WO2010131550A1 - 血流画像診断装置 - Google Patents

血流画像診断装置 Download PDF

Info

Publication number
WO2010131550A1
WO2010131550A1 PCT/JP2010/056980 JP2010056980W WO2010131550A1 WO 2010131550 A1 WO2010131550 A1 WO 2010131550A1 JP 2010056980 W JP2010056980 W JP 2010056980W WO 2010131550 A1 WO2010131550 A1 WO 2010131550A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood flow
blood
function
map
blood vessel
Prior art date
Application number
PCT/JP2010/056980
Other languages
English (en)
French (fr)
Inventor
仁 藤居
兼児 岡本
則善 高橋
宏幸 石原
Original Assignee
国立大学法人九州工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州工業大学 filed Critical 国立大学法人九州工業大学
Priority to JP2011513293A priority Critical patent/JP5578735B2/ja
Priority to US13/254,754 priority patent/US9028421B2/en
Priority to EP10774808.9A priority patent/EP2430973B1/en
Publication of WO2010131550A1 publication Critical patent/WO2010131550A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/1225Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation
    • A61B3/1233Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation for measuring blood flow, e.g. at the retina
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • A61B5/489Blood vessels

Definitions

  • the present invention provides a new blood flow velocity imaging apparatus that irradiates a biological tissue having blood cells with laser light and measures and images a blood flow velocity based on a speckle signal reflected from the biological tissue.
  • the present invention relates to a device to which a blood flow image diagnosis function is added.
  • the present inventors have irradiated a living tissue having blood cells such as the fundus and skin with a laser beam and created a random speckle pattern image formed as a result of interference of reflected light from the blood cell, a so-called speckle image.
  • the image is guided onto an image sensor such as a solid-state imaging device (CCD or CMOS), and a large number of speckle images are continuously captured and stored at predetermined time intervals, and a predetermined number of images are selected from the stored images.
  • CCD or CMOS solid-state imaging device
  • a blood flow velocity measuring apparatus has been invented that selects, calculates a value reflecting the temporal fluctuation speed of output in each pixel of each image, and calculates a blood cell velocity (blood flow velocity) from this value.
  • the blood flow distribution in the living tissue is calculated based on the calculated output fluctuation value of each pixel.
  • a color image can be displayed on the monitor screen as a three-dimensional image (blood flow map).
  • the blood flow map actually observed is composed of a series of blood flow maps (hereinafter sometimes referred to as original maps) calculated at about 30 frames per second, and can be displayed as a moving image.
  • original maps blood flow maps
  • the present inventors analyzed blood flow changes periodically appearing in synchronization with the heartbeat at each site in the observation field for a series of blood flow maps obtained by measuring blood flow for several seconds, A numerical value that can distinguish between a site with a sharp rising waveform of arterial and a site with a venous gently rising and falling waveform, that is, the degree of distortion is introduced, and the arterial pulsation part and venous A blood flow velocity imaging device that can display a pulsation portion has also been proposed (see Patent Document 7).
  • a series of original maps obtained by actually calculating the blood flow distribution is generally As shown in FIG. 1, the graininess is rough, and the outline of the blood vessel is composed of various points. This is because the speckle image for calculating the blood flow value is originally a noisy image and the number of samples when obtaining the blood flow of each pixel is finite, so that a statistical error occurs. Naturally, the positions and sizes of the grains are different between a series of original maps. In other words, the distribution of numerical values representing the blood flow velocity of each pixel is considerably different in each map.
  • Patent Document 7 when obtaining a skewness distribution that characterizes the blood flow waveform of the fundus, a large number of pixels adjacent to the target pixel are obtained. Blood flow values are taken into account. By doing so, the number of samples is increased and the statistical error is suppressed, but the blood flow waveform information is interlaced with each other because it is calculated by extracting from the region where the blood vessel part and background tissue part with different blood flow waveforms are mixed. Resulting in. As a result, when the skewness distribution is displayed as an image, the waveform of the fine arterial blood vessel is buried in the waveform of the tissue blood flow in the background and is difficult to recognize. In order to obtain the blood flow waveform in the target blood vessel, the blood flow value is extracted along the travel of the blood vessel to obtain the skewness.
  • the discovery of a method for extracting only the blood vessel is a problem. It was.
  • a rectangular rubber band (rectangular portion at the upper center in FIG. 1) and a predetermined blood vessel along the blood flow map in the blood flow map obtained as shown in FIG.
  • the blood flow waveform in the rubber band (see FIG. 2) and the blood flow velocity distribution in the blood vessel cross section (see FIG. 3) have been examined (the horizontal axis in FIG. 3 is a pixel) Showing).
  • a straight blood vessel must be selected, and when examining the blood flow waveform, the rubber band must be elongated and rigorously set in accordance with the width of the blood vessel. The same applies when examining the cross section of the blood vessel.
  • the blood flow waveform of each part (observation area) of the fundus is digitized using the skewness, if the waveform has a secondary peak or if the peak position fluctuates, the skewness is also to be influenced. Further, there is a possibility that different factors relating to the peripheral circulation function are related to the waveform when the arterial blood flow rises and the waveform when it falls. Therefore, it is not sufficient to characterize the blood flow waveform only by the skewness, and it is necessary to make a comprehensive judgment by introducing another index.
  • An object of the present invention is to apply and deploy a conventional blood flow velocity measuring device, and when the secondary peak appears in the blood flow waveform or when the blood flow value is highly dispersed, the blood flow in the surface layer of the living tissue ( Means to improve the convergence of the values representing the surface blood flow) and the background blood flow (background blood flow), and automatically recognize blood vessel regions that are difficult to recognize, such as tortuous blood vessels
  • An object of the present invention is to provide a blood flow diagnostic imaging apparatus having means capable of calculating and displaying a typical blood vessel diameter.
  • the aspect of the invention described in claim 1 of the present invention includes a laser light irradiation system for irradiating an observation region of a biological tissue having blood cells with a laser beam, and a plurality of reflected lights from the observation region of the biological tissue.
  • a light receiving system having a light receiving unit composed of pixels, an image capturing unit that continuously captures a plurality of images in a predetermined time of one heartbeat or more based on a signal from the light receiving unit, and an image storage unit that stores the plurality of images
  • a calculation unit for calculating a blood flow velocity in the living tissue from a temporal change in output signals of corresponding pixels of the stored plural images, and a display for displaying a two-dimensional distribution of the calculation result as a blood flow map
  • a blood flow velocity imaging apparatus comprising a unit, and a function for analyzing the obtained blood flow map, wherein the calculation unit is configured to calculate the blood flow map data of one or more heartbeats from the plurality of blood flow map data.
  • the display unit On the surface layer of the observation area of biological tissue A blood flow in a blood vessel (surface blood vessel) and a blood flow in a surrounding background region (background blood flow), and the display unit distinguishes a blood flow map of each region
  • the display unit has a function of calculating and comparing information relating to blood flow such as blood flow values, blood flow waveforms, and blood vessel diameters of the respective parts.
  • the blood flow diagnostic imaging apparatus is characterized in that a function for displaying the calculation result is added.
  • the blood flow in the blood vessel (surface blood vessel) that is visible on the surface layer portion of the biological tissue represents the surface layer region, for example, the blood vessel itself on the retina, as judged from the blood flow map.
  • the blood flow in the surrounding background region (background blood flow) literally means “the blood flow of the choroid and other tissues (background blood flow) around the blood vessel in the surface layer region”.
  • what is in the surface layer part of a biological tissue such as the retina can be clearly confirmed as a retinal blood vessel, but the choroidal blood vessel in the background part cannot be clearly confirmed, It can only be confirmed as blood flow in the background region. Therefore, in the present specification, the former is used synonymously with “blood vessel”, and the latter is used only as “blood flow”.
  • the calculation unit calculates, for the plurality of blood flow map data, a positional shift amount between the maps generated by the movement of the measurement target, and corrects the shift amount.
  • the blood flow is divided into a high blood flow region and a low blood flow region with a predetermined threshold as a boundary. It is regarded as the background blood flow, otherwise it is separated and reflected in each map, and the blood flow of the superficial blood vessels that are visible in the superficial region and the background blood flow in the background region in the preset map area 2.
  • the blood flow diagnostic imaging apparatus according to claim 1, wherein the blood flow diagnostic imaging apparatus has a function of acquiring information related to the blood flow of each part by separately extracting the blood flow.
  • the aspect of the invention described in claim 3 is that each of the blood flow of the superficial blood vessels and the background blood flow separated by the function in one or more regions preset in the blood flow map by the calculation unit.
  • a function to obtain blood flow waveforms digitize the characteristics of blood flow waveforms at the time of increase or decrease of blood flow change due to heartbeat, or both, and display and compare the values obtained for each region
  • the blood flow diagnostic imaging apparatus comprising:
  • the aspect of the invention described in claim 4 is that each of the blood flow of the superficial blood vessels and the background blood flow separated by the function in one or more regions set in advance in the blood flow map by the calculation unit.
  • the aspect of the invention described in claim 5 is that each of the blood flow of the superficial blood vessels and the background blood flow separated by the function in one or more regions preset in the blood flow map by the calculation unit.
  • Device
  • the aspect of the invention described in claim 6 is that each of the blood flow of the superficial blood vessels and the background blood flow separated by the function in one or more regions preset in the blood flow map by the calculation unit.
  • the blood flow diagnostic imaging apparatus comprising:
  • the calculation unit sets one or more regions including the surface blood vessels in the blood flow map, and separates the blood flow of the surface blood vessels and the background blood flow by the function, The blood flow value of each region was extracted and the average value was calculated to obtain the average blood flow value flowing through the surface blood vessel and the average value of the background blood flow separately, and obtained for each region.
  • the surface blood vessel and the background blood flow are separated by the method described in claim 7, and then the total number of pixels in the region corresponding to the surface blood vessel is calculated.
  • the boundary line between the background blood flow on both sides of the surface blood vessel is obtained, 2.
  • the aspect of the invention described in claim 10 compares the calculation results obtained in claims 1 to 9 with the result of performing the same calculation on other blood flow image data having different measurement dates and times, 10.
  • the aspect of the invention described in claim 11 is to create a mask using light and darkness of a retinal image obtained by irradiating the fundus with incoherent light when obtaining a mask that separates a surface blood vessel and a background blood flow.
  • the blood flow diagnostic imaging apparatus according to any one of claims 1 to 10, wherein the blood flow diagnostic imaging apparatus has a function of reflecting the information on each blood flow map and acquiring information on the blood flow of each part. is there.
  • the calculation unit sets one or more rectangular regions including the surface blood vessels in the blood flow map, and sets the longitudinal direction of the rectangles along the running of the blood vessels.
  • For the rectangular region after separating the blood flow of the surface blood vessel and the background blood flow by the above function, obtain the sum of the values obtained by subtracting the value of the background blood flow from the blood flow value in each pixel of the region corresponding to the surface blood vessel, The value obtained by dividing this by the number of pixels in the longitudinal direction of the rectangle is calculated and displayed as a value proportional to the blood flow of the superficial blood vessel, and has a function of comparing values in each region and values measured at different times with each other
  • the blood flow diagnostic imaging apparatus according to claim 1.
  • a state in which a value proportional to the blood flow of the superficial blood vessel obtained by the calculation unit changes during measurement is analyzed, and is displayed as a blood flow waveform.
  • the arithmetic unit is based on a waveform analysis of a blood flow flowing in a blood vessel crossing the boundary of the region.
  • the function to display blood flow volume and blood flow waveform, display them in the vicinity of each blood vessel, to output a file as a list, or to compare these values measured at different dates and times The blood flow diagnostic imaging apparatus according to claim 1, which has a function.
  • the calculation unit calculates a total blood flow of an artery and a vein entering and exiting through a boundary of the region.
  • the blood flow diagnostic imaging apparatus according to claim 1, wherein the blood flow diagnostic imaging apparatus has a function of calculating each of the ratios and comparing these values measured at different dates and times.
  • the calculation unit calculates a ratio of a blood vessel diameter and a blood flow that passes through the region,
  • the calculation unit analyzes a temporal waveform of the blood flow volume and blood flow value of the surface blood vessel, and calculates a difference in peak positions of these waveforms.
  • the surface blood vessels and the background blood flow are separated, the blood flow maps of the both are distinguished and displayed, and the blood flow value and blood flow of each of the surface layer portion and the background portion are further displayed.
  • the present invention relates to an apparatus to which a function for calculating and comparing information relating to blood flow such as a waveform and a blood vessel diameter and displaying the calculation results is added.
  • the aspect according to claim 2 specifically shows a technique for separating using the mean blood flow map, and the aspect according to claim 3 is the blood separated in the aspect according to claim 1.
  • the feature of the flow map waveform is digitized.
  • the characteristic of the waveform is displayed by the ratio of the skewness, the area ratio, and the average value of the amplitude, respectively.
  • the aspect described in claim 7 displays the average blood flow of the surface blood vessels separated in the aspect described in claim 1, and the aspect according to claim 8 displays the blood vessel diameter from the total number of pixels occupied by the surface blood vessels.
  • the aspect according to claim 9 is characterized in that a boundary line on both sides of the surface blood vessel is obtained, and a blood vessel diameter is read from the boundary line interval.
  • the aspect of claim 10 is characterized by calculating and displaying the increase / decrease ratio based on another blood flow image data having different measurement dates and times for the calculation results of claims 1 to 9. It is.
  • the aspect of claim 11 uses something other than the average blood flow map for forming the mask.
  • claims 12, 13, 17 and 18 are characterized in that a value (RFV) proportional to the blood flow of the superficial blood vessel is calculated and displayed, compared, analyzed, and the like.
  • Aspects of claims 14 to 16 are characterized in that the invention of claim 1 is applied to a region including a large number of retinal blood vessels spreading in four directions from the optic nerve head.
  • blood flow waveforms of retinal blood vessels and background tissues that could not be clearly distinguished until now can be separated and analyzed.
  • the blood vessels spreading from the central artery and vein to the surroundings are grouped along the running, the arteries and veins can be more accurately distinguished.
  • the center line of a blood vessel cut out by a specific mask was determined, and the distance to the mask edge was determined.
  • the inner diameter of the meandering blood vessel can be estimated, and the blood circulation promoting effect can be evaluated.
  • the blood flow waveform and the blood flow volume can be evaluated by separating the blood vessel and the background tissue thereof, so that new information can be provided for evaluating the function of the circulatory system.
  • the ability to accurately observe the blood flow waveform of arteries is considered to be extremely effective for the diagnosis of arteriosclerosis.
  • the figure which shows an example of a series of original maps obtained by observing a fundus blood flow and calculating a blood flow distribution The figure which shows the blood-flow waveform in the rectangular rubber band set along the driving
  • FIG. 8 is a diagram for explaining a technique for averaging the blood flow distribution converted into a straight line as shown in FIG. 7 in the vertical direction and obtaining the blood flow velocity distribution of the obtained blood vessel cross section and the average blood vessel diameter.
  • a blood flow diagnostic imaging apparatus includes a laser light irradiation system for irradiating a biological tissue having blood cells with laser light, a light receiving system having a light receiving unit including a plurality of pixels for detecting reflected light from the biological tissue, An image capturing unit that continuously captures a plurality of images in a predetermined time of one heartbeat or more based on a signal from the light receiving unit, an image storage unit that stores the plurality of images, and a correspondence between the stored plurality of images A calculation unit that calculates a blood flow velocity in the living tissue from a temporal change in the output signal of each pixel, and a display unit that displays a two-dimensional distribution of the calculation result as a blood flow map.
  • the calculation unit includes, from the plurality of blood flow map data of one heartbeat or more, blood flow in a blood vessel (surface blood vessel) that is visible on the surface layer of the living tissue and blood flow in the surrounding background ( A function for separating the background blood flow) and displaying each blood flow separately on the blood flow map of the display unit is added.
  • the blood flow maps can be displayed side by side as separate images on the display unit, or can be displayed three-dimensionally in the depth direction. If there is a function of separating and displaying in this way, it can be used for diagnosis because it can be seen at a glance how much the average blood flow value of each part has changed compared to the previous measurement.
  • the shift amount of each map is calculated with respect to the original map including the fixation movement, and the movement amount is corrected and superimposed. This operation is called tracking, and the result of overlapping is an average blood flow map as shown in FIG. Since this map is averaged by superimposing a large number of original maps, the granularity is greatly reduced as compared with FIG. 1, and the outline of the blood vessel can be recognized clearly.
  • a blood vessel portion as shown in FIG. A mask image to be taken out is obtained.
  • the shift amount of all maps from the first original map to the last original map and the relative position of the average blood flow map are calculated and stored. Accordingly, the blood vessel portion can be accurately extracted by superimposing the mask pattern drawn on the average blood flow map on all original maps whose relative positional relationships are known.
  • both blood flow distributions can be displayed in a three-dimensional manner by arranging them in front and back. There is no need to select a straight blood vessel as in the prior art, and it is not necessary to pay attention to alignment, so that the analysis target can be expanded and the efficiency of the analysis work can be improved.
  • the degree of distortion which is one of the indices characterizing the waveform of the fundus blood flow
  • a large number of surrounding pixels If this data is not included in the calculation, the value varies due to a statistical error, and the image quality of the map deteriorates. However, this reduces spatial resolution and erases information on thin blood vessels.
  • the mask according to the present invention is used, as shown in FIG. 5, the blood vessel gradually spreads from the center of the nipple to the periphery, and each region from the upstream to the downstream is within a predetermined range of blood vessels.
  • the waveform of each part can be extracted separately. For example, by setting areas at several points from upstream to downstream around the vascular stenosis and comparing blood flow waveforms obtained from each area, various conditions such as grasping the disease state and confirming the treatment effect Can be used for diagnosis.
  • the fundus blood flow imaging device currently in practical use has a display function called “heart rate map” in which an original map over a number of heartbeats is superimposed on one heartbeat while considering fixation movement. If you repeat, you can also accurately extract the waveform that is directly integrated into one heartbeat.
  • the blood flow velocity can be read and the blood vessel cross section can be obtained by using the mask.
  • a rectangular region (rectangular region in FIG. 6) is set to be slightly larger in the curved portion of the blood vessel as shown in FIG. 6, the mask is obtained, and the blood flow value of each pixel in the portion corresponding to the blood vessel is averaged. Then, it becomes the average blood flow velocity that flows in the blood vessel. Further, since the total number of pixels in the portion corresponding to the blood vessel is an amount proportional to the blood vessel diameter, it can be determined that the blood vessel is dilated if this is increased compared to the previous time.
  • the blood vessel may be linearized as follows.
  • FIG. 7 shows the rectangular portion extracted from FIG. 6 and the blood vessel linearized.
  • all the values in the rectangular area of FIG. 6 are extracted, and rearranged so that the major axis direction is a column and the single axis direction is a row.
  • the place where the highest value is taken is the center of the blood vessel, and shifting the row data to the left and right so that this is straight up and down, the blood vessel is converted into a straight image as shown in FIG.
  • the peripheral portion of the blood vessel in FIG. 6 is waved in the opposite direction in FIG. In FIG.
  • FIG. 7 is a matrix of data constituting the image of FIG. 7 and the values of the respective rows are averaged in the column direction, and the effective diameter of the blood vessel can be obtained from this sectional view and compared.
  • the diameter of the blood vessel can be determined by obtaining the boundary lines on both sides of the blood vessel represented by the mask and obtaining the interval between the two boundary lines. Furthermore, if a function for calculating the diameter of the blood vessel along the running of the blood vessel in FIG. 7 and evaluating its uniformity is provided, it is possible to find a blood vessel stenosis due to cholesterol or the like.
  • the function of measuring the blood vessel diameter provided by the present invention can be used not only for ophthalmology but also for diagnosis in an internal medicine region such as a blood circulation disorder caused by an adult disease.
  • an internal medicine region such as a blood circulation disorder caused by an adult disease.
  • it is a simple method to set a rectangular area along the running of the blood vessel, even if the area is set in another shape such as an ellipse, the running direction of the blood vessel is given in advance or the software analyzes it to determine the direction. By recognizing it, it is possible to analyze the blood vessel diameter.
  • the present invention can extract information such as the average blood flow velocity and blood vessel diameter in the retinal blood vessel, and the waveform indicating the temporal change in blood flow velocity. Often you want to know the flow rate change.
  • rubber bands RB0, RB1, and RB2 are set along the flow for each of the parent blood vessel VT and the branched blood vessels VB1 and VB2.
  • a blood flow velocity distribution in the blood vessel cross-sectional direction as shown in FIG. 10 is obtained.
  • a threshold level TL (broken line) for dividing a blood vessel part (region) and a background part (region) is appropriately set, and the value of the bar graph in the square frame S is the value of the retinal blood vessel.
  • FIG. 11 shows the results of calculating the RFV value (RFV0 to RFV2) for each region of RB0 to RB2 in FIG. 9 and examining the correlation between RFV0 and RFV1 + RFV2 for the fundus blood flow map of five healthy adults. .
  • This result shows a sufficiently high correlation even when individual differences are taken into account.
  • FIG. 9 shows the bifurcation of the artery.
  • the vein since the vein has the same high correlation as that of the artery, the blood flow volume by the RFV value is also preserved at the junction of the vein. I understand. Therefore, it was found that the RFV value obtained by the above calculation has a conservation law before and after bifurcation in both arteries and veins, and can be sufficiently used as an index of blood flow.
  • the distribution of the cross section is obtained by first averaging in the running direction of the blood vessel, and after obtaining and subtracting the baseline from the value around the blood vessel, the sum is taken in the cross sectional direction. Instead of this calculation, a value above a certain threshold in the rubber band is sampled, the background blood flow component is subtracted from each value, the sum is obtained, and the length of the center line of the rubber band along the blood vessel running direction is obtained. Similar results can be obtained by using a value divided by the number of pixels corresponding to.
  • the blood flow RFV value can also be calculated for the “original map” and “heart rate map” described above, and in this case, temporal changes in the RFV value can be observed. It is needless to say that the change over time of the RFV value obtained in this way can be obtained, and the characteristics of the blood flow waveform can be digitized and compared by the method according to the embodiments of the invention described in claims 4 to 6. Yes.
  • the flow rate is not preserved at the bifurcation of the blood vessel, or when the blood flow waveform of each blood vessel or the numerical value characterizing them is different, there is a high possibility that the blood circulation is inhibited for some reason.
  • the blood flow waveform or RFV waveform of one blood vessel is greatly different from the waveform of the blood vessel before branching after the blood vessel is branched, the blood vessel resistance ahead is larger than the other. It is highly possible that Even if the artery and the vein intersect, it is possible to diagnose whether the blood circulation is obstructed at the intersection by comparing the blood flow waveforms at a total of four locations before and after the intersection.
  • An index representing the characteristics of a blood flow waveform obtained in a plurality of regions of the retinal blood vessel for example, a function of comparing skewness values can be effectively used for hemodynamic diagnosis.
  • the RFV value is only a relative value proportional to the blood flow, and is affected by surrounding scattered tissues such as the thickness of the arterial blood vessel wall. In other words, it can be used as an index indicating the circulatory dynamics of the retinal blood flow by examining how much the total blood flow of arteries and veins that should be equal to each other is calculated by using the RFV value.
  • the surface blood vessels of the surface layer of the living body such as the retinal blood vessels are separated from the background blood flow of the background portion, the blood vessel diameter, the average blood flow velocity, the blood flow volume, and their temporal changes are measured. If the value of the ratio of each measurement quantity, such as comparison and blood vessel diameter: blood flow volume, is calculated, blood flow dynamics that could not be grasped so far can be analyzed in detail.
  • the waveform is digitized with a value larger than 1 if the waveform is convex upward and smaller than 1 if the waveform is convex downward.
  • the waveform of the fundus blood flow in the 60s is shown in FIG. 14, and that in the 20s is shown in FIG.
  • These are waveforms obtained from the heart rate map obtained by summarizing the optic nerve lactose tissue blood flow map into one heart rate, and the following differences are recognized at first glance.
  • the degree of progression of arteriosclerosis can be confirmed by the difference in the RFV waveform (FIG. 16) proportional to the blood flow waveform of the blood vessel portion and the blood flow volume of the surface blood vessel described above on the same blood vessel.
  • 16 in FIG. 16 is a blood flow waveform
  • 2 in FIG. 16 is an RFV waveform.
  • the phenomenon that the peak of the RFV waveform is delayed with respect to the blood flow peak is a characteristic that appears because the blood vessel has elasticity.
  • the blood flow in the blood vessel rises faster and fills the blood up to the volume of the normal blood vessel, and then the heart contracts and the blood is pushed out.
  • the blood vessel is further expanded from the inside to increase blood flow.
  • the blood flow receives a force in the opposite direction by the blood vessel wall and is braked to lower the blood flow. For this reason, it is considered that the peak of RFV is delayed compared to the blood flow.
  • the difference ⁇ t in the peak position of the waveform is considered to change depending on the degree of progression of arteriosclerosis, and there is a possibility that it can be used for diagnosis as an index of arteriosclerosis obtained by quantifying ⁇ t. If the electrocardiogram data is acquired simultaneously with the fundus blood flow measurement and the time axis of the fundus blood flow waveform or the RFV waveform is defined with reference to the electrocardiogram waveform, the hemodynamics of each part can be analyzed more precisely.
  • the fundus is irradiated with incoherent light such as normal fundus observation light to the fundus, a fundus blood vessel image is taken, and the obtained image is converted into two images. It can also be used as a mask that separates both values.
  • incoherent light a green LED or the like that easily captures the outline of the blood vessel is used, and the laser light path is separated by an optical filter, and a fundus blood vessel image may be acquired using a separate imaging device.
  • the blood flow rapidly rises during the systole of the heart, so that the time resolution of the calculated series of blood flow maps is insufficient, and when subtle changes in the waveform cannot be evaluated, Apparent resolution can be improved by incorporating spline interpolation or the like into the blood flow waveform. If the number of samples at the time of waveform analysis is small, the reliability of the original data is not sufficient, and an incorrect result is obtained. Therefore, when the number of samples does not reach a certain number, a function for issuing a warning can be added to improve the accuracy of blood flow waveform evaluation.

Abstract

生体組織の観察領域にレーザ光を照射するレーザ光照射系と、生体組織の観察領域からの反射光を検出する多数の画素からなる受光部を有する受光系と、受光部からの信号に基づき一心拍以上の所定時間で連続的に複数の画像を取り込む画像取込部と、複数の画像を記憶する画像記憶部と、記憶された複数画像の対応する各画素の出力信号の時間的変化から生体組織内の血流速度を演算する演算部と、演算結果の二次元分布を血流マップとして表示する表示部からなる血流速度画像化装置に、得られた血流マップを解析するための機能を付加した装置であって、演算部に、一心拍以上の複数の血流マップデータから、生体組織の観察領域の表層血管内の血流と、その周囲の背景血流を分離し、表示部の血流マップ上にそれぞれの血流が区別して表示される機能が付加されている血流画像診断装置。従来の装置に、新たな血流画像診断機能を付加した新規な血流画像診断装置が提供される。

Description

血流画像診断装置
本発明は、血球を有する生体組織にレーザ光を照射し、その生体組織から反射されたスペックル信号に基づき、血流速度を測定し画像化する血流速度画像化装置に対して、新たな血流画像診断機能を付加した装置に関する。
従来、本発明者らは、眼底や皮膚など血球を有する生体組織にレーザ光を照射して、その血球からの反射光が干渉した結果形成されるランダムな斑点模様の画像、いわゆるスペックル画像を固体撮像装置(CCDやCMOS)等のイメージセンサー上に導き、このスペックル画像を連続的に所定時間間隔で多数枚取り込み・記憶し、その記憶された多数の画像の中から所定枚数の画像を選択し、各画像の各画素における出力の時間変動速度を反映した値を算出し、この値から血球の速度(血流速度)を算出する血流速度測定装置を発明してきた。この種の血流速度測定装置では、各画素の出力変動速度の値が血球の移動速度に対応するので、この算出された各画素の出力変動値に基づき、生体組織での血流分布を二次元画像(血流マップ)としてモニター画面上にカラー表示することができる。実際に観測される血流マップは、毎秒30コマ程度で算出される一連の血流マップ(以下、元マップと呼ぶこともある)で構成され、動画として表示することもできるので、眼底や皮膚の血行動態を観測する装置として実用化されている(特許文献1~6参照)。 
更に、本発明者らは、数秒間の血流測定で得られた一連の血流マップに対して、心拍に同期して周期的に現れる血流変化を観測視野内の各部位において解析し、動脈性の鋭い立ち上がり波形を有する部位と、静脈性の緩やかに上下する波形を有する部位を区別できる数値、即ち、歪度を導入し、血流マップ上に動脈性の拍動部分と静脈性の拍動部分を表示することができる血流速度画像化装置も提案した(特許文献7参照)。
ところが、これまで本発明者らが提案してきた血流速度画像化装置を用いて、例えば、眼底血流を観測した場合、実際に血流分布を演算して得られる一連の元マップは、一般に図1に示したように粒状性が粗く、血管の輪郭は粒々の点により構成されている。この粒々は、血流値を演算するスペックル画像が元々雑音性の画像であり、各画素の血流を求める際のサンプル数が有限であるため、統計的誤差が発生するからである。一連の元マップ間では当然粒々の位置や大きさは異なり、言い換えれば、各画素の血流速度を表す数値の分布は、各マップにおいて相当ばらつく結果になる。網膜上の動脈血管内を流れる血流は、心拍によって周期的に変化することが分かっており、その数値や波形は、末梢循環機能に関する重要な情報を含んでいる。しかし、これらの数値や波形を正確に検出するには、ある時点で得られた元マップ内の各画素が、表層の網膜血管部分に位置しているか、その周囲の脈絡膜やその他の組織血流(背景血流)に位置しているかを正しく識別しなければならない。これを図1のような粒状性の粗い元マップに対して行うのは容易ではなく、血流マップから表面を走っている血管領域、即ち、網膜血管の占める領域を、それ以外の背景血流の領域から確実に切り分ける手段を見つけることが大きな課題になっていた。
また、従来の血流速度画像化装置用いて、特許文献7で提案したように、眼底の血流波形を特徴づける歪度の分布を求める場合には、目的の画素に隣接する多数の画素の血流値を演算に取り入れている。そうすることでサンプル数を増やし、統計的誤差を抑えているが、血流波形の異なる血管部分と背景組織部分が混在した領域から抽出して計算しているため、血流波形情報が互いに交錯してしまう。その結果、歪度の分布を画像で表示すると、細い動脈血管の波形が、背景にある組織血流の波形に埋没し、認識しにくいという問題があった。目的の血管内の血流波形を求めるためには、血管の走行に沿って血流値を抽出して歪度を求めればよいが、上述したように、血管だけを抽出する手法の発見が課題となっていた。
また、従来の血流画像化装置では、図1のように得られた血流マップ内にある所定の血管の走行に沿って、矩形のラバーバンド(図1の中央上部の矩形の部分)と言われる領域を手動で設定して、ラバーバンド内の血流波形(図2参照)や血管断面の血流速度分布(図3参照)を調べてきた(図3の横軸は画素(Pixel)を示す)。このためには、真っ直ぐな血管を選び、しかも、血流波形を調べる際にはラバーバンドを血管の幅に合わせて細長く、厳密に設定しなければならない。血管断面を調べる際も同様で、真っ直ぐな血管を選び、血管の走行と平行にやや広い領域を設定し、血管の走行方向に血流値を加算平均して図3のような速度分布の断面図を得ている。しかし、網膜血管は図1に示されたように真っ直ぐなものは殆どなく、矩形による領域設定では測定できる血管が限定され、かつ、血流解析の度に毎回正確に血管上に乗せる操作は極めて煩雑である。動脈血管径と血流波形との関係は、眼疾患だけではなく全身の血行動態を把握する上で非常に重要な情報を含むと考えられているので、測定したい網膜血管を自由に選択し、血流波形や血管の有効径を測定できる意義は大きい。そのためにも、蛇行した血管に対して、直線部と同様に解析できるようにすることが大きな課題であった。
一方、眼底の各部位(観察領域)の血流波形を、歪度を用いて数値化する際に、波形に二次ピークが出現するときや、ピーク位置に揺らぎがあるときは、歪度も影響を受ける。また、動脈血流の上昇時の波形と、下降時の波形には末梢循環機能に関するそれぞれ別の要因が関係している可能性もある。従って、歪度のみで血流波形を特徴づけるには不十分であり、他の指標を導入して総合的に判断する必要性もあった。
特公平5-28133号公報 特公平5-28134号公報 特開平4-242628号公報 特開平8-112262号公報 特開2003-164431号公報 特開2003-180641号公報 国際公開第2008/69062号パンフレット
本発明の課題は、従来の血流速度測定装置を応用・展開し、血流波形に二次ピークが出る場合や、血流値の分散の多い場合において、生体組織の表層にある血流(表層血流)と背景にある血流(背景血流)を表す値の収束性を良くするための手段と、蛇行した血管等のように血管径の認識の難しい血管領域を自動認識し、平均的な血管径を算出し、表示することができる手段を有する血流画像診断装置を提供することにある。
上記課題は、請求の範囲の請求項1~18に記載された、本発明の各態様によって達成される。
本発明の請求項1に記載された発明の態様は、血球を有する生体組織の観察領域にレーザ光を照射するレーザ光照射系と、前記生体組織の観察領域からの反射光を検出する多数の画素からなる受光部を有する受光系と、前記受光部からの信号に基づき一心拍以上の所定時間で連続的に複数の画像を取り込む画像取込部と、前記複数の画像を記憶する画像記憶部と、該記憶された複数画像の対応する各画素の出力信号の時間的変化から生体組織内の血流速度を演算する演算部と、該演算結果の二次元分布を血流マップとして表示する表示部からなる血流速度画像化装置に、得られた血流マップを解析するための機能を付加した装置であって、前記演算部は、前記一心拍以上の複数の血流マップデータから、前記生体組織の観察領域の表層部位に見えている血管(表層血管)内の血流と、その周囲の背景部位にある血流(背景血流)を分離する機能を有し、前記表示部は、それぞれの部位の血流マップを区別して表示する機能を有し、かつ、前記演算部は、前記各部位の血流値、血流波形、血管径などの血流に関する情報を演算し比較する機能を有し、表示部には、それらの演算結果を表示する機能が付加されていることを特徴とする血流画像診断装置である。
本発明において、「生体組織の表層部位に見えている血管(表層血管)内の血流」は、血流マップから判断して、表層部位、例えば、網膜上等の血管自体をも表すが、「その周囲の背景部位にある血流(背景血流)」は、文字通り、その表層部位の血管の周囲の、脈絡膜やその他の組織の血流(背景血流)」を意味する。本発明の装置を用いる場合には、網膜等の生体組織の表層部位にあるものは、網膜血管としてはっきりと確認できるが、背景部位にある脈絡膜血管等は、はっきりと確認することはできず、背景部位の血流としてしか確認できない。従って、本明細書では、前者は「血管」と同義として用いられ、後者は「血流」としてのみ、区別して用いられている。
本発明の血流画像診断装置には、前記各部(手段)に加えて、公知の機構や手段を、必要に応じて付加あるいは組み込むことができるのは言うまでもない。
請求項2に記載された発明の態様は、前記演算部が、前記複数の血流マップデータについて、測定対象の動きによって発生した各マップ間の位置のずれ量を計算し、ずれ量を補正して重ね、平均血流マップを求めた後、予め定めた閾値を境にして血流の高い領域と低い領域に分け、更に孤立点を除去し、高い値の連なりを表層血管内の血流と見なし、それ以外は背景血流と見なして両者を分離し、各マップに反映させ、予め設定したマップ内の領域について表層部位に見えている表層血管の血流と、背景部位にある背景血流を別々に抽出してそれぞれの部位の前記血流に関する情報を取得する機能を有することを特徴とする請求項1記載の血流画像診断装置である。
請求項3に記載された発明の態様は、前記演算部が、血流マップ内に予め設定した一箇所以上の領域において、前記機能によって分離された表層血管の血流と背景血流のそれぞれについて血流波形を求め、心拍による血流変化の増加時と減少時のいずれか、又は、両方の血流波形の特徴を数値化し、それぞれの領域について得られた値を表示し、比較する機能を有することを特徴とする請求項1記載の血流画像診断装置である。
請求項4に記載された発明の態様は、前記演算部が、血流マップ内に予め設定した一箇所以上の領域において、前記機能によって分離された表層血管の血流と背景血流のそれぞれについて血流波形の歪度を求め、それぞれの領域について得られた値を表示し、比較する機能を有することを特徴とする請求項1記載の血流画像診断装置である。
請求項5に記載された発明の態様は、前記演算部が、血流マップ内に予め設定した一箇所以上の領域において、前記機能によって分離された表層血管の血流と背景血流のそれぞれについて血流波形を求め、波形がピーク値を取る時から最低値に達するまでの血流積分値を求め、次に、同じ時間内において(血流のピーク値-最低値)=定数を積算した値を求め、両者の比を求めることにより血流波形の特徴を数値化し、それぞれの領域について得られた値を表示し、比較する機能を有することを特徴とする請求項1記載の血流画像診断装置である。
請求項6に記載された発明の態様は、前記演算部が、血流マップ内に予め設定した一箇所以上の領域において、前記機能によって分離された表層血管の血流と背景血流のそれぞれについて血流波形を求め、血流波形の振幅を求め、該振幅の平均血流値に対する比を演算し血流波形の特徴を数値化し、それぞれの領域について得られた値を表示し、比較する機能を有することを特徴とする請求項1記載の血流画像診断装置である。
請求項7に記載された発明の態様は、前記演算部が、血流マップ内の表層血管を含む領域を一箇所以上設定し、前記機能によって表層血管の血流と背景血流を分離し、それぞれの領域の血流値を抽出し平均値を算出することにより、該表層血管内を流れる平均血流値と背景血流の平均値を別々に求める機能、及び、それぞれの領域について得られた値を表示し、比較する機能を有することを特徴とする請求項1記載の血流画像診断装置である。血流マップ内の表層血管を含む領域としては、例えば、矩形の領域を設定すればよい。
請求項8に記載された発明の態様は、請求項7に記述された手法により表層血管と背景血流を分離した後、該表層血管に相当する領域の総画素数を算出することにより、該表層血管の直径に比例する数値を算出し、表示し、比較する機能を有することを特徴とする請求項1記載の血流画像診断装置である。
請求項9に記載された発明の態様は、請求項7に記述された手法により表層血管と背景血流を分離した後、該表層血管の両側にある背景血流との境界線を求め、該境界線の間隔から該表層血管の直径を算出し、表示し、比較する機能を有することを特徴とする請求項1記載の血流画像診断装置である。
請求項10に記載された発明の態様は、請求項1~9で得られた記載演算結果を、測定日時の異なる別の血流画像データに対して同様の演算を行った結果と比較し、後者を基準にした前者の増減の比率を演算し、表示する機能を有することを特徴とする請求項3~9のいずれか1項記載の血流画像診断装置である。
請求項11に記載された発明の態様は、表層血管と背景血流を分離するマスクを求める際に、インコヒーレント光を眼底に照射して得られた網膜画像の明暗を利用してマスクを作成し、これを各血流マップに反映させ、それぞれの部位の前記血流に関する情報を取得する機能を有することを特徴とする請求項1~10のいずれか1項記載の血流画像診断装置である。
請求項12に記載された発明の態様は、前記演算部が、血流マップ内の表層血管を含む矩形領域を一箇所以上設定し、かつ、矩形の長手方向を血管の走行に沿って設定した矩形領域に対し、前記機能によって表層血管の血流と背景血流を分離した後、表層血管に相当する領域の各画素における血流値から背景血流の値を減算した値の総和を求め、これを矩形の長手方向の画素数で割ったものを表層血管の血流量に比例する値として算出し、表示し、各領域における値や、異なる時間に測定した値を相互に比較する機能を有することを特徴とする請求項1記載の血流画像診断装置である。
請求項13に記載された発明の態様は、前記演算部によって得られた表層血管の血流量に比例する値が、測定中に変化する様子を解析し、血流量波形として表示し、波形の特徴を解析して数値化する機能を有することを特徴とする請求項12記載の血流画像診断装置である。
請求項14に記載された発明の態様は、前記演算部が、視神経乳頭部から四方に広がる多数の網膜血管を含む領域において、この領域の境界を横切る血管内を流れる血流の波形分析から動脈と静脈を区別し、それぞれの血流量や血流波形を解析し、各血管の近傍に表示する機能、もしくは、一覧表としてファイル出力する機能、又は、異なる日時に測定したこれらの値を比較できる機能を有することを特徴とする請求項1記載の血流画像診断装置である。
請求項15に記載された発明の態様は、前記演算部が、視神経乳頭部から四方に広がる多数の網膜血管を含む領域において、この領域の境界を通って出入りする動脈と静脈の総血流量をそれぞれ算出し、両者の比の値や、異なる日時に測定したこれらの値を比較できる機能を有することを特徴とする請求項1記載の血流画像診断装置である。
請求項16に記載された発明の態様は、前記演算部が、視神経乳頭部から四方に広がる多数の網膜血管を含む領域において、該領域内を通過する血管径と血流量の比を算出し、これらを数字や色によって表示する機能を有することを特徴とする請求項1記載の血流画像診断装置である。
請求項17に記載された発明の態様は、前記演算部が、血流マップ内の交差する表層血管、もしくは、一本の表層血管から分岐した前後の血管において、それぞれの血管の血流量や血流波形を解析し、各血管の近傍に表示する機能、もしくは、一覧表としてファイル出力する機能、又は、異なる日時に測定したこれらの値を比較できる機能を有することを特徴とする請求項1記載の血流画像診断装置である。
請求項18に記載された発明の態様は、前記演算部が、血流マップ内の表層血管において、表層血管の血流量および血流値の経時波形を解析し、これら波形のピーク位置の差異を算出し、これらを数字や色によって表示する機能を有することを特徴とする請求項1記載の血流画像診断装置である。
前記請求項1記載の発明の態様は、表層血管と背景血流を分離し、両者の血流マップを区別して表示し、更に、表層部位と背景部位のそれぞれの部位の血流値、血流波形、血管径などの血流に関する情報を演算し比較し、それらの演算結果を表示する機能が付加された装置に関するものである。請求項2記載の態様は、具体的に、平均血流マップを利用して分離する技術を示すものであり、請求項3記載の態様は、請求項1記載の態様で分離されたそれぞれの血流マップの波形の特徴を数値化するものである。請求項4、5、6に記載の態様は、波形の特徴をそれぞれ歪度、面積比、振幅の平均値に対する比で表示するものである。請求項7記載の態様は、請求項1記載の態様で分離された表層血管の平均血流を表示するものであり、請求項8記載の態様は、表層血管の占める総画素数から血管径の増減を評価し、表示するものであり、請求項9記載の態様は、表層血管の両側の境界線を求め、境界線の間隔から血管径を読み取ることを特徴とするものである。そして、請求項10記載の態様は、請求項1~9までの演算結果について、測定日時の異なる別の血流画像データを基準にした増減の比率を演算し、表示することを特徴とするものである。請求項11記載の態様は、マスクを形成するための平均血流マップ以外のものを用いるものである。
請求項12、13、17と18記載の態様は、表層血管の血流量に比例する値(RFV)を算出し、これを表示、比較、解析等することを特徴とするものである。請求項14~16記載の態様は、前記請求項1記載の発明を、視神経乳頭部から四方に広がる多数の網膜血管を含む領域に適用することを特徴とするものである。
本発明の装置によると、従来まで明確に区別できなかった網膜血管と背景組織の血流波形を分離して解析できる。また、中心動静脈から周囲に広がる各血管に対して、走行に沿ってグループ化すれば、動脈と静脈の区別もより正確にできる。血流波形に二次ピークが出る場合や、通常、血流波形から大きく外れた点の多い、分散の大きい複雑な血流波形を有する領域に対しても、表層血流又は網膜血管と背景血流又は背景組織の血管を識別したマップが得られる。
これまでは蛇行した網膜血管には、ラバーバンドを設定しても血管径を測定することはできなかったが、特定のマスクによって切り出された血管の中心線を決め、マスクエッジまでの距離を求めれば、蛇行した血管の内径も推定でき、血行促進効果も評価できる。更に進んで、血管内とその背景組織を分離して、それぞれの血流波形や血流量も評価できるので、循環系の機能評価に新たな情報を提供できる。特に動脈の血流波形を精度よく観測できることは、動脈硬化の診断に極めて有効と考えられる。
眼底血流を観測し血流分布を演算して得られる一連の元マップの一例を示す図。 図1で得られた血流マップ内にある所定の血管の走行に沿って設定された、矩形のラバーバンド内の血流波形を示す図。 図2の矩形のラバーバンド内の血管断面の血流速度分布を示す図。 各元マップのずれ量を計算し、移動量を補正して重ねて得られた平均血流マップの一例を示す図。 マスク画像の一例を示す図。 血管の曲線部にやや大きめに設定された矩形領域を示す図。 図6の矩形部分を抜き出し、血管を直線化するやり方を説明するための図。 図7のように直線に変換された血流分布を縦方向に平均化し、得られた血管断面の血流速度分布と、平均的な血管径を求める手法を説明するための図。 分岐部において、親血管VTと分岐後の血管VB1とVB2のそれぞれに対してラバーバンドRB0、RB1、RB2を設定した図、及び各部位の血流波形を表示した図。 血管断面の血流分布と血流量への変換の仕方を説明する図。 RFV0とRFV1+RFV2の相関を健康成人5人の眼底血流マップについて調べた結果をプロットした図。 乳頭全域を含む領域に同心円のラバーバンドを描いた状態を示す図。 血流の下降時の波形の特徴を説明するための図。 60代の血流の波形の特徴を示す図。 20代の血流の波形の特徴を示す図。 血流波形とRFV波形の差異を示す図。
本発明の血流画像診断装置は、血球を有する生体組織にレーザ光を照射するレーザ光照射系と、前記生体組織からの反射光を検出する多数の画素からなる受光部を有する受光系と、前記受光部からの信号に基づき一心拍以上の所定時間で連続的に複数の画像を取り込む画像取込部と、前記複数の画像を記憶する画像記憶部と、該記憶された複数画像の対応する各画素の出力信号の時間的変化から生体組織内の血流速度を演算する演算部と、該演算結果の二次元分布を血流マップとして表示する表示部を有している。そして、前記演算部には、前記一心拍以上の複数の血流マップデータから、前記生体組織の表層に見えている血管(表層血管)内の血流と、その周囲の背景にある血流(背景血流)を分離し、前記表示部の血流マップ上にそれぞれの血流が区別して表示される機能が付加されている。例えば、表示部においてそれぞれの血流マップを別の画像として並べて表示したり、奥行き方向に並べて立体的に表示できるようになっている。このように分離して別々に表示する機能があれば、それぞれの部位の平均血流値が前回の測定に比べてどの程度変化しているかを一目で概観できるので、診断に利用できる。
一心拍以上の複数画像データから、前記生体組織の表層にある血流、そしてそれから算出される網膜血管と、背景にある血流、即ち、背景血流を分離する手法としては、具体的には、例えば、以下のような方法がある。即ち、固視移動を含む元マップに対して各マップのずれ量を計算し、移動量を補正して重ねる。この操作をトラッキングと呼び、重ねた結果は図4のような平均血流マップとなる。このマップは、多数の元マップを重ねて平均化したため、図1に比べ粒状性が大幅に低減し、血管の輪郭がくっきりと認識できるようになっている。
例えば、ある閾値以上の血流値がある画素点を1、それ以下の画素点を0とする2値画像を作り、更に、孤立点はノイズとして除去すれば、図5のような血管部分を取り出すマスク画像が得られる。前記トラッキング処理では、1番目の元マップを起点とし、そこから最後の元マップまでの全てのマップのずれ量と、平均血流マップの相対的位置が算出され、保存されている。従って、平均血流マップ上に描かれたマスクパターンは、相対位置関係が分かっている全ての元マップに重ねることにより、血管部分を正確に抽出できる。
血流マップ内の所定の血管について血流波形を求める際は、解析したい血管を含む領域を大まかに設定すれば、前記の血管抽出法によって血管内の値だけを抽出することも、背景の血管層の波形だけを抽出することもできる。また、両者の血流分布を前後に並べて立体的に表示することもできる。従来のように直線的な血管を選ぶ必要も、位置合わせに注意を払う必要もなくなり、解析対象の拡大と、解析作業の能率化を図ることができる。
本発明者らが先に提案した装置では、矩形などの単純な形のラバーバンドしかサポートしていないため、網膜血管の血流を読み取る際、血管のカーブに沿って曲線的なラバーバンドを描くことは困難であり、できるだけ直線的な血管を探して、そこに矩形のラバーバンドを設定して値を読み取ることしかできなかったが、かかる問題点は、本発明における前記のような方法・手段で解決された。
また、例えば、眼底血流について、波形を特徴づける指標の一つである歪度のマップを求める場合、ある一つの画素における歪度を計算するには、前述したようにその周囲の多数の画素のデータを計算に含めないと、統計的誤差によって値がばらつき、マップの画質が低下する。しかし、それにより空間的分解能が低下し、細い血管の情報が消えてしまう。これに対して、本発明による前記のマスクを使えば、図5に示したように、血管が乳頭中心から次第に周囲に広がっていく上流から下流に至る各部位について、所定の範囲の血管内の値だけを抽出することで、各部位の波形を別々に取り出すことができる。例えば、血管狭窄部周辺の上流から下流に向かっていくつかの地点に領域を設定し、それぞれの領域から得られた血流波形を比較することで、病態の把握や治療効果の確認など、種々の診断に利用できる。
現在実用化されている眼底血流画像化装置には、固視移動を考慮しながら多数の心拍にわたる元マップを一心拍に重ね合わせた「心拍マップ」という表示機能があるが、これに前記マスクを重ねれば、直接一心拍にまとめた波形を正確に取り出すことも出来る。
網膜上の血管が蛇行していても、前記のマスクを利用すれば、血流速度を読み取ったり、血管の断面を求めることができる。例えば、図6のような血管の曲線部に矩形領域(図6中の矩形領域)をやや大きめに設定し、前記のマスクを求めて、血管に相当する部分の各画素の血流値を平均すれば、それが血管内を流れる平均血流速度になる。また、血管に相当する部分の総画素数は血管径に比例する量なので、これが前回に比べて増えていれば、血管が拡張していると判断できる。
蛇行した血管の断面の血流速度分布を求めるには、以下のようにして血管を直線化すればよい。図6の矩形部分を抜き出し、血管を直線化したものが図7である。先ず、図6の矩形の領域内の値を全部抽出し、長軸方向が列に、単軸方向が行になるように並べ替える。そして、最も高い値を取る場所が血管の中心であると考えて、これが上下に真っ直ぐになるように行データを左右にずらしていけば、図7のような、血管が真っ直ぐな画像に変換される。血管を直線化したため、図6の血管周辺部が、図7では逆方向にうねっているのが分かる。図7で、血管に沿って描いてある2本の縦線が、この図から読み取られた血管のエッジで、血管の両側にある背景血流との境界線に該当する。これから血管径を推定することができる。また、図7の画像を構成するデータの行列で、各行の値を列の方向に平均化したものが、図8であり、この断面図から血管の有効径を求め、比較することもできる。
前述したように元マップに比べると、平均血流マップでは粒状性が改善されてはいるが、それでも血管の中心線が血流最高値と一致しない場合も多い。その場合はマスクによって表現される血管の両側の境界線を求め、両境界線の間隔を求めることにより、血管径を決めることができる。更に、図7で血管の走行に沿って血管径を算出し、その一様性を評価する機能を設けておけば、コレステロールなどによる血管狭窄部の発見も可能になる。このように本発明が備える血管径を測定する機能は、眼科のみならず成人病に起因する血行障害など、内科領域における診断にも利用できる。なお血管の走行に沿って矩形領域を設定するのが簡潔な手法であるが、領域を楕円など別の形で設定した場合でも、血管の走行方向を予め与えるか、ソフトウェアが解析して方向を認識するようにすれば、血管径の解析は可能である。
以上述べてきたように、本発明によって網膜血管内の平均血流速と血管径、血流速度の時間変化を示す波形などの情報を取り出せることが解ったが、臨床ではさらにその血管内の血流量の増減を把握したい場合がよくある。血流量の情報を引き出すために、図9のような血管の分岐部分に注目し、血流量が分岐前後で保存されるための条件を、実際の血流マップデータを基に詳細に調べた。血流マップ内で網膜血管と背景血管の占める領域を分離できるようになったので、網膜血管部分で得られる数値が背景血流の影響で持ち上がっていることを考慮し、その分を差し引けば網膜血管の血流量を推定できる。
図9に示したような分岐部について、親血管VTと分岐後の血管VB1、VB2のそれぞれに対して流れに沿ってラバーバンドRB0、RB1、RB2を設定する。前記の方法によって血管を直線化し、流線方向に平均化した値<MBR>をプロットすると、図10のような血管断面方向の血流速度分布が得られる。さらに図10のように、血管部位(領域)と背景部位(領域)を区分けするための閾値レベルTL(破線)を適切に設定し、四角い枠S内にある棒グラフの値が網膜血管の値であると見なす。ただしこの値は背景血流によって持ち上がっていると考えられるので、そのレベルを示すベースラインBLの値を差し引き、最終的にはベースラインから上、すなわち枠S内の値だけが網膜血管の血流成分であると考え、これらを加算した結果をRelative Flow Volume (RFV)と呼ぶことにする。
図9のRB0~RB2の各領域に対してそれぞれRFV値(RFV0~RFV2)を算出し、RFV0とRFV1+RFV2の相関を健康成人5人の眼底血流マップについて調べた結果を図11に示す。この結果は個体差を考慮しても十分に高い相関を示している。図9は動脈の分岐部を図示しているが、図11で静脈も動脈と同様の高い相関が得られていることから、静脈の合流部においてもRFV値による血流量が保存されていることが判る。したがって上記の演算によって得られたRFV値は、動脈・静脈のいずれにおいても分岐前後で保存則が成立し、血流量の指標として十分利用可能であることが判った。
上記のRFV値の計算では、先に血管の走行方向に平均化して断面の分布を求め、さらに血管周囲の値からベースラインを求めて減算した後、断面方向に総和を取っている。この演算の代わりに、ラバーバンド内のある閾値以上の値をサンプルし、各値から背景血流成分を差し引いた後、総和を求め、血管の走行方向に沿ったラバーバンドの中心線の長さに相当する画素数で割った値を用いても同様の結果が得られる。
血流量RFV値は「平均血流マップ」以外に、前述した「元マップ」と「心拍マップ」についても計算でき、その場合はRFV値の時間的な変動を観察できる。このようにして得られたRFV値の経時変化を求め、血流量の波形に対して、請求項4~6に記載された発明の態様に従った手法によってその特徴を数値化し、比較できることは言うまでもない。血管の分岐部において流量が保存されない場合や、それぞれの血管の血流波形やそれらを特徴づける数値が異なる場合は、血行が何らかの原因によって阻害されている可能性が高い。
例えば、図12に示した例のように、血管の分岐後、一方の血管の血流波形あるいはRFV波形が分岐前の血管の波形と大きく異なる場合、その先の血管抵抗が他方に比べて大きくなっている可能性高い。これは動脈と静脈が交差する場所でも、交差前後の合計4箇所の血流波形を比較することで、交差部において血行が阻害されていないかを診断できる。網膜血管の複数の領域で得られた血流波形の特徴を表す指標、例えば、歪度の値を比較する機能は、血行動態の診断に有効に利用できる。
また、図12において、乳頭全域を含む同心円のラバーバンドを描き、両者の間のドーナッツ状の領域内の血管を全て抽出し、各血管領域内の数値から周囲の背景血流成分を差し引いた後に総和を求め、最後に血管の走行に沿った血管の長さLで割ったものが、各血管のRFV値となる。血流波形から動脈と静脈の区別はできるので、乳頭中心から網膜周辺に伸びていく動脈血流量と、周辺から乳頭中心に向けて戻ってくる静脈血流量の総量を別々に求めることもできる。両者の値の比には個体差があり、網膜血流の循環動態を示す指標として利用できる。ただしRFV値はあくまでも血流量に比例する相対値であり、動脈血管壁の厚さ等、周囲の散乱組織の影響を受ける。言い換えれば本来等しくなるべき動脈と静脈の総血流量が、RFV値を使って算出した場合にどの程度食い違うかを調べていけば、網膜血流の循環動態を示す指標として利用できることが解る。
以上の手法により、網膜血管等の血管径、平均血流速度(相対値)、血流量(相対値)の情報が得られるようになったが、これらの値は血管壁の厚さによって、微妙に影響を受ける。例えば分岐がない限り一本の血管内の血流量は保存されるはずであるが、上記の方法によって読み取った血流量が場所によって異なる場合がある。その原因としては、まず血管壁の厚さの不均一さが関係していると考えられ、逆に血管狭窄部位の特定に利用できる。
一本の血管に沿って矩形の長いラバーバンドを描いた後、幾つかのセグメントに分け、各セグメントにおける血管径、平均血流速度、血流波形やその特徴を表す指標、血流量等の情報を求め、血管の走行に沿って並べて表示すれば、上記の不均一性を容易に評価できるようになり、異常箇所を特定し易くなる。
このように網膜血管等の生体表層部位の表層血管を背景部位の背景血流から切り分け、血管径、平均血流速度、血流量、およびそれらの経時変化を測定し、それぞれの値の各部位における比較や、血管径:血流量など、各測定量の比の値を演算すれば、これまで把握できなかった血流動態を詳細に解析できるようになる。
最近になって、血流波形は加齢とともに変化することが分かり、末梢血管抵抗が影響していると考えられている。本発明者らは、特許文献7で、歪度による血流波形の数値化を試み、一定の成果を得たが、後述するように、実際の波形には下降時に二次ピークが現れる場合や、上昇時の勾配に微妙な差があることも分かってきている。歪度は、流速変化の差をおおまかに捉えることはできるが、細かい波形の変化を数値化するには十分とは言えない。本発明ではこれを補うために、下記に説明する幾つかの指標を新たに考案した。
血流の下降時の波形が、若いときは上に凸、加齢と共に下に凸になる傾向があることが最近分かってきている。これを数値化するために、図13のように血流の最高点から最低点に至る血流値を積分した値をAとし、Aを、破線で囲まれた部分の面積S、即ち、S=(最高値-最低値)×フレーム数、で割った値を導入する。この面積比は、波形が上に凸であれば1/2よりも大きく、下に凸であれば1/2より小さくなる。同様に上記の積分値A/(S-A)を使えば、波形が上に凸の場合は1より大きく、下に凸であれば1より小さい値で数値化される。これらのいずれかの面積比を用いて、上昇時についても同様に、上に凸か下に凸かの判断はできる。
眼底血流の波形が年齢によって変化する例として、60代の血流の波形を図14に、20代のそれを図15に示す。これらは、視神経乳糖組織血流マップを一心拍分にまとめた、前記心拍マップから得られた波形であり、一見しただけで以下のような差が認められる。
(1)加齢と共に最高点に到達する時間が長くなる。即ち、平均勾配が低下する。(2)上昇時の波形は、若い方がS字型に上昇するのに対して、高齢者では直線的に上昇する。(3)下降時には若い方で二次ピークが現れる場合が多い。(4)若い方が変動の振幅が小さい。即ち、拍動によって変化しない定常流成分が若いほど多い。
前記(1)に関しては、最高点に到達する時間を計測することで実現できる。(2)と(3)に関しては、波形の二次微分曲線の形状を調べることで数値化できる。(4)に関しては、変動の振幅を平均値で割れば数値化できる。これらの数値を用いることで、末梢血管抵抗や血管の弾力性、即ち、動脈硬化の進行度合いを定量化でき、診断に利用できる。
動脈硬化の進行度合いについては、同一血管上で血管部分の血流波形と先に述べた表層血管の血流量に比例するRFVの波形差異(図16)によっても確認できる。図16の1は血流波形であり、図16の2はRFVの波形である。RFV波形のピークが血流ピークに対して遅れる現象は、血管が弾性を持つために現れる特性である。心臓が収縮する過程では、まず血管内の血流が速くなって上昇し通常血管の径による容量まで血液が充填され、更に心臓が収縮し血液が押し出されてくるので、弾性力をもつ柔軟な血管であればそこから更に血管が内側から押し広げられ血流量が増える。一方、血流は血管壁により反対方向に力を受けブレーキがかかり血流は下降する。このためRFVのピークは血流に比較してピークが遅れると考えられる。波形のピーク位置の差Δtは動脈硬化が進行の度合いにより変化する事が考えられ、Δtを定量化した動脈硬化の指標として診断に利用できる可能性がある。また眼底血流測定と同時に心電図のデータも取得し、眼底血流波形やRFV波形の時間軸を、心電図波形を参照して規定すれば、各部位の血行動態をより厳密に解析できる。
本発明においては、表層血管と背景血流を分離する手法として、眼底に対して通常の眼底観察光などのインコヒーレント光で眼底を照射し、眼底血管像を撮影し、得られた画像を二値化して、両者を分離するマスクに利用することもできる。インコヒーレント光としては、血管の輪郭を捉えやすい緑色LEDなどを用い、光学フィルターでレーザ光路と分け、別に設けた撮像素子を用いて眼底血管像を取得すればよい。マスクを作成した後、各マップに適用して血流を解析する処理は、前述した手法を踏襲すれば全て可能である。
本発明の装置においては、心臓の収縮期においては血流が急速に上昇するため、演算された一連の血流マップの時間分解能が不足して、波形の微妙な変化を評価できない場合には、血流波形にスプライン補間などを取り入れることで、見かけ上の分解能を向上させることもできる。波形解析時のサンプル数が少ない場合は、元々のデータの信頼性が十分ではないので、かえって間違った結果が出てしまう。そこでサンプル数が一定数に達していないときは、警告を出す機能を付けて、血流波形評価の精度を向上させることもできる。
 
 

Claims (18)

  1. 血球を有する生体組織の観察領域にレーザ光を照射するレーザ光照射系と、前記生体組織の観察領域からの反射光を検出する多数の画素からなる受光部を有する受光系と、前記受光部からの信号に基づき一心拍以上の所定時間で連続的に複数の画像を取り込む画像取込部と、前記複数の画像を記憶する画像記憶部と、該記憶された複数画像の対応する各画素の出力信号の時間的変化から生体組織内の血流速度を演算する演算部と、該演算結果の二次元分布を血流マップとして表示する表示部からなる血流速度画像化装置に、得られた血流マップを解析するための機能を付加した装置であって、前記演算部は、前記一心拍以上の複数の血流マップデータから、前記生体組織の観察領域の表層部位に見えている血管(表層血管)内の血流と、その周囲の背景部位にある血流(背景血流)を分離する機能を有し、前記表示部は、それぞれの部位の血流マップを区別して表示する機能を有し、かつ、前記演算部は、前記各部位の血流値、血流波形、血管径などの血流に関する情報を演算し比較する機能を有し、表示部には、それらの演算結果を表示する機能が付加されていることを特徴とする血流画像診断装置。
  2. 前記演算部は、前記複数の血流マップデータについて、測定対象の動きによって発生した各マップ間の位置のずれ量を計算し、ずれ量を補正して重ね、平均血流マップを求めた後、予め定めた閾値を境にして血流の高い領域と低い領域に分け、更に孤立点を除去し、高い値の連なりを表層血管内の血流と見なし、それ以外は背景血流と見なして両者を分離し、各マップに反映させ、予め設定したマップ内の領域について表層部位に見えている表層血管の血流と、背景部位にある背景血流を別々に抽出して、それぞれの部位の前記血流に関する情報を取得する機能を有することを特徴とする請求項1記載の血流画像診断装置。
  3. 前記演算部は、血流マップ内に予め設定した一箇所以上の領域において、前記機能によって分離された表層血管の血流と背景血流のそれぞれについて血流波形を求め、心拍による血流変化の増加時と減少時のいずれか、又は、両方の血流波形の特徴を数値化し、それぞれの領域について得られた値を表示し、比較する機能を有することを特徴とする請求項1記載の血流画像診断装置。
  4. 前記演算部は、血流マップ内に予め設定した一箇所以上の領域において、前記機能によって分離された表層血管の血流と背景血流のそれぞれについて血流波形の歪度を求め、それぞれの領域について得られた値を表示し、比較する機能を有することを特徴とする請求項1記載の血流画像診断装置。
  5. 前記演算部は、血流マップ内に予め設定した一箇所以上の領域において、前記機能によって分離された表層血管の血流と背景血流のそれぞれについて血流波形を求め、波形がピーク値を取る時から最低値に達するまでの血流積分値を求め、次に、同じ時間内において(血流のピーク値-最低値)=定数を積算した値を求め、両者の比を求めることにより血流波形の特徴を数値化し、それぞれの領域について得られた値を表示し、比較する機能を有することを特徴とする請求項1記載の血流画像診断装置。
  6. 前記演算部は、血流マップ内に予め設定した一箇所以上の領域において、前記機能によって分離された表層血管の血流と背景血流のそれぞれについて血流波形を求め、血流波形の振幅を求め、該振幅の平均血流値に対する比を演算し血流波形の特徴を数値化し、それぞれの領域について得られた値を表示し、比較する機能を有することを特徴とする請求項1記載の血流画像診断装置。
  7. 前記演算部は、血流マップ内の表層血管を含む領域を一箇所以上設定し、前記機能によって表層血管の血流と背景血流を分離し、それぞれの領域の血流値を抽出し平均値を算出することにより、該血管内を流れる平均血流値と背景血流の平均値を別々に求める機能、及び、それぞれの領域について得られた値を表示し、比較する機能を有することを特徴とする請求項1記載の血流画像診断装置。
  8. 前記演算部は、血流マップ内の表層血管を含む領域を一箇所以上設定し、前記機能によって表層血管の血流と背景血流を分離し、該表層血管に相当する領域の総画素数を算出することにより、該表層血管の直径に比例する数値を算出し、表示し、比較する機能を有することを特徴とする請求項1記載の血流画像診断装置。
  9. 前記演算部は、血流マップ内の表層血管を含む領域を一箇所以上設定し、前記機能によって表層血管の血流と背景血流を分離した後、該表層血管の両側にある背景血流との境界線を求め、該境界線の間隔から該表層血管の直径を算出し、表示し、比較する機能を有することを特徴とする請求項1記載の血流画像診断装置。
  10. 前記請求項1~9で得られた演算結果を、測定日時の異なる別の血流画像データに対して同様の演算を行った結果と比較し、後者を基準にした前者の増減の比率を演算し、表示する機能を有することを特徴とする請求項1~9のいずれか1項記載の血流画像診断装置。
  11. 表層血管と背景血流を分離するマスクを求める際に、インコヒーレント光を眼底に照射して得られた網膜画像の明暗を利用してマスクを作成し、これを各血流マップに反映させ、それぞれの部位の前記血流に関する情報を取得する機能を有することを特徴とする請求項1~10のいずれか1項記載の血流画像診断装置。
  12. 前記演算部は、血流マップ内の表層血管を含む矩形領域を一箇所以上設定し、かつ、矩形の長手方向を血管の走行に沿って設定した矩形領域に対し、前記機能によって表層血管の血流と背景血流を分離した後、表層血管に相当する領域の各画素における血流値から背景血流の値を減算した値の総和を求め、これを矩形の長手方向の画素数で割ったものを表層血管の血流量に比例する値として算出し、表示し、各領域における値や、異なる時間に測定した値を相互に比較する機能を有することを特徴とする請求項1記載の血流画像診断装置。
  13. 前記演算部によって得られた表層血管の血流量に比例する値が、測定中に変化する様子を解析し、血流量波形として表示し、波形の特徴を解析して数値化する機能を有することを特徴とする請求項12記載の血流画像診断装置。
  14. 前記演算部は、視神経乳頭部から四方に広がる多数の網膜血管を含む領域において、この領域の境界を横切る血管内を流れる血流の波形分析から動脈と静脈を区別し、それぞれの血流量や血流波形を解析し、各血管の近傍に表示する機能、もしくは、一覧表としてファイル出力する機能、又は、異なる日時に測定したこれらの値を比較できる機能を有することを特徴とする請求項1記載の血流画像診断装置。
  15. 前記演算部は、視神経乳頭部から四方に広がる多数の網膜血管を含む領域において、この領域の境界を通って出入りする動脈と静脈の総血流量をそれぞれ算出し、両者の比の値や、異なる日時に測定したこれらの値を比較できる機能を有することを特徴とする請求項1記載の血流画像診断装置。
  16. 前記演算部は、視神経乳頭部から四方に広がる多数の網膜血管を含む領域において、該領域内を通過する血管径と血流量の比を算出し、これらを数字や色によって表示する機能を有することを特徴とする請求項1記載の血流画像診断装置。
  17. 前記演算部は、血流マップ内の交差する表層血管、もしくは、一本の表層血管から分岐した前後の血管において、それぞれの血管の血流量や血流波形を解析し、各血管の近傍に表示する機能、もしくは、一覧表としてファイル出力する機能、又は、異なる日時に測定したこれらの値を比較できる機能を有することを特徴とする請求項1記載の血流画像診断装置。
  18. 前記演算部は、血流マップ内の表層血管において、表層血管の血流量および血流値の経時波形を解析し、これら波形のピーク位置の差異を算出し、これらを数字や色によって表示する機能を有することを特徴とする請求項1記載の血流画像診断装置。
     
PCT/JP2010/056980 2009-05-13 2010-04-20 血流画像診断装置 WO2010131550A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011513293A JP5578735B2 (ja) 2009-05-13 2010-04-20 血流画像診断装置
US13/254,754 US9028421B2 (en) 2009-05-13 2010-04-20 Blood flow image diagnosing device
EP10774808.9A EP2430973B1 (en) 2009-05-13 2010-04-20 Blood flow image diagnosing device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009116050 2009-05-13
JP2009-116050 2009-05-13
JP2009246274 2009-10-27
JP2009-246274 2009-10-27

Publications (1)

Publication Number Publication Date
WO2010131550A1 true WO2010131550A1 (ja) 2010-11-18

Family

ID=43084927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056980 WO2010131550A1 (ja) 2009-05-13 2010-04-20 血流画像診断装置

Country Status (4)

Country Link
US (1) US9028421B2 (ja)
EP (1) EP2430973B1 (ja)
JP (1) JP5578735B2 (ja)
WO (1) WO2010131550A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096878A3 (en) * 2011-01-10 2012-09-07 East Carolina University Methods, systems and computer program products for non-invasive determination of blood flow distribution using speckle imaging techniques and hemodynamic modeling
JP2012176095A (ja) * 2011-02-25 2012-09-13 Canon Inc 画像処理装置及び画像処理システム
WO2013137148A1 (ja) * 2012-03-12 2013-09-19 株式会社トプコン 光画像計測装置、画像表示装置、および画像表示方法
JP2013202298A (ja) * 2012-03-29 2013-10-07 Topcon Corp 画像表示装置、画像表示方法、及びプログラム
WO2014175154A1 (ja) * 2013-04-23 2014-10-30 ソフトケア有限会社 血流画像診断装置及び診断方法
US9226673B2 (en) 2011-01-10 2016-01-05 East Carolina University Methods, systems and computer program products for non-invasive determination of blood flow distribution using speckle imaging techniques and hemodynamic modeling
JP2016123689A (ja) * 2014-12-29 2016-07-11 花王株式会社 皮膚血流量の計測方法
JP2016144531A (ja) * 2015-02-06 2016-08-12 キヤノン株式会社 眼科装置及びその制御方法、並びに、プログラム
JP2017000733A (ja) * 2015-06-08 2017-01-05 株式会社トーメーコーポレーション 速度測定装置、速度測定プログラムおよび速度測定方法
WO2017038729A1 (ja) * 2015-09-01 2017-03-09 コスモテック株式会社 血行状態評価方法、血流計測装置、および血流計測システム
WO2017094380A1 (ja) * 2015-12-04 2017-06-08 ソニー株式会社 情報処理装置、スペックルイメージングシステム、及び情報処理方法
JP2017534378A (ja) * 2014-10-14 2017-11-24 イースト カロライナ ユニバーシティ 血流量及び灌流量のマルチスペクトル画像化によって得られる信号を使用して血行動態パラメータを決定する方法、システム、及びコンピュータプログラム製品
JP2018011726A (ja) * 2016-07-20 2018-01-25 大日本印刷株式会社 眼底画像処理装置
US9986909B2 (en) 2011-02-25 2018-06-05 Canon Kabushiki Kaisha Image processing apparatus and image processing system for displaying information about ocular blood flow
US10058256B2 (en) 2015-03-20 2018-08-28 East Carolina University Multi-spectral laser imaging (MSLI) methods and systems for blood flow and perfusion imaging and quantification
JP2018143427A (ja) * 2017-03-03 2018-09-20 キヤノン株式会社 眼科装置、装置の制御方法及びプログラム
JP2019055134A (ja) * 2017-09-22 2019-04-11 株式会社トプコン 眼科撮影装置及び眼科情報処理装置
JP2019115680A (ja) * 2012-11-30 2019-07-18 キヤノンメディカルシステムズ株式会社 カラーマップの生成方法、医用画像処理装置、医用画像処理システム、及びプログラム
US10390718B2 (en) 2015-03-20 2019-08-27 East Carolina University Multi-spectral physiologic visualization (MSPV) using laser imaging methods and systems for blood flow and perfusion imaging and quantification in an endoscopic design
WO2020138224A1 (ja) * 2018-12-28 2020-07-02 株式会社トプコン 血流計測装置、その制御方法、プログラム、及び記録媒体
US10722173B2 (en) 2014-10-14 2020-07-28 East Carolina University Methods, systems and computer program products for visualizing anatomical structures and blood flow and perfusion physiology using imaging techniques
US10776960B2 (en) 2012-11-30 2020-09-15 Canon Medical Systems Corporation Medical image diagnostic apparatus
US11553844B2 (en) 2014-10-14 2023-01-17 East Carolina University Methods, systems and computer program products for calculating MetaKG signals for regions having multiple sets of optical characteristics
US11877831B2 (en) 2022-03-14 2024-01-23 O/D Vision Inc. Systems and methods for artificial intelligence based blood pressure computation based on images of the outer eye

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8838210B2 (en) * 2006-06-29 2014-09-16 AccuView, Inc. Scanned laser vein contrast enhancer using a single laser
EP2665406B1 (en) * 2011-01-20 2021-03-10 University of Iowa Research Foundation Automated determination of arteriovenous ratio in images of blood vessels
WO2013157142A1 (ja) * 2012-04-20 2013-10-24 パイオニア株式会社 血圧推定装置及び方法
US20130324810A1 (en) * 2012-06-01 2013-12-05 Yuri Gelland Cerebral and Retinal Perfusion Monitoring Systems and Devices
US9462954B2 (en) * 2013-09-04 2016-10-11 Siemens Aktiengesellschaft Method and system for blood flow velocity reconstruction from medical images
US10070796B2 (en) 2015-02-04 2018-09-11 General Electric Company Systems and methods for quantitative microcirculation state monitoring
US20190246918A1 (en) * 2016-07-14 2019-08-15 Koninklijke Philips N.V. Apparatus, system and method for feedback on quality of property measurement in a vessel
RU2648029C2 (ru) * 2016-08-10 2018-03-21 Самсунг Электроникс Ко., Лтд. Устройство и способ измерения кровяного давления
EP3519828A4 (en) * 2016-09-29 2020-06-03 Animantis, LLC METHOD AND DEVICE FOR EVALUATING IMMUNE SYSTEM ACTIVITY AND THERAPEUTIC EFFECTIVENESS
DE102016219607A1 (de) * 2016-10-10 2018-04-12 Siemens Healthcare Gmbh Erzeugung einer mit anatomischen Bilddaten korrelierten Ergebniskarte
CN109247910B (zh) * 2017-07-12 2020-12-15 京东方科技集团股份有限公司 血管显示设备以及血管显示方法
US11116414B2 (en) * 2017-08-16 2021-09-14 Seiko Epson Corporation Biological analysis device, biological analysis method, and program
US11317873B2 (en) * 2017-08-16 2022-05-03 Seiko Epson Corporation Biological analysis device, biological analysis method, and program
US11253205B2 (en) 2017-08-16 2022-02-22 Seiko Epson Corporation Pulse pressure and blood pressure analysis device, pulse pressure and blood pressure analysis method, and program
CN109239014B (zh) * 2018-09-05 2021-04-02 西北核技术研究所 一种用于图像位置校准的特征点获取方法
CA3167541A1 (en) * 2020-02-14 2021-08-19 Activ Surgical, Inc. Systems and methods for processing laser speckle signals

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242628A (ja) 1989-09-26 1992-08-31 Hitoshi Fujii 眼科測定装置
JPH0528133B2 (ja) 1987-03-03 1993-04-23 Fujii Ryoko
JPH0528134B2 (ja) 1987-11-07 1993-04-23 Fujii Ryoko
JPH08112262A (ja) 1994-10-19 1996-05-07 Hitoshi Fujii 血流計
JP2000037351A (ja) * 1998-07-23 2000-02-08 Canon Inc 眼底検査装置
JP2003164431A (ja) 2001-11-30 2003-06-10 Hitoshi Fujii 血流速度測定装置
JP2003180641A (ja) 2001-12-13 2003-07-02 Hitoshi Fujii 血流速度測定装置
WO2006046627A1 (ja) * 2004-10-28 2006-05-04 Kyushu Institute Of Technology 広視野角眼底血流画像化装置
WO2008069062A1 (ja) 2006-12-01 2008-06-12 Kyushu Tlo Company, Limited 血流速度画像化装置
JP2008237432A (ja) * 2007-03-27 2008-10-09 Kyushu Univ 眼底血流画像化装置
JP2009095350A (ja) * 2006-06-07 2009-05-07 Kyushu Institute Of Technology レーザー光による眼底血流測定を利用した個人認証方法及び個人認証装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU608807B2 (en) * 1987-03-03 1991-04-18 Hitoshi Fujii Apparatus for monitoring bloodstream
EP0389120B1 (en) * 1989-03-06 1995-01-18 Kowa Company Ltd. Ophthalmological diagnosis method
EP0386927B1 (en) * 1989-03-06 1994-08-03 Kowa Company Ltd. Ophthalmological diagnosis apparatus
EP0392744B1 (en) * 1989-04-10 1995-03-01 Kowa Company Ltd. Ophthalmological measurement method and apparatus
JP2749115B2 (ja) 1989-04-17 1998-05-13 興和株式会社 眼科診断装置
US5150292A (en) * 1989-10-27 1992-09-22 Arch Development Corporation Method and system for determination of instantaneous and average blood flow rates from digital angiograms
JPH0428348A (ja) * 1990-05-24 1992-01-30 Hitoshi Fujii 血流状態画像化装置
US5620000A (en) * 1993-07-02 1997-04-15 Heidelberg Engineering, Optische Messsysteme Gmbh Method and apparatus for measuring flow rate, particularly of blood
US5640963A (en) * 1993-12-03 1997-06-24 Canon Kabushiki Kaisha Eye fundus blood flow meter
JP3332535B2 (ja) * 1993-12-14 2002-10-07 キヤノン株式会社 眼科測定装置
US5954658A (en) * 1997-03-21 1999-09-21 Gorti; Sridhar Method and apparatus for measuring blood flow at precise depths in tissue and skin
IL124814A (en) 1998-06-08 2003-04-10 Grinvald Amiram System and method for imaging and analysis of the movement of individual red blood corpuscles
US6569104B2 (en) 1998-07-16 2003-05-27 Canon Kabushiki Kaisha Blood vessel detecting apparatus
US6728561B2 (en) * 2001-08-14 2004-04-27 University Of Alabama In Huntsville Multispectral image processing method, apparatus and computer program product for determining the blood oxygen saturation in a vessel
DE60212917T2 (de) * 2001-10-16 2007-03-01 Kabushiki Kaisha Toshiba Vorrichtung zur Berechnung eines Index von örtlichen Blutflüssen
GB2426580C (en) * 2004-06-18 2007-03-07 Kyushu Intitute Of Technology Personal identification method by subcutaneous bloodstream measurement and personal identification device.
JP2006095350A (ja) 2004-09-28 2006-04-13 Tamura Kaken Co Ltd 昇華物質回収方法および装置
WO2007080743A1 (ja) * 2006-01-16 2007-07-19 National University Corporation Hokkaido University 検査システムおよび検査方法
JP4769952B2 (ja) * 2006-02-22 2011-09-07 国立大学法人九州工業大学 レーザー光による指先血流測定を利用した個人認証方法及び個人認証装置
JP2010508056A (ja) * 2006-10-30 2010-03-18 エルフィ−テック リミテッド 生物学的パラメータの体内での測定のためのシステム及び方法
WO2008124845A2 (en) * 2007-04-10 2008-10-16 University Of Southern California Methods and systems for blood flow measurement using doppler optical coherence tomography
DE102008003978A1 (de) * 2008-01-11 2009-08-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Druckmesser, Blutdruckmesser, Verfahren zum Bestimmen von Druckwerten, Verfahren zum Kalibrieren eines Druckmessers und Computerprogramm

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528133B2 (ja) 1987-03-03 1993-04-23 Fujii Ryoko
JPH0528134B2 (ja) 1987-11-07 1993-04-23 Fujii Ryoko
JPH04242628A (ja) 1989-09-26 1992-08-31 Hitoshi Fujii 眼科測定装置
JPH08112262A (ja) 1994-10-19 1996-05-07 Hitoshi Fujii 血流計
JP2000037351A (ja) * 1998-07-23 2000-02-08 Canon Inc 眼底検査装置
JP2003164431A (ja) 2001-11-30 2003-06-10 Hitoshi Fujii 血流速度測定装置
JP2003180641A (ja) 2001-12-13 2003-07-02 Hitoshi Fujii 血流速度測定装置
WO2006046627A1 (ja) * 2004-10-28 2006-05-04 Kyushu Institute Of Technology 広視野角眼底血流画像化装置
JP2009095350A (ja) * 2006-06-07 2009-05-07 Kyushu Institute Of Technology レーザー光による眼底血流測定を利用した個人認証方法及び個人認証装置
WO2008069062A1 (ja) 2006-12-01 2008-06-12 Kyushu Tlo Company, Limited 血流速度画像化装置
JP2008237432A (ja) * 2007-03-27 2008-10-09 Kyushu Univ 眼底血流画像化装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROSHI TAGAWA ET AL.: "Measurements of Blood Circulation in Retinal Vessels Using Laser Speckle Flowgraphy", FOLIA OPHTHALMOGICA JAPONICA, vol. 51, no. 2, 2000, pages 121 - 125 *
See also references of EP2430973A4 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096878A3 (en) * 2011-01-10 2012-09-07 East Carolina University Methods, systems and computer program products for non-invasive determination of blood flow distribution using speckle imaging techniques and hemodynamic modeling
US9226673B2 (en) 2011-01-10 2016-01-05 East Carolina University Methods, systems and computer program products for non-invasive determination of blood flow distribution using speckle imaging techniques and hemodynamic modeling
US9271658B2 (en) 2011-01-10 2016-03-01 East Carolina University Methods, systems and computer program products for non-invasive determination of blood flow distribution using speckle imaging techniques and hemodynamic modeling
JP2012176095A (ja) * 2011-02-25 2012-09-13 Canon Inc 画像処理装置及び画像処理システム
US9986909B2 (en) 2011-02-25 2018-06-05 Canon Kabushiki Kaisha Image processing apparatus and image processing system for displaying information about ocular blood flow
WO2013137148A1 (ja) * 2012-03-12 2013-09-19 株式会社トプコン 光画像計測装置、画像表示装置、および画像表示方法
US9848772B2 (en) 2012-03-12 2017-12-26 Kabushiki Kaisha Topcon Image displaying method
US9936870B2 (en) 2012-03-12 2018-04-10 Kabushiki Kaisha Topcon Image displaying apparatus
US9492082B2 (en) 2012-03-12 2016-11-15 Kabushiki Kaisha Topcon Optical image measuring apparatus, image displaying apparatus and image displaying method
JP2013202298A (ja) * 2012-03-29 2013-10-07 Topcon Corp 画像表示装置、画像表示方法、及びプログラム
JP2019115680A (ja) * 2012-11-30 2019-07-18 キヤノンメディカルシステムズ株式会社 カラーマップの生成方法、医用画像処理装置、医用画像処理システム、及びプログラム
US10776960B2 (en) 2012-11-30 2020-09-15 Canon Medical Systems Corporation Medical image diagnostic apparatus
US11398063B2 (en) 2012-11-30 2022-07-26 Canon Medical Systems Corporation Medical image diagnostic apparatus
JP2016517322A (ja) * 2013-03-15 2016-06-16 イースト カロライナ ユニバーシティ スペックル撮像技術及び血行動態モデリングを用いた血流分布の非侵襲な決定方法、システム、及びコンピュータプログラム
US10098592B2 (en) 2013-04-23 2018-10-16 Softcare Co., Ltd. Blood flow image diagnosing device and method
JP2014212851A (ja) * 2013-04-23 2014-11-17 ソフトケア有限会社 血流画像診断装置及び診断方法
WO2014175154A1 (ja) * 2013-04-23 2014-10-30 ソフトケア有限会社 血流画像診断装置及び診断方法
US11553844B2 (en) 2014-10-14 2023-01-17 East Carolina University Methods, systems and computer program products for calculating MetaKG signals for regions having multiple sets of optical characteristics
US10722173B2 (en) 2014-10-14 2020-07-28 East Carolina University Methods, systems and computer program products for visualizing anatomical structures and blood flow and perfusion physiology using imaging techniques
JP2017534378A (ja) * 2014-10-14 2017-11-24 イースト カロライナ ユニバーシティ 血流量及び灌流量のマルチスペクトル画像化によって得られる信号を使用して血行動態パラメータを決定する方法、システム、及びコンピュータプログラム製品
US10792492B2 (en) 2014-10-14 2020-10-06 East Carolina University Methods, systems and computer program products for determining physiologic status parameters using signals derived from multispectral blood flow and perfusion imaging
JP2016123689A (ja) * 2014-12-29 2016-07-11 花王株式会社 皮膚血流量の計測方法
JP2016144531A (ja) * 2015-02-06 2016-08-12 キヤノン株式会社 眼科装置及びその制御方法、並びに、プログラム
US10058256B2 (en) 2015-03-20 2018-08-28 East Carolina University Multi-spectral laser imaging (MSLI) methods and systems for blood flow and perfusion imaging and quantification
US10390718B2 (en) 2015-03-20 2019-08-27 East Carolina University Multi-spectral physiologic visualization (MSPV) using laser imaging methods and systems for blood flow and perfusion imaging and quantification in an endoscopic design
JP2017000733A (ja) * 2015-06-08 2017-01-05 株式会社トーメーコーポレーション 速度測定装置、速度測定プログラムおよび速度測定方法
WO2017038729A1 (ja) * 2015-09-01 2017-03-09 コスモテック株式会社 血行状態評価方法、血流計測装置、および血流計測システム
WO2017094380A1 (ja) * 2015-12-04 2017-06-08 ソニー株式会社 情報処理装置、スペックルイメージングシステム、及び情報処理方法
CN108291925A (zh) * 2015-12-04 2018-07-17 索尼公司 信息处理装置、散斑成像系统、以及信息处理方法
CN108291925B (zh) * 2015-12-04 2020-10-09 索尼公司 信息处理装置、散斑成像系统、以及信息处理方法
JPWO2017094380A1 (ja) * 2015-12-04 2018-09-20 ソニー株式会社 情報処理装置、スペックルイメージングシステム、及び情報処理方法
JP2018011726A (ja) * 2016-07-20 2018-01-25 大日本印刷株式会社 眼底画像処理装置
JP6995485B2 (ja) 2017-03-03 2022-01-14 キヤノン株式会社 眼科装置、装置の制御方法及びプログラム
JP2018143427A (ja) * 2017-03-03 2018-09-20 キヤノン株式会社 眼科装置、装置の制御方法及びプログラム
JP2019055134A (ja) * 2017-09-22 2019-04-11 株式会社トプコン 眼科撮影装置及び眼科情報処理装置
JP2020103714A (ja) * 2018-12-28 2020-07-09 株式会社トプコン 血流計測装置、その制御方法、プログラム、及び記録媒体
WO2020138224A1 (ja) * 2018-12-28 2020-07-02 株式会社トプコン 血流計測装置、その制御方法、プログラム、及び記録媒体
US11877831B2 (en) 2022-03-14 2024-01-23 O/D Vision Inc. Systems and methods for artificial intelligence based blood pressure computation based on images of the outer eye

Also Published As

Publication number Publication date
JPWO2010131550A1 (ja) 2012-11-01
EP2430973A4 (en) 2014-01-22
JP5578735B2 (ja) 2014-08-27
US20110319775A1 (en) 2011-12-29
EP2430973B1 (en) 2014-09-17
EP2430973A1 (en) 2012-03-21
US9028421B2 (en) 2015-05-12

Similar Documents

Publication Publication Date Title
JP5578735B2 (ja) 血流画像診断装置
JP6062793B2 (ja) 血流画像診断装置
JP6922152B2 (ja) 眼科解析装置、眼科解析プログラム
US10070796B2 (en) Systems and methods for quantitative microcirculation state monitoring
US10492682B2 (en) Ophthalmic analysis device and ophthalmic analysis program
JP6086345B2 (ja) 眼科装置
JP6550745B2 (ja) 血流計測装置
US9167970B2 (en) Non-invasive optical imaging for measuring pulse and arterial elasticity in the brain
JP6922151B2 (ja) 眼科解析装置、眼科解析プログラム
KR101746763B1 (ko) 망막 또는 맥락막 내 혈관조영 광가간섭 단층촬영 장치 및 이를 이용한 질병 진단방법
Morgan et al. Objective detection of retinal vessel pulsation
JP6516597B2 (ja) 画像処理装置及び画像処理方法
KR102035731B1 (ko) 광용적맥파를 이용한 통증심도 측정 방법 및 장치
Deneux et al. A processing work-flow for measuring erythrocytes velocity in extended vascular networks from wide field high-resolution optical imaging data
JP6501432B2 (ja) 血流動態画像化診断装置及び診断方法
JP5729490B2 (ja) 光生体計測装置
JP5853777B2 (ja) 光生体計測装置
KR101032479B1 (ko) 수학적 모델에 기반한 말초조직 관류 정도 측정장치 및 측정방법
JP6776313B2 (ja) 血流計測装置
WO2023019099A1 (en) Using the dynamic forward scattering signal for optical coherence tomography based flow quantification
Kochańska et al. Data analysis methods for the quantification of the morphology and dynamics of the retinal vessels
Lu Advancements in Optical Coherence Tomography: Innovations and Applications for Ophthalmology and Dermatology
Houston The retinal microvasculature in secondary progressive multiple sclerosis
Mourad et al. Localization of Brain Activation Through Integration of Optical Topography and Magnetic Resonance Imaging
KR20110048364A (ko) 혈관 내피세포 기능 측정 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774808

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13254754

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011513293

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010774808

Country of ref document: EP