WO2010125687A1 - 発電装置及びその制御方法 - Google Patents

発電装置及びその制御方法 Download PDF

Info

Publication number
WO2010125687A1
WO2010125687A1 PCT/JP2009/058546 JP2009058546W WO2010125687A1 WO 2010125687 A1 WO2010125687 A1 WO 2010125687A1 JP 2009058546 W JP2009058546 W JP 2009058546W WO 2010125687 A1 WO2010125687 A1 WO 2010125687A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power system
power
reactive current
current
Prior art date
Application number
PCT/JP2009/058546
Other languages
English (en)
French (fr)
Inventor
明 八杉
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CA2714887A priority Critical patent/CA2714887C/en
Priority to EP20090752709 priority patent/EP2432113B1/en
Priority to JP2009548925A priority patent/JP4885280B2/ja
Priority to US12/601,153 priority patent/US8295988B2/en
Priority to KR1020107020825A priority patent/KR101204545B1/ko
Priority to PCT/JP2009/058546 priority patent/WO2010125687A1/ja
Priority to CN200980110532.8A priority patent/CN102318182B/zh
Priority to BRPI0909215-3A priority patent/BRPI0909215A2/pt
Publication of WO2010125687A1 publication Critical patent/WO2010125687A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/102Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for limiting effects of transients
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • H02J3/185Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters wherein such reactive element is purely inductive, e.g. superconductive magnetic energy storage systems [SMES]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • the present invention relates to a power generator and a control method thereof.
  • the relationship between the amount of change in the voltage of the power system and the amount of reactive current supplied (absorbed) thereto is uniquely given by a table or the like, and this table is performed at the stage of installing the wind power generator. It is determined based on simulation or the like. However, when the reactive current is supplied based on the table obtained by the simulation, even if the voltage of the power system gradually recovers according to the table, the voltage before the power system voltage recovers to the reference voltage. It may become saturated and stable at this stage.
  • the present invention has been made to solve the above problems, and provides a power generation apparatus and a control method apparatus for the same that can reliably and quickly recover the voltage of the power system, which has been reduced due to a system fault, to a reference voltage.
  • the purpose is to do.
  • the present invention employs the following parts.
  • a generator connected to an electric power system, a voltage detection unit that detects a voltage of the electric power system, and a voltage that associates the voltage of the electric power system with a reactive current supplied to the electric power system. Based on the current related information, the reactive current is determined according to the voltage acquired from the voltage detector, and the power converter is controlled to adjust the reactive current supplied to or absorbed from the power system.
  • a power generation apparatus including a control unit, wherein the power system voltage is not within a predetermined range when a predetermined time has elapsed since the voltage of the power system fluctuated by a predetermined amount or more.
  • An information changing unit that changes the voltage-current related information so that the amount of the reactive current with respect to the voltage change amount of the voltage-current related information increases. It is.
  • the control unit when the voltage of the power system is detected by the voltage detection unit, and when the control unit acquires the detected voltage, the control unit associates the voltage of the power system with the reactive current supplied to the power system. Based on the related information, the reactive current corresponding to the acquired voltage is determined, and the power conversion unit is controlled so that the determined reactive current is supplied to the power system or absorbed from the power system.
  • the information change unit when the power system voltage is not within a predetermined range when a predetermined time has elapsed since the voltage of the power system fluctuated by a predetermined amount or more, the information change unit The voltage-current related information is changed so that the amount of reactive current with respect to the amount of voltage change in the information is increased.
  • the power conversion unit is controlled based on the voltage-current related information that is changed so as to increase the amount of the reactive current with respect to the voltage change amount.
  • the reactive current control based on the previous voltage-current related information could not catch up with the supply or absorption of the reactive current, the supply or absorption of the reactive current can be further accelerated, and the voltage of the power system is quickly set in advance. Within a predetermined range. As a result, the system voltage can be quickly stabilized.
  • the information changing unit is configured to determine whether the voltage / current related information is based on a difference between a voltage value of the power system and a reference voltage when a predetermined time has elapsed since the power system fluctuated by a predetermined amount or more.
  • the amount of the reactive current with respect to the amount of change in voltage may be changeable.
  • a generator connected to the power system, a voltage detection unit that detects a voltage of the power system, and a voltage that associates the voltage of the power system with the reactive current supplied to the power system. Based on the current related information, the reactive current is determined according to the voltage acquired from the voltage detector, and the power converter is controlled to adjust the reactive current supplied to or absorbed from the power system.
  • a control method for a power generation apparatus comprising a control unit, wherein a predetermined time has elapsed since a voltage of the power system fluctuated by a predetermined amount or more, and the power system voltage is within a predetermined range set in advance. The voltage / current related information is changed so that the amount of the reactive current with respect to the voltage change amount of the voltage / current related information increases. .
  • the present invention there is an effect that the voltage of the power system, which has been lowered due to a system fault or the like, can be reliably and quickly restored to the reference voltage.
  • FIG. 1 It is a block diagram showing an example of a wind power generator concerning one embodiment of the present invention. It is the figure which showed an example of the voltage current related information before the change which shows the relationship between the voltage of an electric power grid
  • FIG. 1 is a block diagram showing an example of the configuration of the generator 6 provided in the wind turbine generator and its surroundings.
