WO2010131678A1 - ホスホン酸金属塩微粒子の製造方法 - Google Patents

ホスホン酸金属塩微粒子の製造方法 Download PDF

Info

Publication number
WO2010131678A1
WO2010131678A1 PCT/JP2010/058048 JP2010058048W WO2010131678A1 WO 2010131678 A1 WO2010131678 A1 WO 2010131678A1 JP 2010058048 W JP2010058048 W JP 2010058048W WO 2010131678 A1 WO2010131678 A1 WO 2010131678A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal salt
phosphonic acid
salt
acid metal
water
Prior art date
Application number
PCT/JP2010/058048
Other languages
English (en)
French (fr)
Inventor
剛史 諏訪
林 寿人
小澤 雅昭
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201080020618.4A priority Critical patent/CN102421785B/zh
Priority to KR1020117027971A priority patent/KR101778587B1/ko
Priority to EP10774935.0A priority patent/EP2431374B1/en
Priority to US13/266,962 priority patent/US8445718B2/en
Priority to JP2011513358A priority patent/JP5720896B2/ja
Publication of WO2010131678A1 publication Critical patent/WO2010131678A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/3804Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)] not used, see subgroups
    • C07F9/3834Aromatic acids (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a method for producing phosphonic acid metal salt fine particles, and particularly to a method for efficiently obtaining phosphonic acid metal salt fine particles having an average particle diameter of 0.01 to 0.5 ⁇ m.
  • Polylactic acid resin a biodegradable polyester resin
  • a molding material in various fields such as packaging materials such as containers and films, clothing materials, floor mats, textile materials such as automotive interior materials, and housings and parts for electrical and electronic products.
  • packaging materials such as containers and films, clothing materials, floor mats, textile materials such as automotive interior materials, and housings and parts for electrical and electronic products.
  • a crystal nucleating agent serves as a primary crystal nucleus of the crystalline polymer, promotes crystal growth, refines the crystal size, and increases the crystallization speed.
  • Patent Document 1 As a crystal nucleating agent for polylactic acid resin, inorganic particles (Patent Document 1) composed of talc / boron nitride having a specific particle size or less, amide compounds represented by a specific formula (Patent Document 2), and a specific formula A sorbitol-based derivative (Patent Document 3), a phosphate ester metal salt represented by a specific formula (Patent Document 4), or a phosphonic acid metal salt (Patent Document 5 and Patent Document 6) is disclosed. .
  • phosphonic acid metal salts that are said to have excellent performance are usually phosphonic acid compounds and metal ion sources such as metal hydroxides, metal oxides and metals in water or organic solvents. Manufactured by reacting with nitrate, metal acetate and the like.
  • the size of the crystal nucleating agent can be reduced.
  • the smaller the size of the crystal nucleating agent the larger the number of particles per mass and the surface area.
  • the crystal nucleating agent particles themselves become finer, so that the transparency of the resin product is improved. Will lead to improved performance.
  • a pulverization treatment or the like is performed as necessary in order to make the average particle diameter 10 ⁇ m or less.
  • a phosphonic acid metal salt having an average particle diameter of a minimum of 1.1 ⁇ m was produced in the examples.
  • JP-A-8-3432 Japanese Patent Laid-Open No. 10-87975 JP-A-10-158369 JP 2003-192883 A International Publication No. 2005/097894 JP 2008-156616 A
  • the particles produced by the above-described method are particles of the order of several ⁇ m at most and more than 1 ⁇ m at the minimum. It took time and effort. Accordingly, it is an object of the present invention to propose a new production method capable of more efficiently producing particles having a smaller particle diameter, for example, particles of 0.5 ⁇ m or less, without requiring an operation such as pulverization. .
  • the inventors of the present invention produced a phosphonic acid metal salt having a smaller size as a crystal nucleating agent, and introduced a base into the reaction system to neutralize the pH range.
  • the obtained (precipitated) metal salt particles themselves can be made smaller, and further, by removing water as a reaction medium immediately after deposition of the metal salt, the particle size of the product can be reduced.
  • the inventors have found that the state of small particles can be maintained without growing, and completed the present invention.
  • the present invention provides, as a first aspect, a) a general formula (I)
  • R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxycarbonyl group having 1 to 10 carbon atoms). Reacting with a base in an aqueous medium and adjusting the reaction system to a neutral to basic pH range, b) reacting the product obtained in step a) with a metal salt to precipitate the phosphonic acid metal salt from an aqueous medium; c) a step of removing water from the phosphonic acid metal salt of the precipitate obtained in step b), and d) a step of heating and drying the phosphonic acid metal salt from which the water obtained in step c) has been removed.
  • the present invention relates to a method for producing metal phosphonate fine particles.
  • the metal phosphonate is selected from the group consisting of lithium salt, sodium salt, potassium salt, magnesium salt, calcium salt, barium salt, iron salt, cobalt salt, copper salt, manganese salt and zinc salt. It is related with the manufacturing method of the phosphonic acid metal salt microparticles
  • the present invention relates to a method for producing fine particles.
  • b) the step of precipitating the phosphonic acid metal salt from the aqueous medium is performed by dropping the product obtained in step a) into the aqueous solution of the metal salt.
  • the present invention relates to a method for producing metal phosphonate fine particles according to any one of the above.
  • c) the step of removing water from the phosphonic acid metal salt of the deposit is performed by replacing water as a reaction medium with an organic solvent, and any one of the first to fourth aspects. The method for producing the phosphonic acid metal salt fine particles described in the item.
  • the present invention relates to the method for producing phosphonic acid metal salt fine particles according to the fifth aspect, wherein the organic solvent is a water-soluble organic solvent having a boiling point of 120 ° C. or lower.
  • the present invention relates to the method for producing phosphonic acid metal salt fine particles according to the sixth aspect, wherein the organic solvent is methanol, ethanol, or acetone.
  • c) The step of removing water from the phosphonic acid metal salt of the precipitate is performed by drying under reduced pressure at 5 to 70 ° C.
  • the phosphon according to any one of the first to seventh aspects.
  • the present invention relates to a method for producing acid metal salt fine particles.
  • the present invention relates to phosphonic acid metal salt fine particles obtained by the production method according to any one of the first aspect to the eighth aspect, wherein the average particle diameter is 0.01 to 0.5 ⁇ m.
  • the polylactic acid resin composition containing 0.01 thru
  • the base is first introduced into the reaction system to adjust the pH range to neutral or basic.
  • the phosphonic acid compound is reacted with a base in an aqueous medium in advance.
  • the product thus obtained is reacted with a metal salt as a metal source, whereby phosphone having an average particle size of 0.5 ⁇ m or less in the reaction medium (aqueous medium).
  • Acid metal salts can be deposited.
  • the production method of the present invention can produce phosphonic acid metal salt fine particles having an average particle diameter finer than that of the conventional production method, without requiring further steps such as pulverization.
  • the fine particles obtained according to the present invention have a very fine particle size as compared with phosphonic acid metal salt particles having an average particle size of several ⁇ m obtained by a normal production method. Therefore, when the phosphonic acid metal salt fine particles obtained by the production method of the present invention are used as a crystal nucleating agent when producing a polyester resin such as polylactic acid resin or a crystalline polyolefin resin, the transparency and crystallinity of these resins are obtained. The effect of promoting crystallization can be improved.
  • FIG. 1 is a scanning microscope (SEM) image of the phosphonic acid zinc salt produced in Example 1.
  • FIG. 2 is a scanning microscope (SEM) image of the phosphonic acid zinc salt produced in Example 2.
  • FIG. 3 is a view showing a scanning microscope (SEM) image of the phosphonic acid zinc salt produced in Example 3.
  • 4 is a scanning microscope (SEM) image of the phosphonic acid zinc salt produced in Example 4.
  • FIG. 5 is a scanning microscope (SEM) image of the phosphonic acid zinc salt produced in Example 5.
  • 6 is a scanning microscope (SEM) image of the phosphonic acid zinc salt produced in Example 6.
  • FIG. 7 shows a scanning microscope (SEM) image of the phosphonic acid zinc salt produced in Example 7.
  • FIG. 8 is a view showing a scanning microscope (SEM) image of the phosphonic acid zinc salt produced in Comparative Example 1.
  • 9 is a view showing a scanning microscope (SEM) image of the phosphonic acid zinc salt produced in Comparative Example 2.
  • FIG. 10 is a view showing a scanning microscope (SEM) image of the phosphonic acid zinc salt produced in Comparative Example 3.
  • FIG. 11 shows a scanning microscope (SEM) image of the calcium phosphonate salt produced in Example 9.
  • 12 is a scanning microscope (SEM) image of the calcium phosphonate salt produced in Example 10.
  • FIG. 13 is a view showing a scanning microscope (SEM) image of the calcium phosphonate produced in Example 11.
  • FIG. 14 is a view showing a scanning microscope (SEM) image of the calcium phosphonate salt produced in Comparative Example 5.
  • FIG. FIG. 15 is a view showing a scanning microscope (SEM) image of the calcium phosphonate salt produced in Comparative Example 6.
  • 16 is a view showing a scanning microscope (SEM) image of the calcium phosphonate produced in Comparative Example 7.
  • FIG. 17 is a view showing a scanning microscope (SEM) image of the calcium phosphonate salt produced in Comparative Example 8.
  • SEM scanning microscope
  • the present invention includes: a) a step of reacting a phosphonic acid compound with a base in an aqueous medium, and adjusting the reaction system to be in a neutral to basic pH range; b) a product obtained in step a).
  • a phosphonic acid metal salt is precipitated from an aqueous medium by reacting with a metal salt, c) a step of removing water from the phosphonic acid metal salt of the precipitate obtained in step b), and d) obtained in step c). And a step of heating and drying the phosphonic acid metal salt from which water has been removed.
  • the present inventors adjust the pH range of the reaction system by reacting a phosphonic acid compound that reacts with a metal salt with a base in an aqueous medium. Therefore, after the precipitation of the phosphonic acid metal salt, the pH of the reaction system is kept from weakly acidic to basic, and the reaction medium water is removed from the precipitated phosphonic acid metal salt as much as possible before heating and drying. did. This suppresses the equilibrium reaction between dissolution and recrystallization of the phosphonate metal salt in the reaction solution (aqueous medium) during precipitation of the phosphonate metal salt and residual water during drying, and thus increases the size of the metal salt particles. It became possible to suppress.
  • the present invention will be described in more detail.
  • the phosphonic acid compound used in the present invention is represented by the following general formula (I) It is a compound represented by these.
  • R 1 and R 2 in the formula are a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert group,
  • An alkyl group having 1 to 10 carbon atoms such as a butyl group, an alkoxycarbonyl group having 1 to 10 carbon atoms such as a methoxycarbonyl group or an ethoxycarbonyl group;
  • R 1 and R 2 may be the same or different.
  • phosphonic acid compound represented by the above formula (I) examples include phenylphosphonic acid, 4-methylphenylphosphonic acid, 4-ethylphenylphosphonic acid, 4-n-propylphenylphosphonic acid, 4-isopropylphenylphosphonic acid. Acid, 4-n-butylphenylphosphonic acid, 4-isobutylphenylphosphonic acid, 4-tert-butylphenylphosphonic acid, 3,5-dimethoxycarbonylphenylphosphonic acid, 3,5-diethoxycarbonylphenylphosphonic acid, 2, Examples include 5-dimethoxycarbonylphenylphosphonic acid and 2,5-diethoxycarbonylphenylphosphonic acid.
  • the phosphonic acid compound represented by the above formula (I) is reacted with a base in an aqueous medium, and the pH range of the reaction system is previously neutral to basic, specifically, pH 7 to 14 or pH 7 to By adjusting to 11, the pH range of the reaction system can be kept weakly acidic or basic even after step b) described below (precipitation of the phosphonic acid metal salt).
  • a base made to react with the said phosphonic acid compound For example, sodium hydroxide, sodium carbonate, sodium hydrogencarbonate etc. can be used.
  • this step is carried out, for example, by mixing an aqueous solution of these bases with an aqueous solution of a phosphonic acid compound represented by the above formula (I).
  • step b) The step of reacting the product obtained in step a) with a metal salt to precipitate the phosphonic acid metal salt from the aqueous medium
  • the product obtained from the step a) (phosphonic acid compound)
  • the reaction is performed by dropping the product into an aqueous solution containing the metal salt.
  • the metal salt that is the metal source used in this step is preferably a water-soluble salt.
  • the form of the salt is not particularly limited as long as it is water-soluble, and sulfates, nitrates, chlorides, carbonates, acetates and the like can be used, preferably chlorides or acetates.
  • monovalent, divalent and trivalent metals can be used. In the metal, these metals can be used by mixing two or more kinds of metals.
  • Specific examples of the metal salt include lithium salt, sodium salt, potassium salt, magnesium salt, aluminum salt, calcium salt, barium salt, manganese salt, iron salt, cobalt salt, nickel salt, copper salt, zinc salt and the like. .
  • lithium salts sodium salts, potassium salts, magnesium salts, calcium salts, barium salts, iron salts, cobalt salts, copper salts, manganese salts, and zinc salts are preferable, and zinc salts are particularly preferable.
  • the temperature at which the product (phosphonic acid compound-containing solution) obtained in step a) is reacted with an aqueous solution containing a metal salt can affect the particle size of the phosphonic acid metal salt fine particles obtained later. That is, the higher the reaction temperature, the higher the solubility of the precipitated phosphonic acid metal salt, which leads to an increase in the particle size during recrystallization. Therefore, in order to achieve the object of the present invention to obtain fine particles, it is desirable to keep the temperature of the reaction at 30 ° C. or lower.
  • Step c) Step of removing water from the phosphonic acid metal salt of the precipitate obtained in step b)
  • This step is not particularly limited, but preferably (i) substitution of water as a reaction medium with an organic solvent, or ( ii) Carried out by vacuum drying.
  • the organic solvent used in the above (i) is not particularly limited, but is preferably a water-soluble organic solvent in order to efficiently remove water, and further, an organic solvent having a boiling point lower than about 120 ° C. for ease of drying.
  • a solvent is preferred.
  • organic solvents include methanol, ethanol, acetone, 1-propanol, 2-propanol, tert-butanol, 1,2-dimethoxyethane, tetrahydrofuran, 1,4-dioxane, acetonitrile, and the like. Ethanol or acetone is preferred.
  • the above (i) is a method of once filtering the reaction liquid (suspension) in which the phosphonic acid metal salt has been deposited in the previous step, redispersing the filtrate in the organic solvent, and refiltering it. To do. It is preferable to replace water with an organic solvent as much as possible by repeating redispersion and refiltration in the organic solvent. Further, it may be once washed with water before being redispersed in an organic solvent.
  • the temperature during drying under reduced pressure is preferably a low temperature so as not to affect the particle size of the phosphonic acid metal salt fine particles.
  • the pressure for drying under reduced pressure is not particularly limited as long as it can be dried at the above-mentioned temperature.
  • the drying is performed under reduced pressure at 1 to 5 kPa for 12 to 60 hours.
  • step c) Step of heating and drying the phosphonic acid metal salt from which water has been obtained in step c) After removing water from the phosphonic acid metal salt in step c), the final phosphonate metal salt is obtained by heating and drying. Salt fine particles are obtained.
  • the heating temperature at this time is preferably 100 to 300 ° C. If the temperature is higher than 300 ° C, decomposition of the phosphonic acid metal salt may be induced. If the temperature is lower than 100 ° C, hydrates of the phosphonic acid metal salt (for example, zinc phenylphosphonate and phenylphosphonic acid described later) may be used. Calcium is a monohydrate) and is not preferable because it is not suitable as a crystal nucleating agent for resins that dislike hydrolysis (for example, polyester resins).
  • the average particle diameter (average particle diameter) of the phosphonic acid metal salt fine particles of the present invention obtained through the above-mentioned steps is 0.05 to 0.5 ⁇ m, preferably 0.05 to 0.3 ⁇ m.
  • the phosphonic acid metal salt fine particles of the present invention may have a granular or disk shape (see FIGS. 1 to 7 described later), or a strip shape (strip shape, FIG. 11 to FIG. 13).
  • the above “average particle diameter” means the average of the lengths of approximately the maximum minor axis (short axis) of the strip-like particles in the present invention.
  • the size of the strip-like particle itself is described by length (major axis), width (minor axis), and thickness, and these numerical values satisfy the condition of ⁇ major axis ⁇ minor axis ⁇ thickness>.
  • the present invention provides a polylactic acid resin composition containing 0.01 to 10 parts by mass of the phosphonic acid metal salt fine particles having an average particle diameter of 0.05 to 0.5 ⁇ m, based on 100 parts by mass of the polylactic acid resin. Also related.
  • Example 1 A 15 mass% phenylphosphonic acid aqueous solution (phenylphosphonic acid 7.9 g, water 44.8 g) and a 15 mass% sodium hydroxide aqueous solution (sodium hydroxide 4.0 g, water 22.7 g) were mixed to obtain a pH of 8.8.
  • the solution prepared as above was dropped into a 6 mass% aqueous zinc chloride solution (zinc chloride 6.8 g, water 100.0 g, pH 5.6) with stirring to precipitate zinc phenylphosphonate.
  • the pH of the suspension at this time was 8.8.
  • the obtained filtrate (wet product) was redispersed in 300 mL of water and filtered again, and this was repeated twice.
  • Example 2 A 15 mass% phenylphosphonic acid aqueous solution (phenylphosphonic acid 7.2 g, water 40.8 g) and a 15 mass% sodium hydroxide aqueous solution (sodium hydroxide 3.7 g, water 20.7 g) were mixed to obtain a pH of 8.8.
  • the solution prepared as above was dropped into an 8% by mass aqueous zinc acetate solution (zinc acetate dihydrate 10.0 g, water 90.0 g, pH 6.1) with stirring to precipitate zinc phenylphosphonate.
  • the pH of the suspension at this time was 6.2.
  • Example 3 A 15 mass% phenylphosphonic acid aqueous solution (phenylphosphonic acid 7.9 g, water 44.8 g) and a 15 mass% sodium hydroxide aqueous solution (sodium hydroxide 4.0 g, water 22.7 g) were mixed to obtain a pH of 8.8.
  • the solution prepared as above was dropped into a 6 mass% aqueous zinc chloride solution (zinc chloride 6.8 g, water 100.0 g, pH 5.6) with stirring to precipitate zinc phenylphosphonate.
  • the pH of the suspension at this time was 8.8.
  • the obtained filtrate was redispersed in 300 mL of water and filtered again, and this was repeated twice.
  • Example 4 A 15 mass% phenylphosphonic acid aqueous solution (phenylphosphonic acid 7.2 g, water 40.8 g) and a 15 mass% sodium hydroxide aqueous solution (sodium hydroxide 3.7 g, water 20.7 g) were mixed to obtain a pH of 8.8.
  • the solution prepared as above was dropped into a 7 mass% aqueous zinc chloride solution (6.3 g of zinc chloride, 90.0 g of water, pH 5.6) with stirring to precipitate zinc phenylphosphonate.
  • the pH of the suspension at this time was 8.8.
  • the obtained filtrate (wet product) was redispersed in 300 mL of water and filtered again, and this was repeated twice.
  • Example 5 A 15 mass% phenylphosphonic acid aqueous solution (phenylphosphonic acid 7.2 g, water 40.8 g) and a 15 mass% sodium hydroxide aqueous solution (sodium hydroxide 3.7 g, water 20.7 g) were mixed to obtain a pH of 8.8.
  • the solution prepared as above was dropped into a 6 mass% aqueous zinc chloride solution (6.3 g of zinc chloride, 100.0 g of water, pH 5.6) with stirring to precipitate zinc phenylphosphonate.
  • the pH of the suspension at this time was 8.8.
  • the obtained filtrate (wet product) was redispersed in 300 mL of water and filtered again, and this was repeated twice.
  • Example 6 The same operation as in Example 5 was performed except that the temperature of the vacuum drying was changed to 50 ° C.
  • the SEM image of the obtained dry product (powder) is shown in FIG.
  • Example 7 The same operation as in Example 5 was performed except that the temperature of the vacuum drying was changed to 60 ° C.
  • the SEM image of the obtained dry product (powder) is shown in FIG.
  • Example 1 to 7 and Comparative Examples 1 to 3 the reaction liquid 30 minutes after the precipitation of zinc phenylphosphonate (Comparative Example 3 after neutralization with an aqueous sodium hydroxide solution) was recovered. Then, the average particle diameter of zinc phenylphosphonate in the reaction solution was measured. The average particle size is measured by measuring the particle size every minute under the conditions of 1,500 rpm and ultrasonic level: 100 in the apparatus after being put into a laser diffraction type particle size distribution measuring machine ("MasterSizer 2000" manufactured by Malvern). The minimum value was adopted. The average particle diameter here refers to the d50 value (median diameter) of the particles in the dispersion medium derived by Mie's theory.
  • the zinc phenylphosphonate prepared according to the procedures of Examples 1 to 7 was able to obtain fine particles having an average particle size of 0.14 to 0.24 ⁇ m even after drying.
  • Comparative Example 1 in which only the washing solvent was water and the organic solvent substitution was not performed was in the form of fine particles when zinc phenylphosphonate was deposited, but the result was that the particles grew to 0.54 ⁇ m after drying.
  • Example 8 and Comparative Example 4 Evaluation of crystallization temperature and crystallization time
  • Zinc phenyl phosphonate (dry product) obtained in Example 4 above or manufactured by Nissan Chemical Industries, Ltd. with respect to 100 parts by mass of polylactic acid resin (Mitsui Chemicals, trade name: LACEEA-H100) 1 part by mass of zinc phenylphosphonate (trade name: Eco Promote, average particle size: 2 to 3 ⁇ m) was added, and melt-kneaded at 185 ° C. for 5 minutes using a lab plast mill manufactured by Toyo Seiki Seisakusho.
  • Crystallization temperature About 5 mg of a sample was heated to 200 ° C. at 10 ° C./min, held for 5 minutes and melted, and then cooled to 30 ° C. at 5 ° C./min. The temperature at which the exotherm due to crystallization of the polylactic acid resin generated during cooling reached a peak was taken as the crystallization temperature.
  • Crystallization time About 5 mg of the sample was heated to 200 ° C.
  • the zinc phenylphosphonate obtained in Example 4 was higher in crystallization temperature than the zinc phenylphosphonate product (Eco Promote), and the induction time during isothermal crystallization was short, and the present phosphonic acid It was confirmed that the metal salt fine particles showed excellent performance as a crystal nucleating agent.
  • Example 9 A 15 mass% phenylphosphonic acid aqueous solution (phenylphosphonic acid 7.9 g, water 44.8 g) and a 15 mass% sodium hydroxide aqueous solution (sodium hydroxide 4.0 g, water 22.7 g) were mixed to obtain a pH of 8.7.
  • the solution prepared above was dropped into an 8% by mass aqueous calcium chloride solution (calcium chloride dihydrate 7.4 g, water 66.2 g) with stirring to precipitate calcium phenylphosphonate.
  • the pH of the suspension at this time was 7.1.
  • the obtained filtrate (wet product) was redispersed in 100 mL of water and filtered again, and this was repeated twice.
  • Example 10 A 15 mass% phenylphosphonic acid aqueous solution (phenylphosphonic acid 7.9 g, water 44.9 g) and a 15 mass% sodium hydroxide aqueous solution (sodium hydroxide 4.0 g, water 22.7 g) were mixed to obtain a pH of 9.4.
  • the solution prepared above was dropped into a 9% by mass aqueous calcium acetate solution (calcium acetate monohydrate 8.8 g, water 79.3 g) with stirring to precipitate calcium phenylphosphonate.
  • the pH of the suspension at this time was 8.6.
  • the obtained filtrate (wet product) was redispersed in 100 mL of water and filtered again, and this was repeated twice.
  • Example 11 A 15 mass% phenylphosphonic acid aqueous solution (phenylphosphonic acid 7.9 g, water 44.9 g) and a 15 mass% sodium hydroxide aqueous solution (sodium hydroxide 4.2 g, water 23.8 g) were mixed to obtain a pH of 12.4.
  • the solution prepared above was dropped into an 8% by mass aqueous calcium chloride solution (calcium chloride dihydrate 7.4 g, water 66.2 g) with stirring to precipitate calcium phenylphosphonate.
  • the pH of the suspension at this time was 11.5.
  • the obtained filtrate (wet product) was redispersed in 100 mL of water and filtered again, and this was repeated twice.
  • Example 9 to 11 and Comparative Examples 5 to 8 the average particle diameters of the obtained calcium phenylphosphonate (dry product) powder particles were measured.
  • the average particle size here means the average length of the short axis direction of the particle, and the average of the maximum length in the short axis direction of 50 particles randomly extracted from the SEM image of the dry product is obtained. It was. The obtained results are shown in Table 3.
  • the average particle size of calcium phenylphosphonate prepared by the procedures of Examples 9 to 11 was 0.28 to 0.32 ⁇ m.
  • Comparative Example 5 in which calcium phosphonate precipitated in the same reaction conditions as in Example 10 was used with only water as the washing solvent and no organic solvent substitution was performed, the average particle size became 0.59 ⁇ m, and the particles grew during drying. As a result.
  • Comparative Example 6 in which a base was used after salt precipitation, and Comparative Example 7 and Comparative Example 8 in which the base was not used, had a particle size exceeding 0.5 ⁇ m even when the washing solvent water was replaced with an organic solvent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

