WO2010131739A1 - 生分解性潤滑油組成物 - Google Patents

生分解性潤滑油組成物 Download PDF

Info

Publication number
WO2010131739A1
WO2010131739A1 PCT/JP2010/058189 JP2010058189W WO2010131739A1 WO 2010131739 A1 WO2010131739 A1 WO 2010131739A1 JP 2010058189 W JP2010058189 W JP 2010058189W WO 2010131739 A1 WO2010131739 A1 WO 2010131739A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
ester
lubricating oil
oil composition
component
Prior art date
Application number
PCT/JP2010/058189
Other languages
English (en)
French (fr)
Inventor
太平 岡田
行敏 藤浪
拓矢 大野
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to EP20100774996 priority Critical patent/EP2431450B1/en
Priority to US13/320,696 priority patent/US9139795B2/en
Priority to DK10774996T priority patent/DK2431450T3/da
Priority to CN201080021991.1A priority patent/CN102421882B/zh
Publication of WO2010131739A1 publication Critical patent/WO2010131739A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • C10M2207/2815Esters of (cyclo)aliphatic monocarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • C10M2207/2895Partial esters containing free hydroxy groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/102Polyesters
    • C10M2209/1023Polyesters used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/043Ammonium or amine salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/081Biodegradable compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/64Environmental friendly compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives

Definitions

  • the present invention relates to a lubricating oil composition, and more particularly, to a biodegradable lubricating oil composition used in particular for a step-up gear for wind power generation.
  • Patent Documents 1 and 2 propose biodegradable lubricating oils based on complex esters obtained from polyhydric alcohols and polycarboxylic acids.
  • the biodegradable lubricating oils described in Patent Documents 1 and 2 are not sufficiently stable in oxidation, and maintain the performance as a lubricating oil for a long period of time when used for a gearbox of a wind power generator. It is difficult. Then, this invention is providing the biodegradable lubricating oil composition excellent in lubricity, oxidation stability, and biodegradability, and suitable also for the gearbox used for a wind power generator.
  • the present invention provides the following biodegradable lubricating oil composition.
  • (1) Obtained by reacting an ester represented by the following formula (1) with (B) a linear saturated aliphatic carboxylic acid and a polyhydric alcohol, and having an acid value of 0.5 mgKOH / g or less.
  • a biodegradable lubricating oil composition comprising an ester and (C) a phosphate ester amine salt obtained by reacting an acidic phosphate ester with an alkylamine.
  • Ra is a hydrocarbyl group having 4 to 20 carbon atoms
  • Rb is a hydrocarbyl group having 4 to 18 carbon atoms
  • Rc is hydrogen or an acyl having 1 to 10 carbon atoms.
  • N is 3 or more and 15 or less.
  • a biodegradable lubricating oil composition characterized by comprising: (3) The biodegradable lubricating oil composition described above, wherein the linear saturated aliphatic carboxylic acid forming the ester of the component (B) has 6 to 12 carbon atoms Lubricating oil composition. (4) The biodegradable lubricating oil composition described above, wherein the polyhydric alcohol forming the ester of the component (B) is at least one of pentaerythritol and trimethylolpropane. Oil composition. (5) The biodegradable lubricating oil composition described above, wherein the blending amount of the component (B) is 10% by mass or more based on the total amount of the composition.
  • the biodegradable lubricating oil composition described above wherein the acidic phosphoric acid ester forming the component (C) has 8 to 13 carbon atoms.
  • the biodegradable lubricating oil composition of the present invention is excellent in lubricity, oxidation stability and biodegradability, and is also suitable for a gearbox used in a wind power generator.
  • 1 is a 1 H-NMR spectrum of an ester produced in Example 1.
  • 2 is a 1 H-NMR spectrum of an ester produced in Example 2.
  • the biodegradable lubricating oil composition of the present invention (hereinafter also simply referred to as “the present composition”) comprises (A) a predetermined 2-hydroxy (hydrocarbyl) carboxylic acid ester and (B) a linear saturated aliphatic carboxylic acid ester. It is characterized by blending an ester obtained by reacting an acid with a polyhydric alcohol and (C) a phosphoric ester amine salt obtained by reacting an acidic phosphate with an alkylamine.
  • the present invention will be described in detail.
  • Component (A) is an ester composed of a monohydric alcohol and 2-hydroxy (hydrocarbyl) carboxylic acid, as shown by the following formula (1).
  • Ra is a hydrocarbyl group having 4 to 20 carbon atoms, preferably an alkyl group.
  • the alcohol used for the synthesis of the ester has a low boiling point, so that dehydration condensation is difficult, and the synthesis of the ester becomes difficult.
  • Particularly preferred are butyl, hexyl, octyl, decanyl, dodecanyl, tetradecanyl, hexadecanyl and octadecanyl. These groups may have a linear structure or a branched structure.
  • the carbon number of Ra is 21 or more, low temperature fluidity is lowered, which is not preferable.
  • Rb is a hydrocarbyl group having 4 to 18 carbon atoms, preferably an alkyl group.
  • the resulting ester may not become liquid at room temperature (about 25 ° C.), which is not suitable as a lubricating oil.
  • the number of carbon atoms is 19 or more, the pour point increases due to crystallization of the ester, which is not practical.
  • An alkyl group having 6 to 12 carbon atoms is preferable, and a hexyl group, an octyl group, a decyl group, and a dodecanyl group are particularly preferable. These groups may have a linear structure or a branched structure.
  • Rc is hydrogen or an acyl group having 1 or more and 10 or less carbon atoms.
  • the terminal group of the acyl group is hydrogen (formyl group), methyl group (acetyl group), propyl group, butyl Preferred examples include a group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and a nonyl group.
  • Rc is preferably an acyl group having 2 or more and 4 or less carbon atoms because unreacted substances can be removed by distillation.
  • n represents the number of linkages of 2-hydroxycarboxylic acid units and is 3 or more and 15 or less, preferably 7 or more and 10 or less.
  • n is 2 or less, the viscosity as a lubricating oil is too low, which is not preferable.
  • n is 16 or more, biodegradability is lowered.
  • esters of component (A) those in which Rc is hydrogen are obtained by mixing an alcohol having Ra of the above formula (1) with a 2-hydroxycarboxylic acid represented by the following formula (2), and then adding an acid such as sulfuric acid. It can be synthesized by heating in the presence and distilling off the theoretical amount of reaction product water. When alcohol and 2-hydroxycarboxylic acid are reacted, the theoretical amount of reaction product water is equal to twice the number of moles of 2-hydroxycarboxylic acid added.
  • the acid value of the ester obtained is preferably 0.5 mgKOH / g or less from the viewpoint of oxidation stability.
  • the esterification for example, Rc is hydrogen
  • Rb is a hydrocarbyl group having 4 to 18 carbon atoms, preferably an alkyl group.
  • a specific example of Rb is the same as the specific example of the above formula (1).
  • the biodegradability of the ester compound can be controlled by adjusting the chain number n of the 2-hydroxycarboxylic acid unit of (1) above.
  • the number of linkages of 2-hydroxy (hydrocarbyl) carboxylic acid can be controlled by the charging ratio of alcohol as starting material, 2-hydroxycarboxylic acid, and further 2-hydrocarbylcarboxylic acid.
  • the chain number n H / AL
  • the actual 2-hydroxycarboxylic acid chain number of the ester compound is measured by proton NMR. The actual chain number is almost equal to the calculated value.
  • the viscosity of the ester of the above formula (1) can be controlled by the chain length of Ra and Rb in addition to the chain number n, and the kinematic viscosity at 40 ° C. is 300 mm 2 / s or more and 1000 mm 2 / s or less. Is preferred.
  • the kinematic viscosity at 40 ° C. is less than 300 mm 2 / s, there is a possibility that the viscosity necessary for maintaining lubricity when the lubricating oil composition is obtained cannot be obtained.
  • the kinematic viscosity at 40 ° C. exceeds 1000 mm 2 / s, biodegradability may be reduced.
  • the 2-hydroxycarboxylic acid of the above formula (2) is synthesized by, for example, the Hell-Volhard-Zelinskii reaction (Org. Synth., Coll. Vol. 4, 848 (1965)) of carboxylic acid and subsequent hydrolysis. can do.
  • the reaction time is about 6 hours or more and 20 hours or less, and the reaction temperature may be about 100 ° C. or more and 130 ° C. or less.
  • heptane, octane, toluene, xylene and the like are preferable.
  • the component (B) in the present invention is an ester obtained by reacting a linear saturated aliphatic carboxylic acid with a polyhydric alcohol.
  • the linear saturated aliphatic carboxylic acid is preferably a carboxylic acid having 6 to 12 carbon atoms from the viewpoint of having both biodegradability and low-temperature fluidity.
  • Specific examples include monocarboxylic acids such as caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, and lauric acid.
  • a so-called hindered polyol is preferably used as the polyhydric alcohol.
  • the kinematic viscosity at 40 ° C. of the component (B) is preferably 20 mm 2 / s or more and 40 mm 2 / s or less.
  • the kinematic viscosity is less than 20 mm 2 / s, lubricity is lowered when a lubricating oil composition is obtained, which is not preferable.
  • the kinematic viscosity exceeds 40 mm 2 / s, the low temperature fluidity may be deteriorated when a lubricating oil composition is obtained.
  • an acid value needs to be 0.5 mgKOH / g or less. When the acid value exceeds 0.5 mgKOH / g, the oxidation stability may be deteriorated.
  • the ester as the component (B) is generally obtained by reacting the above-mentioned predetermined carboxylic acid with a polyhydric alcohol. However, it is only necessary to have an ester structure composed of the carboxylic acid residue and the polyhydric alcohol residue as a result.
  • the starting material (reaction raw material) itself does not need to be the carboxylic acid or polyhydric alcohol described above, and it is not always necessary to synthesize the component (B) by dehydration reaction therefrom. You may synthesize
  • the component (C) in the present invention is a phosphate ester amine salt obtained by reacting an acidic phosphate ester with an alkylamine.
  • acidic phosphate ester for forming a component the thing of the structure shown by following formula (3) is mentioned, for example.
  • X 1 in the formula (3) represents a hydrogen atom or an alkyl group having 6 to 20 carbon atoms
  • X 2 represents an alkyl group having 6 to 20 carbon atoms.
  • the alkyl group having 6 to 20 carbon atoms may be linear, branched or cyclic, and examples thereof include various hexyl groups, octyl groups, decyl groups, dodecyl groups, tetradecyl groups. Group, hexadecyl group, octadecyl group, icosyl group and the like. Among these, an alkyl group having 8 to 18 carbon atoms is preferable, and an alkyl group having 8 to 13 carbon atoms is more preferable.
  • Examples of the acidic phosphoric acid alkyl esters represented by the formula (3) include monooctyl acid phosphate, monodecyl acid phosphate, monoisodecyl acid phosphate, monolauryl acid phosphate, mono (tridecyl) acid phosphate, and monomyristyl acid phosphate.
  • Acid monoesters such as monopalmityl acid phosphate and monostearyl acid phosphate, dioctyl acid phosphate, didecyl acid phosphate, diisodecyl acid phosphate, dilauryl acid phosphate, di (tridecyl) acid phosphate, dipalmityl acid phosphate And acidic phosphoric acid diesters such as distearyl acid phosphate.
  • the acidic phosphate ester may be used alone or in combination of two or more.
  • the phosphorus (P) content is 150 mass ppm or more and 500 ppm or less based on the total amount of the composition. If the P content is less than 150 ppm by mass, seizure resistance may be insufficient when used as gear oil. On the other hand, if the P content exceeds 500 ppm by mass, fatigue resistance (FZG resistance) The micropitting property may be reduced. More preferable P content is 250 mass ppm or more and 450 mass ppm, and further preferably 350 mass ppm or more and 400 mass ppm or less.
  • the alkylamine for forming the component (C) may be any of primary amines, secondary amines and tertiary amines, but dialkylamines or trialkylamines are preferred from the standpoint of improving seizure resistance.
  • the number of carbon atoms of the alkyl group is preferably 6 or more and 20 or less in that the phosphate ester amine salt is liquid.
  • dialkylamines include dihexylamine, dicyclohexylamine, dioctylamine, dilaurylamine, distearylamine and the like.
  • trialkylamines include trihexylamine, tricyclohexylamine, Examples include octylamine, trilaurylamine, and tristearylamine. These alkylamines may be used alone or in combination of two or more, but are preferably selected from trialkylamines in terms of seizure resistance.
  • the amount of component (C) is preferably 0.2% by mass or more and 1% by mass or less based on the total amount of the composition.
  • the blending amount is less than 0.2% by mass, the friction reducing effect is poor.
  • the blending amount exceeds 1% by mass, fatigue resistance (FZG micropitting resistance) may be reduced.
  • the component (C) may be mixed with other components in order to prepare the present composition after the acid phosphate amine salt is formed, or the acid phosphate ester and the alkylamine are individually added.
  • the composition may be prepared by blending.
  • the compounding quantity of (C) component is a total value of both, when acidic phosphate ester and an alkylamine are mix
  • the composition may further contain a predetermined sulfur compound as the component (D).
  • a sulfur compound that does not contain a polysulfide condensation of -SSSS or more in the molecule and has a sulfur atom (S) content of 15% by mass or more in the molecule is suitable.
  • S sulfur atom
  • (D-2) a thiophosphoric acid trihydrocarbyl ester represented by the following formula (4) is also suitable.
  • (RO-) 3 P S (4)
  • R is a C6-C20 hydrocarbyl group.
  • the sulfur compound as the component (D-1) is a compound having at least one polysulfide condensation in the molecule, there is a possibility that the generation of sludge increases in the oxidation stability test described later. In addition, FZG micropitting resistance may be reduced. Moreover, if S content in a molecule
  • Examples of the sulfur compound of component (D-1) having such properties include the following compounds. (1) Mono- or disulfide olefins (2) Dihydrocarbyl mono- or disulfides (3) Thiadiazole compounds (4) Dithiocarbamate compounds (5) Ester compounds having a disulfide structure (6) Other sulfur compounds
  • R 1 -Sa-R 2 (5) As a sulfurized olefin, the compound shown by following formula (5) can be mentioned, for example.
  • R 1 -Sa-R 2 (5) In the above formula (5), R 1 represents an alkenyl group having 2 to 15 carbon atoms, R 2 represents an alkyl group or alkenyl group having 2 to 15 carbon atoms, and a represents 1 or 2.
  • This compound is obtained by reacting an olefin having 2 to 15 carbon atoms or a dimer to tetramer thereof with a sulfurizing agent such as sulfur or sulfur chloride.
  • a sulfurizing agent such as sulfur or sulfur chloride.
  • the olefin include propylene, isobutene and diisobutene. Preferably mentioned.
  • Examples of dihydrocarbyl mono or disulfide include compounds represented by the following formula (6).
  • R 3 -Sb-R 4 (6) are each an alkyl group having 1 to 20 carbon atoms or a cyclic alkyl group, an aryl group having 6 to 20 carbon atoms, and an alkyl group having 7 to 20 carbon atoms.
  • R 3 and R 4 are alkyl groups, they are referred to as alkyl sulfides.
  • dihydrocarbyl mono or disulfide represented by the above formula (6) examples include dibenzyl mono or disulfide, various dinonyl mono or disulfide, various didodecyl mono or disulfide, various dibutyl mono or disulfide, various dioctyl mono or disulfide, diphenyl mono or disulfide, Preferable examples include xylmono or disulfide.
  • thiadiazole compounds examples include 2,5-bis (n-hexyldithio) -1,3,4-thiadiazole, 2,5-bis (n-octyldithio) -1,3,4-thiadiazole, 2,5 -Bis (n-nonyldithio) -1,3,4-thiadiazole, 2,5-bis (1,1,3,3-tetramethylbutyldithio) -1,3,4-thiadiazole, 3,5-bis ( n-hexyldithio) -1,2,4-thiadiazole, 3,6-bis (n-octyldithio) -1,2,4-thiadiazole, 3,5-bis (n-nonyldithio) -1,2,4 -Thiadiazole, 3,5-bis (1,1,3,3-tetramethylptyldithio) -1,2,4-thiadiazole, 4,5-bis (
  • dithiocarbamate compound examples include alkylene bisdialkyldithiocarbamate, among which an alkylene group having 1 to 3 carbon atoms, a linear or branched saturated or unsaturated alkyl group having 3 to 20 carbon atoms, or The compound which is a C6-C20 cyclic alkyl group is mentioned preferably.
  • dithiocarbamate compounds include methylene bisdibutyl dithiocarbamate, methylene bisdioctyl dithiocarbamate, methylene bistridecyl dithiocarbamate, and the like.