  • the wind turbine generator 1 includes a windmill blade 4, a gear 5, a generator 6, a power conversion unit 20, a control unit 21, an information change unit 22, a voltage detection unit 27, a blade control unit 23, and A main control unit 24 is provided.
  • the generator 6 is connected to the power system 2. Further, the rotor of the generator 6 is joined to a windmill rotor (not shown) via the gear 5.
  • the generator (induction machine) 6 is configured so that the electric power generated by the generator 6 can be output from both the stator winding and the rotor winding to the electric power system 2.
  • the generator 6 has a stator winding connected to the power system 2 and a rotor winding connected to the power system 2 via the power converter 20.
  • the voltage detector 27 is provided on a power line that connects the generator 6 to the power system 2 and detects the voltage of the power system 2. The voltage measured from the voltage detection unit 27 is given to the control unit 21.
  • the power conversion unit 20 includes a converter 14, a DC bus 15, and an inverter 16, and converts the AC power received from the rotor windings into AC power suitable for the frequency of the power system 2.
  • Converter 14 converts AC power generated in the rotor windings into DC power and outputs the DC power to DC bus 15.
  • the inverter 16 converts the DC power received from the DC bus 15 into AC power having the same frequency as that of the power system 2 and outputs the AC power.
  • the power conversion unit 20 also has a function of converting AC power received from the power system 2 into AC power suitable for the frequency of the rotor winding.
  • the inverter 16 converts AC power into DC power and outputs the DC power to the DC bus 15.
  • the converter 14 converts the DC power received from the DC bus 15 into AC power suitable for the frequency of the rotor winding, and supplies the AC power to the rotor winding of the generator 6.
  • the control unit 21 has voltage-current related information for associating the voltage of the power system 2 with the reactive current supplied to the power system 2 or absorbed from the power system 2, and voltage detection is performed based on the voltage-current related information.
  • the reactive current amount corresponding to the voltage acquired from the unit 27 is determined, and the power conversion unit 20 is controlled so that the determined reactive current is supplied to the power system 2 or absorbed from the power system 2.
  • the control unit 21 determines a reactive current that supplies or absorbs a reactive current corresponding to the output voltage V measured by the voltage detection unit 27 to the power system 2.
  • the control unit 21 controls a PWM (Pulse Width Modulation) signal for the converter 14 or the inverter 16 to control the adjustment of the reactive current.
  • PWM Pulse Width Modulation
  • FIG. 2 shows an example of information in which the voltage and reactive current of the power system included in the control unit 21 are associated with each other.
  • the horizontal axis indicates the voltage of the power system as a ratio to the reference voltage (unit: Pu: per unit), and the intersection with the vertical axis is 1.0 Pu indicating the reference voltage.
  • the left side of the paper from 1.0 Pu on the horizontal axis indicates that the system voltage is lower than the reference voltage, and the right side of the paper from 1.0 Pu indicates that the system voltage is higher than the reference voltage.
  • the vertical axis is based on the fact that the reactive current is not adjusted (in other words, the intersection of the vertical axis with the horizontal axis is 0 Pu), and the amount of reactive current to be adjusted with respect to this reference is shown.
  • Unit is Pu
  • the lower side of the vertical axis from 0 Pu on the vertical axis indicates the amount of reactive current supplied from the generator side to the power system side
  • the upper side of the paper from 0 Pu indicates the amount of reactive current absorbed by the generator side from the power system.
  • the control unit 21 supplies a reactive current from the generator 6 side to the power system 2 side based on the information shown in FIG. As the distance approaches, the reactive current supplied to the power system 2 is reduced.
  • the control unit 21 absorbs the reactive current from the power system 2 side on the generator 6 side, and absorbs from the power system 2 as the system voltage approaches the reference voltage. Reduce the reactive current.
  • the information changing unit 22 is configured to change the voltage current when the voltage of the power system 2 is not within a predetermined range when a predetermined time elapses after the voltage of the power system 2 fluctuates by a predetermined amount or more.
  • the voltage-current related information is changed so that the amount of reactive current with respect to the voltage change amount of the related information is increased.
  • the time taken from detecting that a predetermined time has elapsed until the voltage / current related information is changed is several milliseconds to several hundred milliseconds.
  • the predetermined range of the voltage of the electric power system 2 is, for example, ⁇ 10% with respect to the reference voltage.
  • the information changing unit 22 determines the voltage in the voltage-current related information based on the difference between the voltage value of the power system 2 and the reference voltage when a predetermined time has elapsed since the voltage of the power system 2 fluctuated by a predetermined amount or more.
  • the amount of reactive current with respect to the amount of change may be changed. For example, when the power demand varies depending on the time zone such as daytime, evening, and midnight, when the power demand is small such as midnight, the power to recover to the reference voltage is weak, so the slope of the graph should be large (the slope is steep) . In addition, when the power demand during the daytime or evening is large, the power to recover to the reference voltage is strong. Therefore, it is preferable to make the slope of the graph smaller (gradient slope) than at midnight.
  • the blade control unit 23 controls the pitch angle ⁇ of the wind turbine blade 4 in response to the pitch command ⁇ * from the main control unit 24. Specifically, the blade control unit 23 performs control so that the pitch angle ⁇ of the windmill blade 4 matches the pitch command ⁇ * .
  • the blade control unit 23 controls the pitch angle of the wind turbine blade 4 in accordance with the control of the converter 14 and the inverter 16. That is, the blade control unit 23 controls the pitch angle of the windmill blade 4 so as to coincide with the pitch angle determined based on the required output of the power conversion unit 20.
  • the voltage detection unit 27 detects the voltage of the power system 2 by the voltage detection unit 27 and outputs it to the control unit 21.
  • the control unit 21 determines whether or not the voltage value detected by the voltage detection unit 27 has changed by a predetermined amount or more with respect to a predetermined reference voltage.
  • the control unit 21 is shown in FIG.
  • the reactive current is controlled based on the voltage-current related information in which the voltage of the power system and the reactive current are associated with each other. Specifically, the control unit 21 determines the reactive current corresponding to the voltage detected by the voltage detection unit 27 based on the voltage-current related information, and outputs the determined reactive current to the power system 2.
  • the converter 20 is controlled to operate the converter 14 or the inverter 16 (step SA2 in FIG. 4).
  • the control unit 21 calculates, based on the voltage of the power system 2 detected by the voltage detection unit 27, how much the current voltage value is with respect to 1.0 Pu as a reference. For example, when the voltage value detected by the voltage detection unit 27 is half of the reference voltage, the control unit 21 sets the reactive current value corresponding to 0.5 Pu in the voltage-current related information shown in FIG. read. As a result, for example, a value of ⁇ 1.0 Pu is read as the reactive current.
  • control unit 21 When the control unit 21 reads a value of ⁇ 1.0 Pu, the control unit 21 controls the power conversion unit 20 to supply a reactive current of 1.0 to the power system 2 side. Thereby, the inverter 16 of the power conversion unit 20 generates a current whose phase is advanced by 90 degrees with respect to the voltage, and this reactive current is supplied to the power system 2. In this way, by supplying the reactive current to the power system 2, the voltage of the power system 2 is gradually increased.
  • the control unit 21 newly detects a voltage value detected from the voltage detection unit 27 when a predetermined time has elapsed since it was detected that the voltage of the power system fluctuated by a predetermined amount or more with respect to the reference voltage. It is determined whether or not it is within a predetermined range from the reference voltage. As a result of the determination, if it is not within the predetermined range (step SA3 in FIG. 4), the information changing unit 22 changes the voltage-current related information currently used by the control unit 21. Specifically, as shown in FIG. 3, the information changing unit 22 increases the amount of reactive current with respect to the amount of change in voltage of the power system 2 as compared with the voltage-current related information (broken line) before the change. Change the voltage-current related information. In FIG. 3, the voltage-current related information after the change is indicated by a solid line.
  • the control unit 21 changes the reactive current (for example, ⁇ 1) corresponding to the current voltage (for example, 0.8 pu) of the power system 2 based on the changed voltage / current related information. .0pu), and the power converter 20 is controlled based on the reactive current.
  • a current whose phase is advanced by 90 degrees with respect to the voltage is generated and supplied to the power system 2.
  • the reactive current is supplied to the power system 2, the system voltage approaches the reference voltage, and falls within a predetermined voltage range (for example, a voltage range of ⁇ 10 percent (0.9 to 1.1 Pu) with respect to the reference voltage 1.0 Pu). If it has converged, the system voltage is considered stable.
  • the power conversion unit 20 is controlled based on the voltage-current related information after the change, and when the system voltage is stabilized (step SA6 in FIG. 4), the control unit 21 returns to the voltage-current related information before the change.
  • the reactive current is controlled based on the voltage-current related information before the change.
  • the operation is stopped (step SA7 in FIG. 4).
  • the wind turbine generator 1 and the control method thereof according to the present embodiment when the system voltage fluctuates more than a predetermined value, when a predetermined time elapses from the fluctuation,
  • the voltage of 2 is not within the preset range (for example, within ⁇ 10% with respect to the reference voltage)
  • the voltage current related information is changed so that the amount of reactive current with respect to the amount of change in voltage becomes large
  • the reactive current supplied to the power system 2 is controlled based on the changed voltage / current related information.
  • the voltage / current related information is changed and the supply / absorption amount of the reactive current is changed. Is rapidly changed, so that the voltage of the power system 2 can be quickly changed to the reference voltage.
  • FIG. 5 is an example of a diagram showing a state of voltage recovery of the power system 2 in time series.
  • the ideal graph from when the system voltage decreases until it approaches a predetermined voltage range set in advance is the first line, and the voltage of the power system 2 is the reference value. It takes A seconds to reach 1.0 Pu.
  • the reactive current is supplied based on the voltage-current related information as shown in 1b of FIG. 2, the system voltage is approaching the predetermined range (the range in which the system voltage is determined to be stable). Since the amount of reactive current decreases, the voltage resilience decreases accordingly, and the system voltage cannot reach (converge) within a predetermined range. (Second line in FIG. 5).
  • the information changing unit 22 changes the voltage-current related information, which is shown in 2b of FIG.
  • the amount of reactive current is increased and the voltage resilience is increased to bring the voltage of the power system 2 close to the reference voltage.
  • the voltage of the power system 2 can be quickly brought close to the reference voltage as in the third line of FIG. 5, and the voltage of the first line is reached until the voltage of the power system 2 reaches the reference value of 1.0 Pu. It is possible to approach the predetermined range faster than the case.
  • the time required for changing the voltage / current related information is several milliseconds to several hundred milliseconds, even if the time required for changing the voltage / current related information is taken into consideration, the voltage / current related information is changed. It is possible to recover the power system at an early stage as compared with the case where the reactive system is supplied without restoring the power system.
  • the information changing unit 22 has been described as changing the voltage / current related information only once, but the number of changes of the voltage / current related information is not particularly limited. For example, if the system voltage is not stable after the voltage-current related information is converted, the voltage-current related information may be changed again, and the voltage-current related information may be changed repeatedly until the system voltage is stabilized.
  • the voltage-current related information which the information change part 22 has was supposed to be given with a graph, it is not limited to this. For example, it may be given by an arithmetic expression, a table, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

 系統事故等により低下した電力系統の電圧を、確実に且つ速やかに基準電圧に回復させることができることを目的とする。電力系統に接続された発電機と、電力系統2の電圧を検出する電圧検出部と、電力系統2の電圧と電力系統2に供給する無効電流とを対応づける電圧電流関連情報に基づいて、電圧検出部27から取得した電圧に応じた無効電流を決定し、電力系統2に供給または電力系統2から吸収する無効電流を調整させるように電力変換部27を制御する制御部21とを備える発電装置であって、電力系統の電圧が所定量以上変動したときから所定の時間経過したときに、電力系統の電圧が予め設定されている所定の範囲内になかった場合に、電圧電流関連情報の電圧の変化量に対する無効電流の量が大きくなるように電圧電流関連情報を変更する情報変更部22とを具備する。

Description

発電装置及びその制御方法
 本発明は、発電装置及びその制御方法に関するものである。
 従来、例えば、風力発電装置を系統連系させる風力発電システムにおいて、系統事故等が発生した場合には電力系統の電圧が変動する。この変動分の電圧を基準電圧に回復させるために、発電機側から電力系統側に対し無効電流を供給させたり、或いは電力系統側から発電機側に無効電流を吸収させたりしている。
米国特許第2007/0273155号公報明細書
 ところで、電力系統の電圧の変化量と、それに対して供給(吸収)させる無効電流の量との関係は、テーブル等によって一意に与えられており、このテーブルは風力発電装置を据え付ける段階で行われるシミュレーション等に基づいて決定される。
 しかしながら、シミュレーションによって得られたテーブルに基づいて無効電流を供給した場合に、電力系統の電圧がテーブルに従って少しずつ回復に向かっても、電力系統の電圧が基準電圧に回復するよりも手前の電圧になった段階で飽和して安定してしまうことがある。
 このような場合、電力系統の電圧を基準電圧に回復させるために電力供給側がさらに無効電流の供給が必要であっても、電圧が安定してしまった段階においては電力系統側に無効電流をそれ以上に供給(吸収)できないという問題があった。つまり、シミュレート等で決定されたテーブルに基づいて電力系統の電圧を回復させるべく制御したとしても、実環境においてはシミュレート通りの結果とならず、系統事故時等において、電力系統の電圧を確実に回復させることができないという問題があった。
 本発明は、上記問題を解決するためになされたもので、系統事故等により低下した電力系統の電圧を、確実に且つ速やかに基準電圧に回復させることができる発電装置及びその制御方法装置を提供することを目的とする。
 上記課題を解決するために、本発明は以下の部を採用する。
 本発明の第1の態様は、電力系統に接続された発電機と、電力系統の電圧を検出する電圧検出部と、前記電力系統の電圧と前記電力系統に供給する無効電流とを対応づける電圧電流関連情報に基づいて、前記電圧検出部から取得した電圧に応じた無効電流を決定し、前記電力系統に供給または前記電力系統から吸収する無効電流を調整させるように前記電力変換部を制御する制御部とを備える発電装置であって、前記電力系統の電圧が所定量以上変動したときから所定の時間経過したときに、前記電力系統の電圧が予め設定されている所定の範囲内になかった場合に、前記電圧電流関連情報の前記電圧の変化量に対する前記無効電流の量が大きくなるように前記電圧電流関連情報を変更する情報変更部とを具備することを特徴とする発電装置である。
 このような構成により、電力系統の電圧が電圧検出部によって検出され、検出された電圧を制御部が取得すると、制御部は、電力系統の電圧と電力系統に供給する無効電流とを対応付ける電圧電流関連情報に基づいて、取得した電圧に対応する無効電流を決定し、決定した無効電流を電力系統に供給、または電力系統から吸収するように電力変換部を制御する。また、電力系統の電圧が、所定量以上変動した時から所定の時間経過した時に、電力系統の電圧が予め設定されている所定の範囲内になかった場合に、情報変更部は、電圧電流関連情報における電圧の変化量に対する無効電流の量が大きくなるように電圧電流関連情報を変更する。
 このように、電力系統の電圧が所定量以上変動した場合には、電圧の変化量に対する無効電流の量を大きくなるように変更した電圧電流関連情報に基づいて電力変換部を制御するので、変更前の電圧電流関連情報に基づく無効電流の制御では無効電流の供給または吸収が追いつかなかった場合に、無効電流の供給または吸収を更に加速させることができ、電力系統の電圧を速やかに予め設定されている所定の範囲内に近づけることができる。これにより、速やかに系統電圧を安定化させることができる。
 上記発電装置において、前記情報変更部は、前記電力系統が所定量以上変動したときから所定時間経過したときにおける該電力系統の電圧値と基準電圧との差分に基づいて、前記電圧電流関連情報における前記電圧の変化量に対する前記無効電流の量の大きさが変更可能であることとしてもよい。
 このように、電力系統の電圧値と基準電圧との差分に基づいて、電圧の変化量に対する無効電流の量の大きさを変更するので、適宜必要となる無効電流を供給・吸収することができる。
 本発明の第2の態様は、電力系統に接続された発電機と、電力系統の電圧を検出する電圧検出部と、前記電力系統の電圧と前記電力系統に供給する無効電流とを対応づける電圧電流関連情報に基づいて、前記電圧検出部から取得した電圧に応じた無効電流を決定し、前記電力系統に供給または前記電力系統から吸収する無効電流を調整させるように前記電力変換部を制御する制御部とを備える発電装置の制御方法であって、前記電力系統の電圧が所定量以上変動したときから所定の時間経過したときに、前記電力系統の電圧が予め設定されている所定の範囲内になかった場合に、前記電圧電流関連情報の前記電圧の変化量に対する前記無効電流の量が大きくなるように前記電圧電流関連情報を変更する過程を有する発電装置の制御方法である。
 本発明によれば、系統事故等により低下した電力系統の電圧を、確実に且つ速やかに基準電圧に回復させることができるという効果を奏する。
本発明の一実施形態に係る風力発電装置の一例を示したブロック図である。 電力系統の電圧と無効電流との関係を示す変更前の電圧電流関連情報の一例を示した図である。 電力系統の電圧と無効電流との関係を示す変更後の電圧電流関連情報の一例を示した図である。 本発明の風力発電装置の制御方法の動作フローを示した図である。 電力系統の電圧の変化を時系列に示した図の一例である。
1 風力発電装置
2 電力系統
14 コンバータ
15 DCバス
16 インバータ
20 電力変換部
21 制御部
22 情報変更部
27 電圧検出部
 以下に、本発明に係る発電装置及びその制御方法の一実施形態について、図面を参照して説明する。
 図1は、風力発電装置に備えられた発電機6及びその周辺の構成の一例を示すブロック図である。
 図1に示されるように、風力発電装置1は、風車ブレード4、ギア5、発電機6、電力変換部20、制御部21、情報変更部22、電圧検出部27、ブレード制御部23、および主制御部24を備えている。なお、発電機6は電力系統2と接続されている。また、発電機6のロータは、ギア5を介して風車ロータ(図示略)に接合されている。
 本実施形態において、発電機(誘導機)6は、発電機6が発生する電力がステータ巻線及びロータ巻線の両方から電力系統2に出力できるように構成されている。具体的には、発電機6は、そのステータ巻線が電力系統2に接続され、ロータ巻線が電力変換部20を介して電力系統2に接続されている。
 電圧検出部27は、発電機6を電力系統2に接続する電力線上に設けられており、電力系統2の電圧を検出する。電圧検出部27から計測された電圧は、制御部21に与えられる。
 電力変換部20は、コンバータ14、DCバス15、及びインバータ16を備えて構成されており、ロータ巻線から受け取った交流電力を電力系統2の周波数に適合した交流電力に変換する。コンバータ14は、ロータ巻線に発生した交流電力を直流電力に変換し、その直流電力をDCバス15に出力する。インバータ16は、DCバス15から受け取った直流電力を電力系統2と同一の周波数の交流電力に変換し、その交流電力を出力する。
 電力変換部20は、電力系統2から受け取った交流電力をロータ巻線の周波数に適合した交流電力に変換する機能も有している。この場合、インバータ16は、交流電力を直流電力に変換し、その直流電力をDCバス15に出力する。コンバータ14は、DCバス15から受け取った直流電力をロータ巻線の周波数に適合した交流電力に変換し、その交流電力を発電機6のロータ巻線に供給する。
 制御部21は、電力系統2の電圧と、電力系統2に供給するまたは電力系統2から吸収する無効電流とを対応づける電圧電流関連情報を有し、この電圧電流関連情報に基づいて、電圧検出部27から取得した電圧に応じた無効電流量を決定し、決定した無効電流を電力系統2に供給、または電力系統2から吸収させるべく電力変換部20を制御する。具体的には、制御部21は、電圧検出部27によって計測された出力電圧Vに対応した無効電流を電力系統2に供給、又は電力系統2から吸収する無効電流を決定する。さらに、制御部21は、コンバータ14、又はインバータ16に対するPWM(Pulse Width Modulation:パルス幅変調)信号を制御し、無効電流の調整を制御する。
 図2に制御部21が備える電力系統の電圧と無効電流とが対応付けられた情報の一例を示す。図2において、横軸は電力系統の電圧を基準電圧に対する比で示しており(単位はPu:パーユニット)、縦軸との交点は基準電圧であることを示す1.0Puとしている。横軸における1.0Puから紙面左側は、基準電圧に対して系統電圧が低いことを示し、1.0Puから紙面右側は、基準電圧に対して系統電圧が高いことを示す。
 一方、図2において、縦軸は、無効電流の調整が行われないことを基準とし(換言すると、縦軸における横軸との交点は0Pu)、この基準に対して調整する無効電流の量を示している(単位はPu)。例えば、縦軸における0Puから紙面下側は、発電機側から電力系統側に供給する無効電流量を示し、0Puから紙面上側は、発電機側が電力系統から吸収する無効電流量を示す。
 制御部21は、図2に示される情報に基づいて、計測された系統電圧が基準電圧よりも小さい場合、発電機6側から電力系統2側に無効電流を供給させ、系統電圧が基準電圧に近づくにつれて電力系統2側に供給させる無効電流を少なくする。また、計測された系統電圧が基準電圧よりも大きい場合、制御部21は、発電機6側に電力系統2側からの無効電流を吸収させ、系統電圧が基準電圧に近づくにつれて電力系統2から吸収させる無効電流を少なくする。
 情報変更部22は、電力系統2の電圧が所定量以上変動したときから所定の時間経過したときに、電力系統2の電圧が予め設定されている所定の範囲内になかった場合に、電圧電流関連情報の電圧の変化量に対する無効電流の量が大きくなるように電圧電流関連情報を変更する。なお、例えば、所定の時間経過したことを検出してから、電圧電流関連情報を変更するまでにかかる時間は数ミリ秒から数百ミリ秒である。また、電力系統2の電圧の所定の範囲とは、例えば、基準電圧に対する±10パーセントである。
 また、情報変更部22は、電力系統2の電圧が所定量以上変動したときから所定時間経過したときにおける電力系統2の電圧値と基準電圧との差分に基づいて、電圧電流関連情報における電圧の変化量に対する無効電流の量の大きさを変更することとしてもよい。
 例えば、昼間、夕方、および深夜など時間帯によって電力需要が異なる場合において、深夜など電力需要が小さいときには、基準電圧まで回復する力が弱いため、グラフの傾きは大きく(傾きを急に)するとよい。また、昼間や夕方などの電力需要が大きいときには、基準電圧まで回復する力が強いため、深夜の場合よりグラフの傾きを小さく(傾きを緩やかに)するとよい。
 ブレード制御部23は、主制御部24からのピッチ指令βに応答して、風車ブレード4のピッチ角βを制御する。具体的には、ブレード制御部23は、ピッチ指令βに風車ブレード4のピッチ角βを一致させるように制御を行う。
 ブレード制御部23は、コンバータ14及びインバータ16の制御に伴い、風車ブレード4のピッチ角制御を行う。即ち、ブレード制御部23は、電力変換部20の要求出力に基づいて決定されるピッチ角に一致するように、風車ブレード4のピッチ角を制御する。
 次に、系統電圧が低下した場合における本実施形態に係る風力発電装置1の作用について、図2から図4を参照して説明する。
 まず、電圧検出部27によって電圧検出部27によって電力系統2の電圧が検出され、制御部21に出力される。(図4のステップSA1)、制御部21は、電圧検出部27によって検出された電圧値が既定の基準電圧に対して所定量以上変化したか否かを判断する。この結果、例えば、系統側に事故等が発生し、系統電圧が急激に低下して、基準電圧に対して所定量以上の電圧変動が生じた場合には、制御部21は、図2に示されるような電力系統の電圧と無効電流とを対応付けた電圧電流関連情報に基づいて無効電流を制御する。具体的には、制御部21は、電圧検出部27によって検出された電圧に対応する無効電流を電圧電流関連情報に基づいて決定し、決定した無効電流を電力系統2に出力させるように、電力変換部20を制御し、コンバータ14またはインバータ16を作動させる(図4のステップSA2)。
 制御部21は、電圧検出部27によって検出された電力系統2の電圧に基づいて、基準としている1.0Puに対して現時点における電圧値がどの程度の割合であるかを計算する。例えば、制御部21は、電圧検出部27によって検出された電圧値が基準電圧の半分であった場合には、図2に示される電圧電流関連情報において0.5Puに対応する無効電流の値を読み取る。この結果、無効電流は、例えば-1.0Puという値が読み取られる。
 制御部21は、-1.0Puという値を読み取ると、電力系統2側に1.0の無効電流を供給させるべく、電力変換部20を制御する。これにより、電力変換部20のインバータ16によって、電圧に対し90度位相の進んだ電流が生成され、この無効電流が電力系統2に供給される。このように、無効電流を電力系統2に供給することによって電力系統2の電圧を徐々に上昇させる。
 その後、制御部21は、電力系統の電圧が基準電圧に対して所定量以上変動したことを検知したときから所定の時間経過したときに、新たに電圧検出部27から検出される電圧値が、基準電圧から所定の範囲内にあるか否かを判定する。判定の結果、所定の範囲内にない場合には(図4のステップSA3)、情報変更部22は現在制御部21が用いている電圧電流関連情報を変更する。具体的には、情報変更部22は、図3に示すように、変更前の電圧電流関連情報(破線)と比較して電力系統2の電圧の変化量に対する無効電流の量を大きくなるように、電圧電流関連情報を変更する。図3において、変更後の電圧電流関連情報は実線で示されている。
 電圧電流関連情報が変更されると、制御部21は、変更された電圧電流関連情報に基づいて、現時点における電力系統2の電圧(例えば、0.8pu)に対応する無効電流(例えば、-1.0pu)を取得し、この無効電流に基づいて電力変換部20を制御する。これにより、電圧に対して90度位相の進んだ電流が生成され、電力系統2に供給される。無効電流が電力系統2に供給され、系統電圧が基準電圧に近づき、所定の電圧範囲(例えば、基準電圧1.0Puに対する±10パーセント(0.9から1.1Pu)の電圧範囲)に収まった(収束した)場合には、系統電圧が安定したとみなされる。このようにして、電力変換部20は、変更後の電圧電流関連情報に基づいて制御され、系統電圧が安定すると(図4のステップSA6)、制御部21は変更前の電圧電流関連情報に戻し、変更前の電圧電流関連情報に基づいて無効電流の制御を行う。
 一方、上記の如く無効電流を制御しても系統電圧が安定しなかった場合には、運転を停止させる(図4のステップSA7)。
 以上説明してきたように、本実施形態に係る風力発電装置1及びその制御方法によれば、系統電圧が所定値以上変動した場合に、その変動のときから所定の時間経過したときに、電力系統2の電圧が予め設定されている所定の範囲内(例えば、基準電圧に対する±10パーセント以内)になかった場合に、電圧の変化量に対する無効電流の量が大きくなるように電圧電流関連情報を変更し、変更した電圧電流関連情報に基づいて電力系統2に供給する無効電流を制御する。このように、変更前の電圧電流関連情報に基づいて制御したのでは、所望の速さで系統電圧を回復できなかった場合に、電圧電流関連情報を変更して無効電流の供給量・吸収量を急峻に変化させるので、速やかに電力系統2の電圧を基準電圧に遷移させることができる。
 図5は、電力系統2の電圧の回復の様子を時系列で示した図の一例である。
 図5に示されるように、系統電圧が低下してから予め設定されている所定の電圧範囲内に近づけるまでの理想的なグラフは第1ラインであり、電力系統2の電圧が基準値である1.0PuとなるまでにはA秒の時間がかかる。しかし、図2の1bに示されるような電圧電流関連情報に基づいて無効電流を供給した場合に、系統電圧が所定の範囲内(系統電圧が安定したと判断される範囲内)に近づく途中で、無効電流の量が、減少していくため、それに応じて電圧回復力が減少し、系統電圧が所定の範囲内に到達(収束)できなくなる。(図5の第2ライン)。
 ここで、電圧が低下してから所定の時間(図5のB秒)経過したときに、本実施形態に係る情報変更部22によって電圧電流関連情報を変更することによって、図2の2bに示されるように、無効電流の量を多くし、電圧回復力を増大させて、電力系統2の電圧を基準電圧に近づける。この結果、図5の第3ラインのように電力系統2の電圧を基準電圧に速やかに近づけることができ、電力系統2の電圧が基準値である1.0Puとなるまでには第1ラインの場合よりも速く所定の範囲に近づけることができる。
 これにより、停電などによって電力系統2の電圧が低下したときに、電力系統2の電圧を所定の範囲に近づける場合、ある電圧値で電圧が飽和してしまうことによって無効電流を供給できずに電力系統2の電圧が所定の範囲に回復するのが遅れてしまうことを防ぎ、確実に基準電圧に近づけることが可能となり、かつ、速やかな回復が可能となる。
 また、上記電圧電流関連情報の変更に要する時間は、数ミリ秒から数百ミリ秒であるので、電圧電流関連情報を変更するのに要する時間を考慮したとしても、電圧電流関連情報を変更させずに無効電流を供給して電力系統を回復させる場合に比べて、電力系統を早期に回復させることが可能となる。
 なお、本実施形態に係る風力発電装置1においては、情報変更部22が電圧電流関連情報を変更するのは1度だけとして説明していたが、電圧電流関連情報の変更回数は特に限定されない。例えば、電圧電流関連情報変換後に系統電圧が安定しなければ、再度電圧電流関連情報を変更し、系統電圧が安定するまで電圧電流関連情報を繰り返し変更することとしてもよい。
 また、情報変更部22が有する電圧電流関連情報はグラフで与えられることとしていたが、これに限定されない。例えば、演算式、テーブル等で与えられることとしてもよい。
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 

Claims (3)

  1.  電力系統に接続された発電機と、電力系統の電圧を検出する電圧検出部と、前記電力系統の電圧と前記電力系統に供給する無効電流とを対応づける電圧電流関連情報に基づいて、前記電圧検出部から取得した電圧に応じた無効電流を決定し、前記電力系統に供給または前記電力系統から吸収する無効電流を調整させるように前記電力変換部を制御する制御部とを備える発電装置であって、
     前記電力系統の電圧が所定量以上変動したときから所定の時間経過したときに、前記電力系統の電圧が予め設定されている所定の範囲内になかった場合に、前記電圧電流関連情報の前記電圧の変化量に対する前記無効電流の量が大きくなるように前記電圧電流関連情報を変更する情報変更部と
     を具備することを特徴とする発電装置。
  2.  前記情報変更部は、前記電力系統が所定量以上変動したときから所定時間経過したときにおける該電力系統の電圧値と基準電圧との差分に基づいて、前記電圧電流関連情報における前記電圧の変化量に対する前記無効電流の量の大きさが変更可能であることを特徴とする請求項1に記載の発電装置。
  3.  電力系統に接続された発電機と、電力系統の電圧を検出する電圧検出部と、前記電力系統の電圧と前記電力系統に供給する無効電流とを対応づける電圧電流関連情報に基づいて、前記電圧検出部から取得した電圧に応じた無効電流を決定し、前記電力系統に供給または前記電力系統から吸収する無効電流を調整させるように前記電力変換部を制御する制御部とを備える発電装置の制御方法であって、
     前記電力系統の電圧が所定量以上変動したときから所定の時間経過したときに、前記電力系統の電圧が予め設定されている所定の範囲内になかった場合に、前記電圧電流関連情報の前記電圧の変化量に対する前記無効電流の量が大きくなるように前記電圧電流関連情報を変更する過程を有する発電装置の制御方法。 
PCT/JP2009/058546 2009-05-01 2009-05-01 発電装置及びその制御方法 WO2010125687A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2714887A CA2714887C (en) 2009-05-01 2009-05-01 Generating apparatus and control method thereof
EP20090752709 EP2432113B1 (en) 2009-05-01 2009-05-01 Power generating device and control method therefor
JP2009548925A JP4885280B2 (ja) 2009-05-01 2009-05-01 発電装置及びその制御方法
US12/601,153 US8295988B2 (en) 2009-05-01 2009-05-01 Generating apparatus and control method thereof
KR1020107020825A KR101204545B1 (ko) 2009-05-01 2009-05-01 발전 장치 및 그 제어 방법
PCT/JP2009/058546 WO2010125687A1 (ja) 2009-05-01 2009-05-01 発電装置及びその制御方法
CN200980110532.8A CN102318182B (zh) 2009-05-01 2009-05-01 发电装置及其控制方法
BRPI0909215-3A BRPI0909215A2 (pt) 2009-05-01 2009-05-01 Aparelho de geração e método de controle do mesmo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058546 WO2010125687A1 (ja) 2009-05-01 2009-05-01 発電装置及びその制御方法

Publications (1)

Publication Number Publication Date
WO2010125687A1 true WO2010125687A1 (ja) 2010-11-04

Family

ID=43031849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058546 WO2010125687A1 (ja) 2009-05-01 2009-05-01 発電装置及びその制御方法

Country Status (8)

Country Link
US (1) US8295988B2 (ja)
EP (1) EP2432113B1 (ja)
JP (1) JP4885280B2 (ja)
KR (1) KR101204545B1 (ja)
CN (1) CN102318182B (ja)
BR (1) BRPI0909215A2 (ja)
CA (1) CA2714887C (ja)
WO (1) WO2010125687A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137356A1 (ja) * 2011-04-01 2012-10-11 三菱重工業株式会社 風力発電装置の制御装置、風力発電装置、ウインドファーム、及び風力発電装置の制御方法
US8508061B2 (en) * 2011-11-16 2013-08-13 Mitsubishi Heavy Industries, Ltd. Wind-power generation system and control method for the same
JP2014050162A (ja) * 2012-08-30 2014-03-17 Hitachi Ltd 風力発電用変換装置、風力発電用制御装置及び風力発電用変換装置の制御方法
JP2015220979A (ja) * 2014-05-14 2015-12-07 エルエス産電株式会社Lsis Co., Ltd. コンバータ及びその動作方法
EP2573894A3 (en) * 2011-09-26 2017-06-28 General Electric Company Method and systems for operating a power generation and delivery system
US10305283B1 (en) 2018-02-22 2019-05-28 General Electric Company Power angle feedforward signal for phase locked loop in wind turbine power systems
US11031784B2 (en) 2018-02-15 2021-06-08 General Electric Company Reactive current margin regulator for power systems

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120056425A1 (en) * 2010-09-02 2012-03-08 Clipper Windpower, Inc. Stand alone operation system for use with utility grade synchronous wind turbine generators
WO2012062323A2 (en) 2010-11-10 2012-05-18 Vestas Wind Systems A/S Method and system for operating a wind turbine
ES2698397T3 (es) * 2011-02-01 2019-02-04 Siemens Ag Desincronización activa de convertidores de conmutación
WO2014056633A1 (en) 2012-10-12 2014-04-17 Siemens Aktiengesellschaft Method and controller for continuously operating a plurality of electric energy generating machines during a high voltage condition
CA2906717A1 (en) * 2013-03-14 2014-09-25 The Powerwise Group, Inc. Autonomous smart grid demand measurement system and method
US9458830B2 (en) 2014-09-05 2016-10-04 General Electric Company System and method for improving reactive current response time in a wind turbine
WO2018017056A1 (en) * 2016-07-19 2018-01-25 Hewlett-Packard Development Company, L.P. Power monitoring and reduction
CN113300417B (zh) * 2021-05-26 2022-05-20 华中科技大学 一种增强双馈风机同步稳定性的控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527856A (ja) * 1991-07-22 1993-02-05 Toshiba Corp 無効電力補償装置
JPH06284798A (ja) * 1993-03-30 1994-10-07 Mitsubishi Electric Corp 交流励磁同期機の2次励磁装置
JP2008301584A (ja) * 2007-05-30 2008-12-11 Hitachi Ltd 風力発電システムおよび電力変換器の制御方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3590276B2 (ja) 1998-10-22 2004-11-17 松下電器産業株式会社 無効電力補償装置
JP2000175360A (ja) 1998-12-02 2000-06-23 Nissin Electric Co Ltd 電力貯蔵システムの逆潮流方法
JP3873564B2 (ja) * 2000-02-28 2007-01-24 三菱電機株式会社 励磁制御装置及び励磁制御方法
JP4204846B2 (ja) * 2002-10-31 2009-01-07 三菱電機株式会社 交流励磁形発電電動機の制御装置
CN1926742B (zh) 2004-03-12 2011-05-25 通用电气公司 用于操作发电机变频器的方法以及具有根据这种方法操作的发电机的风能涡轮机
US7417336B2 (en) * 2004-08-31 2008-08-26 Caterpillar Inc. Combination current hysteresis and voltage hysteresis control for a power converter
TWI264864B (en) 2005-04-08 2006-10-21 Univ Chang Gung Power flow calculation method of power grid with unified power flow controller
TWI290788B (en) 2005-08-29 2007-12-01 Kun Shan University Of Technol A reactive power compensator device for compensating the reactive power of induction generator
US7560909B2 (en) * 2005-11-14 2009-07-14 Asahi Kasei Microsystems Co., Ltd. Power converter using extrapolative conductance mode control
TWI336160B (en) 2006-12-01 2011-01-11 Ind Tech Res Inst Hybrid power-generating device
JP4501958B2 (ja) * 2007-05-09 2010-07-14 株式会社日立製作所 風力発電システムおよびその制御方法
ATE485616T1 (de) * 2007-07-16 2010-11-15 Gamesa Innovation & Tech Sl Windkraftsystem und betriebsverfahren dafür
DE102007044601A1 (de) * 2007-09-19 2009-04-09 Repower Systems Ag Windpark mit Spannungsregelung der Windenergieanlagen und Betriebsverfahren
US8213199B2 (en) * 2007-11-30 2012-07-03 Alencon Acquisition Co., Llc. Multiphase grid synchronized regulated current source inverter systems
CN101889378A (zh) * 2008-02-15 2010-11-17 风力发电系统有限公司 串联电压补偿器和在发电机中用于串联电压补偿的方法
US8120932B2 (en) * 2008-07-01 2012-02-21 American Superconductor Corporation Low voltage ride through

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527856A (ja) * 1991-07-22 1993-02-05 Toshiba Corp 無効電力補償装置
JPH06284798A (ja) * 1993-03-30 1994-10-07 Mitsubishi Electric Corp 交流励磁同期機の2次励磁装置
JP2008301584A (ja) * 2007-05-30 2008-12-11 Hitachi Ltd 風力発電システムおよび電力変換器の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2432113A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137356A1 (ja) * 2011-04-01 2012-10-11 三菱重工業株式会社 風力発電装置の制御装置、風力発電装置、ウインドファーム、及び風力発電装置の制御方法
JP2012217290A (ja) * 2011-04-01 2012-11-08 Mitsubishi Heavy Ind Ltd 風力発電装置の制御装置、風力発電装置、ウインドファーム、及び風力発電装置の制御方法
EP2573894A3 (en) * 2011-09-26 2017-06-28 General Electric Company Method and systems for operating a power generation and delivery system
US9711964B2 (en) 2011-09-26 2017-07-18 General Electric Corporation Method and system for operating a power generation and delivery system
US8508061B2 (en) * 2011-11-16 2013-08-13 Mitsubishi Heavy Industries, Ltd. Wind-power generation system and control method for the same
JP2014050162A (ja) * 2012-08-30 2014-03-17 Hitachi Ltd 風力発電用変換装置、風力発電用制御装置及び風力発電用変換装置の制御方法
JP2015220979A (ja) * 2014-05-14 2015-12-07 エルエス産電株式会社Lsis Co., Ltd. コンバータ及びその動作方法
US9853582B2 (en) 2014-05-14 2017-12-26 Lsis Co., Ltd. Converter interconnected with a wind power generation farm to enable continuous power transmission and operating method thereof
US11031784B2 (en) 2018-02-15 2021-06-08 General Electric Company Reactive current margin regulator for power systems
US10305283B1 (en) 2018-02-22 2019-05-28 General Electric Company Power angle feedforward signal for phase locked loop in wind turbine power systems

Also Published As

Publication number Publication date
EP2432113A1 (en) 2012-03-21
US8295988B2 (en) 2012-10-23
CA2714887C (en) 2012-10-02
US20120035774A1 (en) 2012-02-09
CA2714887A1 (en) 2010-11-01
EP2432113A4 (en) 2013-12-18
EP2432113B1 (en) 2015-02-25
BRPI0909215A2 (pt) 2015-08-25
KR101204545B1 (ko) 2012-11-23
JP4885280B2 (ja) 2012-02-29
KR20110000631A (ko) 2011-01-04
CN102318182B (zh) 2014-03-26
JPWO2010125687A1 (ja) 2012-10-25
CN102318182A (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
JP4885280B2 (ja) 発電装置及びその制御方法
US9503007B2 (en) System and method for controlling a power generation system connected to a weak grid
US9065370B2 (en) Wind power generation device
US8615331B2 (en) Method and apparatus for controlling the feed of reactive power in a wind power generation system
KR101039544B1 (ko) 풍력 발전 장치
US9548690B2 (en) System and method for adjusting current regulator gains applied within a power generation system
US9641113B2 (en) System and method for controlling a power generation system based on PLL errors
CN109154275B (zh) 在异常电网事件期间运行风力涡轮机发电机
JP5398233B2 (ja) インバータの単独運転検出装置および単独運転検出方法
CN113541180A (zh) 用于控制风力涡轮机转换器的系统和方法
JP2011135706A (ja) 風力発電システムおよびその制御方法
JP4354780B2 (ja) 風力発電装置
AU2009342166A1 (en) Generating apparatus and control method thereof
KR20100114387A (ko) 선택적 발전방식을 사용하는 풍력 발전기 및 그의 발전 제어방법
KR20130061995A (ko) 풍력 터빈의 저전압보상 제어 장치 및 제어 방법
WO2024118067A1 (en) System and method for operating an inverter-based resource in grid-forming mode (gfm) for enhanced stability during a transient grid power event
KR101011558B1 (ko) 풍력 발전 장치 및 그 출력 제어 방법
TWI373897B (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110532.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009548925

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12601153

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009752709

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107020825

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009342166

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2714887

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 6836/DELNP/2010

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09752709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0909215

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100928