WO2010127521A1 - 被动锁模皮秒激光器 - Google Patents

被动锁模皮秒激光器 Download PDF

Info

Publication number
WO2010127521A1
WO2010127521A1 PCT/CN2009/073378 CN2009073378W WO2010127521A1 WO 2010127521 A1 WO2010127521 A1 WO 2010127521A1 CN 2009073378 W CN2009073378 W CN 2009073378W WO 2010127521 A1 WO2010127521 A1 WO 2010127521A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
plano
mirror
concave mirror
locked
Prior art date
Application number
PCT/CN2009/073378
Other languages
English (en)
French (fr)
Inventor
樊仲维
麻云凤
牛岗
Original Assignee
北京国科世纪激光技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京国科世纪激光技术有限公司 filed Critical 北京国科世纪激光技术有限公司
Priority to US12/669,951 priority Critical patent/US8340143B2/en
Priority to JP2011511966A priority patent/JP4984104B2/ja
Priority to DE112009000018.5T priority patent/DE112009000018B4/de
Publication of WO2010127521A1 publication Critical patent/WO2010127521A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • H01S3/1115Passive mode locking using intracavity saturable absorbers
    • H01S3/1118Semiconductor saturable absorbers, e.g. semiconductor saturable absorber mirrors [SESAMs]; Solid-state saturable absorbers, e.g. carbon nanotube [CNT] based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0621Coatings on the end-faces, e.g. input/output surfaces of the laser light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • H01S3/08068Holes; Stepped surface; Special cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0813Configuration of resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0813Configuration of resonator
    • H01S3/0817Configuration of resonator having 5 reflectors, e.g. W-shaped resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10061Polarization control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1671Solid materials characterised by a crystal matrix vanadate, niobate, tantalate