  • ester compound having a disulfide structure examples include a disulfide compound represented by the following formula (7) and a compound represented by the following formula (8).
  • R 5 and R 6 are each independently a hydrocarbyl group having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms, more preferably 2 to 18 carbon atoms, especially Is preferably a hydrocarbyl group having 3 to 18 carbon atoms.
  • the hydrocarbyl group may be linear, branched or cyclic, and may contain an oxygen atom, a sulfur atom or a nitrogen atom.
  • R 5 and R 6 may be the same or different from each other, but are preferably the same for manufacturing reasons.
  • a 1 and A 2 are each independently a group represented by CR 7 R 8 or CR 7 R 8 -CR 9 R 10 , each independently represent a hydrogen atom or a carbon number from R 7 to R 10 1 or more and 20 or less hydrocarbyl group.
  • the hydrocarbyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms.
  • a 1 and A 2 may be the same or different from each other, but are preferably the same for manufacturing reasons.
  • R 11 , R 12 , R 16 and R 17 are each independently a hydrocarbyl group having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms, and more preferably carbon.
  • a hydrocarbyl group having 2 or more and 18 or less, particularly 3 or more and 18 or less carbon atoms is preferable.
  • the hydrocarbyl group may be linear, branched or cyclic, and may contain an oxygen atom, a sulfur atom or a nitrogen atom.
  • R 11 , R 12 , R 16 and R 17 may be the same or different from each other, but are preferably the same for reasons of production.
  • R 13 to R 15 and R 18 to R 20 are each independently a hydrogen atom or a hydrocarbyl group having 1 to 5 carbon atoms. A hydrogen atom is preferable because the raw material is easily available.
  • disulfide compound represented by the formula (7) examples include bis (methoxycarbonyl-methyl) disulfide, bis (ethoxycarbonylmethyl) disulfide, bis (n-propoxycarbonylmethyl) disulfide, bis (isopropoxycarbonylmethyl).
  • Disulfide bis (cyclopropoxycarbonylmethyl) disulfide, 1,1-bis (1-methoxycarbonylethyl) disulfide, 1,1-bis (1-methoxycarbonyl-n-propyl) disulfide, 1,1-bis (1 -Methoxycarbonyl-n-butyl) disulfide, 1,1-bis (1-methoxycarbonyl-n-hexyl) disulfide, 1,1-bis (1-methoxycarbonyl-n-octyl) disulfide, 2,2-bis ( 2-methoxycarbonyl -N-propyl) disulfide, ⁇ , ⁇ -bis ( ⁇ -methoxycarbonylbenzyl) disulfide, 1,1-bis (2-methoxycarbonylethyl) disulfide, 1,1-bis (2-ethoxycarbonylethyl) disulfide, , 1-bis (2-n-propoxycarbonylethyl) disulfide,
  • disulfide compound represented by the above formula (8) examples include tetramethyl dithiomalate, tetraethyl dithiomalate, tetra-1-propyl dithiomalate, tetra-2-propyl dithiomalate, tetra-1-butyl dithiomalate, Tetra-2-ptyl dithiomalate, tetraisobutyl dithiomalate, tetra-1-hexyl dithiomalate, tetra-1-octyl dithiomalate, tetra-1- (2-ethyl) hexyl dithiomalate, tetra-1-dithiomalate , 5,5-trimethyl) hexyl, tetra-1-decyl dithiomalate, tetra-1-dodecyl dithiomalate, tetra-1-hexadecyl dithiomalate, tetramethyl
  • sulfur compounds examples include sulfurized oils such as sulfurized lard, sulfurized rapeseed oil, sulfurized castor oil, sulfurized soybean oil and sulfurized rice bran oil, sulfurized fatty acids such as thioglycolic acid and sulfurized oleic acid, dilauryl thiodipropionate, and distearyl.
  • sulfurized oils such as sulfurized lard, sulfurized rapeseed oil, sulfurized castor oil, sulfurized soybean oil and sulfurized rice bran oil
  • sulfurized fatty acids such as thioglycolic acid and sulfurized oleic acid
  • dilauryl thiodipropionate dilauryl thiodipropionate
  • distearyl examples thereof include dialkylthiodipropionate compounds such as thiodipropionate and dimyristylthiodipropionate, and thioterpene compounds obtained by reacting phosphorus pentasulfide with pinene.
  • the above sulfur compounds may be used alone or in combination of two or more.
  • the blending amount of the component (D-1) is preferably 0.2% by mass or more and 0.6% by mass or less in terms of sulfur based on the total amount of the composition. If the blending amount is less than 0.2% by mass, the seizure resistance may not be sufficiently exhibited. On the other hand, if the blending amount exceeds 0.6% by mass, the fatigue resistance such as FZG micropitting resistance is inferior. In the oxidation stability test (according to ASTM D 2893), the generation of sludge may increase.
  • a preferable blending amount is 0.3% by mass or more and 0.5% by mass or less.
  • R in Formula (4) represents a hydrocarbyl group having 6 to 20 carbon atoms.
  • the hydrocarbyl group include linear, branched, and cyclic alkyl groups or alkenyl groups having 6 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, and aryl groups having 7 to 20 carbon atoms. Indicates. In the aryl group and aralkyl group, one or more alkyl groups may be introduced on the aromatic ring. The three RO groups may be the same or different from each other.
  • Examples of the alkyl group and alkenyl group having 6 to 20 carbon atoms include various hexyl groups, various octyl groups, various decyl groups, various dodecyl groups, various tetradecyl groups, various hexadecyl groups, various octadecyl groups, and cyclohexyl. Groups, various hexenyl groups, various octenyl groups, various decenyl groups, various dodecenyl groups, various tetradecenyl groups, various hexadecenyl groups, various octadecenyl groups, and cyclohexenyl groups.
  • Examples of the aryl group having 6 to 20 carbon atoms include a phenyl group, tolyl group, xylyl group, decylphenyl group, 2,4-didecylphenyl group, naphthyl group, and the like.
  • Examples of the aralkyl group include a benzyl group, a phenethyl group, a naphthylmethyl group, a methylbenzyl group, a methylphenethyl group, and a methylnaphthylmethyl group.
  • thiophosphate trihydrocarbyl ester represented by the above formula (4)
  • examples of the thiophosphate trihydrocarbyl ester represented by the above formula (4) include trihexyl thiophosphate, tri-2-ethylhexyl thiophosphate, tris (decyl) thiophosphate, trilauryl thiophosphate, trimyristyl thiophosphate. , Tripalmityl thiophosphate, tristearyl thiophosphate, trioleyl thiophosphate, tricyl dithiophosphate, triquinyl thiophosphate, tris (decylphenyl) thiophosphate, tris [2,4-isoalkyl (C9, C10) phenyl] Examples include thiophosphate.
  • One of these thiophosphate trihydrocarbyl phosphates may be used alone, or two or more thereof may be used in combination.
  • the (D-2) component thiophosphate trihydrocarbyl ester is blended as desired in order to further enhance the effect of adding the sulfur compound of the above component (D-1). Based on the total amount, it is preferably 0.1% by mass or more and less than 1% by mass, more preferably 0.2% by mass or more and 0.5% by mass in terms of sulfur.
  • various additives such as ashless detergents, antioxidants, rust preventives, metal deactivators, viscosity index improvers, as necessary, within a range where the object of the present invention is not impaired.
  • at least one selected from pour point depressants and antifoaming agents can be blended.
  • the ashless detergent / dispersant for example, succinimides, boron-containing succinimides, benzylamines, boron-containing benzylamines, succinic esters, fatty acids or succinic acids represented by succinic acid Or divalent carboxylic acid amides are mentioned.
  • the blending amount of the ashless detergent / dispersant is about 0.01% by mass or more and 5% by mass or less on the basis of the total amount of the composition from the viewpoint of balance between effects and economy.
  • amine-based antioxidants As the antioxidant, amine-based antioxidants, phenol-based antioxidants and sulfur-based antioxidants conventionally used in lubricating oils can be used. These antioxidants can be used alone or in combination of two or more.
  • amine antioxidants include monoalkyl diphenylamine compounds such as monooctyldiphenylamine and monononyldiphenylamine, 4,4′-dibutyldiphenylamine, 4,4′-dibenzyldiphenylamine, and 4,4′-dihexyl.
  • Dialkylamine compounds such as diphenylamine, 4,4'-diheptyldiphenylamine, 4,4'-dioctyldiphenylamine, 4,4'-dinonyldiphenylamine, tetrabutyldiphenylamine, tetrahexyldiphenylamine, tetraoctyldiphenylamine, tetranonyl
  • Polyalkyldiphenylamine compounds such as diphenylamine, ⁇ -naphthylamine, phenyl- ⁇ -naphthylamine, butylphenyl- ⁇ -naphthylamine, benzylphenyl ⁇ - naphthylamine, hexyl phenyl - ⁇ - naphthylamine, heptyl phenyl - ⁇ - naphthylamine, octylphenyl - ⁇ - naphthylamine, and
  • phenolic antioxidants examples include 2,6-di-tert-butyl-4-methylphenyl, 2,6-di-tert-butyl-4-ethylphenyl, and octadecyl 3- (3,5-di- monophenolic compounds such as tert-butyl-4-hydroxyphenyl) propionate, 4,4′-methylenebis (2,6-di-tert-butylphenol), 2,2′-methylenebis (4-ethyl-6- and diphenolic compounds such as tert-butylphenol).
  • sulfur-based antioxidants examples include 2,6-di-tert-butyl-4- (4,6-bis (octylthio) -1,3,5-triazin-2-ylamino) phenol, phosphorus pentasulfide, and the like.
  • sulfur-based antioxidants examples include 2,6-di-tert-butyl-4- (4,6-bis (octylthio) -1,3,5-triazin-2-ylamino) phenol, phosphorus pentasulfide, and the like.
  • examples thereof include thioterpene compounds such as a reaction product with pinene, dialkylthiodipropionates such as dilauryl thiodipropionate, and distiaryl thiodipropionate.
  • the blending amount of the antioxidant is about 0.3% by mass or more and 2% by mass or less on the basis of the total amount of the composition from the viewpoint of balance between effects and economy.
  • Examples of the rust preventive include metal sulfonates and alkenyl succinic acid esters.
  • the blending amount of these rust preventives is about 0.01% by mass or more and 0.5% by mass or less on the basis of the total amount of the composition from the viewpoint of the blending effect.
  • Examples of the metal deactivator copper corrosion inhibitor
  • examples of the metal deactivator include benzotriazole, tolyltriazole, thiadiazole, imidazole, and pyrimidine compounds. Of these, benzotriazole compounds are preferred.
  • the compounding amount of these metal deactivators is about 0.01% by mass or more and 0.1% by mass or less on the basis of the total amount of the composition from the viewpoint of the blending effect.
  • viscosity index improver examples include polymethacrylate, dispersed polymethacrylate, olefin copolymer (for example, ethylene-propylene copolymer), dispersed olefin copolymer, styrene copolymer (for example, Styrene-diene copolymer, styrene-isoprene copolymer, etc.).
  • the blending amount of these viscosity index improvers is about 0.5% by mass or more and 15% by mass or less based on the total amount of the composition from the viewpoint of the blending effect.
  • the pour point depressant examples include ethylene-vinyl acetate copolymer, condensate of chlorinated paraffin and naphthalene, condensate of chlorinated paraffin and phenol, polymethacrylate, polyalkylstyrene, and the like. Polymethacrylate having a molecular weight of about 50,000 or more and about 150,000 or less is preferably used. The blending amount of the pour point depressant is about 0.1% by mass or more and 5% by mass or less based on the total amount of the composition.
  • the antifoaming agent a polymer silicone-based antifoaming agent and a polyacrylate-based antifoaming agent are preferable.
  • the defoaming property is effectively exhibited.
  • high molecular silicone antifoaming agents include organopolysiloxanes, and fluorine-containing organopolysiloxanes such as trifluoropropylmethyl silicone oil are particularly suitable.
  • the blending amount of the antifoaming agent is about 0.005% by mass or more and 0.1% by mass or less based on the total amount of the composition from the viewpoint of balance between the defoaming effect and economy.
  • the biodegradable lubricating oil composition of the present invention is excellent in lubricity, oxidation stability and biodegradability, it can be suitably used as various lubricating oils such as gear oil and bearing oil.
  • the present composition is suitable as a lubricating oil used in a planetary gear type power transmission device (speed increaser) placed inside the wind power generator. .
  • the 1H-NMR spectrum of this liquid ester compound is shown in FIG. Table 3 shows the structure of the liquid ester compound and the assignment of peaks in the 1H-NMR spectrum.
  • Ester C A complex ester composed of pentaerythritol, sebacic acid and isostearic acid (Priorb 1851 manufactured by uniqema) was used.
  • Ester D A complex ester composed of pentaerythritol, adipic acid and a mixed monocarboxylic acid having about 7 to 10 carbon atoms (PAF-450 manufactured by Nisshin Oilio Co., Ltd.) was used.
  • Ester E Di (pentaerythritol) oleate (TOE-500 manufactured by NOF Corporation) was used.
  • Ester F (component B) An ester composed of pentaerythritol and a saturated fatty acid (Kaolu 262 manufactured by Kao) was used. (7) Esther G Trimethylolpropane diisostearate was used.
  • Phosphate ester amine salt (component C) Tridecyl acid phosphate and trioctylamine were used.
  • Sulfur compounds (component D) Methylenebisdibutyldithiocarbamate and tris (2,4-C9-C10 isoalkylphenol) thiophosphate were used.
  • Antioxidant Irganox L107 manufactured by Ciba Specialty Chemicals was used as the phenolic agent.
  • Irganox L57 manufactured by Ciba Specialty Chemicals was used as the amine system.
  • Metal deactivator IRGAMET39 (benzotriazole derivative) manufactured by Ciba Japan was used.
  • Rust preventive agent Polybutenyl succinimide was used.
  • Antifoaming agent A silicone-based antifoaming agent (KF96H12500CS manufactured by Shin-Etsu Chemical) was used.
  • Table 4 shows the evaluation results (biodegradability, oxidation stability, lubricity) of the test oil.
  • Biodegradability was measured according to the modified MITI test method (OECD301C). In addition, according to the Eco Mark (Environmental Labeling System) certification standard revised in July 1998, this biodegradation rate is required to be 60% or more.
  • Friction coefficient (LFW-1 test) Using a block-on-ring tester (LFW-1) described in ASTM D2174, the coefficient of friction between metals was measured, and the lubricity of the sample oil was evaluated. Specific test conditions are shown below. ⁇ Test jig: Ring: Falex S-10 Test Ring (SAE4620 Steel) Block: Falex H-60 Test Block (SAE01 Steel) ⁇ Operating conditions: Oil temperature: 60 ° C Load: 177.9 N (40 lbs) Rotation speed: 500rpm
  • Oxidation stability test In accordance with ASTM D 2893, the sample oil was air-oxidized (121 ° C, 312 hours) under predetermined conditions, and filtered through a 100 ° C kinematic viscosity increase rate, an acid value increase amount, and a Millipore filter. The amount of sludge was measured.
  • FZG seizure test In accordance with ASTM D 5182-91, a test was conducted under the conditions of 90 ° C., 1450 rpm, and 15 minutes, and displayed with a scuffing load stage.
  • the sample oils of Examples 1 and 2 formed by blending the (A) component, the (B) component, and the (C) component are in any of lubricity, oxidation stability, and biodegradability. It can be understood that, for example, it exhibits excellent performance for a gearbox used in a wind power generator.
  • the component oil (A) alone is not very biodegradable (see Table 1), but the sample oil mixed with the other components described above exhibits excellent biodegradability. It should be noted.
  • the test oils from Comparative Example 1 to Comparative Example 3 are inferior in oxidation stability because the esters C, D and E used as the base oil have a structure different from that of the ester A.
  • test oil of Comparative Example 4 is obtained by using PAO as the base oil and further blending 10% by mass of ester G (branched aliphatic carboxylic acid polyhydric alcohol ester), but is inferior in biodegradability. Not only is it poor in lubricity.
  • ester G branched aliphatic carboxylic acid polyhydric alcohol ester

