Verfahren zur kontinuierlichen Herstellung von urethangruppenhaltigen (Meth)acrylsäureestern
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur kontinuierlichen Herstellung von urethangruppenhaltigen (Meth)acrylsäureestern.
Die Herstellung von (Meth)acrylsäureestern erfolgt zumeist durch säure- oder basenka- talysierte Ver- oder Umesterung von (Meth)acrylsäure oder anderen
(Meth)acrylsäureestern mit Alkoholen bei Temperaturen von 40 bis deutlich über 100 0C. Aufgrund der hohen Temperaturen ist der Zusatz hoher Mengen von Polymerisationsinhibitoren erforderlich, um eine unerwünschte Polymerisierung der Monomeren zu unterdrücken. Dabei entstehen oft komplexe und bisweilen gefärbte Produktgemi- sehe. Zur Entfernung von Färbungen und unumgesetzter Reaktanden werden die Produktgemische durch aufwendige alkalische Wäschen aufgearbeitet. Das Waschverfahren ist langwierig und kostspielig, da sich vor allem teilveresterte Produkte nur langsam extrahieren und abtrennen lassen.
Die Herstellung urethangruppenhaltiger (Meth)acryate über eine konventionelle säurekatalysierte Veresterung ist zudem schwierig, da Urethangruppen säureempfindlich sind.
JP 2001-40039 A beschreibt carbamatgruppenhaltige (Meth)acrylsäureester, die über eine säurekatalysierte Veresterung hergestellt werden. Nachteilig an dem beschriebenen Verfahren ist, dass die Reinheit des erhaltenen Produkts lediglich 75,9 % bei einer Massenbilanz von 95 % beträgt.
EP 136 813 A2 beschreibt die zweistufige Herstellung N-substituierter, carbamatgrup- penhaltiger Acrylate durch Umsetzung von mehrfach hydroxyalkylierten Acrylaten mit Isocyanaten. Nachteilig an dem beschriebenen Verfahren ist die Beschränkung auf solche Substrate, die als Isocyanate verfügbar sind. So sind beispielsweise N, N- disubstituierte Carbamate nach diesem Verfahren nicht herstellbar, ebenfalls solche mit N-Substituenten, die gegenüber Isocyanat reaktive Gruppen tragen. Für die Um- setzung mit dem Isocyanat sind zudem toxische Zinnverbindungen als Katalysator notwendig.
Die Herstellung von (Meth)acrylsäureestern durch eine enzymatische Ver- oder U- mesterung ist bekannt.
Hajjar et al. beschreiben in Biotechnol. Lett. 1990, 12, 825-830 die enzymatische U- mesterung von cyclischen und offenkettigen Alkandiolen mit Ethylacrylat mit einer Li- pase aus Chromobacterium viscosum. Die Reaktionen laufen bei einem 18-fachen
molaren Überschuss des Alkylacrylats gegenüber dem Diol in einem lösungsmittelfreien System ab. Es entstehen Mischungen aus Mono- und Diacrylaten.
US 5,240,835 beschreibt die Umesterung von Alkylacrylaten mit Alkoholen unter Kata- lyse eines Biokatalysators aus Corynebacterium oxydans. Beispielhaft wird dort die Reaktion von einem 96-fachen molaren Überschuss Ethylacrylat mit 2,2-Dimethyl-1 ,3- propandiol aufgeführt. Lediglich 21 % Ausbeute wurden nach 3 Tagen bei 30 0C erhalten.
Derango et al. beschreiben in Biotechnol. Lett. 1994, 16, 241-246 die Lipase- katalysierte Herstellung von Carbamoyloxyethylmethacrylat durch Umesterung von 2- Hydroxyethylcarbamat mit Vinylmethacrylat. Eine vollständige Umsetzung wird erreicht durch das spezielle Edukt Vinylmethacrylat, da freigesetzter Vinylalkohol dem Reaktionsgleichgewicht als Acetaldehyd entzogen wird. Nachteilig an diesem Verfahren ist, dass Vinylmethacrylat nicht kommerziell verfügbar ist.
Aus WO 2004/05088 A1 ist ein weiteres enzymkatalysiertes Herstellungsverfahren urethangruppenhaltiger (Meth)acrylsäureester bekannt. Nachteilig an dem beschriebenen Verfahren ist, dass die Produkte eine relativ geringe Reinheit aufweisen und den- noch ungereinigt weiterverarbeitet werden.
Weiterhin ist an den beschriebenen Verfahren nachteilig, dass die Umesterung diskon- tinuierlilch erfolgt, was für eine Herstellung urethangruppenhaltiger (Meth)acrylsäureester in großem Maßstab unvorteilhaft ist.
Aufgabe der vorliegenden Erfindung war es daher, ein alternatives Verfahren zur Verfügung zu stellen, mit dem urethangruppenhaltige (Meth)acrylsäureester kontinuierlich aus einfachen, wirtschaftlich zugänglichen Edukten herstellbar sind.
Die Aufgabe wurde gelöst durch ein Verfahren zur Herstellung urethangruppenhaltiger (Meth)acrylsäureester (U) durch Umsetzung eines urethangruppenhaltigen Alkohols (A) mit einem (Meth)acrylsäureester eines gesättigten Alkohols (G) in Gegenwart mindestens eines Polymerisationsinhibitors (P) mit einem Enzym (E) als Katalysator in einem Reaktor, wobei der (Meth)acryläureester eines gesättigten Alkohols (G) mit dem urethangruppenhaltigen Alkohol (A) kontinuierlich über mindestens einen Festbettreaktor gefüllt mit einem immobilisierten Enzym (E) als Katalysator geleitet wird.
Mit Hilfe des erfindungsgemäßen Verfahrens ist die Herstellung urethangruppenhaltiger (Meth)acrylsäureester unter milden Bedingungen möglich. Weiterhin tritt keine we- sentliche Polymerisatbildung auf. Besonders vorteilhaft an dem erfindungsgemäßen Verfahren ist, dass die urethangruppenhaltigen (Meth)acrylsäureester durch eine en- zymatische Umesterung kontinuierlich erhalten werden, was ihre Herstellung in große-
rem Maßstab zugänglich macht.
Urethangruppen im Sinne dieser Schrift sind O-substituierte und N-un-, mono- oder disubstituierte Strukturelemente der Formel >N-C(=O)-O-.
(Meth)acrylsäure steht in dieser Schrift für Methacrylsäure und Acrylsäure, bevorzugt für Acrylsäure.
Gesättigt bedeutet im Rahmen dieser Schrift Verbindungen ohne C-C- Mehrfachbindungen (außer selbstverständlich die C=C-Doppelbindung in den (Meth)acryleinheiten).
Urethangruppenhaltige Alkohole (A) sind solche Verbindungen, die mindestens eine Urethangruppe, bevorzugt 1 bis 10, besonders bevorzugt 1 bis 5, ganz besonders be- vorzugt 1 bis 2 und insbesondere eine Urethangruppe, sowie mindestens eine Hydro- xygruppe (-OH), bevorzugt 1 bis 10, besonders bevorzugt 1 bis 6, ganz besonders bevorzugt 1 bis 3, insbesondere 1 bis 2 und speziell eine Hydroxygruppe enthalten.
Bevorzugte urethangruppenhaltige Alkohole (A) weisen ein durchschnittliches Molge- wicht von 105 bis 800 000 g/mol auf, bevorzugt bis 25 000, besonders bevorzugt 5 000 und ganz besonders bevorzugt bis 4 500 g/mol.
Besonders bevorzugte urethangruppenhaltige Alkohole (A) sind solche, die erhältlich sind durch a) Umsetzung eines Amins mit einem Carbonat und b) gegebenenfalls Aufreinigung des aus a) erhältlichen Reaktionsgemisches.
Geeignete Amine für diese Umsetzung sind dabei Ammoniak, primäre oder sekundäre Amine, Carbonate sind O,O'-disubstituierte Carbonate mit dem Strukturemelement -O-C(=O)-O-.
Ganz besonders bevorzugte urethangruppenhaltige Alkohole (A) sind solche, die nach der folgenden Reaktionsgleichung erhältlich sind
worin
R1, R2 unabhängig voneinander Wasserstoff, Ci-Cis-Alkyl, gegebenenfalls durch ein oder mehrere Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere substituierte oder unsubstituierte Iminogruppen unterbrochenes C2-Ci8-Alkyl, C2-Ci8-Alkenyl, C6-Ci2-Aryl, C5-Ci2-Cycloalkyl oder einen fünf- bis sechsgliedri- gen, Sauerstoff-, Stickstoff- und/oder Schwefelatome aufweisenden Heterocyc- lus, wobei die genannten Reste jeweils durch Aryl, Alkyl, Aryloxy, Alkyloxy, He- teroatome und/oder Heterocyclen substituiert sein können, oder eine Gruppe der Formel -[X,]k-H,
Xi für jedes i = 1 bis k unabhängig voneinander ausgewählt sein kann aus der Gruppe -CH2-CH2-O-, -CH2-CH2-N(H)-, -CH2-CH2-CH2-N(H)-, -CH2-CH(NH2)-, -CH2-CH(NHCHO)-, -CH2-CH(CHs)-O-, -CH(CHs)-CH2-O-, -CH2-C(CHs)2-O-, -C(CHs)2-CH2-O-, -CH2-CH2-CH2-O-, -CH2-CH2-CH2-CH2-O-, -CH2-CHVin-O-, -CHVin-CH2-O-, -CH2-CHPh-O- und -CHPh-CH2-O-, worin Ph für Phenyl und Vin für Vinyl steht,
k für eine Zahl von 1 bis 50 und
Y C2-C2O-AI kylen oder durch ein- oder mehrere Sauerstoff- und/oder Schwefel- atome und/oder ein oder mehrere substituierte oder unsubstituierte Iminogruppen und/oder durch eine oder mehrere -(CO)-, -0(CO)O-, -(NH)(CO)O-, -0(CO)(NH)-, -0(CO)- oder -(CO)O-Gruppen unterbrochenes C2-C20-Al kylen, wobei die genannten Reste jeweils durch Aryl, Alkyl, Aryloxy, Alkyloxy, Hetero- atome und/oder Heterocyclen substituiert sein können,
bedeuten.
R1 und R2 können auch gemeinsam einen Ring bilden.
Bevorzugt sind R1 und R2 unabhängig voneinander Wasserstoff, Ci-Ci2-Alkyl, Cs-Cβ- Cycloalkyl oder eine Gruppe der Formel -[X,]k-H, besonders bevorzugt sind R1 und R2 unabhängig voneinander Wasserstoff, Ci-C4-AIkVl, Cs-Cβ-Cycloalkyl oder eine Gruppe der Formel -[X,]k-H und ganz besonders bevorzugt Wasserstoff, Ci-C4-AIkVl, oder eine Gruppe der Formel -[X,]k-H. Insbesondere ist einer der Reste R1 und R2 Wasserstoff und der andere Ci-C4-Alkyl, oder eine Gruppe der Formel -[X,]k-H.
Bevorzugte X, sind -CH2-CH2-O-, -CH2-CH2-N(H)-, -CH2-CH2-CH2-N(H)-, -CH2-CH(NH2)-, -CH2-CH(NHCHO)-, -CH2-CH(CHs)-O- und -CH(CHs)-CH2-O-, besonders bevorzugt ist -CH2-CH2-O-, -CH2-CH2-N(H)-, -CH2-CH2-CH2-N(H)- und -CH2-CH(NH2)-, ganz besonders bevorzugt ist -CH2-CH2-O-, -CH2-CH2-N(H)- und -CH2-CH2-CH2-N(H)-.
k ist bevorzugt 1 bis 30, besonders bevorzugt 1 bis 20, ganz besonders bevorzugt 1 bis 10 und insbesondere 1 bis 5.
Beispiele für R1 und/oder R2 sind Wasserstoff, Methyl, Ethyl, iso-Propyl, n-Propyl, n- Butyl, iso-Butyl, sek-Butyl, tert-Butyl, n-Hexyl, n-Heptyl, n-Octyl, n-Decyl, n-Dodecyl, n- Tetradecyl, n-Hexadecyl, n-Octadecyl, n-Eicosyl, 2-Ethylhexyl, Cyclopentyl, Cyclohe- xyl, Cyclooctyl, Cyclododecyl, 2-Hydroxyethyl, 2-Hydroxypropyl, 1-Hydroxypropyl, 5- Hydroxy-3-oxa-pentyl, 8-Hydroxy-3,6-dioxa-octyl oder 1 1-Hydroxy-3,6,9-trioxa-undecyl.
Y ist bevorzugt C2-Cio-Alkylen, besonders bevorzugt C2-C6-Alkylen, ganz besonders bevorzugt C2-C4-Alkylen, insbesondere C2-C3-Alkylen und speziell C2-Alkylen, wobei die genannten Reste jeweils durch Aryl, Alkyl, Aryloxy, Alkyloxy, Heteroatome und/oder Heterocyclen substituiert sein können.
Beispiele für Y sind 1 ,2-Ethylen, 1 ,2-Propylen, 1 ,1-Dimethyl-1 ,2-ethylen, 1-
Hydroxymethyl-1 ,2-ethylen, 2-Hydroxy-1 ,3-propylen, 1 ,3-Propylen, 1 ,4-Butylen, 1 ,6- Hexylen, 2-Methyl-1 ,3-Propylen, 2-Ethyl-1 ,3-Propylen, 2,2-Dimethyl-1 ,3-Propylen und 2,2-Dimethyl-1 ,4-butylen, bevorzugt sind 1 ,2-Ethylen, 1 ,2-Propylen, 1 ,3-Propylen, besonders bevorzugt sind 1 ,2-Ethylen und 1 ,2-Propylen und ganz besonders bevorzugt ist 1 ,2-Ethylen.
Beispielhafte Amine sind Ammoniak, Methylamin, Dimethylamin, Ethylamin, Diethyla- min, iso-Propylamin, Di-iso-Propylamin, n-Butylamin, Di-n-Butylamin, tert-Butylamin, Monoethanolamin, Diethanolamin, Propanolamin, Dipropanolamin, Piperidin, Piperazin, Pyrrolidin, Cyclopentylamin, Cyclohexylamin, Anilin, Ethylendiamin, Diethylentriamin, Triethylentetramin, Tertraethylenpentamin und Polymere mit Aminfunktion wie in WO 04/050888 A1 auf der Seite 5, ab Zeile 28 bis Seite 6, Zeile 33 beschrieben.
Beispielhafte Carbonate sind Ethylencarbonat, 1 ,3-Propylencarbonat und 1 ,2- Propylencarbonat.
Bevorzugte urethangruppenhaltige Alkohole (A) sind solche Verbindungen wie sie in der deutschen Offenlegungsschrift DE 10 2005 016 225 A1 offenbart sind. Von den darin genannten binären Gemischen von strukturisomeren ß-Hydroxyalkylcarabamten ist insbesondere das Isomerengemisch von Hydroxypropylcarbamat für das erfindungsgemäße Verfahren bevorzugt. Hydroxypropylcarbamat wird durch Umsetzung von 1 ,2-Propylencarbonat mit Ammoniak gemäß DE 10 2005 016 255 A1 erhalten.
Die Umsetzung des Amins mit dem Carbonat ist an sich bekannt, beispielsweise aus US 4,820,830 B, Spalte 4, Zeile 44 bis Spalte 5, Zeile 9, und nicht beschränkt.
Typischerweise werden das Amin und das Carbonat in einer Stöchiometrie von 0,7 bis 1 ,2 mol Amin : 1 mol Carbonat, bevorzugt 0,8 - 1 ,2 : 1 , besonders bevorzugt 0,9 - 1 ,1 :1 , ganz besonders bevorzugt 0,95 - 1 ,1 :1 und insbesondere 1 :1 mol/mol miteinander umgesetzt. Die Umsetzung erfolgt in der Regel bei einer Temperatur von 0 bis 120 0C, besonders bei 20 bis 100, ganz besonders bevorzugt 30 bis 80 und ganz besonders bevorzugt 40 bis 80 0C. Die Umsetzung ist in der Regel innerhalb von 12 Stunden beendet, bevorzugt innerhalb von 15 Minuten bis 10 Stunden, besonders bevorzugt in 30 Minuten bis 8 Stunden, ganz besonders bevorzugt 45 Minuten bis 6 Stunden und insbesondere innerhalb von 1 bis 4 Stunden.
Die Gesamtaminzahl gem. DIN 53176 des urethangruppenhaltigen Alkohols (A) sollte nicht mehr als 200 mg KOH/g betragen, vorzugsweise nicht mehr als 100 und ganz besonders bevorzugt nicht mehr als 80 mg KOH/g.
Die Umsetzung des Amins mit dem Carbonat kann ohne Lösungsmittel durchgeführt werden oder in Anwesenheit eines solchen, beispielsweise Alkohole, Ether, Ketone, Kohlenwasserstoffe oder Wasser, bevorzugt ohne Lösungsmittel.
Der urethangruppenhaltige Alkohol (A) kann in einem weiteren Schritt falls gewünscht aufgereinigt werden, beispielsweise durch Filtration, Destillation, Rektifikation, Chromatographie, Behandlung mit lonentauschern, Adsorbentien, neutraler, saurer und/oder alkalischer Wäsche, Strippen oder Kristallisation.
In dem erfindungsgemäßen Verfahren kann der urethangruppenhaltige Alkohol (A) aufgereinigt eingesetzt werden. Dazu wird der urethangruppenhaltige Alkohol (A) kontinuierlich durch eine Reindestillation von leicht- und schwersiedenden Nebenkomponenten abgetrennt. Bei den leichtersiedenden Komponenten handelt es sich beispielsweise um nicht umgesetztes Carbonat oder um die korrespondierenden Diole. Als Schwersieder kommen höhermolekulare Nebenkomponenten in Betracht, die für die Farbgebung verantwortlich sind. Die Reindestillation erfolgt kontinuierlich im Feinvakuumbereich, d.h. bei einem verminderten Druck von 1 bis 100 mbar, bevorzugt 1 bis 50 mbar, besonders bevorzugt 1 bis 20 mbar und insbesondere im Bereich von 1 bis 10 mbar. Die Temperatur bei der Reindestillation liegt üblicherweise im Bereich von 50 bis 200 0C, bevorzugt im Bereich von 75 bis 180 0C und besonders bevorzugt im Be- reich von 100 bis 160 0C. Aufgrund der kurzen Verweilzeiten und der relativ geringen thermischen Belastung ist im Vergleich zur diskontinuierlichen Destillation ein hochreiner urethangruppenhaltiger Alkohol (A) erzielbar.
(Meth)acrylsäureester eines gesättigten Alkohol (G) sind bevorzugt solche Ester von (Meth)acrylsäure mit einem gesättigten Ci-Cio-Alkohol.
Beispiele für Verbindungen (G) sind (Meth)acrylsäuremethyl-, -ethyl-, -n-butyl-, -iso-
butyl-, n-octyl- und -2-Ethylhexylester, 1 ,2-Ethylenglycoldi- und -mono(meth)acrylat, 1 ,4-Butandioldi- und -mono(meth)acrylat, 1 ,6-Hexandioldi- und -mono(meth)acrylat, Trimethylolpropantri(meth)acrylat und Pentaerythrittetra(meth)acrylat.
Besonders bevorzugt sind (Meth)acrylsäuremethyl-, -ethyl-, -n-butyl- und -2-
Ethylhexylester und ganz besonders bevorzugt (Meth)acrylsäuremethyl-, -ethyl- und -n- butylester.
Erfindungsgemäß einsetzbare Enzyme (E) sind beispielsweise ausgewählt unter Hydrolasen, Esterasen (E.C. 3.1.-.-), Lipasen (E.C. 3.1.1.3), Glykosylasen (E.C. 3.2.-.-) und Proteasen (E.C. 3.4.-.-) in freier oder auf einem Träger chemisch oder physikalisch immobilisierter Form, bevorzugt Lipasen, Esterasen oder Proteasen. Besonders bevorzugt sind Novozym® 435 (Lipase aus Candida antartica B) oder Lipase aus Aspergillus sp., Aspergillus niger sp., Mucor sp., Penicilium cyclopium sp., Geotricum candidum sp., Rhizopus javanicus, Burholderia sp., Candida sp., Pseudomonas sp., oder
Schweinepankreas, ganz besonders bevorzugt sind Lipase aus Candida antartica B oder aus Burholderia sp.
Erfindungswesentlich ist bei dem Verfahren, dass die Umesterung des (Meth)acrylsäureesters eines gesättigten Alkohols (G) mit einem urethangruppenhalti- gen Alkohol (A) mit einem Enzym (E) als Katalysator kontinuierlich erfolgt, wobei der (Meth)acryläureester eines gesättigten Alkohols (G) und der urethangruppenhaltigen Alkohol (A) kontinuierlich über mindestens einen Festbettreaktor gefüllt mit einem immobilisierten Enzym (E) als Katalysator geleitet werden.
Dabei kann der (Meth)acrylsäureester des gesättigten Alkohols (G) mit dem urethangruppenhaltigen Alkohol (A) zuvor miteinander vermischt werden, und diese Reaktionsmischung wird anschließend über den mindestens einen Festbettreaktor gefüllt mit einem immobilisierten Enzym (E) geleitet. Die Reaktanden können auch getrennt von- einander gleichzeitig über das immobiliserte Enzym (E) geleitet werden. Bevorzugt wird zunächst eine Reaktionsmischung aus (Meth)acrylsäureester (G) und urethangruppen- haltiger Alkohol (A) hergestellt, die anschließend über das immobilisierte Enzym (E) geleitet wird.
Das molare Verhältnis von (Meth)acrylsäureester eines gesättigten Alkohols (G) (bezogen auf die (Meth)acryleinheiten) zu urethangruppenhaltigem Alkohol (A) (bezogen auf Hydroxygruppen) kann in einem weiten Bereich, wie z.B. im Verhältnis 100:1 bis 1 :1 , bevorzugt 50:1 bis 1 :1 , besonders bevorzugt 20:1 bis 1 :1 und ganz besonders bevorzugt 10:1 bis 1 :1 , schwanken.
Das Enzym (E) ist in dem erfindungsgemäßen Verfahren auf einem geeigneten Träger immobilisiert. Dabei existieren fünf klassische Methoden der Immobilisierung von En-
zymen, nämlich die Adsorption, die kovalente Bindung, der Membraneinschluß, der Geleinschluß und die Quervernetzung. Dabei können unterschiedliche Trägermaterialien eingesetzt werden, wobei die chemischen Wechselwirkungen der Trägeroberfläche mit dem Enzym so angepasst sein müssen, dass keine unerwünschten Nebenwirkun- gen, wie z.B. Inaktivierung entstehen. Als feste Träger eignen sich prinzipiell verschiedene anorganische und organische Materialien, letztere können natürlichen oder synthetischen Ursprungs sein. Anorganische Träger weisen meistens eine hohe Druckstabilität auf, während organische Träger eine gute chemische Stabilität zeigen. Als anorganische Träger werden überwiegend poröse Materialien auf der Basis von Silicium- oder Aluminumoxiden bzw. Gemischen daraus eingesetzt. Natürliche organische Träger sind beispielsweise Polysaccharide wie z.B. Cellulose, Stärke, Dextran, Agarose und Chitin. Aber auch Proteine wie Kollagen, Gelatine und Albumin kommen zur Anwendung. Als synthetische organische Polymere dienen Poly(meth)acrylate, Polyacrylamide, Vinyl- und Allylpolymere, Polyester oder Polyamide.
Bevorzugt werden in dem erfindungsgemäßen Verfahren Enzyme eingesetzt, die bereits auf einem geeigneten Träger immobilisiert sind. Derartige immobilisierte Enzyme, bevorzugt Lipasen, sind unter dem Handelsnamen Novozym® 435 (Lipase aus Candida antartica B) von der Firma Novozymes erhältlich.
Das immobilisierte Enzym wird in einer als Festbettreaktor geeigneten Vorrichtung, beispielsweise einem Rohr oder einer Säule, bereitgestellt. Anschließend werden die Reaktanden oder bevorzugt die vorgemischte Reaktionsmischung aus einem (Meth)acrylsäureester (G) und einem urethangruppenhaltigen Alkohol (A) mit Hilfe ei- ner Pumpe über den mit dem immobiliserten Enzym beschickten Festbettreaktor gepumpt.
Die enzymatische Umesterung mit einem (Meth)acryläsureester eines gesättigten Alkohols (G) erfolgt im Allgemeinen bei 0 bis 100 0C, bevorzugt 20 bis 80 0C, besonders bevorzugt 20 bis 700C, ganz besonders bevorzugt 20 bis 60 0C.
Die Reaktion kann in organischen Lösungsmitteln oder deren Gemischen oder ohne Zusatz von Lösungsmitteln ablaufen. Die Ansätze sind in der Regel weitgehend wasserfrei (d.h. unter 10, bevorzugt unter 5, besonders bevorzugt unter 1 Vol.- % Wasser- zusatz).
Der Anteil organischer Lösungsmittel beträgt beispielsweise 0,01-30 Gew.-%, bevorzugt 0,1-5 Gew.-%. Geeignete organische Lösungsmittel sind solche für diese Zwecke bekannten, beispielsweise tertiäre Monoole, wie Cs-Cβ-Alkohole, bevorzugt tert- Butanol, tert-Amylalkohol, Pyridin, Poly-Ci-C4-alkylenglykoldi-Ci-C4-alkylether, bevorzugt Polyethylenglycoldi-Ci-C4-alkylether, wie z.B. 1 ,2-Dimethoxyeethan, Diethylengly- coldimethylether, Polyethylenglycoldimethylether 500, Ci-C4-Alkylencarbonate, insbe-
sondere Propylencarbonat, Cs-Cβ-Alkylessigsäureester, insbesondere tert.-Butyl- essigsäureester, THF, Toluol, 1 ,3-Dioxolan, Aceton, iso-Butyl-methylketon, Ethylme- thylketon, 1 ,4-Dioxan, tert-Butylmethylether, Cyclohexan, Methylcyclohexan, Toluol, Hexan, Dimethoxymethan, 1 ,1-Dimethoxyethan, Acetonitril, sowie deren ein- oder mehrphasige Mischungen.
Wahlweise können zu den organischen Lösungsmitteln wässrige Lösungsmittel zugesetzt werden, so dass - je nach organischem Lösungsmittel - ein- oder mehrphasige Reaktionslösungen entstehen. Beispiele für wässrige Lösungsmittel sind Wasser sowie wässrige, verdünnte (z.B. 10 bis 100 mM) Puffer, beispielsweise mit einem pH-Wert im Bereich von etwa 6 bis 8, wie z.B. Kaliumphosphat- oder TRIS-HCI-Puffer.
Der Wasseranteil im Reaktionsansatz liegt in der Regel bei 0-10 Vol%. Bevorzugt werden die Reaktanden ohne Vorbehandlung (Trocknung, Wasserdotierung) eingesetzt.
Bevorzugt wird die enzymatische Umesterung ohne Zusatz von Wasser und organischen Lösungsmitteln durchgeführt.
Erfindungsgemäß wird die Reaktion kontinuierlich über mindestens einen Festbettreak- tor gefüllt mit einem immobiliserten Enzym (E) durchgeführt. Dazu werden aus einem Vorlagegefäß die Reaktanden oder die vorgemischte Reaktionsmischung mit Hilfe einer Pumpe über den mit dem immobilisierten Enzym beschickten Festbettreaktor gepumpt. Das dabei entstehende Rohprodukt enthaltend den urethangruppenhaltigen (Meth)acrylsäureester (U) wird in einem geeigneten Vorratsgefäß gesammelt.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das Rohprodukt zunächst destillativ gereinigt, wobei über eine angeschlossene Destillationskolonne das Azeotrop aus freiwerdendem gesättigten Alkohol und überschüssigem korrespondierendem (Meth)acrylsäureester (G) und gegebenenfalls verwendetem Schleppmittel abgetrennt wird.
Gegebenenfalls wird zusätzlich ein Schleppmittel eingesetzt, das mit dem freiwerdenden gesättigten Alkohol und dem damit überschüssigen korrespondierenden (Meth)acrylsäureester (G) ein Azeotrop bildet. Bevorzugt handelt es sich um ein Schleppmittel, dessen mit dem freiwerdenden gesättigten Alkohol und dem damit überschüssigen korrespondierenden (Meth)acrylsäureester (G) gebildetes Azeotrop einen Phasenzerfall zeigt oder welches durch Wasserzugabe gebrochen werden kann. Solche geeigneten Schleppmittel sind beispielsweise n-Pentan, n-Hexan, n-Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, XyIoI und beliebige Mischungen davon.
Die für die Abtrennung des Azeotrops verwendete Destillationskolonne ist von an sich bekannter Bauart und weist die üblichen Einbauten auf. Als Kolonneneinbauten kom-
men prinzipiell alle gängigen Einbauten in Betracht, beispielsweise Böden, Packungen und/oder Schüttungen. Von den Böden sind Glockenböden, Siebböden, Ventilböden, Thormannböden und/oder Dual/Flow-Böden bevorzugt, von den Schüttungen sind solche mit Ringen, Wendeln, Sattelkörpern oder Geflechten bevorzugt. In der Regel sind 5 bis 20 theoretische Böden ausreichend.
Das abdestillierte Azeotrop wird anschließend in einem Kondensator herkömmlicher Bauart kondensiert.
Das auf diese Weise gereinigte Produkt enthaltend den urethangruppenhaltigen
(Meth)acrylsäureester (U) wird anschließend einem zweiten, mit immobilisiertem Enzym (E) beschickten Festbettreaktor zugeführt und mit Hilfe einer Pumpe über diesen Festbettreaktor gepumpt. In einem angeschlossenen Vorratsgefäß wird das Endprodukt gesammelt.
Die Leistung der Pumpe, mit der die Reaktionsmischung über die mit immobilisierten Enzym beschickten Festbettreaktoren gepumpt wird, wird so eingestellt, dass am Aus- lass des Enzymfestbetts der thermodynamische Gleichgewichtszustand erreicht wird.
Optional ist es in einer anderen Ausführungsform des erfindungsgemäßen Verfahrens möglich, dass der urethangruppenhaltige (Meth)acrylsäureester nach Verlassen des mindestens einen mit immobilisierten Enzym (E) beschickten Festbettreaktors und vor dem Auffangen im Vorratsgefäß einem Extraktionsvorgang unterzogen wird.
Die Extraktion erfolgt üblicherweise mit Wasser, wobei der restliche urethangruppenhaltige Alkohol (A) in die wässrige Phase übergeht und somit vom Endprodukt abgetrennt wird. Die organische Phase enthaltend urethangruppenhaltigen (Meth)acrylsäureester (U) und gegebenenfalls noch restlichen (Meth)acrylsäureester (G) kann in einer zuvor beschriebenen Destillationskolonne aufgereinigt werden, wobei der (Meth)acrylsäureester (G) als Leichtsieder vom Endprodukt abgetrennt wird.
Falls Lösungsmittel eingesetzt werden, erfolgt die Abtrennung vom organischen Lösungsmittel in der Regel durch Destillation, Rektifikation oder bei festen Reaktionsprodukten durch Filtration.
Zur weiteren Aufreinigung des Reaktionsproduktes kann auch eine Chromatographie oder eine Reindestillation durchgeführt werden.
Falls eine Reindestillation zur Aufreinigung des Reaktionsproduktes durchgeführt wird, wird aus dem unter der gegebenenfalls erfolgten Lösungsmitteldestillation anfallenden Sumpf der urethangruppenhaltige (Meth)acrylsäureester (U) in einem weiteren Destillationsschritt als Kopfprodukt isoliert und mit mindestens einem der unten genannten
Polymerisationsinhibitoren stabilisiert. Von den dort genannten Stabilisatoren sind für die Reindestillation insbesondere Hydrochinonmonomethylether und Phenothiazin geeignet.
Die für diesen Destillationsschritt verwendbare Rektifikationskolonne ist von bekannter Bauart, wie beispielsweise Füllkörperkolonnen, Packungskolonnen oder Bodenkolonnen, und hat trennwirksame Einbauten (z.B. Glocken-, Sieb- oder Dual-Flow-Böden) oder enthält Schüttungen oder gerichtete Packungen. Diese üblichen Einbauten weisen bevorzugt 10 bis 20 theoretische Böden auf. Auch Dünnschichtverdampfer kom- men in Frage. Verdampfer und Kondensator sind ebenfalls herkömmlicher Bauart.
Bevorzugt wird der urethangruppenhaltige (Meth)acrylsäureester (U) bei einer Sumpftemperatur von 100 - 1400C, bevorzugt von 110 - 1300C und einem Kopfdruck von 1 bis 100 mbar, bevorzugt von 1 bis 50 mbar, besonders bevorzugt von 1 bis 10 mbar und insbesondere von 1 bis 5 mbar erhalten.
Zur Stabilisierung kann in den Kondensator eine Lösung von 0,05 - 0,5% Hydrochinonmonomethylether oder ein anderer ähnlich wirksamer Lagerstabilisator eingesprüht werden, wobei die Menge so gewählt wird, dass das Kondensat eine Lagerstabilisator- konzentration von 10 - 20 ppm aufweist. Ein Teil des Kondensats, bevorzugt 10 - 20%, kann der Kolonne wieder als Rücklauf zugeführt werden.
Der anfallende urethangruppenhaltige (Meth)acrylsäureester (U) hat entsprechend der gaschromatographischen Analyse eine Reinheit von mindestens 98,5%, bevorzugt mindestens 99,0% und besonders bevorzugt mindestens 99,5%.
Das Sumpfprodukt der Reindestillation, das hauptsächlich aus restlichem urethangrup- penhaltigen (Meth)acrylsäureester (U), Michael-Additionsprodukten, Stabilisator und Polymeren besteht, kann in eine Rückstandsdestillation und/oder Rückstandsspaltung geleitet werden.
Selbstverständlich ist es auch möglich, die Destillationseinheiten der gegebenenfalls erfolgten Lösungsmitteldestillation und die Reindestillation zu vereinigen. In diesem Fall wird der reine urethangruppenhaltige (Meth)acrylsäureester (U) über einen Seiten- abzug, bevorzugt gasförmig, im unteren Kolonnenbereich, bevorzugt in der unteren Hälfte, besonders bevorzugt im unteren Drittel, ausgeschleust, kondensiert und wie oben beschrieben stabilisiert.
Bevorzugt werden im Aufreinigungsschritt jedoch lediglich das eingesetzte Enzym und das gegebenenfalls eingesetzte Lösungsmittel abgetrennt.
Die Reaktionsbedingungen bei der enzymatischen Umesterung sind mild. Aufgrund der
niedrigen Temperaturen und sonstigen milden Bedingungen wird die Bildung von Nebenprodukten bei der Umesterung vermieden, die andernfalls zum Beispiel von chemischen Katalysatoren stammen können oder durch unerwünschte radikalische Polymerisation des eingesetzten (Meth)acrylatsäureesters (G), die sonst nur durch Zugabe von Stabilisatoren verhindert werden kann.
Da es sich bei dem in dem erfindungsgemäßen Verfahren eingesetzten (Meth)acrylsäureester eines gesättigten Alkohols (G) als auch bei dem urthangruppen- haltigen (Meth)acrylsäureester (U) um polymerisationsfähige Verbindungen handelt, ist in allen Verfahrensschritten auf eine ausreichende Polymerisationsinhibierung zu achten. Daher findet die Umesterung erfindungsgemäß in Gegenwart mindestens eines Polymerisationsinhibitors (P) statt. Dabei kann es sich um den ohnehin im (Meth)acrylsäureester (G) enthaltenen Lagerstabilisator handeln, es kann aber auch nich ein weiterer Polymerisationsinhibitor zugesetzt werden.
In der Regel werden, bezogen auf die ungesättigten Monomere, je Einzelsubstanz von
1 bis 10 000 ppm, bevorzugt von 10 bis 5 000 ppm, besonders bevorzugt von 30 bis
2 500 ppm und insbesondere von 50 bis 1 500 ppm eines geeigneten Polymerisationsinhibitors (P) eingesetzt.
Geeignete Polymerisationsinhibitoren (P) können beispielsweise N-Oxide (Nitroxyl- oder N-Oxyl-Radikale, also Verbindungen, die wenigstens eine >N-0 -Gruppe aufweisen), wie z. B. 4-Hydroxy-2,2,6,6-tetramethylpiperidin-N-oxyl, 4-0x0-2,2,6,6- tetramethylpiperidin-N-oxyl, 4-Acetoxy-2,2,6,6-tetramethyl-piperidin-N-oxyl, 2,2,6,6- Tetramethylpiperidin-N-oxyl, 4,4',4"-Tris(2,2,6,6-tetramethyl-piperidin-N-oxyl)-phosphit oder 3-0x0-2,2, 5, 5-tetramethyl-pyrrolidin-N-oxyl; ein- oder mehrwertige Phenole, die ggf. eine oder mehrere Alkylgruppen aufweisen, wie z. B. Alkylphenole, beispielsweise o-, m- oder p-Kresol (Methylphenol), 2-tert.-Butylphenol, 4-tert.-Butylphenol, 2,4-Di- tert.-butylphenol, 2-Methyl-4-tert.-butylphenol, 2-tert.-Butyl-4-methylphenol, 2,6-tert- Butyl-4-methylphenol, 4-tert.-Butyl-2,6-dimethylphenol oder 6-tert.-Butyl-2,4- dimethylphenol; Chinone, wie z. B. Hydrochinon, Hydrochinonmonomethylether, 2- Methylhydrochinon oder 2,5-Di-tert.-Butylhydrochinon; Hydroxyphenole, wie beispielsweise Brenzcatechin (1 ,2-Dihydroxybenzol) oder Benzochinon; Aminophenole, wie z. B. p-Aminophenol; Nitrosophenole, wie z. B. p-Nitrosophenol; Alkoxyphenole, wie bei- spielsweise 2-Methoxyphenol (Guajacol, Brenzcatechinmonomethylether), 2-
Ethoxyphenol, 2-lsopropoxyphenol, 4-Methoxyphenol (Hydrochinonmonomethylether), Mono- oder Di-tert.-Butyl-4-methoxyphenol; Tocipherole, wie z. B. α-Tocopherol sowie 2,3-Dihydro-2,2-dimethyl-7-hydroxybenzofuran (2,2-Dimethyl-7-hydroxycumaran), a- romatische Amine, wie z. B. N,N-Diphenylamin oder N-Nitroso-diphenylamin; Pheny- lendiamine, wie z. B. N,N'-Dialkyl-p-phenylendiamin, wobei die Alkylreste gleich oder verschieden sein können und jeweils unabhängig voneinander aus 1 bis 4 Kohlenstoffatomen bestehen und geradkettig oder verzweigt sein können, wie z. B. N,N'-Dimethyl-
p-phenylendiamin oder N,N'-Diethyl-p-phenylendiamin, Hydroxylamine, wie z.B. N, N- Diethylhydroxylamin, Imine, wie z. B. Methylethylimin oder Methylen violett, Sulfonamide, wie z. B. N-Methyl-4-toluolsulfonamid oder N-tert.-Butyl-4-toluolsulfonamid, Oxime, wie Aldoxime, Ketoxime oder Amidoxime, wie z. B. Diethylketoxim, Methylethylketoxim oder Salicyladoxim, phosphorhaltige Verbindungen, wie z. B. Triphenylphosphin,
Triphenylphosphit, Triethylphosphit, Hypophsophorige Säure oder Alkylester der Phosphorigen Säuren; schwefelhaltige Verbindungen wie z. B. Diphenylsulfid oder Phe- nothiazin; Metallsalze, wie Kupfer- oder Mangan-, Cer-, Nickel-, Chromsalze, beispielsweise -Chloride, -sulfate, -salicylate, -tosylate, -acrylate oder -acetate, wie z. B. Kupferacetat, Kupfer(ll)chlorid, Kupfersalicylat, Cer(lll)acetat oder Cer(lll)ethylhexanoat, oder Gemische davon sein.
Bevorzugt wird als Polymerisationsinhibitor(gemisch) mindestens eine Verbindung aus der Gruppe Hydrochinon, Hydrochinonmonomethylether, Phenothiazin, 4-Hydroxy- 2,2,6,6-tetramethylpiperidin-N-oxyl, 4-Oxo-2,2, 6, 6-tetramethylpiperidin-N-oxyl, 2-tert- Butylphenol, 4-tert.-Butylphenol, 2,4-Di-tert.-Butylphenol, 2-tert.-Butyl-4-methylphenol, 6-tert.-Butyl-2,4-dimethylphenol, 2,6-Di-tert.-Butyl-4-methylphenol, 2-Methyl-4-tert.- butylphenol, Hypophosphorige Säure, Kupferacetat, Kupfer(ll)chlorid, Kupfersalicylat und Cer(lll)acetat.
Ganz besonders bevorzugt wird Phenothiazin und/oder Hydrochinonmonomethylether (MEHQ) als Polymerisationsinhibitor (P) verwendet.
Zur weiteren Stützung der Stabilisierung wird bevorzugt ein sauerstoffhaltiges Gas, bevorzugt Luft oder ein Gemisch aus Luft und Stickstoff (Magerluft) anwesend sein.
Durch das erfindungsgemäße Verfahren sind in einer bevorzugten Ausführungsform urethangruppenhaltige (Meth)acrylsäureester (U) der Formel (I) zugänglich,
R1 und R2 die oben genannten Bedeutungen haben,
Y ausgewählt ist unter 1 ,2-Ethylen, 1 ,2-Propylen, 1 ,1-Dimethyl-1 ,2-ethylen, 1-
Hydroxy-methyl-1 ,2-ethylen, 2-Hydroxy-1 ,3-propylen, 2-Hydroxy-1 ,3-propylen, 1 ,3-Propylen, 1 ,4-Butylen, 1 ,6-Hexylen, 2-Methyl-1 ,3-Propylen, 2-Ethyl-1 ,3- Propylen, 2,2-Dimethyl-1 ,3-Propylen und 2,2-Dimethyl-1 ,4-butylen,
R3 Wasserstoff oder Methyl, bevorzugt Wasserstoff bedeutet, mit der Maßgabe, dass mindestens einer der Reste R1 und R2 ungleich Wasserstoff ist.
Die erhältlichen urethangruppenhaltigen (Meth)acrylsäureester (U) können vorteilhaft als Comonomere in Poly(meth)acrylaten oder als Reaktivverdünner in strahlungshärtbaren und/oder Dual-Cure-härtbaren Poly(meth)acrylaten eingesetzt werden. Derartige Poly(meth)acrylate sind als Bindemittel in strahlungs- oder Dual-Cure-härtbaren Be- schichtungsmitteln geeignet. So erhältliche Beschichtungen weisen sehr hohe Kratzfestigkeiten, Härten, Chemikalienbeständigkeiten, Elastizität und Haftung, sowohl auf hydrophilen als auch auf hydrophoben Substraten auf.
Eine weitere Verwendung der nach dem erfindungsgemäßen Verfahren hergestellten urethangruppenhaltigen (Meth)acrylsäureester (U) ist als Zusatz in Lackformulierungen möglich. Dabei können die urethangruppenhaltigen (Meth)acrylsäureester (U) sowohl in Basislacken als auch in Decklacken eingesetzt werden. Aufgrund ihrer besonderen Eigenschaften, wie der Erhöhung der Kratzfestigkeit und Elastizität, sowie der Erniedrigung der Viskosität, insbesondere bei verzweigten Polyacrylaten, einer strahlengehärteten Klarlackbeschichtung, ist ihr Einsatz in Deckbeschichtungen bevorzugt.
Für eine solche Verwendung kann der urethangruppenhaltige (Meth)acrylsäureester (U) geeigneterweise mit einem Lösungsmittelzusatz abgemischt werden, um den festen Aggregatzustand zu verhindern und den urethangruppenhaltigen (Meth)acrylsäureester (U) in der flüssigen Phase zu halten. Dazu eignen sich damit mischbare niedere Kohlenwasserstoffe wie Methanol, Ethanol, Propanol, Isopropanol, Butanol, Hexanol und beliebige Mischungen davon. Üblicherweise werden 0 bis 40
Gew.-%, bevorzugt 5 bis 30 Gew.-% und besonders bevorzugt 10 bis 20 Gew.-% eines geeigneten Lösungsmittels, jeweils bezogen auf das Gesamtgewicht von Lösungsmittel und urethangruppenhaltigem (Meth)acrylsäureester (U), eingesetzt.
Die folgenden Beispiele sollen die Eigenschaften der Erfindung erläutern, ohne sie aber einzuschränken.
Falls nicht anders angegeben, bedeuten Prozent immer Gewichtsprozent und Teile immer Gewichtsteile.
Beispiele
Beispiel 1
Herstellung von Hydroxypropylcarbamatacrylat
In einer Destillationsapparatur wurden zunächst 1000 g Hydroxypropylcarabamat (Isomerengemisch) mit 600 ml_ Methanol versetzt, und das Methanol anschließend unter Atmosphärendruck bei 50 0C abdestilliert. Es wurden erneut 600 g Methanol zugege- ben und abdestilliert. Anschließend wurde das Vakuum auf 3 mbar eingestellt und das restliche Lösungsmittel 30 Minuten lang bei 60 0C destillativ abgetrennt.
In einem Vorlagegefäß mit angeschlossener Doppelmantelglassäule, Pumpe und anschließendem 5L Vorratsgefäß wurde die Umesterung von Ethylacrylat mit Hydro- xypropylcarbamat durchgeführt. Die Doppelmantelglassäule (Länge 40 cm, Durchmesser 1 ,35 cm)war mit 14 mL Lipase (Novozym® 435) beschickt. Dann wurden 2002,4 g (20,0 mol) Ethylacrylat und 248,9 g (2,0 mol) des zuvor gereinigten Hydroxypropylcar- bamats in dem Vorlagengefäß miteinander vermischt. Zur Stabilisierung wurden 400,5 mg (200 ppm, bezogen auf Ethylacrylat) Hydrochinonmonomethylether zugege- ben. Die Temperatur wurde auf 40 0C eingestellt. Anschließend wurde mit Hilfe der Pumpe mit einer Geschwindigkeit von 1 1 mL pro Stunde die vorgelegte Reaktionsmischung über die mit Enzym beschickte Doppelmantelglassäule gepumpt und im Vorratsgefäß gesammelt.
Nach 3 h 38 min betrug der Austrag im Vorratsgefäß 21 ,5 g. Der Umsatz betrug
73,6 %. Anschließend wurde das erhaltene Rohprodukt mittels GC analysiert, es enthielt 53,9 % Hydroxypropylcarbamatacrylat.
Beispiel 2 Herstellung von Hydroxypropylcarbamatacrylat - Langzeitversuch
Beispiel 1 wurde wiederholt. Die Pumpe wurde jedoch mit einer Geschwindigkeit von 15 mL/h betrieben. Die Reaktionszeit betrug insgesamt ca. 310 h, wobei nach verschiedenen Zeitabständen der Austrag im Vorratsgefäß, der Umsatz sowie die Reinheit mittels GC-Analyse bestimmt wurden. Die Ergebnisse sind in Tabelle 1 zusammenge- fasst.
Tabelle 1
Man erkennt, dass das Leistungsoptimum des enzymatischen Festbettkatalysators bei ca. 1 Tag liegt, sowohl in Bezug auf den Umsatz als auch die Reinheit des Rohproduk- tes.
Beispiel 3
Herstellung von Hydroxypropylcarbamatacrylat - Langzeitversuch mit 2. Enzymsäule
Von dem Austrag aus Beispiel 2 mit einer Reinheit von 52,9 % wurden 250 g (enthaltend 0,9 mol Hydroxypropylcarbamat) entnommen und mit 2010 g (20,08 mol) Ethylac- rylat versetzt. Bei einer Temperatur von 40 0C wurde diese Mischung über eine zweite, mit 12mL Lipase (Novozym® 435) beschickte Doppelmantelglassäule (Länge 40 cm, Durchmesser 1 ,35 cm) mit Hilfe einer Pumpe bei einer Geschwindigkeit von 15 mL/h geführt. Die Reaktionszeit betrug insgesamt ca. 160 h, wobei nach verschiedenen Zeitabständen der Austrag im Vorratsgefäß, der Umsatz sowie die Reinheit mittels GC- Analyse bestimmt wurden. Die Ergebnisse sind in Tabelle 2 zusammengefasst.
Tabelle 2
Es wird deutlich, dass ein zweiter enzymatischer Festbettkatalysator zu deutlich höheren Reinheiten des Rohproduktes führt. Das Leistungsoptimum liegt ebenfalls bei ca. 1 Tag, sowohl in Bezug auf den Umsatz als auch die Reinheit des Rohproduktes.
Der gesamte Austrag nach Beendigung der Reaktion wurde in einem 2,5L Miniplantge- fäß gesammelt. Das Rohprodukt enthielt laut GC-Analyse 70,2 % Hydroxypropylcar- bamatacrylat. Das Rohrprodukt wurde anschließend mit 491 g vollentionisiertem Wasser gewaschen. Man erhielt 503,4 g wässrige Phase und eine organische Phase, die laut GC-Analyse 87,7 % Hydroxypropylcarbamatacrylat enthielt.
Diese organische Phase wurde nochmals mit 491 g vollentionisiertem Wasser gewaschen. Man erhielt 546,9 g wässrige Phase und eine organische Phase, die 93,7 % Hydroxypropylcarbamatacrylat (GC-Analyse) enthielt.
Diese organische Phase wurde anschließend eingeengt. Es wurden 148,9 g Austrag erhalten, das Produkt wies eine Reinheit von 93,8 % auf (GC-Analyse)
Beispiel 4
Herstellung von Hydroxypropylcarbamatacrylat
Beispiel 1 wurde wiederholt. Die Reaktionstemperatur wurde jedoch auf 60 0C eingestellt. Die Pumpe wurde mit einer Geschwindigkeit von 15 mL/h betrieben.
Nach 16 h 57 min betrug der Austrag im Vorratsgefäß 241 ,1 g. Der Umsatz betrug 71 ,0 %. Anschließend wurde das erhaltene Rohprodukt mittels GC analysiert, es enthielt 68,2 % Hydroxypropylcarbamatacrylat.
Nach insgesamt 23 h 19 min wurde die Reaktion beendet. Der Austrag im Vorratsgefäß betrug 328,4 g Rohprodukt, dieses enthielt laut GC-Analyse 67,5 % Hydroxypro- pylcarbamatacrylat.