CN117498133A - 一种双波长红外激光器 - Google Patents

一种双波长红外激光器 Download PDF

Info

Publication number
CN117498133A
CN117498133A CN202311301249.1A CN202311301249A CN117498133A CN 117498133 A CN117498133 A CN 117498133A CN 202311301249 A CN202311301249 A CN 202311301249A CN 117498133 A CN117498133 A CN 117498133A
Authority
CN
China
Prior art keywords
laser
raman
crystal
infrared laser
wavelength infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311301249.1A
Other languages
English (en)
Inventor
游振宇
涂朝阳
王燕
朱昭捷
李坚富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN202311301249.1A priority Critical patent/CN117498133A/zh
Publication of CN117498133A publication Critical patent/CN117498133A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08086Multiple-wavelength emission
    • H01S3/0809Two-wavelenghth emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1068Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using an acousto-optical device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/107Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using electro-optic devices, e.g. exhibiting Pockels or Kerr effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/1086Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using scattering effects, e.g. Raman or Brillouin effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/115Q-switching using intracavity electro-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/117Q-switching using intracavity acousto-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1675Solid materials characterised by a crystal matrix titanate, germanate, molybdate, tungstate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本申请公开了一种双波长红外激光器,包括泵浦源、激光谐振腔、聚焦透镜、拉曼谐振腔;所述拉曼谐振腔包括拉曼输入镜、拉曼输出镜和放置于其间的磁场发生器、YIG晶体和KGW晶体,采用受激拉曼增益技术,通过传统的中红外激光通过拉曼增益,从而实现波长更长的中红外激光。通过该技术实现的中红外波段激光技术具有输出功率较高、牢固耐用、转换效率高、稳定性强、光束质量好等优点,非常适合于市场化推广应用。

Description

一种双波长红外激光器
技术领域
本申请涉及一种双波长红外激光器,属于红外激光器领域。
背景技术
波长处于2.7-3.0μm的中红外激光位于水分子的特征吸收波段,因此在激光手术、激光美容、激光雷达与红外激光对抗等方面有着广阔的应用前景。
目前该波段激光器主要采用半导体或氙灯直接泵浦Er3+或者Pr3+离子激活的增益介质实现,但由于Er3+与Pr3+离子的吸收效率低,直接泵浦这两种激活离子产生的激光功率与效率也较低,且波长单一,难以满足众多设备对高功率多波长的需求。同时该波段激光难以寻找到合适的调Q元器件,较难实现高峰值功率的短脉冲激光。因此拓展该波段的激光技术并实现大功率的激光是目前该领域的主要发展方向。
发明内容
为了解决传统的2.7-2.9μm中红外激光技术存在的问题,本申请提供了一种以Tm激光作为基频光,KGW晶体作为拉曼增益介质,采用拉曼受激散射技术,从而实现~2750nm与~2860nm双波长中红外激光的技术方案。
具体而言,根据本申请的一个方面,提供了一种双波长红外激光器,包括泵浦源,同时激光依次经过激光谐振腔、用于对输出激光进行聚焦的聚焦透镜、拉曼谐振腔;
所述拉曼谐振腔包括拉曼输入镜、拉曼输出镜和放置于其间的磁场发生器、YIG晶体和KGW晶体。
YIG晶体9具有一定厚度,通过外加磁场可以使得通过该晶体的基频光偏振偏转90°,本申请中用于将单偏振基频光转换成正交双偏振激光。
再在YIG晶体前面放置KGW晶体,基频光通过拉曼介质实现一阶斯托克顿的拉曼激光输出。
可选的,所述激光谐振腔包括依次放置的激光输入镜、激光增益介质、调Q元件、激光输出镜。
调Q元件用于产生短脉冲激光。
可选的,所述激光增益介质选用Tm掺杂YAP晶体或者Tm掺杂YVO4晶体。
可选的,所述泵浦源放置在所述激光谐振腔内。
可选的,所述泵浦源与所述激光谐振腔间还设置有光束耦合部。
可选的,所述调Q元件选用电光、声光或者被动调Q元件。
可选的,所述泵浦源选用半导体激光器。
可选的,所述晶体采用通冷却水的铜块或者采用TEC制冷。
可选的,所述激光器中基频光的输出激光波长为~2275nm,拉曼光的输出激光波长为~2750nm。
本申请能产生的有益效果包括:
本申请所提供的一种双波长红外激光器,采用受激拉曼增益技术,通过传统的中红外激光通过拉曼增益,从而实现波长更长的中红外激光。通过该技术实现的中红外波段激光技术具有输出功率较高、牢固耐用、转换效率高、稳定性强、光束质量好等优点,非常适合于市场化推广应用。
附图说明
图1为本申请实施例1中提供的调Q激光器的结构示意图;
图2为本申请实施例2中提供的调Q激光器的结构示意图。
部件和附图标记列表:
1、泵浦源;2、光束耦合部;3、激光输入镜;4、激光增益介质;5、调Q元件;6、激光输出镜;7、聚焦透镜;8、拉曼输入镜;9、YIG晶体;10、KGW晶体;11、拉曼输出镜;12、磁场发生器。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
实施例1
如图1所示,本实施例为采用端面泵浦模式的双波长红外激光器,包括泵浦源1,同时激光依次经过激光谐振腔、用于对输出激光进行聚焦的聚焦透镜7、拉曼谐振腔;
所示泵浦源1设置在所述激光谐振腔内;
所述泵浦源1选用半导体激光器。
所述激光谐振腔包括依次放置的激光输入镜3、激光增益介质4、用于产生短脉冲激光的调Q元件5、激光输出镜6。
所述激光增益介质4选用Tm掺杂YAP晶体或者Tm掺杂YVO4晶体。
所述拉曼谐振腔包括拉曼输入镜8、拉曼输出镜11和放置于其间的磁场发生器12、YIG晶体9和KGW晶体10。
YIG晶体9具有一定厚度,通过外加磁场可以使得通过该晶体的基频光偏振偏转90°,本申请中用于将单偏振基频光转换成正交双偏振激光。
再在YIG晶体9前面放置KGW晶体10,基频光通过拉曼介质实现一阶斯托克顿的拉曼激光输出。
所述晶体采用通冷却水的铜块或者采用TEC制冷。
具体的,半导体泵浦源1端面抽运Tm:YAP或者Tm:YVO4激光晶体,在激光谐振腔内实现~2275nm激光震荡,并通过调Q器件实现单偏振脉冲激光输出。将该激光作为基频光,通过聚焦透镜7将光束聚焦于KGW晶体10上。对拉曼输入镜8镀以对基频光(~2275nm)透过率大于99%同时对拉曼光(2.7-2.9μm)反射率大于99%的膜系。
在KGW晶体10前插入YIG晶体9,由于YIG晶体9具有法拉第磁光效应,可以通过磁场发生器12来控制使得腔内的线性偏振光单程后偏转90°,故而可以通过磁场发生器12来控制通过YIG晶体9的基频光的偏振方向。
因此,本申请通过控制磁场发生器12的产生磁场,使得进入KGW晶体10的基频光的偏振方向产生偏转。通过控制基频光的偏振方向使其沿着KGW晶体10的nm或者np轴入射,分别经901cm-1或768cm-1的拉曼频移,产生两个输出波长分别为2860nm或2750的激光。
实施例2
如图2所示,本实施例为采用侧面泵浦模式的双波长红外激光器,包括依次放置的泵浦源1,同时激光依次经过光束耦合部2、激光谐振腔、用于对输出激光进行聚焦的聚焦透镜7、拉曼谐振腔;
所述泵浦源1选用半导体激光器。
所述激光谐振腔包括依次放置的激光输入镜3、激光增益介质4、用于产生短脉冲激光的调Q元件5、激光输出镜6。
所述激光增益介质4选用Tm掺杂YAP晶体或者Tm掺杂YVO4晶体。
所述拉曼谐振腔包括拉曼输入镜8、拉曼输出镜11和放置于其间的磁场发生器12、YIG晶体9和KGW晶体10。
YIG晶体9具有一定厚度,通过外加磁场可以使得通过该晶体的基频光偏振偏转90°,本申请中用于将单偏振基频光转换成正交双偏振激光。
再在YIG晶体9前面放置KGW晶体10,基频光通过拉曼介质实现一阶斯托克顿的拉曼激光输出。
所述晶体采用通冷却水的铜块或者采用TEC制冷。
具体的,半导体泵浦源1侧面抽运Tm:YAP或者Tm:YVO4激光晶体,在激光谐振腔内实现~2275nm激光震荡,并通过调Q器件实现单偏振脉冲激光输出。将该激光作为基频光,通过聚焦透镜7将光束聚焦于KGW晶体10上。对拉曼输入镜8镀以对基频光(~2275nm)透过率大于99%同时对拉曼光(2.7-2.9μm)反射率大于99%的膜系。在KGW晶体10前插入YIG晶体9,由于YIG晶体9具有法拉第磁光效应,可以通过磁场发生器12来控制使得腔内的线性偏振光单程后偏转90°,故而可以通过磁场发生器12来控制通过YIG晶体9的基频光的偏振方向。
因此,本申请通过控制磁场发生器12的产生磁场,使得进入KGW晶体10的基频光的偏振方向产生偏转。通过控制基频光的偏振方向使其沿着KGW晶体10的nm或者np轴入射,分别经901cm-1或768cm-1的拉曼频移,产生两个输出波长分别为2860nm或2750的激光。
以上所述,仅是本申请的部分实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (9)

1.一种双波长红外激光器,其特征在于,包括泵浦源,同时激光依次经过激光谐振腔、聚焦透镜、拉曼谐振腔;
所述拉曼谐振腔包括拉曼输入镜、拉曼输出镜和放置于其间的磁场发生器、YIG晶体和KGW晶体。
2.根据权利要求1所述的一种双波长红外激光器,其特征在于,所述激光谐振腔包括依次放置的激光输入镜、激光增益介质、调Q元件、激光输出镜。
3.根据权利要求2所述的一种双波长红外激光器,其特征在于,所述激光增益介质选用Tm掺杂YAP晶体或者Tm掺杂YVO4晶体。
4.根据权利要求3所述的一种双波长红外激光器,其特征在于,所述泵浦源放置在所述激光谐振腔内。
5.根据权利要求3所述的一种双波长红外激光器,其特征在于,所述泵浦源与所述激光谐振腔间还设置有光束耦合部。
6.根据权利要求2所述的一种双波长红外激光器,其特征在于,所述调Q元件选用电光、声光或者被动调Q元件。
7.根据权利要求1所述的一种双波长红外激光器,其特征在于,所述泵浦源选用半导体激光器。
8.根据权利要求3所述的一种双波长红外激光器,其特征在于,所述晶体采用通冷却水的铜块或者采用TEC制冷。
9.根据权利要求1~8中任一项所述的一种双波长红外激光器,其特征在于,所述激光器中基频光的输出激光波长为~2275nm,拉曼光的输出激光波长为~2750nm。
CN202311301249.1A 2023-10-09 2023-10-09 一种双波长红外激光器 Pending CN117498133A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311301249.1A CN117498133A (zh) 2023-10-09 2023-10-09 一种双波长红外激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311301249.1A CN117498133A (zh) 2023-10-09 2023-10-09 一种双波长红外激光器

Publications (1)

Publication Number Publication Date
CN117498133A true CN117498133A (zh) 2024-02-02

Family

ID=89675299

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311301249.1A Pending CN117498133A (zh) 2023-10-09 2023-10-09 一种双波长红外激光器

Country Status (1)

Country Link
CN (1) CN117498133A (zh)

Similar Documents

Publication Publication Date Title
CN103618205A (zh) 一种全固态单纵模黄光激光器
CN210201151U (zh) 一种全固态绿光激光器
CN109687266A (zh) 一种高峰值功率2.79微米铒激光器
CN102136670A (zh) 基于偏振耦合的双端端面泵浦固体激光器
CN111431021A (zh) 一种正交偏振输出的激光器
CN111541140B (zh) 一种基于亮度级联泵浦的Yb:YAG超短脉冲激光放大器
WO2004100330A1 (en) Eye-safe solid state laser system
CN111180987B (zh) 一种功率比例可调的正交偏振双波长激光器
CN110556702B (zh) 一种固体蓝光激光器
CN112615238A (zh) 一种大能量高效率全固态绿光激光器
CN212182756U (zh) 一种正交偏振输出的激光器
CN206116866U (zh) 一种高温ld泵浦正交波罗棱镜偏振耦合输出腔
CN211859139U (zh) 一种Kerr锁模掺镱硅酸钆镧晶体的全固态飞秒激光器
CN117498133A (zh) 一种双波长红外激光器
CN112234422B (zh) 一种双模式可切换输出的中红外光参量振荡器
CN114883896A (zh) 一种2μm激光器
CN212725943U (zh) 功率任意可调的高耦合效率千瓦级光纤输出纳秒激光器
CN111725698A (zh) 一种全固态拉曼倍频深红色激光器及激光产生方法
CN212485790U (zh) 一种全固态拉曼倍频深红色激光器
CN103618206A (zh) 一种全固态单纵模黄光激光器
CN112993729B (zh) 一种中波光参量振荡器低量子亏损1.6μm高峰值功率泵浦源
CN114552355B (zh) 一种偏振分离复合腔钬激光器
CN216598385U (zh) 一种中红外序列脉冲激光器
CN114256721B (zh) 基于夹心波导Nd:MgO:PPLN晶体的中红外自变频激光器
Creeden et al. Multi-watt mid-IR fiber-pumped OPO

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination