WO2010133084A1 - 一种具有独立分段控温的双混合区的挤出机螺杆结构 - Google Patents

一种具有独立分段控温的双混合区的挤出机螺杆结构 Download PDF

Info

Publication number
WO2010133084A1
WO2010133084A1 PCT/CN2010/000642 CN2010000642W WO2010133084A1 WO 2010133084 A1 WO2010133084 A1 WO 2010133084A1 CN 2010000642 W CN2010000642 W CN 2010000642W WO 2010133084 A1 WO2010133084 A1 WO 2010133084A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
screw
mixing
conveying
main
Prior art date
Application number
PCT/CN2010/000642
Other languages
English (en)
French (fr)
Inventor
刘�英
Original Assignee
上海亦晨信息科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海亦晨信息科技发展有限公司 filed Critical 上海亦晨信息科技发展有限公司
Publication of WO2010133084A1 publication Critical patent/WO2010133084A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N17/00Apparatus specially adapted for preparing animal feeding-stuffs
    • A23N17/005Apparatus specially adapted for preparing animal feeding-stuffs for shaping by moulding, extrusion, pressing, e.g. pellet-mills
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N17/00Apparatus specially adapted for preparing animal feeding-stuffs
    • A23N17/007Apparatus specially adapted for preparing animal feeding-stuffs for mixing feeding-stuff components
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/20Extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • B29C48/023Extruding materials comprising incompatible ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/387Plasticisers, homogenisers or feeders comprising two or more stages using a screw extruder and a gear pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/402Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders the screws having intermeshing parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/404Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders the screws having non-intermeshing parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/425Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders using three or more screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/52Screws with an outer diameter varying along the longitudinal axis, e.g. for obtaining different thread clearance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/42Non-identical or non-mirrored screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/6801Barrels or cylinders characterised by the material or their manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/682Barrels or cylinders for twin screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules

Definitions

  • This invention relates to a screw structure for an extruder, and more particularly to an extruder screw structure having a dual mixing zone with independent sectional temperature control. Background technique
  • the extrusion-cutting step is an important part of the production process.
  • the single-screw or twin-screw extruder is generally used to extrude the hydrate of the grain powder and pass through a certain shape mold.
  • the desired shape, size of the cereal product is transported on the corresponding conveyor belt until inspection and packaging steps.
  • the grain can be processed into a product with a certain degree of expansion and softness, and is suitable for various foods, nutritional additives, animal feed and the like.
  • International Publication WO 01/72151 discloses an integrated composite grain mixing, extrusion, forming apparatus. Including raw material mixing equipment, twin-screw extruder, extrusion equipment, cutting and molding equipment.
  • the raw material mixing device and the twin-screw extruder are connected through a continuous vertical conveying pipe, and a control valve is provided in the pipe to adjust the speed at which the premixed raw material enters the extruder and the product efficiency.
  • twin-screw extruder two screws threaded into each other are arranged in parallel, and are rotated in opposite directions, so that the material conveyed from top to bottom can be sufficiently compacted and conveyed.
  • extrusion disc At the end of the extruder, there is an extrusion disc, and the extrusion disc is provided with a plurality of extrusion holes, and a cutting device is arranged close to the extrusion hole, and the extruded strip material can be cut into the required strips. Shaped, granulated or flaked products to meet the needs of a variety of cereal composite products.
  • U.S. Patent No. 5,350,585 discloses a twin-screw construction of an extruder.
  • the twin-screw structure is divided into a plurality of sections, and the thread densities are inconsistent to meet the needs of various stages in the extrusion process.
  • there are holes in the screw to facilitate the mixing of the material in the screw extruder.
  • the products obtained by the traditional extrusion cutting equipment are directly heated and dried, but often in the drying step.
  • the product is ruptured or pulverized due to a sudden loss of water due to the moisture-containing product, resulting in a decrease in yield.
  • the screw of the conventional screw extruder is placed directly in the cavity of elliptical or circular cross section. During the extrusion and conveying process, the material is easy to accumulate in some parts, so that the extrusion effect is reduced.
  • the water and rice flour mixed materials will gel under heating conditions, and the existing conventional extruder can not only produce a suitable degree of gelation but also can not solve the gelation.
  • the present invention discloses an extruder screw structure having a dual zone of independent temperature control, which has the technical features as described below to solve the prior art problems. Summary of the invention
  • the invention discloses an extruder screw structure with a double-mixing zone with independent segmentation temperature control, comprising a first screw set and a second screw set, the two being respectively located in the first inner cavity shell and the second inner cavity shell
  • the first mixing chamber and the second mixing chamber are enclosed.
  • the first screw set and the second screw set each include a main screw and a sub-screw, and the main screw and the sub-screw mesh with each other.
  • the first main screw of the first screw set and the second main screw of the second screw set have the same structure.
  • the first secondary screw of the first screw set and the second secondary screw of the second screw set have the same structure.
  • the end of the first secondary screw of the first screw set tapers and terminates on the first main screw of the first screw set.
  • the end of the second secondary screw of the second set of screws tapers and terminates on the second primary screw of the second set of screws.
  • An end of the first main screw of the first screw set that is not engaged with the first sub-screw is in mesh with an end of the second main screw of the second screw set that is not engaged with the second sub-screw, and the meshing section is located In the end mixing chamber enclosed by the end inner cavity shell.
  • the first main screw and the second main screw are end-cut and are in meshing with each other.
  • the first main screw and the first sub-screw mesh with each other.
  • the second main screw and the second sub-screw are in meshing with each other.
  • the first main screw and the second main screw have the same structure, and both comprise the following structure: at least 2 connecting sections, at least 2 adiabatic isolation sections, at least 1 pre-mixing section, at least 1 heating mixing section, 1 material conveying Segment and 1 discharge segment.
  • the first secondary screw and the second secondary screw have the same structure, and both comprise the following structure: at least 2 connecting sections, at least 2 adiabatic isolation sections, at least 1 pre-mixing section, at least 1 heating mixing section and 1 conveying material segment.
  • the respective connecting sections of the first main screw and the first sub-screw, the respective adiabatic isolation sections, the respective pre-mixing sections, and the respective heating mixing sections are in mesh with each other.
  • the respective connecting sections of the second main screw and the second sub-screw, the respective adiabatic insulating sections, the respective pre-mixing sections, and the respective heating mixing sections are in mesh with each other.
  • the conveying section of the first main screw and the conveying section of the first sub-screw are in mesh with each other.
  • the feed section of the second main screw and the feed section of the second sub-screw are in mesh with each other.
  • the discharge section of the first main screw and the discharge section of the second main screw are engaged with each other.
  • the connecting section 51 further includes a first gear 511 and a second gear 512.
  • the first gear 511 and the second gear 512 have 6 to 16 teeth and are staggered by 11.25° to 30°.
  • the respective first gears of the first main screw and the first sub-screw are in mesh with each other and the respective second gears mesh with each other.
  • the respective first gears of the second main screw and the second sub-screw are in mesh with each other and the respective second gears mesh with each other. Since the first gear and the second gear are staggered at an angle to each other, the first gear of the first main screw can only mesh with the first gear of the first auxiliary screw, and cannot be mutually interacted with the second gear of the first auxiliary screw.
  • the adiabatic insulation section is a threaded structure made of a heat insulating material
  • the premixing section, the heating mixing section, the conveying section, the conveying section, and the discharging section are threaded structures made of a heat conductive material.
  • the conveying section is located at the end of the secondary screw and is connected to one connecting section, and the conveying section is tapered toward the end from a position connected to the connecting section.
  • the conveying section is located at the end of the main screw and is connected to one connecting section, and the conveying section is gradually thickened from the position connected to the connecting section to the end.
  • the truncated cone-shaped structure in which the diameter of the conveying section is gradually reduced and the diameter of the conveying section is gradually increased, so that the two bodies are fitted to each other.
  • the discharge section is a spiral-shaped structure, is located at the end of the main screw and is connected to the conveying section, and the discharge section is gradually increased in diameter from the position connected to the conveying section, thereby making the The discharge section of a main screw and the discharge section of the second main screw mesh with each other and maintain the diameter, and then the diameter gradually decreases.
  • the connecting section of the main screw, the adiabatic isolation section, the pre-mixing section, the heating mixing section, the conveying section and the discharging section are coaxial, and the connecting section, the adiabatic isolation section, the pre-mixing section, and the heating mixing section are equal in diameter.
  • the connecting section of the secondary screw, the adiabatic insulating section, the pre-mixing section, the heating mixing section and the conveying section are coaxial, and the connecting section, the adiabatic separating section, the pre-mixing section, and the heating mixing section are equal in diameter.
  • Each of the connecting sections, the adiabatic isolation section, the pre-mixing section, the heating mixing section, the conveying section, the conveying section and the discharging section are hollow structures, and the interiors thereof respectively have axial cavities which are connected and coaxial.
  • the diameter of the shaft cavity of the connecting section and the adiabatic isolation section is equal.
  • the axial lengths of the premixing section and the heating mixing section are equal.
  • the diameter of the shaft cavity of the connecting section and the adiabatic isolation section is smaller than the diameter of the shaft section of the mixing section and the heating mixing section.
  • the diameters of the shaft cavities of the feed section, the feed section and the discharge section vary, vary and/or decrease as the diameters of the feed section, the feed section and the discharge section vary.
  • a heating system is disposed inside each of the shaft cavities.
  • the heating system comprises a passageway located in each shaft cavity axis and sequentially passing through each shaft cavity, the passage being a hollow structure made of a heat insulating material, and a plurality of heating circuits connected to the outside are disposed inside the device for Power is supplied to the respective heating resistors located outside the channel and connected to each other.
  • the heating resistor includes heating resistors located in the premixing section, the heating mixing section, the conveying section, the conveying section, and the discharging section, respectively.
  • the heating resistors respectively heat the premixing section, the heating mixing section, the conveying section, the conveying section and the discharging section relatively independently under the control of a plurality of heating circuits connected to the outside.
  • the temperature relationship between the premixing section, the heating mixing section, the conveying section, the conveying section and the discharging section is:
  • the temperature of the premixing section is less than the temperature of the heating mixing section
  • the temperature of the heating mixing section is greater than the temperature of the conveying section
  • the temperature of the conveying section is greater than the temperature of the discharge section
  • the temperature of the feed section is equal to the temperature of the feed section.
  • the conveying section and the conveying section are both a truncated cone structure, and the angle between the generatrix of the truncated cone structure and the axis is equal to 5° to 25°.
  • the discharge section is a spiral-shaped structure, and an angle ⁇ 2 between the bus bar and the axis of the end adjacent to the conveying section is 10° to 35, and an angle ⁇ 3 between the busbar and the axis of the opposite end of the conveying section is 15 ° ⁇ 30°.
  • the length of the heated mixing section is greater than the length of the premixing section.
  • the heated mixing section has a thread density that is less than the thread density of the premixing section.
  • the pre-mixing section has a thread density that is less than the thread density of the feed section, the feed section, and the discharge section.
  • the feed section, the feed section and the discharge section have the same thread density.
  • the first main screw, the second main screw, the first sub-screw, and the second sub-screw further include two first heating mixing sections and second heating mixing sections having the same length and different thread densities but different temperatures.
  • the temperature of each of the heated mixing sections is sequentially increased along the flow direction of the material.
  • the first main screw and the second main screw respectively have a premixing section, an adiabatic isolation section, a connecting section, a first heating mixing section, an adiabatic isolation section, a connecting section and a second heating mixing section which are connected to each other.
  • adiabatic isolation section, connecting section, conveying section and discharging section are connected to each other.
  • the first auxiliary screw and the second auxiliary screw respectively have a premixing section, an adiabatic isolation section, a connecting section, a heating mixing section, an adiabatic isolation section, a connecting section, a heating mixing section, and an adiabatic isolation section which are connected to each other. , connecting segments and conveying segments.
  • the first main screw and the second main screw are rotated, and the first main screw rotates counterclockwise and the second main screw rotates clockwise.
  • the first main screw and the first sub-screw rotate, and the second main screw and the second sub-screw rotate, so that the first sub-screw rotates clockwise and the second sub-screw rotates counterclockwise.
  • the diameters of the first main screw, the second main screw, the first sub-screw and the second sub-screw are 40 mm to 300 mm, the effective length to diameter ratio of the screw is 12 to 92, the center distance of the screw is 40 mm to 300 mm, and the diameter of the shaft cavity is 10 mm to 160 mm. , thread engagement depth 10mnr! ⁇ 50mm, pitch 5mm ⁇ 400mm.
  • FIG. 1 is a schematic view showing the entire structure of an extruder having a screw structure of the present invention.
  • Figure 2 is a plan view of the screw structure of the extruder of Figure 1.
  • Fig. 3a is a schematic longitudinal cross-sectional view taken along line A-A' of Fig. 1;
  • Fig. 3b is a longitudinal sectional view taken along line B-B' of Fig. 1.
  • Figure 4a is a schematic illustration of the flow direction of the material along the longitudinal section of Figure 1A-A'.
  • Figure 4b is a schematic view of the flow direction of the material in the longitudinal section taken along the line B-B' of Figure 1.
  • Figure 5 is a schematic view showing the screw engagement relationship of the screw structure of the present invention.
  • Figure 6a is a longitudinal cross-sectional view of the main screw of the screw structure of the present invention taken along the axial direction.
  • FIG. 6b is a longitudinal cross-sectional view of the secondary screw of the screw structure of the present invention taken along the axial direction.
  • Embodiment 1 - As shown in FIG. 2, FIG. 3a and FIG. 3b, an independent segmented temperature control
  • the extruder screw structure of the double mixing zone comprises a first screw set and a second screw set, the two being respectively located in the first mixing chamber 23a and the second surrounded by the first inner casing 22a and the second inner casing 22b In the mixing chamber 23b.
  • the first screw set and the second screw set each include a main screw and a secondary screw, and the primary screw and the secondary screw mesh with each other.
  • the first main screw 41a of the first screw set and the second main screw 41b of the second screw set have the same structure.
  • the first sub-screw 42a of the first screw set and the second sub-screw 42b of the second screw set have the same structure.
  • the end of the first sub-screw 42a of the first screw group is tapered and terminates on the first main screw 41a of the first screw group.
  • the end of the second sub-screw 42b of the second screw set is tapered and terminates on the second main screw 41b of the second screw set.
  • the end of the first main screw 41a of the first screw set that is not engaged with the first sub-screw 42a and the end of the second main screw 41b of the second screw set that are not engaged with the second sub-screw 42b are in mesh with each other
  • the engagement section is located in the end mixing chamber 23' enclosed by the end inner casing 22'.
  • the first main screw 41a and the second main screw 41b are end-to-end tangent and mutually engaged to rotate.
  • the first main screw 41a and the first sub-screw 42a are engaged with each other.
  • the second main screw 41b and the second sub-screw 42b are engaged with each other.
  • the first main screw 41a and the second main screw 41b have the same structure, and all have the following structures: at least two connecting segments 51 and at least two insulating spacers 52. At least one premixing section 53, at least one heating mixing section 54, one conveying section 56 and one discharging section 57.
  • the first sub-screw 42a and the second sub-screw 42b are identical in structure, and each comprises the following structure: at least 2 connecting segments 51, at least 2 adiabatic insulating segments 52, at least one pre-mixing segment 53, and at least one heating mixing segment 54 and 1 feed section 55.
  • the screw 42b may further include two first heating mixing sections 54a and a second heating mixing section 54b having the same length and threading density but different temperatures.
  • the temperature of each of the heated mixing sections 54 increases in sequence along the flow direction of the material.
  • the first main screw 41a and the second main screw 41b respectively have a premixing section 53, an adiabatic isolation section 52, a connecting section 51, a first heating mixing section 54a, and an adiabatic isolation section 52, which are connected to each other.
  • the connecting section 51 of the main screw, the adiabatic insulating section 52, the pre-mixing section 53, the heating mixing section 54, the conveying section 56 and the discharging section 57 are coaxial, and the connecting section 51, the adiabatic insulating section 52, the pre-mixing Section 53, heating mixing section 54 is of equal diameter.
  • the first auxiliary screw 42a and the second auxiliary screw 42b respectively have a premixing section 53, an adiabatic isolation section 52, a connecting section 51, a first heating mixing section 54a, an adiabatic isolation section 52, and a connection.
  • the connecting section 51 of the secondary screw, the adiabatic insulating section 52, the premixing section 53, the heating mixing section 54 and the conveying section 55 are coaxial, and the connecting section 51, the adiabatic insulating section 52, the premixing section 53, and the heating and mixing Segments 54 are equal in diameter.
  • the segments 54b are in mesh with each other.
  • Each of the second connecting portion 51 of the second main screw 41 b and the second auxiliary screw 42 b , each of the respective adiabatic insulating segments 52 , each of the corresponding pre-mixing segments 53 , the respective first heating mixing segments 54 , and the respective second heating mixes Segment 54b is intermeshing 0 *
  • the conveying section 56 of the first main screw 41a and the conveying section 55 of the first sub-screw 42a are in mesh with each other.
  • the conveying section 56 of the second main screw 41b and the conveying section 55 of the second sub-screw 42b are in mesh with each other.
  • the discharge section 57 of the first main screw 41a and the discharge section 57 of the second main screw 41b are engaged with each other.
  • the connecting section 51 further includes a first gear 511 and a second gear 512.
  • the first gear 511 and the second gear 512 have 6 to 16 teeth and are staggered by 11.25° to 30°.
  • the respective first main gears 41a and the respective first gears 511 of the first sub-screws 42a are engaged with each other and the respective second gears 522 are engaged with each other.
  • the respective first gears 511 of the second main screw 41b and the second sub-screw 42b are in mesh with each other and the respective second gears 522 are engaged with each other.
  • the first gear 511 and the second gear 512 are mutually angled, the first gear 511 of the first main screw 41a can only mesh with the first gear 511 of the first sub-screw 42a, and cannot be combined with the first pair.
  • the second gears 512 of the screw 42a are engaged with each other, so that the first gears 511 of the first screw 41 and the second screw 42 are engaged with each other, and the second gears 512 are engaged with each other, thereby the first main screw 41 a and the first The secondary screw 42a is locked In order to fix the relative position thereof, the first main screw 41a and the first sub-screw 42a are prevented from being displaced and displaced during the counter-rotation, thereby ensuring the meshing between the first main screw 41a and the first sub-screw 42a.
  • the respective first gears 511 of the second main screw 41b and the second sub-screw 42b are in mesh with each other and the respective second gears 522 are meshed with each other, and the second main screw 41 b and the second sub-screw 42 b are also avoided. Misalignment and displacement occur during the counter-rotation to ensure that the engagement between the second main screw 41b and the second sub-screw 42b is intact.
  • the adiabatic insulating segment 52 is a threaded structure made of a heat insulating material, and the first main screw 41a and the respective adiabatic insulating segments 52 of the first sub-screw 42a, the second main screw 41b and the second sub-screw 42b are in mesh with each other.
  • the left and right sides of the adiabatic isolation section are respectively connected with a mixing section having a certain temperature, and the adiabatic isolation section functions as a heat insulation to ensure that the temperature of the mixing section on the left and right sides is different, forming a temperature zone, thereby avoiding temperature confusion in each zone. .
  • the premixing section 53, the first heating mixing section 54a, the second heating mixing section 54b, the conveying section 55, the conveying section 56 and the discharging section 57 are screw structures made of a heat conductive material, and the first main screw 41a and the respective pre-mixing sections 53 of the first sub-screw 42a, the second main screw 41b and the second sub-screw 42b are engaged with each other, the respective first heating mixing sections 54a are engaged with each other, and the respective second heating mixing sections 54b are mutually engaged Engage.
  • the feed section 55 is located at the end of the secondary screw and is connected to a connecting section 51, and the conveying section 55 is tapered toward the end from a position connected to the connecting section 51.
  • the feed section 56 is located at the end of the main screw and is connected to a connecting section 51, and the conveying section 56 is gradually thickened from the position connected to the connecting section 51 toward the end.
  • the trough-shaped structure in which the diameter of the conveying section 55 is gradually reduced and the diameter of the conveying section 56 is gradually increased, so that the two bodies are fitted to each other.
  • the busbars of the feed section 55 and the feed section 56 have an angle ⁇ 1 equal to the axis of the truncated section 56 and are 5° to 25°.
  • the discharge section 57 is a spiral-shaped structure, located at the end of the main screw and connected to the conveying section 56, and the discharge section 57 is gradually increased in diameter from the position connected to the conveying section 56 to the end. Thereby, the discharge section 57 of the first main screw 41a and the discharge section 57 of the second main screw 41b are engaged with each other and maintained at the diameter, and then the diameter is gradually reduced.
  • the angle between the bus bar of the one end of the discharge section 57 and the conveying section 56 and the axis is 10° to 35, and the angle ⁇ 3 between the busbar and the axis of the end opposite to the conveying section 56 is 15°. 30°.
  • the length of the heated mixing section 54 is greater than the length of the premixing section 53.
  • the heated mixing section 54 has a thread density that is less than the thread density of the premixing section 53.
  • the pre-mixing section 53 has a thread density that is less than the thread density of the delivery section 55, the delivery section 56, and the discharge section 57.
  • the feed section 55, the conveying section 56 and the discharge section 57 have the same thread density.
  • each connecting section 51, the adiabatic isolation section 52, the pre-mixing section 53, the first heating mixing section 54a, the second heating mixing section 54b, the conveying section 55, and the conveying section 56 and the discharge section 57 are hollow structures, The interior thereof has a shaft cavity 61, a shaft cavity 62, a shaft cavity 63, a shaft cavity 64a, a shaft cavity 64b, a shaft cavity 65, a shaft cavity 66 and a shaft cavity 67 which are coaxial with each other.
  • the diameters of the shaft cavities 61 and 62 of the connecting section 51 and the adiabatic insulating section 52 are equal.
  • the axial cavities 63, 64a and 64b of the premixing section 53, the first heating mixing section 54a and the second heating mixing section 54b are equal in diameter.
  • the diameter of the shaft cavities 61, 62 is smaller than the diameter of the shaft cavities 63, 64a and 64b.
  • the diameters of the shaft chamber 65, the shaft chamber 66 and the shaft chamber 67 of the feed section 55, the conveying section 56 and the discharge section 57 vary with the diameters of the conveying section 55, the conveying section 56 and the discharging section 57. , increase and / or decrease. Thereby, the thicknesses between the outer surfaces of the feed section 55, the conveying section 56 and the discharge section 57 and the shaft cavity are made equal everywhere.
  • a heating system 7 is disposed inside each of the shaft cavities.
  • the heating system 7 includes passages 70 located in the axial centers of the respective shaft cavities and sequentially passing through the respective shaft cavities.
  • the passages 70 are hollow structures made of a heat insulating material, and are internally provided with a plurality of sets of heating circuits connected to the outside. And for supplying power to the heating resistors located outside the channel 70 and connected to each other.
  • the heating resistor includes heating resistors 73, 74a 74b, 75 located in the premixing section 53, the first heating mixing section 54a and the second heating mixing section 54b, the conveying section 55, the conveying section 56 and the discharging section 57, respectively. 76 and 77.
  • the heating resistors 73, 74a, 74b, 75, 76 and 77 are respectively relatively independently mixed with the premixing section 53, the first heating mixing section 54a and the second heating under the control of a plurality of heating circuits connected to the outside. Section 54b, the transfer section 55, the transfer section 56 and the discharge section 57 are heated.
  • the temperature relationship between the premixing section 53, the first heating mixing section 54a and the second heating mixing section 54b, the conveying section 55, the conveying section 56 and the discharging section 57 is:
  • the temperature of the premixing section 53 is lower than the temperature of the first heating mixing section 54a;
  • the temperature of the first heating mixing section 54a is lower than the temperature of the second heating mixing section 54b;
  • the temperature of the second heating mixing section 54b is greater than the temperature of the conveying section 56;
  • the conveying section 56 temperature is greater than the temperature of the discharge section 57;
  • the temperature of the conveying section 55 is equal to the temperature of the conveying section 56.
  • the first main screw 41 a and the second main screw 41 b are rotated, and the first main screw 41a is rotated counterclockwise and the second main screw 41b is rotated clockwise.
  • the first main screw 41a and the first sub-screw 42a are rotated, and the second main screw 41b and the second sub-screw 42b are rotated, so that the first sub-screw 42a rotates clockwise, and the second sub-screw 42b reverses.
  • the first main screw 41a, the second main screw 41b, the first sub-screw 42a and the second sub-screw 42b have a diameter of 40 mm to 300 mm, an effective length to diameter ratio of the screw of 12 to 92, a screw center distance of 40 mm to 300 mm, and an axis.
  • the cavity diameter is 10 mm to 160 mm
  • the thread engagement depth is 10 mm to 50 mm
  • the pitch is 5 mm to 400 mm.
  • the mixing section of the thread density is subjected to different degrees of extrusion mixing and heated to different temperatures, so that the materials are thoroughly mixed in the first mixing chamber 23a and the second mixing chamber 23b, respectively, and are separately heated to a suitable temperature. . Finally, the first mixing chamber 23a and the second mixing chamber 23b are mixed inside the end mixing zone 23 and then extruded.
  • Figure 1 shows an extruder commonly used in the preparation of reconstituted rice, including a feed system 1, an extrusion chamber 2, and a discharge system 3.
  • the feed system 1 further includes a stocker 11 and a feed port 12.
  • the stocker 11 and the feed port 12 further include a stocker 11a and a feed port 12a for entering the first group of materials, a stocker 11b for feeding the second group of materials, and a feed port 12b.
  • the pressing cavity 2 further includes an outer cavity shell 21, a first inner cavity shell 22a, a second inner cavity shell 22b, an end inner cavity shell 22', and a first mixing chamber 23a respectively surrounded by the inner cavity shells a second mixing chamber 23b and an end mixing chamber 23'.
  • the discharge system 3 further includes a discharge port 31, a cutter 32 and a die 33.
  • a first screw group that is, a first main screw 41a and a first sub-screw 42a, in the second mixing chamber 23b
  • a second screw set that is, a second main screw 41b and a second sub-screw 42b are provided.
  • the first set of material 91a falls from the stocker 11a, enters the first mixing chamber 23a through the feed port 12a, and then enters between the first main screw 41a and the first secondary screw 42a. In the pores.
  • the first main screw 41a rotates counterclockwise in the direction 81a and the first sub-screw 42a rotates in the direction 82a, and the meshing of the two causes the first group of materials 91a to be the first main screw 41a and the first sub-screw 42a.
  • the mixing is carried out, and then the flow of the two main streams 41a and 93a is formed by the rotation of the first main screw 41a and the first sub-screw 42a.
  • the second set of material 91b falls from the stocker 11b, enters the second mixing chamber 23b through the feed port 12b, and then enters the second main screw 41b and the second sub-screw 42b. Between the pores.
  • the second main screw 41b rotates clockwise in the direction 81b and the second sub-screw 42b rotates counterclockwise in the direction 82b, and the meshing of the two rotates, so that the second group of material 91b is rotated by the second main screw 41b and the second sub-screw 42b is squeeze-mixed, and then, under the rotation of the second main screw 41b and the second sub-screw 42b, two material streams 92b and 93b are formed to flow.
  • the streams 92a and 93a are respectively driven up to the upper portions of the first main screw 41a and the first sub-screw 42a under the rotation of the first main screw 41a and the first sub-screw 42a, and the first group of materials 91a joined later.
  • the mixing is again performed by the first main screw 41a and the first sub-screw 42a by cyclic mixing.
  • the streams 92b and 93b are brought up to the upper portion of the second main screw 41b and the second sub-screw 42b under the rotation of the second main screw 41b and the second sub-screw 42b, respectively, and the second group joined later Material 91 b mixed, was
  • the two main screws 41b and the second sub-screws 42b are again subjected to cyclic mixing and extrusion.
  • the external circuit is turned on, and the heating system 7 is energized.
  • the respective wires and circuits located inside the path 70 are respectively located at the first main screw 41a and the second.
  • Heating resistors inside the main screw 41b, the respective premixing section 53, the first heating mixing section 54a, the second heating mixing section 54b, the conveying section 55 and the conveying section 56 of the first secondary screw 42a and the second secondary screw 42b 73, 74a, 74b, 75, and 76 are electrically heated, and the respective mixing sections are heated and heated.
  • the material is subjected to the following heating and mixing process:
  • the first group of materials 91a enters the premixing section 53 in the first mixing chamber 23a adjacent thereto from the first inlet port 12a, and the intermeshing premixing section 53 of the first main screw 41a and the first secondary screw 42a.
  • the pair turned and was squeezed and mixed.
  • the premixing section 53 is designed to have a larger thread density to enhance the shearing force, and at the same time, in order to prevent the material from being gelled excessively under heating conditions, only the material is The preliminary heating is performed so that the temperature of the premixing section 53 is designed to be low.
  • the second group of materials 91b enters the premixing section 53 in the second mixing chamber 23b adjacent thereto from the second inlet port 12b, and the intermeshing premixing section 53 of the second main screw 41b and the second secondary screw 42b.
  • the pair turned and was squeezed and mixed.
  • the premixing section 53 is designed to have a larger thread density to enhance the shearing force, and at the same time, in order to prevent the material from being gelled excessively under heating conditions, only the material is The preliminary heating is performed so that the temperature of the premixing section 53 is designed to be low.
  • the first group of materials 91a enters the first heating mixing section 54a in the first mixing chamber 23a, and the first main screw 41a and the first sub-screw 42a having a higher temperature, a smaller thread density, and a longer length
  • the two first heating mixing sections 54a and the second heating mixing section 54b that are intermeshing are squeezed and mixed.
  • the material can be sufficiently heat-exchanged on the longer screw, heated by the screw and further extruded and mixed.
  • the first heating mixing section 54a and the second heating mixing section 54b having a lower density are designed so that the gas inside the material and the water vapor can be diffused out. Ventilation, so as to avoid more gas inside the material, the gas diffuses too fast at the outlet, causing cracking and cracking of the finished particles.
  • the second group of materials 91b enters the second heating mixing section 54b region of the second mixing chamber 23b, at a higher temperature, a lower thread density, and a longer length of the second main screw 41b and the second sub-screw 42b.
  • the two first heating mixing sections 54a and the second heating mixing section 54b that are intermeshing are squeezed and mixed.
  • the material can be sufficiently heat-exchanged on the longer screw, heated by the screw and further extruded and mixed.
  • the first heating mixing section 54a and the second heating mixing section 54b having a lower density are designed so that the gas inside the material and the water vapor can be diffused out to perform ventilation, thereby avoiding more gas inside the material.
  • the gas diffuses too quickly, causing cracks and cracks in the pellets.
  • a plurality of heating mixing sections can be designed as needed, and are not limited to two, and the temperature of each heating mixing section gradually rises along the flow direction of the material, in this embodiment.
  • the temperature of the second heated mixing section 54b is higher than the first heating mixing section 54a.
  • the first group of materials 91a is rapidly shear mixed by the adiabatic insulation section 51 having a higher thread density, and is conveyed backward to the conveying section 56 of the first main screw 41a and the conveying section of the first sub-screw 42a.
  • the first group of materials 91a is gradually transferred to the diameter gradually by the combination of the gradually decreasing diameter of the conveying section 55 and the narrowed inner casing shown in FIG.
  • the material taken away by the conveying section 55 is continuously reduced, and the material taken away by the conveying section 56 is continuously increased, so that the first group of materials 91a is completely brought to the first main screw 41a. And is further fed into the discharge section 57 of the first main screw 41a in the end mixing chamber 23'.
  • the second group of materials 91b is rapidly shear mixed by the adiabatic insulation section 51 having a higher thread density, and is conveyed backward to the conveying section 56 of the second main screw 41b and the conveying section of the second sub-screw 42b.
  • the second group of materials 91a is gradually transferred to the diameter gradually by the combination of the gradually decreasing diameter of the conveying section 55 and the narrowed inner casing shown in FIG.
  • the material taken away by the conveying section 55 is continuously reduced, and the material taken away by the conveying section 56 is continuously increased, so that the first group of materials 91b is completely brought to the second main screw 41a. It is further fed into the discharge section 57 of the second main screw 41b in the end mixing chamber 23'.
  • the thread density of the conveying section 55 and the conveying section 56 is designed to be relatively large.
  • the conveying section 55 and the conveying section 56 are heated to further heat and mix the materials.
  • the temperature of the designed conveying section 55 and the conveying section 56 is lower than the second.
  • the mixing section 54b is heated to gradually cool the material to avoid surface cracking or particle breakage caused by rapid cooling.
  • the material stream 94a of the first group of materials 91a at the discharge section 57 of the first main screw 41a fed into the end mixing chamber 23' is fed to the end.
  • the material flow 94b of the second group of materials 91b at the discharge section 57 of the second main screw 41b in the mixing chamber 23' is respectively outputted in the opposite direction of the first main screw 41a and the second main screw 41b.
  • the segments 57 are mixed and squeezed to form streams 95a and 95b which are brought back to the lower portions of the first main screw 41a and the second main screw 41b, respectively, and It is squeezed again by both, and it is subjected to cyclic mixing and extrusion.
  • the external circuit is turned on, and the heating system 7 is energized.
  • Each of the wires and circuits located inside the passage 70 electrically heats the heating resistors 75 located inside the discharge section 57 of the first main screw 41a and the second main screw 41b, respectively, and corresponds to the corresponding discharge sections 57. Heat up.
  • the first group of materials 91a and the second group of materials 92a are heated and mixed at the discharge section 57 of the first main screw 41a and the second main screw 41b, and then sent out of the extrusion chamber.
  • the material to be extruded in the above process moves in a spiral manner along the flow direction of the materials shown in Figs. 1 and 2, the first group of materials 91a from the first main screw 41a and The front end of the first sub-screw 42a moves toward the end and is repeatedly squeeze-mixed, and the second group 91b moves from the front end of the second main screw 41b and the second sub-screw 42b to the end and is repeatedly squeezed and mixed, and then A group of material 91a and a second group of material 91b are fed to the discharge section 56, and are slightly compressed and transferred to the discharge port 31.
  • the material is extruded from the discharge port 31 to the die 33 at the outlet, pressed from the extrusion hole of the mold 33, and rapidly cut by the cutter 32 to form pellets.
  • a mixture of materials can be carried out in the first mixing chamber 23a, and a suitable temperature is selected according to the characteristics of the material, and another group of materials is mixed in the second mixing chamber 23b, and an appropriate temperature is selected according to the characteristics of the material. Therefore, some materials are required to have high temperature, and some materials cannot be heated at high temperatures, which may result in inconvenience of mixing and mixing, such as inconvenience and poor mixing. Finally, the two groups of materials are rapidly sheared and mixed at the discharge end, which is also to avoid the influence of high temperature materials on another group of materials. Therefore, rapid discharge, cutting and granulation, and then cooling can effectively avoid the above problems, so the design here
  • the discharge section has only one section and has a very large thread density to provide sufficient shear and pushing force. Through the above screw structure and extrusion process, the material is sufficiently extruded and heated as needed to the desired degree of gelation.
  • the heating temperature of each mixing section is independently controllable and can be adjusted according to actual needs.
  • Screws 41a and 42a 40mm ⁇ 300mm 12 ⁇ 72 40mm ⁇ 300mm
  • Screw 41 b and 42b 40mm ⁇ 300mm 12 ⁇ 72 40mm ⁇ 300mm
  • Screws 42a and 42b 5° ⁇ 25 0
  • Screws 41a and 41b10 ⁇ 35 15 ⁇ ⁇ 30° Shaft cavity diameter thread engagement depth pitch temperature Connection section 10mm ⁇ 160mm 10mm ⁇ 50mm 5mm ⁇ 400mm Insulation isolation section 10mm ⁇ 160mm 10mm ⁇ 50mm 5mm ⁇ 400mm
  • Premixing section 53 10mm ⁇ 160mm 10mm ⁇ 50mm 5mm ⁇ 400mm 80 ⁇ 85°C Heating mixing section 54a 10mm ⁇ 160mm 10mm ⁇ 50mm 5mm ⁇ 400mm 85 ⁇ 95°C Heating mixing section 54b 10mm ⁇ 160mm 10mm ⁇ 50mm 5mm ⁇ 400mm 95 ⁇ 100°C Feeding section 55 10mm ⁇ 160mm 10mm ⁇ 50mm 5mm ⁇ 400mm 95 ⁇ 98°C Transfer section 56 10mm ⁇ 160mm 10mm ⁇ 50mm 5mm ⁇ 400mm 95 ⁇ 98°C Discharge section 57 10mm ⁇ 160mm 10mm ⁇ 50mm 5mm ⁇ 400mm 85 ⁇ 90°C
  • the first embodiment is modified by the following technical parameters :
  • Screws 41b and 42b 90mm 35 90mm Shaft Diameter Thread Engagement Depth Pitch Temperature
  • Screw diameter screw effective length to diameter ratio screw center distance Screws 41a and 42a 90mm 65 90mm Screws 41 b and 42b 90mm 65 90mm Shaft cavity diameter thread engagement depth pitch temperature connection section 20mm 20mm
  • Premixing section 53 30mm 20mm 60mm 82.
  • C Heating mixing section 54a 30mm 20mm 80mm 94 °C Heating mixing section 54b 30mm 20mm 80mm 98 °C Feeding section 55 30mm 20mm 40mm 96.
  • C conveying section 56 30mm 20mm 40mm 96 °C discharging section 57 30mm 20mm 40mm 88 °C
  • the following technical parameters are used to improve the first embodiment:
  • Embodiment 1 is improved by using the following technical parameters:
  • Screw 41 b and 42b 160mm 25 160mm Shaft diameter Thread engagement depth Pitch Temperature Connection section 20mm 25mm
  • Premixing section 53 80mm 25mm 75mm 80 °C Heating mixing section 54a 80mm 25mm 100mm 93.
  • C Heating mixing section 54b 80mm 25mm 100mm 97 °C Feeding section 55 80mm 25mm 50mm 95 °C Transfer section 56 80mm 25mm 50mm 95 °C Discharge section 57 80mm 25mm 50mm 85 °C
  • Example 6 Improvement with the following technical parameters Embodiment 1:
  • Screw 41 b and 42b 160mm 55 160mm Shaft diameter Thread engagement depth Pitch Temperature Connection section 20mm 30mm
  • Premixing section 53 70mm 30mm 90mm 82 °C Heating mixing section 54a 70mm 30mm 120mm 94 °C Heating mixing section 54b 70mm 30mm 120mm 98 °C Feeding section 55 70mm 30mm 60mm 96 °C Transfer section 56 70mm 30mm 60mm 96 °C Discharge section 57 70mm 30mm 60mm 88 °C
  • Example 7 The following technical parameters are used to improve the first example:
  • Embodiment 8 The first embodiment is modified by the following technical parameters:
  • Screws 41 b and 42b 240mm 15 240mm Shaft cavity diameter thread engagement depth pitch temperature connection section 20mm 35mm Insulation isolation section 20mm 35mm 105mm Premixing section 53 120mm 35mm 105mm 80 °C Heating mixing section 54a 120mm 35mm 140mm 93 °C Heating mixing section 54b 120mm 35mm 140mm 97 °C Feeding section 55 120mm 35mm 70mm 95 °C Transfer section 56 120mm 35mm 70mm 95 °C Discharge section 57 120mm 35mm 70mm 85 °C
  • Example 9 The following technical parameters are used to improve the first embodiment:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Animal Husbandry (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