【課題】平均粒子径が0.5μm以下のホスホン酸金属塩の微粒子を効率よく得る方法を提供する。 【解決手段】 a)一般式(I) (式中、R1及びR2は、夫々独立して、水素原子、炭素原子数1乃至10のアルキル基又は炭素原子数1乃至10のアルコキシカルボニル基を表す。)で表されるホスホン酸化合物を水性媒体中で塩基と反応させ、該反応系を中性乃至塩基性のpH域となるように調整する工程、b)工程a)で得られた生成物を金属塩と反応させてホスホン酸金属塩を水性媒体より析出させる工程、c)工程b)で得られた析出物のホスホン酸金属塩から水を除去する工程、及びd)工程c)で得られた水を除去した前記ホスホン酸金属塩を加熱乾燥させる工程を含む、ホスホン酸金属塩微粒子の製造方法。

Description

ホスホン酸金属塩微粒子の製造方法
 本発明はホスホン酸金属塩微粒子の製造方法に関し、特に平均粒子径が0.01乃至0.5μmのホスホン酸金属塩の微粒子を効率よく得る製造方法に関する。
 生分解性ポリエステル樹脂であるポリ乳酸樹脂は、容器、フィルム等の包装材料、衣料、フロアマット、自動車用内装材等の繊維材料、電気、電子製品の筺体や部品など様々な分野における成型材料として期待されている。
 ポリ乳酸樹脂の成形加工性や耐熱性を改善するにあたり、該樹脂の結晶化速度及び結晶化度を高める試みがなされており、その方法の一つとして結晶核剤の添加が提案されている。結晶核剤とは、結晶性高分子の一次結晶核となり結晶成長を促進し、結晶サイズを微細化すると共に、結晶化速度を高める働きをする。ポリ乳酸樹脂の結晶核剤としては、特定の粒径以下のタルク/又は窒化ホウ素からなる無機粒子(特許文献1)、特定の式で表されるアミド化合物(特許文献2)、特定の式で表されるソルビトール系誘導体(特許文献3)、特定の式で表されるリン酸エステル金属塩(特許文献4)、或いはホスホン酸金属塩(特許文献5及び特許文献6)などが開示されている。
 上記結晶核剤の中でも優れた性能を有するとされているホスホン酸金属塩は、通常、水又は有機溶媒中で、ホスホン酸系化合物と金属イオン源、例えば金属水酸化物、金属酸化物や金属硝酸塩、金属酢酸塩などとを反応させることにより製造される。
 ポリ乳酸樹脂の結晶化速度及び結晶化度をより高めるには、例えば上記結晶核剤のサイズを小さくすることが挙げられる。一般に結晶核剤はそのサイズが小さいほど質量あたりの粒子数、表面積が大きくなる。そして結晶核剤が微細化するほど、ポリ乳酸樹脂の結晶サイズも微細化し、さらに、結晶核剤粒子自体のサイズが微細になることで樹脂製品の透明性も向上し、すなわち、結晶核剤としての性能向上につながることとなる。
 例えば、特許文献5に記載のホスホン酸金属塩においては、平均粒子径を10μm以下にするために必要に応じて粉砕処理等を実施する旨記載されている。また同文献には、実施例において最小1.1μmの平均粒子径を有するホスホン酸金属塩が製造された旨記載されている。
特開平8-3432号公報 特開平10-87975号公報 特開平10-158369号公報 特開2003-192883号公報 国際公開2005/097894号パンフレット 特開2008-156616号公報
 前述したとおり、ポリ乳酸樹脂の結晶化速度及び結晶化度を高めるために様々な結晶核剤が提案されているが、近年、ポリ乳酸樹脂のより高い成型加工性や耐熱性を実現するために、さらに有効な結晶核剤の開発が望まれている。そのため、結晶核剤のサイズに関して更なる微細化が求められることとなるが、前述の方法で製造される粒子はせいぜい数μmオーダー、最小でも1μm超の粒子であり、また微細化のための粉砕処理を要するなどの手間を要していた。
 従って、本発明はさらに粒径の小さな粒子、例えば0.5μm以下の粒子を粉砕処理等の操作を必要とすることなく、より効率的に製造できる新たな製造方法を提案することを課題とする。
 本発明者らは上記の課題を解決する為に鋭意検討を進めた結果、結晶核剤としてよりサイズの小さなホスホン酸金属塩の製造にあたり、反応系に塩基を投入してそのpH域を中性乃至塩基性に調整することにより、得られた(析出した)金属塩の粒子自体を小さくできること、さらに、金属塩の析出後直ちに反応媒体である水を除去することにより、生成物の粒子径が成長することなく、小さい粒子の状態を維持できることを見出し、本発明を完成させた。
 すなわち、本発明は、第1観点として、a)一般式(I)
Figure JPOXMLDOC01-appb-C000002
(式中、R1及びR2は、夫々独立して、水素原子、炭素原子数1乃至10のアルキル基又は炭素原子数1乃至10のアルコキシカルボニル基を表す。)で表されるホスホン酸化合物を水性媒体中で塩基と反応させ、該反応系を中性乃至塩基性のpH域となるように調整する工程、
b)工程a)で得られた生成物を金属塩と反応させてホスホン酸金属塩を水性媒体より析出させる工程、
c)工程b)で得られた析出物のホスホン酸金属塩から水を除去する工程、及び
d)工程c)で得られた水を除去した前記ホスホン酸金属塩を加熱乾燥させる工程を含む、ホスホン酸金属塩微粒子の製造方法に関する。
 第2観点として、前記ホスホン酸金属塩が、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩、バリウム塩、鉄塩、コバルト塩、銅塩、マンガン塩及び亜鉛塩からなる群から選択される1種または2種以上の金属塩である、第1観点に記載のホスホン酸金属塩微粒子の製造方法に関する。
 第3観点として、a)反応系を中性乃至塩基性のpH域となるように調整する工程において、反応系をpH7乃至14に調整する、第1観点又は第2観点記載のホスホン酸金属塩微粒子の製造方法に関する。
 第4観点として、b)ホスホン酸金属塩を水性媒体より析出させる工程が、工程a)で得られた生成物を金属塩の水溶液に滴下することによって行われる、第1観点乃至第3観点のうち何れか一項に記載のホスホン酸金属塩微粒子の製造方法に関する。
 第5観点として、c)析出物のホスホン酸金属塩から水を除去する工程が、反応媒体である水を有機溶媒と置換することによって行われる、第1観点乃至第4観点のうち何れか一項に記載のホスホン酸金属塩微粒子の製造方法に関する。
 第6観点として、前記有機溶媒が沸点120℃以下の水溶性の有機溶媒である、第5観点に記載のホスホン酸金属塩微粒子の製造方法に関する。
 第7観点として、前記有機溶媒がメタノール、エタノール、又はアセトンである、第6観点に記載のホスホン酸金属塩微粒子の製造方法に関する。
 第8観点として、c)析出物のホスホン酸金属塩から水を除去する工程が、5乃至70℃における減圧乾燥によって行われる、第1観点乃至第7観点のうち何れか一項に記載のホスホン酸金属塩微粒子の製造方法に関する。
 第9観点として、平均粒径が0.01乃至0.5μmである、第1観点乃至第8観点のうち何れか一項に記載の製造方法により得られるホスホン酸金属塩微粒子に関する。
 第10観点として、ポリ乳酸樹脂100質量部に対し、第9観点に記載のホスホン酸金属塩微粒子0.01乃至10質量部を含有するポリ乳酸樹脂組成物に関する。
 本発明によれば、反応系に最初に塩基を投入してそのpH域を中性乃至塩基性に調整すること、具体的には、予めホスホン酸化合物を水性媒体中で塩基と反応させて該反応系のpH域を7乃至14に調整した後、得られた生成物と金属源である金属塩と反応させることにより、反応媒体(水性媒体)中に平均粒径が0.5μm以下のホスホン酸金属塩を析出させることができる。さらに加熱乾燥前に、反応媒体である水を、例えば溶媒置換により、できる限り除去することで、加熱乾燥時に起こる生成物(ホスホン酸金属塩)の再溶解と再結晶化を防ぐことができ、粒子径が増大するのを抑制したまま平均粒径が0.5μm以下のホスホン酸金属塩の微粒子を得ることができる。
 このように、本発明の製造方法は、さらなる粉砕等の工程を必要とすることなく、従来の製造方法よりも微細な平均粒径を有するホスホン酸金属塩微粒子を製造できる。
 そして本発明によって得られた微粒子は、通常の製造方法で得られた数μmの平均粒径を有するホスホン酸金属塩粒子と比べて、非常に粒子径が細かいものとなる。このため、ポリ乳酸樹脂等のポリエステル樹脂や結晶性のポリオレフィン樹脂等の製造時に、本発明の製造方法によって得られたホスホン酸金属塩微粒子を結晶核剤として用いると、これら樹脂の透明性や結晶化促進効果を向上できる。
図1は実施例1で製造したホスホン酸亜鉛塩の走査型顕微鏡(SEM)像を示す図である。 図2は実施例2で製造したホスホン酸亜鉛塩の走査型顕微鏡(SEM)像を示す図である。 図3は実施例3で製造したホスホン酸亜鉛塩の走査型顕微鏡(SEM)像を示す図である。 図4は実施例4で製造したホスホン酸亜鉛塩の走査型顕微鏡(SEM)像を示す図である。 図5は実施例5で製造したホスホン酸亜鉛塩の走査型顕微鏡(SEM)像を示す図である。 図6は実施例6で製造したホスホン酸亜鉛塩の走査型顕微鏡(SEM)像を示す図である。 図7は実施例7で製造したホスホン酸亜鉛塩の走査型顕微鏡(SEM)像を示す図である。 図8は比較例1で製造したホスホン酸亜鉛塩の走査型顕微鏡(SEM)像を示す図である。 図9は比較例2で製造したホスホン酸亜鉛塩の走査型顕微鏡(SEM)像を示す図である。 図10は比較例3で製造したホスホン酸亜鉛塩の走査型顕微鏡(SEM)像を示す図である。 図11は実施例9で製造したホスホン酸カルシウム塩の走査型顕微鏡(SEM)像を示す図である。 図12は実施例10で製造したホスホン酸カルシウム塩の走査型顕微鏡(SEM)像を示す図である。 図13は実施例11で製造したホスホン酸カルシウム塩の走査型顕微鏡(SEM)像を示す図である。 図14は比較例5で製造したホスホン酸カルシウム塩の走査型顕微鏡(SEM)像を示す図である。 図15は比較例6で製造したホスホン酸カルシウム塩の走査型顕微鏡(SEM)像を示す図である。 図16は比較例7で製造したホスホン酸カルシウム塩の走査型顕微鏡(SEM)像を示す図である。 図17は比較例8で製造したホスホン酸カルシウム塩の走査型顕微鏡(SEM)像を示す図である。
 本発明は、a)ホスホン酸化合物を水性媒体中で塩基と反応させ、該反応系を中性乃至塩基性のpH域となるように調整する工程、b)工程a)で得られた生成物を金属塩と反応させてホスホン酸金属塩を水性媒体より析出させる工程、c)工程b)で得られた析出物のホスホン酸金属塩から水を除去する工程、及びd)工程c)で得られた水を除去した前記ホスホン酸金属塩を加熱乾燥させる工程を含むことを特徴とする製造方法である。
 ホスホン酸化合物と金属塩を反応させた後に塩基を加えた場合、或いは塩基を加えない場合においても、ホスホン酸金属塩の結晶を析出させることはできるが、反応液が酸性の過程を経るため、得られる粒子のサイズは小さくてもせいぜい500nm以上となってしまう。これは反応液が酸性になる段階を経ると、析出したホスホン酸金属塩粒子の溶解度が高まるため、ホスホン酸金属塩粒子の反応液(水性媒体)への溶解が起こると共に金属塩の再結晶が起こり、この溶解と再結晶との平衡反応によって粒子サイズの増大が起きる為と考えられる。
 また、ホスホン酸金属塩を水性媒体より析出させた後、加熱乾燥時に反応媒体である水が多量に残存していると、ホスホン酸金属塩の残存水への溶解が起こり、前記同様に金属塩の再結晶との平衡反応による粒子サイズの増大が起きる。
 このように様々な場面で起こる粒子サイズの増大という課題に対し、本発明者らは、金属塩と反応させるホスホン酸化合物を水性媒体中で塩基と反応させて反応系のpH域を調整することにより、ホスホン酸金属塩の析出後においても反応系のpHを弱酸性から塩基性に保ち、さらに、析出したホスホン酸金属塩から反応媒体である水を加熱乾燥前に極力除去するという手段を採用した。これにより、ホスホン酸金属塩析出時の反応液(水性媒体)や乾燥時の残存水への、ホスホン酸金属塩の溶解と再結晶の平衡反応を抑制し、ひいては金属塩粒子のサイズの増大を抑制することが可能となった。
 以下、本発明についてさらに詳しく説明する。
a)ホスホン酸化合物を水性媒体中で塩基と反応させ、該反応系を中性乃至塩基性のpH域となるように調整する工程
 本発明で使用するホスホン酸化合物は、下記一般式(I)で表される化合物である。
Figure JPOXMLDOC01-appb-C000003
 上記式(I)で表されるホスホン酸化合物において、式中のR1及びR2は、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等の炭素原子数1乃至10のアルキル基、メトキシカルボニル基、エトキシカルボニル基等の炭素原子数1乃至10のアルコキシカルボニル基である。R1及びR2は同一でも又は相異なっていてもよい。
 上記式(I)で表されるホスホン酸化合物の具体例としては、フェニルホスホン酸、4-メチルフェニルホスホン酸、4-エチルフェニルホスホン酸、4-n-プロピルフェニルホスホン酸、4-イソプロピルフェニルホスホン酸、4-n-ブチルフェニルホスホン酸、4-イソブチルフェニルホスホン酸、4-tert-ブチルフェニルホスホン酸、3,5-ジメトキシカルボニルフェニルホスホン酸、3,5-ジエトキシカルボニルフェニルホスホン酸、2,5-ジメトキシカルボニルフェニルホスホン酸、2,5-ジエトキシカルボニルフェニルホスホン酸等が挙げられる。
 本発明において、上記式(I)で表されるホスホン酸化合物を水性媒体中で塩基と反応させ、該反応系のpH域を予め中性乃至塩基性、具体的にはpH7乃至14又はpH7乃至11に調整しておくことにより、後述するb)工程(ホスホン酸金属塩を析出させる)後においても反応系のpH域を弱酸性乃至塩基性に保つことができる。
 上記ホスホン酸化合物と反応させる塩基としては特に限定されないが、例えば水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム等を使用することができる。
 本工程は、具体的には例えばこれらの塩基の水溶液を上記式(I)で表されるホスホン酸化合物の水溶液と混合することによって実施される。
b)工程a)で得られた生成物を金属塩と反応させてホスホン酸金属塩を水性媒体より析出させる工程
 本工程において、金属塩を前記a)工程で得られた生成物(ホスホン酸化合物含有溶液)と反応させるには、例えば上記金属塩を含む水溶液と前記生成物を混合させることによって行われる。好ましくは、上記金属塩を含む水溶液に、前記生成物を滴下することによって反応させる。
 従って、本工程で用いられる金属源である金属塩は水溶性の塩であることが好ましい。
 塩の形態としては水溶性であれば特に限定されず、硫酸塩、硝酸塩、塩化物、炭酸塩、酢酸塩等を使用でき、好ましくは塩化物又は酢酸塩が挙げられる。
 ここで使用される金属としては、1価、2価及び3価の金属を使用することが出来る。該金属においてこれらの金属は、2種以上の金属を混合して使用することもできる。金属塩の具体例としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、アルミニウム塩、カルシウム塩、バリウム塩、マンガン塩、鉄塩、コバルト塩、ニッケル塩、銅塩、亜鉛塩等が挙げられる。中でも、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩、バリウム塩、鉄塩、コバルト塩、銅塩、マンガン塩及び亜鉛塩が好ましく、特に亜鉛塩であることが好ましい。
 なお、前記a)工程で得られた生成物(ホスホン酸化合物含有溶液)と金属塩を含む水溶液と反応させる温度は、後に得られるホスホン酸金属塩微粒子の粒子径に影響を及ぼし得る。すなわち、反応温度が高温になるほど、析出したホスホン酸金属塩の溶解度が高まることとなり、これは再結晶時の粒子サイズの増大につながる。従って、微細な粒子を得る本発明の目的の達成のためには、上記反応の温度は30℃以下に保つことが望ましい。
c)工程b)で得られた析出物のホスホン酸金属塩から水を除去する工程
 本工程は特に限定されないが、好ましくは(i)反応媒体である水の有機溶媒への置換、或いは、(ii)減圧乾燥によって実施される。
 上記(i)において使用する有機溶媒は特に限定されないが、効率的に水を除去するために水溶性の有機溶媒であることが好ましく、さらに、乾燥の簡便さから沸点がおよそ120℃より低い有機溶媒であることが好ましい。
 このような有機溶媒としては、メタノール、エタノール、アセトン、1-プロパノール、2-プロパノール、tert-ブタノール、1,2-ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン又はアセトニトリル等が挙げられ、中でも、メタノール、エタノール又はアセトンが好ましい。
 上記(i)は、具体的には、前の工程でホスホン酸金属塩が析出した反応液(懸濁液)を一旦ろ過し、このろ物を上記有機溶媒に再分散させ、これを再ろ過する。この有機溶媒への再分散、再ろ過を繰り返すことにより、水を可能な限り有機溶媒に置換することが好ましい。
 また、有機溶媒に再分散させる前に、一旦水で数回洗浄してもよい。
 上記(ii)において減圧乾燥時の温度は、ホスホン酸金属塩微粒子の粒子径に影響を及ぼすことがないよう、低温であることが好ましい。ただし、水を留去させる効率を考慮すると5乃至70℃で減圧乾燥を実施することが好ましく、より好ましくは30乃至50℃で減圧乾燥を実施する。
 また減圧乾燥の圧力は、上記温度で乾燥ができる圧力であれば特に制限はないが、例えば1乃至5kPa下で、12乃至60時間かけて減圧乾燥させる。
d)工程c)で得られた水を除去した前記ホスホン酸金属塩を加熱乾燥させる工程
 前記c)工程でホスホン酸金属塩から水を除去した後、加熱乾燥によって最終目的物であるホスホン酸金属塩微粒子を得る。
 このときの加熱温度としては、100乃至300℃であることが好ましい。300℃より高い温度では、ホスホン酸金属塩の分解を誘発する虞があり、また、100℃より低い温度では、ホスホン酸金属塩の水和物(例えば、後述のフェニルホスホン酸亜鉛やフェニルホスホン酸カルシウムでは一水和物)の形態をとり、加水分解を嫌う樹脂(例えばポリエステル樹脂等)の結晶核剤としては適さないことから好ましくない。
 上述の工程を経て得られる本発明のホスホン酸金属塩微粒子の平均粒径(平均粒子径)は、0.05乃至0.5μmであり、好ましくは0.05乃至0.3μmである。
 なお、本発明のホスホン酸金属塩微粒子は、例えば金属塩の種類によって、その形状が粒状や円盤状(後述の図1~図7参照)であり得、或いは、短冊状(ストリップ状、同図11~図13参照)であり得る。こうした短冊状粒子の場合、上記「平均粒径」とは、本発明においては該短冊状粒子のおよそ最大の短径(短軸)の長さの平均を意味するものとする。なお短冊状粒子の大きさそのものは、長さ(長径)、幅(短径)及び厚さより記述され、これら数値は〈長径≧短径≧厚さ〉の条件を満たすものとする。
 なお本発明は、ポリ乳酸樹脂100質量部に対して、前述の0.05乃至0.5μmの平均粒径を有するホスホン酸金属塩微粒子を0.01乃至10質量部含有するポリ乳酸樹脂組成物にも関する。
 以下、本発明を実施例によりさらに具体的に説明するが、これによって本発明が限定されるものではない。なお、以下の実施例において、pH測定は(株)堀場製作所製ツインpHメーターを使用した。
[実施例1]
 15質量%フェニルホスホン酸水溶液(フェニルホスホン酸 7.9g、水 44.8g)と15質量%水酸化ナトリウム水溶液(水酸化ナトリウム 4.0g、水 22.7g)とを混合してpH 8.8に調整した溶液を、6質量%塩化亜鉛水溶液(塩化亜鉛 6.8g、水 100.0g、pH 5.6)に撹拌下で滴下し、フェニルホスホン酸亜鉛を析出させた。このときの懸濁液のpHは8.8であった。
 得られた縣濁液を濾過した後、得られたろ物(湿品)を水 300mLに再分散させ再度濾過し、これを2回繰り返した。その後、ろ物(湿品)をメタノール 300mLに再分散させ再度濾過し、これを2回繰り返した。最後に20℃での減圧乾燥にてメタノールを留去し、120℃で6時間乾燥をおこなった。
 得られた乾品(粉末)のSEM(走査型顕微鏡)像を図1に示す。
[実施例2]
 15質量%フェニルホスホン酸水溶液(フェニルホスホン酸 7.2g、水 40.8g)と15質量%水酸化ナトリウム水溶液(水酸化ナトリウム 3.7g、水 20.7g)とを混合してpH 8.8に調整した溶液を、8質量%酢酸亜鉛水溶液(酢酸亜鉛二水和物 10.0g、水 90.0g、pH 6.1)に撹拌下で滴下し、フェニルホスホン酸亜鉛を析出させた。このときの懸濁液のpHは6.2であった。
 得られた縣濁液を濾過した後、得られたろ物(湿品)を水 300mLに再分散させ再度濾過し、これを2回繰り返した。その後、ろ物(湿品)をアセトン 300mLに再分散させ再度濾過し、これを2回繰り返した。最後に20℃での減圧乾燥にてアセトンを留去し、120℃で6時間乾燥をおこなった。
 得られた乾品(粉末)のSEM像を図2に示す。
[実施例3]
 15質量%フェニルホスホン酸水溶液(フェニルホスホン酸 7.9g、水 44.8g)と15質量%水酸化ナトリウム水溶液(水酸化ナトリウム 4.0g、水 22.7g)とを混合してpH 8.8に調整した溶液を、6質量%塩化亜鉛水溶液(塩化亜鉛 6.8g、水 100.0g、pH 5.6)に撹拌下で滴下し、フェニルホスホン酸亜鉛を析出させた。このときの懸濁液のpHは8.8であった。
 得られた縣濁液を濾過した後、得られたろ物(湿品)を水 300mLに再分散させ再度濾過し、これを2回繰り返した。その後、ろ物(湿品)をエタノール 300mLに再分散させ再度濾過し、これを2回繰り返した。最後に20℃での減圧乾燥にてエタノールを留去し、120℃で6時間乾燥をおこなった。
 得られた乾品(粉末)のSEM像を図3に示す。
[実施例4]
 15質量%フェニルホスホン酸水溶液(フェニルホスホン酸 7.2g、水 40.8g)と15質量%水酸化ナトリウム水溶液(水酸化ナトリウム 3.7g、水 20.7g)とを混合してpH 8.8に調整した溶液を、7質量%塩化亜鉛水溶液(塩化亜鉛 6.3g、水 90.0g、pH 5.6)に撹拌下で滴下し、フェニルホスホン酸亜鉛を析出させた。このときの懸濁液のpHは8.8であった。
 得られた縣濁液を濾過した後、得られたろ物(湿品)を水 300mLに再分散させ再度濾過し、これを2回繰り返した。その後、ろ物(湿品)をアセトン 300mLに再分散させ再度濾過し、これを2回繰り返した。最後に20℃での減圧乾燥にてアセトンを留去し、120℃で6時間乾燥をおこなった。
 得られた乾品(粉末)のSEM像を図4に示す。
[実施例5]
 15質量%フェニルホスホン酸水溶液(フェニルホスホン酸 7.2g、水 40.8g)と15質量%水酸化ナトリウム水溶液(水酸化ナトリウム 3.7g、水 20.7g)とを混合してpH 8.8に調整した溶液を、6質量%塩化亜鉛水溶液(塩化亜鉛 6.3g、水 100.0g、pH 5.6)に撹拌下で滴下し、フェニルホスホン酸亜鉛を析出させた。このときの懸濁液のpHは8.8であった。
 得られた縣濁液を濾過した後、得られたろ物(湿品)を水 300mLに再分散させ再度濾過し、これを2回繰り返した。その後、40℃、12時間の減圧乾燥により水を留去してから、120℃で6時間乾燥をおこなった。なお、減圧乾燥の終点は、乾品の熱重量分析((株)リガク製 Thermo Plus、昇温速度:10℃/分)を行い、水分の蒸発による重量減少が結晶水相当になっていることで確認した。
 得られた乾品(粉末)のSEM像を図5に示す。
[実施例6]
 減圧乾燥の温度を50℃に変更した以外は、実施例5と同様の操作を行った。
 得られた乾品(粉末)のSEM像を図6に示す。
[実施例7]
 減圧乾燥の温度を60℃に変更した以外は、実施例5と同様の操作を行った。
 得られた乾品(粉末)のSEM像を図7に示す。
[比較例1]
 15質量%フェニルホスホン酸水溶液(フェニルホスホン酸 7.2g、水 40.8g)と15質量%水酸化ナトリウム水溶液(水酸化ナトリウム 3.7g、水 20.7g)とを混合してpH 8.8に調整した溶液を、8質量%酢酸亜鉛水溶液(酢酸亜鉛二水和物 10.0g、水 90.0g、pH 6.1)に撹拌下で滴下し、フェニルホスホン酸亜鉛を析出させた。このときの懸濁液のpHは6.3であった。
 得られた縣濁液を濾過した後、得られたろ物(湿品)を水300mLに再分散させ再度濾過し、これを2回繰り返した。その後、120℃で12時間乾燥をおこなった。
 得られた乾品(粉末)のSEM像を図8に示す。
[比較例2]
 8質量%酢酸亜鉛水溶液(酢酸亜鉛二水和物 10.0g、水 90.0g、pH 6.3)に15質量%フェニルホスホン酸水溶液(フェニルホスホン酸 7.2g、水 40.8g、pH 0.5)を撹拌下で滴下し、フェニルホスホン酸亜鉛を析出させた。このときの懸濁液のpHは3.1であった。
 得られた縣濁液を濾過した後、得られたろ物(湿品)を水 300mLに再分散させ再度濾過し、これを2回繰り返した。その後、ろ物(湿品)をアセトン 300mLに再分散させ再度濾過し、これを2回繰り返した。最後に20℃での減圧乾燥にてアセトンを留去し、120℃で12時間乾燥をおこなった。
 得られた乾品(粉末)のSEM像を図9に示す。
[比較例3]
 8質量%酢酸亜鉛水溶液(酢酸亜鉛二水和物 10.0g、水 90.0g、pH 6.3)に15質量%フェニルホスホン酸水溶液(フェニルホスホン酸 7.2g、水 40.8g、pH 0.5)を撹拌下で滴下し、フェニルホスホン酸亜鉛を析出させた。このときの懸濁液のpHは2.8であった。その後15質量%水酸化ナトリウム水溶液(水酸化ナトリウム 3.7g、水 20.7g)を撹拌下で滴下し、pH 6.8に調整した。
 得られた縣濁液を濾過した後、得られたろ物(湿品)を水300mLに再分散させ再度濾過し、れを2回繰り返した。その後、ろ物(湿品)をアセトン300mLに再分散させ再度濾過し、これを2回繰り返した。最後に20℃での減圧乾燥にてアセトンを留去し、120℃で12時間乾燥をおこなった。
 得られた乾品(粉末)のSEM像を図10に示す。
 なお、実施例1乃至実施例7及び比較例1乃至比較例3において、フェニルホスホン酸亜鉛が析出した(比較例3は水酸化ナトリウム水溶液にて中和後の)30分後の反応液を回収し、反応液中におけるフェニルホスホン酸亜鉛の平均粒径を測定した。平均粒径は、レーザー回折式粒度分布測定機(マルバーン社製「MasterSizer 2000」)に投入後、装置内で1,500rpm、超音波レベル:100の条件下で1分毎に粒度を測定し、最小となった値を採用した。ここでいう平均粒径とはMieの理論によって導き出される分散媒中粒子のd50値(メディアン径)のことを指す。
 また、乾燥後のフェニルホスホン酸亜鉛の粉末粒子の平均粒径については、乾品のSEM(走査型顕微鏡)像より50個の粒子を無作為抽出し、粒子長軸方向の長さの平均を求めた。得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、実施例1乃至実施例7の手順にて作製したフェニルホスホン酸亜鉛は、乾燥後も平均粒径が0.14~0.24μmの微粒子の形態を得ることができた。
 一方、洗浄溶媒を水のみとし、有機溶媒置換を行わなかった比較例1は、フェニルホスホン酸亜鉛析出時には微粒子の形態であったが、乾燥後には0.54μmと粒子が成長する結果となった。
 さらに、塩基未使用の比較例2及び塩析出後に塩基を使用した比較例3は、反応液中で粒径が大きく成長し、乾燥後も0.5μmを超える粒径となった。
[実施例8及び比較例4:結晶化温度及び結晶化時間の評価]
 ポリ乳酸樹脂(三井化学(株)製、商品名:LACEA-H100)100質量部に対して、上記実施例4で得られたフェニルホスホン酸亜鉛(乾品)、又は日産化学工業(株)製フェニルホスホン酸亜鉛(商品名:エコプロモート、平均粒径:2~3μm)を1質量部加え、(株)東洋精機製作所製ラボプラストミルを用いて、185℃にて5分間溶融混練した。
 その後、夫々の試料について、パーキンエルマー社製 示差走査熱量測定(DSC)装置「Diamond DSC」を用い、以下の手順にて結晶化温度及び結晶化時間を評価した。得られた結果を表2に示す。
1)結晶化温度:試料約5mgを10℃/分で200℃まで昇温後、5分間保持し溶融させた後、5℃/分で30℃まで冷却した。冷却中に生じたポリ乳酸樹脂の結晶化による発熱がピークに達した温度を結晶化温度とした。
2)結晶化時間:試料約5mgを10℃/分で200℃まで昇温後、5分間保持し溶融させた後、100℃/分で110℃まで急速冷却し、保持した。その後生ずるポリ乳酸樹脂の結晶化による発熱がピークに達した時間を結晶化時間とした。
Figure JPOXMLDOC01-appb-T000005
 表2に示す通り、フェニルホスホン酸亜鉛製品(エコプロモート)と比べて実施例4で得られたフェニルホスホン酸亜鉛は結晶化温度が高く、また等温結晶化時の誘導時間も短く、本ホスホン酸金属塩微粒子が結晶核剤として優れた性能を示すことが確認された。
[実施例9]
 15質量%フェニルホスホン酸水溶液(フェニルホスホン酸 7.9g、水 44.8g)と15質量%水酸化ナトリウム水溶液(水酸化ナトリウム 4.0g、水 22.7g)とを混合してpH 8.7に調整した溶液を、8質量%塩化カルシウム水溶液(塩化カルシウム二水和物 7.4g、水 66.2g)に撹拌下で滴下し、フェニルホスホン酸カルシウムを析出させた。このときの懸濁液のpHは7.1であった。
 得られた縣濁液を濾過した後、得られたろ物(湿品)を水 100mLに再分散させ再度濾過し、これを2回繰り返した。その後、ろ物(湿品)をアセトン 100mLに再分散させ再度濾過し、これを2回繰り返した。最後に20℃での減圧乾燥にてアセトンを留去し、200℃で12時間乾燥をおこなった。
 得られた乾品(粉末)のSEM像を図11に示す。
[実施例10]
 15質量%フェニルホスホン酸水溶液(フェニルホスホン酸 7.9g、水 44.9g)と15質量%水酸化ナトリウム水溶液(水酸化ナトリウム 4.0g、水 22.7g)とを混合してpH 9.4に調整した溶液を、9質量%酢酸カルシウム水溶液(酢酸カルシウム一水和物 8.8g、水 79.3g)に撹拌下で滴下し、フェニルホスホン酸カルシウムを析出させた。このときの懸濁液のpHは8.6であった。
 得られた縣濁液を濾過した後、得られたろ物(湿品)を水 100mLに再分散させ再度濾過し、これを2回繰り返した。その後、ろ物(湿品)をアセトン 100mLに再分散させ再度濾過し、これを2回繰り返した。最後に20℃での減圧乾燥にてアセトンを留去し、200℃で12時間乾燥をおこなった。
 得られた乾品(粉末)のSEM像を図12に示す。
[実施例11]
 15質量%フェニルホスホン酸水溶液(フェニルホスホン酸 7.9g、水 44.9g)と15質量%水酸化ナトリウム水溶液(水酸化ナトリウム 4.2g、水 23.8g)とを混合してpH 12.4に調整した溶液を、8質量%塩化カルシウム水溶液(塩化カルシウム二水和物 7.4g、水 66.2g)に撹拌下で滴下し、フェニルホスホン酸カルシウムを析出させた。このときの懸濁液のpHは11.5であった。
 得られた縣濁液を濾過した後、得られたろ物(湿品)を水 100mLに再分散させ再度濾過し、これを2回繰り返した。その後、40℃、12時間の減圧乾燥により水を留去してから、200℃で12時間乾燥をおこなった。なお、減圧乾燥の終点は、乾品の熱重量分析((株)リガク製 Thermo Plus、昇温速度:10℃/分)を行い、水分の蒸発による重量減少が結晶水相当になっていることで確認した。
 得られた乾品(粉末)のSEM像を図13に示す。
[比較例5]
 15質量%フェニルホスホン酸水溶液(フェニルホスホン酸 7.9g、水 44.9g)と15質量%水酸化ナトリウム水溶液(水酸化ナトリウム 4.0g、水 22.7g)とを混合してpH9.4に調整した溶液を、9質量%酢酸カルシウム水溶液(酢酸カルシウム一水和物 8.8g、水 79.3g)に撹拌下で滴下し、フェニルホスホン酸カルシウムを析出させた。このときの懸濁液のpHは8.6であった。
 得られた縣濁液を濾過した後、得られたろ物(湿品)を水100mLに再分散させ再度濾過し、これを2回繰り返した。その後、200℃で12時間乾燥をおこなった。
 得られた乾品(粉末)のSEM像を図14に示す。
[比較例6]
 8質量%塩化カルシウム水溶液(塩化カルシウム二水和物 7.4g、水 66.2g、pH 7.0)に、15質量%フェニルホスホン酸水溶液(フェニルホスホン酸 7.9g、水 44.8g、pH 0.5)を撹拌下で滴下し、フェニルホスホン酸カルシウムを析出させた。このときの懸濁液のpHは1.0であった。その後、この縣濁液に15質量%水酸化ナトリウム水溶液(水酸化ナトリウム 4.0g、水 22.7g)を撹拌下で滴下し、pH12.0に調整した。
 得られた縣濁液を濾過した後、得られたろ物(湿品)を水 100mLに再分散させ再度濾過し、これを2回繰り返した。その後、ろ物(湿品)をアセトン 100mLに再分散させ再度濾過し、これを2回繰り返した。最後に20℃での減圧乾燥にてアセトンを留去し、200℃で12時間乾燥をおこなった。
 得られた乾品(粉末)のSEM像を図15に示す。
[比較例7]
 9質量%酢酸カルシウム水溶液(酢酸カルシウム一水和物 8.8g、水 79.3g、pH 7.9)に、15質量%フェニルホスホン酸水溶液(フェニルホスホン酸 7.9g、水 44.9g、pH 0.5)を撹拌下で滴下し、フェニルホスホン酸カルシウムを析出させた。このときの懸濁液のpHは4.4であった。
 得られた縣濁液を濾過した後、得られたろ物(湿品)を水 100mLに再分散させ再度濾過し、これを2回繰り返した。その後、ろ物(湿品)をアセトン 100mLに再分散させ再度濾過し、これを2回繰り返した。最後に20℃での減圧乾燥にてアセトンを留去し、200℃で12時間乾燥をおこなった。
 得られた乾品(粉末)のSEM像を図16に示す。
[比較例8]
 8質量%塩化カルシウム水溶液(塩化カルシウム二水和物 7.4g、水 66.2g、pH 7.0)に、15質量%フェニルホスホン酸水溶液(フェニルホスホン酸 7.9g、水 44.9g、pH 0.5)を撹拌下で滴下し、フェニルホスホン酸カルシウムを析出させた。このときの懸濁液のpHは0.7であった。
 得られた縣濁液を濾過した後、得られたろ物(湿品)を水 100mLに再分散させ再度濾過し、これを2回繰り返した。その後、ろ物(湿品)をアセトン 100mLに再分散させ再度濾過し、これを2回繰り返した。最後に20℃での減圧乾燥にてアセトンを留去し、200℃で12時間乾燥をおこなった。
 得られた乾品(粉末)のSEM像を図17に示す。
 実施例9乃至実施例11及び比較例5乃至比較例8において、得られたフェニルホスホン酸カルシウム(乾品)の粉末粒子の平均粒径をそれぞれ測定した。ここでいう平均粒径とは粒子の短軸方向の長さの平均を指し、乾品のSEM像より無作為に抽出した50個の粒子のおよそ最大の短軸方向の長さの平均を求めた。得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000006
 表3に示すように、実施例9乃至実施例11の手順にて作製したフェニルホスホン酸カルシウムは、平均粒径が0.28~0.32μmであった。
 一方、実施例10と同じ反応条件で析出させたフェニルホスホン酸カルシウムを、洗浄溶媒を水のみとし有機溶媒置換を行わなかった比較例5は、平均粒径が0.59μmとなり乾燥時に粒子が成長する結果となった。
 さらに、塩析出後に塩基を使用した比較例6並びに、塩基未使用の比較例7及び比較例8は、洗浄溶媒の水を有機溶媒置換していても0.5μmを超える粒径となった。

Claims (10)

  1. a)一般式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1及びR2は、夫々独立して、水素原子、炭素原子数1乃至10のアルキル基又は炭素原子数1乃至10のアルコキシカルボニル基を表す。)で表されるホスホン酸化合物を水性媒体中で塩基と反応させ、該反応系を中性乃至塩基性のpH域となるように調整する工程、
    b)工程a)で得られた生成物を金属塩と反応させてホスホン酸金属塩を水性媒体より析出させる工程、
    c)工程b)で得られた析出物のホスホン酸金属塩から水を除去する工程、及び
    d)工程c)で得られた水を除去した前記ホスホン酸金属塩を加熱乾燥させる工程を含む、ホスホン酸金属塩微粒子の製造方法。
  2. 前記ホスホン酸金属塩が、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩、バリウム塩、鉄塩、コバルト塩、銅塩、マンガン塩及び亜鉛塩からなる群から選択される1種または2種以上の金属塩である、請求項1に記載のホスホン酸金属塩微粒子の製造方法。
  3. a)反応系を中性乃至塩基性のpH域となるように調整する工程において、反応系をpH7乃至14に調整する、請求項1又は請求項2記載のホスホン酸金属塩微粒子の製造方法。
  4. b)ホスホン酸金属塩を水性媒体より析出させる工程が、工程a)で得られた生成物を金属塩の水溶液に滴下することによって行われる、請求項1乃至請求項3のうち何れか一項に記載のホスホン酸金属塩微粒子の製造方法。
  5. c)析出物のホスホン酸金属塩から水を除去する工程が、反応媒体である水を有機溶媒と置換することによって行われる、請求項1乃至請求項4のうち何れか一項に記載のホスホン酸金属塩微粒子の製造方法。
  6. 前記有機溶媒が沸点120℃以下の水溶性の有機溶媒である、請求項5に記載のホスホン酸金属塩微粒子の製造方法。
  7. 前記有機溶媒がメタノール、エタノール、又はアセトンである、請求項6に記載のホスホン酸金属塩微粒子の製造方法。
  8. c)析出物のホスホン酸金属塩から水を除去する工程が、5乃至70℃における減圧乾燥によって行われる、請求項1乃至請求項7のうち何れか一項に記載のホスホン酸金属塩微粒子の製造方法。
  9. 平均粒径が0.01乃至0.5μmである、請求項1乃至請求項8のうち何れか一項に記載の製造方法により得られるホスホン酸金属塩微粒子。
  10. ポリ乳酸樹脂100質量部に対し、請求項9に記載のホスホン酸金属塩微粒子0.01乃至10質量部を含有するポリ乳酸樹脂組成物。
PCT/JP2010/058048 2009-05-12 2010-05-12 ホスホン酸金属塩微粒子の製造方法 WO2010131678A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080020618.4A CN102421785B (zh) 2009-05-12 2010-05-12 膦酸金属盐微粒的制造方法
KR1020117027971A KR101778587B1 (ko) 2009-05-12 2010-05-12 포스폰산 금속염 미립자의 제조 방법
EP10774935.0A EP2431374B1 (en) 2009-05-12 2010-05-12 Method for producing phosphonic acid metal salt fine particles
US13/266,962 US8445718B2 (en) 2009-05-12 2010-05-12 Method for producing phosphonic acid metal salt fine particles
JP2011513358A JP5720896B2 (ja) 2009-05-12 2010-05-12 ホスホン酸金属塩微粒子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-116020 2009-05-12
JP2009116020 2009-05-12

Publications (1)

Publication Number Publication Date
WO2010131678A1 true WO2010131678A1 (ja) 2010-11-18

Family

ID=43085051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058048 WO2010131678A1 (ja) 2009-05-12 2010-05-12 ホスホン酸金属塩微粒子の製造方法

Country Status (7)

Country Link
US (1) US8445718B2 (ja)
EP (1) EP2431374B1 (ja)
JP (1) JP5720896B2 (ja)
KR (1) KR101778587B1 (ja)
CN (1) CN102421785B (ja)
TW (1) TWI477507B (ja)
WO (1) WO2010131678A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177016A (ja) * 2011-02-25 2012-09-13 Dic Corp 湿気硬化性ホットメルトウレタン樹脂組成物、及び成形品
WO2013141126A1 (ja) * 2012-03-19 2013-09-26 ユニチカ株式会社 ポリ乳酸系樹脂組成物およびそれを成形してなるポリ乳酸系フィルム
JP2016500746A (ja) * 2013-07-24 2016-01-14 ケムチュア コーポレイション リン含有難燃材
US9534108B2 (en) 2015-03-13 2017-01-03 Chemtura Corporation Flame retardant epoxy resins comprising phosphorus containing flame retardants
WO2017135189A1 (ja) * 2016-02-01 2017-08-10 日産化学工業株式会社 フェニルホスホン酸化合物の金属塩を含むポリアミド樹脂組成物
US9752009B2 (en) 2015-01-26 2017-09-05 Lanxess Solutions Us Inc. Flame retardant polymer compositions comprising heat treated phosphorus compounds and melam
US9752011B2 (en) 2013-07-24 2017-09-05 Lanxess Solutions Us Inc. Phosphorus containing flame retardants
US9758640B2 (en) 2015-01-09 2017-09-12 Lanxess Solutions Us Inc. Process stabilization of polymer compositions comprising phosphorous containing flame retardants
US9765204B2 (en) 2013-07-24 2017-09-19 Lanxess Solutions Us Inc. Halogen free high temperature polyamide compositions comprising phosphorus containing flame retardants
JP2017527683A (ja) * 2014-07-22 2017-09-21 ケムチュア コーポレイション リン含有難燃剤

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761519B2 (ja) * 2009-09-09 2015-08-12 日産化学工業株式会社 ホスホン酸金属塩の製造方法及びホスホン酸金属塩を含む熱可塑性樹脂組成物
EP3978014A4 (en) * 2019-05-30 2022-11-16 Xiamen University PREPARATION OF RISEDRONATE ZINC MICRONANO ADJUVANTS AND ITS USE AS A VACCINE ADJUVANT

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083432A (ja) 1994-06-21 1996-01-09 Mitsubishi Chem Corp ポリ乳酸系樹脂組成物
JPH1087975A (ja) 1996-09-13 1998-04-07 New Japan Chem Co Ltd ポリ乳酸系樹脂組成物
JPH10158369A (ja) 1996-11-29 1998-06-16 Mitsui Chem Inc 樹脂組成物及びそれからなる成形物
JP2003192883A (ja) 2001-12-28 2003-07-09 Asahi Denka Kogyo Kk ポリ乳酸系樹脂組成物、成形品及びその製造方法
WO2005097894A1 (ja) 2004-03-30 2005-10-20 Nissan Chemical Industries, Ltd. ポリ乳酸樹脂組成物
JP2008156616A (ja) 2006-11-28 2008-07-10 Toray Ind Inc 樹脂組成物およびそれからなる成形品
JP2008247956A (ja) * 2007-03-29 2008-10-16 Dic Corp ポリエステル組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083432A (ja) 1994-06-21 1996-01-09 Mitsubishi Chem Corp ポリ乳酸系樹脂組成物
JPH1087975A (ja) 1996-09-13 1998-04-07 New Japan Chem Co Ltd ポリ乳酸系樹脂組成物
JPH10158369A (ja) 1996-11-29 1998-06-16 Mitsui Chem Inc 樹脂組成物及びそれからなる成形物
JP2003192883A (ja) 2001-12-28 2003-07-09 Asahi Denka Kogyo Kk ポリ乳酸系樹脂組成物、成形品及びその製造方法
WO2005097894A1 (ja) 2004-03-30 2005-10-20 Nissan Chemical Industries, Ltd. ポリ乳酸樹脂組成物
JP2008156616A (ja) 2006-11-28 2008-07-10 Toray Ind Inc 樹脂組成物およびそれからなる成形品
JP2008247956A (ja) * 2007-03-29 2008-10-16 Dic Corp ポリエステル組成物

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BELLITTO C. ET AL: "Synthesis, X-ray Powder Structure, and Magnetic Properties of the New, Weak Ferromagnet Iron(II) Phenylphosphonate", INORGANIC CHEMISTRY, vol. 39, no. 8, 2000, pages 1803 - 1808 *
HAYASHI H. ET AL: "Reaction of the Phenylphosphonate Anion with the Layered Basic Copper (II) Nitrate [Cu2 (OH) 3N03]", JOURNAL OF MATERIALS CHEMISTRY, vol. 5, no. 1, 1995, pages 115 - 119 *
SCOTT K.J. ET AL: "Synthesis, Characterization, and Amine Intercalation Behavior of Zinc Phosphite Phenylphosphonate Mixed Derivatives", CHEMISTRY OF MATERIALS, vol. 7, no. 6, 1995, pages 1095 - 1102 *
See also references of EP2431374A4
SONG S.Y. ET AL: "Selected-Control Synthesis of Metal Phosphonate Nanoparticles and Nanorods", INORGANIC CHEMISTRY, vol. 44, no. 7, 2005, pages 2140 - 2142, XP055051573, DOI: doi:10.1021/ic048436t *
SVOBODA J. ET AL: "Synthesis and characterization of new potential intercalation hosts - barium arylphosphonates", JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, vol. 69, no. 5-6, 2008, pages 1439 - 1443, XP022667464, DOI: doi:10.1016/j.jpcs.2007.10.022 *
ZIMA V. ET AL: "New strontium phenylphosphonate: Synthesis and characterization", SOLID STATE SCIENCES, vol. 8, no. 11, 2006, pages 1380 - 1385, XP028072667, DOI: doi:10.1016/j.solidstatesciences.2006.07.009 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177016A (ja) * 2011-02-25 2012-09-13 Dic Corp 湿気硬化性ホットメルトウレタン樹脂組成物、及び成形品
WO2013141126A1 (ja) * 2012-03-19 2013-09-26 ユニチカ株式会社 ポリ乳酸系樹脂組成物およびそれを成形してなるポリ乳酸系フィルム
JP2016500746A (ja) * 2013-07-24 2016-01-14 ケムチュア コーポレイション リン含有難燃材
US9765204B2 (en) 2013-07-24 2017-09-19 Lanxess Solutions Us Inc. Halogen free high temperature polyamide compositions comprising phosphorus containing flame retardants
US9745449B2 (en) 2013-07-24 2017-08-29 Lanxess Solutions Us Inc. Phosphorus containing flame retardants
US9752011B2 (en) 2013-07-24 2017-09-05 Lanxess Solutions Us Inc. Phosphorus containing flame retardants
JP2017527683A (ja) * 2014-07-22 2017-09-21 ケムチュア コーポレイション リン含有難燃剤
US9758640B2 (en) 2015-01-09 2017-09-12 Lanxess Solutions Us Inc. Process stabilization of polymer compositions comprising phosphorous containing flame retardants
US9752009B2 (en) 2015-01-26 2017-09-05 Lanxess Solutions Us Inc. Flame retardant polymer compositions comprising heat treated phosphorus compounds and melam
US9534108B2 (en) 2015-03-13 2017-01-03 Chemtura Corporation Flame retardant epoxy resins comprising phosphorus containing flame retardants
US9988520B2 (en) 2015-03-13 2018-06-05 Lanxess Solutions Us Inc. Flame retartdant epoxy resins comprising phosphorus containing flame retardants
US9994696B2 (en) 2015-03-13 2018-06-12 Lanxess Solutions Us Inc. Flame retardant resins comprising phosphorous containing flame retardants
US10053555B2 (en) 2015-03-13 2018-08-21 Chemtura Corporation Flame retardant resins comprising phosphorus containing flame retardants
WO2017135189A1 (ja) * 2016-02-01 2017-08-10 日産化学工業株式会社 フェニルホスホン酸化合物の金属塩を含むポリアミド樹脂組成物
JPWO2017135189A1 (ja) * 2016-02-01 2018-11-22 日産化学株式会社 フェニルホスホン酸化合物の金属塩を含むポリアミド樹脂組成物

Also Published As

Publication number Publication date
TWI477507B (zh) 2015-03-21
KR20120023695A (ko) 2012-03-13
TW201120051A (en) 2011-06-16
US20120046397A1 (en) 2012-02-23
EP2431374B1 (en) 2016-03-30
JP5720896B2 (ja) 2015-05-20
EP2431374A1 (en) 2012-03-21
CN102421785A (zh) 2012-04-18
KR101778587B1 (ko) 2017-09-14
CN102421785B (zh) 2015-11-25
JPWO2010131678A1 (ja) 2012-11-01
US8445718B2 (en) 2013-05-21
EP2431374A4 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP5720896B2 (ja) ホスホン酸金属塩微粒子の製造方法
JP5761519B2 (ja) ホスホン酸金属塩の製造方法及びホスホン酸金属塩を含む熱可塑性樹脂組成物
JP4973848B2 (ja) ポリ乳酸樹脂組成物
JP5836472B2 (ja) 結晶性酸化セリウム及びその製造方法
CN105813979A (zh) 氢氧化镁阻燃纳米颗粒及其制备方法
JP2020040859A (ja) 水酸化マグネシウム粒子及びその製造方法
JP5846389B2 (ja) 結晶性樹脂組成物
JP6908892B2 (ja) フェニルホスホン酸化合物の金属塩を含むポリアミド樹脂組成物
JP2012236867A (ja) 樹脂用結晶核剤の製造方法
CN102241671B (zh) 前体相及其用于制备奥美拉唑对映体的四水合镁盐的用途
JP2015531432A (ja) 銀の低温分散系合成及びそれによって製造される銀生成物
CN109879909B (zh) 一种大粒径二烷基次膦酸盐的制备方法
JP5495722B2 (ja) 配向したポリ乳酸樹脂材料の製造方法
US9035100B2 (en) Method for producing phenylphosphonic acid metal salt composition, and crystal nucleating agent therefrom
JP5477567B2 (ja) ポリ乳酸樹脂組成物
JP2009292697A (ja) 針状ベーマイトの製造方法
RU2812784C1 (ru) Способ получения фосфорсодержащих огнестойких средств и их применение в композициях полимеров
JP2012091940A (ja) シリカアルミナ系凝集粒子
JP2005289763A (ja) リン酸水素カルシウムの製造方法
JPH02107512A (ja) 安定化赤リンおよびその製造法
JP2009292698A (ja) 針状ベーマイトの製造方法
JP2004143054A (ja) エチニル基を有する芳香族カルボン酸の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080020618.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774935

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011513358

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13266962

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010774935

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117027971

Country of ref document: KR

Kind code of ref document: A