WO2010126079A1 - 光量制御装置、撮像装置及び光量制御方法 - Google Patents

光量制御装置、撮像装置及び光量制御方法 Download PDF

Info

Publication number
WO2010126079A1
WO2010126079A1 PCT/JP2010/057547 JP2010057547W WO2010126079A1 WO 2010126079 A1 WO2010126079 A1 WO 2010126079A1 JP 2010057547 W JP2010057547 W JP 2010057547W WO 2010126079 A1 WO2010126079 A1 WO 2010126079A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
aperture
diaphragm
opening
region
Prior art date
Application number
PCT/JP2010/057547
Other languages
English (en)
French (fr)
Inventor
文雄 仁平
靖文 中明
Original Assignee
日本ビクター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ビクター株式会社 filed Critical 日本ビクター株式会社
Priority to US13/318,026 priority Critical patent/US8934031B2/en
Priority to KR1020117028461A priority patent/KR101276641B1/ko
Priority to EP10769777.3A priority patent/EP2426554B1/en
Priority to CN201080019019.0A priority patent/CN102422215B/zh
Publication of WO2010126079A1 publication Critical patent/WO2010126079A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • G03B7/08Control effected solely on the basis of the response, to the intensity of the light received by the camera, of a built-in light-sensitive device
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/08Shutters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2101/00Still video cameras

Definitions

  • the present invention relates to a light amount control device, an image pickup device, and a light amount control method for obtaining proper exposure in an image pickup device.
  • a lens aperture is narrowed down (hereinafter referred to as a small aperture) in order to obtain an appropriate exposure.
  • a small aperture By performing this small aperture, two problems occurred. First, in the small aperture state, dust or scratches on the cover glass or the optical low-pass filter of the image sensor package of the image capturing apparatus are reflected in the captured image. Secondly, the influence of diffraction on the imaging of the photographic lens of the imaging device due to the aperture opening is increased.
  • Patent Document 1 discloses a light quantity diaphragm device having a diaphragm mechanism and an ND (Neutral Density) filter.
  • Patent Document 1 generally describes as follows.
  • the ND filter is a separate member from the diaphragm blades.
  • the amount of light can be efficiently controlled by using not only the diaphragm blades but also the ND filter.
  • the influence of diffraction at the aperture stop is not sufficiently improved, and there is a possibility that a phenomenon that the wavefront aberration of the light transmitted through the light amount aperture device becomes large by using the ND filter may occur.
  • the present invention can easily control the amount of light incident on the image sensor, has little influence of diffraction at the aperture, and has a small wavefront aberration even when an ND filter is used. It aims to provide a method.
  • the present invention has the following configurations 1) to 3) and control methods 4) and 5).
  • a fixed aperture 261 having a first aperture area of a predetermined size, an aperture stop 26 for controlling the incident light flux to a predetermined size, and an aperture by moving a plurality of aperture blades.
  • the light amount restricting portion 24 for limiting the amount of light transmitted by changing the size of the first opening area from the first opening area to the second opening area smaller than the first opening area, and the transmittance for the incident light is the first value
  • the first region 253 is a second region 254 that has a second value smaller than the first value and the transmittance for incident light, and the second region 254 has a second value with respect to the opening of the aperture stop portion 26.
  • a light-reducing part 25 movably installed between a first light-shielding state in which the region 254 faces and a second light-shielding state in which the first region 253 faces the opening.
  • the size of the opening in the light quantity diaphragm unit 24 is the first opening.
  • the transmitted wavefront phase difference between the light passing through the first region 253 and the light passing through the second region 254 is 0.2 ⁇ m or less at a wavelength of 0.55 ⁇ m.
  • Light amount adjusting device 23 is 0.2 ⁇ m or less at a wavelength of 0.55 ⁇ m.
  • the image sensor 3 which converts the incident light into an electrical signal and outputs it as a detection signal, and a plurality of lenses, forms the subject image on the image sensor.
  • the light amount adjusting device 23 described in 1) or 2) disposed between the lens unit 2 and a plurality of lenses of the lens unit 2 and the light amount adjusting device 23 are reduced based on the detection signal output from the image sensor 3.
  • An imaging apparatus comprising: a control unit that controls the light unit and the light amount diaphragm unit.
  • the detected brightness level is higher than the set brightness level by comparing the detected brightness level based on the detection signal output in accordance with the light corresponding to the subject image incident on the image sensor 3 and a predetermined set brightness level. If the detected brightness level is determined to be higher than the set brightness level in the exposure amount comparison step and the exposure amount comparison step, whether the light shielding region 254 of the light reduction unit 25 covers the aperture stop unit 26
  • a dimming portion position detecting step for determining whether or not, and in the dimming portion position detecting step, when it is determined that the light shielding region 254 of the dimming portion 25 covers the aperture stop portion 26, the open / close state of the stop blade is detected
  • the diaphragm blade opening / closing detection step for determining whether or not the diaphragm blade is in the most closed state, and the diaphragm blade is not in the most closed state in the diaphragm opening / closing detection step.
  • the light amount control method characterized by comprising the aperture blade moving step of moving in accordance with
  • the light reduction unit 25 When it is determined in the ND filter position detection step that the light shielding region 254 of the light reduction unit 25 does not cover the aperture stop 26, the light reduction unit 25 is moved in a direction in which the light shielding region 254 covers the aperture stop 26.
  • the amount of light incident on the image sensor can be easily controlled, the influence of diffraction at the aperture opening can be reduced, and the wavefront aberration can be reduced even when an ND filter is used.
  • FIG. 1 is a configuration diagram illustrating an imaging apparatus according to an embodiment of the present invention.
  • 2A and 2B are perspective views showing the light quantity diaphragm unit 24 according to the embodiment of the present invention.
  • FIG. 2A shows an open state of the diaphragm
  • FIG. 2B shows a state where the diaphragm is closed.
  • FIG. 3 is a perspective view showing details of the ND filter 25 according to the embodiment of the present invention.
  • FIG. 4 is a front view showing the operation of the light quantity diaphragm unit and the ND filter in the light quantity control device according to the embodiment of the present invention.
  • FIG. 5 is a graph showing an operation state of the light quantity diaphragm unit and the ND filter in the light quantity control device according to the embodiment of the present invention.
  • FIG. 6 is a graph showing the relationship between the F value and the transmitted light amount ratio in the light amount control apparatus according to the embodiment of the present invention.
  • FIG. 7 is a graph showing the visibility curve of the human eye.
  • FIG. 8 is an example of a graph showing the relationship between the MTF and the transmitted wavefront phase difference according to the embodiment of the present invention.
  • FIG. 9 is a control flow diagram for explaining the operation of the imaging apparatus according to the embodiment of the present invention.
  • FIG. 1 shows a configuration of an imaging apparatus such as a video camera or a digital still camera used in the present embodiment.
  • the imaging device 1 includes a plurality of lens units, forms a subject image at a predetermined position, and controls a lens unit 2 that controls the amount of incident light, and an imaging element 3 disposed at the imaging position of the subject image.
  • the control unit 4 outputs an output signal from the image sensor to the outside, and controls the lens unit to control zoom, focus, and light amount.
  • the imaging element side as the rear side and the subject side as the front side.
  • the lens unit 2 includes a first lens unit 21 that is disposed closest to the subject, a second lens unit 22 that is disposed closest to the imaging element, and a space between the first lens unit 21 and the second lens unit 22. And a light amount control device 23 disposed at the position.
  • the light quantity control device 23 includes a light quantity diaphragm section 24 that controls the light quantity by changing the size of the opening, a dimming (ND) filter (dimming section) 25 having a predetermined transmittance, and a predetermined size. And an aperture stop portion 26 that controls the size of the incident light beam by the opening.
  • ND dimming
  • the light quantity diaphragm section 24, the ND filter 25, and the aperture diaphragm section 26 are arranged close to each other in the optical axis direction.
  • FIG. 2A and 2B are perspective views showing the light quantity diaphragm unit 24, in which FIG. 2A shows an open state of the diaphragm, and FIG. 2B shows a state where the diaphragm is closed.
  • the light quantity diaphragm unit 24 has a first diaphragm blade 241 and a second diaphragm blade 242.
  • the first diaphragm blade 241 and the second diaphragm blade 242 are opposed to each other with the optical axis interposed therebetween, and are shifted in the optical axis direction so that the diaphragm can be closed.
  • the surfaces of the first diaphragm blade 241 and the second diaphragm blade 242 that are orthogonal to the optical axis are shaved away from each other with the optical axis in between, with the central portion at the center, and the diaphragm is closed ( In FIG. 2B, a substantially rhombic opening is formed.
  • the first diaphragm blade 241 and the second diaphragm blade 242 move in the direction of the arrow, respectively, so that a substantially diamond-shaped opening is formed as shown in FIG.
  • the first diaphragm blade 241 and the second diaphragm blade 242 are made of a black polyester sheet having a thickness of 0.05 mm as an example, and the V-shaped dent at the tip has an opening angle of 90 ° and faces each other's V-shaped dent. By combining them, a square opening can be made.
  • the size of the square opening is continuously increased by linearly moving the positions of the first diaphragm blade 241 and the second diaphragm blade 242 in the opposite directions. It is possible to change it.
  • the shape of the diaphragm blades is not limited by the above-described structure, and may be any shape that can move and block the light flux.
  • the light quantity diaphragm unit 24 is composed of the two diaphragm blades 241, 242, but there is no limit to the number of diaphragm blades as long as it can move and block the light beam.
  • FIG. 3 is a perspective view showing details of the ND filter 25.
  • the ND filter 25 includes a type in which a light absorbing material is dispersed in a transparent substrate and a type in which a thin film is formed on a transparent substrate (thin film type ND filter). Further, the thin-film ND filter includes a reflection type using a metal film and an absorption type using a dielectric film. Here, description will be made using the ND filter 25 using a dielectric film.
  • a light shielding film 252 made of a dielectric film is formed on a part of one surface of a transparent substrate 251 such as glass or plastic.
  • a dimming region 254 the region where the light-shielding film 252 is formed is referred to as a dimming region 254.
  • the light shielding film 252 in the dimming region 254 is designed to have a predetermined transmittance of the visible light band by absorbing a part of the incident light in the visible light band.
  • the transmittance is desirably 30% or less as will be described later.
  • the antireflection film is formed in the transparent region 253, which is a region where the light shielding film 252 is not formed.
  • the transmittance of light in the visible light band in the transparent region 253 is about 98%.
  • the size of the transparent region 253 is larger than the size of the opening of the aperture stop portion 26.
  • the light reduction region 254 on which the light shielding film 252 is formed is also formed larger than the size of the opening of the aperture stop portion 26.
  • ND filter 25 and the light amount diaphragm unit 24 are driven by an actuator (not shown) to adjust the light amount.
  • the aperture stop section 26 includes a round hole (fixed opening) 261 for keeping the light beam in a circular diameter when the first aperture blade 241 and the second aperture blade 242 of the light amount aperture section 24 are opened.
  • the diameter is set in accordance with the open F value of the lens unit 2.
  • the image pickup element 3 is a kind of photoelectric conversion element that converts light into electric energy, and a charge coupled device (CCD) (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) is used.
  • CCD charge coupled device
  • CMOS Complementary Metal Oxide Semiconductor
  • the control unit 4 includes an aperture sensor 41, an ND sensor 42, an image processing circuit 43, a microcomputer 44, an aperture control circuit 45, an aperture drive unit 46, an ND control circuit 47, and an ND drive unit 48. .
  • the diaphragm sensor 41 detects the position (opening state) of each diaphragm blade (241, 242 in FIG. 2) of the light quantity diaphragm unit 24, and outputs a diaphragm position signal to the microcomputer 44.
  • the ND sensor 42 detects the position (inserted state) of the ND filter 25 and outputs an ND position signal to the microcomputer 44.
  • the image processing circuit 43 receives the detection signal that has been photoelectrically converted and output by the image sensor 3, performs signal processing based on the input detection signal, outputs the obtained video signal to the outside, and outputs the luminance signal to the microcomputer 44. Output to.
  • the microcomputer 44 outputs an aperture control signal and an ND control signal that are controlled by the light amount aperture unit 24 and the ND filter 25 so that the luminance becomes a predetermined luminance level based on the input luminance signal, aperture position signal, and ND position signal. .
  • the aperture drive control circuit 45 outputs an aperture drive signal for driving the aperture blades (241 and 242 in FIG. 2) of the light amount aperture section 24 based on the aperture control signal from the microcomputer 44.
  • the aperture drive unit 46 controls the aperture amount by driving the aperture blades (241 and 242 in FIG. 2) of the light amount aperture unit 24 based on the aperture drive signal.
  • the ND control circuit 47 outputs an ND drive signal for driving the ND filter 25 based on the ND control signal from the microcomputer 44.
  • the ND drive unit 48 drives the ND filter 25 based on the ND drive signal to control the insertion amount.
  • the image processing circuit 43 generates and outputs a video signal and a luminance signal based on a detection signal output from the image sensor when a subject is imaged on the image sensor.
  • the luminance signal output from the image processing circuit 43 is input to the microcomputer 44.
  • the microcomputer 44 compares the luminance level at the time of subject imaging obtained from the input luminance signal with a preset luminance level to obtain a luminance difference.
  • the microcomputer 44 receives the positions of the diaphragm blades 241 and 242 (first diaphragm position) of the light quantity diaphragm unit 24 and the insertion position (first insertion position) of the ND filter 25 when the subject is imaged. .
  • each diaphragm blade 241 and 242 (second diaphragm position) for obtaining a preset luminance level from the first diaphragm position and the first insertion position and the luminance difference input to the microcomputer 44.
  • the ND filter 25 insertion position (second insertion position), and outputs a diaphragm control signal and an ND control signal for obtaining the second diaphragm position and the second insertion position.
  • the aperture drive control circuit 45 outputs an aperture drive signal based on the aperture control signal, drives the aperture drive unit 46, and obtains the position (first aperture position) of each aperture blade 241 and 242 (second aperture position). To the aperture position).
  • the ND drive control circuit 47 outputs an ND drive signal based on the ND control signal, drives the ND drive unit 48, and determines the insertion position (first aperture position) of the ND filter 25. Drive to the insertion position).
  • FIG. 4 is a front view showing the operations of the light quantity diaphragm unit 24 and the ND filter 25 when the light quantity control device 23 is viewed from the first lens unit 23 side.
  • FIG. 5 also shows the use of the ND filter 25 in which the light transmission ratio of the light shielding region 254 is 25% when the open (transparent region 253) is 100%, and the light amount stop when the open F value of the lens is F2.8.
  • 6 is a graph showing the operation state of the unit 24 and the ND filter 25.
  • FIG. 6 shows the F value when the open F value of the lens is F2.8 using the ND filter 25 in which the light transmission ratio of the light shielding region 254 is 25% when the open (transparent region 253) is 100%.
  • the transparent region 253 of the ND filter 25 covers the entire aperture stop 26, and the first stop blade 241 and the second stop blade 242 are in the open state (the most separated state). At this time, the transmitted light amount ratio is 100%, and the F value is F2.8.
  • the first diaphragm blade 241 and the second diaphragm blade 242 are in the open state (the most separated state).
  • the ND filter 25 is moved so that the light shielding region 254 covers 66.7% of the fixed opening 261.
  • the F value is changed from 2.8 to 4.0.
  • the first diaphragm blade 241 and the second diaphragm blade 242 remain open (the most separated state).
  • the ND filter 25 is further moved so that the light shielding region 254 covers the entire fixed opening 261.
  • the F value is changed from 4.0 to 5.6.
  • the first diaphragm blade In order to change the transmitted light amount ratio of the light amount control device 23 from (c) 25% to (d) 12.5%, the first diaphragm blade is in a state where the light shielding region 254 of the ND filter 25 covers all the fixed openings 261. 241 and the second diaphragm blade 242 are moved so that the first diaphragm blade 241 and the second diaphragm blade 242 cover 50% of the fixed opening 261. At this time, the F value is changed from 5.6 to 8.0.
  • the first light shield region 254 of the ND filter 25 covers the fixed opening 261 in the first state.
  • the diaphragm blade 241 and the second diaphragm blade 242 are further moved so that the first diaphragm blade 241 and the second diaphragm blade 242 cover 75% of the fixed opening 261.
  • the F value is changed from 8.0 to 11.
  • the first light shield region 254 of the ND filter 25 covers the fixed opening 261 in the first state.
  • the diaphragm blade 241 and the second diaphragm blade 242 are further moved so that the first diaphragm blade 241 and the second diaphragm blade 242 cover 87.5% of the fixed opening 261.
  • the F value is changed from 11 to 16.
  • the state from (a) to (c) where the transmitted light amount ratio is 100% to 25% is referred to as the ND filter moving period, and from (d) where the transmitted light amount ratio is from 25% to 3.1% (
  • the state up to f) is defined as the diaphragm blade movement period.
  • the transmitted wavefront phase difference causes resolution degradation in a captured image formed on the image sensor. Therefore, it is necessary to suppress resolution degradation as much as possible.
  • the transmitted wavefront phase difference between the light transmitted through the transparent region 253 and the light transmitted through the light shielding region 254 on the resolution during the ND filter moving period will be confirmed.
  • the ND filter 25 having a transmittance of 25% is inserted and the diaphragm is changed at intervals of 0.5 AV (Aperture Value)
  • the transmitted wavefront phase difference is 0 in each state of F2.8 / F4 / F5.6.
  • the value of MTF (Modulation Transfer Function) when changing from 0.1 to 0.4 ⁇ m every 0.1 ⁇ m was simulated.
  • an ND filter 25 that causes each phase difference is inserted in the entrance pupil of an ideal lens having no aberration. Note that the light weight at the time of MTF calculation was generally adjusted to the visibility characteristic.
  • the human eye can sense light of approximately 380 nm to 780 nm, and the sensitivity of the eye to light varies depending on the wavelength of the light. Therefore, the sense of eyes by this wavelength is called visibility, and is represented by a curve as shown in FIG. As shown in FIG. 7, the human eye has a maximum value at about 550 nm.
  • FIG. 8 shows a graph of MTF data when the transmitted wavefront phase difference is changed, F4.0, 1.0 AV, and a transmitted wavefront phase difference of 0.2.
  • the horizontal axis of the graph represents the spatial frequency
  • the vertical axis of the graph represents the degree of modulation at each spatial frequency.
  • the modulation is 15% or more at a practical spatial frequency of 300 ⁇ l / mm or less, and the resolution of the image is generally maintained.
  • the modulation is about 5% at F2.8 near 220 ⁇ l / mm, F4 near 160 ⁇ lp / mm, and F5.6 near 110 ⁇ lp / mm. The sense of resolution is lost.
  • the transmitted wavefront phase difference is 0.2 ⁇ m (with a light beam having a wavelength of 0.55 ⁇ m) or less.
  • the transmittance value in the light shielding region 254 of the ND filter 25 will be described.
  • the transmitted light amount ratio of the light amount control device 23 in a state where the light shielding region 254 of the ND filter 25 covers all the fixed openings 261 is 30% or more.
  • the ND filter 25 is increased in size, the lens barrel of the lens unit 2 is increased in size, and the imaging device itself is increased in size.
  • the transmittance of the ND filter 25 is set to 30% or less, and the density of the light shielding region 254 of the ND filter 25 is set to one type, so that the enlargement of the lens barrel and the enlargement of the imaging device can be prevented.
  • FIG. 9 is a control flow diagram for explaining the operation of the imaging apparatus.
  • a detection signal is output from the image sensor 3 based on the incident light.
  • the image processing circuit 43 Based on the detection signal output from the image sensor 3, the image processing circuit 43 outputs a video signal and a luminance signal.
  • the luminance level of the luminance signal output from the image processing circuit 43 is compared with a predetermined set luminance level that is input to the microcomputer 44 and stored in the microcomputer 44 to determine the exposure state (step S001).
  • the microcomputer 44 inserts the ND filter 25 based on the ND position signal from the ND sensor 42. Is detected (step S002).
  • the microcomputer 44 determines whether or not the position of the ND filter 25 completely covers the fixed opening 261 of the aperture stop 26 based on the ND position signal detected in step S002 (step 002). S003).
  • step S003 If it is determined that the position of the ND filter 25 determined in step S003 does not completely cover the fixed opening 261 of the aperture stop portion 26 (N), the microcomputer 44 detects the ND drive control circuit. 47, the ND filter 25 is driven using the ND driving unit 48, and the light shielding region 254 completely moves in the direction (insertion direction) covering the fixed opening 261 (step S004).
  • step S004 determines that the light shielding region 254 of the ND filter 25 completely covers the fixed opening 261 of the aperture stop 26 (Y)
  • the microcomputer 44 Based on the aperture position signal, the open / close state of the first aperture blade 241 and the second aperture blade 242 is detected (step S005).
  • the microcomputer 44 determines whether or not the positions of the first diaphragm blade 241 and the second diaphragm blade 242 are most closed with respect to the fixed opening 261 of the aperture diaphragm section 26 based on the diaphragm position signal detected in step S005. Is determined (step S006).
  • the microcomputer 44 causes the diaphragm driver 46 to be connected via the diaphragm drive control circuit 45.
  • the first diaphragm blades 241 and the second diaphragm blades 242 are driven to move the first diaphragm blades 241 and the second diaphragm blades 242 in the most closed direction (closing direction) (step S007).
  • step S002 If it is determined in step S002 that the luminance level of the luminance signal output from the image processing circuit 43 is lower than the set luminance level (N underexposure), the microcomputer 44 performs the first operation based on the aperture position signal from the aperture sensor 41. The open / close state of the diaphragm blade 241 and the second diaphragm blade 242 is detected (step S008).
  • the microcomputer 44 determines whether or not the positions of the first diaphragm blade 241 and the second diaphragm blade 242 are the most open with respect to the fixed opening 261 of the aperture diaphragm section 26 based on the diaphragm position signal detected in step S008. Is determined (step S009).
  • the microcomputer 44 causes the diaphragm driver 46 to be connected via the diaphragm drive control circuit 45.
  • the first diaphragm blade 241 and the second diaphragm blade 242 are driven to move the first diaphragm blade 241 and the second diaphragm blade 242 in the most open direction (opening direction) (step S010).
  • the state of the first diaphragm blade 241 and the second diaphragm blade 242 determined in step S009 is the state where the first diaphragm blade 241 and the second diaphragm blade 242 are most opened with respect to the fixed opening 261 of the aperture diaphragm section 26.
  • the microcomputer 44 detects the insertion state of the ND filter 25 based on the ND position signal from the ND sensor 42 (step S011).
  • the microcomputer 44 determines whether or not the position of the ND filter 25 completely covers the fixed opening 261 of the aperture stop section 26 based on the ND position signal detected in Step S011 (Step S011). S012).
  • the microcomputer 44 sets the ND drive control circuit. 47, the ND filter 25 is driven using the ND driving unit 48 to move the transparent region 253 in a direction (extraction direction) that completely covers the fixed opening 261 (step S013).
  • the ND filter 25 and the first aperture blades are used.
  • the optimal exposure state can be obtained on the image sensor 3 by controlling the 241 and the second aperture blade 242.
  • resolution degradation due to a transmitted wavefront phase difference when the ND filter 25 is inserted can be suppressed, continuous light quantity adjustment is possible, and the cover glass used for the package of the image sensor 3 or the image sensor 3 can be adjusted.
  • a small aperture that causes scratches and dust shadows attached to the optical low-pass filter installed just before the package to appear in the photographed image can be avoided.
  • the position of the light beam passing through the boundary region Although the phase difference causes wavefront aberration and resolution degradation occurs, if the aperture state at that time is an area that is 10% or less of the total aperture area (size of the fixed aperture), there is little effect on resolution degradation. Can withstand practical use.
  • the arrangement of the light quantity control device 23 is in the order of the light quantity diaphragm 24, the ND filter 25, and the aperture diaphragm 26 from the first lens unit 21 side.
  • the arrangement is not necessarily limited to this order. As long as they are arranged close to each other, the order is not limited.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Diaphragms For Cameras (AREA)
  • Blocking Light For Cameras (AREA)
  • Studio Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 固定開口261を有し、入射する光の光束を制御する開口絞り部26と、複数の絞り羽根を移動することにより開口の大きさを変え透過する光量を制限する光量絞り部24と、透明領域253と遮光領域254とを有し、開口絞り部26の固定開口261に対して透明領域253が対向する第1の遮光状態と遮光領域254が対向する第2の遮光状態との間を移動可能に設置されたNDフィルタ25とを備え、NDフィルタ25の移動は、光量絞り部24における開口面積が最大の状態で行われる。

Description

光量制御装置、撮像装置及び光量制御方法
 本発明は、撮像装置における適正露出を得るための光量制御装置、撮像装置及び光量制御方法に関する。
 ビデオカメラやデジタルスチルカメラなどの撮像装置において、適正露出を得るためにレンズの絞りを小さく絞りこむ(以下、小絞りと称す)ことが行われる。この小絞りを行うことにより、二つの問題が発生していた。第1に小絞り状態において撮像装置の撮像素子のパッケージのカバーガラスや光学ローパスフィルタ上のゴミやキズの影が撮影画像に写り込んでしまうことである。第2に絞り開口による撮像装置の撮影レンズの結像への回折の影響が大きくなることである。
 これらの問題を解決するために、絞り機構とND(Neutral Density)フィルタとを有する光量絞り装置が特許文献1に記載されている。特許文献1には、概ね以下のように記載されている。絞り開口の大きさを可変する複数の絞り羽根と、絞り羽根により形成された開口内に配置されるNDフィルタとを備えた光量絞り装置において、NDフィルタは絞り羽根とは別部材としている。これにより、精度良く光量を制御することができるとされている。
特開平10-133254号公報
 特許文献1に記載の技術では、絞り羽根ばかりでなくNDフィルタを用いることにより効率的に光量を制御できる。しかしながら、絞り開口における回折の影響は十分には改善されていないと共に、NDフィルタを用いることにより光量絞り装置を透過した光の波面収差が大きくなる現象が発生する虞がある。
 そこで、本発明は、撮像素子に入射する光の光量を容易に制御できると共に、絞り開口における回折の影響が少なく、NDフィルタを用いた場合でも波面収差が小さい光量制御装置、撮像装置及び光量制御方法を提供することを目的とする。
 上記の目的を達成するために、本発明は、次の1)乃至3)の構成及び4),5)の制御方法を有する。
 1)所定の大きさの第1の開口面積を持つ固定開口261を有し、入射する光の光束を所定の大きさに制御する開口絞り部26と、複数の絞り羽根を移動させることにより開口の大きさを第1の開口面積から前記第1の開口面積より小さい第2の開口面積に変えることで透過する光量を制限する光量絞り部24と、入射する光に対する透過率が第1の値以上である第1の領域253及び入射する光に対する透過率が第1の値より小さい第2の値である第2の領域254を有し、開口絞り部26の開口部に対して第2の領域254が対向する第1の遮光状態と開口部に対して第1の領域253が対向する第2の遮光状態との間を移動可能に設置された減光部25とを備え、減光部25の移動は、光量絞り部24における開口の大きさが第1の開口面積の状態で行われるよう構成されていることを特徴とする光量調節装置23。
 2)第1の領域253を通過する光と第2の領域254を通過する光線との透過波面位相差が0.55μmの波長において0.2μm以下であることを特徴とする1)に記載の光量調節装置23。
 3)被写体像に対応する光が入射した際に、入射した前記光を電気信号に変換し検出信号として出力する撮像素子3と、複数のレンズからなり、被写体像を前記撮像素子に結像するレンズ部2と、レンズ部2の複数のレンズの間に配設される1)または2)に記載の光量調整装置23と、撮像素子3から出力された検出信号に基づき光量調節装置23の減光部25と光量絞り部24とを制御する制御部4と、を備えることを特徴とする撮像装置1。
 4)撮像素子3に入射した被写体像に対応する光に応じて出力される検出信号に基づく検出輝度レベルと、あらかじめ定められた設定輝度レベルとを比較し検出輝度レベルが設定輝度レベルより高いか否かを判断する露出量比較ステップと、露出量比較ステップにおいて検出輝度レベルが設定輝度レベルより高いと判断された場合、減光部25の遮光領域254が開口絞り部26を覆う状態にあるか否かを判定する減光部位置検出ステップと、減光部位置検出ステップにおいて減光部25の遮光領域254が開口絞り部26を覆っていると判断された場合、絞り羽根の開閉状態を検出し絞り羽根が最も閉じられた状態か否かを判定する絞り羽根開閉検出ステップと、絞り開閉検出ステップにおいて絞り羽根が最も閉じられた状態でないと判断された場合、絞り羽根を閉じる方向に移動させる絞り羽根移動ステップと、を含むことを特徴とする光量制御方法。
 5)NDフィルタ位置検出ステップにおいて減光部25の遮光領域254が開口絞り部26を覆ってないと判断された場合、遮光領域254が開口絞り部26を覆う方向に減光部25を移動させる減光部移動ステップを更に含むことを特徴とする請求項4記載の光量制御方法。
 本発明によれば、撮像素子に入射する光の光量を容易に制御できると共に、絞り開口における回折の影響が少なくすることができ、NDフィルタを用いた場合でも波面収差が小さくすることができる。
図1は、本発明の実施形態に係る撮像装置を示す構成図である。 図2は、本発明の実施形態に係る光量絞り部24を示す斜視図であり、図2(a)は絞りの開放状態を示し、図2(b)は絞りを閉じた状態を示す。 図3は、本発明の実施形態に係るNDフィルタ25の詳細を示す斜視図である。 図4は、本発明の実施形態に係る光量制御装置における光量絞り部及びNDフィルタの動作を示す正面図である。 図5は、本発明の実施形態に係る光量制御装置における光量絞り部及びNDフィルタの動作の状態を示すグラフである。 図6は、本発明の実施形態に係る光量制御装置におけるF値と透過光量比の関係を示すグラフである。 図7は、人間の目の視感度曲線を示すグラフである。 図8は、本発明の実施形態に係る透過波面位相差とのMTFと関係を示すグラフの一例である。 図9は、本発明の実施形態に係る撮像装置の動作を説明する制御フロー図である。
 以下に、本発明に係る光量制御装置及びその制御方法の実施形態について、図面を参照して説明する。なお、全図において、共通な機能を有する部品には同一符号を付して示し、一度説明したものに関しては、繰り返した説明を省略する。更に、断面図、概略図等は模式図であり、寸法等の比率は誇張して表現している場合がある。
 図1には、本実施形態に用いるビデオカメラやデジタルスチルカメラなどの撮像装置の構成を示す。
 撮像装置1は、複数のレンズユニットからなり被写体像を所定の位置に結像すると共に、入射した光の光量を制御するレンズ部2と被写体像の結像位置に配設された撮像素子3と前記撮像素子からの出力信号を外部に出力すると共に、レンズ部を制御してズーム,フォーカス及び光量を制御する制御部4とを有する。
 ここで、撮像素子側を後側、被写体側を前側として以下説明する。
 レンズ部2は、最も被写体側に配設される第1レンズユニット21と、最も撮像素子側に配設される第2レンズユニット22と、第1レンズユニット21及び第2レンズユニット22の間の位置に配設される光量制御装置23とを有する。
 ここで、本発明に直接関係しないズームレンズユニットやフォーカスレンズユニット等については、図示及び説明を省略する。
 光量制御装置23は、開口部の大きさを可変し光量を制御する光量絞り部24と、透過率が所定の値である減光(ND)フィルタ(減光部)25と、所定の大きさに開けられた固定の開口を備え、入射した光束の大きさを開口によって制御する開口絞り部26とを有する。
 ここで、光量絞り部24と、NDフィルタ25と、開口絞り部26とは、光軸方向に近接して配置されている。
 図2を用いて光量絞り部24の詳細について説明する。図2は、光量絞り部24を示す斜視図であり、図2(a)は絞りの開放状態を示し、図2(b)は絞りを閉じた状態を示す。
 図2(a),(b)に示すように光量絞り部24は、第1の絞り羽根241と第2の絞り羽根242とを有する。
 第1の絞り羽根241及び第2の絞り羽根242は、光軸を挟んで対向し、絞りを閉じることが可能なように光軸方向にずらして配置されている。また、第1の絞り羽根241及び第2の絞り羽根242の光軸に直交する面が、中央部を中心として光軸を挟んで互いに離間する方向に削り取られており、絞りを閉じた状態(図2(b))で略菱形の開口が形成されるようになっている。
 図2(a)において、第1の絞り羽根241及び第2の絞り羽根242がそれぞれ矢印方向に移動することにより、図2(b)のように略菱形の開口が形成される。
 第1の絞り羽根241及び第2の絞り羽根242は、一例として厚さ0.05mmの黒色ポリエステルシート製で、先端のV字形凹みは90°の開き角を持ち、互いのV字形凹みを向かい合わせることで正方形の開口を作ることができる。
 更に、正方形の開口が形成された状態から、第1の絞り羽根241及び第2の絞り羽根242の互いの位置を逆方向に等量ずつ直線移動させることで、正方形の開口の大きさを連続的に変化させることが可能である。
 なお、絞り羽根の形状は、上記した構造にとらわれることなく、可動して光束を遮るものであればよいものである。
 また、本実施の形態では、光量絞り部24を2枚の絞り羽根241,242で構成したが、可動して光束を遮るものであれば絞り羽根の枚数に制限は無いものである。
 図3を用いてNDフィルタ25の詳細について説明する。図3は、NDフィルタ25の詳細を示す斜視図である。
 NDフィルタ25には、透明基板中に光吸収物質を分散させたタイプと、透明基板上に薄膜を形成したタイプ(薄膜型NDフィルタ)とがある。更に、薄膜型NDフィルタには、金属膜を用いた反射型と誘電体膜を用いた吸収型とがある。ここでは、誘電体膜を用いたNDフィルタ25を用いて説明する。
 図3に示すようにNDフィルタ25は、ガラスやプラスチック等の透明基板251の一方の面の一部に誘電体膜からなる遮光膜252が形成されている。ここでは、遮光膜252が形成された領域を減光領域254と称する。減光領域254の遮光膜252は、入射した光のうち、可視光の帯域の光の一部を吸収することにより可視光の帯域の透過率を所定となるよう設計されている。その透過率は、後述するように30%以下が望ましい。
 NDフィルタ25における遮光膜252が形成されていない領域である透明領域253には、反射防止膜のみが形成されている。透明領域253における可視光の帯域の光の透過率は98%程度である。また、透明領域253の大きさは、開口絞り部26の開口部の大きさより大きく形成されている。更に、遮光膜252が形成された減光領域254も、開口絞り部26の開口部の大きさより大きく形成されている。
 なお、NDフィルタ25と光量絞り部24は、図示しないアクチュエータによって駆動され、光量を調節することが可能となる。
 開口絞り部26は、光量絞り部24の第1の絞り羽根241及び第2の絞り羽根242が開放状態となった際に光束を円径に保つための丸穴(固定開口)261を備え、レンズ部2の開放F値に合わせてその径を設定する。
 図1に戻り撮像装置1の構成について説明する。
 撮像素子3は、光電変換素子の一種であり光を電気エネルギーに変換するものであり、電荷結合素子 (CCD:Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)が用いられる。
 制御部4は、絞りセンサ41と、NDセンサ42と、画像処理回路43と、マイコン44と、絞り制御回路45と、絞り駆動部46と、ND制御回路47と、ND駆動部48とを有する。
 絞りセンサ41は、光量絞り部24の各絞り羽根(図2の241,242)の位置(開口状態)を検出し、絞り位置信号をマイコン44に出力する。
 NDセンサ42は、NDフィルタ25の位置(挿入状態)を検出し、ND位置信号をマイコン44に出力する。
 画像処理回路43は、撮像素子3において光電変換され出力された検出信号が入力し、入力された検出信号に基づいて信号処理し、得られた映像信号を外部に出力すると共に輝度信号をマイコン44に出力する。
 マイコン44は、入力した輝度信号,絞り位置信号,及びND位置信号に基づいて輝度が所定の輝度レベルとなるよう光量絞り部24及びNDフィルタ25の制御する絞り制御信号及びND制御信号を出力する。
 絞り駆動制御回路45は、マイコン44からの絞り制御信号に基づいて光量絞り部24の各絞り羽根(図2の241,242)を駆動する絞り駆動信号を出力する。
 絞り駆動部46は、絞り駆動信号に基づいて光量絞り部24の各絞り羽根(図2の241,242)を駆動し開口量を制御する。
 ND制御回路47は、マイコン44からのND制御信号に基づいてNDフィルタ25の駆動するND駆動信号を出力する。
 ND駆動部48は、ND駆動信号に基づいてNDフィルタ25を駆動し挿入量を制御する。
 次に、撮像装置1の動作について説明する。
 被写体の方向に撮像装置1を向けると、レンズ部2のフォーカス機能により撮像素子3上に被写体像が結像される。
 撮像素子に被写体が結像された際に撮像素子から出力される検出信号に基づき画像処理回路43では、映像信号と輝度信号とが生成され出力される。
 画像処理回路43から出力された輝度信号はマイコン44に入力する。マイコン44では、入力した輝度信号から求められた被写体撮像時の輝度レベルとあらかじめ設定された輝度レベルとを比較し、輝度差を求める。
 更に、マイコン44には、被写体撮像時の光量絞り部24の各絞り羽根241,242の位置(第1の絞り位置)とNDフィルタ25の挿入位置(第1の挿入位置)とが入力される。
 マイコン44では、マイコン44に入力した第1の絞り位置及び第1の挿入位置と輝度差とから、あらかじめ設定された輝度レベルにするための各絞り羽根241,242の位置(第2の絞り位置)及びNDフィルタ25の挿入位置(第2の挿入位置)を求め、求められた第2の絞り位置及び第2の挿入位置にするための絞り制御信号とND制御信号とを出力する。
 絞り駆動制御回路45では、絞り制御信号に基づいて絞り駆動信号を出力し、絞り駆動部46を駆動し各絞り羽根241,242の位置(第1の絞り位置)を求められた位置(第2の絞り位置)に駆動する。
 ND駆動制御回路47では、ND制御信号に基づいてND駆動信号を出力し、ND駆動部48を駆動しNDフィルタ25の挿入位置(第1の絞り位置)を求められた挿入位置(第2の挿入位置)に駆動する。
 次に、本発明の実施形態における光量制御装置23の動作について図4乃至図6を用いて詳細に説明する。図4は、光量制御装置23を第1レンズユニット23側から見た際の、光量絞り部24及びNDフィルタ25の動作を示す正面図である。図5は、開放(透明領域253)を100%とした際に遮光領域254の透過光量比が25%であるNDフィルタ25も用い、レンズの開放F値をF2.8としたときの光量絞り部24及びNDフィルタ25の動作の状態を示すグラフである。図6は、開放(透明領域253)を100%とした際に遮光領域254の透過光量比が25%であるNDフィルタ25を用い、レンズの開放F値をF2.8としたときのF値と透過光量比の関係を示す図である。
 図6を用いて光量制御装置23が開放状態(a)から最小絞り状態(f)に変化する際の光量絞り部24及びNDフィルタ25の動作を順に説明する。
 まず、開放状態(a)では、NDフィルタ25の透明領域253が開口絞り部26を全て覆い、第1の絞り羽根241及び第2の絞り羽根242は開放状態(最も離間した状態)である。このときの透過光量比を100%とし、F値はF2.8となる。
 次に、光量制御装置23の透過光量比を(a)100%から(b)50%にするためには、第1の絞り羽根241及び第2の絞り羽根242は開放状態(最も離間した状態)のままで、NDフィルタ25を移動させ遮光領域254が固定開口261の66.7%を覆う状態とする。このときF値は、2.8から4.0になる。
 光量制御装置23の透過光量比を(b)50%から(c)25%にするためには、第1の絞り羽根241及び第2の絞り羽根242は開放状態(最も離間した状態)のままで、NDフィルタ25を更に移動させ遮光領域254が固定開口261を全て覆う状態とする。このときF値は、4.0から5.6になる。
 光量制御装置23の透過光量比を(c)25%から(d)12.5%にするためには、NDフィルタ25の遮光領域254が固定開口261を全て覆う状態で、第1の絞り羽根241及び第2の絞り羽根242を移動させ第1の絞り羽根241及び第2の絞り羽根242が固定開口261の50%を覆う状態とする。このときF値は、5.6から8.0になる。
 光量制御装置23の透過光量比を(d)12.5%から(e)6.3%にするためには、NDフィルタ25の遮光領域254が固定開口261を全て覆う状態で、第1の絞り羽根241及び第2の絞り羽根242を更に移動させ第1の絞り羽根241及び第2の絞り羽根242が固定開口261の75%を覆う状態とする。このときF値は、8.0から11になる。
 光量制御装置23の透過光量比を(e)6.3%から(f)3.1%にするためには、NDフィルタ25の遮光領域254が固定開口261を全て覆う状態で、第1の絞り羽根241及び第2の絞り羽根242を更に移動させ第1の絞り羽根241及び第2の絞り羽根242が固定開口261の87.5%を覆う状態とする。このときF値は、11から16になる。
 ここで、透過光量比が100%から25%までの(a)から(c)までの状態をNDフィルタ移動期間といい、透過光量比が25%から3.1%までの(d)から(f)までの状態を絞り羽根移動期間とする。
 次に、NDフィルタ移動期間のように固定開口261を部分的にNDフィルタ25の遮光領域254が覆った場合、透明領域253を通過する光線と遮光領域254を透過する光線とで光路長(遮光領域254を形成する誘電体膜の膜厚と屈折率との積)が異なるために透過波面に位相差が生じる(いわゆる透過波面位相差)。透過波面位相差は、撮像素子に形成される撮影画像に解像度劣化を生じさせる。そのため、解像度劣化をなるべく抑える必要がある。
 NDフィルタ移動期間における透明領域253を透過する光と遮光領域254を透過する光との透過波面位相差が解像度に及ぼす影響について確認する。透過率25%のNDフィルタ25を挿入し、絞りを0.5AV(Aperture Value)間隔で変化させたときの、F2.8/F4/F5.6の各絞りの状態において透過波面位相差を0から0.4μm迄0.1μm毎に変化させたときのMTF(Modulation Transfer Function)の値をシミュレーションした。シミュレーションは収差の無い理想レンズの入射瞳に各位相差を生じるNDフィルタ25を挿入する形をとった。なお、MTF計算の際の光線ウエイトは、概ね視感度特性にあわせた。人間の目は略380nm~780nmの光を感じることができ、光に対する目の感度は光の波長に応じて異なる。そこで、この波長による目の感覚を視感度とよび、図7に示すような曲線で表す。図7に示すように、人間の目は略550nmに極大値がある。
 図8に透過波面位相差を変化させたときのMTFのデータの代表例として、F4.0で、1.0AVと透過波面位相差0.2のときのグラフを示す。グラフの横軸は空間周波数であり、グラフの縦軸は各空間周波数における変調の度合いを表す。
 透過波面位相差が0.2μm以下であれば、実用的な空間周波数である300 lp/mm以下の空間周波数に於いて変調が15%以上となり、画像の解像感は概ね保たれる。
 また、透過波面位相差が0.3μmの場合、F2.8で220 lp/mm付近、F4で160 lp/mm付近、F5.6で110 lp/mm付近に於いて変調が5%程度となり画像の解像感が失われる。
 以上のことから、透過波面位相差は、0.2μm(波長0.55μmの光線にて)以下であることが望ましい。
 NDフィルタ25の遮光領域254における透過率の値について述べる。
 NDフィルタ25の遮光領域254の透過率が30%以上の場合、NDフィルタ25の遮光領域254が固定開口261を全て覆った状態の光量制御装置23の透過光量比は30%以上となる。この状態で透過光量比を低下させるためには、NDフィルタ25のサイズを大きくして、NDフィルタ25の遮光領域254に2種類の濃度の領域を設ける必要がある。これにより、NDフィルタ25が大型化し、レンズ部2のレンズ鏡筒が大型化してしまい、撮像装置自体が大型化してしまう問題が発生する。
 そこで、望ましくはNDフィルタ25の透過率を30%以下とし、NDフィルタ25の遮光領域254の濃度を1種類とすることで、レンズ鏡筒の大型化及び撮像装置の大型化を防ぐことができる。
 次に、実際に被写体像を撮像した際の撮像装置1の動作について、図9を用いて説明する。図9は、撮像装置の動作を説明する制御フロー図である。
 被写体像に対応する光が撮像素子3に入射すると、入射した光に基づいて撮像素子3から検出信号が出力される。撮像素子3から出力された検出信号に基づいて画像処理回路43で映像信号と輝度信号とが出力される。
 画像処理回路43から出力された輝度信号の輝度レベルは、マイコン44に入力しマイコン44内部に記憶されたあらかじめ定められた設定輝度レベルと比較され露出の状態を判断される(ステップS001)。
 画像処理回路43から出力された輝度信号の輝度レベルが設定輝度レベルより高いと判断された場合(Y 露出オーバー)、マイコン44はNDセンサ42からのND位置信号に基づいてNDフィルタ25の挿入状態を検出する(ステップS002)。
 マイコン44は、ステップS002において検出したND位置信号に基づいてNDフィルタ25の位置がNDフィルタ25の遮光領域254が完全に開口絞り部26の固定開口261を覆っているか否かを判定する(ステップS003)。
 ステップS003で判定したNDフィルタ25の位置がNDフィルタ25の遮光領域254が完全に開口絞り部26の固定開口261を覆っていないと判断された場合(N)、マイコン44は、ND駆動制御回路47経由でND駆動部48を用いてNDフィルタ25を駆動し遮光領域254が完全に固定開口261を覆う方向(挿入方向)に移動する(ステップS004)。
 ステップS004で判定したNDフィルタ25の位置がNDフィルタ25の遮光領域254が完全に開口絞り部26の固定開口261を覆っていると判断した場合(Y)、マイコン44は、絞りセンサ41からの絞り位置信号に基づいて第1の絞り羽根241及び第2の絞り羽根242の開閉状態を検出する(ステップS005)。
 マイコン44は、ステップS005で検出した絞り位置信号に基づいて第1の絞り羽根241及び第2の絞り羽根242の位置が開口絞り部26の固定開口261に対して最も閉じた状態であるか否かを判定する(ステップS006)。
 ステップS006で判定した第1の絞り羽根241及び第2の絞り羽根242の位置が最も閉じていないと判断された場合(N)、マイコン44は、絞り駆動制御回路45経由で絞り駆動部46を用いて第1の絞り羽根241及び第2の絞り羽根242を駆動し第1の絞り羽根241及び第2の絞り羽根242が最も閉じる方向(閉じ方向)に移動させる(ステップS007)。
 ステップS002において画像処理回路43から出力された輝度信号の輝度レベルが設定輝度レベルより低いと判断された場合(N 露出アンダー)、マイコン44は絞りセンサ41からの絞り位置信号に基づいて第1の絞り羽根241及び第2の絞り羽根242の開閉状態を検出する(ステップS008)。
 マイコン44は、ステップS008で検出した絞り位置信号に基づいて第1の絞り羽根241及び第2の絞り羽根242の位置が開口絞り部26の固定開口261に対して最も開いた状態であるか否かを判定する(ステップS009)。
 ステップS009で判定した第1の絞り羽根241及び第2の絞り羽根242の位置が最も開いていないと判断された場合(N)、マイコン44は、絞り駆動制御回路45経由で絞り駆動部46を用いて第1の絞り羽根241及び第2の絞り羽根242を駆動し第1の絞り羽根241及び第2の絞り羽根242が最も開く方向(開き方向)に移動させる(ステップS010)。
 ステップS009で判定した第1の絞り羽根241及び第2の絞り羽根242の位置が第1の絞り羽根241及び第2の絞り羽根242が開口絞り部26の固定開口261に対して最も開いた状態であると判断した場合(Y)、マイコン44はNDセンサ42からのND位置信号に基づいてNDフィルタ25の挿入状態を検出する(ステップS011)。
 マイコン44は、ステップS011で検出したND位置信号に基づいてNDフィルタ25の位置がNDフィルタ25の透明領域253が完全に開口絞り部26の固定開口261を覆っているか否かを判定する(ステップS012)。
 ステップS012で判定したNDフィルタ25の位置がNDフィルタ25の透明領域253が完全に開口絞り部26の固定開口261を覆っていないと判断された場合(N)、マイコン44は、ND駆動制御回路47経由でND駆動部48を用いてNDフィルタ25を駆動し透明領域253が完全に固定開口261を覆う方向(抜去方向)に移動させる(ステップS013)。
 このように、画像処理回路43から出力された輝度信号の輝度レベルと、NDセンサ42からのND位置信号と、絞りセンサ41からの絞り位置信号とに基づいてNDフィルタ25並びに第1の絞り羽根241及び第2の絞り羽根242を制御して撮像素子3上で最適露出状態を得ることができる。
 本実施形態によれば、NDフィルタ25挿入時の透過波面位相差による解像度の劣化を抑え、連続的な光量調節が可能であって、撮像素子3のパッケージに用いられるカバーガラスや撮像素子3のパッケージの直前に設置される光学ローパスフィルタに付着したキズやゴミの影が撮影画像に映りこむ原因である小絞りが避けられる。
 なお、遮光領域254と透明領域253との間に何れかの領域に対する透過波面位相差が0.55μmの光線にて0.2μmを超える境界領域がある場合、その境界領域を通過する光線の位相差が波面収差となって解像度劣化が発生するが、そのときの開口の絞りの状態が全開口面積(固定開口の大きさ)の10%以下の面積であれば解像度劣化に対する影響は少なく、十分に実用に耐えうるものである。
 また、本実施形態では、光量制御装置23内部の配置が第1レンズユニット21側から、光量絞り部24,NDフィルタ25,開口絞り部26の順であったが、必ずしもこの順に限る必要は無く、それぞれが近接して配置してあればその順序は問わない。
 また、本実施形態では、光量絞り部24及びNDフィルタ25の位置検出を位置センサで行った場合について説明したが、エンコーダ等で駆動部の送り量をモニタすることにより位置検出を行ってもよいことはいうまでもない。
1…撮像装置
2…レンズ部
3…撮像素子
4…制御部
21…第1レンズユニット
22…第2レンズユニット
23…光量制御装置
24…光量絞り部
25…減光(ND)フィルタ(減光部)
26…開口絞り部
41…絞りセンサ
42…NDセンサ
43…画像処理回路
44…マイコン
45…絞り駆動制御回路
46…絞り駆動部
47…ND駆動制御回路
48…ND駆動部
241…第1の絞り羽根
242…第2の絞り羽根
251…透明基板
252…遮光膜
253…透明領域(第1の領域)
254…遮光領域(第2の領域)
261…丸穴(固定開口)

Claims (5)

  1.  所定の大きさの第1の開口面積を持つ開口部を有し、入射する光の光束を所定の大きさに制御する開口絞り部と、
     複数の絞り羽根を移動させることにより開口の大きさを前記第1の開口面積から前記第1の開口面積より小さい第2の開口面積に変えることで透過する光量を制限する光量絞り部と、
     入射する光に対する透過率が第1の値以上である第1の領域及び入射する光に対する透過率が前記第1の値より小さい第2の値である第2の領域を有し、前記開口絞り部の前記開口部に対して前記第2の領域が対向する第1の遮光状態と前記開口部に対して前記第1の領域が対向する第2の遮光状態との間を移動可能に設置された減光部と、
     を備え、
     前記減光部の移動は、前記光量絞り部における開口の大きさが前記第1の開口面積の状態で行われるよう構成されていることを特徴とする光量調節装置。
  2.  前記第1の領域を通過する光と前記第2の領域を通過する光線との透過波面位相差が0.55μmの波長において0.2μm以下であることを特徴とする請求項1記載の光量調節装置。
  3.  被写体像に対応する光が入射した際に、入射した前記光を電気信号に変換し検出信号として出力する撮像素子と、
     複数のレンズからなり、被写体像を前記撮像素子に結像するレンズ部と、
     前記レンズ部の前記複数のレンズの間に配設される請求項1または請求項2記載の光量調整装置と、
     前記撮像素子から出力された前記検出信号に基づき前記光量調節装置の前記減光部と前記光量絞り部とを制御する制御部と、
     を備えることを特徴とする撮像装置。
  4.  撮像素子に入射した被写体像に対応する光に応じて出力される検出信号に基づく検出輝度レベルと、あらかじめ定められた設定輝度レベルとを比較し前記検出輝度レベルが前記設定輝度レベルより高いか否かを判断する露出量比較ステップと、
     前記露出量比較ステップにおいて前記検出輝度レベルが前記設定輝度レベルより高いと判断された場合、減光部の遮光領域が開口絞り部を覆う状態にあるか否かを判定する減光部位置検出ステップと、
     前記減光部位置検出ステップにおいて前記減光部の前記遮光領域が前記開口絞り部を覆っていると判断された場合、絞り羽根の開閉状態を検出し前記絞り羽根が最も閉じられた状態か否かを判定する絞り羽根開閉検出ステップと、
     前記絞り開閉検出ステップにおいて前記絞り羽根が最も閉じられた状態でないと判断された場合、前記絞り羽根を閉じる方向に移動させる絞り羽根移動ステップと、
     を含むことを特徴とする光量制御方法。
  5.  前記減光部位置検出ステップにおいて前記減光部の前記遮光領域が前記開口絞り部を覆ってないと判断された場合、前記遮光領域が前記開口絞り部を覆う方向に前記減光部を移動させる減光部移動ステップを更に含むことを特徴とする請求項4記載の光量制御方法。
PCT/JP2010/057547 2009-04-30 2010-04-28 光量制御装置、撮像装置及び光量制御方法 WO2010126079A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/318,026 US8934031B2 (en) 2009-04-30 2010-04-28 Light intensity control device, imaging device and light intensity control method
KR1020117028461A KR101276641B1 (ko) 2009-04-30 2010-04-28 광량 제어 장치, 촬상 장치 및 광량 제어 방법
EP10769777.3A EP2426554B1 (en) 2009-04-30 2010-04-28 Light quantity control apparatus, image pickup apparatus, and light quantity control method
CN201080019019.0A CN102422215B (zh) 2009-04-30 2010-04-28 光量控制装置、摄影装置以及光量控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009110836A JP5428504B2 (ja) 2009-04-30 2009-04-30 光量制御装置、撮像装置及び光量制御方法
JP2009-110836 2009-04-30

Publications (1)

Publication Number Publication Date
WO2010126079A1 true WO2010126079A1 (ja) 2010-11-04

Family

ID=43032223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057547 WO2010126079A1 (ja) 2009-04-30 2010-04-28 光量制御装置、撮像装置及び光量制御方法

Country Status (6)

Country Link
US (1) US8934031B2 (ja)
EP (1) EP2426554B1 (ja)
JP (1) JP5428504B2 (ja)
KR (1) KR101276641B1 (ja)
CN (1) CN102422215B (ja)
WO (1) WO2010126079A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8908081B2 (en) 2010-09-09 2014-12-09 Red.Com, Inc. Optical filter opacity control for reducing temporal aliasing in motion picture capture
DE112012005720B4 (de) * 2012-01-19 2020-01-30 Shanghai Ruishi Machine Vision Technology Co., Ltd. Kamera mit eingebautem Polarisationsscheibenschaltmechanismus
JP2013210495A (ja) * 2012-03-30 2013-10-10 Sumitomo Electric Device Innovations Inc 光装置
CN105264880B (zh) * 2013-04-05 2018-08-28 Red.Com 有限责任公司 用于相机的滤光
JP6261388B2 (ja) * 2014-03-05 2018-01-17 信越半導体株式会社 半導体エピタキシャルウェーハの製造方法
TWM521747U (zh) * 2015-10-16 2016-05-11 大立光電股份有限公司 遮光片、遮光元件、光學元件、成像鏡頭與鏡頭模組
US20170123298A1 (en) * 2015-10-30 2017-05-04 Brass Roots Technologies, LLC Lens system including interchangeable elements
WO2019035244A1 (ja) * 2017-08-18 2019-02-21 富士フイルム株式会社 撮像装置、撮像装置の制御方法、及び撮像装置の制御プログラム
CN107991724A (zh) * 2017-12-29 2018-05-04 深圳开立生物医疗科技股份有限公司 光路补偿装置及冷光源系统
WO2019225980A1 (ko) * 2018-05-23 2019-11-28 엘지전자 주식회사 조리개 장치, 카메라, 및 이를 구비하는 단말기
CN112135066B (zh) * 2019-06-24 2022-02-25 北京地平线机器人技术研发有限公司 调整摄像装置的入射光强度的装置、方法、介质和设备
CN110581939B (zh) * 2019-08-20 2021-06-08 苏州佳世达电通有限公司 摄像装置
CN110736044A (zh) * 2019-10-29 2020-01-31 广东凯西欧光健康有限公司 一种联动旋动式控光模组及应用该模组的射灯
CN111935381B (zh) * 2020-08-19 2023-08-25 北京小马慧行科技有限公司 图像采集与处理装置与移动载体
CN113835310A (zh) * 2021-09-29 2021-12-24 深圳市先地图像科技有限公司 一种光阑以及激光器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265971A (ja) * 1993-03-12 1994-09-22 Fuji Photo Optical Co Ltd 透過光量調整機構
JP2000111970A (ja) * 1998-10-08 2000-04-21 Canon Inc 絞り機構
JP2001174862A (ja) * 1999-12-21 2001-06-29 Casio Comput Co Ltd 光学絞り装置
JP2004205951A (ja) * 2002-12-26 2004-07-22 Canon Inc 光量調整装置及びそれを用いた光学機器
JP2007292828A (ja) * 2006-04-21 2007-11-08 Sony Corp 光量調整装置及び撮像装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455838A (ja) 1990-06-25 1992-02-24 Sony Corp ビデオカメラ
JPH05281592A (ja) 1992-03-31 1993-10-29 Sony Corp 撮影レンズの絞り装置
JPH10133254A (ja) 1996-10-31 1998-05-22 Canon Electron Inc 光量絞り装置
JP3755254B2 (ja) 1997-08-25 2006-03-15 ソニー株式会社 レンズの絞り調整装置、撮像装置及び光量調整方法
JP4217325B2 (ja) * 1999-01-21 2009-01-28 キヤノン株式会社 光量調節装置
JP4273372B2 (ja) * 1998-07-31 2009-06-03 ソニー株式会社 撮像装置
JP2000147589A (ja) 1998-11-13 2000-05-26 Sony Corp 撮影レンズの絞り装置
JP3768858B2 (ja) 2001-10-12 2006-04-19 キヤノン株式会社 光量調整装置及びそれを有する光学系並びに撮影装置
JP4054618B2 (ja) 2001-12-25 2008-02-27 オリンパス株式会社 光量調整ユニット
EP1336871B1 (en) 2002-02-19 2006-11-22 Canon Kabushiki Kaisha Production process of a graded neutral density filter, diaphragm with graded neutral density filter and photographing apparatus comprising the diaphragm
JP4235486B2 (ja) 2002-05-28 2009-03-11 キヤノン株式会社 駆動装置、光量調節装置、および、レンズ駆動装置
JP2004020711A (ja) 2002-06-13 2004-01-22 Canon Inc 光量調節装置及び撮影装置
JP4599025B2 (ja) * 2002-08-08 2010-12-15 キヤノン株式会社 撮像装置
US7042662B2 (en) * 2002-12-26 2006-05-09 Canon Kabushiki Kaisha Light amount adjusting device, and optical device using the light amount adjusting device
JP4510783B2 (ja) * 2006-05-23 2010-07-28 キヤノン株式会社 光学機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265971A (ja) * 1993-03-12 1994-09-22 Fuji Photo Optical Co Ltd 透過光量調整機構
JP2000111970A (ja) * 1998-10-08 2000-04-21 Canon Inc 絞り機構
JP2001174862A (ja) * 1999-12-21 2001-06-29 Casio Comput Co Ltd 光学絞り装置
JP2004205951A (ja) * 2002-12-26 2004-07-22 Canon Inc 光量調整装置及びそれを用いた光学機器
JP2007292828A (ja) * 2006-04-21 2007-11-08 Sony Corp 光量調整装置及び撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2426554A4 *

Also Published As

Publication number Publication date
KR101276641B1 (ko) 2013-06-19
EP2426554A4 (en) 2012-12-19
EP2426554A1 (en) 2012-03-07
CN102422215B (zh) 2014-08-13
CN102422215A (zh) 2012-04-18
US8934031B2 (en) 2015-01-13
EP2426554B1 (en) 2014-04-16
JP5428504B2 (ja) 2014-02-26
US20120050605A1 (en) 2012-03-01
KR20120006560A (ko) 2012-01-18
JP2010262031A (ja) 2010-11-18

Similar Documents

Publication Publication Date Title
WO2010126079A1 (ja) 光量制御装置、撮像装置及び光量制御方法
US7099555B2 (en) Light amount adjusting apparatus, optical equipment, optical filter and image-taking apparatus
US7715115B2 (en) Lens device
US20070248349A1 (en) Light amount adjuster and imaging apparatus
US20150070561A1 (en) Transmitted light volume adjusting apparatus and transmitted light volume adjusting method
TW202119065A (zh) 光學成像鏡頭、取像裝置及電子裝置
JP5942472B2 (ja) 光量調整装置
WO2012004989A1 (ja) 減光装置および撮像装置
US20220114706A1 (en) Methods and Systems for Image Correction and Processing in High-Magnification Photography exploiting Partial Reflectors
US10158791B2 (en) Camera device with red halo reduction
JP6385123B2 (ja) 監視カメラおよびこれに用いられるカバー
US9529246B2 (en) Transparent camera module
JP2006301473A (ja) 光学フィルタを有する光学系および撮影装置
JP2002156607A (ja) 撮像装置
CN221225056U (zh) 光路转折元件、成像镜头模块及电子装置
KR20100062533A (ko) 촬상용 광학 장치
US8731393B2 (en) Optical apparatus including light amount adjusting apparatus
JP2012113015A (ja) 絞り装置及び光学機器
JP2004029577A (ja) 光量調節装置、撮像光学系および撮像装置
RU81815U1 (ru) Устройство для автоматической регулировки апертуры объектива
JP2024504261A (ja) 部分反射器を活用する高倍率写真撮影における像補正及び処理のための方法及びシステム
JP2000214513A (ja) ズ―ムレンズ
JP2023038059A (ja) 光学フィルタ及び撮像装置
JP4576980B2 (ja) X線撮像装置
JP2005157197A (ja) 光量調整装置、光学装置および撮影装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080019019.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769777

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13318026

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010769777

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117028461

Country of ref document: KR

Kind code of ref document: A