出料段 (56) 温度;
加热混合段 (54) 的长度大于预混合段 (53) 和高温混合段 (55) 的长度;
加热混合段 (54) 的螺紋密度小于预混合段 (53) 的螺纹密度;
预混合段 (53) 的螺纹密度小于高温混合段 (55) 的螺纹密度;
高温混合段 (55) 的螺紋密度与出料段 (56) 的螺紋密度相等;
所述出料段 (56) 为圆台形结构, 其母线与轴线的夹角 β1为 10°〜35°;
所述第一副螺杆(42a)、第二副螺杆(42b)、第一补偿螺杆(43a)和第二补偿螺杆(43b) 的连接段(51')、 绝热隔离段 (52')、 预混合段(53')、 加热混合段 (54')和出料段 (56') 的温度关系、 长度关系和螺纹密度关系为- 预混合段 (53') 温度小于加热混合段 (54') 温度;
加热混合段 (54') 温度大于出料段 (56') 温度;
加热混合段 (54') 的长度大于预混合段 (53') 的长度;
加热混合段 (54') 的螺纹密度小于预混合段 (53') 的螺纹密度;
出料段 (56') 的螺纹密度与高温混合段 (55) 相等;
所述出料段 (56') 为圆台形结构, 其母线与轴线的夹角 β2为 5°〜25°。
8、如权利要求 4所述的挤出机多级螺杆结构, 其特征在于, 所述的连接段(51 )和(51 ') 进一步包含第一齿轮 (511 ) 和第二齿轮 (512);
所述第一齿轮 (511 ) 和第二齿轮 (512) 具有 6〜16个齿;
所述第一齿轮 (511 ) 和第二齿轮 (512) 相互交错 11.25°〜30°;
所述第一主螺杆(41a)和第二主螺杆(41b) 的各相应第一齿轮(511 )相互啮合且各相 应第二齿轮 (512) 相互啮合;
所述第一副螺杆 (42a) 和第一补偿螺杆 (43a)、 第一补偿螺杆 (43a) 和第二补偿螺杆 (43b), 第二补偿螺杆 (43b) 和第二副螺杆 (42b) 的各相应第一齿轮 (511 ) 相互啮 合且各相应第二齿轮 (512) 相互啮合;
所述第一主螺杆(41a)和第一副螺杆(42a) 的各相应第一齿轮(511 )相互啮合且各相 应第二齿轮 (512) 相互啮合;
所述第二主螺杆 (41b)和第二副螺杆(42b) 的各相应第一齿轮(511 )相互啮合且各相 应第二齿轮 (512) 相互啮合。
9、 如权利 求 8所述的挤出机多级螺杆结构, 其特征在于, 所述第一主螺杆(41a)、 第 二主螺杆(41b)分别进一步包括 2个长度和螺纹密度相同、 但温度不同的第一加热混合 段 (54a) 和第二加热混合段 (54b) 以及 2个长度和螺纹密度相同、 但温度不同的第一 高温混合段 (55a) 和第二加热混合段 (55b);
所述各加热混合段 (54) 的温度沿物料流向依次增加;
所述各高温混合段 (55) 的温度沿物料流向依次减少;
所述第一副螺杆(42a)、第二副螺杆(42b)、第一补偿螺杆(43a)和第二补偿螺杆(43b) 分别进一步包括 2个长度和螺紋密度相同、但温度不同的第一加热混合段(54a')和第二 加热混合段 (54b');
所述各加热混合段 (54') 的温度沿物料流向依次增加;
沿物料流向, 所述第一主螺杆 (41a)、 第二主螺杆(41b)分别依次具有相互连接的预混 合段(53)、绝热隔离段(52)、连接段(51 ) 第一加热混合段(54a)、绝热隔离段(52)、 连接段 (51)、 第二加热混合段 (54b)、 绝热隔离段 (52)、 连接段 (51)、 第一高温混 合段(55a)、 绝热隔离段 (52)、 第二加热混合段(55b)、 连接段(51)和出料段(56); 沿物料流向, 所述第一副螺杆 (42a)、 第二副螺杆 (42b)、 第一补偿螺杆 (43a) 和第 二补偿螺杆(43b)分别依次具有相互连接的预混合段 (53)、 绝热隔离段(52)、 连接段 (51 )、第一加热混合段(54a)、绝热隔离段(52)、连接段(51 ),第二加热混合段(54b)、 绝热隔离段 (52)、 连接段 (51) 和出料段 (56)。
10、 如权利要求 9所述的挤出机多级螺杆结构, 其特征在于, 所述第一主螺杆 (41a)、 第二主螺杆 (41b) 对转, 并且第一主螺杆 (41a) 沿方向 (81a) 逆时针转动、 第二主 螺杆 (41b) 沿方向 (81b) 顺时针转动;
所述第一副螺杆(42a)、第一补偿螺杆(43a)、第二补偿螺杆(43b)和第二副螺杆(42b) 依次相互对转, 并分别沿方向 (82a)顺时针转动、 沿方向 (83a) 逆时针转动、 沿方向 (83b) 顺时针转动、 沿方向 (82b) 逆时针转动;
所述第一主螺杆 (41a)、 第二主螺杆 (41b)、 第一副螺杆 (42a)、 第二副螺杆 (42b:)、 第一补偿螺杆 (43a) 和第二补偿螺杆 (43b) 的直径为 40mm~300mm、 螺杆有效长径 比 12〜92、 螺杆中心距 40mm〜300mm、 轴腔直径 10mm〜160mm、 螺紋啮合深度 10mm〜50mm、 螺距 5mm〜400mm;
所述第一主螺杆 (41a)、 第二主螺杆 (41b) 的直径大于、 第一副螺杆 (42a)、 第二副 螺杆 (42b)、 第一补偿螺杆 (43a) 和第二补偿螺杆 (43b) 的直径。
PCT/CN2010/000644 2009-05-19 2010-05-07 一种具有额外分流汇流功能的挤出机多级螺杆结构 WO2010133085A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009100514678A CN101890800A (zh) 2009-05-19 2009-05-19 一种具有额外分流汇流功能的挤出机多级螺杆结构
CN200910051467.8 2009-05-19

Publications (1)

Publication Number Publication Date
WO2010133085A1 true WO2010133085A1 (zh) 2010-11-25

Family

ID=43100213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000644 WO2010133085A1 (zh) 2009-05-19 2010-05-07 一种具有额外分流汇流功能的挤出机多级螺杆结构

Country Status (2)

Country Link
CN (1) CN101890800A (zh)
WO (1) WO2010133085A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117400509A (zh) * 2023-12-15 2024-01-16 四川省宜宾普什建材有限责任公司 一种具有导向输送结构的pe管材挤出成型装置及工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105420822B (zh) * 2015-12-22 2018-04-27 桐乡市中维化纤有限公司 熔体直纺在线添加装置及其注射系统在线切换方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB766608A (en) * 1953-11-13 1957-01-23 Lavorazione Mat Plastiche Sas Screw press for mixing and extruding thermoplastic material
JPS6255066A (ja) * 1985-08-13 1987-03-10 Tech Res Assoc Extru Cook Food Ind 食品加工用押出機
CN2300497Y (zh) * 1997-03-07 1998-12-16 林秀真 三螺杆式押出机的改进结构
CN101362377A (zh) * 2008-09-23 2009-02-11 王宁和 高效多螺杆挤出机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB766608A (en) * 1953-11-13 1957-01-23 Lavorazione Mat Plastiche Sas Screw press for mixing and extruding thermoplastic material
JPS6255066A (ja) * 1985-08-13 1987-03-10 Tech Res Assoc Extru Cook Food Ind 食品加工用押出機
CN2300497Y (zh) * 1997-03-07 1998-12-16 林秀真 三螺杆式押出机的改进结构
CN101362377A (zh) * 2008-09-23 2009-02-11 王宁和 高效多螺杆挤出机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YI CHEN, ET-AL. ET AL.: "Section 2, with the subtitle triple screw extruder", THE DEVELOPMENT ANDAPPLICATION PROGRESS OF MULTIPLE-SCREW EXTRUDERS., vol. 18, no. 6, June 2004 (2004-06-01) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117400509A (zh) * 2023-12-15 2024-01-16 四川省宜宾普什建材有限责任公司 一种具有导向输送结构的pe管材挤出成型装置及工艺
CN117400509B (zh) * 2023-12-15 2024-02-23 四川省宜宾普什建材有限责任公司 一种具有导向输送结构的pe管材挤出成型装置及工艺

Also Published As

Publication number Publication date
CN101890800A (zh) 2010-11-24

Similar Documents

Publication Publication Date Title
US4616989A (en) Apparatus for the incorporation of glass fibers into thermoplastic synthetic resins
JPH03290223A (ja) 押出しダイ組立体
TW201036548A (en) High capacity extrusion die assembly
US20040142081A1 (en) Method and installation for the continuous preparation of pellets for the production of snack type food products
WO2010127561A1 (zh) 一体化挤压成型设备
CN104097251B (zh) 用于挤出设备的混合件以及制造蜂窝结构的方法
US20080241324A1 (en) Extrusion Apparatus and Method for Extruding High Protein Foodstuffs
WO2010133085A1 (zh) 一种具有额外分流汇流功能的挤出机多级螺杆结构
WO2010133084A1 (zh) 一种具有独立分段控温的双混合区的挤出机螺杆结构
CN113273711B (zh) 一种挤压糊化装置及系统
CN101878949A (zh) 一种具有物料分流弥补功能的挤出机三螺杆结构
KR101868137B1 (ko) 반죽시트 성형기가 구비된 곡물 가공식품 제조장치 및 이를 이용한 곡물 가공식품 제조방법
CN216363431U (zh) 一种用于制备火麻仁杂粮面条的螺杆挤压机
TWM615885U (zh) 連續式素肉生產裝置
CN101779685A (zh) 一体化挤压切割成型设备
KR101749689B1 (ko) 곡물국수 제조장치
CN201563586U (zh) 双螺杆结构
BR112020018953A2 (pt) Método e aparelho para produção de alimentos para animais de estimação com alto teor de carne
CN102793054B (zh) 一种用于制备拉丝蛋白的双螺杆挤出机
CN101878946A (zh) 具有多段控温加热功能的挤出机双螺杆结构
CN201550586U (zh) 一种挤出机多级螺杆结构
CN201630182U (zh) 整合式成型机
CN201550585U (zh) 一种挤出机三螺杆结构
KR100718897B1 (ko) 구불구불한 수제비 떡 제조장치
RU2581223C1 (ru) Способ и устройство для приготовления экструдированных пищевых и кормовых продуктов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A SENT 12.03.12)

122 Ep: pct application non-entry in european phase

Ref document number: 10777289

Country of ref document: EP

Kind code of ref document: A1