一种具有独立分段控温的双混合区的挤出机螺杆结构 技术领域
本发明涉及一种挤出机的螺杆结构, 特别涉及一种具有独立分段控温的双混合区的 挤出机螺杆结构。 背景技术
随着对食品的营养的要求的日益增加, 各种复合营养素的谷物产品及其生产方法也 迅速地发展着, 从早期的酸预蒸法工艺、直接浸吸法和涂膜法等工艺, 发展到如今比较完 备的: 从谷物粉碎→预处理→与营养素混合→挤压→切割成型→干燥→筛选→按比例配 米, 最后得到营养素强化复合谷物的工艺流程。
而其中的挤压-切割成型的步骤是生产过程中的重要环节, 一般釆取的单螺杆或者双 螺杆挤压机,将谷物粉末的水合物挤压后通过一定的形状模具,经切割而得到所需要的形 状、 尺寸的谷物类食品, 并在相应的传送带上进行输送, 直至检验和包装步骤。
同时, 由于挤压成型过程的技术流程,能够将谷物加工成具有一定膨化度和松软度的 产品, 适用于各种食品、 营养添加剂、 动物饲料等产品。
参见附图 1, 国际公开文本 WO01/72151公开了一种一体化的复合谷物混合、 挤压、 成型设备。 包括原料混合装置, 双螺杆挤压机, 挤出装置, 切割成型设备。 其中的原料混 合装置与双螺杆挤压机, 通过连通的垂直输送管道相连, 并且在管道中设有控制阀, 以调 整预混原料进入挤压机的速度以及产品效率。双螺杆挤压机中平行布置有两个螺纹相互咬 合的螺杆, 相向转动, 使由上而下输送的物料能够进行充分地压实和输送。在挤压机的末 端具有挤出盘, 挤出盘上开设有多个挤出孔, 紧贴挤出孔处设置有切割装置, 能够将挤压 出的条状物料切割成所需要的长条状、粒状或片状产品,以符合各种谷物复合产品的需要。
参见附图 2, 美国专利 US5350585公开一种挤压机的双螺杆结构。 所述的双螺杆结 构分为多段, 其螺紋密度均不一致, 以配合挤压过程中的各个阶段的需要。 同时, 螺杆中 也幵设有空洞, 以便于物料在螺杆挤压机中充分混合。
然而, 传统的螺杆挤压切割成型机仍有一些不足:
1、 传统的挤压切割设备得到的产品直接进行加热供干步骤, 然而却往往会在烘干步 骤中, 由于含有水分的产品骤然失水导致产品表面破裂或粉碎, 致使成品率降低。
2、 传统的挤压成型设备的产量和产率难以得到较大的提高。 ——
3、 传统的螺杆挤压机的螺杆直接放置于椭圆形或圆形截面的腔体中, 再挤压和输送 过程中, 物料易于在某些部位产生堆积, 从而使挤压效果降低。
4、 于螺杆腔体内经常有堆积现象, 而长期未能得到充分挤压的这些堆积物, 经过一 段时间后会凝结成块, 从而影响整体产品产出效率以及产品的均匀程度, 需要经常清理。 然而传统的双螺杆挤压机的螺杆更换过程困难, 且在停机之后, 螺杆因相互咬合的结构, 依然会产生机械转动, 容易造成事故。
5、 在制备复原米的过程中, 水和米粉混合的物料在加热条件下会发生胶凝化, 现有 的传统挤压机不仅无法产生合适的胶凝化程度也无法解决胶凝化所带来的物料粘度增大 的问题。 .
6、 在传统的复原米的制备过程中, 一旦添加了对热敏感的营养素, 如果在低温条件 下混合挤出, 虽然能保证营养素不失活, 但无法实现足够的胶凝化, 制备出的颗粒质量较 差, 如果在高温条件下混合挤出, 虽然胶凝化程度较好, 然而营养素流失以及失活比率过 高, 无法实现增加营养的目的。
鉴于上述不足之处,本发明公开了一种一种具有独立分段控温的双混合区的挤出机螺 杆结构, 其具有如下文所述之技术特征, 以解决现有技术问题。 发明内容
本发明公幵了一种具有独立分段控温的双混合区的挤出机螺杆结构,包含第一螺杆组 和第二螺杆组,二者分别位于第一内腔壳和第二内腔壳所围成的第一混合腔和第二混合腔 中。所述第一螺杆组和第二螺杆组都包含一个主螺杆和一个副螺杆,所述主螺杆和副螺杆 相互啮合。
所述第一螺杆组的第一主螺杆和第二螺杆组的第二主螺杆的结构相同。所述第一螺杆 组的第一副螺杆和第二螺杆组的第二副螺杆的结构相同。
所述第一螺杆组的第一副螺杆的末端逐渐变细, 并终止在第一螺杆组的第一主螺杆 上。所述第二螺杆组的第二副螺杆的末端逐渐变细,并终止在第二螺杆组的第二主螺杆上。
所述第一螺杆组的、未与第一副螺杆啮合的第一主螺杆的末端与第二螺杆组的、未与 第二副螺杆啮合的第二主螺杆的末端相互啮合,该啮合段位于由末端内腔壳所围成的末端 混合腔中。 所述第一主螺杆和第二主螺杆末端相切,并且相互啮合对转。所述第一主螺杆和第一 副螺杆相互啮合对转。 所述第二主螺杆和第二副螺杆相互啮合对转。
所述第一主螺杆和第二主螺杆结构相同, 都包含以下结构: 至少 2个连接段、至少 2 个绝热隔离段、 至少 1个预混合段、 至少 1个加热混合段、 1个传料段和 1个出料段。
所述第一副螺杆和第二副螺杆结构相同, 都包含以下结构: 至少 2个连接段、 至少 2 个绝热隔离段、 至少 1个预混合段、 至少 1个加热混合段和 1个输料段。
所述第一主螺杆和第一副螺杆的各相应连接段、各相应绝热隔离段、各相应预混合段、 各相应加热混合段相互啮合。
所述第二主螺杆和第二副螺杆的各相应连接段、各相应绝热隔离段、各相应预混合段、 各相应加热混合段相互啮合。
所述第一主螺杆的传料段与第一副螺杆的输料段相互啮合。所述第二主螺杆的传料段 与第二副螺杆的输料段相互啮合。所述第一主螺杆的出料段和第二主螺杆的出料段相互啮 合。
所述的连接段 51进一步包含第一齿轮 511和第二齿轮 512。所述第一齿轮 511和第 二齿轮 512具有 6〜16个齿, 且相互交错 11.25°〜30°
所述第一主螺杆和第一副螺杆的各相应第一齿轮相互啮合且各相应第二齿轮相互啮 合。 所述第二主螺杆和第二副螺杆的各相应第一齿轮相互啮合且各相应第二齿轮相互啮 合。 由于第一齿轮和第二齿轮相互交错一定角度,这就导致第一主螺杆的第一齿轮只能和 第一副螺杆的第一齿轮相互啮合,而无法与第一副螺杆的第二齿轮相互啮合,所以这就保 证了第一螺杆和第二螺杆的第一齿轮相互啮合、第二齿轮相互啮合,从而将第一主螺杆和 第一副螺杆进行锁合以固定其相对位置,避免第一主螺杆和第一副螺杆在对转的过程中发 生错位和位移, 从而保证第一主螺杆和第一副螺杆之间啮合完好。 同理, 所述第二主螺杆 和第二副螺杆的各相应第一齿轮相互啮合且各相应第二齿轮的相互啮合,也避免第二主螺 杆和第二副螺杆在对转的过程中发生错位和位移,从而保证第二主螺杆和第二副螺杆之间 啮合完好。
所述绝热隔离段是由绝热材料制成的螺紋结构,所述预混合段、加热混合段、输料段、 传料段和出料段是由导热材料制成的螺纹结构。
所述输料段位于副螺杆的末端并与 1 个连接段相连, 且所述输料段从与连接段相连 的位置向末端逐渐变细。 所述传料段位于主螺杆的末端并与 1 个连接段相连, 且所述传料段从与连接段相连 的位置向末端逐渐变粗。
所述输料段的直径逐渐缩小的圆台形结构而传料段的直径逐渐增大的圆台形结构,从 而使得二者形体适配的相互啮合。
所述出料段是纺垂形结构,位于主螺杆的末端并与所述传料段相连,且所述出料段从 与传料段相连的位置向末端,直径逐渐增大,从而使得第一主螺杆的出料段和第二主螺杆 的出料段相互啮合并保持该直径, 随后直径逐渐减小。
所述主螺杆的连接段、 绝热隔离段、 预混合段、 加热混合段、 传料段和出料段同轴, 并且所述连接段、 绝热隔离段、 预混合段、 加热混合段直径相等。
所述副螺杆的连接段、 绝热隔离段、 预混合段、加热混合段和输料段同轴, 并且所述 连接段、 绝热隔离段、 预混合段、 加热混合段直径相等。
所述各连接段、 绝热隔离段、 预混合段、 加热混合段、 输料段、 传料段和出料段为中 空结构, 其内部分别具有相互连通且同轴的轴腔。
所述连接段和绝热隔离段的轴腔的直径相等。所述预混合段、加热混合段的轴腔的直 径相等。 所述连接段和绝热隔离段的轴腔的直径小于混合段、 加热混合段的轴腔的直径。 所述输料段、传料段和出料段的轴腔的直径随输料段、传料段和出料段直径的变化而变化, 增大和 /或减小。
所述各轴腔内部设有加热系统。所述加热系统包含位于各轴腔轴心并依次穿过各轴腔 的通路,所述通路是由绝热绝缘材料制成的中空结构,其内部设置有与外界相连的多组加 热电路, 用于向位于通路外侧并与其相互连接的各加热电阻供电。
所述加热电阻包括分别位于预混合段、加热混合段、输料段、传料段和出料段内部的 加热电阻。所述各加热电阻在与外界相连的多组加热电路的控制下,分别相对独立地对预 混合段、 加热混合段、 输料段、 传料段和出料段进行加热。
,所述预混合段、 加热混合段、 输料段、 传料段和出料段的温度关系为:
预混合段温度小于加热混合段温度;
加热混合段温度大于传料段温度;
传料段温度大于出料段温度;
输料段温度和传料段温度相等。
所述输料段和传料段都为圆台形结构, 二者圆台结构的母线与轴线的夹角 β1相等, 且为 5°〜25°。 所述出料段为纺垂形结构, 其与传料段相邻的一端的母线与轴线的夹角 β2为 10°〜 35, 其与传料段相反的一端的母线与轴线的夹角 β3为 15°〜30°。
所述加热混合段的长度大于预混合段的长度。所述加热混合段的螺纹密度小于预混合 段的螺纹密度。所述预混合段的螺纹密度小于输料段、传料段和出料段的螺紋密度。所述 输料段、 传料段和出料段的螺纹密度相等。
所述第一主螺杆、 第二主螺杆、 第一副螺杆和第二副螺杆进一步包括 2 个长度和螺 纹密度相同、但温度不同的第一加热混合段和第二加热混合段。所述各加热混合段的温度 沿物料流向依次增加。
沿物料流向, 所述第一主螺杆、第二主螺杆分别依次具有相互连接的预混合段、绝热 隔离段、连接段、第一加热混合段、绝热隔离段、连接段、第二加热混合段、.绝热隔离段、 连接段、 传料段和出料段。
沿物料流向,所述第一副螺杆和第二副螺杆分别依次具有相互连接的预混合段、绝热 隔离段、 连接段、 加热混合段、 绝热隔离段、 连接段、 加热混合段、 绝热隔离段、 连接段 和输料段。
所述第一主螺杆、第二主螺杆对转, 并且第一主螺杆沿逆时针转动、第二主螺杆沿顺 时针转动。所述第一主螺杆和第一副螺杆对转, 第二主螺杆和第二副螺杆对转, 故第一副 螺杆沿顺时针转动、 第二副螺杆沿逆时针转动。
所述第一主螺杆、 第二主螺杆、 第一副螺杆和第二副螺杆的直径为 40mm~300mm、 螺杆有效长径比 12〜92、 螺杆中心距 40mm〜300mm、 轴腔直径 10mm〜160mm、 螺 紋啮合深度 10mnr!〜 50mm、 螺距 5mm〜400mm。
以下,将通过具体的实施例做进一步的说明,然而实施例仅是本发明可选实施方式的 举例,其所公幵的特征仅用于说明及阐述本发明的技术方案,并不用于限定本发明的保护 范围。 附图说明
图 1是具有本发明的螺杆结构的挤出机的整体结构示意图。
图 2是图 1挤出机螺杆结构的俯视图。
图 3a是沿图 1A-A'方向的纵截面示意图。
图 3b是沿图 1 B-B'方向的纵截面示意图。
图 4a是沿图 1A-A'方向的纵截面处的物料流向示意图。 图 4b是沿图 1 B-B'方向的纵截面处的物料流向示意图。
图 5是本发明的螺杆结构的螺杆啮合关系示意图。
图 6a是本发明的螺杆结构的主螺杆沿轴向的纵截面剖视图。
图 6b是本发明的螺杆结构的副螺杆沿轴向的纵截面剖视图。 具体实施方式 根据本发明的权利要求和说明书所公开的内容, 本发明的技术方案具体如下所述: 实施例一- 如图 2、 图 3a和 3b所示, 一种具有独立分段控温的双混合区的挤出机螺杆结构, 包含第一螺杆组和第二螺杆组, 二者分别位于第一内腔壳 22a和第二内腔壳 22b所围成 的第一混合腔 23a和第二混合腔 23b中。 所述第一螺杆组和第二螺杆组都包含一个主螺 杆和一个副螺杆, 所述主螺杆和副螺杆相互啮合。
所述第一螺杆组的第一主螺杆 41 a和第二螺杆组的第二主螺杆 41 b的结构相同。 所 述第一螺杆组的第一副螺杆 42a和第二螺杆组的第二副螺杆 42b的结构相同。
所述第一螺杆组的第一副螺杆 42a的末端逐渐变细, 并终止在第一螺杆组的第一主 螺杆 41a上。 所述第二螺杆组的第二副螺杆 42b的末端逐渐变细, 并终止在第二螺杆组 的第二主螺杆 41 b上。
所述第一螺杆组的、 未与第一副螺杆 42a啮合的第一主螺杆 41a的末端与第二螺杆 组的、 未与第二副螺杆 42b啮合的第二主螺杆 41 b的末端相互啮合, 该啮合段位于由末 端内腔壳 22'所围成的末端混合腔 23'中。
所述第一主螺杆 41a和第二主螺杆 41 b末端相切, 并且相互啮合对转。 所述第一主 螺杆 41a和第一副螺杆 42a相互啮合对转。所述第二主螺杆 41 b和第二副螺杆 42b相互 啮合对转。
如图 2、 图 5、 图 6a和 6b所示, 所述第一主螺杆 41a和第二主螺杆 41 b结构相同, 都包含以下结构: 至少 2个连接段 51、 至少 2个绝热隔离段 52、 至少 1个预混合段 53、 至少 1个加热混合段 54、 1个传料段 56和 1个出料段 57。
所述第一副螺杆 42a和第二副螺杆 42b结构相同, 都包含以下结构: 至少 2个连接 段 51、 至少 2个绝热隔离段 52、 至少 1个预混合段 53、 至少 1个加热混合段 54和 1 个输料段 55。
根据实际需要, 所述第一主螺杆 41a、 第二主螺杆 41 b、 第一副螺杆 42a和第二副 螺杆 42b可以进一步包括 2个长度和螺纹密度相同、 但温度不同的第一加热混合段 54a 和第二加热混合段 54b。 所述各加热混合段 54的温度沿物料流向依次增加。
沿物料流向, 所述第一主螺杆 41a、 第二主螺杆 41 b分别依次具有相互连接的预混 合段 53、绝热隔离段 52、连接段 51、第一加热混合段 54a、绝热隔离段 52、连接段 51、 第二加热混合段 54b、 绝热隔离段 52、 连接段 51、 传料段 56和出料段 57。 所述主螺杆 的连接段 51、 绝热隔离段 52、 预混合段 53、 加热混合段 54、 传料段 56和出料段 57同 轴, 并且所述连接段 51、 绝热隔离段 52、 预混合段 53、 加热混合段 54直径相等。
沿物料流向, 所述第一副螺杆 42a和第二副螺杆 42b分别依次具有相互连接的预混 合段 53、绝热隔离段 52、连接段 51、第一加热混合段 54a、绝热隔离段 52、连接段 51、 第二加热混合段 54b、绝热隔离段 52、连接段 51和输料段 55。所述副螺杆的连接段 51、 绝热隔离段 52、 预混合段 53、 加热混合段 54和输料段 55同轴, 并且所述连接段 51、 绝热隔离段 52、 预混合段 53、 加热混合段 54直径相等。
所述第一主螺杆 41 a和第一副螺杆 42a的各相应连接段 51、 各相应绝热隔离段 52、 各相应预混合段 53、 各相应第一加热混合段 54a、 各相应第二加热混合段 54b之间相互 啮合。
所述第二主螺杆 41 b和第二副螺杆 42b的各相应连接段 51、 各相应绝热隔离段 52、 各相应预混合段 53、各相应第一加热混合段 54、各相应第二加热混合段 54b之间相互啮 合0 *
所述第一主螺杆 41 a的传料段 56与第一副螺杆 42a的输料段 55相互啮合。 所述第 二主螺杆 41 b的传料段 56与第二副螺杆 42b的输料段 55相互啮合。所述第一主螺杆 41a 的出料段 57和第二主螺杆 41 b的出料段 57相互啮合。
所述的连接段 51进一步包含第一齿轮 511和第二齿轮 512。所述第一齿轮 511和第 二齿轮 512具有 6〜16个齿, 且相互交错 11.25°〜30°
所述第一主螺杆 41 a和第一副螺杆 42a的各相应第一齿轮 511相互啮合且各相应第 二齿轮 522相互啮合。 所述第二主螺杆 41 b和第二副螺杆 42b的各相应第一齿轮 511相 互啮合且各相应第二齿轮 522相互啮合。
由于第一齿轮 511和第二齿轮 512相互交错一定角度, 这就导致第一主螺杆 41a的 第一齿轮 511只能和第一副螺杆 42a的第一齿轮 511相互啮合,而无法与第一副螺杆 42a 的第二齿轮 512相互啮合, 所以这就保证了第一螺杆 41和第二螺杆 42的第一齿轮 511 相互啮合、 第二齿轮 512相互啮合, 从而将第一主螺杆 41 a和第一副螺杆 42a进行锁合 以固定其相对位置, 避免第一主螺杆 41a和第一副螺杆 42a在对转的过程中发生错位和 位移, 从而保证第一主螺杆 41a和第一副螺杆 42a之间啮合完好。 同理, 所述第二主螺 杆 41b和第二副螺杆 42b的各相应第一齿轮 511相互啮合且各相应第二齿轮 522的相互 啮合, 也避免第二主螺杆 41 b和第二副螺杆 42b在对转的过程中发生错位和位移, 从而 保证第二主螺杆 41 b和第二副螺杆 42b之间啮合完好。
所述绝热隔离段 52是由绝热材料制成的螺纹结构,并且第一主螺杆 41 a和第一副螺 杆 42a、第二主螺杆 41b和第二副螺杆 42b的各相应绝热隔离段 52相互啮合。所述绝热 隔离段的左右两侧分别与具有一定温度的混合段相连,该绝热隔离段起到隔热作用,保证 其左右两侧的混合段的温度不同, 形成温度分区, 避免各区的温度混淆。
所述预混合段 53、 第一加热混合段 54a、 第二加热混合段 54b、 输料段 55、 传料段 56和出料段 57是由导热材料制成的螺纹结构, 并且第一主螺杆 41a和第一副螺杆 42a、 第二主螺杆 41 b和第二副螺杆 42b的各相应预混合段 53相互啮合、各相应第一加热混合 段 54a相互啮合、 各相应第二加热混合段 54b相互啮合。
所述输料段 55位于副螺杆的末端并与 1个连接段 51相连,且所述输料段 55从与连 接段 51相连的位置向末端逐渐变细。
所述传料段 56位于主螺杆的末端并与 1个连接段 51相连,且所述传料段 56从与连 接段 51相连的位置向末端逐渐变粗。
所述输料段 55的直径逐渐缩小的圆台形结构而传料段 56的直径逐渐增大的圆台形 结构, 从而使得二者形体适配的相互啮合。 所述输料段 55和传料段 56的圆台结构的母 线与轴线的夹角 β1相等, 且为 5°〜25°。
所述出料段 57是纺垂形结构, 位于主螺杆的末端并与所述传料段 56相连, 且所述 出料段 57从与传料段 56相连的位置向末端, 直径逐渐增大, 从而使得第一主螺杆 41 a 的出料段 57和第二主螺杆 41 b的出料段 57相互啮合并保持该直径,随后直径逐渐减小。 所述出料段 57与传料段 56相邻的一端的母线与轴线的夹角 β2为 10°〜35,其与传料段 56相反的一端的母线与轴线的夹角 β3为 15°〜30°。
所述加热混合段 54的长度大于预混合段 53的长度。所述加热混合段 54的螺纹密度 小于预混合段 53的螺纹密度。 所述预混合段 53的螺纹密度小于输料段 55、 传料段 56 和出料段 57的螺纹密度。 所述输料段 55、 传料段 56和出料段 57的螺纹密度相等。
如图 5、 图 6a和 6b所示, 所述各连接段 51、 绝热隔离段 52、 预混合段 53、 第一 加热混合段 54a、第二加热混合段 54b、输料段 55、传料段 56和出料段 57为中空结构, 其内部分别具有相互连通且同轴的轴腔 61、 轴腔 62、 轴腔 63、 轴腔 64a、 轴腔 64b、 轴 腔 65、 轴腔 66和轴腔 67。
所述连接段 51和绝热隔离段 52的轴腔 61和 62的直径相等。所述预混合段 53、第 一加热混合段 54a和第二加热混合段 54b的轴腔 63、 64a和 64b的直径相等。所述轴腔 61、 62的直径小于轴腔 63、 64a和 64b的直径。 所述输料段 55、 传料段 56和出料段 57的轴腔 65、 轴腔 66和轴腔 67的直径随输料段 55、 传料段 56和出料段 57直径的变 化而变化, 增大和 /或减小。 从而使得输料段 55、 传料段 56和出料段 57的外表面与轴腔 之间的厚度各处相等。
所述各轴腔内部设有加热系统 7。所述加热系统 7包含位于各轴腔轴心并依次穿过各 轴腔的通路 70,所述通路 70是由绝热绝缘材料制成的中空结构,其内部设置有与外界相 连的多组加热电路, 用于向位于通路 70外侧并与其相互连接的各加热电阻供电。
所述加热电阻包括分别位于预混合段 53、 第一加热混合段 54a 和第二加热混合段 54b 输料段 55、传料段 56和出料段 57内部的加热电阻 73、 74a 74b、 75、 76和 77。 所述各加热电阻 73、 74a、 74b, 75、 76和 77在与外界相连的多组加热电路的控制下, 分别相对独立地对预混合段 53、第一加热混合段 54a和第二加热混合段 54b、输料段 55、 传料段 56和出料段 57进行加热。
所述预混合段 53、 第一加热混合段 54a和第二加热混合段 54b、 输料段 55、 传料段 56和出料段 57的温度关系为:
预混合段 53温度小于第一加热混合段 54a温度;
第一加热混合段 54a温度小于第二加热混合段 54b温度;
第二加热混合段 54b温度大于传料段 56温度;
传料段 56温度大于出料段 57温度;
输料段 55温度和传料段 56温度相等。
所述第一主螺杆 41 a、 第二主螺杆 41 b对转, 并且第一主螺杆 41a沿逆时针转动、 第二主螺杆 41 b沿顺时针转动。 所述第一主螺杆 41 a和第一副螺杆 42a对转, 第二主螺 杆 41 b和第二副螺杆 42b对转, 故第一副螺杆 42a沿顺时针转动、 第二副螺杆 42b沿逆 时针转动。
所述第一主螺杆 41a、 第二主螺杆 41 b、 第一副螺杆 42a和第二副螺杆 42b的直径 为 40mm~300mm、 螺杆有效长径比 12〜92、 螺杆中心距 40mm〜300mm、 轴腔直径 10mm〜160mm、 螺紋啮合深度 10mm〜50mm、 螺距 5mm〜400mm。 通过上述各混合段的温度、螺纹密度和长度的设定, 沿着物料流向, 物料在第一主螺 杆 41 a和第一副螺杆 42a、 第二主螺杆 41b和第二副螺杆 42b中间被不同螺紋密度的混 合段进行不同程度的挤压混合,并被加热至不同的温度,从而所述物料分别在第一混合腔 23a和第二混合腔 23b 内达到充分混合并被分别加热到适合的温度。 最后, 第一混合腔 23a和第二混合腔 23b在末端混合区 23内部混合, 随后被挤出。
以下进一步阐述, 物料在具有所述螺杆结构的挤出机中, 进行挤压混合的过程。 图 1所示的是一种制备复原米中常见的挤压机,包含进料系统 1、挤压腔体 2和出料 系统 3。其中进料系统 1进一步包括存料器 11和进料口 12。存料器 11和进料口 12进一 步包括用于进第一组物料的存料器 11a和进料口 12a、 用于进第二组物料的存料器 11 b 和进料口 12b。所述挤压腔体 2进一步包括外腔壳 21、第一内腔壳 22a、第二内腔壳 22b、 末端内腔壳 22'以及上述各内腔壳所分别围成的第一混合腔 23a、第二混合腔 23b和末端 混合腔 23'。 出料系统 3进一步包括出料口 31、 切割刀 32和模具 33。
如图 2、 图 3a和 3b所示, 在所述第一混合腔 23a内, 设有第一螺杆组, 即第一主 螺杆 41 a和第一副螺杆 42a, 在所述第二混合腔 23b内, 设有第二螺杆组, 即第二主螺 杆 41 b和第二副螺杆 42b。
如图 3a和 4a所示, 第一组物料 91a从存料器 11a处下落, 通过进料口 12a进入第 一混合腔 23a内, 随后进入第一主螺杆 41a和第一副螺杆 42a之间的孔隙中。 第一主螺 杆 41a沿方向 81 a逆时针转动和第一副螺杆 42a沿方向 82a顺指针转动, 二者的啮合转 动, 使得第一组物料 91 a被第一主螺杆 41a和第一副螺杆 42a挤压混合, 并随后在第一 主螺杆 41a和第一副螺杆 42a的转动带动下, 形成 2个物料流 92a和 93a流动。
如图 3a和 4a所示, 第二组物料 91 b从存料器 11 b处下落, 通过进料口 12b进入第 二混合腔 23b内, 随后进入第二主螺杆 41 b和第二副螺杆 42b之间的孔隙中。 第二主螺 杆 41b沿方向 81 b顺指针转动和第二副螺杆 42b沿方向 82b逆时针转动, 二者的啮合转 动, 使得第二组物料 91 b被第二主螺杆 41 b和第二副螺杆 42b挤压混合, 并随后在第二 主螺杆 41 b和第二副螺杆 42b的转动带动下, 形成 2个物料流 92b和 93b流动。
物料流 92a和 93a分别在第一主螺杆 41a和第一副螺杆 42a的转动下被带动向上回 到第一主螺杆 41a和第一副螺杆 42a的上部, 并与后加入的第一组物料 91a混合, 被第 一主螺杆 41 a和第一副螺杆 42a再次进行循环混合挤压。
物料流 92b和 93b分别在第二主螺杆 41 b和第二副螺杆 42b的转动下被带动向上回 到第二主螺杆 41 b和第二副螺杆 42b的上部, 并与后加入的第二组物料 91 b混合, 被第 二主螺杆 41 b和第二副螺杆 42b再次进行循环混合挤压。
在上述过程中, 如图 5、 图 6a和 6b所示, 接通外界电路, 对加热系统 7通电, 通 过位于通路 70内部的各个电线及电路, 分别对位于第一主螺杆 41 a、 第二主螺杆 41 b、 第一副螺杆 42a和第二副螺杆 42b的各个预混合段 53、 第一加热混合段 54a、 第二加热 混合段 54b、输料段 55和传料段 56内部的加热电阻 73、 74a、 74b、 75和 76通电加热, 并对各相对应的混合段加热升温。
所述物料经过如下的加热混合过程:
1、 预混合
第一组物料 91a从第一进料口 12a进入与其相邻的第一混合腔 23a中的预混合段 53, 并在第一主螺杆 41a和第一副螺杆 42a的相互啮合的预混合段 53的对转下,被挤压混合。 为了使得进入的物料可以被快速充分的混合, 将预混合段 53设计具有较大的螺纹密度, 以增强剪切力, 同时为了避免物料在加热条件下被胶凝化过度,此时仅对物料进行初步加 热, 故设计预混合段 53的温度较低。
第二组物料 91b从第二进料口 12b进入与其相邻的第二混合腔 23b中的预混合段 53, 并在第二主螺杆 41b和第二副螺杆 42b的相互啮合的预混合段 53的对转下,被挤压混合。 为了使得进入的物料可以被快速充分的混合, 将预混合段 53设计具有较大的螺纹密度, 以增强剪切力, 同时为了避免物料在加热条件下被胶凝化过度,此时仅对物料进行初步加 热, 故设计预混合段 53的温度较低。
2、 加热混合
随后第一组物料 91 a进入第一混合腔 23a中的第一加热混合段 54a区域, 在温度较 高、 螺纹密度较小、 长度较长的第一主螺杆 41 a和第一副螺杆 42a的相互啮合的 2个第 一加热混合段 54a和第二加热混合段 54b处挤压混合, 这一过程中, 物料可以在较长的 螺杆上进行充分的换热,被螺杆加热并进一步挤压混合,此时由于加热过程中会带来物料 的胶凝化, 故设计密度较低的第一加热混合段 54a和第二加热混合段 54b以使得物料内 部的气体以及水蒸气等可以扩散出去, 进行换气, 从而避免物料内部具有较多气体, 在出 口处气体扩散过快, 带来制成颗粒的破裂以及裂紋。
随后第二组物料 91 b进入第二混合腔 23b中的第二加热混合段 54b区域, 在温度较 高、 螺纹密度较小、 长度较长的第二主螺杆 41 b和第二副螺杆 42b的相互啮合的 2个第 一加热混合段 54a和第二加热混合段 54b处挤压混合, 这一过程中, 物料可以在较长的 螺杆上进行充分的换热,被螺杆加热并进一步挤压混合,此时由于加热过程中会带来物料 的胶凝化, 故设计密度较低的第一加热混合段 54a和第二加热混合段 54b以使得物料内 部的气体以及水蒸气等可以扩散出去,进行换气, 从而避免物料内部具有较多气体, 在出 口处气体扩散过快, 带来制成颗粒的破裂以及裂紋。
为了使得各组物料可以被逐渐升温,避免温差过大,所以可以根据需要设计有若干的 加热混合段并不局限于 2个并且沿物料流向, 各加热混合段温度逐渐上升, 在本实施例 中, 第二加热混合段 54b的温度高于第一加热混合段 54a。
3、 传输
第一组物料 91 a通过螺纹密度较高的绝热隔离段 51被快速剪切混合好,并被向后传 送至第一主螺杆 41 a的传料段 56和第一副螺杆 42a的输料段 55处, 在二者的相对转动 啮合下,第一组物料 91a被直径逐渐缩小的输料段 55和图 2所示的此处变窄的内腔壳的 共同作用下, 逐渐传输至直径逐渐增大的传料段 56上, 输料段 55带走的物料不断减少, 传料段 56带走的物料不断增多, 从而使得第一组物料 91 a被完全带到第一主螺杆 41 a 上, 并被进一步送入末端混合腔 23'中的第一主螺杆 41a的出料段 57处。
第二组物料 91 b通过螺紋密度较高的绝热隔离段 51被快速剪切混合好,并被向后传 送至第二主螺杆 41 b的传料段 56和第二副螺杆 42b的输料段 55处, 在二者的相对转动 啮合下,第二组物料 91a被直径逐渐缩小的输料段 55和图 2所示的此处变窄的内腔壳的 共同作用下, 逐渐传输至直径逐渐增大的传料段 56上, 输料段 55带走的物料不断减少, 传料段 56带走的物料不断增多, 从而使得第一组物料 91 b被完全带到第二主螺杆 41a 上, 并被进一步送入末端混合腔 23'中的第二主螺杆 41 b的出料段 57处。
在上述过程中, 为了使得物料被快速剪切传送, 故相应设计输料段 55和传料段 56 的螺纹密度较大。 同时对输料段 55和传料段 56进行加热, 以进一步对物料进行加热混 合, 然而此时物料即将被送出挤压腔, 故设计输料段 55和传料段 56的温度低于第二加 热混合段 54b,以使得物料逐渐降温,避免迅速降温带来颗粒表面龟裂或颗粒破碎等情况。
如图 3b和 4b所示,在上述过程中,被送入末端混合腔 23'中的第一主螺杆 41 a的出 料段 57处的第一组物料 91a的物料流 94a和被送入末端混合腔 23'中的第二主螺杆 41 b 的出料段 57处的第二组物料 91 b的物料流 94b分别在第一主螺杆 41a和第二主螺杆 41b 对转啮合的 2各出料段 57之间被混合挤压, 形成物料流 95a和 95b, 所述物料流 95a 和 95b分别在第一主螺杆 41 a和第二主螺杆 41 b的转动下, 被带回二者下部, 并再次被 二者挤压, 进行循环混合挤压。
在上述过程中, 如图 5、 图 6a和 6b所示, 接通外界电路, 对加热系统 7通电, 通 过位于通路 70内部的各个电线及电路, 分别对位于第一主螺杆 41a、 第二主螺杆 41 b、 的出料段 57内部的加热电阻 75通电加热, 并对各相对应的出料段 57加热升温。
所述第一组物料 91 a和第二组物料 92a在第一主螺杆 41a、 第二主螺杆 41 b的出料 段 57处被加热混合, 随后被送出挤压腔。
上述过程中被挤压的物料, 在螺杆的挤压作用下, 以螺旋线的方式, 沿着图 1和图 2 所示的物料流向运动, 第一组物料 91a从第一主螺杆 41 a和第一副螺杆 42a的前端向末 端运动并被反复挤压混合, 第二组物料 91 b从第二主螺杆 41 b和第二副螺杆 42b的前端 向末端运动并被反复挤压混合,随后第一组物料 91a和第二组物料 91 b被送入出料段 56, 稍加挤压后被传送至出料口 31。 物料从出料口 31被挤压至出口处的模具 33处, 从该模 具 33的挤压孔处挤压处, 并被切割刀 32迅速切割, 形成颗粒。
这样, 可以在第一混合腔 23a 内进行一组物料的混合, 并根据该物料特性选择适宜 温度, 在第二混合腔 23b 内进行另一组物料的混合, 并根据该物料特性选择适宜温度, 从而避免了有些物料需要高温,有些物料不能高温这种情况所带来的不便混合和混合导致 的物料失活、混合不佳等情况。最后两组物料在出料端处被迅速剪切混合, 也是为了避免 高温物料对另一组物料的影响, 故迅速出料, 切割制粒, 然后冷却, 可以有效避免上述问 题, 所以此处设计出料段只有一段, 并且具有非常大的螺纹密度, 以带来足够的剪切力和 推送力。 通过上述螺杆结构和挤压过程,物料被充分挤压混合,并根据需要被加热至所需的胶凝 化程度。 各混合段的加热温度独立可控, 可以根据实际需要加以调整。 上述过程中的技术参数如下:
螺杆直径 螺杆有效长径 螺杆中心距
螺杆 41a和 42a 40mm~300mm 12〜72 40mm〜300mm
螺杆 41 b和 42b 40mm~300mm 12〜72 40mm~300mm
β1 β2 β3
螺杆 42a和 42b 5°〜250
螺杆 41 a和 41 b 10。〜35 15ο〜30° 轴腔直径 螺纹啮合深度 螺距 温度 连接段 10mm~160mm 10mm~50mm 5mm〜400mm 绝热隔离段 10mm ~ 160mm 10mm~50mm 5mm〜400mm
预混合段 53 10mm ~ 160mm 10mm~50mm 5mm~400mm 80〜85°C 加热混合段 54a 10mm ~ 160mm 10mm〜50mm 5mm~400mm 85〜95°C 加热混合段 54b 10mm~ 160mm 10mm〜50mm 5mm~400mm 95〜100°C 输料段 55 10mm~160mm 10mm〜50mm 5mm~400mm 95〜98°C 传料段 56 10mm~160mm 10mm~50mm 5mm〜400mm 95〜98°C 出料段 57 10mm~160mm 10mm〜50mm 5mm〜400mm 85〜90°C
Figure imgf000016_0001
采用以下技术参数改进实施例一 :
螺杆直径 螺杆有效长径比 螺杆中心距
螺杆 41 a和 42a 90mm 35 90mm
螺杆 41b和 42b 90mm 35 90mm 轴腔直径 螺纹啮合深度 螺距 温度
连接段 20mm 15mm
绝热隔离段 20mm 15mm 45mm
40mm
预混合段 53 15mm 45mm 80 °C
40mm
加热混合段 54a 15mm 60mm 93 °C
40mm
加热混合段 54b 15mm 60mm 97 °C
40mm
输料段 55 15mm 30mm 95 °C
40mm
传料段 56 15mm 30mm 95 °C
出料段 57 40mm 15mm 30mm 85 °C 实施例三: 采用以下技术参数改进实施例一:
螺杆直径 螺杆有效长径比 螺杆中心距 螺杆 41a和 42a 90mm 65 90mm 螺杆 41 b和 42b 90mm 65 90mm 轴腔直径 螺紋啮合深度 螺距 温度 连接段 20mm 20mm
绝热隔离段 20mm 20mm 60mm
预混合段 53 30mm 20mm 60mm 82。C 加热混合段 54a 30mm 20mm 80mm 94 °C 加热混合段 54b 30mm 20mm 80mm 98 °C 输料段 55 30mm 20mm 40mm 96。C 传料段 56 30mm 20mm 40mm 96 °C 出料段 57 30mm 20mm 40mm 88 °C 实施例四: 采用以下技术参数改进实施例一:
螺杆直径 螺杆有效长径比 螺杆中心距 螺杆 41 a和 42a 90mm 65 120mm
螺杆 41 b和 42b 90mm 65 120mm 轴腔直径 螺纹啮合深度 螺距 温度 连接段 20mm 25mm
绝热隔离段 20mm 25mm 75mm
预混合段 53 30mm 25mm 75mm 84。C 加热混合段 54a 30mm 25mm 100mm 95 °C 加热混合段 54b 30mm 25mm 100mm 99 °C 输料段 55 30mm 25mm 50mm 97。C 传料段 56 30mm 25mm 50mm 97 °C 出料段 57 30mm 25mm 50mm 90 °C 实施例五: 采用以下技术参数改进实施例一:
螺杆直径 螺杆有效长径比 螺杆中心距 螺杆 41a和 42a 160mm 25 160mm
螺杆 41 b和 42b 160mm 25 160mm 轴腔直径 螺纹啮合深度 螺距 温度 连接段 20mm 25mm
绝热隔离段 20mm 25mm 75mm
预混合段 53 80mm 25mm 75mm 80 °C 加热混合段 54a 80mm 25mm 100mm 93。C 加热混合段 54b 80mm 25mm 100mm 97 °C 输料段 55 80mm 25mm 50mm 95 °C 传料段 56 80mm 25mm 50mm 95 °C 出料段 57 80mm 25mm 50mm 85 °C 实施例六: 采用以下技术参数改进实施例一:
螺杆直径 螺杆有效长径比 螺杆中心距 螺杆 41 a和 42a 160mm 55 160mm
螺杆 41 b和 42b 160mm 55 160mm 轴腔直径 螺纹啮合深度 螺距 温度 连接段 20mm 30mm
绝热隔离段 20mm 30mm 90mm
预混合段 53 70mm 30mm 90mm 82 °C 加热混合段 54a 70mm 30mm 120mm 94 °C 加热混合段 54b 70mm 30mm 120mm 98 °C 输料段 55 70mm 30mm 60mm 96 °C 传料段 56 70mm 30mm 60mm 96 °C 出料段 57 70mm 30mm 60mm 88 °C 实施例七: 采用以下技术参数改进实施例一:
螺杆直径 螺杆有效长径比 螺杆中心距 螺杆 41 a和 42a 160mm 55 220mm
螺杆 41 b和 42b 160mm 55 220mm 轴腔直径 螺纹啮合深度 螺距 温度 连接段 20mm 35mm
绝热隔离段 20mm 35mm 105mm
预混合段 53 60mm 35mm 105mm 84 °C 加热混合段 54a 60mm 35mm 140mm 95 °C 加热混合段 54b 60mm 35mm 140mm 99。C 输料段 55 60mm 35mm 70mm 97 °C 传料段 56 60mm 35mm 70mm 97 °C 出料段 57 60mm 35mm 70mm 90。C 实施例八: 采用以下技术参数改进实施例一:
螺杆直径 螺杆有效长径比 螺杆中心距 螺杆 41a和 42a 240mm 15 240mm
螺杆 41 b和 42b 240mm 15 240mm 轴腔直径 螺纹啮合深度 螺距 温度 连接段 20mm 35mm 绝热隔离段 20mm 35mm 105mm 预混合段 53 120mm 35mm 105mm 80 °C 加热混合段 54a 120mm 35mm 140mm 93 °C 加热混合段 54b 120mm 35mm 140mm 97 °C 输料段 55 120mm 35mm 70mm 95 °C 传料段 56 120mm 35mm 70mm 95 °C 出料段 57 120mm 35mm 70mm 85 °C 实施例九: 采用以下技术参数改进实施例一:
螺杆直径 螺杆有效长径比 螺杆中心距 螺杆 41a和 42a 240mm 45 2400mm
螺杆 41 b和 42b 240mm 45 2400mm 轴腔直径 螺纹啮合深度 螺距 温度 连接段 20mm 40mm
绝热隔离段 20mm 40mm 120mm
预混合段 53 110mm 40mm 120mm 82 °C 加热混合段 54a 110mm 40mm 160mm 94 °C 加热混合段 54b 110mm 40mm 160mm 98 °C 输料段 55 110mm 40mm 80mm 96 °C 传料段 56 110mm 40mm 80mm 96V 出料段 57 110mm 40mm 80mm 88。C 实施例十- 采用以下技术参数改进实施例一:
螺杆直径 螺杆有效长径比 螺杆中心距 螺杆 41 a和 42a 240mm 45 280mm
Figure imgf000021_0001
Figure imgf000021_0002
上述内容为本发明的具体实施例的例举,对于其中未详尽描述的设备和结构,应当理 解为采取本领域己有的通用设备及通用方法来予以实施。

Claims

权 利 要 求 书
1、 一种具有独立分段控温的双混合区的挤出机螺杆结构, 其特征在于, 包含第一螺杆组 和第二螺杆组, 二者分别位于第一内腔壳 (22a) 和第二内腔壳 (22b) 所围成的第一混 合腔 (23a) 和第二混合腔 (23b) 中;
所述第一螺杆组和第二螺杆组都包含一个主螺杆和一个副螺杆,所述主螺杆和副螺杆相互 啮合;
所述第一螺杆组的第一主螺杆 (41a) 和第二螺杆组的第二主螺杆 (41b) 的结构相同; 所述第一螺杆组的第一副螺杆 (42a) 和第二螺杆组的第二副螺杆 (42b) 的结构相同; 所述第一螺杆组的第一副螺杆(42a) 的末端逐渐变细, 并终止在第一螺杆组的第一主螺 杆 (41a) 上;
所述第二螺杆组的第二副螺杆(42b) 的末端逐渐变细, 并终止在第二螺杆组的第二主螺 杆 (41b) 上;
所述第一螺杆组的、 未与第一副螺杆 (42a) 啮合的第一主螺杆 (41a) 的末端与第二螺 杆组的、 未与第二副螺杆 (42b) 啮合的第二主螺杆 (41b) 的末端相互啮合, 该啮合段 位于由末端内腔壳 (22') 所围成的末端混合腔 (23') 中;
所述第一主螺杆 (41a) 和第二主螺杆 (41b) 末端相切, 并且相互啮合对转; 所述第一主螺杆 (41a) 和第一副螺杆 (42a) 相互啮合对转;
所述第二主螺杆 (41b) 和第二副螺杆 (42b) 相互啮合对转。
2、 如权利要求 1 所述的挤出机螺杆结构, 其特征在于, 所述第一主螺杆 (41a) 和第二 主螺杆 (41b) 结构相同, 都包含以下结构:
至少 2个连接段 (51 );
至少 2个绝热隔离段 (52);
至少 1个预混合段 (53);
至少 1个加热混合段 (54);
1个传料段 (56);
1个出料段 (57);
所述第一副螺杆 (42a) 和第二副螺杆 (42b) 结构相同, 都包含以下结构:
至少 2个连接段 (51 ); 至少 2个绝热隔离段 (52);
至少 1个预混合段 (53);
至少 1个加热混合段 (54);
1个输料段 (55);
所述第一主螺杆(41a)和第一副螺杆(42a) 的各相应连接段 (51 )、 各相应绝热隔离段 (52)、 各相应预混合段 (53)、 各相应加热混合段 (54) 相互啮合;
所述第二主螺杆(41b)和第二副螺杆(42b) 的各相应连接段 (51 )、 各相应绝热隔离段
(52)、 各相应预混合段 (53)、 各相应加热混合段 (54) 相互啮合;
所述第一主螺杆(41a) 的传料段(56)与第一副螺杆(42a) 的输料段(55)相互啮合; 所述第二主螺杆(41b) 的传料段(56)与第二副螺杆(42b) 的输料段(55)相互啮合; 所述第一主螺杆(41a) 的出料段(57)和第二主螺杆(41b) 的出料段(57)相互啮合。
3、 如权利要求 2所述的挤出机螺杆结构, 其特征在于, 所述绝热隔离段 (52) 是由绝热 材料制成的螺纹结构,所述预混合段(53)、加热混合段(54)、输料段(55)、传料段(56) 和出料段 (57) 是由导热材料制成的螺紋结构;
所述输料段 (55) 位于副螺杆的末端并与 1个连接段 (51 ) 相连, 且所述输料段 (55) 从与连接段 (51 ) 相连的位置向末端逐渐变细;
所述传料段 (56) 位于主螺杆的末端并与 1个连接段 (51 ) 相连, 且所述传料段 (56) 从与连接段 (51 ) 相连的位置向末端逐渐变粗;
所述输料段 (55) 的直径逐渐缩小的圆台形结构而传料段 (56) 的直径逐渐增大的圆台 形结构, 从而使得二者形体适配的相互啮合;
所述出料段 (57) 是纺垂形结构, 位于主螺杆的末端并与所述传料段 (56) 相连, 且所 述出料段 (57) 从与传料段 (56) 相连的位置向末端, 直径逐渐增大, 从而使得第一主 螺杆 (41a) 的出料段 (57) 和第二主螺杆 (41b) 的出料段 (57) 相互啮合并保持该直 径, 随后直径逐渐减小;
所述主螺杆的连接段 (51 )、 绝热隔离段 (52)、 预混合段 (53)、 加热混合段 (54)、 传 料段 (56) 和出料段 (57) 同轴, 并且所述连接段 (51 )、 绝热隔离段 (52)、 预混合段
(53)、 加热混合段 (54) 直径相等;
所述副螺杆的连接段 (51 )、 绝热隔离段(52)、 预混合段(53)、 加热混合段(54)和输 料段(55) 同轴, 并且所述连接段(51 )、 绝热隔离段 (52)、 预混合段 (53)、 加热混合 段 (54) 直径相等。
4、 如权利要求 3所述的挤出机螺杆结构, 其特征在于, 所述各连接段 (51 )、 绝热隔离 段(52)、预混合段(53)、加热混合段(54)、输料段(55)、传料段(56)和出料段(57) 为中空结构, 其内部分别具有相互连通且同轴的轴腔 (61 )、 轴腔 (62)、 轴腔(63)、 轴 腔 (64)、 轴腔 (65)、 轴腔 (66) 和轴腔 (67);
所述连接段 (51 ) 和绝热隔离段 (52) 的轴腔 (61 ) 和 (62) 的直径相等;
所述预混合段 (53)、 加热混合段 (54) 的轴腔 (63)、 (64) 的直径相等;
所述轴腔 (61 )、 (62) 的直径小于轴腔 (63)、 (64) 的直径。
所述输料段(55)、 传料段(56)和出料段(57) 的轴腔(65)、 轴腔 (66)和轴腔(67) 的直径随输料段 (55)、 传料段 (56) 和出料段 (57) 直径的变化而变化, 增大和 /或减 小。
5、如权利要求 4所述的挤出机螺杆结构,其特征在于,所述各轴腔内部设有加热系统(7); 所述加热系统(7)包含位于各轴腔轴心并依次穿过各轴腔的通路 (70), 所述通路(70) 是由绝热绝缘材料制成的中空结构,其内部设置有与外界相连的多组加热电路,用于向位 于通路 (70) 外侧并与其相互连接的各加热电阻供电;
所述加热电阻包括分别位于预混合段(53)、加热混合段(54)、输料段(55)、传料段(56) 和出料段 (57) 内部的加热电阻 (73)、 (74)、 (75)、 (76) 和 (77);
所述各加热电阻 (73)、 (74)、 (75)、 (76) 和 (77) 在与外界相连的多组加热电路的控 制下, 分别相对独立地对预混合段(53)、加热混合段(54)、 输料段(55)、传料段(56) 和出料段 (57) 进行加热;
所述预混合段 (53)、 加热混合段 (54)、 输料段 (55)、 传料段 (56) 和出料段 (57) 的温度关系为:
预混合段 (53) 温度小于加热混合段 (54) 温度;
加热混合段 (54) 温度大于传料段 (56) 温度;
传料段 (56) 温度大于出料段 (57) 温度;
输料段 (55) 温度和传料段 (56) 温度相等。 6、 如权利要求 5所述的挤出机螺杆结构, 其特征在于, 所述加热混合段 (54) 的长度大 于预混合段 (53) 的长度;
所述输料段(55)和传料段(56)都为圆台形结构,二者圆台结构的母线与轴线的夹角 β1 相等, 且为 5。〜25。;
所述出料段 (57) 为纺垂形结构, 其与传料段 (56) 相邻的一端的母线与轴线的夹角 Ρ2 为 10°〜35, 其与传料段 (56) 相反的一端的母线与轴线的夹角 β3为 15°〜30°; 所述加热混合段 (54) 的螺纹密度小于预混合段 (53) 的螺纹密度;
所述预混合段(53) 的螺紋密度小于输料段(55)、 传料段(56)和出料段(57) 的螺纹 密度;
所述输料段 (55)、 传料段 (56) 和出料段 (57) 的螺纹密度相等。
7、 如权利要求 1所述的挤出机螺杆结构, 其特征在于, 所述的连接段 (51)进一步包含 第一齿轮 (511) 和第二齿轮 (512);
所述第一齿轮 (511) 和第二齿轮 (512) 具有 6〜16个齿;
所述第一齿轮 (511) 和第二齿轮 (512) 相互交错 11.25°〜30°;
所述第一主螺杆(41a)和第一副螺杆(42a) 的各相应第一齿轮 (511)相互啮合且各相 应第二齿轮 (522) 相互啮合;
所述第二主螺杆(41b)和第二副螺杆(42b) 的各相应第一齿轮(511)相互啮合且各相 应第二齿轮 (522) 相互啮合。 8、 如权利要求 7所述的挤出机螺杆结构, 其特征在于, 所述第一主螺杆(41a)、 第二主 螺杆 (41b)、 第一副螺杆 (42a) 和第二副螺杆 (42b) 进一步包括 2个长度和螺纹密度 相同、 但温度不同的第一加热混合段 (54a) 和第二加热混合段 (54b);
所述各加热混合段 (54) 的温度沿物料流向依次增加;
沿物料流向, 所述第一主螺杆(41a)、 第二主螺杆(41b)分别依次具有相互连接的预混 合段(53)、绝热隔离段(52)、连接段(51 ),第一加热混合段(54a)、绝热隔离段(52)、 连接段 (51)、 第二加热混合段 (54b)、 绝热隔离段 (52)、 连接段 (51)、 传料段 (56) 和出料段 (57);
沿物料流向, 所述第一副螺杆 (42a) 和第二副螺杆 (42b) 分别依次具有相互连接的预 混合段(53)、 绝热隔离段(52)、 连接段(51)、 加热混合段(54a)、 绝热隔离段(52)、 连接段 (51)、 加热混合段 (54b)、 绝热隔离段 (52)、 连接段 (51) 和输料段 (55)。 9、 如权利要求 8所述的挤出机螺杆结构, 其特征在于, 所述第一主螺杆(41a)、 第二主 螺杆 (41b) 对转, 并且第一主螺杆 (41a) 沿逆时针转动、 第二主螺杆 (41b) 沿顺时 针转动;
所述第一主螺杆 (41a ) 和第一副螺杆 (42a ) 对转, 第二主螺杆 (41 b) 和第二副螺杆 (42b) 对转, 故第一副螺杆 (42a) 沿顺时针转动、 第二副螺杆 (42b) 沿逆时针转动。
10、 如权利要求 9所述的挤出机螺杆结构, 其特征在于所述第一主螺杆 (41a)、 第二主 螺杆 (41b)、 第一副螺杆 (42a) 和第二副螺杆 (42b) 的直径为 40mm~300mm、 螺杆 有效长径比 12〜92、 螺杆中心距 40mm〜300mm、 轴腔直径 10mm〜160mm、 螺纹啮 合深度 10mrr!〜 50mm、 螺距 5mm〜400mm。
PCT/CN2010/000642 2009-05-19 2010-05-07 一种具有独立分段控温的双混合区的挤出机螺杆结构 WO2010133084A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910051468.2 2009-05-19
CN2009100514682A CN101889719A (zh) 2009-05-19 2009-05-19 一种具有独立分段控温的双混合区的挤出机螺杆结构

Publications (1)

Publication Number Publication Date
WO2010133084A1 true WO2010133084A1 (zh) 2010-11-25

Family

ID=43099206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000642 WO2010133084A1 (zh) 2009-05-19 2010-05-07 一种具有独立分段控温的双混合区的挤出机螺杆结构

Country Status (2)

Country Link
CN (1) CN101889719A (zh)
WO (1) WO2010133084A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105961821A (zh) * 2016-02-26 2016-09-28 河北晓进机械制造股份有限公司 大豆拉丝蛋白变压式膨化机
CN117067280A (zh) * 2023-10-12 2023-11-17 烟台拉斐尔生物科技有限公司 临床用引流管生产裁切设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113383902A (zh) * 2021-07-12 2021-09-14 安徽燕之坊食品有限公司 一种营养均衡冲泡杂粮米饭及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2618643A1 (fr) * 1987-07-31 1989-02-03 Clextral Procede de preparation d'un produit alimentaire denomme " pate a choux " et produit obtenu par ce procede
JPH0557725A (ja) * 1991-08-22 1993-03-09 Ishinaka Tekkosho:Kk 混練機
JPH0631725A (ja) * 1992-03-17 1994-02-08 Masao Moriyama 四軸押出機
US5350585A (en) * 1993-05-21 1994-09-27 Wenger Manufacturing, Inc. Extrusion process for the production of freezeable breading product
US6340487B1 (en) * 2000-03-28 2002-01-22 Wenger Manufacturing, Inc. Multiple purpose quick-changeover extrusion system
US7097442B2 (en) * 2001-11-30 2006-08-29 Kohei Sawa Extruder
CN101362377A (zh) * 2008-09-23 2009-02-11 王宁和 高效多螺杆挤出机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2618643A1 (fr) * 1987-07-31 1989-02-03 Clextral Procede de preparation d'un produit alimentaire denomme " pate a choux " et produit obtenu par ce procede
JPH0557725A (ja) * 1991-08-22 1993-03-09 Ishinaka Tekkosho:Kk 混練機
JPH0631725A (ja) * 1992-03-17 1994-02-08 Masao Moriyama 四軸押出機
US5350585A (en) * 1993-05-21 1994-09-27 Wenger Manufacturing, Inc. Extrusion process for the production of freezeable breading product
US6340487B1 (en) * 2000-03-28 2002-01-22 Wenger Manufacturing, Inc. Multiple purpose quick-changeover extrusion system
US7097442B2 (en) * 2001-11-30 2006-08-29 Kohei Sawa Extruder
CN101362377A (zh) * 2008-09-23 2009-02-11 王宁和 高效多螺杆挤出机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105961821A (zh) * 2016-02-26 2016-09-28 河北晓进机械制造股份有限公司 大豆拉丝蛋白变压式膨化机
CN105961821B (zh) * 2016-02-26 2022-10-28 河北晓进机械制造股份有限公司 大豆拉丝蛋白变压式膨化机
CN117067280A (zh) * 2023-10-12 2023-11-17 烟台拉斐尔生物科技有限公司 临床用引流管生产裁切设备
CN117067280B (zh) * 2023-10-12 2023-12-12 烟台拉斐尔生物科技有限公司 临床用引流管生产裁切设备

Also Published As

Publication number Publication date
CN101889719A (zh) 2010-11-24

Similar Documents

Publication Publication Date Title
US11813785B2 (en) Extruder screw having paths within the screw, extruder, and extrusion method
JPH03290223A (ja) 押出しダイ組立体
WO2010117380A1 (en) High capacity extrusion die assembly
JP2002210731A (ja) 二軸連続混練機とこれによる混練方法
US7691427B1 (en) Extrusion die assembly for high density products
JPH0838081A (ja) パスタを製造する方法および装置
US20040142081A1 (en) Method and installation for the continuous preparation of pellets for the production of snack type food products
WO2010133084A1 (zh) 一种具有独立分段控温的双混合区的挤出机螺杆结构
CN102205620A (zh) 差速锥形双螺杆挤出机
CN104097251B (zh) 用于挤出设备的混合件以及制造蜂窝结构的方法
CN212949081U (zh) 一种用于聚丙烯酸树脂的双螺杆挤出机
WO2006019320A1 (en) Extrusion apparatus and method for extruding high protein foodstuffs
CN206978718U (zh) 一种双螺杆膨化机构以及水产膨化机
CN113273711B (zh) 一种挤压糊化装置及系统
WO2010133085A1 (zh) 一种具有额外分流汇流功能的挤出机多级螺杆结构
CN102630805A (zh) 拉丝蛋白的制造方法
US20220330569A1 (en) System and method for extruding confectionery products
CN101878949A (zh) 一种具有物料分流弥补功能的挤出机三螺杆结构
CN216363431U (zh) 一种用于制备火麻仁杂粮面条的螺杆挤压机
CN201563586U (zh) 双螺杆结构
TWM615885U (zh) 連續式素肉生產裝置
CN101779685A (zh) 一体化挤压切割成型设备
BR112020018953A2 (pt) Método e aparelho para produção de alimentos para animais de estimação com alto teor de carne
CN113796454A (zh) 一种生产高湿挤压蛋白的双螺杆挤压机
CN101878946A (zh) 具有多段控温加热功能的挤出机双螺杆结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/03/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10777288

Country of ref document: EP

Kind code of ref document: A1