CN111725698A - 一种全固态拉曼倍频深红色激光器及激光产生方法 - Google Patents

一种全固态拉曼倍频深红色激光器及激光产生方法 Download PDF

Info

Publication number
CN111725698A
CN111725698A CN202010748760.6A CN202010748760A CN111725698A CN 111725698 A CN111725698 A CN 111725698A CN 202010748760 A CN202010748760 A CN 202010748760A CN 111725698 A CN111725698 A CN 111725698A
Authority
CN
China
Prior art keywords
laser
crystal
mirror
raman
deep red
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010748760.6A
Other languages
English (en)
Inventor
代世波
赵辉
朱思祁
尹浩
李�真
陈振强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
University of Jinan
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN202010748760.6A priority Critical patent/CN111725698A/zh
Publication of CN111725698A publication Critical patent/CN111725698A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/1086Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using scattering effects, e.g. Raman or Brillouin effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1645Solid materials characterised by a crystal matrix halide
    • H01S3/1653YLiF4(YLF, LYF)

Abstract

本发明公开了一种全固态拉曼倍频深红色激光器及激光产生方法,该激光器包括:泵浦单元、输入腔镜(4)、激光晶体(5)、偏振片(7)、第一插入镜(8)、拉曼晶体(9)、第二插入镜(10)、非线性光学晶体(11)和输出腔镜(12),其中输入腔镜(4)和输出腔镜(12)构成基频光的谐振腔,第一插入镜(8)和输出腔镜(12)构成拉曼光的谐振腔;本发明的深红色激光器具有输出功率高、光束质量好、结构简单、性能稳定、成本低廉等诸多优点,在激光显示、生物光子学、荧光成像、光动力疗法等领域有重要应用。