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

 生分解性潤滑油組成物は、(A)下記式(1)で示され、40℃における動粘度が300mm/s以上、1000mm/s以下、酸価が0.5mgKOH/g以下であるエステルと、(B)直鎖飽和脂肪族カルボン酸と多価アルコールとを反応させて得られ、酸価が0.5mgKOH/g以下であるエステルと、(C)酸性リン酸エステルとアルキルアミンとを反応させて得られるリン酸エステルアミン塩とを配合してなる。(式中、Raは炭素数が4以上、20以下のヒドロカルビル基であり、Rbは炭素数が4以上、18以下のヒドロカルビル基であり、Rcは水素または炭素数が1以上、10以下のアシル基である。nは3以上、15以下である。)

Description

生分解性潤滑油組成物
 本発明は、潤滑油組成物に関し、より詳しくは、特に風力発電用の増速機に使用される生分解性潤滑油組成物に関する。
 近年、環境問題や化石燃料の枯渇の観点より、自然のエネルギーを活用した風力発電が脚光を浴びている。風力発電では、ロータの回転速度が遅いため発電効率を上げることが重要であり、発電装置内部には増速機が設けられている。増速機に用いられる歯車機構の潤滑にはいわゆるギヤ油が使用されるが、極めて高い潤滑性が必要とされる。
 従来、増速機油として、PAO(ポリアルファオレフィン)を基油とした潤滑油が使用されてきた。一方、風力発電装置は洋上や自然環境下で使用されることが多いため、増速機油には高い生分解性が必要である。これに対して、従来のPAO系潤滑油では生分解性がほとんどないため、代替品の探索が続けられてきた。
 生分解性が求められる風力発電装置の増速機用としては、エステルを基油とした潤滑油の適用が考えられる(例えば、特許文献1、2参照)。特許文献1、2では、多価アルコールと多価カルボン酸とから得られる複合エステルを基油とした生分解性潤滑油が提案されている。
特表2003-522204号公報 特表2005-520038号公報
 しかしながら、特許文献1、2に記載の生分解性潤滑油では酸化安定性が十分ではなく、風力発電装置の増速機用として用いた場合、潤滑油としての性能を長期間に渡って維持することは困難である。
 そこで、本発明は、潤滑性、酸化安定性および生分解性に優れ、風力発電装置に用いられる増速機用としても好適な生分解性潤滑油組成物を提供することにある。
 前記課題を解決すべく、本発明は、以下のような生分解性潤滑油組成物を提供するものである。
(1)(A)下記式(1)で示されるエステルと、(B)直鎖飽和脂肪族カルボン酸と多価アルコールとを反応させて得られ、酸価が0.5mgKOH/g以下であるエステルと、(C)酸性リン酸エステルとアルキルアミンとを反応させて得られるリン酸エステルアミン塩とを配合してなることを特徴とする生分解性潤滑油組成物。
Figure JPOXMLDOC01-appb-C000002
(式中、Raは炭素数が4以上、20以下のヒドロカルビル基であり、Rbは炭素数が4以上、18以下のヒドロカルビル基であり、Rcは水素または炭素数が1以上、10以下のアシル基である。nは3以上、15以下である。)
(2)上述の生分解性潤滑油組成物において、前記(A)成分におけるRaが炭素数が4以上、20以下のアルキル基であり、Rbが炭素数が4以上、18以下のアルキル基であることを特徴とする生分解性潤滑油組成物。
(3)上述の生分解性潤滑油組成物において、前記(B)成分のエステルを形成する直鎖飽和脂肪族カルボン酸の炭素数が6以上、12以下であることを特徴とする生分解性潤滑油組成物。
(4)上述の生分解性潤滑油組成物において、前記(B)成分のエステルを形成する多価アルコールがペンタエリスリトールおよびトリメチロールプロパンのうち少なくともいずれかであることを特徴とする生分解性潤滑油組成物。
(5)上述の生分解性潤滑油組成物において、前記(B)成分の配合量が該組成物全量基準で10質量%以上であることを特徴とする生分解性潤滑油組成物。
(6)上述の生分解性潤滑油組成物において、前記(C)成分を形成する酸性リン酸エステルの炭素数が8以上、13以下であることを特徴とする生分解性潤滑油組成物。
(7)上述の生分解性潤滑油組成物において、前記(C)成分におけるリン酸エステルアミン塩の配合量が0.2質量%以上、1質量%以下であることを特徴とする生分解性潤滑油組成物。
(8)上述の生分解性潤滑油組成物がギヤ油であることを特徴とする生分解性潤滑油組成物。
 本発明の生分解性潤滑油組成物によれば、潤滑性、酸化安定性および生分解性に優れており、風力発電装置に用いられる増速機用としても好適である。
実施例1で製造したエステルのH-NMRスペクトルである。 実施例2で製造したエステルのH-NMRスペクトルである。
 本発明の生分解性潤滑油組成物(以下、単に「本組成物」ともいう。)は、(A)所定の2-ヒドロキシ(ヒドロカルビル)カルボン酸エステルと、(B)直鎖飽和脂肪族カルボン酸と多価アルコールとを反応させて得られるエステルと、(C)酸性リン酸エステルとアルキルアミンとを反応させて得られるリン酸エステルアミン塩とを配合してなることを特徴とする。以下、詳細に本発明を説明する。
〔(A)成分〕
 本発明における(A)成分は、下記式(1)で示されるように、一価のアルコールと2-ヒドロキシ(ヒドロカルビル)カルボン酸からなるエステルである。
Figure JPOXMLDOC01-appb-C000003
 上記式(1)において、Raは炭素数4以上、20以下のヒドロカルビル基であり、好ましくはアルキル基である。Raの炭素数が3以下であると、エステルの合成に使用するアルコールの沸点が低いため、脱水縮合させにくく、エステルの合成が困難になる。特に好ましくは、ブチル基、ヘキシル基、オクチル基、デカニル基、ドデカニル基、テトラデカニル基、ヘキサデカニル基、オクタデカニル基である。なお、これらの基は直鎖構造でも分岐構造でもよい。一方、Raの炭素数が21以上であると低温流動性が低下するため好ましくない。
 Rbは炭素数が4以上、18以下のヒドロカルビル基であり、好ましくはアルキル基である。Rbの炭素数が3以下の場合、得られるエステルが常温(25℃程度)で液状にならないことがあり、潤滑油として適さない。炭素数が19以上の場合、エステルの結晶化により流動点が上昇するため実用的ではない。好ましくは、炭素数6以上、12以下のアルキル基であり、特に好ましくは、ヘキシル基、オクチル基、デシル基、ドデカニル基である。なお、これらの基は直鎖構造でも分岐構造でもよい。
 Rcは水素または炭素数が1以上、10以下のアシル基であり、水素以外の場合は、アシル基の末端となる基は、水素(ホルミル基)、メチル基(アセチル基)、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、およびノニル基が好ましく挙げられる。なお、直鎖構造に限らず分岐構造のものでもよい。また、Rcとしては、炭素数が2以上4以下のアシル基であることが未反応物を蒸留で除去できる点で好ましい。
 nは2-ヒドロキシカルボン酸単位の連鎖数を示し、3以上、15以下であるが、7以上10以下が好ましい。nが2以下であると潤滑油としての粘度が低すぎて好ましくない。一方、nが16以上であると、生分解性が低下する。
 (A)成分のエステルのうち、Rcが水素であるものは、上記式(1)のRaを有するアルコールと、下記式(2)で示される2-ヒドロキシカルボン酸を混合し、硫酸等の酸存在下にて加熱し、理論量の反応生成水を蒸留除去することにより合成することができる。なお、アルコールと2-ヒドロキシカルボン酸を反応させる場合、理論量の反応生成水は加えた2-ヒドロキシカルボン酸の2倍のモル数に等しい。また、得られるエステルの酸価は、0.5mgKOH/g以下であることが酸化安定性の点で好ましい。
 なお、(A)成分のエステルにおいて、Rcをアシル基としたい場合には、例えば上述したエステル(Rcが水素)に対し、所定のカルボン酸を用いてエステル化反応を行えばよい。
Figure JPOXMLDOC01-appb-C000004
 上記式(2)において、Rbは炭素数4以上、18以下のヒドロカルビル基であり、好ましくはアルキル基である。Rbの具体例は、上記式(1)の具体例と同様である。
 (A)成分のエステルは、上記(1)の2-ヒドロキシカルボン酸単位の連鎖数nを調整することにより、エステル化合物の生分解性を制御できる。2-ヒドロキシ(ヒドロカルビル)カルボン酸の連鎖数は、出発原料であるアルコールと2-ヒドロキシカルボン酸さらには2-ヒドロカルビルカルボン酸の仕込み比で制御できる。例えば、アルコールと2-ヒドロキシカルボン酸を反応させる場合、アルコールの仕込み量をAL(mol)、2-ヒドロキシカルボン酸の仕込み量をH(mol)とした場合、連鎖数nは下記の計算により求められる。
         n=H/AL
 エステル化合物の実際の2-ヒドロキシカルボン酸の連鎖数は、プロトンNMRで測定する。実際の連鎖数は上記計算値とほぼ等しくなる。
 上記式(1)のエステルの粘度は、連鎖数nの他、RaおよびRbの鎖長で制御できるが、40℃における動粘度としては、300mm/s以上、1000mm/s以下であることが好ましい。40℃における動粘度が300mm/s未満であると、潤滑油組成物としたときに潤滑性を保つために必要な粘度が得られないおそれがある。一方、40℃における動粘度が1000mm/sを超えると、生分解性が低下するおそれがある。
 なお、上記式(1)のエステルを製造する際の原料であるアルコールと2-ヒドロキシカルボン酸には、特に限定はなく、一般に市販されているものが使用できる。なお、上記式(2)の2-ヒドロキシカルボン酸は、例えば、カルボン酸のHell-Volhard-Zelinskii反応(Org.Synth.,Coll.Vol.4,848(1965))とそれに続く加水分解によって合成することができる。
 上記式(1)のエステルの製造方法においては、反応時間は6時間以上、20時間以下程度であり、反応温度は、100℃以上、130℃以下程度とすればよい。溶媒を使用する場合、ヘプタン、オクタン、トルエン、キシレン等が好ましい。
〔(B)成分〕
 本発明における(B)成分は、直鎖飽和脂肪族カルボン酸と多価アルコールとを反応させて得られるエステルである。
 ここで、直鎖飽和脂肪族カルボン酸としては、生分解性と低温流動性を兼ね備える観点より炭素数6以上、12以下のカルボン酸が好ましい。具体的には、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデカン酸、およびラウリン酸のようなモノカルボン酸が挙げられる。
 多価アルコールとしては、いわゆるヒンダードポリオールが好適に用いられる。具体的には、ネオペンチルグリコール;2-エチル-2-メチル-1,3-プロパンジオール;2,2-ジエチル-1,3-プロパンジール;トリメチロールエタン;トリメチロールプロパン;トリメチロールブタン;トリメチロールペンタン;トリメチロールヘキサン;トリメチロールヘプタン;ペンタエリスリトール;2,2,6,6-テトラメチル-4-オキサ-1,7-ヘプタンジオール;2,2,6,6,10,10-ヘキサメチル-4,8-ジオキサ-1,11-ウンデカジオール;2,2,6,6,10,10,14,14-オクタメチル-4,8,12-トリオキサ-1,15-ペンタデカジオール;2,6-ジヒドロキシメチル-2,6-ジメチル-4-オキサ-1,7-ヘプタンジオール;2,6,10-トリヒドロキシメチル-2,6,10-トリメチル-4,8-ジオキサ-1,11-ウンデカジオール;2,6,10,14-テトラヒドロキシメチル-2,6,10,14-テトラメチル-4,8,12-トリオキサ-1,15-ペンタデカジオール;ジ(ペンタエリスリトール);トリ(ペンタエリスリトール);テトラ(ペンタエリスリトール);ペンタ(ペンタエリスリトール)などが挙げられる。ヒンダードポリオールとしては、ペンタエリスリトールやトリメチロールプロパンが特に好ましい。
 これらのヒンダードポリオールは、エステル化の際、1種を単独で用いても、2種以上を混合して用いてもよい。
 (B)成分の40℃における動粘度は、20mm/s以上、40mm/s以下であることが好ましい。この動粘度が20mm/s未満であると、潤滑油組成物としたときに潤滑性が低下するため好ましくない。一方、この動粘度が40mm/sを超えると、潤滑油組成物としたときに低温流動性が悪化するおそれがある。
 また、(B)成分としては、酸価が0.5mgKOH/g以下である必要がある。酸価が0.5mgKOH/gを超えると、酸化安定性が悪化するおそれがある。
 なお、(B)成分としてのエステルは、一般的には上述した所定のカルボン酸と多価アルコールとを反応させて得られるものである。ただし、結果として上述したカルボン酸残基と多価アルコール残基からなるエステル構造を有していればよいのである。出発物質(反応原料)自体が上記したカルボン酸や多価アルコールである必要はなく、またそれらからの脱水反応によって(B)成分を合成する必要性は必ずしもない。他の原料から別の方法によって合成してもよい。例えば、エステル交換法によって製造してもよい。
 また、本発明における(B)成分の配合割合は、組成物基準で10質量%以上であることが生分解性の観点より好ましい。
〔(C)成分〕
 本発明における(C)成分は、酸性リン酸エステルとアルキルアミンとを反応させて得られるリン酸エステルアミン塩である。
 (C)成分を形成するための酸性リン酸エステルとしては、例えば、下記式(3)で示される構造のものが挙げられる。
Figure JPOXMLDOC01-appb-C000005
 前記式(3)におけるXは、水素原子または炭素数6以上、20以下のアルキル基、Xは炭素数6以上、20以下のアルキル基を示す。上記した炭素数6以上、20以下のアルキル基は直鎖状、分岐状、環状のいずれであってもよく、その例としては、各種のへキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、イコシル基などが挙げられる。これらの中では、炭素数が8以上、18以下のアルキル基が好ましく、炭素数が8以上、13以下のアルキル基がより好ましい。
 前記式(3)で示される酸性リン酸アルキルエステル類としては、例えばモノオクチルアシッドホスフェート、モノデシルアシッドホスフェート、モノイソデシルアシッドホスフェート、モノラウリルアシッドホスフェート、モノ(トリデシル)アシッドホスフェート、モノミリスチルアシッドホスフェート、モノパルミチルアシッドホスフェート、モノステアリルアシッドホスフェートなどの酸性リン酸モノエステル、ジオクチルアシッドホスフェート、ジデシルアシッドホスフェート、ジイソデシルアシッドホスフェート、ジラウリルアシッドホスフェート、ジ(トリデシル)アシッドホスフェール、ジパルミチルアシッドホスフェート、ジステアリルアシッドホスフェートなどの酸性リン酸ジエステルを挙げることができる。
 (C)成分を形成するには、前記酸性リン酸エステルを1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、最終的に本組成物としたときには、組成物全量基準でリン(P)の含有量が150質量ppm以上、500ppm以下とすることが好ましい。このPの含有量が150質量ppm未満では、ギヤ油として使用したときに耐焼付性が不十分となるおそれがあり、一方、Pの含有量が500質量ppmを超えると耐疲労性(耐FZGマイクロピッチング性)が低下するおそれがある。より好ましいPの含有量は250質量ppm以上、450質量ppmであり、さらに好ましくは350質量ppm以上、400質量ppm以下である。
 (C)成分を形成するためのアルキルアミンとしては、第一級アミン、第二級アミンおよび第三級アミンのいずれでもよいが耐焼付性向上の点でジアルキルアミンあるいはトリアルキルアミンが好ましい。また、アルキル基の炭素数は、リン酸エステルアミン塩が液状である点で、6以上、20以下のものが好ましい。
 ジアルキルアミン類の例としてはジへキシルアミン、ジシクロへキシルアミン、ジオクチルアミン、ジラウリルアミン、ジステアリルアミンなどを挙げることができ、トリアルキルアミン類の例としては、トリへキシルアミン、トリシクロへキシルアミン、トリオクチルアミン、トリラウリルアミン、トリステアリルアミンなどを挙げることができる。
 これらのアルキルアミンは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよいが、耐焼付性の点ではトリアルキルアミンから選択することが好適である。
 (C)成分の配合量は、組成物全量基準で、0.2質量%以上、1質量%以下であることが好ましい。配合量が0.2質量%未満では、摩擦低減効果に乏しい。一方、配合量が1質量%を超えると耐疲労性(耐FZGマイクロピッチング性)が低下するおそれがある。
 ここで、(C)成分は、酸性リン酸エステルアミン塩とした後に、本組成物を調製するために、他の成分と混合してもよいし、酸性リン酸エステルとアルキルアミンを各々個別に配合して本組成物を調製してもよい。
 なお、(C)成分の配合量は、酸性リン酸エステルとアルキルアミンを個別に配合して本組成物とする場合は、双方の合計値である。
 本組成物には、より潤滑性を高めるため、(D)成分として、所定の硫黄化合物をさらに配合してもよい。例えば、(D-1)分子内に-S-S-S-以上の多硫縮合を含まず、かつ分子内の硫黄原子(S)含有量が15質量%以上である硫黄化合物が好適である。さらに、(D-1)成分に付加的に配合される硫黄化合物として(D-2)下記式(4)で示されるチオリン酸トリヒドロカルビルエステルも好適である。
 (RO-)P=S    (4)
 上記式(4)中、Rは炭素数6以上、20以下のヒドロカルビル基である。
 前記(D-1)成分の硫黄化合物が、分子内に-S-S-S一以上の多硫縮合を有する化合物である場合、後述する酸化安定度試験において、スラッジの生成が多くなるおそれがある上に、耐FZGマイクロピッチング性が低下するおそれもある。また、分子内のS含有量が15質量%未満では、硫黄化合物の添加効果が十分に発揮されず、耐焼付性が不足する場合がある。
 このような性状を有する(D-1)成分の硫黄化合物としては、例えば、下記の化合物を挙げることができる。
(1)モノまたはジ硫化オレフィン
(2)ジヒドロカルビルモノまたはジスルフィド
(3)チアジアゾール化合物
(4)ジチオカーバメイト化合物
(5)ジスルフィド構造を有するエステル化合物
(6)その他硫黄化合物
[モノまたはジ硫化オレフィン]
 硫化オレフィンとしては、例えば、下記式(5)で示される化合物を挙げることができる。
   R-Sa-R     (5)
 上記式(5)において、Rは炭素数2以上、15以下のアルケニル基、Rは炭素数2以上、15以下のアルキル基またはアルケニル基を示し、aは1または2を示す。この化合物は、炭素数2以上、15以下のオレフィンまたはその二~四量体を、硫黄、塩化硫黄等の硫化剤と反応させることによって得られ、該オレフィンとしては、プロピレン、イソブテン、ジイソブテンなどが好ましく挙げられる。
[ジヒドロカルビルモノまたはジスルフィド]
 ジヒドロカルビルモノまたはジスルフィドとしては、下記式(6)で示される化合物を挙げることができる。
   R-Sb-R    (6)
 上記式(6)において、RおよびRは、それぞれ炭素数1以上、20以下のアルキル基または環状アルキル基、炭素数6以上、20以下のアリール基、炭素数7以上、20以下のアルキルアリール基または炭素数7以上、20以下のアリールアルキル基を示し、それらは互いに同一でも異なっていてもよく、bは1または2を示す。なお、RおよびRがアルキル基の場合、硫化アルキルと称される。
 上記式(6)で示されるジヒドロカルビルモノまたはジスルフィドとしては、例えば、ジベンジルモノまたはジスルフィド、各種ジノニルモノまたはジスルフィド、各種ジドデシルモノまたはジスルフィド、各種ジブチルモノまたはジスルフィド、各種ジオクチルモノまたはジスルフィド、ジフェニルモノまたはジスルフィド、ジシクロへキシルモノまたはジスルフィドなどを好ましく挙げることができる。
[チアジアゾール化合物]
 チアジアゾール化合物としては、例えば、2,5-ビス(n-ヘキシルジチオ)-1,3,4-チアジアゾール、2,5-ビス(n-オクチルジチオ)-1,3,4-チアジアゾール、2,5-ビス(n-ノニルジチオ)-1,3,4-チアジアゾール、2,5-ビス(1,1,3,3-テトラメチルブチルジチオ)-1,3,4-チアジアゾール、3,5-ビス(n-ヘキシルジチオ)-1,2,4-チアジアゾール、3,6-ビス(n-オクチルジチオ)-1,2,4-チアジアゾール、3,5-ビス(n-ノニルジチオ)-1,2,4-チアジアゾール、3,5-ビス(1,1,3,3-テトラメチルプチルジチオ)-1,2,4-チアジアゾール、4,5-ビス(n-オクチルジチオ)-1,2,3-チアジアゾール、4,5-ビス(n-ノニルジチオ)-1,2,3-チアジアゾール、4,5-ビス(1,1,3,3-テトラメチルブチルジチオ)-1,2,3-チアジアゾールなどを好ましく挙げることができる。
[ジチオカーバメイト化合物]
 ジチオカーバメイト化合物としては、アルキレンビスジアルキルジチオカーバメイトが挙げられ、中でも炭素数1から3までのアルキレン基、炭素数3以上、20以下の直鎖状若しくは分岐状の飽和または不飽和のアルキル基、あるいは炭素数6以上、20以下の環状アルキル基である化合物が好ましく挙げられる。そのようなジチオカーバメイト化合物の具体例としては、例えば、メチレンビスジブチルジチオカーバメイト、メチレンビスジオクチルジチオカーバメイト、メチレンビストリデシルジチオカーバメイトなどを挙げることができる。
[ジスルフィド構造を有するエステル化合物]
 ジスルフィド構造を有するエステル化合物としては、下記式(7)で示されるジスルフィド化合物、および下記式(8)で示される化合物が挙げられる。
 ROOC-A-S-S-A-COOR     (7)
11OOC-CR1314-CR15(COOR12)-S-S-CR20(COOR17)-CR1819-COOR16              (8)
 上記式(7)において、RおよびRはそれぞれ独立に炭素数1以上、30以下のヒドロカルビル基であり、好ましくは炭素数1以上、20以下、さらには炭素数2以上、18以下、特には炭素数3以上、18以下のヒドロカルビル基が好ましい。該ヒドロカルビル基は直鎖状、分岐状、環状のいずれであってもよく、また、酸素原子、硫黄原子、または窒素原子を含んでいてもよい。このRおよびRは、互いに同一であってもよく、異なっていてもよいが、製造上の理由から、同一であることが好ましい。
 次に、AおよびAは、それぞれ独立にCRまたはCR-CR10で示される基であって、RからR10まではそれぞれ独立に水素原子または炭素数1以上、20以下のヒドロカルビル基である。ヒドロカルビル基としては炭素数が1以上、12以下のもの、さらには炭素数1以上、8以下のものが好ましい。また、AおよびAは互いに同一であってもよく、異なっていてもよいが、製造上の理由から、同一であることが好ましい。
 一方、上記式(8)において、R11、R12、R16およびR17はそれぞれ独立に炭素数1以上、30以下のヒドロカルビル基であり、好ましくは炭素数1以上、20以下、さらには炭素数2以上、18以下、特には炭素数3以上、18以下のヒドロカルビル基が好ましい。該ヒドロカルビル基は直鎖状、分岐状、環状のいずれであってもよく、また、酸素原子、硫黄原子、または窒素原子を含んでいてもよい。このR11、R12、R16およびR17は、互いに同一であってもよく、異なっていてもよいが、製造上の理由から、同一であることが好ましい。
 次に、R13からR15まで、R18からR20まではそれぞれ独立に水素原子または炭素数1以上、5以下のヒドロカルビル基である。原料の入手が容易なことから、水素原子が好ましい。
 上記式(7)で表されるジスルフィド化合物の具体例としては、ビス(メトキシカルボニル-メチル)ジスルフィド、ビス(エトキシカルボニルメチル)ジスルフィド、ビス(n-プロポキシカルボニルメチル)ジスルフィド、ビス(イソプロポキシカルボニルメチル)ジスルフィド、ビス(シクロプロポキシカルボニルメチル)ジスルフィド、1,1-ビス(1-メトキシカルボニルエチル)ジスルフィド、1,1-ビス(1-メトキシカルボニル-n-プロピル)ジスルフィド、1,1-ビス(1-メトキシカルボニル-n-プチル)ジスルフィド、1,1-ビス(1-メトキシカルボニル-n-ヘキシル)ジスルフィド、1,1-ビス(1-メトキシカルボニル-n-オクチル)ジスルフィド、2,2-ビス(2-メトキシカルボニル-n-プロピル)ジスルフィド、α,α-ビス(α-メトキシカルボニルベンジル)ジスルフィド、1,1-ビス(2-メトキシカルボニルエチル)ジスルフィド、1,1-ビス(2-エトキシカルボニルエチル)ジスルフィド、1,1-ビス(2-n-プロポキシカルボニルエチル)ジスルフィド、1,1-ビス(2-イソプロポキシカルボニルエチル)ジスルフィド、1,1-ビス(2-シクロプロポキシカルボニルエチル)ジスルフィド、1,1-ビス(2-メトキシカルボニル-n-プロピル)ジスルフィド、1,1-ビス(2-メトキシカルボニル-n-プチル)ジスルフィド、1,1-ビス(2-メトキシカルボニル-n-ヘキシル)ジスルフィド、1,1-ビス(2-メトキシカルボニル-n-プロピル)ジスルフィド、2,2-ビス(3-メトキシカルボニル-n-ペンチル)ジスルフィド、1,1-ビス(2-メトキシカルボニル-1-フェニルエチル)ジスルフィドなどを挙げることができる。
 上記式(8)で表されるジスルフィド化合物の具体例としては、ジチオリンゴ酸テトラメチル、ジチオリンゴ酸テトラエチル、ジチオリンゴ酸テトラ-1-プロピル、ジチオリンゴ酸テトラ-2-プロピル、ジチオリンゴ酸テトラ-1-ブチル、ジチオリンゴ酸テトラ-2-プチル、ジチオリンゴ酸テトライソブチル、ジチオリンゴ酸テトラ-1-ヘキシル、ジチオリンゴ酸テトラ-1-オクチル、ジチオリンゴ酸テトラ-1-(2-エチル)ヘキシル、ジチオリンゴ酸テトラ-1-(3,5,5-トリメチル)ヘキシル、ジチオリンゴ酸テトラ-1-デシル、ジチオリンゴ酸テトラ-1-ドデシル、ジチオリンゴ酸テトラ-1-ヘキサデシル、ジチオリンゴ酸テトラ-1-オクタデシル、ジチオリンゴ酸テトラベンジル、ジチオリンゴ酸テトラ-α-(メチル)ベンジル、ジチオリンゴ酸テトラα,α-ジメチルベンジル、ジチオリンゴ酸テトラ-1-(2-メトキシ)エチル、ジチオリンゴ酸テトラ-1-(2-エトキシ)エチル、ジチオリンゴ酸テトラ-1-(2-ブトキシ)エチル、ジチオリンゴ酸テトラ-1-(2-エトキシ)エチル、ジチオリンゴ酸テトラ-1-(2-ブトキシープトキシ)エチル、ジチオリンゴ酸テトラ-1-(2-フェノキン)エチルなどを挙げることができる。
[その他の硫黄化合物]
 その他の硫黄化合物としては、例えば硫化ラード、硫化なたね油、硫化ひまし油、硫化大豆油、硫化米ぬか油などの硫化油脂、チオグリコール酸、硫化オレイン酸などの硫化脂肪酸、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート、ジミリスチルチオジプロピオネートなどのジアルキルチオジプロピオネート化合物、五硫化リンとピネンを反応して得られるチオテルペン化合物などを挙げることができる。
 上記した(D-1)成分は、上述の硫黄化合物を1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、この(D-1)成分の配合量は、組成物全量基準における硫黄量換算で0.2質量%以上、0.6質量%以下が好ましい。この配合量が0.2質量%未満では耐焼付性が充分に発揮できないおそれがあり、一方、配合量が0.6質量%を超えると耐FZGマイクロピッチング性等の耐疲労性に劣ると共に、酸化安定度試験(ASTM D 2893準拠)においてスラッジの発生が多くなるおそれがある。好ましい配合量は0.3質量%以上、0.5質量%以下である。
 上述の(D-1)成分を配合する際には、所望により(D-2)成分として、上記式(4)で示されるチオリン酸トリヒドロカルビルエステルも配合することが好ましい。
 式(4)におけるRは、炭素数6以上、20以下のヒドロカルビル基を示す。このヒドロカルビル基としては、直鎖状、分岐状、環状の炭素数6以上、20以下のアルキル基若しくはアルケニル基、炭素数6以上、20以下のアリール基または炭素数7以上、20以下のアラルキル基を示す。前記アリール基およびアラルキル基においては、芳香環上に1つ以上のアルキル基が導入されていてもよい。また、3つのRO基は、互いに同一でも異なっていてもよい。
 炭素数6以上、20以下のアルキル基およびアルケニル基の例としては、各種へキシル基、各種オクチル基、各種デシル基、各種ドデシル基、各種テトラデシル基、各種ヘキサデシル基、各種オクタデシル基、シクロへキシル基、各種へキセニル基、各種オクテニル基、各種デセニル基、各種ドデセニル基、各種テトラデセニル基、各種ヘキサデセニル基、各種オクタデセニル基、シクロへキセニル基などが挙げられる。
 炭素数6以上、20以下のアリール基としては、例えばフェニル基、トリル基、キシリル基、デシルフェニル基、2,4-ジデシルフェニル基、ナフチル基などが挙げられ、炭素数7以上、20以下のアラルキル基としては、例えばベンジル基、フェネチル基、ナフチルメチル基、メチルベンジル基、メチルフェネチル基、メチルナフチルメチル基などが挙げられる。
 上記式(4)で示されるチオリン酸トリヒドロカルビルエステルの具体例としては、トリへキシルチオホスフェート、トリ2-エチルへキシルチオホスフェート、トリス(デシル)チオホスフェート、トリラウリルチオホスフェート、トリミリスチルチオホスフェート、トリパルミチルチオホスフェート、トリステアリルチオホスフェート、トリオレイルチオホスフェート、トリクしジルチオホスフェート、トリキンリルチオホスフェート、トリス(デシルフェニル)チオホスフェート、トリス[2,4-イソアルキル(C9、C10)フェニル]チオホスフェートなどが挙げられる。これらのチオリン酸トリヒドロカルビルホスフェートは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (D-2)成分のチオリン酸トリヒドロカルビルエステルは、上記(D-1)成分の硫黄化合物の添加効果をさらに高めるために、所望により配合されるものであり、その配合量は、組成物の全量に基づき、硫黄量換算で0.1質量%以上、1質量%未満が好ましく、より好ましくは0.2質量%以上、0.5質量%の範囲である。
 本組成物においては、本発明の目的が損なわれない範囲で、必要に応じ各種添加剤、例えば無灰系清浄分散剤、酸化防止剤、防錆剤、金属不活性化剤、粘度指数向上剤、流動点降下剤および消泡剤などの中から選ばれる少なくとも1種を配合することができる。
 ここで、無灰系清浄分散剤としては、例えばコハク酸イミド類、ホウ素含有コハク酸イミド類、ベンジルアミン類、ホウ素含有ベンジルアミン類、コハク酸エステル類、脂肪酸あるいはコハク酸で代表される一価または二価カルボン酸アミド類などが挙げられる。無灰系清浄分散剤の配合量は、効果および経済性のバランスなどの面から、組成物全量基準で、0.01質量%以上、5質量%以下程度である。
 酸化防止剤としては、従来潤滑油に使用されているアミン系酸化防止剤、フェノール系酸化防止剤および硫黄系酸化防止剤を使用することができる。これらの酸化防止剤は、1種を単独でまたは2種以上を組み合わせて用いることができる。アミン系酸化防止剤としては、例えば、モノオクチルジフェニルアミン、モノノニルジフェニルアミンなどのモノアルキルジフェニルアミン系化合物、4,4’-ジブチルジフェニルアミン、4,4’-ジベンジルジフェニルアミン、4,4’-ジへキシルジフェニルアミン、4,4’-ジへプチルジフェニルアミン、4,4’-ジオクチルジフェニルアミン、4,4’-ジノニルジフェニルアミンなどのジアルキルジフェニルアミン系化合物、テトラブチルジフェニルアミン、テトラへキシルジフェニルアミン、テトラオクチルジフェニルアミン、テトラノニルジフェニルアミンなどのポリアルキルジフェニルアミン系化合物、α-ナフチルアミン、フェニル-α-ナフチルアミン、ブチルフェニル-α-ナフチルアミン、ベンジルフェニル-α-ナフチルアミン、へキシルフェニル-α-ナフチルアミン、へプチルフェニル-α-ナフチルアミン、オクチルフェニル-α-ナフチルアミン、ノニルフェニル-α-ナフチルアミンなどのナフチルアミン系化合物が挙げられる。
 フェノール系酸化防止剤としては、例えば、2,6-ジ-tert-ブチル-4-メチルフェニル、2,6-ジ-tert-ブチル-4-エチルフェニル、オクタデシル3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネ-トなどのモノフェノール系化合物、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)などのジフェノール系化合物が挙げられる。
 硫黄系酸化防止剤としては、例えば、2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール、五硫化リンとピネンとの反応物などのチオテルペン系化合物、ジラウリルチオジプロピオネート、ジスチアリルチオジプロピオネートなどのジアルキルチオジプロピオネートなどが挙げられる。
 酸化防止剤の配合量は、効果および経済性のバランスなどの面から、組成物全量基準で、0.3質量%以上、2質量%以下程度である。
 防錆剤としては、金属系スルホネート、アルケニルコハク酸エステル等が挙げられる。これら防錆剤の配合量は、配合効果の点から、組成物全量基準で、0.01質量%以上、0.5質量%以下程度である。
 金属不活性化剤(銅腐食防止剤)としては、例えば、ベンゾトリアゾール系、トリルトリアゾール系、チアジアゾール系、イミダゾール系およびピリミジン系化合物等が挙げられる。この中でベンゾトリアゾール系化合物が好ましい。これら金属不活性化剤の配合量は、配合効果の点から、組成物全量基準で、0.01質量%以上、0.1質量%以下程度である。
 粘度指数向上剤としては、例えば、ポリメタクリレート、分散型ポリメタクリレート、オレフィン系共重合体(例えば、エチレン-プロピレン共重合体など)、分散型オレフィン系共重合体、スチレン系共重合体(例えば、スチレン-ジエン共重合体、スチレン-イソプレン共重合体など)などが挙げられる。これら粘度指数向上剤の配合量は、配合効果の点から、組成物全量基準で、0.5質量%以上、15質量%以下程度である。
 流動点降下剤としては、エチレン-酢酸ビニル共重合体、塩素化パラフィンとナフタレンとの縮合物、塩素化パラフィンとフェノールとの縮合物、ポリメタクリレート、ポリアルキルスチレン等が挙げられ、例えば、質量平均分子量が5万以上、15万以下程度のポリメタクリレートが好ましく用いられる。流動点降下剤の配合量としては、組成物全量基準で、0.1質量%以上、5質量%以下程度である。
 消泡剤としては、高分子シリコーン系消泡剤、ポリアクリレート系消泡剤が好ましく、この高分子シリコーン系消泡剤等を配合することにより、消泡性が効果的に発揮される。このような高分子シリコーン系消泡剤としては、例えばオルガノポリシロキサンを挙げることができ、特にトリフルオロプロピルメチルシリコーン油などの含フッ素オルガノポリシロキサンが好適である。消泡剤の配合量は、消泡効果および経済性のバランスなどの点から、組成物全量に基づき、0.005質量%以上、0.1質量%以下程度である。
 本発明の生分解性潤滑油組成物は、潤滑性、酸化安定性および生分解性に優れているので、例えば歯車油、軸受油などの各種潤滑油として好適に使用できる。特に風力発電機は屋外で長期間に渡って連続的に使用されるため、その内部に載置される遊星歯車式動力伝達装置(増速機)に用いる潤滑油として本組成物は好適である。
 以下に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
〔実施例1~2、比較例1~4〕
 各種エステルを基油として種々の添加剤を配合し、得られた潤滑油組成物(供試油)について、種々の評価を行った。
 以下に、基油として用いた各エステルおよび添加剤の詳細を示す。なお、基油として用いた各エステルの性状を表1に示す。
Figure JPOXMLDOC01-appb-T000006
(1)エステルA(A成分)
 以下のようにして製造した。
(2-ヒドロキシドデカン酸/1-ドデカノール:仕込みモル比=3/1、H/AL=3)
 2-ヒドロキシドデカン酸100g、1-ドデカノール11.42g、酸触媒として硫酸2.0gを300mlのヘプタンと共に容量が500mlの3つ口フラスコに入れた。フラスコにディーンスタークを取り付け、加熱してヘプタンを還流させた。6時間の還流により約8.0mlの水が留出した。溶媒を留去し、さらに120℃で6時間加熱した。その後、室温まで放冷し、100mlの5質量%NaCl水で3回抽出し酸触媒を除去した。有機層を無水硫酸ナトリウムで乾燥し、ロータリーエバポレーターで溶媒であるヘプタンを除去して、無色透明又は薄い黄色の粘調な油状物質を回収した(収量112.81g)。この油状物質の1H-NMRスペクトルを図1に示す。このスペクトルから下記の構造を有する液状エステル化合物が生成したことを確認した。1H-NMRスペクトルのピークの帰属を表2に示す。
Figure JPOXMLDOC01-appb-T000007
 n=(Ha+Ha’)/((Hal-1)/2)=2.97
(2)エステルB(A成分) 
(2-ヒドロキシドデカン酸/1-ブタノール:仕込みモル比=6/1、H/AL=6)
 1-ドデカノールの代わりに1-ブタノールを5.71g使用した他は、実施例1と同様にしてエステルBを製造した(収量93.49g)。この液状エステル化合物の1H-NMRスペクトルを図2に示す。液状エステル化合物の構造と1H-NMRスペクトルのピークの帰属を表3に示す。
Figure JPOXMLDOC01-appb-T000008
 n=(Ha+Ha’)/((Hal-1)/2)=7.92
(3)エステルC
 ペンタエリスリトール、セバシン酸およびイソステアリン酸からなる複合エステル(uniqema社製 プライオルブ1851)を用いた。
(4)エステルD 
 ペンタエリスリトール、アジピン酸および炭素数7から10程度の混合モノカルボン酸からなる複合エステル(日清オイリオ社製 PAF-450)を用いた。
(5)エステルE 
 ジ(ペンタエリスリトール)オレエート(日本油脂製 TOE-500)を用いた。
(6)エステルF(B成分)
 ペンタエリスリトールと飽和脂肪酸からなるエステル(花王製 カオルーブ262)を用いた。
(7)エステルG
 トリメチロールプロパンジイソステアレートを用いた。
(8)リン酸エステルアミン塩(C成分)
 トリデシルアシッドフォスフェートとトリオクチルアミンを用いた。
(9)硫黄化合物(D成分)
 メチレンビスジブチルジチオカーバメイトとトリス(2,4-C9-C10イソアルキルフェノール)チオホスフェートを用いた。
(10)酸化防止剤
 フェノール系としてチバスペシャルティケミカルズ社製イルガノックスL107を用いた。アミン系としてチバスペシャルティケミカルズ社製イルガノックスL57を用いた。
(11)金属不活性化剤
 チバジャパン社製IRGAMET39(ベンゾトリアゾール誘導体)を用いた。
(12)防錆剤
 ポリブテニルコハク酸イミドを用いた。
(13)消泡剤
 シリコーン系消泡剤(信越化学製KF96H12500CS)を用いた。
(14)抗乳化剤
 ルブリゾール社製ルブリゾール5957(PAG系)を用いた。
 基油と供試油の性状測定方法および各種評価方法は以下の通りである。表4に、供試油の評価結果(生分解性、酸化安定性、潤滑性)を示す。
(1)動粘度
 JIS K 2283に準拠して測定した。
(2)酸価
 JIS K 2501に準拠して測定した。
(3)ケン化価
 JIS K 2503に準拠して測定した。
(4)生分解性
 修正MITI試験法(OECD301C)に準拠して生分解率を測定した。なお、1998年7月に改訂されたエコマーク(環境ラベリング制度)認定基準では、この生分解率は60%以上であることが要求される。
(5)摩擦係数(LFW-1試験)
 ASTM D2174に記載されたブロックオンリング試験機(LFW-1)を用いて、金属間摩擦係数を測定し、試料油の潤滑性を評価した。具体的な試験条件を以下に示す。
 ・試験治具:
  リング:Falex S-10 Test Ring(SAE4620 Steel)
  ブロック:Falex H-60 Test Block(SAE01 Steel)
 ・運転条件:
   油温:60℃
   荷重:177.9N(40lbs)
   回転数:500rpm
(6)酸化安定度試験
 ASTM D 2893に準拠し、供試油を所定の条件で空気酸化(121℃、312時間)させ、100℃動粘度増加率、酸価増加量およびミリポアフィルターで濾過した際のスラッジ量を測定した。
(7)FZG焼付試験
 ASTM D 5182-91に準拠し、90℃、1450rpm、15分間の条件で試験を行い、スカッフィング発生荷重ステージで表示した。
Figure JPOXMLDOC01-appb-T000009
〔評価結果〕
 表4に示すように、(A)成分、(B)成分および(C)成分を配合してなる実施例1、2の供試油は、潤滑性、酸化安定性および生分解性のいずれにも優れており、例えば、風力発電装置に用いられる増速機用として優れた性能を発揮することが理解できる。特に、(A)成分単独では、あまり生分解性が高くないにもかかわらず(表1参照)、上述した他の成分と混合してなる供試油が優れた生分解性を発揮することは特筆すべきである。
 一方、比較例1から比較例3までの供試油は、基油として用いたエステルC、DおよびEが、エステルAと異なる構造であるため、酸化安定性に劣っている。また、比較例4の供試油は、基油としてPAOを用い、さらにエステルG(分岐脂肪族カルボン酸多価アルコールエステル)を10質量%配合してなるものであるが、生分解性に劣るだけでなく、潤滑性にも劣っている。

