WO2010126038A1 - 太陽電池素子、分割太陽電池素子、太陽電池モジュールおよび電子機器 - Google Patents

太陽電池素子、分割太陽電池素子、太陽電池モジュールおよび電子機器 Download PDF

Info

Publication number
WO2010126038A1
WO2010126038A1 PCT/JP2010/057451 JP2010057451W WO2010126038A1 WO 2010126038 A1 WO2010126038 A1 WO 2010126038A1 JP 2010057451 W JP2010057451 W JP 2010057451W WO 2010126038 A1 WO2010126038 A1 WO 2010126038A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell element
current collecting
semiconductor layer
element according
Prior art date
Application number
PCT/JP2010/057451
Other languages
English (en)
French (fr)
Inventor
直也 小波本
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US13/266,455 priority Critical patent/US9324887B2/en
Priority to EP10769736.9A priority patent/EP2426728B1/en
Priority to KR1020117025342A priority patent/KR101199822B1/ko
Priority to CN201080018185.9A priority patent/CN102414830B/zh
Priority to JP2011511411A priority patent/JP5153939B2/ja
Publication of WO2010126038A1 publication Critical patent/WO2010126038A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a solar cell element, a divided solar cell element obtained by dividing the solar cell element, a solar cell module or an electronic apparatus provided with the divided solar cell element.
  • the semiconductor substrate 51 needs to be doped with an impurity element.
  • an impurity element for example, a larger amount of heat may be applied to the outside of the central portion R1 on one main surface of the semiconductor substrate 51, and a large amount of impurity elements may be included in that portion. That is, in FIG. 10, the impurity element may be contained more in both end portions R2 and R3 outside the central portion R1.
  • the current collection efficiency of the solar cell element 50 can be increased by increasing the number of current collecting electrodes 52 arranged on the semiconductor substrate 51 at equal intervals.
  • FIG. 10 the current collecting electrode 52 and the division position 53 may overlap. In this case, the output characteristics may be adversely affected, for example, the output of the split solar cell element may be reduced.
  • a solar cell element that can be expected to improve power generation efficiency and a divided solar cell element with less influence of output characteristics are desired.
  • a solar cell module and an electronic device including such a solar cell element or a divided solar cell element Equipment is desired.
  • a solar cell element includes a semiconductor substrate having a first semiconductor layer of one conductivity type and a second semiconductor layer of opposite conductivity type, and the first semiconductor substrate on the second semiconductor layer side.
  • each of the plurality of linear current collecting electrodes is a solar cell element disposed away from the central portion of the first main surface toward both end portions, and is located at the central portion. The distance between the adjacent current collecting electrodes is different from the distance between the adjacent current collecting electrodes located on the both end sides.
  • a split solar cell element according to an aspect of the present invention is obtained by dividing the solar cell element along some of the current collecting electrodes.
  • a solar cell module according to an embodiment of the present invention includes the solar cell element or the divided solar cell element.
  • An electronic apparatus includes the solar cell element or the divided solar cell element.
  • the solar cell module and the electronic device including the solar cell element improvement in power generation efficiency can be expected. Moreover, the division
  • FIG. 2 is a schematic sectional view taken along line AA in FIG.
  • FIG. 2 is a partially enlarged plan view of FIG. 1, and (a) and (b) are diagrams showing examples of arrangement of first current collecting electrodes, respectively.
  • FIG. 8 is a schematic cross-sectional view taken along line BB in FIG. (A)
  • (b) is a top view which shows typically an example of the division
  • the solar cell element 10 is, for example, linear in the first main surface 11 that is a light receiving surface of the semiconductor substrate 9 from the central portion R1 of the first main surface 11 toward both end portions R2 and R3.
  • Each of the plurality of first current collecting electrodes 4a is spaced from each other.
  • 4b is a 1st output extraction electrode wider than the 1st current collection electrode 4a, and is arrange
  • the 1st electrode 4 in the 1st main surface 11 is comprised from the 1st current collection electrode 4a and the 1st output extraction electrode 4b.
  • the distance between the adjacent first current collecting electrodes 4a located in the central portion R1 is the distance between the adjacent first current collecting electrodes 4a located on both ends R2 and R3 side. Different from the above. Here, the distance between the adjacent first current collecting electrodes 4a located in the central portion R1 is different from the distance between the adjacent first current collecting electrodes 4a located on both ends R2 and R3 side. If it is 0.07 mm or more, it is defined that the distance between the 1st current collection electrodes 4a in both differs.
  • the second main surface 12 which is the back surface of the semiconductor substrate 9 extends in the same direction as the second current collecting electrode 5a and the first output extraction electrode 4b formed on substantially the entire surface.
  • the 2nd electrode 5 comprised by the 2nd output extraction electrode 5b is arrange
  • reference numeral 8 denotes a dividing line for obtaining a divided solar cell element from the solar cell element 10, for example, a dividing line shown for dividing the solar cell element 10 using laser light or the like. is there.
  • the semiconductor substrate 9 has a first semiconductor layer 1 of one conductivity type and a second semiconductor layer 2 of opposite conductivity type.
  • the second semiconductor layer 2 is located on the first main surface 11 side of the semiconductor substrate 9.
  • An antireflection film 3 is disposed on the first main surface 11 of the semiconductor substrate 9.
  • a third semiconductor layer 6 in a BSF region (Back Surface Field) is provided on the second main surface 12 side of the semiconductor substrate 9.
  • the first main surface 11 penetrates from the first main surface 11 of the semiconductor substrate 9 to the second main surface 12 located on the opposite side.
  • a plurality of through-electrodes 4e connected to the collector electrode 4a and a first output extraction electrode 4b arranged on the second main surface 12 and connected to the through-electrode 4e are provided.
  • the divided solar cell element of the present embodiment is obtained by dividing the above-described solar cell element along some of the first current collecting electrodes 4a.
  • a divided solar cell element 15 is obtained by dividing by a dividing line 8 located at the central portion R1 of the solar cell element 10 of FIG.
  • FIG.9 (b) it divides
  • the distance between the adjacent first current collecting electrodes 4a located at the central portion R1 is larger than the distance between the adjacent first current collecting electrodes 4a located at both end portions R2 and R3. You may comprise so that it may become short.
  • the distance between the adjacent first current collecting electrodes 4a gradually increases from the central portion R1 on the first main surface 11 of the semiconductor substrate 9 toward both end portions R2 and R3. It is good to be arranged in.
  • the first electrode 4 includes, for example, a first collecting electrode 4a having a width of 50 to 200 ⁇ m and a first output extraction electrode 4b having a width of 1.3 to 2.5 mm perpendicular to the first collecting electrode 4a.
  • the second electrode 5 includes, for example, a second current collecting electrode 5a disposed over the entire second main surface and a second output extraction electrode 5a having a width of 1.5 to 7 mm.
  • the division position 8 of the solar cell element 10 and the first current collecting electrode 4a are prevented from overlapping. Is possible. Thereby, the division
  • the distance between the adjacent first current collecting electrodes 4a is set to be shorter or longer than the optimum value within a range of 0.2 mm based on the optimum value. Further, the difference between the distance between the adjacent first current collecting electrodes 4a located in the central portion R1 and the distance between the adjacent first current collecting electrodes 4a located at both end portions R2 and R3 is 0.3 mm. Is preferably within.
  • the optimum value is a value when the power generation efficiency of the solar cell element is high when the distance between the adjacent first current collecting electrodes 4a is uniform from one end to the other end of the semiconductor substrate 1.
  • the distance between the adjacent first current collecting electrodes 4a can be set as appropriate, as in the solar cell element 30 shown in FIG.
  • the distance between the adjacent first current collecting electrodes 4a is increased, and the distance between the adjacent first current collecting electrodes 4a at both end portions R2 and R3. May be shortened.
  • the second current collecting electrode groups 42 having a long length may be arranged alternately or appropriately. Also by adopting this configuration, it is possible to reduce the overlap between the collecting electrode 4a and the cutting position 8 caused by the gradually accumulated tolerance shift, so that the dividing position 8 is positioned between the first collecting electrodes 4a. Such design becomes easy.
  • the number of the first current collecting electrodes 4a is an even number. This is to obtain a divided solar cell element having a uniform size obtained by cutting the first current collecting electrode symmetrically. For example, even when the number of the first current collecting electrodes 4a calculated from the optimum value of the distance between the first current collecting electrodes 4a is an odd number, the first current collector having a short average distance between the adjacent first current collecting electrodes 4a. By combining the current electrode group 41 and the second current collection electrode group 42 having a long average distance between the adjacent first current collection electrodes 4a, the number of the first current collection electrodes 4a can be made even.
  • the parent substrate 10 of the solar cell element can prevent the first current collecting electrode 4a from being located at the division position 8.
  • the parent substrate 10 of the solar cell element can prevent the first current collecting electrode 4a from being located at the division position 8.
  • the average distance between the adjacent first current collecting electrodes 4a of the first current collecting electrode group 41 and the second current collecting electrode group 42 is optimal within a range of 0.2 mm or less based on the optimum value. It should be shorter or longer than the value. Moreover, it is preferable that the difference of the space
