WO2010125753A1 - 回路基板の製造方法 - Google Patents

回路基板の製造方法 Download PDF

Info

Publication number
WO2010125753A1
WO2010125753A1 PCT/JP2010/002648 JP2010002648W WO2010125753A1 WO 2010125753 A1 WO2010125753 A1 WO 2010125753A1 JP 2010002648 W JP2010002648 W JP 2010002648W WO 2010125753 A1 WO2010125753 A1 WO 2010125753A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
solder
solder particles
adhesive layer
activator
Prior art date
Application number
PCT/JP2010/002648
Other languages
English (en)
French (fr)
Inventor
荘司孝志
堺丈和
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US13/266,379 priority Critical patent/US8661659B2/en
Priority to KR1020117024754A priority patent/KR101193264B1/ko
Publication of WO2010125753A1 publication Critical patent/WO2010125753A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3478Applying solder preforms; Transferring prefabricated solder patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/041Solder preforms in the shape of solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/043Reflowing of solder coated conductors, not during connection of components, e.g. reflowing solder paste
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/122Organic non-polymeric compounds, e.g. oil, wax, thiol
    • H05K2203/124Heterocyclic organic compounds, e.g. azole, furan
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3489Composition of fluxes; Methods of application thereof; Other methods of activating the contact surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49126Assembling bases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49156Manufacturing circuit on or in base with selective destruction of conductive paths

Definitions

  • the present invention relates to a circuit board manufacturing method.
  • This application claims priority based on Japanese Patent Application No. 2009-1111591 filed in Japan on April 30, 2009, the contents of which are incorporated herein by reference.
  • a circuit pattern is formed on a plastic substrate, a ceramic substrate, or an insulating substrate coated with plastic, and an electronic component such as an IC element, a semiconductor chip, a resistor or a capacitor is soldered on the circuit pattern.
  • the means for constructing electronic circuits are widely adopted.
  • solder thin layer is formed in advance on the surface of the conductive circuit electrode on the substrate, and solder paste or Generally, after flux is printed and a predetermined electronic component is positioned and mounted, the solder thin layer or the solder thin layer and the solder paste are reflowed to melt and solidify the solder, thereby performing solder joining.
  • fine pitches are required for circuit boards.
  • fine pitch components such as QFP (Quad Flat Package) with 0.3 mm pitch, CSP (Chip Size Package), 0.15 mm pitch.
  • FC Flip Chip
  • LSI chips with BGA structure and the like are mounted on a circuit board.
  • solder bumps formed on the chip or the like and solder bumps formed on the circuit board are overlapped, and both bumps are melt-bonded by reflowing the solder bumps. ing.
  • solder bumps on a circuit board there are an electroplating method, an electroless plating method, a method of printing a solder particle paste, and reflowing.
  • an electroplating method As means for forming solder bumps on a circuit board, there are an electroplating method, an electroless plating method, a method of printing a solder particle paste, and reflowing.
  • an adhesive layer is formed by reacting a tackifier compound on the surface of the terminal portion of the circuit board, and solder particles are adhered to the adhesive layer, and then the circuit board.
  • solder particles are adhered to the adhesive layer, and then the circuit board.
  • a solder bump is formed by melting solder particles (see Patent Document 1).
  • solder particles are not firmly attached to the terminal portion during the fixing step, the reflow step for melting the solder particles to form a circuit pattern As a result, solder particles fall off and a normal solder circuit cannot be formed, resulting in a decrease in product yield. This is a problem that is more likely to occur as larger solder particles are used.
  • the fixing temperature is set higher than the melting point for the purpose of accelerating the fixing of solder particles to the terminal portion of the circuit board, needle-like crystals are formed on the surface of the solder particles, causing disconnection, and causing defects in the circuit board. There is also a problem of causing it to occur. In particular, this is a significant problem when using large solder particles that form solder bumps by attaching the solder particles one by one to the terminal portion.
  • the present invention has been made in view of the above circumstances, and provides a circuit board manufacturing method capable of preventing the drop-off and the generation of needle-like crystals when forming solder bumps and enabling the stable provision of a normal circuit board.
  • the purpose is to do.
  • the present inventors have found that the oxide film on the surface of the solder particles hinders the fixing of the solder particles to the terminal portion of the circuit board and causes the solder bumps to fall off in the reflow process. Clarified that Therefore, it was discovered that the removal of the oxide film on the surface of the solder particles before the reflow step can prevent the solder bump from falling off in the reflow step, and the present invention has been achieved.
  • the present invention [1] A step of applying a tackifier compound to the surface of a terminal on a circuit board to form an adhesive layer, a step of attaching solder particles on the adhesive layer, and a halogen of an organic acid base on the solder particles A step of fixing the solder particles by heating the circuit board to which the solder particles are adhered after applying an activator containing a hydride salt below the melting point of the solder; and a circuit in which the solder particles are fixed A method for manufacturing a circuit board, comprising: applying a flux to the board; and heating the circuit board to melt the solder particles. [2] The method for manufacturing a circuit board according to [1], wherein the activator is a hydrobromide of an organic acid base.
  • the activator is applied to the solder particles before the solder particles are fixed. Therefore, the surface of the solder particles is not deteriorated without degrading the adhesive layer as in the case of applying the flux before fixing.
  • the oxide film can be removed. Thereby, there is no fear that the solder particles fall off from the terminal portion before fixing, and defects of the solder bumps in the reflow process can be prevented.
  • the oxide film on the surface of the solder particles is removed by the activator, the solder particles can be reliably fixed even below the melting point of the solder. Thereby, abnormal growth of the needle-like crystal can be prevented, and there is no possibility that the mounting of the electronic component is hindered.
  • it is possible to stably manufacture a circuit board without reducing the product yield. As a result, an electronic device having a high degree of integration and high reliability can be provided.
  • FIG. 1 is a process diagram for explaining a method of manufacturing a circuit board according to this embodiment
  • FIG. 2 is a schematic diagram for explaining a process of attaching solder particles.
  • the method of manufacturing a circuit board includes a step of applying a tackifying compound to the surface of a terminal on a circuit board to form an adhesive layer, a step of attaching solder particles on the adhesive layer, and a solder particle
  • the step of applying an activator containing an organic acid-base hydrohalide to the circuit board to which the solder is attached and the circuit board to which the solder particles are attached are heated below the melting point of the solder to fix the solder particles. It consists of a process, the process of apply
  • coating a flux to the circuit board to which the solder particle was fixed and the process of heating the circuit board to which the flux was applied and melting the solder.
  • the circuit board 1 that is the subject of the present invention is a plastic substrate, a plastic film substrate, a glass cloth substrate, a paper substrate epoxy resin substrate, a substrate in which a metal plate is laminated on a ceramic substrate, or a metal base material coated with plastic or ceramics.
  • it can be applied to IC substrates, capacitors, resistors, coils, varistors, bare chips, wafers, and the like.
  • FIG. 1A shows a cross-sectional view of a circuit board 1 used in this embodiment.
  • a circuit pattern made of, for example, copper or a copper alloy is formed on the upper surface 1a of the circuit board 1 shown in FIG. 1 (a).
  • FIG. 1 (a) shows a terminal portion 2 of the circuit pattern. Yes.
  • the process of forming the adhesive layer 5 on the surface 4 of the terminal portion 2 will be described.
  • the opening 6 shown in FIG. 1B is formed by surrounding the periphery of the terminal portion 2 with a resist (insulating layer) in advance.
  • a resist layer 3 is formed on the entire upper surface 1 a on the circuit board 1, and exposed and developed to provide an opening 6 that exposes the terminal portion 2 in the resist layer 3.
  • the size of the opening 6 of the resist layer 3 is appropriately set according to the diameter D of the solder particles 11 to be attached in a later step.
  • the depth H of the opening 6 of the resist layer 3 (the step between the surface 4 of the terminal portion 2 and the upper surface of the resist layer 3) is appropriately set according to the diameter D of the solder particles 11 to be attached.
  • the step H is preferably within a range that is at least one-half the diameter D of the solder particles 11 and smaller than the diameter D.
  • the opening 6 is preferably circular, but may be oval or square instead.
  • the resist layer 3 an insulating resist generally used for manufacturing a circuit board is used.
  • the resist layer 3 only needs to have a property that does not exhibit adhesiveness in the step of applying the adhesive layer 5 to the surface 4 of the terminal portion 2 on the circuit board 1 described later.
  • the present invention is not limited to this, and adhesiveness is obtained on the surface 4 of the terminal portion 2 by the tackifier material described later.
  • Any conductive material may be used. Examples of these materials include materials containing Ni, Sn, Ni—Au, flash gold, Pd, Ag solder alloy, and the like.
  • an adhesive layer 5 is formed on the surface 4 of the terminal portion 2 as shown in FIG.
  • the pressure-sensitive adhesive layer 5 at least one or two or more of the tackifying compounds shown below are dissolved in water or acidic water, and preferably adjusted to be slightly acidic with a pH of about 3 to 4. Use solution.
  • the adhesive layer 5 is formed on the surface 4 of the terminal portion 2 as shown in FIG. 1C by immersing the circuit board 1 in the adhesive solution or applying the adhesive solution to the circuit board 1. .
  • tackifier compound examples include naphthotriazole derivatives, benzotriazole derivatives, imidazole derivatives, benzoimidazole derivatives, mercaptobenzothioazole derivatives, and benzothiazole thio fatty acids. These tackifying compounds have a particularly strong effect on copper, but can also provide tackiness to other conductive substances.
  • the benzotriazole derivative suitably used in the present invention is represented by the general formula (1).
  • R1 to R4 are independently a hydrogen atom, an alkyl group having 1 to 16 carbon atoms (preferably 5 to 16), an alkoxy group, F, Br, Cl, I, a cyano group, amino Group or OH group.
  • the naphthotriazole derivative suitably used in the present invention is represented by the general formula (2).
  • R5 to R10 are independently hydrogen atoms, alkyl groups having 1 to 16 carbon atoms (preferably 5 to 16), alkoxy groups, F, Br, Cl, I, cyano groups, amino groups Group or OH group.
  • imidazole derivative suitably used in the present invention is represented by the general formula (3).
  • R11 and R12 are independently hydrogen atoms, alkyl groups having 1 to 16 carbon atoms (preferably 5 to 16), alkoxy groups, F, Br, Cl, I, cyano groups, amino groups Group or OH group.
  • benzoimidazole derivative suitably used in the present invention is represented by the general formula (4).
  • R13 to R17 are independently hydrogen atoms, alkyl groups having 1 to 16 carbon atoms (preferably 5 to 16), alkoxy groups, F, Br, Cl, I, cyano groups, amino groups Group or OH group.
  • mercaptobenzothiazole derivative suitably used in the present invention is represented by the general formula (5).
  • R18 to R21 are each independently a hydrogen atom, an alkyl group having 1 to 16 carbon atoms (preferably 5 to 16), an alkoxy group, F, Br, Cl, I, a cyano group, amino Group or OH group.
  • benzothiazole thio fatty acid derivative suitably used in the present invention is represented by the general formula (6).
  • R22 to R26 are independently a hydrogen atom, an alkyl group having 1 to 16 carbon atoms (preferably 1 or 2), an alkoxy group, F, Br, Cl, I, a cyano group, amino Group or OH group.
  • R1 to R4 generally have higher adhesion as the number of carbon atoms increases.
  • R11 to R17 of the imidazole derivatives and benzoimidazole derivatives represented by the general formulas (3) and (4) generally, the higher the number of carbon atoms, the stronger the adhesiveness.
  • R22 to R26 preferably have 1 or 2 carbon atoms.
  • Examples of the substance used for adjusting the pH of the adhesive solution include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid.
  • As the organic acid formic acid, lactic acid, acetic acid, propionic acid, malic acid, oxalic acid, malonic acid, succinic acid, tartaric acid and the like can be used.
  • the concentration of the tackifier compound in the adhesive solution is not particularly limited, but may be appropriately adjusted according to solubility and use conditions, and preferably in the range of 0.05% by mass to 20% by mass as a whole. Concentration is good. A concentration lower than this is not preferable because sufficient tackiness cannot be imparted.
  • the treatment temperature for attaching the adhesive solution to the terminal portion 2 is preferably slightly higher than room temperature. Thereby, the formation speed and formation amount of the adhesion layer 5 are improved.
  • the treatment temperature varies depending on the concentration of the tackifier compound, the type of metal constituting the terminal portion 2, and the like, but generally a range of about 30 ° C to 60 ° C is preferable. It is preferable to adjust other conditions so that the immersion time is in the range of about 5 seconds to 5 minutes.
  • the adhesive solution it is preferable to coexist with 50 to 1000 ppm of copper as ions, because the formation efficiency such as formation speed and formation amount of the adhesive layer 5 is increased.
  • the method for forming the adhesive layer 5 of this embodiment is not limited to the terminal portion 2 of the circuit board 1, but also the solder bump portion for connection of the LSI itself, that is, an LSI chip having a BGA, a CSP (chip size package) LSI, or the like. It can also be used effectively as a bump forming means. These are naturally included in the circuit board 1 of the present invention.
  • solder particles 11 are attached on the terminal portion 2 via the adhesive layer 5 in the air, in an inert gas atmosphere or in a liquid.
  • the method will be described below.
  • solder particles 11 As a method for attaching the solder particles 11 to the adhesive layer 5, a method in which the solder particles 11 are directly supplied to the adhesive layer 5 and brought into contact with each other in the air or in an inert atmosphere, or the solder particles 11 are placed in the dispersion 41. There is a method in which the slurry is dispersed to form a slurry, and the slurry is supplied to and adhered to the adhesive layer 5.
  • solder particles 11 are placed in a container filled with air or an inert gas, and the adhesive layer 5 is further formed in the container.
  • the soldered substrate 11 is attached to the adhesive layer 5 by installing the circuit board 1 and tilting or vibrating the container.
  • solder particles 11 in the liquid, for example, as shown in FIG. 2, a dispersion 41 such as water is put in the container 40, and the solder particles 11 are further added to the dispersion 41 such as water.
  • the circuit board 1 is installed in the container 40, and the container 40 is tilted as shown in FIG. As a result, the solder particles 11 adhere to the adhesive layer 5 of the circuit board 1 in the dispersion 41.
  • the solder particles 11 When the solder particles 11 are adhered in a liquid, the solder particles 11 can be prevented from adhering to a non-adhesive portion due to static electricity or the solder particles 11 can be prevented from aggregating due to static electricity. It is suitable when using.
  • a method for attaching these solder particles 11 a method suitable for the size of the solder particles 11 and the like can be adopted.
  • one solder particle 11 is attached to one opening 6 so that the solder particles 11 have the same height as the solder bump 15.
  • the particle diameter D of the solder particles 11 is appropriately set according to the size of the opening 6.
  • Examples of the metal composition of the solder particles 11 include Sn—Pb, Sn—Pb—Ag, Sn—Pb—Bi, Sn—Pb—Bi—Ag, and Sn—Pb—Cd. Further, from the viewpoint of eliminating Pb in recent industrial waste, Sn—In, Sn—Bi, In—Ag, In—Bi, Sn—Zn, Sn—Ag, Sn—Cu, which do not contain Pb.
  • Sn-Sb type Sn-Au type, Sn-Bi-Ag-Cu type, Sn-Ge type, Sn-Bi-Cu type, Sn-Cu-Sb-Ag type, Sn-Ag-Zn type, Sn -Cu-Ag, Sn-Bi-Sb, Sn-Bi-Sb-Zn, Sn-Bi-Cu-Zn, Sn-Ag-Sb, Sn-Ag-Sb-Zn, Sn-Ag
  • the —Cu—Zn system and the Sn—Zn—Bi system are preferable.
  • an activator containing an organic acid base hydrohalide is applied to the circuit board 1 to which the solder particles 11 are adhered, dried, and then fixed by heating. I do.
  • the activator solution needs to be solidified immediately after application. Therefore, it is desirable that the activator solution does not contain a high boiling point compound. Unlike the case where the flux described later is used without adding a high boiling point compound in order to enhance the flux cleaning property after melting of the solder and not drying after coating, the activator before the fixing step is dried after coating. It is for use.
  • the oxide film on the surface 12 of the solder particles 11 can be removed without deteriorating the adhesive layer 5. Thereby, there is no possibility that the bonding between the solder particles 11 and the terminal portion 2 is hindered at the time of fixing, and the fixing can be performed at a temperature equal to or lower than the melting point of the solder. The method will be described below.
  • Application of the activator containing the organic acid base hydrohalide to the circuit board 1 to which the solder particles 11 are attached can be performed by spraying a solution of the activator on the surface of the circuit board 1 with a spraying device. it can.
  • the circuit board 1 coated with the activator is dried in air at room temperature.
  • the organic acid base hydrogen halide salt contained in the activator is preferably a hydrobromide compound. This is because bromine is excellent in the ability to remove the oxide film on the surface 12 of the solder particles 11.
  • ethylamine ⁇ HBr, isopropylamine ⁇ HBr, diphenylguanidine ⁇ HBr, or the like can be used.
  • These organic acid base hydrogen halide salts are used as an activator solution by being dissolved in an organic solvent.
  • isopropyl alcohol, ethyl alcohol, or the like can be used as the organic solvent.
  • the concentration of the organic acid base hydrogen halide salt in the activator solution is preferably 0.5 wt% or more and less than the saturation concentration, and more preferably in the range of 0.1 to 4.0%. This is because if the concentration of the activator is high, the adhesive layer 5 is deteriorated, and if the concentration is low, the removal of the oxide film on the surface 12 of the solder particles 11 becomes insufficient.
  • the circuit board 1 to which the activator is applied is heated to cause the oxide film on the surface 12 of the solder particles 11 to react with the component of the activator, thereby removing the oxide film on the surface 12 of the solder particles 11. Further, by heating the circuit board 1, a reaction in which the constituent material of the terminal portion 2 diffuses to the solder particle 11 side is caused to proceed between the terminal portion 2 and the solder particles 11, and the shape of the solder particles 11 is maintained.
  • the solder particles 11 are fixed.
  • the fixing temperature is preferably in the range of (M-50) ° C. to (M-0) ° C., and more preferably in the range of (M-30) ° C. to (M-5) ° C., where M is the melting point of the solder. .
  • the circuit board 1 is cooled to room temperature.
  • the fixing process can be performed using the same apparatus as that used in a general solder reflow process. Further, air or an inert gas can be used as the atmospheric gas in the fixing process.
  • the flux is applied to the circuit board 1 on which the solder particles 11 are fixed.
  • the flux is used for the purpose of removing the oxide film on the surface 12 of the solder particles 11 and the surface 4 of the terminal portion 2 and improving the meltability.
  • a flux having higher activity than the activator may be used. Since the solder particles 11 have already been fixed to the terminal portion 2, it is not necessary to leave the adhesive layer 5 positively at this stage. Rather, when the solder particles 11 are reflowed, the excessive adhesive layer 5 may instead prevent reflow. Become. Therefore, for example, the following flux may be used as the flux.
  • Flux is a flux component with water or water-soluble organic solvent added.
  • Flux components include amine and amino acid inorganic acid salts (eg, dimethylamine or glutamic acid hydrochloride, pyridine hydrobromide), amine and amino acid organic acid salts (eg, glutamic acid oxalate, dimethylamine) Succinate), organic acids (eg glycolic acid, lactic acid, malic acid, formic acid, acetic acid, oxalic acid, malonic acid, succinic acid), inorganic acids (eg hydrofluoric acid, hydrochloric acid, hydrogen bromide) Acid, hydroiodic acid, borohydrofluoric acid, phosphoric acid, zinc chloride, ammonium chloride, sodium chloride, stannous chloride, stannous fluorochloride, sodium fluoride) and the like.
  • amine and amino acid inorganic acid salts eg, dimethylamine or glutamic acid hydrochloride, pyridine hydrobromide
  • an inorganic acid salt of amine and amino acid or an organic acid salt of amine and amino acid it is particularly preferable to use an inorganic acid salt of amine and amino acid or an organic acid salt of amine and amino acid.
  • the water-soluble organic solvent alcohols having 1 to 3 carbon atoms or high boiling alcohol ethers added with glycerin, polyethylene, polypropylene, or phenyl ether can be used.
  • water or a water-soluble organic solvent is contained in 10 parts by mass of the flux component, preferably in the range of 30 parts by mass to 100 parts by mass, and more preferably in the range of 50 parts by mass to 90 parts by mass. preferable.
  • the addition amount of the water-soluble organic solvent is higher than 100 parts by mass, the effect of the flux at the time of reflow is reduced, and when the addition amount is less than 30 parts by mass, the residual amount of the flux after the reflow is increased.
  • a surfactant is blended so as to ensure the uniformity of the flux application so as not to cause application leakage in the fixing part of the solder particles 11 and to increase the removal rate of the flux residue after reflow.
  • a commercially available surfactant can be used as the surfactant, but nonionic surfactants are particularly preferably used.
  • the amount of the surfactant added to the flux is preferably in the range of 5 to 20 parts by mass, more preferably in the range of 8 to 15 parts by mass per 10 parts by mass of the surfactant.
  • the addition amount of the surfactant is higher than 20 parts by mass, the effect of the flux is lowered, and when the addition amount is less than 5 parts by mass, the addition effect of the surfactant is insufficient.
  • glycol includes ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, and the like. In the present invention, it is particularly preferable to use ethylene glycol and polyethylene glycol.
  • the amount of glycol added to the flux composition is in the range of 10 to 40 parts by mass, preferably in the range of 15 to 35 parts by mass with respect to 100 parts by mass of the flux.
  • the addition amount of glycol is higher than 40 parts by mass, the performance of the flux is lowered, and when the addition amount is less than 10 parts by mass, the effect of addition of glycol becomes insufficient, and the meltability of the solder particles 11 and the cleaning properties of the flux are reduced. Deteriorate.
  • the heating temperature varies depending on the type of solder used, but in the case of Sn—Ag, the heating temperature is 220 ° C. to 250 ° C., preferably 230 to 240 ° C.
  • the reflow time is preferably 30 seconds to 60 seconds above the melting point.
  • This reflow process may be performed in a two-stage process of preheating and reflow for the purpose of stabilizing the temperature.
  • the preheating is preferably performed at a temperature of 130 to 180 ° C., and the time is preferably 60 to 120 seconds.
  • the solder particles 11 adhere to the adhesive layer 5 as a fixing aid.
  • the activator By applying the activator, the oxide film on the surface 12 of the solder particle 11 can be removed. Thereby, the solder particles 11 can be reliably reacted with the surface 4 of the terminal portion 2 in the fixing step to fix the solder particles 11. Further, by removing the oxide film on the surface 12 of the solder particles 11 and performing fixing, the problem of falling off of the solder particles 11 after the subsequent reflow can be solved. As a result, the circuit board 1 can be stably manufactured without reducing the product yield.
  • the fixing time which conventionally required about 20 to 30 minutes, can be made in about 3 to 5 minutes.
  • the circuit board 1 before the fixing step fixing can be performed at a temperature below the melting point of the solder.
  • the circuit board 1 and the mounted component can be joined without causing needle-like crystals causing defects to be generated from the solder particles 11, and an electronic device having a high degree of integration and high reliability can be provided. .
  • Example 1 A circuit board 1 was prepared in which a plurality of terminal portions 2 having a diameter of 80 ⁇ m were arranged on a matrix at a pitch of 180 ⁇ m. Copper was used for the conductive circuit constituting the terminal portion 2. Next, a resist layer 3 having a thickness of 25 ⁇ m having a circular opening 6 having a diameter of 80 ⁇ m was formed on the circuit board 1 by using normal photolithography, and the terminal portion 2 was exposed from the opening 6. .
  • an adhesive solution containing the tackifier compound a 2% by mass aqueous solution of an imidazole compound in which the alkyl group of R12 in the general formula (3) is C 11 H 23 and R11 is a hydrogen atom is adjusted to pH with acetic acid. Adjusted to about 4.
  • the adhesive solution was heated to 40 ° C., and the circuit board 1 pretreated with an aqueous hydrochloric acid solution was immersed in the solution for 3 minutes to form an adhesive layer 5 on the surface 4 of the terminal portion 2.
  • a particle adhering device having an inner dimension of 200 mm ⁇ 120 mm ⁇ 150 mm and including a container 40 having an inlet for horizontally inserting the circuit board 1 was prepared. Furthermore, 1400 ml of water and about 400 g of solder particles 11 having a composition of 96.5 Sn / 3.5 Ag and a particle size of 70 ⁇ m were placed in the container 40. Subsequently, the particle adhesion apparatus was tilted so that the solder particles 11 did not touch the circuit board 1, and the circuit board 1 on which the adhesive layer 5 had been formed was put into the particle adhesion apparatus.
  • the container was tilted 30 ° left and right for 30 to 60 seconds to adhere the solder particles 11 to the circuit board 1.
  • the tilting period was 10 seconds / time. As a result, one solder particle 11 was adhered to each terminal portion 2.
  • circuit board 1 was taken out from the particle adhering apparatus, washed lightly with pure water, and then the circuit board 1 was dried.
  • ethylamine / HBr as an organic halogen compound was dissolved in ethyl alcohol as an organic solvent to prepare an activator in a 1% ethanol solution.
  • the activator was sprayed and applied to the entire surface of the circuit board 1 to which the solder particles 11 were adhered. Thereafter, the circuit board 1 coated with the activator was dried in the air.
  • the circuit board 1 dried in air was put in an oven heated to 213 ° C. and fixed by heating in air for 3 minutes.
  • the heat fixing temperature at this time was about 8 ° C. lower than the melting point 221 ° C. of 96.5Sn / 3.5Ag. After this heat fixing, the film was once cooled to room temperature and taken out.
  • coating was performed by spraying the circuit board 1 with a flux having a composition of 10 parts by mass of dimethylamine / HBr, 80 parts by mass of isopropylamine, 14 parts by mass of polyoxyethylene alkyl ether, and 32 parts by mass of polyoxyethylene glycol. .
  • the circuit board 1 to which the flux was applied was placed in a reflow furnace in a nitrogen atmosphere and heated at 240 ° C. for 1 minute to melt the solder particles 11 and form the solder bumps 15. After the formation of the solder bumps 15, the circuit board 1 was taken out and the formation of the solder bumps 15 was confirmed, but no dropout was observed in the 100,000 solder bumps 15.
  • Example 2 The same method as used in Example 1 was applied until the solder particles 11 were adhered and dried, and isopropylamine / HBr was dissolved as an activator in isopropyl alcohol, which is an organic solvent, to obtain a 1% isopropyl alcohol solution.
  • a circuit board 1 of Example 2 was manufactured in the same manner as Example 1 except that the agent was prepared.
  • the circuit board 1 After forming the solder bumps 15, the circuit board 1 was taken out and the formation of the solder bumps 15 was confirmed, but no dropout was seen in the 100,000 solder bumps 15.
  • Example 3 The same method as used in Example 1 was used until the solder particles 11 were adhered and dried, and as an activator, diphenylguanidine / HBr was dissolved in ethyl alcohol as an organic solvent to obtain a 1% ethyl alcohol solution.
  • a circuit board 1 of Example 3 was manufactured in the same manner as Example 1 except that the activator was prepared.
  • the circuit board 1 After forming the solder bumps 15, the circuit board 1 was taken out and the formation of the solder bumps 15 was confirmed, but no dropout was seen in the 100,000 solder bumps 15.
  • the fixing step was performed without applying the activator. That is, the dried circuit board 1 was placed in an oven heated to 213 ° C. and heat-fixed in air for 15 minutes. The heat fixing temperature at this time was about 8 ° C. lower than the melting point 221 ° C. of 96.5Sn / 3.5Ag. After this heat fixing, the film was once cooled to room temperature and taken out.
  • the circuit board 1 to which the flux was applied was heated at 240 ° C. for 1 minute in a reflow furnace in a nitrogen atmosphere to melt the solder particles 11 and form the solder bumps 15. After forming the solder bumps 15, the circuit board 1 was taken out and the formation of the solder bumps 15 was confirmed. Of the total 100,000 solder bumps 15 in 100 circuit boards, about 200 The solder particles 11 have fallen off, and about 20% of the circuit board 1 has been rejected.
  • Comparative Example 2 The circuit of Comparative Example 2 is the same as Comparative Example 1 except that the solder particles 11 are adhered and dried in the same manner as used in Example 1 and the oven fixing temperature is 230 ° C. A substrate 1 was manufactured.
  • solder bumps 15 After forming the solder bumps 15, the circuit board 1 was taken out and the formation of the solder bumps 15 was confirmed. However, about 50% of the solder bumps 15 showed needle-like crystals.
  • solder circuit board having solder bumps, particularly solder bumps, by imparting adhesiveness to the surface of the conductive circuit electrode on the circuit board, attaching solder particles to the adhesive section, and melting the solder Solved the problem that solder particles fall off in the process of melting solder and forming solder bumps.
  • solder circuit board free from defects in solder bumps with high yield.
  • a highly integrated electronic device with high integration can be provided.
  • Circuit board, 1a upper surface of the circuit board, 2 ... terminal part, 3 ... resist layer, 4 ... The surface of the terminal part, 5 ... Adhesive layer, 6 ... opening, 11 ... solder particles, 12 ... surface of solder particles, 15 ... Solder bump, 40 ... container, 41 ... dispersion

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

 はんだバンプを形成する際の脱落や針状結晶の発生を防止し、正常な回路基板の安定した提供を可能とする回路基板製造方法が提供される。そのような回路基板製造方法は回路基板上の端子の表面に粘着性付与化合物を塗布して粘着層を形成する工程と、前記粘着層上に、はんだ粒子を付着する工程と、前記はんだ粒子に有機酸塩基のハロゲン化水素酸塩を含む活性剤を塗布してから、前記はんだ粒子が付着された回路基板を、はんだの融点以下で加熱して、はんだ粒子を定着させる工程と、前記はんだ粒子が定着された回路基板にフラックスを塗布する工程と、前記回路基板を加熱して、前記はんだ粒子を溶融する工程と、を具備してなることを特徴とする。

Description

回路基板の製造方法
 本発明は、回路基板の製造方法に関する。
本願は、2009年4月30日に、日本に出願された特願2009-111591号に基づき優先権を主張し、その内容をここに援用する。
 近年、プラスチック基板、セラミック基板、あるいはプラスチック等をコートした絶縁性基板上に、回路パターンを形成し、その回路パターン上に、IC素子、半導体チップ、抵抗またはコンデンサ等の電子部品をはんだ接合することで電子回路を構成する手段が広く採用されている。
 この場合、電子部品のリード端子を、回路パターンの所定の部分に接合させるためには、基板上の導電性回路電極表面に予めはんだ薄層を形成させておき、はんだ薄層上にはんだペーストまたはフラックスを印刷し、更に所定の電子部品を位置決め載置した後、はんだ薄層またははんだ薄層及びはんだペーストをリフローさせてはんだを溶融、凝固させることで、はんだ接合させるのが一般的である。
 また最近では電子製品の小型化のため、回路基板にファインピッチ化が要求され、ファインピッチの部品、例えば0.3mmピッチのQFP(Quad Flat Package)、CSP(Chip Size Package)、0.15mmピッチのFC(Flip Chip)、BGA構造のLSIチップなどが回路基板に多く搭載されている。このようなチップを回路基板に搭載するためには、チップ等に形成されたはんだバンプと、回路基板に形成されたはんだバンプとを重ね、はんだバンプ同士をリフローすることにより両バンプを溶融接合している。このため、回路基板には回路基板面から突出したはんだバンプを形成する必要が有り、かつ、このはんだバンプに対しチップのファインピッチに対応できる精細なパターン形状が要求されている。
 回路基板に、はんだバンプを形成する手段には、電気めっき法、無電解めっき法、あるいは、はんだ粒子のペーストを印刷しリフローする方法などがある。しかし、無電解めっき法によるはんだバンプの製造方法では、はんだ層を厚くするのが困難であり、また、電気めっき法によるはんだバンプの製造方法は、複雑な回路にめっき用の電流を流すのが困難であった。また、はんだ粒子のペーストの印刷による方法では、ファインピッチパターンへの対応が困難である。
 また、ファインピッチの回路基板を形成する方法として、回路基板の端子部の表面に、粘着性付与化合物を反応させることにより粘着層を形成し、該粘着層にはんだ粒子を付着させ、次いで回路基板を加熱し、はんだ粒子を溶融してはんだバンプを形成する方法が開示されている(特許文献1参照)。
 さらに、はんだバンプの高さを均一にする為に回路電極部分をレジストで覆い、回路電極部分に開口部を設けそれぞれの開口部に、はんだ粒子を1個だけ付着させる技術が開発されている。(特許文献2参照)
 また、はんだ粒子の付着性を改善する為に一定の形状に加工した、はんだ粒子を用いる方法も開発されている。(特許文献3参照)
特開平7-7244号公報 特開2008-41803号公報 特開2008-41867号公報
 しかし、この様な方法を用いた回路基板の製造において、定着工程の際に、はんだ粒子が端子部に強固に付着されていないと、はんだ粒子を溶融して回路パターンを形成する為のリフロー工程で、はんだ粒子が脱落してしまい正常なはんだ回路が形成できず製品歩留まりが低下するという問題点があった。これは、大きなはんだ粒子を用いるほど生じやすい問題点である。
 また、はんだ粒子の回路基板の端子部への定着を促進させる目的で、定着温度を融点より高くした場合、はんだ粒子表面に針状の結晶が形成されて断線を生じさせ、回路基板に不良を生じさせてしまうという問題点もある。特にこれは、はんだ粒子を端子部に1粒ずつ付着させて、はんだバンプを形成するような、大きなはんだ粒子を用いる際には顕著な問題である。
 本発明は上記事情に鑑みてなされたものであり、はんだバンプを形成する際の脱落や針状結晶の発生を防止し、正常な回路基板の安定した提供を可能とする回路基板製造方法を提供することを目的とする。
 本発明者は、上記課題を解決すべく鋭意努力検討した結果、はんだ粒子表面の酸化膜が、はんだ粒子の回路基板の端子部への定着を阻害し、リフロー工程でのはんだバンプ脱落の原因となることを明らかにした。そこで、リフロー工程の前に、はんだ粒子表面の酸化膜を除去することでリフロー工程でのはんだバンプ脱落を防止できることを発見し、本発明に到達した。
即ち本発明は、
[1]回路基板上の端子の表面に粘着性付与化合物を塗布して粘着層を形成する工程と、前記粘着層上に、はんだ粒子を付着する工程と、前記はんだ粒子に有機酸塩基のハロゲン化水素酸塩を含む活性剤を塗布してから、前記はんだ粒子が付着された回路基板を、はんだの融点以下で加熱して、はんだ粒子を定着させる工程と、前記はんだ粒子が定着された回路基板にフラックスを塗布する工程と、前記回路基板を加熱して、前記はんだ粒子を溶融する工程と、を具備してなることを特徴とする回路基板の製造方法。
[2] 前記活性剤が有機酸塩基の臭化水素酸塩であることを特徴とする、請求項[1]に記載の回路基板の製造方法。
[3] 前記活性剤が有機酸塩基のハロゲン化水素酸塩を溶剤に溶解させた液体であることを特徴とする、請求項[1]又は[2]に記載の回路基板の製造方法。
[4] 有機酸塩基のハロゲン化水素酸塩を溶解させる前記液体が、イソプロピルアルコール、エチルアルコールを含む有機溶剤であることを特徴とする、請求項[1]乃至[3]のいずれか一項に記載の回路基板の製造方法。
[5] 前記粘着性付与化合物が、ナフトトリアゾール系誘導体、ベンゾトリアゾール系誘導体、イミダゾール系誘導体、ベンゾイミダゾール系誘導体、メルカプトベンゾチアゾール系誘導体、ベンゾチアゾールチオ脂肪酸からなる群から選ばれた何れか1種以上の物質を含むことを特徴とする請求項[1]乃至[4]のいずれか一項に記載の回路基板の製造方法。
 本発明の回路基板の製造方法では、はんだ粒子の定着前に活性剤をはんだ粒子に塗布するため、定着前にフラックスを塗布した場合のように粘着層を劣化させることなく、はんだ粒子の表面の酸化膜を除去することができる。これにより、定着前にはんだ粒子が端子部から脱落する恐れがなく、リフロー工程におけるはんだバンプの欠陥を防止できる。また、活性剤によってはんだ粒子の表面の酸化膜が除去されるので、はんだの融点以下でも確実にはんだ粒子の定着を行うことが可能になる。これにより、針状結晶の異常成長を防ぐことができ、電子部品の実装が妨げられるおそれがない。
 以上により、本発明によれば、製品歩留まりを低下させることなく回路基板を安定的に製造することが可能となる。これにより集積度が高くかつ信頼性の高い電子機器を提供することができる。
本発明の実施形態である回路基板の製造工程を説明する工程図である。 はんだ粒子を付着させる工程を説明する模式図である。
 以下、本発明の実施形態である回路基板の製造方法について図面を参照にして説明する。図1は本実施形態の回路基板の製造方法を説明する工程図、図2ははんだ粒子を付着させる工程を説明する模式図である。
 本実施形態の回路基板の製造方法は、回路基板上の端子の表面に粘着性付与化合物を塗布して粘着層を形成する工程と、粘着層上に、はんだ粒子を付着する工程と、はんだ粒子が付着された回路基板に有機酸塩基のハロゲン化水素酸塩を含む活性剤を塗布する工程と、はんだ粒子が付着された回路基板を、はんだの融点以下で加熱して、はんだ粒子を定着させる工程と、はんだ粒子が定着された回路基板にフラックスを塗布する工程と、フラックスが塗布された回路基板を加熱して、はんだを溶融する工程と、から概略構成されている。以下、各工程の望ましい形態について詳細に述べる。
 本発明の対象となる回路基板1は、プラスチック基板、プラスチックフィルム基板、ガラス布基板、紙基質エポキシ樹脂基板、セラミックス基板等に金属板を積層した基板、あるいは金属基材にプラスチックあるいはセラミックス等を被覆した絶縁基板上に、金属等の導電性物質を用いて回路パターンを形成した片面回路基板、両面回路基板、多層回路基板あるいはフレキシブル回路基板等である。その他、IC基板、コンデンサ、抵抗、コイル、バリスタ、ベアチップ、ウェーハ等への適用も可能である。
 図1(a)には、本実施形態において用いられる回路基板1の断面図を示す。図1(a)に示す回路基板1の上面1a上には、たとえば銅、または銅合金からなる回路パターンが形成されており、図1(a)には回路パターンの端子部2が示されている。以下、端子部2の表面4に粘着層5を形成する工程について説明する。
 まず、端子部2の周囲を予めレジスト(絶縁層)で囲むことにより、図1(b)に示す開口部6を形成する。具体的には回路基板1上の上面1aの全面にレジスト層3を形成し、露光、現像することで、レジスト層3に端子部2を露出させる開口部6を設ける。レジスト層3の開口部6の大きさは、後の工程で付着させる、はんだ粒子11の直径Dに合わせて適宜設定する。また、レジスト層3の開口部6の深さH(端子部2の表面4とレジスト層3の上面との段差)は付着させる、はんだ粒子11の直径Dに合わせて適宜設定する。この段差Hは、はんだ粒子11の直径Dの2分の1以上かつ直径Dより小さい範囲内にすることが望ましい。開口部6は円形が望ましいが、楕円であっても、四角であっても代用は可能である。
 レジスト層3は、回路基板の製造に一般的に用いられる絶縁性のレジストを用いる。このレジスト層3は、後で説明する回路基板1上の端子部2の表面4に粘着層5を付与する工程において、粘着性が発現しない性質を有するものであればよい。
 なお、端子部2を形成する導電性物質としては、銅または銅合金を用いるが、本発明ではこれに限定されず、後述する粘着性付与物質により端子部2の表面4に粘着性が得られる導電性の物質であればよい。これらの物質として、例えば、Ni、Sn、Ni-Au、フラッシュ金、Pd、Agはんだ合金等を含む物質が例示できる。
 次に、図1(c)に示すように、端子部2の表面4に、粘着層5を形成する。粘着層5を形成するには、以下に示す粘着性付与化合物のうち、少なくとも1種または2種以上を、水または酸性水に溶解し、好ましくはpH3~4程度の微酸性に調整した粘着性溶液を用いる。そして、粘着性溶液に回路基板1を浸漬するか、または回路基板1に粘着性溶液を塗布することで、図1(c)に示すように端子部2の表面4に粘着層5を形成する。
 粘着性付与化合物としては、ナフトトリアゾール系誘導体、べンゾトリアゾール系誘導体、イミダゾール系誘導体、べンゾイミダゾール系誘導体、メルカプトべンゾチアゾール系誘導体及びべンゾチアゾールチオ脂肪酸等が挙げられる。これらの粘着性付与化合物は特に銅に対しての効果が強いが、他の導電性物質にも粘着性を付与することができる。
 本発明において好適に用いられるべンゾトリアゾール系誘導体は、一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000001
 但し、式(1)中、R1~R4は、独立に水素原子、炭素数が1~16(好ましくは5~16)のアルキル基、アルコキシ基、F、Br、Cl、I、シアノ基、アミノ基またはOH基である。
 また、本発明において好適に用いられるナフトトリアゾール系誘導体は、一般式(2)で表される。
Figure JPOXMLDOC01-appb-C000002
 但し、式(2)中、R5~R10は、独立に水素原子、炭素数が1~16(好ましくは5~16)のアルキル基、アルコキシ基、F、Br、Cl、I、シアノ基、アミノ基またはOH基である。
 更に、本発明において好適に用いられるイミダゾール系誘導体は、一般式(3)で表される。
Figure JPOXMLDOC01-appb-C000003
 但し、式(3)において、R11、R12は、独立に水素原子、炭素数が1~16(好ましくは5~16)のアルキル基、アルコキシ基、F、Br、Cl、I、シアノ基、アミノ基またはOH基である。
 更にまた、本発明において好適に用いられるべンゾイミダゾール系誘導体は、一般式(4)で表される。
Figure JPOXMLDOC01-appb-C000004
 但し、式(4)において、R13~R17は、独立に水素原子、炭素数が1~16(好ましくは5~16)のアルキル基、アルコキシ基、F、Br、Cl、I、シアノ基、アミノ基またはOH基である。
 また、本発明において好適に用いられるメルカプトべンゾチアゾール系誘導体は、一般式(5)で表される。
Figure JPOXMLDOC01-appb-C000005
 但し、式(5)中、R18~R21は、独立に水素原子、炭素数が1~16(好ましくは5~16)のアルキル基、アルコキシ基、F、Br、Cl、I、シアノ基、アミノ基またはOH基である。
 更に、本発明において好適に用いられるべンゾチアゾールチオ脂肪酸系誘導体は、一般式(6)で表される。
Figure JPOXMLDOC01-appb-C000006
 但し、式(6)において、R22~R26は、独立に水素原子、炭素数が1~16(好ましくは1または2)のアルキル基、アルコキシ基、F、Br、Cl、I、シアノ基、アミノ基またはOH基である。
 これらの化合物のうち、一般式(1)で示されるべンゾトリアゾール系誘導体において、R1~R4は一般には炭素数が多いほうが粘着性が強い。
 また、一般式(3)及び一般式(4)で示されるイミダゾール系誘導体及びべンゾイミダゾール系誘導体のR11~R17においても、一般に炭素数の多いほうが粘着性が強い。
 更に、一般式(6)で示されるべンゾチアゾールチオ脂肪酸系誘導体においては、R22~R26は炭素数1または2が好ましい。
 また、粘着性溶液のpHの調整に用いる物質としては、塩酸、硫酸、硝酸、リン酸等の無機酸をあげることができる。また有機酸としては、蟻酸、乳酸、酢酸、プロピオン酸、リンゴ酸、シュウ酸、マロン酸、コハク酸、酒石酸等が使用できる。
 粘着性溶液における粘着性付与化合物の濃度は、特に限定されないが、溶解性、使用状況に応じて適宜調整して用いればよく、好ましくは全体として0.05質量%~20質量%の範囲内の濃度がよい。これより低濃度にすることは十分な粘着性を付与できなくなるので好ましくない。
 粘着性溶液を端子部2に付着させる際の処理温度については、室温よりは若干高めにすることが好ましい。これにより、粘着層5の形成速度、形成量が良くなる。処理温度は、粘着性付与化合物の濃度や端子部2を構成する金属の種類などにより変わるが、一般的には30℃~60℃位の範囲が好適である。浸漬時間は5秒~5分間位の範囲になるように他の条件を調整することが好ましい。
 また、粘着性溶液中には、銅をイオンとして50~1000ppmを共存させると、粘着層5の形成速度、形成量などの形成効率が高まるので好ましい。
 本実施形態の粘着層5の形成方法は、回路基板1の端子部2のみならず、LSIそのものの接続用はんだバンプ部分、すなわち、BGAを有するLSIチップやCSP(チップ・サイズ・パッケージ)LSI等のバンプ形成手段としても有効に使用できる。なお、これらは本発明の回路基板1に当然含まれるものである。
 次に、図1(d)に示すように、端子部2の上に粘着層5を介して、空気中、不活性ガス雰囲気中または液体中ではんだ粒子11を付着する。その方法について以下説明する。
 粘着層5に、はんだ粒子11を付着させる方法としては、空気中または不活性雰囲気中で、はんだ粒子11を直接粘着層5に供給して接触させる方法や、分散液41中にはんだ粒子11を分散させてスラリー状態にし、そのスラリーを粘着層5に供給して付着させる方法等がある。
 まず空気中、不活性ガス雰囲気中で、はんだ粒子11を粘着層5に付着させるには、空気または不活性ガスを満たした容器内にはんだ粒子11を入れ、更に容器内に粘着層5を形成した回路基板1を設置し、容器を傾動または振動させることで、粘着層5にはんだ粒子11を付着させる。
 また、液体中ではんだ粒子11を付着させるには、例えば図2に示すように、水等の分散液41を容器40内に入れ、更にはんだ粒子11を水等の分散液41に添加する。次いで容器40内に回路基板1を設置し、図2に示すように容器40を傾動させる。これにより、分散液41中で回路基板1の粘着層5にはんだ粒子11が付着する。
 液体中で、はんだ粒子11を付着させる場合は、はんだ粒子11が静電気により粘着性の無い部分に付着したり、はんだ粒子11が静電気により凝集することを防止でき、ファインピッチの回路基板や、微粉を用いる場合に好適である。これらのはんだ粒子11を付着させる方法は、はんだ粒子11の大きさ等によって適した方法を採用することができる。
 はんだ粒子11は、はんだバンプ15の高さをそろえるため、1つの開口部6につき、1粒のはんだ粒子11を付着させることが望ましい。そのためには、開口部6の大きさに応じて、はんだ粒子11の粒径Dを適宜設定する。
 はんだ粒子11の金属組成としては、例えば例えばSn-Pb系、Sn-Pb-Ag系、Sn-Pb-Bi系、Sn-Pb-Bi-Ag系、Sn-Pb-Cd系が挙げられる。また最近の産業廃棄物におけるPb排除の観点から、Pbを含まないSn-In系、Sn-Bi系、In-Ag系、In-Bi系、Sn-Zn系、Sn-Ag系、Sn-Cu系、Sn-Sb系、Sn-Au系、Sn-Bi-Ag-Cu系、Sn-Ge系、Sn-Bi-Cu系、Sn-Cu-Sb-Ag系、Sn-Ag-Zn系、Sn-Cu-Ag系、Sn-Bi-Sb系、Sn-Bi-Sb-Zn系、Sn-Bi-Cu-Zn系、Sn-Ag-Sb系、Sn-Ag-Sb-Zn系、Sn-Ag-Cu-Zn系、Sn-Zn-Bi系が好ましい。
 上記の具体例としては、Snが63質量%、Pbが37質量%の共晶ハンダ(以下63Sn/37Pbと表す。)を中心として、62Sn/36Pb/2Ag、62.6Sn/37Pb/0.4Ag、60Sn/40Pb、50Sn/50Pb、30Sn/70Pb、25Sn/75Pb、10Sn/88Pb/2Ag、46Sn/8Bi/46Pb、57Sn/3Bi/40Pb、42Sn/42Pb/14Bi/2Ag、45Sn/40Pb/15Bi、50Sn/32Pb/18Cd、48Sn/52In、43Sn/57Bi、97In/3Ag、58Sn/42In、95In/5Bi、60Sn/40Bi、91Sn/9Zn、96.5Sn/3.5Ag、99.3Sn/0.7Cu、95Sn/5Sb、20Sn/80Au、90Sn/10Ag、90Sn/7.5Bi/2Ag/0.5Cu、97Sn/3Cu、99Sn/1Ge、92Sn/7.5Bi/0.5Cu、97Sn/2Cu/0.8Sb/0.2Ag、95.5Sn/3.5Ag/1Zn、95.5Sn/4Cu/0.5Ag、52Sn/45Bi/3Sb、51Sn/45Bi/3Sb/1Zn、85Sn/10Bi/5Sb、84Sn/10Bi/5Sb/1Zn、88.2Sn/10Bi/0.8Cu/1Zn、89Sn/4Ag/7Sb、88Sn/4Ag/7Sb/1Zn、98Sn/1Ag/1Sb、97Sn/1Ag/1Sb/1Zn、91.2Sn/2Ag/0.8Cu/6Zn、89Sn/8Zn/3Bi、86Sn/8Zn/6Bi、89.1Sn/2Ag/0.9Cu/8Znなどが挙げられる。また本発明に用いるはんだ粒子11としては、異なる組成のはんだ粒子を2種類以上混合したものを用いてもよい。
 次に、図1(e)で示すように、はんだ粒子11を付着させた回路基板1に、有機酸塩基のハロゲン化水素酸塩を含む活性剤を塗布し乾燥させた後、加熱して定着を行う。
 本実施形態では、定着工程の前に、はんだ粒子11の表面12の酸化膜を除去するため、活性剤による処理を行う。このとき回路基板1の端子部2に付着した粘着層5が活性剤によって劣化すると、はんだ粒子11が脱落しやすくなるため、活性剤溶液は塗布後、早急に固化させる必要がある。したがって、活性剤溶液中には、高沸点化合物を含まない方が望ましい。これは、後に述べるフラックスがハンダの溶融後のフラックス洗浄性を高めるために高沸点化合物を添加し、塗布後乾燥させずに用いられるのとは異なり、定着工程前の活性剤は塗布後に乾燥させて用いるためである。活性剤を塗布し乾燥させた後に定着を行うことで、粘着層5を劣化させずに、はんだ粒子11の表面12の酸化膜を除去することが可能となる。これにより、定着の際にはんだ粒子11と端子部2の接合が阻害されるおそれがなく、かつ、はんだの融点以下の温度で定着させることが可能となる。その方法について以下説明する。
 はんだ粒子11を付着させた回路基板1への有機酸塩基のハロゲン化水素酸塩を含む活性剤の塗布は、活性剤の溶液を、噴霧装置により回路基板1表面に噴霧することによって行うことができる。活性剤を塗布された回路基板1は、空気中室温で乾燥させる。
 前記活性剤に含まれる有機酸塩基のハロゲン化水素塩は、臭素化水素塩化合物が望ましい。これは、臭素がはんだ粒子11表面12の酸化膜除去能力に優れる為である。具体的には、エチルアミン・HBr、イソプロピルアミン・HBr、ジフェニルグアニジン・HBrなどを用いることができる。
 これらの有機酸塩基のハロゲン化水素塩は有機溶剤に溶解されることにより、活性剤溶液として用いられる。前記有機溶剤としては、イソプロピルアルコール、エチルアルコールなどを用いることができる。また、活性剤溶液中の有機酸塩基のハロゲン化水素塩の濃度は0.5wt%以上で、飽和濃度以下が望ましく、0.1~4.0%の範囲がより望ましい。なぜならば、活性剤の濃度が高いと粘着層5を劣化させ、濃度が低いと、はんだ粒子11表面12の酸化膜の除去が不十分となるためである。
 次に、活性剤が塗布された回路基板1を加熱し、はんだ粒子11の表面12の酸化膜と活性剤の成分を反応させ、はんだ粒子11の表面12の酸化膜を除去する。
 また、回路基板1の加熱により、端子部2と、はんだ粒子11の間で、端子部2の構成材料がはんだ粒子11側に拡散させる反応を進行させて、はんだ粒子11の形状を保ったまま、はんだ粒子11を定着させる。定着の温度は、はんだの融点をMとしたとき、(M-50)℃~(M-0)℃の範囲が好ましく、(M-30)℃~(M-5)℃の範囲がさらに好ましい。定着した後、回路基板1は室温まで冷却させる。
 なお、前記定着工程は一般的なはんだのリフロー工程に用いられる装置と同じ装置を用いて行うことができる。また、定着工程における雰囲気ガスは、空気または不活性ガスを用いることができる。
 続いて図1(f)で示すようにリフロー工程を行い、はんだバンプ15を形成する。その方法について以下説明する。
 はんだ粒子11の定着を行った回路基板1にフラックスを塗布する。フラックスは、はんだ粒子11の表面12及び端子部2の表面4の酸化膜を除去し溶融性を高めることを目的で用いる。このときのフラックスには、活性剤よりも活性の高いフラックスを用いてもよい。はんだ粒子11はすでに端子部2に定着しているため、この段階で、粘着層5を積極的に残す必要はなく、むしろはんだ粒子11のリフロー時には、過剰な粘着層5がかえってリフローの妨げとなる。したがってフラックスとしては、たとえば以下に示すフラックスを用いるのがよい。
 フラックスとは、フラックス成分に水または水溶性有機溶媒を添加したものである。フラックス成分とは、アミンとアミノ酸の無機酸塩(例えば、ジメチルアミンまたはグルタミン酸の塩酸塩、ピリジンの臭化水素酸塩)、アミンとアミノ酸の有機酸塩(例えば、グルタミン酸のシュウ酸塩、ジメチルアミンのコハク酸塩)、有機酸(例えば、グリコール酸、乳酸、リンゴ酸、ギ酸、酢酸、シュウ酸、マロン酸、コハク酸)、無機酸(例えば、フッ化水素酸、塩化水素酸、臭化水素酸、よう化水素酸、ホウフッ化水素酸、リン酸、塩化亜鉛、塩化アンモン、塩化ナトリウム、塩化第1スズ、フッ化塩化第1スズ、フッ化ナトリウム)等である。この中で特に、アミンとアミノ酸の無機酸塩やアミンとアミノ酸の有機酸塩を用いるのが好ましい。また水溶性有機溶剤としては、炭素数1~3のアルコール類、または高沸点アルコールエーテル類に、グリセリン、ポリエチレン、ポリプロピレン、フェニルエーテルを添加したものを用いることができる。
 フラックスとしては、フラックス成分10質量部に、水または水溶性有機溶媒を、好ましくは30質量部~100質量部の範囲内、より好ましくは、50質量部~90質量部の範囲内で含むのが好ましい。水溶性有機溶媒の添加量が100質量部より高くなると、リフロー時のフラックスの効果が低くなり、添加量が30質量部より少なくなると、リフロー後のフラックスの残存量が多くなる。
 フラックスにおいては、はんだ粒子11の定着部に塗布漏れのないようにフラックスの塗布の均一性の確保、並びにリフロー後のフラックス残渣の除去率を高めるために界面活性剤を配合する。界面活性剤としては市販のものが使用できるが、特にノニオン系の界面活性剤を用いるのが好ましく、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン2級アルコールエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンステロールエーテル、ポリオキシエチレンラノリン誘導体、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルを用いるのが好ましい。
 フラックスへの界面活性剤の添加量は、界面活性剤10質量部あたりで、好ましくは5質量部~20質量部の範囲内、より好ましくは、8質量部~15質量部の範囲内である。界面活性剤の添加量が20質量部より高くなると、フラックスの効果が低くなり、添加量が5質量部より少なくなると、界面活性剤の添加効果が不十分となる。
 前記の界面活性剤配合フラックスに、洗浄性を高めるためにさらにグリコールを添加するのが好ましい。グリコールとは、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどであり、本発明では特にエチレングリコール、ポリエチレングリコールを用いるのが好ましい。
 フラックス組成物へのグリコールの添加量は、フラックス100質量部に、10質量部~40質量部の範囲内、好ましくは、15質量部~35質量部の範囲内である。グリコールの添加量が40質量部より高くなると、フラックスの性能が低くなり、添加量が10質量部より少なくなると、グリコールの添加効果が不十分となり、はんだ粒子11の溶融性とフラックスの洗浄性が悪くなる。
 次いで、リフロー工程を行い、はんだ粒子11を溶融させる。加熱温度は、用いるはんだの種類によって異なるが、Sn-Ag系の場合、220℃~250℃、好ましくは230~240℃で行う。リフロー時間は、融点以上30秒~60秒が望ましい。このリフロー工程は、温度を安定させる目的でプレヒートとリフローの2段工程で行っても良い。この場合、プレヒートは温度130~180℃、時間は60秒~120秒程度が望ましい。
 リフロー工程を行った後は、水洗によりフラックスを洗浄除去する。
 以上説明したように、本実施形態の回路基板1の製造方法によれば、はんだ粒子11の表面12が酸化していた場合でも、粘着層5にはんだ粒子11が付着した状態で定着補助剤として活性剤を塗布することにより、はんだ粒子11の表面12の酸化膜を除去することができる。これにより、定着工程で確実にはんだ粒子11と端子部2の表面4とを反応させて、はんだ粒子11を定着することができる。また、はんだ粒子11の表面12の酸化膜を除去しかつ定着を行うことで、その後のリフロー後のはんだ粒子11の脱落の問題を解決できる。これにより製品歩留まりを低下させることなく、回路基板1を安定的に製造することが可能となる。また、定着工程前に活性剤を塗布することにより、従来は20~30分程度必要であった定着時間を3~5分程度で可能とすることができる。
 また、定着工程の前に活性剤を回路基板1に塗布することにより、定着をはんだの融点以下の温度で行うことができる。これにより、不良の原因となる針状結晶を、はんだ粒子11から発生させることなく回路基板1と搭載部品とが接合可能となり、集積度が高くかつ信頼性の高い電子機器を提供することができる。
 また、有機酸塩基のハロゲン化水素酸塩を溶剤に溶解させた活性剤を用いることで、粘着層5を溶かさずに、はんだ粒子11の表面12の酸化膜だけ取るので、定着が可能になる。これにより、大きいはんだ粒子11でも確実に定着することができる。
 以下、実施例により本発明を説明するが、本発明はこれに限定されるものではない。
 (実施例1)
 直径80μmの複数の端子部2が、180μmのピッチでマトリックス上に配列された回路基板1を用意した。端子部2を構成する導電性回路には銅を用いた。次に回路基板1の上に、通常のフォトリソフラフィーを用いて、直径80μmの円形の開口部6をもつ厚さが25μmのレジスト層3を形成し、開口部6から端子部2を露出させた。続いて、粘着性付与化合物を含む粘着性溶液として、一般式(3)のR12のアルキル基がC1123、R11が水素原子であるイミダゾール系化合物の2質量%水溶液を、酢酸によりpHを約4に調整した。この粘着性溶液を40℃に加温し、これに塩酸水溶液により前処理した回路基板1を3分間浸漬し、端子部2の表面4に粘着層5を形成させた。
 次いで、内寸法が200mm×120mm×150mmの大きさで、回路基板1を水平方向に投入する投入口を有する容器40を備えた粒子付着装置を用意した。更に、容器40には、水1600mlと、組成が96.5Sn/3.5Agで粒径70μmのはんだ粒子11を約400g入れた。続いて、粒子付着装置を傾けて、はんだ粒子11が回路基板1に触れないようにして、粒子付着装置内に粘着層5を形成済みの回路基板1を投入した。回路基板1を粒子付着装置に入れた後、30~60秒間、容器を左右に30°傾動させてはんだ粒子11を回路基板1に付着させた。傾動の周期は10秒/回とした。これにより、1ヶ所の端子部2につき、はんだ粒子11を1個ずつ付着させた。
 その後、粒子付着装置から回路基板1を取り出し、純水で軽く洗浄した後、回路基板1を乾燥させた。
 次いで、有機ハロゲン化合物としてエチルアミン・HBrを、有機溶剤としてのエチルアルコールに溶解させて、1%エタノール溶液とした活性剤を作製した。次に、噴霧装置を用いて、はんだ粒子11が付着されている回路基板1の面全面に活性剤を噴霧して塗布を行った。その後、活性剤が塗布された回路基板1を空気中で乾燥させた。
 空気中で乾燥させた回路基板1を、213℃に加熱したオーブンに入れ、空気中で3分加熱定着した。この時の加熱定着温度は、96.5Sn/3.5Agの融点221℃より、約8℃低い温度であった。この加熱定着を行った後、いったん室温まで冷却して取り出した。
 次いで、組成がジメチルアミン・HBr 10質量部、イソプロピルアミン 80質量部、ポリオキシエチレンアルキルエーテル 14質量部、ポリオキシエチレングリコール 32質量部であるフラックスを回路基板1に噴霧することにより塗布を行った。
 フラックスを塗布した回路基板1を、窒素雰囲気のリフロー炉に投入して240℃で1分加熱し、はんだ粒子11を融解させて、はんだバンプ15の形成を行った。はんだバンプ15の形成後、回路基板1を取り出して、はんだバンプ15の形成の確認を行ったが、10万個のはんだバンプ15中、脱落は見られなかった。
 (実施例2)
 実施例1で用いたのと同じ方法で、はんだ粒子11の付着、乾燥まで行い、活性剤として、イソプロピルアミン・HBrを有機溶剤であるイソプロピルアルコールに溶解させて、1%イソプロピルアルコール溶液とした活性剤を作製した以外は実施例1と同様にして、実施例2の回路基板1を製造した。
 はんだバンプ15を形成させた後、回路基板1を取り出して、はんだバンプ15の形成の確認を行ったが、10万個のはんだバンプ15中、脱落は見られなかった。
 (実施例3)
 実施例1で用いたのと同じ方法で、はんだ粒子11の付着、乾燥まで行い、活性剤として、ジフェニルグアジン・HBrを有機溶剤であるエチルアルコールに溶解させて、1%エチルアルコール溶液とした活性剤を作製した以外は実施例1と同様にして、実施例3の回路基板1を製造した。
 はんだバンプ15を形成させた後、回路基板1を取り出して、はんだバンプ15の形成の確認を行ったが、10万個のはんだバンプ15中、脱落は見られなかった。
 (比較例1)
 実施例1と同様にして、粒子付着装置を用いて端子部2にはんだ粒子11を付着し、その後、回路基板1を乾燥させた。
 次いで、活性剤の塗布は行わずに定着工程を行った。すなわち、乾燥済みの回路基板1を213℃に加熱したオーブンに入れ、空気中で15分加熱定着した。この時の加熱定着温度は、96.5Sn/3.5Agの融点221℃より、約8℃低い温度であった。この加熱定着を行った後、いったん室温まで冷却して取り出した。
 次いで、フラックスを回路基板1に噴霧することにより塗布を行った。
 フラックスを塗布した回路基板1を、窒素雰囲気のリフロー炉により240℃で1分加熱し、はんだ粒子11を融解させて、はんだバンプ15の形成を行った。はんだバンプ15を形成させた後、回路基板1を取り出して、はんだバンプ15の形成の確認を行ったが、100枚の回路基板中の合計10万個のはんだバンプ15の内、約200個のはんだ粒子11が脱落しており、回路基板1として約20%が不合格となった。
 (比較例2)
 実施例1で用いたのと同じ方法で、はんだ粒子11の付着、乾燥まで行い、オーブンでの加熱定着温度が230℃であったこと以外は比較例1と同様にして、比較例2の回路基板1を製造した。
 はんだバンプ15を形成させた後、回路基板1を取り出して、はんだバンプ15の形成の確認を行ったが、約50%のはんだバンプ15に針状の結晶がみられた。
 回路基板上の導電性回路電極表面に粘着性を付与し、該粘着部にはんだ粒子を付着させて、該はんだを溶融してはんだ回路、特にはんだバンプを有するはんだ回路基板の製造方法において、はんだを融解してはんだバンプを形成する工程で、はんだ粒子が脱落するといった問題点を解決した。これによりはんだバンプの欠損がないはんだ回路基板を歩留まり良く製造する方法を提供することが可能となった。また、集積度が高く、かつ信頼性の高い電子機器の提供も可能とする。
1…回路基板、
1a…回路基板の上面、
2…端子部、
3…レジスト層、
4…端子部の表面、
5…粘着層、
6…開口部、
11…はんだ粒子、
12…はんだ粒子の表面、
15…はんだバンプ、
40…容器、
41…分散液

Claims (5)

  1.  回路基板上の端子の表面に粘着性付与化合物を塗布して粘着層を形成する工程と、
     前記粘着層上に、はんだ粒子を付着する工程と、
     前記はんだ粒子に有機酸塩基のハロゲン化水素酸塩を含む活性剤を塗布してから、前記はんだ粒子が付着された回路基板を、はんだの融点以下で加熱して、はんだ粒子を定着させる工程と、
     前記はんだ粒子が定着された回路基板にフラックスを塗布する工程と、
     前記回路基板を加熱して、前記はんだ粒子を溶融する工程と、を具備してなることを特徴とする回路基板の製造方法。
  2.  前記活性剤が有機酸塩基の臭化水素酸塩であることを特徴とする、請求項1に記載の回路基板の製造方法。
  3.  前記活性剤が有機酸塩基のハロゲン化水素酸塩を溶剤に溶解させた液体であることを特徴とする、請求項1または2に記載の回路基板の製造方法。
  4.  有機酸塩基のハロゲン化水素酸塩を溶解させる前記液体が、イソプロピルアルコール、エチルアルコールを含む有機溶剤であることを特徴とする、請求項1乃至3のいずれか一項に記載の回路基板の製造方法。
  5.  前記粘着性付与化合物が、ナフトトリアゾール系誘導体、ベンゾトリアゾール系誘導体、イミダゾール系誘導体、ベンゾイミダゾール系誘導体、メルカプトベンゾチアゾール系誘導体、ベンゾチアゾールチオ脂肪酸からなる群から選ばれた何れか1種以上の物質を含むことを特徴とする請求項1乃至4のいずれか一項に記載の回路基板の製造方法。
PCT/JP2010/002648 2009-04-30 2010-04-12 回路基板の製造方法 WO2010125753A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/266,379 US8661659B2 (en) 2009-04-30 2010-04-12 Method of producing circuit board
KR1020117024754A KR101193264B1 (ko) 2009-04-30 2010-04-12 회로 기판의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-111591 2009-04-30
JP2009111591A JP5238598B2 (ja) 2009-04-30 2009-04-30 回路基板の製造方法

Publications (1)

Publication Number Publication Date
WO2010125753A1 true WO2010125753A1 (ja) 2010-11-04

Family

ID=43031913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002648 WO2010125753A1 (ja) 2009-04-30 2010-04-12 回路基板の製造方法

Country Status (5)

Country Link
US (1) US8661659B2 (ja)
JP (1) JP5238598B2 (ja)
KR (1) KR101193264B1 (ja)
TW (1) TWI440413B (ja)
WO (1) WO2010125753A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131897A1 (ja) * 2019-12-27 2021-07-01 昭和電工マテリアルズ株式会社 はんだバンプ形成用部材、はんだバンプ形成用部材の製造方法、及びはんだバンプ付き電極基板の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093538A (ja) * 2011-10-04 2013-05-16 Ngk Spark Plug Co Ltd 配線基板及びその製造方法
US20140097003A1 (en) * 2012-10-05 2014-04-10 Tyco Electronics Amp Gmbh Electrical components and methods and systems of manufacturing electrical components
US20140165389A1 (en) * 2012-12-14 2014-06-19 Byung Tai Do Integrated circuit packaging system with routable grid array lead frame
TWI511216B (zh) * 2013-08-28 2015-12-01 Nat Inst Chung Shan Science & Technology 金屬凸塊成形製作方法
TWI590726B (zh) * 2013-12-09 2017-07-01 群成科技股份有限公司 電子封裝件、封裝載板及此封裝載板的製造方法
TWI672711B (zh) 2019-01-10 2019-09-21 健策精密工業股份有限公司 絕緣金屬基板及其製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730243A (ja) * 1993-05-12 1995-01-31 Showa Denko Kk はんだ粉末定着方法
JP2004282062A (ja) * 2003-02-28 2004-10-07 Showa Denko Kk ハンダ回路基板の製造方法。

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2592757B2 (ja) 1992-10-30 1997-03-19 昭和電工株式会社 はんだ回路基板及びその形成方法
US5417771A (en) * 1994-02-16 1995-05-23 Takeda Chemical Industries, Ltd. Soldering flux
US6095400A (en) * 1997-12-04 2000-08-01 Ford Global Technologies, Inc. Reinforced solder preform
JP2005183904A (ja) * 2003-12-22 2005-07-07 Rohm & Haas Electronic Materials Llc 電子部品にはんだ領域を形成する方法及びはんだ領域を有する電子部品
JP4249164B2 (ja) 2005-08-11 2009-04-02 ハリマ化成株式会社 はんだペースト組成物
JP2008041867A (ja) * 2006-08-04 2008-02-21 Showa Denko Kk ハンダ回路基板の製造方法
JP4819611B2 (ja) * 2006-08-03 2011-11-24 昭和電工株式会社 ハンダ回路基板の製造方法
JP5456545B2 (ja) * 2009-04-28 2014-04-02 昭和電工株式会社 回路基板の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730243A (ja) * 1993-05-12 1995-01-31 Showa Denko Kk はんだ粉末定着方法
JP2004282062A (ja) * 2003-02-28 2004-10-07 Showa Denko Kk ハンダ回路基板の製造方法。

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131897A1 (ja) * 2019-12-27 2021-07-01 昭和電工マテリアルズ株式会社 はんだバンプ形成用部材、はんだバンプ形成用部材の製造方法、及びはんだバンプ付き電極基板の製造方法

Also Published As

Publication number Publication date
TW201108898A (en) 2011-03-01
JP5238598B2 (ja) 2013-07-17
KR101193264B1 (ko) 2012-10-19
JP2010263023A (ja) 2010-11-18
TWI440413B (zh) 2014-06-01
KR20110138392A (ko) 2011-12-27
US8661659B2 (en) 2014-03-04
US20120042511A1 (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP5456545B2 (ja) 回路基板の製造方法
JP5238598B2 (ja) 回路基板の製造方法
JP4576270B2 (ja) ハンダ回路基板の製造方法
JP4576286B2 (ja) 電子回路基板の製造方法および電子部品の実装方法
JP6210619B2 (ja) はんだ回路基板の製造方法、はんだ回路基板及び電子部品の実装方法
JP5001113B2 (ja) プリント配線基板上にハンダ層を形成する方法及びスラリーの吐出装置
KR20090039740A (ko) 땜납 회로 기판의 제조 방법
JP4920401B2 (ja) 導電性回路基板の製造方法
TWI505382B (zh) 焊球之製造方法
TWI311453B (ja)
JP4819611B2 (ja) ハンダ回路基板の製造方法
JP2008041867A (ja) ハンダ回路基板の製造方法
WO2017199720A1 (ja) 電子部品の実装方法
JP4819422B2 (ja) 電子回路基板へのハンダ粉末の付着方法およびハンダ付電子配線基板
JP2002335066A (ja) ハンダ回路基板の形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117024754

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13266379

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769455

Country of ref document: EP

Kind code of ref document: A1