Claims (8)

  1.  (A)下記式(1)で示されるエステルと、
    Figure JPOXMLDOC01-appb-C000001
    (式中、Raは炭素数が4以上、20以下のヒドロカルビル基であり、Rbは炭素数が4以上、18以下のヒドロカルビル基であり、Rcは水素または炭素数が1以上、10以下のアシル基である。nは3以上、15以下である。)
     (B)直鎖飽和脂肪族カルボン酸と多価アルコールとを反応させて得られ、酸価が0.5mgKOH/g以下であるエステルと、
     (C)酸性リン酸エステルとアルキルアミンとを反応させて得られるリン酸エステルアミン塩とを配合してなる
     ことを特徴とする生分解性潤滑油組成物。
  2.  請求項1に記載の生分解性潤滑油組成物において、
     前記(A)成分におけるRaが炭素数が4以上、20以下のアルキル基であり、Rbが炭素数が4以上、18以下のアルキル基である
     ことを特徴とする生分解性潤滑油組成物。
  3.  請求項1または請求項2に記載の生分解性潤滑油組成物において、
     前記(B)成分のエステルを形成する直鎖飽和脂肪族カルボン酸の炭素数が6以上、12以下である
     ことを特徴とする生分解性潤滑油組成物。
  4.  請求項1から請求項3までのいずれか1項に記載の生分解性潤滑油組成物において、
     前記(B)成分のエステルを形成する多価アルコールがペンタエリスリトールおよびトリメチロールプロパンのうち少なくともいずれかである
     ことを特徴とする生分解性潤滑油組成物。
  5.  請求項1から請求項4までのいずれか1項に記載の生分解性潤滑油組成物において、
     前記(B)成分の配合量が該組成物全量基準で10質量%以上である
     ことを特徴とする生分解性潤滑油組成物。
  6.  請求項1から請求項5までのいずれか1項に記載の生分解性潤滑油組成物において、
     前記(C)成分を形成する酸性リン酸エステルの炭素数が8以上、13以下である
     ことを特徴とする生分解性潤滑油組成物。
  7.  請求項1から請求項6までのいずれか1項に記載の生分解性潤滑油組成物において、
     前記(C)成分におけるリン酸エステルアミン塩の配合量が0.2質量%以上、1質量%以下である
     ことを特徴とする生分解性潤滑油組成物。
  8.  請求項1から請求項7までのいずれか1項に記載の生分解性潤滑油組成物がギヤ油である
     ことを特徴とする生分解性潤滑油組成物。
PCT/JP2010/058189 2009-05-15 2010-05-14 生分解性潤滑油組成物 WO2010131739A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20100774996 EP2431450B1 (en) 2009-05-15 2010-05-14 Biodegradable lubricant composition
US13/320,696 US9139795B2 (en) 2009-05-15 2010-05-14 Biodegradable lubricant composition
DK10774996T DK2431450T3 (da) 2009-05-15 2010-05-14 Bionedbrydelig smøremiddelsammensætning
CN201080021991.1A CN102421882B (zh) 2009-05-15 2010-05-14 生物降解性润滑油组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009118432A JP5465921B2 (ja) 2009-05-15 2009-05-15 生分解性潤滑油組成物
JP2009-118432 2009-05-15

Publications (1)

Publication Number Publication Date
WO2010131739A1 true WO2010131739A1 (ja) 2010-11-18

Family

ID=43085112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058189 WO2010131739A1 (ja) 2009-05-15 2010-05-14 生分解性潤滑油組成物

Country Status (6)

Country Link
US (1) US9139795B2 (ja)
EP (1) EP2431450B1 (ja)
JP (1) JP5465921B2 (ja)
CN (1) CN102421882B (ja)
DK (1) DK2431450T3 (ja)
WO (1) WO2010131739A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140296117A1 (en) * 2011-09-02 2014-10-02 Idemitsu Kosan Co., Ltd. Biodegradable lubricating oil composition
US9255237B2 (en) 2011-04-25 2016-02-09 Adeka Corporation Lubricating oil additive composition and method for improving storage stability of lubricating oil additive composition

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951943B2 (en) * 2009-08-18 2015-02-10 The Lubrizol Corporation Antiwear composition and method of lubricating driveline device
EP2749630B8 (en) * 2012-12-28 2018-01-10 Afton Chemical Corporation Lubricant Composition
WO2016022773A1 (en) * 2014-08-06 2016-02-11 The Lubrizol Corporation Industrial gear lubricant additive package with biodegradable sulfur component
JP6669343B2 (ja) * 2015-02-27 2020-03-18 出光興産株式会社 生分解性潤滑油組成物
EP3298112B1 (en) * 2015-05-19 2023-05-10 Quaker Chemical Corporation Synthetic esters derived from high stability oleic acid
CN111518601A (zh) * 2020-05-15 2020-08-11 广饶科力达石化科技有限公司 一种可生物降解阻燃的主轴承专用润滑脂及其制备方法
WO2023190361A1 (ja) * 2022-03-30 2023-10-05 出光興産株式会社 潤滑油組成物、並びに潤滑油組成物の使用方法及び製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112224A (ja) * 1997-06-20 1999-01-19 Hokoku Seiyu Kk 低酸価のモノヒドロキシカルボン酸縮合エステル
JP2009096720A (ja) * 2007-10-12 2009-05-07 Idemitsu Kosan Co Ltd 生分解性液状エステル化合物

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644119A (en) 1979-09-19 1981-04-23 Hitachi Ltd Magnetic head
JPH0311696A (ja) 1989-06-08 1991-01-18 Fujitsu Ltd 表面実装部品の半田付け及び取り外し方法
JPH03231094A (ja) 1990-02-06 1991-10-15 Nkk Corp レジャー用舟艇揚収時の誘導装置
JPH03235930A (ja) 1990-02-13 1991-10-21 Fuji Photo Film Co Ltd クリーナ付レンズキャップ
JPH0662760A (ja) 1992-08-19 1994-03-08 Harima Chem Inc 稚仔魚用の餌料生物栄養強化油脂組成物、稚仔魚用餌料生物、およびそれを用いた稚仔魚増養殖方法
JP3231094B2 (ja) 1992-10-09 2001-11-19 ハリマ化成株式会社 親水性ポリエステルジオールおよびその製造方法
US5552068A (en) * 1993-08-27 1996-09-03 Exxon Research And Engineering Company Lubricant composition containing amine phosphate
JP3235930B2 (ja) 1994-01-10 2001-12-04 ダイセル化学工業株式会社 顔料分散剤の製造方法
JP3489703B2 (ja) 1995-10-23 2004-01-26 株式会社ノエビア 微細エマルション組成物
DE69816843T2 (de) 1997-10-01 2004-04-15 Unichema Chemie B.V. Komplexaster, diese enthaltende zusammensetzungen und ihre verwendung
FR2769224B1 (fr) 1997-10-03 2000-01-28 Oreal Emulsion e/h/e stable et son utilisation comme composition cosmetique et/ou dermatologique
KR100421516B1 (ko) 1998-06-04 2004-03-09 가네보 가부시키가이샤 α-히드록시 지방산 유도체 및 이를 함유하는 외용조성물
BR0213159A (pt) 2001-10-10 2004-09-14 Exxonmobil Res & Eng Co Composição de óleo lubrificante biodegradável, e, composição lubrificante
JP4827381B2 (ja) 2004-01-30 2011-11-30 出光興産株式会社 生分解性潤滑油組成物
US7410935B2 (en) * 2006-03-22 2008-08-12 Afton Chemical Corporation Gear fluids
US20100009880A1 (en) 2006-09-28 2010-01-14 Tahei Okada Lubricating oil composition
JP5095177B2 (ja) 2006-11-06 2012-12-12 出光興産株式会社 生分解性潤滑油組成物
JP5140070B2 (ja) 2007-03-29 2013-02-06 出光興産株式会社 ギヤ油組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112224A (ja) * 1997-06-20 1999-01-19 Hokoku Seiyu Kk 低酸価のモノヒドロキシカルボン酸縮合エステル
JP2009096720A (ja) * 2007-10-12 2009-05-07 Idemitsu Kosan Co Ltd 生分解性液状エステル化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2431450A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9255237B2 (en) 2011-04-25 2016-02-09 Adeka Corporation Lubricating oil additive composition and method for improving storage stability of lubricating oil additive composition
US20140296117A1 (en) * 2011-09-02 2014-10-02 Idemitsu Kosan Co., Ltd. Biodegradable lubricating oil composition
EP2752480A4 (en) * 2011-09-02 2015-05-27 Idemitsu Kosan Co BIODEGRADABLE GREASE OIL COMPOSITION

Also Published As

Publication number Publication date
JP5465921B2 (ja) 2014-04-09
CN102421882A (zh) 2012-04-18
JP2010265397A (ja) 2010-11-25
CN102421882B (zh) 2015-10-21
DK2431450T3 (da) 2014-06-16
EP2431450A1 (en) 2012-03-21
EP2431450B1 (en) 2014-05-07
EP2431450A4 (en) 2012-11-21
US9139795B2 (en) 2015-09-22
US20120065111A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP5827782B2 (ja) 生分解性潤滑油組成物
JP5465921B2 (ja) 生分解性潤滑油組成物
JP5759836B2 (ja) 生分解性潤滑油組成物
JP5710720B2 (ja) 潤滑油組成物
KR101302940B1 (ko) 전도성 윤활유 조성물
JP6235864B2 (ja) 潤滑油組成物
JP7242186B2 (ja) 潤滑油組成物、潤滑油組成物の製造方法及び無段変速機
JP2009235252A (ja) 摩擦調整剤、潤滑油添加剤組成物、潤滑油組成物、および摩擦調整剤の製造方法
JP5695229B2 (ja) 生分解性潤滑油組成物
CN111836876B (zh) 润滑油组合物、润滑油组合物的制造方法和无级变速器
US11473030B2 (en) Lubricant composition
JP2011157541A (ja) 機器冷却用基油、該基油を配合してなる機器冷却油、該冷却油により冷却される機器、および該冷却油による機器冷却方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080021991.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13320696

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010774996

Country of ref document: EP