Definitions

  • This invention relates to ultrashort pulse lasers and, in particular, to a passive mode-locked picosecond laser.
  • BACKGROUND OF THE INVENTION With the rapid development of laser technology and the increasing demand for its applications, high power, high beam quality, high efficiency, high stability and long life are realized on devices that are small in size, compact in structure, stable in performance, and fully solidified. Lasers are the development direction of the laser field. There is an increasing demand for ultrashort pulsed lasers in various disciplines and industries, especially for picosecond lasers that are more promising than femtosecond lasers (which can be used, for example, in defense, industrial, medical, biological, etc.).
  • the present invention provides a passive mode-locked picosecond laser with stable performance, small size, and low repetition frequency. In order to achieve the above object, the present invention adopts the following technical solutions.
  • a passive mode-locked picosecond laser including a pump source, a laser crystal, a laser cavity, and a mode-locked output structure, the pump source being placed on an incident end surface of the laser crystal
  • the laser cavity includes a plane mirror and a first plano-concave mirror, the plane mirror being placed opposite to the concave surface of the first plano-concave mirror a focal radius of the plano-concave mirror, and an angle between a normal direction of the plane mirror and an axis of the first plano-concave mirror; and an angle of an angle
  • the laser cavity oscillates and is outputted by the mode-locked output structure.
  • the angle between the normal direction of the plane mirror and the axis of the first plano-concave mirror is ⁇ , where 0° ⁇ ⁇ ⁇ 1°.
  • the first plano-concave mirror includes a notch, the laser crystal is placed at the notch position, and an exit end surface of the laser crystal is located in the first plano-concave mirror Inside the arc surface.
  • the mode-locked output structure comprising a planar output mirror, a second plano-concave mirror and a semiconductor saturable absorber, the planar output mirror being a transflective mirror for receiving from The laser of the laser crystal is partially reflected to the second plano-concave mirror, which reflects the laser light from the planar output mirror and is incident perpendicularly to the semiconductor saturable absorber.
  • the mode-locked output structure comprising a second plano-concave mirror, a semiconductor saturable absorber, a polarizer, a quarter-wave plate and a 45 ° mirror, the polarizer receiving The laser of the laser crystal is reflected by the 1/4 wave plate to the second plano-concave mirror, and the second plano-concave mirror is used to receive the laser light reflected by the polarizing plate and reflect it perpendicularly to the semiconductor saturable Absorber, The 45 ° mirror receives laser light that is reflected back from the semiconductor saturable absorber and exits the polarizer from the second plano-concave mirror and the quarter-wave plate, and reflects it as an output.
  • the laser crystal is Nd: YV04 or Nd: GdV04, and its size is 5 mm x 5 mm x (3 mm ⁇ 5 mm).
  • the first plano-concave mirror has a radius of curvature of between 150 mm and 800 mm.
  • the incident end face of the laser crystal is plated with an antireflection film at a wavelength of the pump light, a high reflection film at a wavelength of the output light, and an exit end face plated with an antireflection film at an output light wavelength. .
  • the passive mode-locked picosecond laser as described above further comprising a focusing mirror disposed between the pump source and the laser crystal for concentrating pump light emitted by the pump source to the Laser crystal.
  • the present invention adopts the stable cavity design of the equivalent confocal cavity for the first time, increases the optical path, reduces the frequency, and greatly shortens the cavity length and volume.
  • the laser crystal is placed at the notch of the laser cavity or at the end of the laser cavity to make the structure more compact.
  • FIG. 1 is a top plan view showing a passive mode-locked picosecond laser according to Embodiment 1 of the present invention
  • FIG. 2 is a view showing a first plano-concave in a passive mode-locked picosecond laser according to Embodiment 1 of the present invention
  • 3 is a top plan view of a passive mode-locked picosecond laser according to Embodiment 2 of the present invention
  • FIG. 4 shows a light beam in a confocal cavity and a passively-locked skin according to an embodiment of the present invention.
  • the LD pump source 1 is placed on the side of the incident end face of the laser crystal 3 for pumping it; a focusing mirror 2 is placed between the pump source 1 and the laser crystal 3 for pumping light from the pump source 1 Converging into the laser crystal 3 to improve pump light utilization.
  • the plane mirror 4 is placed opposite the first plano-concave mirror 5 at the focal radius position of the first plano-concave mirror 5, thereby forming a laser cavity (equivalent confocal cavity) together with its normal direction and the first
  • the angle of the axis (in the horizontal direction) of the flat concave mirror 5 is an acute angle of a small angle, and the acute angle may be ⁇ (0° ⁇ ⁇ ⁇ 1 °).
  • the light incident horizontally on the plane mirror 4 does not return along the original path, but is reflected at a small angle of 2 ⁇ .
  • a circular arc of 3 mm - 5 mm height is thrown off on the first plano-concave mirror 5 to form a notch thereon.
  • the laser crystal 3 is placed close to the first flat concave mirror 5 at the position of the notch, and the exit end surface of the laser crystal 3 and the curved surface of the first flat concave mirror 5 are substantially in a circular arc surface, or the laser light can also be
  • the crystal 3 is "inlaid" at the end of the laser cavity (first flat concave mirror 5), thus saving space.
  • the notch may take other forms as long as the laser crystal 3 can be properly accommodated.
  • the size of the laser crystal is 5mmx5mmx (3mm ⁇ 5mm).
  • the incident end face of the laser crystal is coated with the anti-reflection film of the pump wavelength (808nm), the output light wavelength (1064nm), the high-reflection film, and the output end-wave plated output wavelength (1064nm). membrane.
  • the laser crystal 3 can adopt Nd: YV04, Nd: GdV04, and the crystal angle cutting adopts a vertical polarization light output cutting mode.
  • a Nd:YAG crystal or the like can also be used.
  • the laser crystal 3 After the side of the laser crystal 3 is covered with indium platinum, it is placed in a heat sink copper block (not shown), fixed at the notch with a bracket (not shown), and controlled by water cooling or TEC (semiconductor cooling chip). temperature. Since the laser crystal 3 is "inlaid" on the first plano-concave mirror, the laser crystal 3 constitutes a part of the laser cavity, thereby making the structure of the laser cavity more compact.
  • the plane output mirror 6, the second plano-concave mirror 7, and the SESAM 8 constitute a mode-locked output structure, and the placement position thereof can be calibrated by using a laser.
  • the calibration process is as follows: A laser beam is incident from the center of the laser crystal 3 to the plane mirror 4 in parallel with the normal to the first plano-concave mirror 5.