Description

一种全固态拉曼倍频深红色激光器及激光产生方法
技术领域
本发明涉及固体激光技术领域,具体涉及一种全固态拉曼倍频深红色激光器及激光产生方法。
背景技术
波长在0.75微米附近的深红色激光对水、血液和血红蛋白具有很低的吸收效率,同时在真皮组织中也具有较弱的散射效应,这些特性使得深红色激光在生物组织中具有较大的穿透深度,因此其在荧光成像、光动力疗法和受激发射损耗显微镜等领域具有重要应用价值。
目前,获得深红色激光的方式主要包括钛宝石激光器、翠绿宝石激光器、垂直腔面发射激光器以及倍频垂直腔面发射激光器。钛宝石激光器和翠绿宝石激光器发展相对较为成熟,目前已经获得高功率高光束质量的深红色激光输出,但是其泵浦源往往存在系统复杂、体积庞大、成本高昂等问题。近年来,垂直腔面发射激光器得到快速发展,已通过垂直腔面发射激光器和倍频垂直腔面发射激光器实现瓦级以上的连续深红色激光输出,然而由于缺乏高性能的0.75微米和1.4微米波段半导体化合物材料,因此深红色激光的输出功率仍受到较大限制。因此,亟需研制一种输出功率高、光束质量好、结构紧凑、性能稳定、成本低廉的深红色激光器。
发明内容
本发明的目的是为了克服以上现有技术存在的不足,提供了一种输出功率高、结构紧凑、成本低廉的全固态拉曼倍频深红色激光器及激光产生方法。
本发明的目的通过以下的技术方案实现:
一种全固态拉曼倍频深红色激光器,包括:泵浦单元、输入腔镜(4)、激光晶体(5)、偏振片(7)、第一插入镜(8)、拉曼晶体(9)、第二插入镜(10)、非线性光学晶体(11)和输出腔镜(12),其中输入腔镜(4)和输出腔镜(12)构成基频光的谐振腔,第一插入镜(8)和输出腔镜(12)构成拉曼光的谐振腔;输入腔镜(4)、激光晶体(5)、偏振片(7)、第一插入镜(8)、拉曼晶体(9)、第二插入镜(10)、非线性光学晶体(11)和输出腔镜(12)依次水平设置,泵浦单元设置在输入腔镜(4)之前或者泵浦单元设置激光晶体(5)的侧面。
优选地,泵浦单元包括:泵浦源(1)、准直透镜(2)、聚焦透镜(3);泵浦源(1)、准直透镜(2)、聚焦透镜(3)和输入腔镜(4)依次水平设置。
优选地,泵浦单元包括:泵浦源(1);泵浦源(1)设置在激光晶体(5)的侧面。
优选地,泵浦源(1)为797nm、808nm或880nm半导体激光器。
优选地,激光器还包括:调Q器件(6);调Q器件(6)设置在激光晶体(5)、偏振片(7)之间;调Q器件(6)为声光Q开关、电光Q开关、V:YAG中的任意一种。
优选地,激光晶体(5)为具有弱热透镜效应和长荧光寿命的掺钕氟化物晶体。
优选地,拉曼晶体(9)包括YVO4、GdVO4、KGW、BaWO4、SrWO4、Diamond、BaNO3、KTP、KTA中的任意一种。
优选地,非线性光学晶体(11)包括LBO、CLBO、CBO、BBO、BIBO、KTP、KTA、YCOB、GdCOB中的任意一种。
一种全固态拉曼倍频深红色激光的产生方法,包括:泵浦源(1)输出的泵浦光依次经过准直透镜(2)、聚焦透镜(3)和输入腔镜(4)后注入激光晶体(5)产生1.3微米波段基频激光,基频激光再依次通过调Q器件(6)、偏振片(7)和第一插入镜(8)注入拉曼晶体(9)产生1.5微米波段拉曼激光,拉曼激光经过第二插入镜(10)后在非线性光学晶体(11)中通过倍频产生深红色激光,最后深红色激光通过输出腔镜(12)输出。
一种全固态拉曼倍频深红色激光的产生方法,泵浦源(1)从侧面泵浦激光晶体(5)产生1.3微米波段基频激光,基频激光再依次通过调Q器件(6)、偏振片(7)和第一插入镜(8)注入拉曼晶体(9)产生1.5微米波段拉曼激光,拉曼激光经过第二插入镜(10)后在非线性光学晶体(11)中通过倍频产生深红色激光,最后深红色激光通过输出腔镜(12)输出。
本发明相对于现有技术具有如下优点:
1、发明的输入腔镜和输出腔镜构成基频光的谐振腔,第一插入镜和输出腔镜构成拉曼光的谐振腔,激光晶体产生1.3微米波段基频激光,基频激光再依次通过调Q器件、偏振片和第一插入镜注入拉曼晶体产生1.5微米波段拉曼激光,拉曼激光经过第二插入镜后在非线性光学晶体中通过倍频产生深红色激光,本方案采用的固体拉曼激光技术是一种高效、紧凑、稳定的非线性频率变换方法,另外受激拉曼散射还具有光束质量净化的功能,有利于产生高光束质量的深红色激光。
2、本发明采用成熟商业化的797nm、808nm或880nm半导体激光器作为泵浦源,大幅降低了泵浦源的体积和成本。
3、本发明采用的掺钕氟化物晶体具有较弱的热透镜效应和较长的荧光寿命,有利于产生高平均功率和高峰值功率的深红色脉冲激光。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明专利实施例1的光路示意图。
图2为本发明专利实施例2的光路示意图。
图3为本发明专利实施例3的光路示意图。
附图说明:
1、泵浦源;2、准直透镜;3、聚焦透镜;4、输入腔镜;5、激光晶体;6、调Q器件;7、偏振片;8、第一插入镜;9、拉曼晶体;10、第二插入镜;11、非线性光学晶体;12、输出腔镜。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
实施例1
图1是本发明的一种全固态调Q拉曼倍频深红色激光器光路示意图。泵浦源1为光纤耦合的880nm半导体激光器(光纤直径为200微米,数值孔径为0.22);泵浦光依次经过焦距为50mm的准直透镜2和焦距为250mm的聚焦透镜3后注入激光晶体5,焦斑直径为1mm。激光晶体5选用4×4×40mm3、1at.%掺杂的Nd:YLF晶体,两端面镀有880nm、1047-1053nm以及1314-1321nm增透膜。调Q器件6为声光Q开关,超声波频率为27.12MHz,射频功率为100W,两端面镀有1314-1321nm增透膜;声光调Q用于产生高峰值功率的纳秒脉冲激光,以提高拉曼和倍频转换效率。拉曼晶体9采用Np切KGW晶体,尺寸为4×4×30mm3,晶体两端面镀有1314-1321nm和1460-1500nm增透膜,其Nm方向平行于Nd:YLF的π偏振方向。非线性晶体11选用I类相位匹配的BIBO晶体,切割角度为(10.9°,0°),尺寸为4×4×10mm3,晶体两端面镀有730-750nm、1314-1321nm和1460-1500nm增透膜。泵浦源1、激光晶体5、调Q器件6、拉曼晶体9和非线性光学晶体11均设置有温度控制系统。输入腔镜4采用曲率半径为200mm的平凹镜,镀有880nm和1047-1053nm增透膜以及1314-1321nm高反膜,镀1047-1053nm增透膜的目的是为了避免1微米波段激光振荡。偏振片7采用平面镜,镀有1314-1321nm s偏振光的高反膜和p偏振光的增透膜,用于实现1.3微米波段激光的偏振输出。第一插入镜8为平面镜,镀有1314-1321nm增透膜和1460-1500nm高反膜。第二插入镜10同为平面镜,镀有1314-1321nm和1460-1500nm增透膜以及730-750nm高反膜,用于反射反向传输的深红色激光,从而实现深红色激光的单向输出。输出腔镜12是曲率半径为200mm的平凹镜,镀有1314-1321nm和1460-1500nm高反膜以及730-750nm增透膜。
Nd:YLF晶体在吸收880nm泵浦光后形成粒子数反转,在输入腔镜4和输出腔镜12构成的基频光谐振腔反馈作用下产生1314nm基频激光;1314nm基频光经过KGW晶体发生受激拉曼散射,在第一插入镜8和输出腔镜12构成的拉曼光谐振腔中产生1490nm拉曼激光;在拉曼光谐振腔内振荡的1490nm拉曼光在BIBO晶体中倍频产生745nm深红色激光,反向传输的深红色激光经过第二插入镜10反射后与正向传输的深红色激光一起由输出腔镜12输出。
实施例2
图2是本发明的一种高功率侧面泵浦全固态调Q拉曼倍频深红色激光器光路示意图,该实施例是在实施例1的基础上进行了进一步的改进,其与实施例1的区别在于:泵浦源1从侧面泵浦激光晶体5,无需准直透镜2和聚焦透镜3;侧面泵浦结构可以有效提高施加于激光晶体5上的泵浦功率,从而增加深红色激光的输出功率。
实施例3
图3是本发明的一种全固态连续拉曼倍频深红色激光器光路示意图,该实施例是在实施例1的基础上进行了进一步的改进,其与实施例1的区别在于:谐振腔内没有调Q器件6,以实现连续的深红色激光输出。
综上,本发明公开的深红色激光器具有输出功率高、光束质量好、结构简单、性能稳定、成本低廉等诸多优点,在激光显示、生物光子学、荧光成像、光动力疗法等领域有重要应用。
上述具体实施方式为本发明的优选实施例,并不能对本发明进行限定,其他的任何未背离本发明的技术方案而所做的改变或其它等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种全固态拉曼倍频深红色激光器,其特征在于,包括:泵浦单元、输入腔镜(4)、激光晶体(5)、偏振片(7)、第一插入镜(8)、拉曼晶体(9)、第二插入镜(10)、非线性光学晶体(11)和输出腔镜(12),其中输入腔镜(4)和输出腔镜(12)构成基频光的谐振腔,第一插入镜(8)和输出腔镜(12)构成拉曼光的谐振腔;
输入腔镜(4)、激光晶体(5)、偏振片(7)、第一插入镜(8)、拉曼晶体(9)、第二插入镜(10)、非线性光学晶体(11)和输出腔镜(12)依次水平设置,泵浦单元设置在输入腔镜(4)之前或者泵浦单元设置激光晶体(5)的侧面。
2.根据权利要求1所述的全固态拉曼倍频深红色激光器,其特征在于,泵浦单元包括:泵浦源(1)、准直透镜(2)、聚焦透镜(3);
泵浦源(1)、准直透镜(2)、聚焦透镜(3)和输入腔镜(4)依次水平设置。
3.根据权利要求1所述的全固态拉曼倍频深红色激光器,其特征在于,泵浦单元包括:泵浦源(1);
泵浦源(1)设置在激光晶体(5)的侧面。
4.根据权利要求2或3所述的全固态拉曼倍频深红色激光器,其特征在于,泵浦源(1)为797nm、808nm或880nm半导体激光器。
5.根据权利要求1所述的全固态拉曼倍频深红色激光器,其特征在于,还包括:调Q器件(6);
调Q器件(6)设置在激光晶体(5)、偏振片(7)之间;
调Q器件(6)为声光Q开关、电光Q开关、V:YAG中的任意一种。
6.根据权利要求1所述的全固态拉曼倍频深红色激光器,其特征在于,激光晶体(5)为具有弱热透镜效应和长荧光寿命的掺钕氟化物晶体。
7.根据权利要求1所述的全固态拉曼倍频深红色激光器,其特征在于,拉曼晶体(9)包括YVO4、GdVO4、KGW、BaWO4、SrWO4、Diamond、BaNO3、KTP、KTA中的任意一种。
8.根据权利要求1所述的全固态拉曼倍频深红色激光器,其特征在于,非线性光学晶体(11)包括LBO、CLBO、CBO、BBO、BIBO、KTP、KTA、YCOB、GdCOB中的任意一种。
9.一种全固态拉曼倍频深红色激光的产生方法,其特征在于,包括:泵浦源(1)输出的泵浦光依次经过准直透镜(2)、聚焦透镜(3)和输入腔镜(4)后注入激光晶体(5)产生1.3微米波段基频激光,基频激光再依次通过调Q器件(6)、偏振片(7)和第一插入镜(8)注入拉曼晶体(9)产生1.5微米波段拉曼激光,拉曼激光经过第二插入镜(10)后在非线性光学晶体(11)中通过倍频产生深红色激光,最后深红色激光通过输出腔镜(12)输出。
10.一种全固态拉曼倍频深红色激光的产生方法,其特征在于,泵浦源(1)从侧面泵浦激光晶体(5)产生1.3微米波段基频激光,基频激光再依次通过调Q器件(6)、偏振片(7)和第一插入镜(8)注入拉曼晶体(9)产生1.5微米波段拉曼激光,拉曼激光经过第二插入镜(10)后在非线性光学晶体(11)中通过倍频产生深红色激光,最后深红色激光通过输出腔镜(12)输出。
CN202010748760.6A 2020-07-30 2020-07-30 一种全固态拉曼倍频深红色激光器及激光产生方法 Pending CN111725698A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010748760.6A CN111725698A (zh) 2020-07-30 2020-07-30 一种全固态拉曼倍频深红色激光器及激光产生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010748760.6A CN111725698A (zh) 2020-07-30 2020-07-30 一种全固态拉曼倍频深红色激光器及激光产生方法