  • the first region in the first main surface 11 of the semiconductor substrate 9 and the second region having a lower sheet resistance than the first region, the first region has a first region. It is preferable to arrange the current collecting electrode group 41 and the second current collecting electrode group 42 in the second region. Thereby, carrier collection is performed well in each of the first region and the second region.
  • the difference in sheet resistance between the first region and the second region is set to a small difference of 5 ⁇ / ⁇ or more and 20 ⁇ / ⁇ or less, so that the first current collecting electrode group 41 in the first region and the second region are different.
  • the difference in the distance from the second collecting electrode group 42 can also be reduced, and the difference between the first collecting electrode group 41 and the second collecting electrode group 42 can be set small, so that the appearance is impaired. There is nothing.
  • the difference in sheet resistance between the first region and the second region of the second semiconductor layer 2 is realized by making the thickness of the first region of the reverse semiconductor layer 2 thinner than the thickness of the second region. Is preferred.
  • the difference in thickness between the first region and the second region may be 0.1 ⁇ m or more and 1 ⁇ m or less at a position where the impurity concentration is 1 ⁇ 10 18 [atoms / cm 3 ].
  • the difference in sheet resistance between the first region and the second region of the second semiconductor layer 2 is that the maximum impurity concentration in the first region of the second semiconductor layer 2 is lower than the maximum impurity concentration in the second region.
  • the difference in maximum impurity concentration between the first region and the second region may be 1 ⁇ 10 20 [atoms / cm 3 ] or more and 8 ⁇ 10 20 [atoms / cm 3 ] or less.
  • the distance between the adjacent first current collecting electrodes 4a located in the central portion R1 is shorter than the distance between the adjacent first current collecting electrodes 4a located on both ends R2 and R3 side.
  • the sheet resistance at the central portion R1 of the second semiconductor layer 2 is made higher than the sheet resistance of the second semiconductor layer 2 on both end portions R2 and R3 side, thereby improving the power generation efficiency of the solar cell element. It can be improved by about 0.1%.
  • the value of the sheet resistance can be measured by a four-point probe method.
  • Four metal needles arranged in a straight line are brought into contact with the surface of the semiconductor substrate 9 while being pressed, and the two outer needles are contacted.
  • the voltage generated between the two inner needles when a current is passed through is measured, and the resistance value is obtained from this voltage and the passed current by Ohm's law.
  • the second semiconductor layer 2 has a first region having a high sheet resistance and a second region having a low sheet resistance of the second semiconductor layer 2, and the first region has a first region.
  • a current collecting electrode group 41 may be provided, and a second current collecting electrode group 42 may be provided in the second region. That is, the second semiconductor layer 2 is provided such that the sheet resistance at the central portion R1 is higher than that at the ends R2 and R3.
  • the second semiconductor layer 2 is formed so that the sheet resistance does not vary in the entire semiconductor substrate 9, but in this embodiment, a first region and a second region having different sheet resistances are provided.
  • the position where the first current collecting electrode group 41 and the second current collecting electrode group 42 are provided is determined according to the sheet resistance of the second semiconductor layer 2.
  • the dopant is diffused again only in the region desired to be the second region, or the second semiconductor layer 2 in the region to be the first region is etched. can do.
  • the first region may be provided at either of the end portions R2, R3 or the central portion R1.
  • diffusing a dopant again it is preferable to carry out by providing a diffusion prevention layer in the area
  • the first region is formed where the coating thickness is thin, and the second region is formed where the coating thickness is thick.
  • the uniformity of gas in the furnace is impaired by reducing the gas flux into the furnace. For this reason, since the influence of diffusion due to heat becomes large, a large amount of heat is applied to the outer peripheral portion as compared with the central portion of the semiconductor substrate, a first region is formed in the central portion R1 of the semiconductor substrate 9, and both end portions R2, R3 The second region is easily formed.
  • the first output extraction electrode 4b is arranged on the first main surface 11 so as to be substantially orthogonal to the first current collecting electrode 4a. Thereby, the carriers collected by the first collector electrode 4a can be efficiently extracted from the first output extraction electrode 4b.
  • the configuration of this embodiment can be applied to a through-hole type back contact structure described below. It is.
  • a solar cell element 20 having a through-hole type back contact structure shown in FIGS. 7 and 8 includes a semiconductor substrate 9 including a first main surface 11 and a second main surface 12, and a plurality of through-holes 7 penetrating the semiconductor substrate 9. And a first electrode 4.
  • the first electrode 4 includes a first current collecting electrode 4a formed on the first main surface 11, an output extraction electrode 4b formed on the second main surface 12, a first output extraction electrode 4b, A through-hole electrode 4e electrically connected to the current collecting electrode 4a and formed in the through-hole 7.
  • the first electrode 4 is formed on the second main surface 12 and further includes the first output extraction electrode 4b connected to the through-hole electrode 4e, the current collected on the first main surface 11 side. Can be efficiently taken out from the second main surface 12 side.
  • the first current collecting electrode 4a of the first main surface 11 composed of a plurality of fine lines provided substantially in parallel on the first main surface 11 is such that each thin line is at least one of the through-hole electrodes 4e. Connected.
  • the carriers generated in the semiconductor substrate 9 can be efficiently collected and taken out from the first output extraction electrode 4b on the second main surface 12 side on the back surface through the through-hole electrode 4e.
  • the method for dividing the solar cell element in the present embodiment uses the solar cell element 20 described above, and cuts based on the center line of the first current collecting electrode group disposed in the central portion R1 shown in FIG. By cutting also in the second collector electrode group disposed at both end portions R2 and R3, it is possible to obtain equally divided solar cell elements without the first collector electrode 4a overlapping the dividing line 8.
  • the optimum distance between the adjacent first current collecting electrodes 4a is set from the relationship between the sheet resistance of the second semiconductor layer 2 and the line resistance of the first current collecting electrode 4a. In the element dividing method, it is not necessary to take these into consideration, and the deterioration of the output characteristics of the solar cell element due to the change in electrode shape can be reduced.
  • the manufacture of the semiconductor substrate to be the first semiconductor layer 1 will be described.
  • the semiconductor substrate is a single crystal silicon substrate, it is formed by, for example, a pulling method, and when the semiconductor substrate is a polycrystalline silicon substrate, it is formed by, for example, a casting method.
  • a pulling method when the semiconductor substrate is a single crystal silicon substrate, it is formed by, for example, a pulling method.
  • the semiconductor substrate is a polycrystalline silicon substrate, it is formed by, for example, a casting method.
  • an example using p-type polycrystalline silicon will be described.
  • a polycrystalline silicon ingot is produced by, for example, a casting method.
  • the ingot is sliced to a thickness of 250 ⁇ m or less, for example.
  • the surface is etched by a very small amount with NaOH, KOH, hydrofluoric acid, or hydrofluoric acid. Note that it is more desirable to form a minute uneven structure on the surface of the semiconductor substrate using a wet etching method after this etching step.
  • the through hole 7 is formed between the first main surface 11 and the second main surface 12 of the semiconductor substrate.
  • the through-hole 7 is formed using a mechanical drill, a water jet, a laser processing apparatus, or the like.
  • the through hole 7 is formed by processing from the second main surface 12 side of the semiconductor substrate toward the first main surface 11 side in order to avoid damage to the first main surface 11. However, if there is little damage to the semiconductor substrate due to the processing, the processing may be performed from the first main surface 11 side to the second main surface 12 side. Further, it is preferable to perform etching after the through-hole 7 is formed in order to remove the damaged layer.
  • an n-type second semiconductor layer 2 having a reverse conductivity type is formed in a surface layer of a desired region of the semiconductor substrate.
  • a second semiconductor layer 2 is a diffusion source of a coating thermal diffusion method in which P 2 O 5 in a paste state is applied to the surface of a semiconductor substrate and thermally diffused, or POCl 3 (phosphorus oxychloride) in a gas state is a diffusion source.
  • the gas phase thermal diffusion method is used.
  • the second semiconductor layer 2 is formed to a depth of about 0.2 to 2 ⁇ m and a sheet resistance of about 60 to 150 ⁇ / ⁇ .
  • the second semiconductor layer 2 is also formed inside the through hole 7 and on the second main surface 12.
  • the method for forming the second semiconductor layer 2 is not limited to the above method.
  • a thin film forming technique is used to form a hydrogenated amorphous silicon film or a crystalline silicon film including a microcrystalline silicon film. May be.
  • an i-type silicon region may be formed between the first semiconductor layer 1 and the second semiconductor layer 2.
  • the dopant-containing paste used in the coating thermal diffusion method is a phosphorus salt such as phosphorus oxide or phosphoric acid.
  • a dopant composed of a boron salt such as boron oxide or boric acid, and a silicon compound such as ethyl silicate or polysilazane are mixed in a solvent such as ethyl alcohol, isopropyl alcohol, or butyl alcohol.
  • a resin such as methyl cellulose, ethyl cellulose, nitrocellulose, methyl methacrylate or polyethylene glycol is mixed.
  • a paste is applied on the semiconductor substrate using a spin coater method, a spray method, a screen printing method, or the like.
  • the viscosity of the paste may be adjusted as appropriate according to the coating method used. For example, when the screen printing method is used, a paste having a viscosity of about 50 to 350 Pa ⁇ s is used. After application, the paste may be dried at a temperature of 70 to 150 ° C. for several minutes.
  • the paste is vitrified to form a glass layer containing the dopant by heat treatment in an inert gas atmosphere such as argon or nitrogen or in an oxidizing atmosphere containing oxygen, and the dopant in the glass layer is a semiconductor substrate. Diffused into the surface and inside of the.
  • the heat treatment is performed at a temperature of 300 to 600 ° C. for about 5 to 20 minutes, and then heated at a temperature of 600 to 900 ° C. for about 10 to 40 minutes in order to diffuse the dopant in the glass layer into the substrate. That's fine.
  • the second semiconductor layer having a high sheet resistance is formed in a place where the coating thickness is thin, and the second semiconductor layer having a high sheet resistance is formed in a thick place.
  • a plurality of semiconductor substrates are installed in a process tube made of quartz including a gas introduction port and a gas exhaust port, and liquid POCl 3 is used as a carrier gas (for example, nitrogen gas, oxygen gas, etc.). Then, the diffusion gas vaporized by bubbling with POCl 3 is introduced into the process tube together with the inert gas.
  • the semiconductor substrate 1 is heat-treated at a temperature of about 600 ° C. to 900 ° C. for about 5 to 30 minutes by a heating means provided on the outer periphery of the process tube.
  • the glass layer containing a dopant is formed on the surface of the semiconductor substrate, and the dopant present in the glass layer is diffused near the surface of the semiconductor substrate.
  • the flow rate ratio between the diffusion gas and the inert gas may be set at, for example, 1: 2 to 1:20, more preferably 1: 4 to 1:15.
  • a heat treatment is performed for about 10 to 40 minutes at a temperature higher by 50 ° C. to 200 ° C. than the previous temperature in an inert gas atmosphere such as argon or nitrogen, so that the dopant present in the glass layer on the surface of the semiconductor substrate becomes a semiconductor substrate. While further diffusing near the surface, the dopant diffused near the surface of the semiconductor substrate diffuses inside the substrate, and the second semiconductor layer 2 is formed.
  • the antireflection film 3 is formed using, for example, a PECVD (plasma enhanced chemical vapor deposition) method, a vapor deposition method, a sputtering method, or the like.
  • a PECVD plasma enhanced chemical vapor deposition
  • the reaction chamber is set to about 500 ° C. and a mixed gas of Si 3 H 4 (silane) and NH 3 (ammonia) is N 2 ( The antireflection film 3 is formed by diluting with nitrogen) and plasmaizing and depositing by glow discharge decomposition.
  • the third semiconductor layer 6 in which a semiconductor impurity of one conductivity type is diffused at a high concentration is formed.
  • a manufacturing method for example, a method of forming at a temperature of about 800 to 1100 ° C. using a thermal diffusion method using BBr 3 (boron tribromide) as a diffusion source, or an aluminum paste made of aluminum powder and an organic vehicle by a printing method.
  • a method can be used in which aluminum is diffused into the semiconductor substrate 1 by applying and then heat-treating (baking) at a temperature of about 600 to 850 ° C. If a method of printing and baking aluminum paste is used, a desired diffusion region can be formed only on the printed surface.
  • the pn separation may be performed only on the peripheral portion on the surface 12 side using a laser or the like. In the back contact type solar cell element 20, the pn separation may be further performed on the interface with the third semiconductor layer 6.
  • the method for forming the third semiconductor layer 6 is not limited to the above method. For example, a thin film technology is used to form a hydrogenated amorphous silicon film or a crystalline silicon film including a microcrystalline silicon film. Also good. Furthermore, an i-type silicon region may be formed between the first semiconductor layer 1 and the third semiconductor layer 6.
  • the first electrode 4 and the second electrode 5 are formed as follows.
  • the first electrode 4 is manufactured using an electrode paste (silver paste) containing, for example, a metal powder made of silver or the like, an organic vehicle, and glass frit.
  • the electrode paste is applied to the first main surface of the semiconductor substrate 1. Thereafter, baking is performed at a maximum temperature of 600 to 850 ° C. for several tens of seconds to several tens of minutes, so that the antireflection film 3 is pierced by the fire-through method to form the first electrode 4 on the semiconductor substrate 9.
  • an electrode paste is applied from the first main surface 11 side of the semiconductor substrate 9 and the through holes 7 are filled with the silver paste, and then the maximum temperature is 600 to 850 ° C.
  • the first current collecting electrode 4a is formed on the first main surface 11 and the through-hole electrode 4e is formed inside the through-hole 7 by firing for several tens of seconds to several tens of minutes.
  • the electrode paste is applied from the second main surface 12 side of the semiconductor substrate 9 and then baked at a maximum temperature of 500 to 850 ° C. for about several tens of seconds to several tens of minutes, thereby forming the first main surface 12 on the first main surface 12.
  • An output extraction electrode 4b is formed.
  • the solvent is evaporated at a predetermined temperature and dried.
  • a screen printing method or the like can be used.
  • the electrode paste using the plate making having the portion, the distance between the adjacent first current collecting electrodes 4a located in the central portion R1 is adjacent to the both end portions R2 and R3.
  • the first current collecting electrode 4a having a shape different from the distance between the first current collecting electrodes 4a can be formed.
  • the 2nd current collection electrode 5a is produced using the aluminum paste which contains aluminum powder and an organic vehicle, for example.
  • This paste is applied to substantially the entire surface of the second main surface 12 except for a part of the portion where the first electrode 4 and the second output extraction electrode 5b are formed.
  • a screen printing method or the like can be used. After applying the paste in this way, it is preferable to evaporate the solvent at a predetermined temperature and dry it from the viewpoint that the paste is less likely to adhere to other parts during operation.
  • the second output extraction electrode 5b is produced using, for example, a metal powder made of silver powder or the like, and a silver paste containing an organic vehicle and glass frit. This silver paste is applied in a predetermined shape. The silver paste is applied at a position in contact with a part of the aluminum paste so that the second output extraction electrode 5b and the second current collecting electrode 5a overlap each other.
  • a coating method a screen printing method or the like can be used. After coating, the solvent is preferably evaporated and dried at a predetermined temperature.
  • the second electrode 5 is formed on the second main surface 12 side of the semiconductor substrate 9 by baking the semiconductor substrate 9 in a baking furnace at a maximum temperature of 600 to 850 ° C. for several tens of seconds to several tens of minutes.
  • the electrode formation of the 1st electrode 4 and the 2nd electrode 5 used the printing and baking method, it is also possible to form using thin film formation or plating methods, such as vapor deposition and a sputtering.
  • a division groove is formed by irradiating a laser along a desired dividing line 8 on the first main surface side or the second main surface side of the parent substrate of the solar cell element.
  • a laser to be used for example, a YAG laser can be used.
  • the wavelength is 1.06 ⁇ m
  • the output is 10 to 30 W
  • the beam divergence angle is 1 to 5 mrad
  • scanning may be performed at a speed of 50 to 300 mm / s.
  • the depth of the dividing groove is preferably 25% or more of the thickness of the semiconductor substrate 1 because the parent substrate of the solar cell element can be easily divided along the dividing groove 8.
  • a child substrate (divided solar cell element) of the solar cell element can be formed by applying an external force to the parent substrate of the solar cell element in which the dividing groove is formed. That is, for example, a child substrate can be created by bending the parent substrate by hand along the dividing grooves.
  • the sub-substrate of the solar cell element has a configuration that the parent substrate of the large-sized solar cell element has, for example, the first electrode 4 and the second electrode 5 and functions as the solar cell element in a divided state. However, you may perform the process of adding another structure with respect to the division
  • the optimal distance between adjacent first current collecting electrodes 4a is set based on the relationship between the sheet resistance of the second semiconductor layer and the line resistance of the first current collecting electrode.
  • the average distance between the adjacent first current collecting electrodes 4a of the second current collecting electrode group 42 is designed to a value close to this optimum value, there is a problem that the output characteristics of the solar cell element are deteriorated by changing the electrode shape. Can be reduced.
  • the solar cell module according to the present embodiment includes, for example, a plurality of electrical cells connected in series by one solar cell element or one divided solar cell element or conductor on a support substrate such as glass, resin, or metal.
  • the above solar cell element or the plurality of divided solar cell elements can be sealed with a filler such as EVA (Ethylene Vinyl Acetate) having excellent moisture resistance.
  • a frame body made of metal or resin may be provided around the support substrate.
  • the electronic device of the present embodiment is an electrical product that applies electronic technology, and includes a device that digitally processes information, a device that electrically analogizes video and audio, and the like. That is, for example, the solar cell module or the divided solar cell element can be used as a power source for a mobile phone, a watch, a calculator, or the like.
  • the solar cell element or split solar cell element of this embodiment is used as a power generation means of a solar cell module and an electronic device, an improvement in power generation efficiency can be expected, and a highly reliable solar cell module and electronic device are provided. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明の一形態に係る太陽電池素子は、一導電型の第1半導体層と逆導電型の第2半導体層とを有する半導体基板を備え、前記第2半導体層側の前記半導体基板の第1主面において、複数の線状の集電電極のそれぞれが、前記第1主面の中央部から両端部に向かって離間して配置された太陽電池素子であって、前記中央部に位置している隣り合う前記集電電極間の距離が、前記両端部側に位置している隣り合う前記集電電極間の距離と異なっていることを特徴とする。

Description

太陽電池素子、分割太陽電池素子、太陽電池モジュールおよび電子機器
 本発明は、太陽電池素子、それを分割して得た分割太陽電池素子、太陽電池素子または分割太陽電池素子を備えた、太陽電池モジュールおよび電子機器に関する。
 図10に示すように、一般に、太陽電池素子50の集電効率を高めるために、太陽電池素子50を構成する半導体基板51の上に、線状の集電電極52を等間隔に多数本配置している。
 太陽電池素子50を作製する際に、半導体基板51に不純物元素をドーピングする必要がある。この場合、製造条件によっては、例えば、半導体基板51の一主面における中央部R1に比べてその外側に大きな熱量が加わり、その箇所に不純物元素が多く含まれることがある。つまり、図10において、不純物元素が中央部R1よりもその外側にある両端部R2,R3により多く含まれることがある。
 このような場合、半導体基板51の表面の中央部R1においてはキャリアの収集(集電)が不十分となりやすく、太陽電池素子の発電効率の向上を期待することができない。
 半導体基板51の上に配置する集電電極52の本数を等間隔で増やしていくことで、太陽電池素子50の集電効率を高めることができる。ところが、隣り合う集電電極間の距離が短くなるので、太陽電池素子50を分割して得た複数の分割太陽電池素子を使用する場合(例えば、下記の特許文献1を参照)には、図10に示すように、集電電極52と分割位置53とが重なることがある。この場合、分割太陽電池素子の出力が低下する等、出力特性に悪影響を及ぼすことがある。
 そこで、発電効率の向上が期待できる太陽電池素子および出力特性の影響の少ない分割太陽電池素子が望まれており、ひいてはそのような太陽電池素子または分割太陽電池素子を備えた、太陽電池モジュールおよび電子機器が望まれている。
特開2000-164901号公報
 本発明の一形態に係る太陽電池素子は、一導電型の第1半導体層と逆導電型の第2半導体層とを有する半導体基板を備え、前記第2半導体層側の前記半導体基板の第1主面において、複数の線状の集電電極のそれぞれが、前記第1主面の中央部から両端部に向かって離間して配置された太陽電池素子であって、前記中央部に位置している隣り合う前記集電電極間の距離が、前記両端部側に位置している隣り合う前記集電電極間の距離と異なっていることを特徴とする。
 本発明の一形態に係る分割太陽電池素子は、上記太陽電池素子を前記集電電極の幾本かに沿って分割して得たことを特徴とする。
 本発明の一形態に係る太陽電池モジュールは、前記太陽電池素子または前記分割太陽電池素子を備えていることを特徴とする。
 本発明の一形態に係る電子機器は、前記太陽電池素子または前記分割太陽電池素子を備えていることを特徴とする。
 上述の太陽電池素子、それを備えた太陽電池モジュールおよび電子機器によれば、発電効率の向上が期待できる。また、出力特性の影響の少ない分割太陽電池素子を提供でき、そのような分割太陽電池素子を備えた太陽電池モジュールおよび電子機器は信頼性が高い。
本発明の一形態に係る太陽電池素子の受光面側の一例を模式的に示す平面図である。 本発明の一形態に係る太陽電池素子の裏面側の一例を模式的に示す平面図である。 図1のA-A線で切断した断面模式図である。 図1の部分拡大平面図であり、(a),(b)はそれぞれ第1集電電極の配置例を示した図である。 本発明の一形態に係る太陽電池素子の受光面側の一例を模式的に示す平面図である。 本発明の一形態に係る太陽電池素子の受光面側の一例を模式的に示す平面図である。 本発明の一形態に係る太陽電池素子の受光面側の一例を模式的に示す平面図である。 図7のB-B線で切断した断面模式図である。 (a),(b)はそれぞれ本発明の一形態に係る分割太陽電池素子の一例を模式的に示す平面図である。 従来の太陽電池素子を模式的に示す平面図である。
 本発明に係る実施の形態の例について、図面を参照しながら詳細に説明する。
 <太陽電池素子の基本構成>
 まず、太陽電池素子の基本構成について説明する。図1に示すように、太陽電池素子10は半導体基板9の受光面である第1主面11において、第1主面11の中央部R1から両端部R2,R3に向かって、例えば直線状の第1集電電極4aの複数のそれぞれが互いに離間して配置されている。図1において、4bは第1集電電極4aより幅が広い第1出力取出電極であり、第1集電電極4aに対して直交して配置されている。第1集電電極4aと第1出力取出電極4bとから第1主面11における第1電極4を構成している。
 図1に示すように、中央部R1に位置している隣り合う第1集電電極4a間の距離が、両端部R2,R3側に位置している隣り合う第1集電電極4a間の距離と異なっていればよい。ここで、中央部R1に位置している隣り合う第1集電電極4a間の距離が、両端部R2,R3側に位置している隣り合う第1集電電極4a間の距離との差異が0.07mm以上であれば、両者における第1集電電極4a間の距離が異なっていると定義する。
 一方、図2に示すように、半導体基板9の裏面である第2主面12において、略全面に形成された第2集電電極5aと、第1出力取出電極4bと同様な方向へ延びた第2出力取出電極5bとで構成される第2電極5が配置されている。
 なお、図1および図2において、8は太陽電池素子10から分割太陽電池素子を得るための分割線であり、例えばレーザ光等を用いて太陽電池素子10を分割するために示した分割線である。
 図3に示すように、半導体基板9は一導電型の第1半導体層1と逆導電型の第2半導体層2とを有する。半導体基板9の第1主面11側に第2半導体層2が位置している。また、半導体基板9の第1主面11上には、反射防止膜3が配置されている。また、半導体基板9の第2主面12側にはBSF領域(Back Surface Field)の第3半導体層6が設けられている。
 また、バックコンタクト型太陽電池素子においては、例えば、図7および図8に示すように、半導体基板9の第1主面11からその反対側に位置する第2主面12にかけて貫通して第1集電電極4aに接続された複数の貫通電極4eと、第2主面12に配置されて貫通電極4eに接続された第1出力取出電極4bとを備えている。
 さらに、本実施形態の分割太陽電池素子は、上述の太陽電池素子を第1集電電極4aの幾本かに沿って分割して得たことを特徴とする。例えば、図9(a)に示すように、図1の太陽電池素子10の中央部R1に位置する分割線8で分割して分割太陽電池素子15を得る。また、図9(b)に示すように、図7の太陽電池素子20の中央部R1に位置する分割線8で分割して分割太陽電池素子16を得る。
 <太陽電池素子および分割太陽電池素子の具体的構成例>
 以下、具体的な形態例について説明する。
 図1に示すように、中央部R1に位置している隣り合う第1集電電極4a間の距離が、両端部R2,R3に位置している隣り合う第1集電電極4a間の距離より短くなるように構成してもよい。例えば、図4(a)に示すように、隣り合う第1集電電極4a間の距離が半導体基板9の第1主面11における中央部R1から両端部R2,R3へ向かって漸次長くなるように配置されているとよい。これにより、第1集電電極4aにおける積み重なった公差のずれを原因とする第1集電電極4aと分割位置8との重なりを低減できるので、分割位置8を隣り合う第1集電電極4a間に位置させる設計が容易となる。
 また、第1電極4は、例えば、50~200μm幅の第1集電電極4aとこれに対して直交する1.3~2.5mm幅の第1出力取出電極4bとからなる。一方、第2電極5は、例えば、第2主面の全面に配置されている第2集電電極5aと、1.5~7mm幅の第2出力取出電極5aとを有する。
 隣り合う第1集電電極4a間の距離と第1集電電極4aの本数とを最適に組み合わせることにより、太陽電池素子10の分割位置8と第1集電電極4aが重ならないようにすることが可能になる。これにより、統一された太陽電池素子10(親基板)を1種類のみ作製することにより、複数種のサイズの分割太陽電池素子(子基板)を容易に作製することができる。
 なお外観上の点から、隣り合う第1集電電極4a間の距離は最適値を基準として0.2mm以内の範囲で最適値より短くまたは長くなるように設けられる。また、中央部R1に位置している隣り合う第1集電電極4a間の距離と両端部R2,R3に位置している隣り合う第1集電電極4a間の距離との差は0.3mm以内であることが好ましい。なお、最適値とは、隣り合う第1集電電極4aの距離が半導体基板1の一端部から他端部まで均等である場合に、太陽電池素子の発電効率が高くなるときの値である。
 第2半導体層2の不純物濃度分布、シート抵抗分布等に合わせて、隣り合う第1集電電極4a間の距離を適宜設定することも可能であり、図5に示す太陽電池素子30のように、半導体基板9の第1主面11の中央部R1において、隣り合う第1集電電極4a間の距離を長くして、両端部R2,R3において、隣り合う第1集電電極4a間の距離を短くしてもよい。
 また、図4(b)および図6に示すように、隣り合う第1集電電極4a間の平均距離が短い第1集電電極群41と、隣り合う第1集電電極4a間の平均距離が長い第2集電電極群42とを交互に、または適宜に配置するようにしてもよい。この構成を採用することによっても、徐々に積み重なった公差のずれを原因とする集電電極4aと切断位置8との重なりを低減できるので、分割位置8が第1集電電極4a間に位置させるような設計が容易となる。
 さらに、第1集電電極4aの本数を偶数にすることが好ましい。これは、第1集電電極を左右対称に切断したサイズの揃った分割太陽電池素子を得るためである。例えば、第1集電電極4a間の距離の最適値から計算された第1集電電極4aの本数が奇数である場合でも、隣り合う第1集電電極4a間の平均距離が短い第1集電電極群41と、隣り合う第1集電電極4a間の平均距離が長い第2集電電極群42とを組み合わせることによって、第1集電電極4aの本数を偶数にすることができる。
 また、第1集電電極4aの間隔と本数を最適に組み合わせることにより、太陽電池素子の親基板10は分割位置8に第1集電電極4aが位置しないようにすることが可能となるので、1つの統一された太陽電池素子の親基板10のみを作製することにより、複数種の大きさの太陽電池素子の子基板を容易に作製することができる。
 なお外観上の点からも、第1集電電極群41および第2集電電極群42の隣り合う第1集電電極4a間の平均距離は最適値を基準として0.2mm以内の範囲で最適値より短くまたは長くなるようにしている。また、第1集電電極群41と第2集電電極群42との間隔の差は0.3mm以内であることが好ましい。
 さらに、図4(b)において、半導体基板9の第1主面11におけるシート抵抗の高い第1領域と、この第1領域よりもシート抵抗の低い第2領域とにおいて、第1領域に第1集電電極群41を、第2領域に第2集電電極群42をそれぞれ配置することが好ましい。これにより、キャリアの収集を第1領域および第2領域のそれぞれにおいて良好に行われる。
 ここで、第1領域と第2領域とのシート抵抗値の差は5Ω/□以上20Ω/□以下の小さな差にすることで、第1領域の第1集電電極群41と第2領域の第2集電電極群42との間隔の差も小さくすることができ、第1集電電極群41と第2集電電極群42との差を小さく設定することができるので、外観が損なわれることもない。
 また、第2半導体層2の第1領域と第2領域とにおけるシート抵抗の相違は、逆半導体層2の第1領域の厚さを第2領域のその厚さよりも薄くすることによって実現することが好ましい。第1領域と第2領域の厚さの差は不純物濃度が1×1018[atoms/cm]の位置において0.1μm以上1μm以下とすればよい。
 また、第2半導体層2の第1領域と第2領域とにおけるシート抵抗の相違は、第2半導体層2の第1領域における最大不純物濃度が第2領域における最大不純物濃度よりも低くすることが好ましい。第1領域と第2領域との最大不純物濃度の差は1×1020[atoms/cm]以上8×1020[atoms/cm]以下とすればよい。
 このように、中央部R1に位置している隣り合う第1集電電極4a間の距離が、両端部R2,R3側に位置している隣り合う第1集電電極4a間の距離よりも短く形成した場合に、それに合わせて第2半導体層2の中央部R1におけるシート抵抗が両端部R2,R3側の第2半導体層2のシート抵抗よりも高くすることによって、太陽電池素子の発電効率を0.1%程度向上させることができる。
 ここでシート抵抗の値の測定は、四探針法により測定することができ、半導体基板9の表面に一直線上に並んだ4本の金属針を加圧しながら接触させ、外側の2本の針に電流を流したときに、内側の2本の針の間に発生した電圧を測定し、この電圧と流した電流からオームの法則によって抵抗値が求められる。
 また、本実施形態の太陽電池素子において、第2半導体層2のシート抵抗の高い第1領域と、第2半導体層2のシート抵抗の低い第2領域とを有し、第1領域に第1集電電極群41を設け、第2領域に第2集電電極群42を設けるとよい。つまり、第2半導体層2は中央部R1におけるシート抵抗が両端部R2,R3側よりも高く設けられる。
 半導体基板9の全体においてシート抵抗にバラツキがないように第2半導体層2を形成することが一般的であるが、本実施形態においては、シート抵抗が異なる第1領域と第2領域とを設け、第1集電電極群41と第2集電電極群42を設ける位置を第2半導体層2のシート抵抗に合わせて決めている。これにより、さらに太陽電池素子の出力特性が低下するのを低減でき、場合によっては出力特性を向上させることが可能となる。
 第2半導体層2の第1領域と第2領域の形成方法としては種々の方法を採用することができる。例えば、シート抵抗が均一な第2半導体層2を形成した後、第2領域としたい領域のみに再度ドーパントを拡散、または、第1領域となる領域の第2半導体層2をエッチングすることによって形成することができる。この場合、第1領域を両端部R2,R3また中央部R1のどちらに設けても構わない。なお、再度ドーパントを拡散する場合には、拡散させない領域に拡散防止層を設けて行われることが好ましく、エッチングする場合には、エッチングさせない領域にエッチング防止層を設けて行われることが好ましい。
 また、上記方法のように工程数を増やすことなく形成することも可能である。例えば、塗布熱拡散法においては、ドーパント含有のペーストの塗布厚みを異ならせることにより、塗布厚みの薄いところに第1領域が形成され、厚いところには第2領域が形成される。また、例えば、気相熱拡散法においては、炉内へのガス流束を小さくすることによって炉内のガスの均一性が損なわれる。このため、熱による拡散の影響が大きくなるので、半導体基板の中央部に比べて外周部に大きな熱量が加わり、半導体基板9の中央部R1に第1領域が形成され、両端部R2,R3に第2領域が形成され易い。
 さらに、本実施形態では第1主面11上に第1集電電極4aと略直交するように第1出力取出電極4bを配置している。これにより、第1集電電極4aで集められたキャリアを効率よく第1出力取出電極4bから取り出すことができる。
 さらに、図7および図8に示すように、半導体基板9の第1主面11から第2主面12にかけて貫通した複数の貫通孔7と、この貫通孔7内に第1集電電極4aに導通する貫通孔電極4eと、第2主面12上に貫通孔電極4eに接続する第1出力取出電極4bとを配置することが好ましい。上記においては、第1出力取出電極4bを第1主面11側に形成した形態例について説明をしたが、以下に説明するスルーホール型バックコンタクト構造でも本実施形態の構成を適用することが可能である。
 図7および図8に示すスルーホール型バックコンタクト構造の太陽電池素子20は、第1主面11と第2主面12とを含む半導体基板9と、半導体基板9を貫通する複数の貫通孔7と、第1電極4とを有する。
 ここで第1電極4には、第1主面11上に形成された第1集電電極4aと、第2主面12上に形成された出力取出電極4bと、第1出力取出電極4bおよび集電電極4aに電気的に接続され、貫通孔7内に形成された貫通孔電極4eとを含む。
 このように、第1電極4が第2主面12上に形成されており、貫通孔電極4eと接続する第1出力取出電極4bをさらに含むため、第1主面11側で集められた電流を第2主面12側から効率的に取り出すことができる。
 図7に示すように、第1主面11上に略平行に設けられた複数の細線からなる第1主面11の第1集電電極4aは、各細線が貫通孔電極4eの少なくとも1つと接続される。
 これにより、半導体基板9中で生成されたキャリアを効率よく集電することができ、貫通孔電極4eを通して、裏面の第2主面12側の第1出力取出電極4bから取り出すことができる。
 また、本実施形態における太陽電池素子の分割方法は、上記の太陽電池素子20を用いて、図7に示す中央部R1に配置された第1集電電極群の中心線に基づいて切断するとともに、両端部R2,R3に配置した第2集電電極群においても切断することにより、等分割された分割太陽電池素子を第1集電電極4aが分割線8に重なることなく得ることができる。
 つまり、通常、第2半導体層2のシート抵抗と第1集電電極4aの線抵抗の関係から最適な隣り合う第1集電電極4a間の距離が設定されるが、本実施形態における太陽電池素子の分割方法ではこれらを考慮する必要が無く、電極形状の変更による太陽電池素子の出力特性の低下を低減できる。
 <太陽電池素子の製造方法>
 以下に、本実施形態の太陽電池素子の製造方法について説明する。
 まず第1半導体層1となる半導体基板の製造について説明する。半導体基板が単結晶シリコン基板の場合は、例えば引き上げ法などによって形成され、半導体基板が多結晶シリコン基板の場合は、例えば鋳造法などによって形成される。以下、p型の多結晶シリコンを用いた例によって説明する。
 最初に、例えば鋳造法により多結晶シリコンのインゴットを作製する。次いで、そのインゴットを例えば、250μm以下の厚みにスライスする。その後、半導体基板の切断面の機械的ダメージ層や汚染層を清浄化するために、表面をNaOHやKOHあるいはフッ酸やフッ硝酸などでごく微量エッチングするのが望ましい。なお、このエッチング工程後に、ウエットエッチング方法を用いて、半導体基板の表面に微小な凹凸構造を形成するのが更に望ましい。
 ここで、図7および図8に示すバックコンタクト型太陽電池素子の場合においては、半導体基板の第1主面11と第2主面12との間に貫通孔7を形成する。
 貫通孔7は、機械的ドリル、ウォータージェットまたはレーザ加工装置等を用いて形成する。なお、貫通孔7の形成は、第1主面11の損傷を避けるべく、半導体基板の第2主面12の側から第1主面11の側に向けて加工を行うようにする。ただし、加工による半導体基板への損傷が少なければ、第1主面11の側から第2主面12の側に向けて加工を行うようにしてもよい。また、貫通孔7の形成後にはダメージ層を除去するためにエッチングすることが好ましい。
 次に、半導体基板の所望領域の表層内に逆導電型となるn型の第2半導体層2を形成する。このような第2半導体層2は、ペースト状態にしたPを半導体基板の表面に塗布して熱拡散させる塗布熱拡散法、またはガス状態にしたPOCl(オキシ塩化リン)を拡散源とした気相熱拡散法などによって形成される。この第2半導体層2は0.2~2μm程度の深さ、60~150Ω/□程度のシート抵抗に形成される。
 また、バックコンタクト型の太陽電池素子においては、第2半導体層2が貫通孔7の内部および第2主面12にも形成されることが好ましい。なお、第2半導体層2の形成方法は上記方法に限定されるものではなく、例えば薄膜形成技術を用いて、水素化アモルファスシリコン膜、または微結晶シリコン膜を含む結晶質シリコン膜などを形成してもよい。さらに、第1半導体層1と第2半導体層2との間にi型シリコン領域を形成してもよい。
 塗布熱拡散法において用いられるドーパント含有のペーストは、例えば、n型の場合は、酸化リンまたはリン酸等のリン系塩とする。p型の場合は、酸化ホウ素またはホウ酸等のホウ素塩からなるドーパント、並びに、ケイ酸エチルまたはポリシラザン等のケイ素化合物を、エチルアルコール、イソプロピルアルコールまたはブチルアルコール等の溶剤に混合したものとし、必要に応じて、メチルセルロース、エチルセルロース、ニトロセルロース、メチルメタクレートまたはポリエチレングリコールなどの樹脂を混合させる。
 塗布方法としては、例えば、スピンコーター法、スプレー法またはスクリーン印刷法等を用いて、半導体基板上にペーストが塗布される。また、ペーストの粘度は、用いられる塗布法にあわせて適宜調整すればよく、例えば、スクリーン印刷法を用いる場合、50~350Pa・s程度の粘度のペーストが用いられる。塗布後、70~150℃の温度で数分間、ペーストを乾燥させてもよい。
 そして、アルゴンや窒素等の不活性ガス雰囲気中または酸素等を含む酸化雰囲気中で熱処理することにより、ペーストがガラス化してドーパントを含むガラス層が形成されるとともに、ガラス層中のドーパントが半導体基板の表面および内部に拡散される。熱処理温度は、例えば、300~600℃の温度で5~20分程度加熱し、その後、ガラス層中のドーパントを基板中に拡散させるために600~900℃の温度で10~40分程度加熱すればよい。なお、ペーストの塗布厚みを異ならせることにより、塗布厚みの薄いところにシート抵抗の高い第2半導体層が形成され、厚いところにシート抵抗の高い第2半導体層が形成される。
 気相熱拡散法においては、ガス導入口とガス排気口とを含む石英からなるプロセスチューブ内に複数の半導体基板を設置し、液体のPOClをキャリアガス(例えば、窒素ガス、酸素ガス等)でバブリングしてPOClを気化させた拡散ガスを、不活性ガスとともにプロセスチューブ内に導入する。ドーパントを含む雰囲気中で、プロセスチューブの外周に設けられた加熱手段により、600℃~900℃程度の温度において半導体基板1を5~30分程度熱処理する。これにより、半導体基板の表面にドーパントを含むガラス層が形成され、ガラス層に存在するドーパントが半導体基板の表面近傍に拡散される。ここで、拡散ガスと不活性ガスとの流量比は、例えば1:2~1:20、より好ましくは1:4~1:15に設定して供給すればよい。その後、アルゴンや窒素等の不活性ガス雰囲気中で、先ほどの温度より50℃~200℃高い温度において熱処理を10~40分程度行うことにより、半導体基板表面のガラス層に存在するドーパントが半導体基板表面近傍にさらに拡散するとともに、半導体基板の表面近傍に拡散したドーパントが基板内部に拡散し、第2半導体層2が形成される。
 次に、反射防止膜3を形成する。反射防止膜3は、例えば、PECVD(plasma enhanced chemical vapor deposition)法、蒸着法またはスパッタ法などを用いて形成される。例えば、窒化シリコン膜からなる反射防止膜3をPECVD法で形成する場合であれば、反応室内を500℃程度としてSi(シラン)とNH(アンモニア)との混合ガスをN(窒素)で希釈し、グロー放電分解でプラズマ化させて堆積させることで反射防止膜3が形成される。
 次に、半導体基板1の第2主面12側に、一導電型の半導体不純物が高濃度に拡散された第3半導体層6を形成する。製法としては、例えば、BBr(三臭化ボロン)を拡散源とした熱拡散法を用いて温度800~1100℃程度で形成する方法、アルミニウム粉末および有機ビヒクル等からなるアルミニウムペーストを印刷法で塗布し、その後、温度600~850℃程度で熱処理(焼成)してアルミニウムを半導体基板1に拡散する方法を用いることができる。また、アルミニウムペーストを印刷して焼成する方法を用いれば、印刷面だけに所望の拡散領域を形成することができる。さらに、この場合に、第2半導体層2の形成時と同時に第2主面側にも形成されているn型の第2半導体層を除去する必要もなく、太陽電池素子10においては第2主面12側の周辺部のみレーザー等を用いてpn分離を行えばよく、バックコンタクト型の太陽電池素子20においては、さらに第3半導体層6との界面にpn分離を行えばよい。なお、第3半導体層6の形成方法は上記方法に限定されるものではなく、例えば薄膜技術を用いて、水素化アモルファスシリコン膜、または微結晶シリコン膜を含む結晶質シリコン膜などを形成してもよい。さらに、第1半導体層1と第3半導体層6との間にi型シリコン領域を形成してもよい。
 次に、第1電極4と第2電極5とを以下のようにして形成する。第1電極4は、例えば銀等からなる金属粉末と、有機ビヒクルとガラスフリットとを含有する電極ペースト(銀ペースト)を用いて作製される。
 図1~3の太陽電池素子10の場合には、電極ペーストを、半導体基板1の第1主面に塗布する。その後、最高温度600~850℃で数十秒~数十分程度焼成することにより、ファイヤースルー法によって反射防止膜3を突き破り半導体基板9上に第1電極4が形成される。
 バックコンタクト型の太陽電池素子10の場合には、電極ペーストを、半導体基板9の第1主面11側より塗布して貫通孔7にも銀ペーストが充填され、その後、最高温度600~850℃で数十秒~数十分程度焼成することにより、第1主面11に第1集電電極4aと、貫通孔7内部に貫通孔電極4eとが形成される。そして電極ペーストを、半導体基板9の第2主面12側より塗布して、その後、最高温度500~850℃で数十秒~数十分程度焼成することにより、第2主面12に第1出力取出電極4bが形成される。好ましくは塗布後、所定の温度で溶剤を蒸散させて乾燥させる。塗布法としては、スクリーン印刷法などを用いることができる。
 なお、中央部R1に位置している隣り合う第1集電電極4a間の距離が、両端部側R2,R3に位置している隣り合う第1集電電極4a間の距離と異なる形状の開口部を有する製版を用いて電極ペーストが塗布されることによって、中央部R1に位置している隣り合う第1集電電極4a間の距離が、両端部R2,R3側に位置している隣り合う第1集電電極4a間の距離と異なる形状の第1集電電極4aを形成することができる。
 次に、第2電極5について説明する。まず、第2集電電極5aは、例えばアルミニウム粉末と、有機ビヒクルとを含有するアルミニウムペーストを用いて作製される。このペーストを、第1電極4および第2出力取出電極5bを形成する部位の一部を除いて、第2主面12の略全面に塗布する。この塗布法としては、スクリーン印刷法などを用いることができる。このようにペーストを塗布した後、所定温度で溶剤を蒸散させて乾燥させる方が作業時にペーストがその他の部分に付着しにくいという観点から好ましい。
 次に、第2出力取出電極5bは、例えば銀粉末などからなる金属粉末と、有機ビヒクルとガラスフリットを含有する銀ペーストを用いて作製される。この銀ペーストを予め決められた形状に塗布する。なお、銀ペーストは、アルミニウムペーストの一部と接する位置に塗布されることで、第2出力取出電極5bと第2集電電極5aとの一部が重なる。塗布法としては、スクリーン印刷法などを用いることができ、塗布後、好ましくは所定の温度で溶剤を蒸散させて乾燥させる。
 そして、半導体基板9を焼成炉内にて最高温度が600~850℃で数十秒~数十分程度焼成することにより、第2電極5が半導体基板9の第2主面12側に形成される。
 なお、第1電極4および第2電極5の電極形成は印刷・焼成法を用いたが、蒸着、スパッタ等の薄膜形成またはめっき法を用いて形成することも可能である。
 次に、分割方法について説明する。太陽電池素子の親基板の第1主面側または第2主面側に所望の分割線8に沿ってレーザを照射し分割溝を形成する。使用するレーザとしては、例えば、YAGレーザを用いることができる。レーザ条件としては、波長が1.06μm、出力が10~30W、ビーム広がり角が1~5mradとし、50~300mm/sの速度で走査すればよい。分割溝の深さは、半導体基板1の厚さの25%以上とすれば、分割溝8に沿って容易に太陽電池素子の親基板を分割できるため好適である。
 分割溝を形成した太陽電池素子の親基板に外力を加え分割することにより、太陽電池素子の子基板(分割太陽電池素子)を形成できる。すなわち、例えば、分割溝に沿って親基板を手で折り曲げることで子基板を作成することができる。なお、太陽電池素子の子基板は、大型の太陽電池素子の親基板が有している構成、例えば、第1電極4および第2電極5を備え、分割した状態で太陽電池素子として機能することができるが、必要に応じて、分割後の分割太陽電池素子に対して他の構成を追加するような工程を施してもよい。
 一般的には、第2半導体層のシート抵抗と第1集電電極の線抵抗の関係から最適な隣り合う第1集電電極4a間の距離が設定されるが、第1集電電極群41および第2集電電極群42の隣り合う第1集電電極4a間の平均距離をこの最適値に近い値に設計することで、電極形状の変更によって太陽電池素子の出力特性が低下する問題を低減することができる。
 <太陽電池モジュールおよび電子機器>
 本実施形態の太陽電池モジュールは、例えば、ガラス、樹脂または金属等の支持基板上に、1つの上記太陽電池素子もしくは1つの上記分割太陽電池素子、または、導体により電気的に直列接続させた複数の上記太陽電池素子または複数の分割太陽電池素子を、耐湿性に優れた例えばEVA(Ethylene Vinyl Acetate)等の充填材にて封止した構成とすることが可能である。この場合、金属または樹脂等の枠体を支持基板の周囲に設けてもよい。
 また、本実施形態の電子機器は電子工学の技術を応用した電気製品であり、情報をデジタル処理する機器、映像・音声を電気的にアナログ処理する機器などが含まれる。すなわち、例えば、携帯電話、時計、または電卓等の電源として上記太陽電池モジュールまたは分割太陽電池素子を用いることができる。
 太陽電池モジュールおよび電子機器の発電手段として、本実施形態の太陽電池素子または分割太陽電池素子を採用すれば、発電効率の向上が期待でき、さらに信頼性に優れた太陽電池モジュールおよび電子機器を提供できる。
1  :第1半導体層
2  :第2半導体層
3  :反射防止膜
4  :第1電極
 4a:第1集電電極 
 4b:第1出力取出電極
 4e:貫通孔電極
5  :第2電極
 5a:第2集電電極
 5b:第2出力取出電極
6  :第3半導体層
7  :貫通孔
8  :分割線
9  :半導体基板
10 :太陽電池素子
11 :第1主面
12 :第2主面
15 :分割太陽電池素子
16 :分割太陽電池素子
20 :太陽電池素子
30 :太陽電池素子
40 :太陽電池素子
41 :第1集電電極群
42 :第2集電電極群
R1 :中央部
R2 :端部
R3 :端部

Claims (15)

  1.  一導電型の第1半導体層と逆導電型の第2半導体層とを有する半導体基板を備え、前記第2半導体層側の前記半導体基板の第1主面において、複数の線状の集電電極のそれぞれが、前記第1主面の中央部から両端部に向かって離間して配置された太陽電池素子であって、
    前記中央部に位置している隣り合う前記集電電極間の距離が、前記両端部側に位置している隣り合う前記集電電極間の距離と異なっていることを特徴とする太陽電池素子。
  2.  前記中央部に位置している隣り合う前記集電電極間の距離が、前記両端部側に位置している隣り合う前記集電電極間の距離よりも短いことを特徴とする請求項1に記載の太陽電池素子。
  3.  前記集電電極に交差する第1出力取出電極を配置したことを特徴とする請求項1に記載の太陽電池素子。
  4.  前記半導体基板の前記第1主面からその反対側に位置する第2主面にかけて貫通して前記集電電極に接続された複数の貫通電極と、前記第2主面に配置されて前記貫通電極に接続された第2出力取出電極とを備えたことを特徴とする請求項1に記載の太陽電池素子。
  5.  前記中央部における前記第2半導体層のシート抵抗が、前記両端部側における前記第2半導体層のシート抵抗よりも高いことを特徴とする請求項2に記載の太陽電池素子。
  6.  前記中央部における前記第2半導体層の厚さが、前記両端部側における前記第2半導体層の厚さよりも薄いことを特徴とする請求項2に記載の太陽電池素子。
  7.  前記中央部における前記第2半導体層の最大不純物濃度が、前記両端部側における前記第2半導体層の最大不純物濃度よりも低いことを特徴とする請求項2に記載の太陽電池素子。
  8.  隣り合う前記集電電極間の距離が前記中央部から前記両端部に向かって徐々に長くなるように、前記集電電極が配置されていることを特徴とする請求項2に記載の太陽電池素子。
  9.  前記中央部に位置している複数の前記集電電極からなる第1集電電極群と、前記両端部側に位置している複数の前記集電電極からなる第2集電電極群とを有し、
    前記第1集電電極群の隣り合う前記集電電極間の距離の平均値が、前記第2集電電極群の隣り合う前記集電電極間の距離の平均値よりも小さいことを特徴とする請求項2に記載の太陽電池素子。
  10.  前記第1集電電極群の前記集電電極の本数が偶数であることを特徴とする請求項9に記載の太陽電池素子。
  11.  請求項1に記載の太陽電池素子を前記集電電極の幾本かに沿って分割して得たことを特徴とする分割太陽電池素子。
  12.  請求項1に記載の太陽電池素子を備えていることを特徴とする太陽電池モジュール。
  13.  請求項11に記載の分割太陽電池素子を備えていることを特徴とする太陽電池モジュール。
  14.  請求項1に記載の太陽電池素子を備えていることを特徴とする電子機器。
  15.  請求項11に記載の分割太陽電池素子を備えていることを特徴とする電子機器。
PCT/JP2010/057451 2009-04-27 2010-04-27 太陽電池素子、分割太陽電池素子、太陽電池モジュールおよび電子機器 WO2010126038A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/266,455 US9324887B2 (en) 2009-04-27 2010-04-27 Solar cell element, segmented solar cell element, solar cell module, and electronic appliance
EP10769736.9A EP2426728B1 (en) 2009-04-27 2010-04-27 Solar cell element, solar cell module and electronic appliance with this solar cell element
KR1020117025342A KR101199822B1 (ko) 2009-04-27 2010-04-27 태양 전지 소자, 분할 태양 전지 소자, 태양 전지 모듈 및 전자기기
CN201080018185.9A CN102414830B (zh) 2009-04-27 2010-04-27 太阳能电池元件、分割太阳能电池元件、太阳能电池模块及电子设备
JP2011511411A JP5153939B2 (ja) 2009-04-27 2010-04-27 太陽電池素子、分割太陽電池素子、太陽電池モジュールおよび電子機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009107902 2009-04-27
JP2009-107902 2009-04-27

Publications (1)

Publication Number Publication Date
WO2010126038A1 true WO2010126038A1 (ja) 2010-11-04

Family

ID=43032182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057451 WO2010126038A1 (ja) 2009-04-27 2010-04-27 太陽電池素子、分割太陽電池素子、太陽電池モジュールおよび電子機器

Country Status (6)

Country Link
US (1) US9324887B2 (ja)
EP (1) EP2426728B1 (ja)
JP (1) JP5153939B2 (ja)
KR (1) KR101199822B1 (ja)
CN (1) CN102414830B (ja)
WO (1) WO2010126038A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102254995A (zh) * 2011-07-05 2011-11-23 浙江鸿禧光伏科技股份有限公司 一种降低单耗的正面电极设计方法
JP2012256738A (ja) * 2011-06-09 2012-12-27 Mitsubishi Electric Corp 光起電力装置の製造方法
JP2013175703A (ja) * 2012-02-23 2013-09-05 Lg Electronics Inc 太陽電池モジュール
JP2015005621A (ja) * 2013-06-20 2015-01-08 株式会社ノリタケカンパニーリミテド 太陽電池用基板およびその製造方法
JP2016111357A (ja) * 2014-12-09 2016-06-20 三菱電機株式会社 太陽電池、太陽電池モジュールおよび太陽電池の製造方法
KR101811077B1 (ko) 2010-12-02 2017-12-20 선파워 코포레이션 배면-접점 태양 전지의 접점을 형성하는 방법
CN115579407A (zh) * 2022-12-12 2023-01-06 浙江爱旭太阳能科技有限公司 电极结构、背接触太阳能电池片、电池组件和光伏系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039158A1 (ja) * 2011-09-13 2013-03-21 京セラ株式会社 太陽電池モジュール
TW201349520A (zh) * 2012-05-22 2013-12-01 Neo Solar Power Corp 太陽能電池及其模組
DE102012107026A1 (de) * 2012-08-01 2014-02-06 Solarworld Innovations Gmbh Solarzelle und Verfahren zum Herstellen einer Solarzelle
CN103117315A (zh) * 2013-03-05 2013-05-22 天津英利新能源有限公司 太阳能电池片组、光伏组件及制造太阳能电池片的方法
CN104037246A (zh) * 2013-03-08 2014-09-10 北京北方微电子基地设备工艺研究中心有限责任公司 太阳能电池
CN103236449A (zh) * 2013-04-24 2013-08-07 无锡帝科电子材料科技有限公司 用于高方阻晶硅太阳能电池的正电极网版
DE102013218738A1 (de) * 2013-09-18 2015-04-02 Solarworld Industries Sachsen Gmbh Solarzelle mit Kontaktstruktur und Verfahren zu seiner Herstellung
CN103606575B (zh) * 2013-11-21 2016-03-23 英利集团有限公司 太阳能电池
JP6254748B1 (ja) * 2016-11-14 2017-12-27 信越化学工業株式会社 高光電変換効率太陽電池の製造方法及び高光電変換効率太陽電池
KR20190119268A (ko) 2018-04-12 2019-10-22 현대에너지솔루션(주) 분할셀을 이용한 태양전지 모듈
KR20200029251A (ko) 2018-09-10 2020-03-18 현대에너지솔루션(주) 분할셀을 이용한 태양전지 모듈
KR20200041052A (ko) 2018-10-11 2020-04-21 현대에너지솔루션(주) 태양광 모듈
CN114122167A (zh) * 2021-12-14 2022-03-01 苏州腾晖光伏技术有限公司 一种mwt电池正极结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205137A (ja) * 2007-02-19 2008-09-04 Sanyo Electric Co Ltd 太陽電池及び太陽電池モジュール
JP2009076739A (ja) * 2007-09-21 2009-04-09 Kyocera Corp 太陽電池モジュールおよびその製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966499A (en) * 1972-10-11 1976-06-29 The United States Of America As Represented By The Administrator, National Aeronautics And Space Administration Solar cell grid patterns
US4228315A (en) * 1979-05-04 1980-10-14 Rca Corporation Solar cell grid patterns
US6175075B1 (en) * 1998-04-21 2001-01-16 Canon Kabushiki Kaisha Solar cell module excelling in reliability
NL1010635C2 (nl) 1998-11-23 2000-05-24 Stichting Energie Werkwijze voor het vervaardigen van een metallisatiepatroon op een fotovoltaïsche cel.
JP2000164901A (ja) 1998-11-27 2000-06-16 Kyocera Corp 太陽電池
JP4121928B2 (ja) * 2003-10-08 2008-07-23 シャープ株式会社 太陽電池の製造方法
EP1687852A2 (en) * 2003-11-27 2006-08-09 Kyocera Corporation Solar cell module
EP1560272B1 (en) * 2004-01-29 2016-04-27 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
US20050172996A1 (en) * 2004-02-05 2005-08-11 Advent Solar, Inc. Contact fabrication of emitter wrap-through back contact silicon solar cells
US20070295381A1 (en) * 2004-03-29 2007-12-27 Kyocera Corporation Solar Cell Module and Photovoltaic Power Generator Using This
JP4429306B2 (ja) * 2006-12-25 2010-03-10 三洋電機株式会社 太陽電池セル及び太陽電池モジュール
JP2008282926A (ja) * 2007-05-09 2008-11-20 Sanyo Electric Co Ltd 太陽電池モジュール
JP2008294080A (ja) * 2007-05-22 2008-12-04 Sanyo Electric Co Ltd 太陽電池セル及び太陽電池セルの製造方法
TW200849614A (en) * 2007-06-11 2008-12-16 Mosel Vitelic Inc The illuminated power source and the manufacturing method thereof
JP5288790B2 (ja) 2007-08-02 2013-09-11 三洋電機株式会社 太陽電池モジュール及びその製造方法
JP5458485B2 (ja) * 2007-09-25 2014-04-02 三洋電機株式会社 太陽電池セルの製造方法及び太陽電池モジュールの製造方法
JP2009088203A (ja) 2007-09-28 2009-04-23 Sanyo Electric Co Ltd 太陽電池、太陽電池モジュール及び太陽電池の製造方法
JP2009135338A (ja) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd 太陽電池及び太陽電池の製造方法
KR100974221B1 (ko) * 2008-04-17 2010-08-06 엘지전자 주식회사 레이저 어닐링을 이용한 태양전지의 선택적 에미터형성방법 및 이를 이용한 태양전지의 제조방법
KR101146734B1 (ko) * 2009-10-26 2012-05-17 엘지전자 주식회사 태양 전지 셀 및 이를 구비한 태양 전지 모듈

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205137A (ja) * 2007-02-19 2008-09-04 Sanyo Electric Co Ltd 太陽電池及び太陽電池モジュール
JP2009076739A (ja) * 2007-09-21 2009-04-09 Kyocera Corp 太陽電池モジュールおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2426728A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101811077B1 (ko) 2010-12-02 2017-12-20 선파워 코포레이션 배면-접점 태양 전지의 접점을 형성하는 방법
JP2012256738A (ja) * 2011-06-09 2012-12-27 Mitsubishi Electric Corp 光起電力装置の製造方法
CN102254995A (zh) * 2011-07-05 2011-11-23 浙江鸿禧光伏科技股份有限公司 一种降低单耗的正面电极设计方法
JP2013175703A (ja) * 2012-02-23 2013-09-05 Lg Electronics Inc 太陽電池モジュール
JP2015053515A (ja) * 2012-02-23 2015-03-19 エルジー エレクトロニクス インコーポレイティド 太陽電池モジュール
US9040813B2 (en) 2012-02-23 2015-05-26 Lg Electronics Inc. Solar cell module
US9496440B2 (en) 2012-02-23 2016-11-15 Lg Electronics Inc. Solar cell module
JP2015005621A (ja) * 2013-06-20 2015-01-08 株式会社ノリタケカンパニーリミテド 太陽電池用基板およびその製造方法
JP2016111357A (ja) * 2014-12-09 2016-06-20 三菱電機株式会社 太陽電池、太陽電池モジュールおよび太陽電池の製造方法
CN115579407A (zh) * 2022-12-12 2023-01-06 浙江爱旭太阳能科技有限公司 电极结构、背接触太阳能电池片、电池组件和光伏系统
CN115579407B (zh) * 2022-12-12 2023-03-14 浙江爱旭太阳能科技有限公司 电极结构、背接触太阳能电池片、电池组件和光伏系统

Also Published As

Publication number Publication date
US20120048369A1 (en) 2012-03-01
KR20120002601A (ko) 2012-01-06
EP2426728B1 (en) 2017-01-04
EP2426728A4 (en) 2013-09-11
CN102414830A (zh) 2012-04-11
KR101199822B1 (ko) 2012-11-09
JPWO2010126038A1 (ja) 2012-11-01
US9324887B2 (en) 2016-04-26
JP5153939B2 (ja) 2013-02-27
EP2426728A1 (en) 2012-03-07
CN102414830B (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5153939B2 (ja) 太陽電池素子、分割太陽電池素子、太陽電池モジュールおよび電子機器
JP6482692B2 (ja) 太陽電池素子
KR101719949B1 (ko) 태양전지 셀 및 그 제조 방법, 태양전지 모듈
JP2008034609A (ja) 太陽電池素子及びこれを用いた太陽電池モジュール、並びに、これらの製造方法
WO2010001473A1 (ja) 光起電力装置およびその製造方法
JP2011155041A (ja) 太陽電池素子および太陽電池モジュール
JP2017033970A (ja) 太陽電池素子およびその製造方法
JP2016051767A (ja) 太陽電池素子の製造方法
JP6555984B2 (ja) 太陽電池素子およびその製造方法
JP2016139762A (ja) 太陽電池素子の製造方法
JP5744202B2 (ja) アルミナ膜の形成方法
CN109041583B (zh) 太阳能电池元件以及太阳能电池模块
KR101065384B1 (ko) 태양전지 및 그 제조방법
JP5645734B2 (ja) 太陽電池素子
JP6224513B2 (ja) 太陽電池素子の製造方法
KR100995654B1 (ko) 태양전지 및 그 제조방법
JP6571409B2 (ja) 太陽電池素子およびその製造方法
JP6336139B2 (ja) 太陽電池素子およびその製造方法
WO2009150741A1 (ja) 光起電力装置の製造方法
JP2015106586A (ja) 太陽電池素子の製造方法および太陽電池モジュール
JP2015029014A (ja) 太陽電池素子および太陽電池モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080018185.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769736

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011511411

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117025342

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13266455

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010769736

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010769736

Country of ref document: EP