  • the plane output mirror 6 is placed on the outgoing light path of the laser beam continuously reflected by the equivalent confocal cavity, and the second plano-concave mirror 7 is for receiving the laser light reflected from the plane output mirror 6, and reflects it perpendicularly to the incident SESAM 8.
  • This calibration is only an exemplary way of determining the position of the planar output mirror 6, the second plano-concave mirror 7, and the SESAM 8. It will be understood by those skilled in the art that the setting of the mode-locked output structure can be appropriately changed as long as the laser can be realized.
  • the mode-locked output can be.
  • the working process of the passive mode-locked picosecond laser of this embodiment is as follows:
  • the LD pump source 1 emits a pump laser of 808 nm, which is vertically incident on the focusing mirror 2, is focused and then vertically incident on the incident end face of the laser crystal 3 to pump it; the pumping light excites the crystal working substance , the number of particles is reversed, a large number of particles accumulate, and stimulated radiation is generated.
  • the light emitted by the stimulated radiation is reflected multiple times in the laser cavity, it is reflected by the incident surface of the laser crystal 3 to the plane output mirror 6- After being reflected to the second plano-concave mirror 7, the laser light is reflected by the SESAM 8, and then incident on the plane output mirror 6 via the second plano-concave mirror 7, and outputted from the plane output mirror 6.
  • the light generated by the stimulated emission is repeated eight times in an equivalent confocal cavity composed of a plane mirror 4 and a C 20 mm plano-concave mirror, that is, the beam is sequentially transmitted through ABCDEFGDA, and then passes through the incident end face of the laser crystal 3 again. It is reflected to the plane output mirror; reflected by the plane output mirror 6 and transmitted to the second plano-concave mirror 7, and then focused onto the SESAM 8 to realize picosecond laser mode-locking.
  • the plane output mirror 6 adopted by the system is a semi-transparent mirror, which can be partially reflected and partially transmitted, so that the system can output two channels, and the laser transmittance of the plane output mirror 6 is 5% - 15%, and the angle setting thereof It is necessary to ensure that the incident angle of the laser received from the laser crystal 3 is less than 30°, which is to achieve small angle reflection and low loss.
  • the laser realizes the resonance mode-locking during the oscillation process, the laser light incident from the laser crystal 3 is partially transmitted as the output 1, and the laser light incident from the second flat-concave mirror 7 is partially transmitted as the output 2, and finally the two-way mode-locked picosecond output is realized.
  • This dual output light can be used to achieve signal light amplification for multiplier laser output.
  • a passive mode-locked picosecond laser includes: an LD pump source 1, a focusing mirror 2, a laser crystal 3, a plane mirror 4, and a first plano-concave mirror 5, Second flat concave mirror 7,
  • Focusing mirror 2, laser crystal 3, plane mirror 4, and first plano-concave mirror 5 are arranged in the same manner as in Embodiment 1.
  • the second plano-concave mirror 7, SESAM 8, polarizer 9, 1/4 wave plate 10 and 45° mirror 11 form a mode-locked output structure, and the placement position can be calibrated using a laser.
  • the calibration process is as follows: A laser beam is incident from the center of the laser crystal 3 to the plane mirror 4 in parallel with the normal to the first plano-concave mirror 5.
  • the polarizing plate 9 is placed on the outgoing light path of the laser beam continuously reflected by the equivalent confocal cavity, and the laser beam is reflected by the quarter wave plate 10 toward the second flat concave mirror 7, and the second flat concave mirror 7 is used.
  • Receiving the laser light reflected by the polarizing plate 9 and reflecting it perpendicularly to the SESAM 8 the 45° mirror receives n
  • the SESAM 8 reflects back the laser light emitted from the polarizing plate 9 through the second plano-concave mirror 7 and the quarter-wave plate 10, and reflects the laser light as an output.
  • This calibration is only an exemplary way of determining the positions of the second plano-concave mirror 7, SESAM 8, polarizer 9, quarter-wave plate 10 and 45-degree mirror 11, and those skilled in the art will understand that mode-locking
  • the setting of the output structure can be changed as appropriate, as long as the mode-locked output of the laser can be realized.
  • the laser crystal 3 can adopt Nd: YV04, Nd: GdV04, and the crystal angle cutting adopts a vertical polarization light output cutting mode.
  • the laser crystal 3 outputs vertically polarized light which is repeated eight times in the equivalent confocal cavity formed by the plane mirror 4 and the first plano-concave mirror 5, and is again reflected to the polarizing plate 9 through the incident end face of the laser crystal.
  • the laser is reflected by the polarizing plate 9 (the normal direction of which is placed at a Brewster angle (substantially equal to 57° angle)), passes vertically through the 1/4 wave plate 10, and passes through the 1/4 wave plate 10
  • the circularly polarized light is then focused by the second plano-concave mirror 7 onto the SESAM for picosecond laser mode-locking (wherein the second plano-concave mirror 7 has a focal length of 10 mm and the SESAM surface size is 3 mm x 3 mm).
  • the light beam returns from the original path through the SESAM 8 reflection, and then passes through the second flat concave mirror 7 to vertically pass through the 1/4 wave plate 10, so that the circularly polarized light becomes horizontally polarized light, and the horizontally polarized light is transmitted through the polarizing plate 9 for transmission, and then
  • the 45° mirror 11 reflects the beam horizontally along the system path to achieve a mode-locked picosecond horizontally polarized light output. Reduce the size of the system, and facilitate the design of the machine.
  • 4 is a comparison diagram of a confocal cavity used in the prior art and transmitted in an equivalent confocal cavity of a passive mode-locked picosecond laser in accordance with an embodiment of the present invention.
  • the total optical path length of the picosecond laser cavity with equivalent confocal cavity is lm ⁇ 6m, picosecond ⁇ medium frequency 25MHz ⁇ 150MHz.
  • the equivalent confocal cavity is in volume ratio In the case of a small half of the focal cavity, it has almost the same optical path, achieving a repetitive frequency, and the equivalent confocal cavity has stable, cavity characteristics and stable performance.
  • the invention adopts the stable cavity design of the equivalent confocal cavity, increases the optical path, reduces the repetitive frequency, and greatly shortens the cavity length and volume.
  • the present invention "lasers" the laser crystal into the end of the laser cavity as part of the laser cavity, which greatly saves space and makes the structure of the laser more compact.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

被动锁模皮秒激光器
技术领域 本发明涉及超短脉冲激光器,具体而言,涉及一种被动锁模皮秒激光器。 背景技术 随着激光技术的迅速发展及其应用需求的增加,在体积小巧、结构紧凑、 性能稳定、 全固体化的器件上实现高功率、 高光束质量、 高效率、 高稳定性 和长寿命的激光器是激光领域发展的方向。 各种学科和工业中对超短脉冲激 光的需求日益增加,尤其是应用前景比飞秒激光器更广泛的皮秒激光器 (其例 如可以用于: 国防、 工业、 医疗、 生物等领域;)。 所以, 研制出高质量、 高效 率、 高稳定性的皮秒激光器是当前的重要研究课题。 一种现有锁模皮秒激光器技术采用染料锁模 ,例如申请号为 03114621.X 的题为 "出光时间高稳定度的被动锁模 Nd: YAG皮秒激光器" 的中国专利 申请中公开的技术方案, 其电控系统复杂, 体积大。 且染料有剧毒, 一段时 间染料稀释, 必须更换, 使用寿命短, 不利于工程化, 而且不利于人体健康。 另一种现有锁模皮秒激光器技术采用主动锁模技术, 例如参见申请号为 03210775.7 , 题为 "激光二极管泵浦皮秒主动锁模固体平面波导激光器" 的 中国专利申请。 因为波导技术发展不成熟, 成品率极低, 这种皮秒激光器很 难得到批量生产, 且主动锁模稳定性差。 还有一种现有的锁模皮秒激光器技 术,是一种实现低重频的被动锁模技术,例如参见申请号为 200520000394.7 , 题为 "腔倒空全固态皮秒激光器" 的中国实用新型申请, 其采用普克尔盒实 现腔倒空巨脉冲振荡, 对 SESAM损伤极大, 一旦损伤, 不可恢复。 另外, 现有技术中激光器的激光腔体很多采用共焦腔结构, 这种结构虽 然稳定但是腔长较长 , 结构不紧凑。 综上可以看出, 现有技术中, 缺少一种结构小巧、 性能稳定、 低重频被 动锁模皮秒激光器。 发明内容 针对现有技术的不足, 本发明提供一种性能稳定, 体积小巧, 低重频的 被动锁模皮秒激光器。 为了达到上述目的 , 本发明采取如下技术方案。 在本发明的实施例中 , 提供了一种被动锁模皮秒激光器 , 包括泵浦源 , 激光晶体, 激光腔体、 锁模输出结构, 所述泵浦源放置在所述激光晶体的入射端面一侧用于泵浦所述激光晶 体; 所述激光腔体包括平面反射镜和第一平凹镜 ,所述平面反射镜与所述第 一平凹镜的凹面相对的放置于所述第一平凹镜的焦半径处, 且所述平面反射 镜的法线方向与所述第一平凹镜的轴线之间有一' _|、角度的夹角; 所述激光晶体发出的激光在所述激光腔体内振荡 ,并经所述锁模输出结 构锁模输出。 如上所述的被动锁模皮秒激光器,所述平面反射镜的法线方向与所述第 一平凹镜的轴线之间的夹角为 Θ, 其中 0° <θ<1° 。 如上所述的被动锁模皮秒激光器,所述激光晶体镶嵌在所述第一平凹镜 中。 如上所述的被动锁模皮秒激光器, 所述第一平凹镜包括一个缺口, 所述 激光晶体放置在所述缺口位置处, 并且所述激光晶体的出射端面位于所述第 一平凹镜的圆弧面内。 如上所述的被动锁模皮秒激光器, 所述锁模输出结构包括平面输出镜、 第二平凹镜和半导体可饱和吸收体 , 所述平面输出镜为半透半反镜, 用于接 收来自所述激光晶体的激光并将其部分反射至所述第二平凹镜, 所述第二平 凹镜将来自所述平面输出镜的激光反射并垂直入射至所述半导体可饱和吸收 体。 如上所述的被动锁模皮秒激光器, 所述锁模输出结构包括第二平凹镜, 半导体可饱和吸收体, 偏振片, 1/4波片和 45°反射镜, 所述偏振片接收来自 所述激光晶体的激光, 并将其经 1/4波片反射向第二平凹镜, 第二平凹镜用 于接收偏振片反射的激光,并将其反射垂直入射至所述半导体可饱和吸收体, 所述 45°反射镜接收从所述半导体可饱和吸收体反射回并经所述第二平凹镜 和所述 1/4波片从所述偏振片出射的激光, 并将其反射作为输出。 如上所述的被动锁模皮秒激光器, 所述激光晶体为 Nd: YV04或 Nd: GdV04, 其大小为 5mm x 5mm x (3mm ~ 5mm)。 如上所述的被动锁模皮秒激光器, 所述第一平凹镜的曲率半径在 150mm ~ 800mm之间。 如上所述的被动锁模皮秒激光器 ,所述激光晶体入射端面镀有在泵浦光 波长的增透膜、 在输出光波长的高反膜,出射端面镀有在输出光波长的增透 膜。 如上所述的被动锁模皮秒激光器, 还包括聚焦镜, 所述聚焦镜放在所述 泵浦源和所述激光晶体之间用于会聚所述泵浦源发出的泵浦光至所述激光晶 体。 与现有技术相比,本发明第一次采用等效共焦腔的稳腔设计,增大光程, 降氐重频, 且大大缩短腔长和体积。 并且, 激光晶体放置在激光腔体的缺口处或镶嵌在激光腔体的端部, 使 结构更加紧凑。 附图说明 此处所说明的附图用来提供对本发明的进一步理解 ,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1示出根据本发明实施例 1的被动锁模皮秒激光器的俯视示意图; 图 2示出根据本发明实施例 1中的被动锁模皮秒激光器中的第一平凹镜 的右视图; 图 3示出根据本发明实施例 2的被动锁模皮秒激光器的俯视示意图; 图 4 示出了光束在共焦腔和在才艮据本发明实施例的被动锁模皮秒激光 器的等效共焦腔中传输的对比图。 具体实施方式 下面将参考附图并结合实施例 , 来详细说明本发明。 实施例 1 如图 1所示, 根据本发明的实施例 1 的被动锁模皮秒激光器包括: LD 泵浦源 1 , 聚焦镜 2, 激光晶体 3 , 平面反射镜 4, 第一平凹镜 5 ( Φ=20ηιηι ), 平面输出镜 6, 第二平凹镜 7 ( O=10mm )和 SESAM (半导体可饱和吸收体 ) 8。 LD泵浦源 1放在激光晶体 3的入射端面一侧用于对其进行泵浦; 聚焦镜 2放在泵浦源 1和激光晶体 3之间用于使来自泵浦源 1的泵浦光会聚到激光 晶体 3中 , 提高泵浦光利用率。 平面反射镜 4与第一平凹镜 5相对的放置在 第一平凹镜 5的焦半径位置处, 从而与其一起构成激光腔体(等效共焦腔), 并且其法线方向与第一平凹镜 5的轴线 (沿水平方向) 的夹角为一小角度的 锐角, 该锐角大小可以为 θ ( 0° <θ<1 ° )。 从而使水平入射在平面反射镜 4 上的光线不会沿原路返回, 而是以小角度 2Θ反射。 如图 2所示,第一平凹镜 5上被抛掉 3mm-5mm高的圆弧从而在其上形 成一个缺口。 激光晶体 3紧贴第一平凹镜 5放置在所述缺口的位置处, 并且 激光晶体 3的出射端面与第一平凹镜 5的弧面大体在一个圆弧面内, 或者还 可以将激光晶体 3 "镶嵌" 在激光腔体的端部 (第一平凹镜 5 ), 从而节省空 间。 虽然图 2中给出了被抛掉的缺口的示意图, 但是该缺口还可以采用其他 形式, 只要能够适当的容纳所述激光晶体 3 即可。 激光晶体大小为 5mmx5mmx(3mm ~ 5mm),激光晶体入射端面镀泵浦光波长 ( 808nm ) 的增透 膜、 输出光波长 ( 1064nm ) 高反膜,出射端面镀输出光波长 ( 1064nm ) 的增 透膜。 本实施例中, 激光晶体 3可采用 Nd: YV04、 Nd: GdV04, 且晶体 角切割采用垂直偏振光输出切割方式。 对于其他情况, 如果不要求偏振光输 出, 还可以采用 Nd:YAG晶体等。 激光晶体 3侧面用铟铂包裏后, 放在热沉 铜块 (未示出) 里, 用支架 (未示出) 固定在所述缺口处, 并采用水冷或者 TEC (半导体制冷芯片) 进行控温。 由于把激光晶体 3 "镶嵌" 在第一平凹 镜上, 使得激光晶体 3构成激光腔体的一部分, 进而使激光腔体的结构更加 紧凑。 另外, 本实施例中, 平面输出镜 6、 第二平凹镜 7、 SESAM 8组成锁模 输出结构, 其放置位置可以利用激光进行标定。 标定过程如下: 用一束激光 与第一平凹镜 5的法线平行的从激光晶体 3的中心处向平面反射镜 4入射。 平面输出镜 6放在该束激光经等效共焦腔连续反射后的出射光路上, 第二平 凹镜 7 用于接收从平面输出镜 6 反射的所述激光, 并将其反射垂直入射至 SESAM 8。 这种标定只是作为确定平面输出镜 6、 第二平凹镜 7、 SESAM 8 位置的一种示例性方式, 本领域技术人员应该理解, 锁模输出结构的设置可 以适当改变, 只要能够实现激光的锁模输出即可。 本实施例的被动锁模皮秒激光器的工作过程如下:
LD泵浦源 1发出 808nm的泵浦激光,该泵浦激光垂直入射到聚焦镜 2 , 经其聚焦后垂直入射到激光晶体 3的入射端面从而对其进行泵浦; 泵浦光激 励晶体工作物质, 使其粒子数反转, 大量的粒子积累, 产生受激辐射, 当受 激辐射所发出的光在激光腔体内发生多次反射, 然后经激光晶体 3的入射面 反射至平面输出镜 6-再反射至第二平凹镜 7, 激光被 SESAM 8反射后, 再经 第二平凹镜 7入射至平面输出镜 6, 从平面输出镜 6输出。 本例中, 受激发 射所产生的光在由平面反射镜 4和 C 20mm平凹镜构成的等效共焦腔中往返 八次, 即光束经 A-B-C-D-E-F-G-D-A顺序传输, 然后再次经过激光晶体 3入 射端面反射到平面输出镜; 经过平面输出镜 6反射传输到第二平凹镜 7, 再 聚焦光束到 SESAM 8上, 实现皮秒激光锁模。 另夕卜, 系统采用的平面输出镜 6为半透半反镜, 其可以部分反射、 部分 透射, 使系统双路输出, 平面输出镜 6的激光透过率 5%- 15% , 其角度设置 要保证从激光晶体 3 处接受的激光入射角小于 30° , 这是为了实现小角度反 射, 损耗小。 激光实现共振锁模后, 在振荡过程中, 从激光晶体 3入射激光 部分透射作为输出 1 , 从第二平凹镜 7入射的激光部分透射作为输出 2 , 最 终实现双路锁模皮秒输出。 此双路输出光可用于实现信号光放大, 获得倍频 激光输出。 实施例 2: 如图 3 , 根据本发明的实施例 2的被动锁模皮秒激光器包括: LD泵浦 源 1 , 聚焦镜 2 , 激光晶体 3 , 平面反射镜 4 , 第一平凹镜 5 , 第二平凹镜 7,
SESAM 8 , 偏振片 9 , 1/4波片 10和 45°反射镜 11。 本实施例中, LD泵浦源
1 , 聚焦镜 2 , 激光晶体 3 , 平面反射镜 4 , 第一平凹镜 5以与实施例 1相同 的方式布置。 第二平凹镜 7, SESAM 8, 偏振片 9, 1/4波片 10和 45°反射镜 11组成 锁模输出结构, 其放置位置可以利用激光进行标定。 标定过程如下: 用一束 激光与第一平凹镜 5的法线平行的从激光晶体 3的中心处向平面反射镜 4入 射。 偏振片 9放在该束激光经等效共焦腔连续反射后的出射光路上, 并将该 束激光经 1/4波片 10反射向第二平凹镜 7, 第二平凹镜 7用于接收偏振片 9 反射的所述激光, 并将其反射垂直入射至 SESAM 8 , 45°反射镜 n接收从
SESAM 8反射回并经第二平凹镜 7和 1/4波片 10从偏振片 9出射的激光, 并反射所述激光作为输出。 这种标定只是作为确定第二平凹镜 7 , SESAM 8 , 偏振片 9, 1/4波片 10和 45°反射镜 11的位置的一种示例性方式, 本领域技 术人员应该理解, 锁模输出结构的设置可以适当改变, 只要能够实现激光的 锁模输出即可。 本实施例中, 激光晶体 3可采用 Nd: YV04、 Nd: GdV04, 且晶体角 切割采用垂直偏振光输出切割方式。 所以, 激光晶体 3输出垂直偏振光, 该 垂直偏振光在由平面反射镜 4 和第一平凹镜 5 构成的等效共焦腔中往返八 次, 再次经过激光晶体入射端面反射到偏振片 9; 激光经偏振片 9 (其法线 方向与入射光束成布儒斯特角 (大体等于 57°角)放置)反射, 垂直通过 1/4 波片 10, 经过 1/4波片 10后变成圆偏振光, 再由第二平凹镜 7聚焦光束到 SESAM上, 实现皮秒激光锁模(其中, 第二平凹镜 7焦距为 10mm, SESAM 表面尺寸为 3mmx3mm )。 光束经 SESAM 8反射由原路返回, 再经第二平凹 镜 7反射垂直通过 1/4波片 10 , 使圆偏振光变成水平偏振光, 水平偏振光通 过偏振片 9透射输出, 再由 45°反射镜 11反射使光束沿系统光路水平出射 , 实现锁模皮秒水平偏振光输出。 减少系统体积, 方便机才戒结构设计。 图 4 是光束在现有技术中所采用的共焦腔和在才艮据本发明实施例的被 动锁模皮秒激光器的等效共焦腔中传输的对比图。 从图中可以看出, 光束在 由平面反射镜和第一平凹镜( Φ =20mm )构成的等效共焦腔中往返八次 , 第 一平凹镜 5的曲率半径可以在 150mm ~ 800mm之间, 直径 20mm„ 所以 , 该 具有等效共焦腔的皮秒激光共振腔总光程长度为 lm ~ 6m , 皮秒^ 中重频 25MHz ~ 150MHz。 该等效共焦腔在体积比共焦腔小一半的情况下, 与其具 有几乎相同的光程, 实现氏重频, 而且这种等效共焦腔具有稳、腔的特性, 性 能稳定。 本发明第一次采用了等效共焦腔的稳腔设计, 增大光程, 降低重频, 且 大大缩短腔长和体积。 并且, 本发明将激光晶体 "镶嵌" 激光腔体的端部, 使其作为激光腔体的一部分, 大大节省了空间 , 使激光器的结构更加紧凑。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的^^申和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种被动锁模皮秒激光器, 其特征在于, 包括: 泵浦源、 激光晶体、 激光腔体和锁模输出结构 , 其中
所述泵浦源设置在所述激光晶体的入射端面一侧, 用于泵浦所述 激光晶体;
所述激光腔体包括平面反射镜和第一平凹镜, 所述平面反射镜与 所述第一平凹镜的凹面相对的设置于所述第一平凹镜的焦半径处 , 且 所述平面反射镜的法线方向与所述第一平凹镜的轴线之间有一' j、角度 的夹角;
所述激光晶体发出的激光在所述激光腔体内振荡, 并经所述锁模 输出结构锁模输出。
2. 根据权利要求 1所述的被动锁模皮秒激光器, 其特征在于, 所述平面 反射镜的法线方向与所述第一平凹镜的轴线之间的夹角为 Θ , 其中, 0° <θ<1 ° 。
3. 根据权利要求 1所述的被动锁模皮秒激光器, 其特征在于, 所述激光 晶体镶嵌在所述第一平凹镜中。
4. 根据权利要求 1所述的被动锁模皮秒激光器, 其特征在于, 所述第一 平凹镜包括一个缺口, 所述激光晶体设置在所述缺口位置处, 并且所 述激光晶体的出射端面位于所述第一平凹镜的圆弧面内。
5. 根据权利要求 1-4中任一项所述的被动锁模皮秒激光器, 其特征在于, 所述锁模输出结构包括: 平面输出镜、 第二平凹镜和半导体可饱和吸 收体, 其中 所述平面输出镜为半透半反镜, 用于接收来自所述激光晶体的激 光并将其部分反射至所述第二平凹镜; 所述第二平凹镜将来自所述平面输出镜的激光反射并垂直入射 至所述半导体可饱和吸收体。 根据权利要求 1-4中任一项所述的被动锁模皮秒激光器, 其特征在于, 所述锁模输出结构包括: 第二平凹镜、 半导体可饱和吸收体、 偏振片、
1/4波片和 45°反射镜, 其中 所述偏振片接收来自所述激光晶体的激光, 并将其经所述 1/4波 片反射向所述第二平凹镜;
所述第二平凹镜用于接收所述偏振片反射的激光, 并将其反射垂 直入射至所述半导体可饱和吸收体; 所述 45°反射镜接收从所述半导体可饱和吸收体反射回并经所述 第二平凹镜和所述 1/4 波片从所述偏振片出射的激光, 并将其反射后 输出。 根据权利要求 1-4中任一项所述的被动锁模皮秒激光器, 其特征在于, 所述激光晶体为 Nd: YV04 或 Nd: GdV04 , 其大小 为 5mm><5mmx(3mm ~ 5mm)。 根据权利要求 1-4中任一项所述的被动锁模皮秒激光器, 其特征在于, 所述第一平凹镜的曲率半径在 150mm ~ 800mm之间。 根据权利要求 1-4中任一项所述的被动锁模皮秒激光器, 其特征在于, 所述激光晶体入射端面镀有在泵浦光波长的增透膜、 在输出光波长的 高反膜, 出射端面镀有在输出光波长的增透膜。 根据权利要求 1-4中任一项所述的被动锁模皮秒激光器, 其特征在于, 还包括:
聚焦镜, 设置在所述泵浦源和所述激光晶体之间, 用于将所述泵 浦源发出的泵浦光会聚至所述激光晶体。
PCT/CN2009/073378 2009-05-04 2009-08-20 被动锁模皮秒激光器 WO2010127521A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/669,951 US8340143B2 (en) 2009-05-04 2009-08-20 Passively mode-locked picosecond laser device
JP2011511966A JP4984104B2 (ja) 2009-05-04 2009-08-20 受動モードロックピコ秒レーザー
DE112009000018.5T DE112009000018B4 (de) 2009-05-04 2009-08-20 Passiv modengekoppeltes Pikosekundenlasergerät

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009100834318A CN101562310B (zh) 2009-05-04 2009-05-04 被动锁模皮秒激光器
CN200910083431.8 2009-05-04

Publications (1)

Publication Number Publication Date
WO2010127521A1 true WO2010127521A1 (zh) 2010-11-11

Family

ID=41220982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073378 WO2010127521A1 (zh) 2009-05-04 2009-08-20 被动锁模皮秒激光器

Country Status (5)

Country Link
US (1) US8340143B2 (zh)
JP (1) JP4984104B2 (zh)
CN (1) CN101562310B (zh)
DE (1) DE112009000018B4 (zh)
WO (1) WO2010127521A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074883A (zh) * 2010-12-14 2011-05-25 聊城大学 一种皮秒激光振荡源

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2363685B1 (de) * 2010-02-09 2013-11-20 Attocube Systems AG Vorrichtung zur Positionserfassung mit konfokalem Fabry-Perot Interferometer
CN102570258A (zh) * 2011-02-25 2012-07-11 北京国科世纪激光技术有限公司 激光器谐振腔
CN102832534B (zh) * 2012-07-20 2015-01-21 中国科学院光电研究院 全固态被动锁模皮秒激光器
CN102882113A (zh) * 2012-09-24 2013-01-16 中国科学院物理研究所 一种ld端面泵浦的被动锁模激光器
KR101849978B1 (ko) 2012-12-18 2018-04-19 삼성전자 주식회사 극자외선 광 발생 장치 및 방법
FR3019388B1 (fr) * 2014-03-27 2017-06-16 Cilas Cavite laser instable a declencheur passif pourvu d'un absorbant saturable a gradient d'absorption
US10605730B2 (en) 2015-05-20 2020-03-31 Quantum-Si Incorporated Optical sources for fluorescent lifetime analysis
US11466316B2 (en) 2015-05-20 2022-10-11 Quantum-Si Incorporated Pulsed laser and bioanalytic system
EP3298388A1 (en) * 2015-05-20 2018-03-28 Quantum-si Incorporated Pulsed laser and bioanalytic system
CN106025783A (zh) * 2016-06-06 2016-10-12 中国工程物理研究院应用电子学研究所 一种快速切换偏振态的调q脉冲激光器
CN107782714A (zh) * 2016-08-24 2018-03-09 中国科学院光电研究院 一种激光脉宽包括皮秒和纳秒两者规格的激光诱导等离子体光谱分析设备
CN106451050B (zh) * 2016-10-12 2019-05-03 电子科技大学 一种全固态宽带可调谐中红外超短脉冲激光器
JP6913169B2 (ja) 2016-12-16 2021-08-04 クアンタム−エスアイ インコーポレイテッドQuantum−Si Incorporated コンパクトなモードロックレーザモジュール
BR112019012069A2 (pt) 2016-12-16 2019-11-12 Quantum-Si Incorporated conjunto de modelagem e direcionamento de feixe compacto
CN109212733B (zh) * 2017-07-04 2021-02-05 徐州旭海光电科技有限公司 一种光程折叠器件
CN108173110B (zh) * 2018-02-01 2024-01-09 长春新产业光电技术有限公司 百赫兹百纳秒大能量激光器
CN108777429B (zh) * 2018-06-15 2020-05-05 北京交通大学 一种用于各向异性激光介质的锁模激光器
WO2019241733A1 (en) 2018-06-15 2019-12-19 Quantum-Si Incorporated Data acquisition control for advanced analytic instruments having pulsed optical sources
CN108551076A (zh) * 2018-06-22 2018-09-18 深圳烯光科技有限公司 一种重复频率可调双波长纳焦耳皮秒激光器
CN109802288A (zh) * 2019-03-06 2019-05-24 北京赢圣科技有限公司 高功率全固态紧凑皮秒激光器
WO2020251690A1 (en) 2019-06-14 2020-12-17 Quantum-Si Incorporated Sliced grating coupler with increased beam alignment sensitivity
CN112186489B (zh) * 2019-07-02 2022-07-12 苏州曼德特光电技术有限公司 自动锁模激光器及其控制方法
CN116009249B (zh) * 2023-03-27 2023-06-30 济南量子技术研究院 一种光学频率梳锁模自动调试方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0798825B1 (en) * 1996-03-25 2003-05-14 Hamamatsu Photonics K.K. Ultrashort optical pulse laser apparatus
US6834064B1 (en) * 1999-12-08 2004-12-21 Time-Bandwidth Products Ag Mode-locked thin-disk laser
CN2754243Y (zh) * 2004-12-17 2006-01-25 北京工业大学 偏振态可调的连续及锁模激光器
CN2765348Y (zh) * 2005-01-13 2006-03-15 北京工业大学 腔倒空全固态皮秒激光器
CN1979978A (zh) * 2005-12-07 2007-06-13 中国科学院半导体研究所 半导体吸收镜被动锁模激光器的准z型腔结构光路
CN101399426A (zh) * 2007-09-28 2009-04-01 富士胶片株式会社 模式同步固体激光装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991385A (en) * 1975-02-03 1976-11-09 Owens-Illinois, Inc. Gas laser with sputter-resistant cathode
US4653063A (en) * 1985-01-25 1987-03-24 Litton Systems, Inc. Laser apparatus
US5870415A (en) * 1996-06-10 1999-02-09 Biophotonics Information Laboratories Ltd. Lasers
US6212216B1 (en) * 1996-12-17 2001-04-03 Ramadas M. R. Pillai External cavity micro laser apparatus
US6393035B1 (en) * 1999-02-01 2002-05-21 Gigatera Ag High-repetition rate passively mode-locked solid-state laser
US6816532B2 (en) * 2001-05-15 2004-11-09 Fuji Photo Film Co., Ltd. Laser-diode-excited laser apparatus, fiber laser apparatus, and fiber laser amplifier in which laser medium doped with one of ho3+, sm3+, eu3+, dy3+, er3+, and tb3+is excited with gan-based compound laser diode
AT411411B (de) * 2002-05-17 2003-12-29 Femtolasers Produktions Gmbh Kurzpuls-laservorrichtung mit vorzugsweise passiver modenverkopplung und mehrfachreflexions-teleskop hiefür
WO2004068656A2 (de) * 2003-01-28 2004-08-12 High Q Laser Production Gmbh Faltvorrichtung zur strahlführung in einem laser
CN1211896C (zh) 2003-04-08 2005-07-20 中国科学院西安光学精密机械研究所 出光时间高稳定度的被动锁模Nd:YAG皮秒激光器
CN2655477Y (zh) 2003-09-19 2004-11-10 中国科学院上海光学精密机械研究所 激光二极管泵浦皮秒主动锁模固体平面波导激光器
JPWO2005091447A1 (ja) * 2004-03-24 2008-02-07 独立行政法人科学技術振興機構 レーザー装置
EP1870972A1 (en) * 2006-06-22 2007-12-26 Fujifilm Corporation Mode-locked laser device
US7864821B2 (en) * 2007-09-28 2011-01-04 Fujifilm Corporation Mode-locked solid-state laser apparatus
JP5456994B2 (ja) * 2008-06-20 2014-04-02 富士フイルム株式会社 モード同期固体レーザ装置
JP2010103428A (ja) * 2008-10-27 2010-05-06 Fujifilm Corp モード同期レーザ装置、超短パルス光源装置、広帯域光源装置、非線形光学顕微装置、記録装置、及び光コヒーレンストモグラフィ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0798825B1 (en) * 1996-03-25 2003-05-14 Hamamatsu Photonics K.K. Ultrashort optical pulse laser apparatus
US6834064B1 (en) * 1999-12-08 2004-12-21 Time-Bandwidth Products Ag Mode-locked thin-disk laser
CN2754243Y (zh) * 2004-12-17 2006-01-25 北京工业大学 偏振态可调的连续及锁模激光器
CN2765348Y (zh) * 2005-01-13 2006-03-15 北京工业大学 腔倒空全固态皮秒激光器
CN1979978A (zh) * 2005-12-07 2007-06-13 中国科学院半导体研究所 半导体吸收镜被动锁模激光器的准z型腔结构光路
CN101399426A (zh) * 2007-09-28 2009-04-01 富士胶片株式会社 模式同步固体激光装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAI, ZHIQIANG ET AL.: "end-pumped all-solid-state picosecond passively mode-locking laser", CHINESE JOURNAL OF LASERS, vol. 34, no. 7, July 2007 (2007-07-01) *
LIU, HUILAN ET AL.: "5.1-ps passively mode-locked Nd:Gd0.42Y0.58VO laser with a LT-GaAs absorber", CHINESE OPTICS LETTERS, vol. 6, no. 5, 10 May 2008 (2008-05-10) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074883A (zh) * 2010-12-14 2011-05-25 聊城大学 一种皮秒激光振荡源

Also Published As

Publication number Publication date
DE112009000018A5 (de) 2012-08-02
DE112009000018B4 (de) 2015-03-19
DE112009000018T5 (de) 2011-05-05
JP4984104B2 (ja) 2012-07-25
CN101562310B (zh) 2010-09-01
US8340143B2 (en) 2012-12-25
US20120039345A1 (en) 2012-02-16
JP2011518445A (ja) 2011-06-23
CN101562310A (zh) 2009-10-21

Similar Documents

Publication Publication Date Title
WO2010127521A1 (zh) 被动锁模皮秒激光器
CN210201151U (zh) 一种全固态绿光激光器
TW200529523A (en) A laser apparatus
CN103618205A (zh) 一种全固态单纵模黄光激光器
CN101022203A (zh) 双电光调QNd:YAG激光器
CN103887698A (zh) 一种高效的单泵源双端对称式泵浦激光器
CN102005694B (zh) 单端泵浦腔内倍频紫外固体激光器
CN108365515A (zh) 一种单端泵浦高功率窄脉冲基模激光器及其工作方法
CN101777724B (zh) 端面泵浦双波长同轴切换输出调q基频、倍频激光器
WO2019028679A1 (zh) 倍频激光器及谐波激光产生方法
CN103337775B (zh) 一种光纤端面泵浦激光器
CN203536720U (zh) 一种532nm绿光激光器
CN103199427B (zh) 一种内腔单谐振光学参量振荡器
CN203747230U (zh) 一种高效的单泵源双端对称式泵浦激光器
CN113078534A (zh) 一种基于复合结构增益介质的腔内级联泵浦激光器
CN206116866U (zh) 一种高温ld泵浦正交波罗棱镜偏振耦合输出腔
CN111725698A (zh) 一种全固态拉曼倍频深红色激光器及激光产生方法
CN115939919B (zh) 一种基于克尔透镜锁模的固体激光器
CN221080619U (zh) 一种端面直接泵浦全固态激光器
CN219394010U (zh) 一种腔内倍频谐振腔及腔内倍频激光器
CN212485790U (zh) 一种全固态拉曼倍频深红色激光器
CN114552355B (zh) 一种偏振分离复合腔钬激光器
CN116722429B (zh) 一种高光束质量的长脉宽绿光激光器
CN220934588U (zh) 295nm紫外固体激光器
CN213636602U (zh) 一种侧面泵浦高功率全固态皮秒紫外激光器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011511966

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12669951

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844273

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112009000018

Country of ref document: DE

Date of ref document: 20110505

Kind code of ref document: P

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/03/2012)

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112009000018

Country of ref document: DE

Effective date: 20120802

122 Ep: pct application non-entry in european phase

Ref document number: 09844273

Country of ref document: EP

Kind code of ref document: A1