Publications (1)

Publication Number Publication Date
CN111725698A true CN111725698A (zh) 2020-09-29

Family

ID=72574183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010748760.6A Pending CN111725698A (zh) 2020-07-30 2020-07-30 一种全固态拉曼倍频深红色激光器及激光产生方法

Country Status (1)

Country Link
CN (1) CN111725698A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114498280A (zh) * 2020-10-23 2022-05-13 中国科学院大连化学物理研究所 一种红光激光器、激光频率变换装置以及生成红光激光的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114498280A (zh) * 2020-10-23 2022-05-13 中国科学院大连化学物理研究所 一种红光激光器、激光频率变换装置以及生成红光激光的方法
CN114498280B (zh) * 2020-10-23 2024-01-12 中国科学院大连化学物理研究所 一种红光激光器、激光频率变换装置以及生成红光激光的方法

Similar Documents

Publication Publication Date Title
AU2005287885B2 (en) A selectable multiwavelength laser for outputting visible light
CN103618205A (zh) 一种全固态单纵模黄光激光器
US7187703B2 (en) Intracavity sum-frequency mixing laser
CN106684674A (zh) 一种双晶体复合增益的内腔拉曼黄光激光器
CN102088158B (zh) 一种获得高功率紫外激光的方法及装置
CN101202412B (zh) 一种固体激光器
CN111725698A (zh) 一种全固态拉曼倍频深红色激光器及激光产生方法
CN106129801A (zh) 半导体端泵浦腔内倍频高功率紫外激光器
US6512630B1 (en) Miniature laser/amplifier system
CN109873292B (zh) 一种拉曼激光内腔泵浦掺铥增益介质的蓝光固体激光器
CN212485790U (zh) 一种全固态拉曼倍频深红色激光器
JP2004531075A (ja) 光周波数混合
CN114597758A (zh) 一种主动调Q内腔式Nd:YAG陶瓷/BaWO4双波长拉曼激光器
CN112688151A (zh) 一种266nm深紫外固体激光器
CN111541141A (zh) 一种用于KrF准分子激光器基于翠绿宝石晶体的248nm单频全固态深紫外种子激光器
CN204992239U (zh) 一种紧凑型全固态腔内倍频激光器
CN116722429B (zh) 一种高光束质量的长脉宽绿光激光器
CN116937305A (zh) 一种声光调q侧泵绿光激光器
CN112490836B (zh) 一种基于环形非稳腔的气体拉曼激光器
CN116387953A (zh) 一种被动调q的全固态深紫外激光器
CN117498133A (zh) 一种双波长红外激光器
CN114640014A (zh) 一种高功率双波长人眼安全波段拉曼激光器
Li et al. Quasi-three-level Yb: CN Laser at 978 nm and the Second-harmonic Generation.
CN113594831A (zh) 一种基于LBO晶体的266nm全固态紫外激光器
CN1328367A (zh) 一种多波长晶体激光器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination