WO2010131612A1 - サーフェイス通信装置 - Google Patents
サーフェイス通信装置 Download PDFInfo
- Publication number
- WO2010131612A1 WO2010131612A1 PCT/JP2010/057852 JP2010057852W WO2010131612A1 WO 2010131612 A1 WO2010131612 A1 WO 2010131612A1 JP 2010057852 W JP2010057852 W JP 2010057852W WO 2010131612 A1 WO2010131612 A1 WO 2010131612A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electromagnetic wave
- layer
- conductor layer
- unit
- communication device
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 55
- 230000005540 biological transmission Effects 0.000 claims abstract description 63
- 230000000737 periodic effect Effects 0.000 claims abstract description 29
- 230000001902 propagating effect Effects 0.000 claims abstract description 24
- 230000008878 coupling Effects 0.000 claims abstract description 18
- 238000010168 coupling process Methods 0.000 claims abstract description 18
- 238000005859 coupling reaction Methods 0.000 claims abstract description 18
- 230000000644 propagated effect Effects 0.000 claims abstract description 8
- 239000004020 conductor Substances 0.000 claims description 132
- 230000035699 permeability Effects 0.000 claims description 19
- 239000000463 material Substances 0.000 description 30
- 230000008859 change Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 4
- 230000005672 electromagnetic field Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0013—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/006—Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
- H01Q15/008—Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices having Sievenpipers' mushroom elements
Definitions
- the present invention relates to a technique for supplying power to a load, for example.
- the present invention relates to a surface communication device for obtaining power from an electromagnetic wave propagating on a propagation sheet and supplying it to a load.
- Non-Patent Document 1 discloses the principle of power communication on a sheet-like medium.
- Non-Patent Document 1 proposes a method capable of communicating between any two points on a two-dimensional sheet for surface communication.
- the power transport efficiency between the power transmission unit and the reception unit that is, the communication performance does not depend on the position of the power transmission unit or the reception unit on the seat.
- the end portion of the sheet is an open end, electromagnetic waves are reflected at the end portion of the sheet and a standing wave is generated.
- the size of the sheet is greater than or equal to the wavelength of the electromagnetic wave, the electromagnetic field distribution is strong or weak on the sheet. Therefore, Non-Patent Document 2 describes that the degree of electrical coupling between the power transmission unit or the reception unit and the communication sheet depends on the position on the sheet.
- Non-Patent Document 2 also discloses a method of suppressing the occurrence of standing waves by disposing a resistor at the end of the sheet. However, in this method, since electric power is consumed as heat in the resistor, it is inevitable that the communication performance is lowered as a result.
- the communication performance changes depending on the positional relationship of the transmitting unit or the receiving unit with respect to the electromagnetic wave propagation sheet.
- the transmission unit and the reception unit are arranged at a position where the voltage distribution on the electromagnetic wave propagation sheet becomes a node of a standing wave, there is a concern that the communication performance is significantly deteriorated.
- An object of the present invention is to provide a surface communication device that can solve the above-described technical problems.
- An example of the purpose is to enable efficient transmission / reception of power between the electromagnetic wave transmission unit and the electromagnetic wave reception unit regardless of the positional relationship of the electromagnetic wave transmission unit or the electromagnetic wave reception unit with respect to the sheet-like electromagnetic wave propagation unit. It is to be.
- a surface communication device includes a sheet-like electromagnetic wave propagation unit that propagates an electromagnetic wave, and an electromagnetic wave transmission unit that is disposed on the surface of the electromagnetic wave propagation unit and transmits the electromagnetic wave to the electromagnetic wave propagation unit. And an electromagnetic wave receiving unit that is disposed on the surface of the electromagnetic wave propagation unit and receives an electromagnetic wave propagated through the electromagnetic wave propagation unit.
- the electromagnetic wave transmission unit includes an electromagnetic wave generation unit and a transmission electromagnetic wave coupling unit that couples the electromagnetic wave generated by the electromagnetic wave generation unit to the electromagnetic wave propagation unit.
- the electromagnetic wave receiving unit includes a received electromagnetic wave coupling unit that couples the electromagnetic wave propagated through the electromagnetic wave propagation unit, and an electromagnetic wave output unit that outputs the electromagnetic wave coupled by the received electromagnetic wave coupling unit.
- transmission part has a periodic structure which makes the wavelength of the electromagnetic wave which propagates an electromagnetic wave propagation part longer than the length of the sheet-like extension direction of an electromagnetic wave propagation part.
- the extending direction refers to a two-dimensional direction in which the electromagnetic wave propagation part is extended in a sheet shape.
- the present invention has a periodic structure in which the wavelength of the electromagnetic wave propagating through the electromagnetic wave propagation part is made longer than the respective lengths in the biaxial directions constituting the plane of the electromagnetic wave propagation part.
- a standing wave node is less likely to appear in the sheet-like electromagnetic wave propagation part, and the distance dependence of the communication performance from the electromagnetic wave transmission part to the electromagnetic wave reception part can be reduced. Therefore, the present invention can efficiently transmit and receive power between the electromagnetic wave transmitting unit and the electromagnetic wave receiving unit regardless of the positional relationship of the electromagnetic wave transmitting unit or the electromagnetic wave receiving unit with respect to the sheet-like electromagnetic wave propagation unit.
- a 2nd Example it is a top view which shows the case where the periodic structure of a propagation sheet is comprised by mesh shape. It is a top view which shows the propagation sheet in a 3rd Example. It is a side view which shows the unit structure of the propagation sheet in 3rd Embodiment. It is a side view which shows the more specific unit structure of the propagation sheet in a 3rd Example. It is a top view which shows the propagation sheet
- 7th Example it is a top view which shows the structure by which the unit structure of the propagation sheet
- FIG. 1 is a side view showing a schematic configuration of the surface communication apparatus of the present embodiment.
- the electromagnetic wave transmission unit 101 includes an electromagnetic wave generation unit 102 and a transmission electromagnetic wave coupling unit 103 that couples the electromagnetic wave generated by the electromagnetic wave generation unit 102 to the electromagnetic wave propagation unit.
- the electromagnetic wave propagation unit 104 is configured in a sheet shape, and has a structure that sufficiently reduces the phase change (phase difference) of the electromagnetic wave propagating in the extending direction parallel to the main surface of the electromagnetic wave propagation unit 104.
- the electromagnetic wave reception unit 105 includes a reception electromagnetic wave coupling unit 106 that receives an electromagnetic wave propagating through the electromagnetic wave propagation unit 104, and an electromagnetic wave output unit 107 that outputs an electromagnetic wave received by the reception electromagnetic wave coupling unit 106.
- an insulating layer 108 is provided on the contact surface on the electromagnetic wave propagation unit 104 side so that the contact surface between the electromagnetic wave transmission unit 101 or the electromagnetic wave reception unit 105 and the electromagnetic wave propagation unit 104 is not electrically connected to each other.
- the medium of the insulating layer 108 is a medium that has a predetermined dielectric constant and magnetic permeability and does not pass a direct current, and includes air and vacuum.
- the electromagnetic wave transmission unit 101 and the electromagnetic wave reception unit 105 are configured to be insulated from the electromagnetic wave propagation unit 104 via the insulating layer 108, but are not necessarily insulated.
- FIG. 2 is a plan view showing the schematic configuration shown in FIG. 1 from above the propagation sheet.
- the electromagnetic wave transmission unit 101 and the electromagnetic wave reception unit 105 can be arranged at any location on the propagation sheet constituting the electromagnetic wave propagation unit 104.
- the electromagnetic wave propagation unit 104 may be provided with a plurality of electromagnetic wave transmission units 101 as necessary.
- the sheet form means a sheet having a thin surface such as a cloth form, a paper form, a foil form, a plate form, a film form, a film form, or a mesh form.
- the structure of the electromagnetic wave propagation unit 104 is characterized by having a structure that sufficiently reduces the phase change of the electromagnetic wave at both ends of the propagation sheet at the frequency of the electromagnetic wave to be propagated.
- a structure satisfying the above-described conditions can be realized by arranging specific unit structures two-dimensionally along the extending direction of the propagation sheet, or by arranging them in a two-dimensional mesh shape (lattice shape).
- the above-described extending direction refers to a two-dimensional direction in which the electromagnetic wave propagation unit 104 is extended in a sheet shape.
- the electromagnetic wave propagating unit 104 has a periodic structure in which the wavelength of the electromagnetic wave propagating through the electromagnetic wave propagating unit 104 is made longer than the respective lengths in the biaxial directions constituting the plane of the electromagnetic wave propagating unit 104.
- each structural example of the electromagnetic wave propagation part is shown independently.
- the superiority or inferiority of the structural example it is one basic indicator to suppress the coupling loss caused by the combination with the internal structure of the electromagnetic wave transmission unit 101 and the electromagnetic wave reception unit 105.
- Non-Patent Document 2 shows a plurality of structures such as a parallel plate conductor type and a circular spiral conductor type, and various new structures will be proposed in the future. Is expected. For this reason, it is possible to select an optimal combination for each structure of the electromagnetic wave propagation part shown in this embodiment according to the structure of the electromagnetic wave transmission part.
- the coordinate axis directions are set.
- the direction perpendicular to the surface of the electromagnetic wave propagation unit 104, that is, the propagation sheet is set as the Y-axis direction
- the extending direction parallel to the surface of the propagation sheet is set as the Z-axis direction or the X-axis direction.
- FIG. 3 is a plan view showing the propagation sheet 301 of the first embodiment constituting the electromagnetic wave propagation unit 104.
- FIG. 4 is a side view showing a unit structure of the propagation sheet 301.
- the propagation sheet 301 has a unit structure 302.
- the upper layer patch 304 is a conductor patch that constitutes an upper conductor layer disposed in the upper layer of the propagation sheet 301.
- the intermediate layer patch 305 is a conductor patch constituting the intermediate conductor layer of the propagation sheet 301.
- a ground conductor (reference conductor plane) 306 as a lower conductor layer is disposed over the entire extending direction of the propagation sheet 301.
- the upper layer patch 304 and the ground conductor 306 are electrically connected via a conductor post 303.
- the propagation sheet 301 has a dielectric layer 307 that is an insulating layer provided so that the upper layer patch 304 and the intermediate layer patch 305 do not contact with each other and the intermediate layer patch 305 and the ground conductor 306 do not contact with each other. is doing.
- a region sandwiched between the intermediate layer patch 305 and the ground conductor 306 is an extending direction in which the propagation sheet 301 spreads the electromagnetic wave supplied from the electromagnetic wave transmission unit 101 into a sheet shape. This is a region that propagates along the X and Z axis directions.
- the unit structure 302 includes a periodic structure that is periodically arranged in the two-dimensional direction (X and Z axis directions), so that the sheet-shaped extending direction with respect to the transmission frequency of the electromagnetic wave transmission unit 101 is obtained.
- the phase change (phase difference) of the electromagnetic wave propagating with respect to is sufficiently small.
- FIG. 3 shows a configuration in which the unit structures 302 are periodically arranged in the two-dimensional X and Z axis directions. However, as shown in FIG. 5, the unit structures 302 are arranged in a two-dimensional mesh shape. Also good.
- the propagation sheet shown in FIG. 20 has a unit structure 2001 having a two-dimensional network structure. By forming the unit structure 2001 in a mesh structure in this manner, the electromagnetic wave transmitting unit 101 and the electromagnetic wave receiving unit 105 are formed in a predetermined structure, thereby obtaining an effect of reducing electromagnetic wave coupling loss.
- the propagation sheet 301 constituting the electromagnetic wave propagation unit 104 has a periodic structure in which the wavelength of the electromagnetic wave propagating through the propagation sheet 301 is longer than the length in the extending direction. For this reason, the propagation sheet 301 can sufficiently reduce the phase change of the electromagnetic wave propagating in the extending direction with respect to the transmission frequency of the electromagnetic wave transmission unit 101.
- Making the phase change of the electromagnetic wave propagating in the extending direction sufficiently small means that the amplitude fluctuation with respect to the extending direction is reduced, so that a standing wave node is unlikely to appear. Therefore, in this embodiment, the sheet size dependency of the phase change of the electromagnetic wave propagating in the extending direction of the propagation sheet 301 can be sufficiently reduced. As a result, this embodiment can improve the communication efficiency between the electromagnetic wave transmission unit 101 and the electromagnetic wave reception unit 105 regardless of the positional relationship of the electromagnetic wave transmission unit 101 or the electromagnetic wave reception unit 105 with respect to the propagation sheet 301. .
- seat which comprises the electromagnetic wave propagation
- the phase change of the electromagnetic wave propagating in the extending direction of the electromagnetic wave propagation unit 104 with respect to the transmission frequency of the electromagnetic wave transmission unit 101 can be suppressed to be small, so that the power is efficiently transmitted between the electromagnetic wave transmission unit 101 and the electromagnetic wave reception unit 105 Can be sent and received.
- FIG. 6 is a plan view showing a propagation sheet 501 of the second embodiment constituting the electromagnetic wave propagation unit 104.
- FIG. 7 is a side view showing a unit structure of the propagation sheet 501.
- the propagation sheet 501 has a unit structure 502.
- the upper layer patch 504 is a conductor patch disposed on the upper layer of the propagation sheet 501.
- the intermediate layer patch 505 is a conductor patch constituting the intermediate conductor layer of the propagation sheet 501.
- the ground conductor 506 is disposed over the entire extending direction of the propagation sheet 501.
- the upper layer patch 504 and the ground conductor 506 are electrically connected via a conductor post 503.
- the propagation sheet 501 is a dielectric layer 507 that is an insulating layer provided so that the upper layer patch 504 and the intermediate layer patch 505 do not contact with each other, and the intermediate layer patch 505 and the ground conductor 506 do not contact with each other. have.
- the region sandwiched between the intermediate layer patch 505 and the ground conductor 506 propagates the electromagnetic wave supplied from the electromagnetic wave transmission unit 101 along the X and Z axis directions of the propagation sheet 501. It is an area.
- FIG. 6 shows a configuration in which the unit structures 502 are periodically arranged in a two-dimensional direction (X and Z-axis directions), but as shown in FIG. 8, the unit structures 502 are arranged in a two-dimensional mesh shape. Also good.
- the propagation sheet shown in FIG. 8 has a unit structure 2101 having a two-dimensional network structure.
- FIG. 9A is a plan view showing a propagation sheet 701 of the third embodiment constituting the electromagnetic wave propagation unit 104.
- FIG. 9B is a side view showing the unit structure of the propagation sheet 701.
- An upper conductor layer 702 is provided on the upper layer of the propagation sheet 701. Similar to the structure described in Non-Patent Document 1, the upper conductor layer 702 is configured as a wiring layer that is a microstrip wiring structure formed in a mesh shape.
- the propagation sheet 701 has a ground conductor (reference conductor plane) 703 as a lower conductor layer.
- a first dielectric layer 704 and a second dielectric layer are formed as a first layer and a second layer made of different first medium and second medium.
- a two-layer structure in which body layers 705 are stacked is provided.
- the first dielectric layer 704 is an insulating layer and has a positive value for both dielectric constant and magnetic permeability.
- the second dielectric layer 705 is an insulating layer, and is a layer in which metal bands formed in a predetermined shape are periodically embedded and arranged.
- the second dielectric layer 705 is configured such that both the dielectric constant and the magnetic permeability are negative in the frequency band in which the electromagnetic wave propagates.
- the following relationship is approximately satisfied between the thickness d1 and permeability ⁇ 1 of the first dielectric layer 704 and the thickness d2 and permeability ⁇ 2 of the second dielectric layer 705.
- FIG. 10 is a schematic diagram illustrating a configuration example of the second dielectric layer 705 illustrated in FIG. 9B. Specifically, as shown in FIG. 10, a plurality of split ring resonators 706 and a plurality of linear wires 707 are provided in the second dielectric layer 705 with respect to the extending direction of the propagation sheet 701. A periodic structure arranged alternately is provided.
- FIG. 11A is a plan view showing a propagation sheet 901 of the fourth embodiment constituting the electromagnetic wave propagation unit 104.
- FIG. 11B is a side view showing the unit structure of the propagation sheet 901.
- An upper conductor layer 902 is provided in the upper layer of the propagation sheet 901. Similar to the structure described in Non-Patent Document 1, the upper conductor layer 902 is configured as a wiring layer that is a microstrip wiring structure formed in a mesh shape.
- the propagation sheet 901 has a ground conductor (reference conductor plane) 903 as a lower conductor layer.
- a first dielectric region 904 and a second dielectric region 905, which are regions made of different media, are provided along the extending direction of the propagation sheet 901. Arranged periodically.
- the first dielectric region 904 is a first region where a dielectric having both positive dielectric constant and magnetic permeability is disposed.
- the second dielectric region 905 is a second region in which a metal band formed in a predetermined shape is periodically embedded in the dielectric.
- the second dielectric region 905 is configured so that both the dielectric constant and the magnetic permeability have negative values in the frequency band in which the electromagnetic wave propagates.
- the following relationship is approximately between the width w1 and permeability ⁇ 1 in the X-axis direction of the first dielectric region 904 and the width w2 and permeability ⁇ 2 in the X-axis direction of the second dielectric region 905. Is satisfied.
- FIG. 12 is a schematic diagram illustrating a configuration example of the second dielectric layer 905 illustrated in FIG. 11B. Specifically, as shown in FIG. 10, a plurality of split ring resonators 906 and a plurality of linear wires 907 are disposed in the second dielectric region 905 in the thickness direction (Y-axis) of the propagation sheet 901. Periodic structures arranged alternately with respect to (direction) are provided.
- the propagation sheet 901 provided with the above-described periodic structure, power is efficiently transmitted between the electromagnetic wave transmission unit 101 and the electromagnetic wave reception unit 105 as in the above-described embodiment. be able to.
- FIG. 13 is a plan view showing a propagation sheet 1101 of the fifth embodiment constituting the electromagnetic wave propagation unit 104.
- FIG. 14 is a plan view showing the unit structure 1102 of the propagation sheet 1101.
- FIG. 15 is a side view showing the unit structure 1102.
- the propagation sheet 1101 includes a microstrip continuous region 1202 as a first region in which microstrip lines 1203 are continuously provided, and a microstrip line 1203 is periodically cut. And a microstrip cutting region 1201 as a second region.
- the microstrip continuous region 1202 has a microstrip line 1203 as an intermediate conductor layer and a ground conductor 306 as a lower conductor layer.
- the microstrip cutting region 1201 has a periodic structure in which upper layer patches 304 and microstrip lines 1203 constituting an upper conductor layer are alternately arranged in the extending direction.
- the upper layer patch 304 and the ground conductor 306 are electrically connected via the conductor post 303 as in the configuration shown in FIG. 3.
- the microstrip line 1203 in the microstrip continuous region 1202, the microstrip line 1203 is provided in the intermediate conductor layer, but the microstrip line 1203 may be provided in the upper conductor layer, and the same effect is obtained. can get.
- the length W1 of the microstrip continuous region 1202 in the X-axis direction, the magnetic permeability ⁇ 1 of the dielectric layer 307, the length W2 of the microstrip cutting region 1201 in the X-axis direction, the propagation sheet 1101 The following relationship is approximately satisfied with the equivalent magnetic permeability ⁇ 2 in the X-axis direction.
- FIG. 17 is a plan view showing a propagation sheet 1401 of the sixth embodiment constituting the electromagnetic wave propagation unit 104.
- FIG. 18 is a perspective view schematically showing the unit structure 1402 of the propagation sheet 1401.
- an upper layer patch 1403 constituting the upper conductor layer is provided in the upper layer of the propagation sheet 1401.
- the upper layer patch 1403 and the ground conductor 1502 are electrically connected by a conductor post 1404.
- the intermediate conductor layer 1405 is formed in a planar shape having a larger area than the upper layer patch 1403, and is provided over the extending direction of the propagation sheet 1401. Further, the intermediate conductor layer 1405 has a through hole 1406.
- the intermediate conductor layer 1405 and the conductor post 1404 are electrically insulated by being inserted into the through hole 1406 of the intermediate conductor layer 1405 without contacting the conductor post 1404. This is a feature of this embodiment.
- the electromagnetic wave propagation unit 104 of this embodiment is characterized in that a plurality of unit structures 1402 are periodically arranged as shown in FIG.
- a dielectric layer 307 which is an insulating layer is provided between the upper layer patch 1403 and the intermediate conductor layer 1405 and between the intermediate conductor layer 1405 and the ground conductor 1502.
- FIG. 17 shows a configuration in which the unit structures 1402 are periodically arranged in the two-dimensional direction (X and Z-axis directions). However, as shown in FIG. 19, the unit structures 1402 are arranged in a two-dimensional mesh shape. Also good. As shown in FIG. 19, the propagation sheet has a unit structure 2201 having a two-dimensional network structure.
- the unit structure 2201 By forming the unit structure 2201 in a network structure in this way, the structure of the electromagnetic wave transmission unit 101 or the electromagnetic wave reception unit 105 is formed in a predetermined configuration, so that an effect of reducing the coupling loss of electromagnetic waves can be obtained.
- the propagation sheet 1401 provided with the above-described periodic structure, power is efficiently transmitted between the electromagnetic wave transmission unit 101 and the electromagnetic wave reception unit 105 as in the above-described embodiment. be able to.
- FIG. 20 is a plan view showing a propagation sheet 1601 of the seventh embodiment constituting the electromagnetic wave propagation unit 104.
- the propagation sheet 1601 has a unit structure 1602.
- the propagation sheet 1601 has a microstrip line 1603 similar to the mesh structure related to the present invention and a square conductor patch 1604.
- the conductor patch 1604 is electrically connected on the same plane to a microstrip line 1603 having a width smaller than the side of the conductor patch 1604.
- Adjacent conductor patches 1604 are connected by a microstrip line 1603.
- the plane on which the unit structure 1602 and the microstrip line 1603 are arranged is opposed to the ground conductor (reference conductor plane) arranged immediately below.
- a polygonal conductor patch or a conductor patch having a smooth curvature may be used.
- a hexagonal or circular conductor patch may be used.
- FIG. 20 shows a structure in which a plurality of unit structures 1602 are arranged in a two-dimensional direction (X and Z axis directions). However, as shown in FIG. 21, the unit structures 1602 have a two-dimensional mesh shape. It may be arranged.
- the unit structure 1602 By forming the unit structure 1602 in a network structure in this way, the structure of the electromagnetic wave transmitting unit 101 or the electromagnetic wave receiving unit 105 is formed in a predetermined structure, thereby obtaining an effect of reducing the coupling loss of electromagnetic waves.
- the propagation sheet 1601 provided with the above-described periodic structure, power is efficiently transmitted between the electromagnetic wave transmission unit 101 and the electromagnetic wave reception unit 105 as in the above-described embodiment. be able to.
- the wavelength ⁇ g with respect to the traveling direction of an electromagnetic wave propagating in a two-dimensional direction depends on the frequency.
- the wavelength ⁇ g may be longer or shorter than the wavelength ⁇ 0 of the air layer.
- the electromagnetic wave propagation part 104 of the surface communication device a unit structure in which the wavelength ⁇ g is sufficiently larger than the length in the extending direction of the propagation sheet constituting the electromagnetic wave propagation part 104 with respect to the propagation frequency of the electromagnetic wave. By adopting it, it becomes difficult to produce a node of a constant material wave on the propagation sheet.
- the positional relationship of the electromagnetic wave transmission unit 101 or the electromagnetic wave reception unit 105 with respect to the electromagnetic wave propagation unit 104 has a greater influence on the communication performance than when the propagation sheet constituting the electromagnetic wave propagation unit is used. It will not reach.
- the fact that the wavelength ⁇ g in the traveling direction of the electromagnetic wave is sufficiently larger than the length in the extending direction of the propagation sheet is equivalent to a sufficiently small phase change of the electromagnetic wave at an arbitrary position on the surface of the propagation sheet. Note that.
- FIG. 22A is a circuit diagram showing an equivalent circuit 1701 corresponding to the unit structure 301 in the first embodiment.
- FIG. 22B is a circuit diagram showing an equivalent circuit 1706 corresponding to the unit structure 502 in the second embodiment or the unit structure 1602 in the seventh embodiment.
- FIG. 22C is a circuit diagram showing an equivalent circuit 1704 corresponding to the unit structure 1401 in the sixth embodiment.
- the equivalent circuit 1701 includes a series resonance circuit 1702 and a parallel resonance circuit 1703.
- the equivalent circuit 1706 has a parallel resonant circuit 1707.
- the equivalent circuit 1704 has a series resonance circuit 1705.
- the relationship between the wavelength ⁇ g in the traveling direction and the frequency in the equivalent circuit 1701 can be expressed qualitatively as shown in FIG.
- a curve 1801 indicates the relationship between the frequency and the wavelength ⁇ g when the unit structures corresponding to the equivalent circuit 1706 are periodically arranged.
- a straight line 1802 indicates the relationship between the wavelength ⁇ 0 of the vacuum electromagnetic wave and the frequency.
- the wavelength ⁇ g is longer than the vacuum wavelength ⁇ 0.
- frequency bands 1803 in which the wavelength ⁇ g is extremely large are shown.
- the surface communication device sets the size ⁇ g of the unit structure 301 and the material constant so that the electromagnetic wave propagating through the propagation sheet is within the frequency band 1803, thereby setting the wavelength ⁇ g in the traveling direction to the length in the extending direction of the propagation sheet. It becomes possible to make it sufficiently larger than this.
- the input / output characteristics of the unit structure having the specified dimensions and material constants is obtained by an electromagnetic field simulator, actual measurement, or equivalent circuit analysis. Then, by applying Bloch's theorem to the ABCD matrix, it is possible to obtain the wavelength ⁇ g for each frequency. Therefore, for each allowable dimension parameter and material constant parameter, the curve 1801 shown in FIG. 23 is compared, and an optimal combination of the dimension parameter and material constant may be selected. Accordingly, the unit structure 301 can be configured so that the electromagnetic wave propagating through the propagation sheet is within the frequency band 1803.
- the relationship between the wavelength ⁇ g in the direction along the extending direction of the propagation sheet and the frequency is qualitatively determined. It is shown as a curve 1901 in FIG. Also in this case, it is noted that there is a frequency band 1903 in which the wavelength ⁇ g in the traveling direction becomes extremely large. That is, in the surface communication device, by setting the dimensions and material constants of the unit structure 502 or the unit structure 1602 so that the electromagnetic wave propagating through the propagation sheet is within the frequency band 1903, the wavelength ⁇ g in the traveling direction is set to the propagation sheet. It becomes possible to make it sufficiently larger than the length in the extending direction.
- the input / output characteristics of the unit structure having the specified dimensions and material constants that is, the ABCD matrix is obtained by an electromagnetic field simulator, actual measurement, or equivalent circuit analysis, and the Bloch's theorem is applied to the ABCD matrix.
- the wavelength ⁇ g for each frequency can be obtained. Therefore, the curve shown in FIG. 24 is compared for each allowable dimension parameter and material constant parameter, and an optimal combination of the dimension parameter and material constant may be selected. Accordingly, the unit structure 502 and the unit structure 1602 can be configured so that the electromagnetic wave propagating through the propagation sheet is within the frequency band 1903.
- W1 ⁇ ( ⁇ 1 ⁇ ⁇ 1) W2 ⁇ ( ⁇ 2 ⁇ ⁇ 2) (Equation 5)
- W1 is the length of the double positive material with respect to the traveling direction of the electromagnetic wave
- W2 is the length of the double negative material with respect to the traveling direction of the electromagnetic wave.
- Equation 4 the length of the double positive material W1 and the magnetic permeability ⁇ 1 with respect to the traveling direction of the electromagnetic wave, and the length of the double negative material W2 and the magnetic permeability ⁇ 2 It will show the relationship.
- the electromagnetic wave propagation part of the present invention is configured by adjusting the dimensions of the double positive material and the double positive material so as to satisfy Equation 3 and arranging the double positive material and the double negative material alternately adjacent to each other.
- the structure of the second dielectric region 905 shown in FIG. 12 and the transmission line structure in the microstrip line cutting region 1201 shown in FIG. 14 can be regarded as a double negative material at a specific frequency. Yes. Therefore, the size of the structure exhibiting the double negative material characteristic with respect to the propagation frequency of the electromagnetic wave is estimated by electromagnetic field simulation or the like, and the size of the double positive material is adjusted so as to satisfy Equation 3 described above. Then, by applying the structure in which the double positive material and the double negative material are alternately disposed adjacent to each other to the electromagnetic wave propagation portion according to the present invention, it is possible to hardly change the phase in the propagation sheet.
- Equation 3 can be regarded as resonating because the phase on the incident side and the output side of the electromagnetic wave are synchronized in the double positive material and the double negative material arranged adjacent to each other. is there.
- the electromagnetic wave has a wave number ky in the thickness direction of the propagation sheet 701.
- the wave number kx or the wave number kz with respect to the extending direction of the propagation sheet 701 is smaller than when the wave number ky is zero.
- the wavelength ⁇ g with respect to the traveling direction of the electromagnetic wave is inversely proportional to the wave number kx or the wave number kz.
- the wavelength ⁇ g is larger than the wavelength when the structure in which the wave number kx is almost zero is used.
- the structure shown in FIGS. 9A and 9B there are more electromagnetic wave modes satisfying the above-described expression 1 than the conventional mode in which the wave number ky is almost zero.
- the mode there are not a few components in which the wavelength ⁇ g in the traveling direction of the electromagnetic wave is sufficiently larger than the length of the propagation sheet, that is, a component whose phase hardly changes in the propagation sheet.
- the structure of the embodiment can make it difficult to generate a standing wave in the extending direction of the propagation sheet, as compared with the structure related to the present invention.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Near-Field Transmission Systems (AREA)
Abstract
Description
図1は、本実施形態のサーフェイス通信装置の概要構成を示す側面図である。電磁波送信部101は、電磁波発生部102と、この電磁波発生部102で発生した電磁波を電磁波伝播部に結合する送信電磁波結合部103とを有している。電磁波伝播部104は、シート状に構成されており、電磁波伝播部104の主面に平行な延在方向に伝播する電磁波の位相変化(位相差)を十分に小さくする構造を有している。電磁波受信部105は、電磁波伝播部104を伝播する電磁波を受信する受信電磁波結合部106と、受信電磁波結合部106が受信した電磁波を出力する電磁波出力部107とを有している。
図6は、電磁波伝播部104を構成する第2の実施例の伝播シート501を示す平面図である。図7は、伝播シート501の単位構造を示す側面図である。図6に示すように、伝播シート501は、単位構造502を有している。上層パッチ504は、伝播シート501の上層に配置された導体パッチである。中間層パッチ505は、伝播シート501の中間導体層を構成する導体パッチである。中間層パッチ505の下側には、グランド導体506が伝播シート501の延在方向の全体に亘って配置されている。上層パッチ504とグランド導体506は、導体ポスト503を介して電気的に接続されている。
図9Aは、電磁波伝播部104を構成する第3の実施例の伝播シート701を示す平面図である。図9Bは、伝播シート701の単位構造を示す側面図である。伝播シート701の上層には、上導体層702が設けられている。この上導体層702は、非特許文献1に記載された構造と同様に、網目状に形成されたマイクロストリップ配線構造である配線層に構成されている。また、伝播シート701は、下導体層としてのグランド導体(基準導体プレーン)703を有している。さらに、上導体層702とグランド導体703との間には、互いに異なる第1の媒質及び第2の媒質からなる第1の層及び第2の層として、第1誘電体層704と第2誘電体層705が積層された2層構造が設けられている。
d2/d1=|μ1/μ2| ・・・・・(式1)
図10は、図9Bに示す第2誘電体層705の構成例を示す模式図である。具体的には、図10に示すように、第2誘電体層705の内部には、複数のスプリットリング共振器706と、複数の線状ワイヤ707とが、伝播シート701の延在方向に対して交互に配列された周期構造が設けられている。
図11Aは、電磁波伝播部104を構成する第4の実施例の伝播シート901を示す平面図である。図11Bは、伝播シート901の単位構造を示す側面図である。伝播シート901の上層には、上導体層902が設けられている。この上導体層902は、非特許文献1に記載された構造と同様に、網目状に形成されたマイクロストリップ配線構造である配線層に構成されている。また、伝播シート901は、下導体層としてのグランド導体(基準導体プレーン)903を有している。さらに、上導体層902とグランド導体903との間には、互いに異なる媒質からなる領域である、第1誘電体領域904及び第2誘電体領域905が、伝播シート901の延在方向に沿って周期的に配列されている。
w2/w1=|μ1/μ2| ・・・・・(式2)
図12は、図11Bに示す第2誘電体層905の構成例を示す模式図である。具体的には、図10に示すように、第2誘電体領域905の内部には、複数のスプリットリング共振器906と、複数の線状ワイヤ907とが、伝播シート901の厚み方向(Y軸方向)に対して交互に配列された周期構造が設けられている。
図13は、電磁波伝播部104を構成する第5の実施例の伝播シート1101を示す平面図である。図14は、伝播シート1101の単位構造1102を示す平面図である。図15は、単位構造1102を示す側面図である。
W2/W1=|μ1/μ2| ・・・・・(式3)
なお、図13及び図14では、マイクロストリップ連続領域1202とマイクロストリップ切断領域1201とが網目状に配置された構成を示したが、図16に示すように、X軸及びZ軸方向に2次元状に亘って配置されてもよい。この構成の場合、マイクロストリップ切断領域1201は、図3に示した構成と同等であり、マイクロストリップ連続領域1202は、下層に位置されるグランド導体306と平行な平板状の導体層をなしている。
図17は、電磁波伝播部104を構成する第6の実施例の伝播シート1401を示す平面図である。図18は、伝播シート1401の単位構造1402を模式的に示す斜視図である。伝播シート1401の上層には、上導体層を構成する上層パッチ1403が設けられている。上層パッチ1403とグランド導体1502とは、導体ポスト1404によって電気的に接続されている。なお、中間導体層1405は、上層パッチ1403よりも面積が大きい平面状に形成されており、伝播シート1401の延在方向に亘って設けられている。また、中間導体層1405は、貫通孔1406を有している。中間導体層1405と導体ポスト1404は、中間導体層1405の貫通孔1406内に、導体ポスト1404が接触せずに挿通されることによって、電気的に絶縁されている。この点が本実施例の特徴である。
図20は、電磁波伝播部104を構成する第7の実施例の伝播シート1601を示す平面図である。図20に示すように、伝播シート1601は、単位構造1602を有している。伝播シート1601は、本発明に関連する網目構造と同様なマイクロストリップライン1603と、正方形の導体パッチ1604とを有している。導体パッチ1604は、導体パッチ1604の辺よりも幅が小さく形成されたマイクロストリップライン1603と、同一平面上において電気的に接続されている。隣り合う導体パッチ1604同士は、マイクロストリップライン1603によって連結されている。単位構造1602とマイクロストリップライン1603が配置されている平面は、その直下に配置されているグランド導体(基準導体プレーン)と対向されている。なお、図20において、正方形の導体パッチ1604の代わりに、多角形の導体パッチや滑らかな曲率を有する形状の導体パッチを用いてもよい。例えば、六角形や円形の導体パッチを用いてもよい。
√(μ1/ε1)=√(μ2/ε2) ・・・・・(式4)
W1√(μ1・ε1)=W2√(μ2・ε2) ・・・・・(式5)
式5において、W1は電磁波の進行方向に対するダブルポジティブ材料の長さであり、W2は電磁波の進行方向に対するダブルネガティブ材料の長さである。
Claims (16)
- 電磁波を伝播させるシート状の電磁波伝播部と、
前記電磁波伝播部の表面に配置され、電磁波を前記電磁波伝播部に送る電磁波送信部と、
前記電磁波伝播部の表面に配置され、前記電磁波伝播部を伝播した電磁波を受ける電磁波受信部と、を備え、
前記電磁波送信部は、電磁波発生部と、前記電磁波発生部で発生した電磁波を前記電磁波伝播部に結合する送信電磁波結合部と、を有し、
前記電磁波受信部は、前記電磁波伝播部を伝播した電磁波を結合する受信電磁波結合部と、前記受信電磁波結合部で結合した電磁波を出力する電磁波出力部と、を有し、
前記電磁波伝播部は、前記電磁波伝播部を伝播する電磁波の波長を、前記電磁波伝播部のシート状の延在方向の長さよりも長くする周期構造を有している、サーフェイス通信装置。 - 請求項1に記載のサーフェイス通信装置において、
前記電磁波伝播部は、前記電磁波送信部の送信周波数に対する、前記延在方向に伝播する電磁波の位相差の角度が、90度以内にされている、サーフェイス通信装置。 - 請求項1に記載のサーフェイス通信装置において、
前記電磁波伝播部は、前記電磁波送信部に当接する側に配置された複数の上層パッチからなる上導体層、複数の中間層パッチからなる中間導体層、前記延在方向に亘って配置された下導体層を有する3層構造であり、
前記電磁波伝播部は、前記上導体層の前記上層パッチと、前記中間導体層の前記中間層パッチとが、前記延在方向に対して交互に配列された前記周期構造を備え、前記上導体層の前記上層パッチと前記下導体層とを電気的に接続する導体ポストを有している、サーフェイス通信装置。 - 請求項3に記載のサーフェイス通信装置において、
前記電磁波伝播部は、前記周期構造と前記導体ポストとを有する単位構造を備え、複数の前記単位構造が網目状に配置されている、サーフェイス通信装置。 - 請求項1に記載のサーフェイス通信装置において、
前記電磁波伝播部は、前記電磁波送信部に当接する側に配置された複数の上層パッチからなる上導体層、複数の中間層パッチからなる中間導体層、前記延在方向に亘って配置された下導体層を有する3層構造であり、
前記電磁波伝播部は、前記上導体層の前記上層パッチと、前記中間導体層の前記中間層パッチが、前記延在方向に対して交互に配列された前記周期構造を備え、前記上導体層の前記上層パッチと前記中間導体層の前記中間層パッチとを電気的に接続する導体ポストを有している、サーフェイス通信装置。 - 請求項5に記載のサーフェイス通信装置において、
前記電磁波伝播部は、前記周期構造と前記導体ポストとを有する単位構造を備え、複数の前記単位構造が網目状に配置されている、サーフェイス通信装置。 - 請求項1に記載のサーフェイス通信装置において、
前記電磁波伝播部は、前記電磁波送信部に当接する側に配置された上導体層と、前記延在方向に亘って配置された下導体層とを有する2層構造であり、
前記上導体層は、網目状に形成された配線層であり、
前記配線層と前記下導体層との間には、第1の媒質からなる第1の層と、第2の媒質からなり前記周期構造を含む第2の層とが設けられ、
前記第1の媒質は、誘電率、透磁率が共に正の値を有し、
前記第2の媒質は、誘電率、透磁率が共に負の値を有する、サーフェイス通信装置。 - 請求項7に記載のサーフェイス通信装置において、
前記第2の層は、スプリットリング共振器と、線状ワイヤとが、前記延在方向に対して交互に配列された前記周期構造を含んでいる、サーフェイス通信装置。 - 請求項1に記載のサーフェイス通信装置において、
前記電磁波伝播部は、前記電磁波送信部に当接する側に配置された上導体層と、前記延在方向に亘って配置された下導体層とを有する2層構造であり、
前記上導体層は、網目状に形成された配線層であり、
前記配線層と前記下導体層との間には、第1の媒質からなる第1の領域と、第2の媒質からなる第2の領域とが前記延在方向に沿って周期的に配列された前記周期構造が設けられ、
前記第1の媒質は、誘電率、透磁率が共に正の値を有し、
前記第2の媒質は、誘電率、透磁率が共に負の値を有する、サーフェイス通信装置。 - 請求項9に記載のサーフェイス通信装置において、
前記第2の領域は、スプリットリング共振器と、線状ワイヤとが、前記電磁波伝播部の厚み方向に対して交互に配列された周期構造を含んでいる、サーフェイス通信装置。 - 請求項3に記載のサーフェイス通信装置において、
前記電磁波伝播部は、前記電磁波送信部に当接する側に配置された複数の上層パッチからなる上導体層、複数の中間層パッチからなる中間導体層、前記延在方向に亘って配置された下導体層を有する3層構造であり、
前記上導体層と前記中間導体層のいずれか一方のみと、前記下導体層とを有する第1の領域と、
前記上導体層と、前記中間導体層と、前記下導体層と、前記上導体層の前記上層パッチと前記下導体層とを導通する導体ポストとを有し、前記上導体層の前記上層パッチと、前記中間導体層の前記中間層パッチが、前記延在方向に対して交互に配列された前記周期構造を構成している第2の領域と、を備え、
前記第1の領域と前記第2の領域が、前記延在方向に対して周期的に配置されている、サーフェイス通信装置。 - 請求項11に記載のサーフェイス通信装置において、
前記電磁波伝播部は、前記第1の領域と前記第2の領域とを有する単位構造を備え、複数の前記単位構造が網目状に配置されている、サーフェイス通信装置。 - 請求項1に記載のサーフェイス通信装置において、
前記電磁波伝播部は、前記電磁波送信部に当接する側に配置された複数の上層パッチからなる上導体層と、中間導体層と、前記延在方向に亘って配置された下導体層とを有する3層構造であり、
前記中間導体層は、前記上導体層の前記上層パッチよりも面積が大きい平面状に形成され、貫通孔を有し、
前記電磁波伝播部は、前記中間導体層の前記貫通孔に接触しないで挿通され、前記上導体層の前記上層パッチと前記下導体層とを電気的に接続する導体ポストを有している、サーフェイス通信装置。 - 請求項13に記載のサーフェイス通信装置において、
前記電磁波送信部は、前記上導体層と、前記中間導体層と、前記導体ポストとを有する単位構造を備え、複数の前記単位構造が網目状に配置されている、サーフェイス通信装置。 - 請求項1に記載のサーフェイス通信装置において、
前記電磁波伝播部は、前記電磁波送信部に当接する側に配置された複数の導体パッチからなる上導体層と、前記延在方向に亘って配置された下導体層とを有する2層構造に構成され、
前記上導体層は、前記導体パッチが前記延在方向に配列された周期構造と、前記導体パッチの辺よりも幅が小さく形成されて隣り合う前記導体パッチ同士を電気的に接続する配線と、を有している、サーフェイス通信装置。 - 請求項15に記載のサーフェイス通信装置において、
前記電磁波送信部は、前記導体パッチと前記配線とが網目状に配置されている、サーフェイス通信装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/320,133 US8797116B2 (en) | 2009-05-14 | 2010-05-10 | Surface communication apparatus |
JP2011513324A JPWO2010131612A1 (ja) | 2009-05-14 | 2010-05-10 | サーフェイス通信装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-117697 | 2009-05-14 | ||
JP2009117697 | 2009-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010131612A1 true WO2010131612A1 (ja) | 2010-11-18 |
Family
ID=43084984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/057852 WO2010131612A1 (ja) | 2009-05-14 | 2010-05-10 | サーフェイス通信装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8797116B2 (ja) |
JP (1) | JPWO2010131612A1 (ja) |
WO (1) | WO2010131612A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011052361A1 (ja) * | 2009-10-30 | 2011-05-05 | 日本電気株式会社 | サーフェイス通信装置 |
WO2013114507A1 (ja) * | 2012-02-03 | 2013-08-08 | 日本電気株式会社 | 電磁波伝達シート、及び、電磁波伝送装置 |
WO2013124935A1 (ja) * | 2012-02-24 | 2013-08-29 | 日本電気株式会社 | 受電装置、給電装置、通信装置 |
JP2014168134A (ja) * | 2013-02-28 | 2014-09-11 | Nec Corp | 電磁波伝播シート、電磁波伝播システムおよび電磁波伝播方法 |
EP2568528B1 (en) * | 2011-09-08 | 2017-12-06 | Roke Manor Research Limited | Apparatus for the transmission of electromagnetic waves |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007159082A (ja) * | 2005-12-08 | 2007-06-21 | Serukurosu:Kk | 通信装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6121856A (en) * | 1998-08-21 | 2000-09-19 | Lockheed Martin Corporation | Bulk acoustic wave device with lamb wave mode selection |
FR2905208B1 (fr) * | 2006-08-28 | 2008-12-19 | St Microelectronics Sa | Filtre a resonateurs a ondes de lamb couples. |
WO2008038542A1 (fr) * | 2006-09-26 | 2008-04-03 | Yamaguchi University | méta matériau pour système gaucher en deux dimensions |
JP4908259B2 (ja) | 2007-02-22 | 2012-04-04 | 帝人ファイバー株式会社 | 天板上で用いる通信用シート構造体 |
JP4768670B2 (ja) | 2007-05-23 | 2011-09-07 | 株式会社セルクロス | 電力供給システムおよび電力供給装置 |
CN102598403B (zh) * | 2009-10-30 | 2014-12-10 | 日本电气株式会社 | 表面通信装置 |
US8525619B1 (en) * | 2010-05-28 | 2013-09-03 | Sandia Corporation | Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material |
JPWO2012046548A1 (ja) * | 2010-10-08 | 2014-02-24 | 日本電気株式会社 | サーフェイス通信装置 |
JPWO2012046550A1 (ja) * | 2010-10-08 | 2014-02-24 | 日本電気株式会社 | サーフェイス通信装置 |
-
2010
- 2010-05-10 WO PCT/JP2010/057852 patent/WO2010131612A1/ja active Application Filing
- 2010-05-10 JP JP2011513324A patent/JPWO2010131612A1/ja active Pending
- 2010-05-10 US US13/320,133 patent/US8797116B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007159082A (ja) * | 2005-12-08 | 2007-06-21 | Serukurosu:Kk | 通信装置 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9070962B2 (en) | 2009-10-30 | 2015-06-30 | Nec Corporation | Surface communication device |
JPWO2011052361A1 (ja) * | 2009-10-30 | 2013-03-21 | 日本電気株式会社 | サーフェイス通信装置 |
JP5644769B2 (ja) * | 2009-10-30 | 2014-12-24 | 日本電気株式会社 | サーフェイス通信装置 |
WO2011052361A1 (ja) * | 2009-10-30 | 2011-05-05 | 日本電気株式会社 | サーフェイス通信装置 |
EP2568528B1 (en) * | 2011-09-08 | 2017-12-06 | Roke Manor Research Limited | Apparatus for the transmission of electromagnetic waves |
WO2013114507A1 (ja) * | 2012-02-03 | 2013-08-08 | 日本電気株式会社 | 電磁波伝達シート、及び、電磁波伝送装置 |
US9853501B2 (en) | 2012-02-03 | 2017-12-26 | Nec Corporation | Electromagnetic wave transmission sheet and electromagnetic wave transmission device |
US20150022021A1 (en) * | 2012-02-03 | 2015-01-22 | Nec Corporation | Electromagnetic wave transmission sheet and electromagnetic wave transmission device |
JPWO2013114507A1 (ja) * | 2012-02-03 | 2015-05-11 | 日本電気株式会社 | 電磁波伝達シート、及び、電磁波伝送装置 |
US20150015083A1 (en) * | 2012-02-24 | 2015-01-15 | Nec Corporation | Power receiving apparatus, power supplying apparatus, and communication apparatus |
JPWO2013124935A1 (ja) * | 2012-02-24 | 2015-05-21 | 日本電気株式会社 | 受電装置、給電装置、通信装置 |
WO2013124935A1 (ja) * | 2012-02-24 | 2013-08-29 | 日本電気株式会社 | 受電装置、給電装置、通信装置 |
JP2014168134A (ja) * | 2013-02-28 | 2014-09-11 | Nec Corp | 電磁波伝播シート、電磁波伝播システムおよび電磁波伝播方法 |
Also Published As
Publication number | Publication date |
---|---|
US8797116B2 (en) | 2014-08-05 |
JPWO2010131612A1 (ja) | 2012-11-01 |
US20120056693A1 (en) | 2012-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9070962B2 (en) | Surface communication device | |
JP5617836B2 (ja) | 共振器アンテナ及び通信装置 | |
JP6129857B2 (ja) | 偏波共用アンテナ | |
US8299877B2 (en) | Resonator for wireless power transmission | |
WO2010131612A1 (ja) | サーフェイス通信装置 | |
JP5790648B2 (ja) | 構造体 | |
JPWO2013008292A1 (ja) | 電磁波伝搬路および電磁波伝搬装置 | |
WO2011114746A1 (ja) | 構造体 | |
JP5629817B2 (ja) | 電磁波伝搬媒体 | |
JPWO2012093603A1 (ja) | 電磁波伝播シート | |
US20130193772A1 (en) | Surface communication device | |
JP5721728B2 (ja) | 電磁波を送受信するためのデバイス、そのデバイスを備えたシステム、及びそのようなデバイスの使用 | |
WO2012046548A1 (ja) | サーフェイス通信装置 | |
JP2015041876A (ja) | 電磁バンドギャップ素子及び電子回路、導体構造 | |
WO2015049816A1 (ja) | アンテナ装置 | |
WO2017170394A1 (ja) | 構造体、構造体の積層構造およびアンテナ構造 | |
JP2013099090A (ja) | 電磁波伝搬装置および電力伝送システム | |
US11095038B2 (en) | Polarization control plate | |
WO2013027268A1 (ja) | 電磁波伝搬媒体 | |
WO2014045486A1 (ja) | シート伝送システム、電磁波伝播シート及び近接カプラ | |
WO2013108324A1 (ja) | 電力供給システム | |
JP5081283B2 (ja) | 信号伝送装置、フィルタ、ならびに基板間通信装置 | |
JP2010273170A (ja) | 右手/左手系複合導波管 | |
JP2006128312A (ja) | 電磁波吸収体 | |
CN103985938A (zh) | 基于石墨烯的磁可调法拉第旋转器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10774869 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011513324 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13320133 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10774869 Country of ref document: EP Kind code of ref document: A1 |