WO2010124598A1 - 伺服助力转向系统及其控制方法 - Google Patents

伺服助力转向系统及其控制方法 Download PDF

Info

Publication number
WO2010124598A1
WO2010124598A1 PCT/CN2010/072157 CN2010072157W WO2010124598A1 WO 2010124598 A1 WO2010124598 A1 WO 2010124598A1 CN 2010072157 W CN2010072157 W CN 2010072157W WO 2010124598 A1 WO2010124598 A1 WO 2010124598A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
signal
angle
steel ring
position detecting
Prior art date
Application number
PCT/CN2010/072157
Other languages
English (en)
French (fr)
Inventor
郝双晖
郝明晖
Original Assignee
浙江关西电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江关西电机有限公司 filed Critical 浙江关西电机有限公司
Publication of WO2010124598A1 publication Critical patent/WO2010124598A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • B62D6/10Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0215Determination of steering angle by measuring on the steering column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0235Determination of steering angle by measuring or deriving directly at the electric power steering motor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information

Definitions

  • the invention relates to a servo power steering system and a control method thereof, and belongs to the technical field of automobile manufacturing.
  • the existing automobile steering system can be divided into two types: a mechanical steering system and a power steering system.
  • the mechanical steering system relies on the steering force of the driver to control the steering wheel to realize the steering of the wheel.
  • the power steering system realizes the steering of the wheel by the liquid pressure generated by the automobile engine or the driving force of the motor under the control of the driver. It is a hydraulic power steering system and an electric power steering system.
  • the hydraulic power steering system consists of two parts: hydraulic and mechanical. It uses hydraulic oil as the power transmission medium, and the hydraulic pump generates power to push the mechanical steering gear to realize steering.
  • the hydraulic pump relies on the power of the engine. When the engine is running, the hydraulic pump is always in operation, which increases the fuel consumption of the engine.
  • the hydraulic system includes oil pump, oil pipe, pressure flow control valve, oil storage tank, etc. The number of parts is large, and there are oil leakage problems, which are polluting the environment.
  • the electric power steering system is generally composed of a mechanical steering system plus a torque sensor, a vehicle speed sensor, an electronic control unit, a speed reducer, an electric motor, etc., based on the traditional mechanical steering system, based on the torque signal on the steering wheel and the driving of the car.
  • the vehicle speed signal uses an electronic control device to generate an auxiliary power of a corresponding magnitude and direction to assist the driver in steering operation.
  • the electric power steering system only activates the electric motor when it needs to be turned, and reduces the energy consumption compared to the hydraulic power steering system. At the same time, there are no complicated oil circuit components in the hydraulic system, and there is no environmental pollution caused by oil leakage.
  • the control device provides assistance according to different driving conditions, reduces the disturbance of the output torque of the motor caused by the unevenness of the road surface to the system through the action of the transmission device, and improves the steering characteristics of the vehicle. Therefore, the electric power steering system is the development direction of modern automobile steering systems.
  • the existing electric power steering system includes a torque sensor, which provides power according to the torque of the steering wheel and the speed of the vehicle.
  • the price of the torque sensor is high, and the torque is detected according to the deformation of the steering wheel connecting rod, and the connecting rod is required to be high. , difficult to process. The response is slow. After the driver turns the steering wheel, the steering wheel connecting rod is deformed.
  • the torque sensor detects the torque according to the deformation.
  • the controller controls the motor according to the torque calculation. The whole process requires a long response time.
  • the existing power steering system uses the torque signal and the vehicle speed signal as parameters for controlling the motor at the same time, and the power is improved in a certain procedure, but different road conditions require different powers at the same speed, so the power assist effect is not optimal, different speeds or different speeds Under the road conditions, the force required by the driver to turn the steering wheel still differs greatly. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a servo power steering system and a control method thereof, which can reduce energy consumption and avoid environmental pollution; low cost and simple structure; and ensure driving reliability and safety.
  • the system responds quickly and provides the best boost.
  • the driver's steering force is small and constant, independent of road conditions and speed.
  • the steering wheel is stable and unaffected by engine or wheel vibration.
  • a servo power steering system includes a steering wheel, a first steering shaft, a second steering shaft, a speed reducer, a steering mechanism and a wheel, wherein the steering wheel is coupled to one end of the first steering shaft, and the other end of the first steering shaft a steering shaft connection, a second steering shaft is provided with a speed reducer, the second steering shaft is connected to the wheel through a steering mechanism, and the first steering shaft, the second steering shaft and the servo motor shaft are provided with position detecting devices, the position The detecting device senses a rotation input signal of the rotating shaft to the servo controller, and the servo controller controls the servo motor to drive the speed reducer and steers the wheel through the steering mechanism.
  • the first steering shaft and the second steering shaft are connected by a connecting device.
  • the connecting device includes corresponding first and second connecting heads, which are respectively connected to the first and second steering shafts, and the first and second connecting heads are respectively provided with convex portions and concave portions, and convex portions. The portion and the concave portion are engaged with each other, and a gap is formed between the convex portion and the concave portion after the occlusion.
  • the first connector includes a connector body, and the protrusion protrudes in the axial direction from the first connector body.
  • the second connector comprises a connector body, and the recess is recessed into the second connector body in the axial direction.
  • the first connector includes a connector body, and the protrusion is radially outwardly disposed outside an outer surface of the first connector body.
  • the second connecting joint comprises a connecting joint body, and the concave portion is recessed radially in the outer surface of the second connecting joint body.
  • the protrusion is equal to or shorter than the first connector body.
  • the recess is equal to or shorter than the second connector body.
  • the convex portion or the concave portion may be one or more depending on different needs.
  • the convex portion is a convex piece, and the concave portion is correspondingly disposed as a concave groove.
  • the convex portion is a claw disposed on the first connecting joint
  • the concave portion is a groove formed between two adjacent claws disposed on the second connecting joint.
  • the number of the convex portions or the concave portions is three.
  • the protrusion is a three-button connector, and the recess is correspondingly configured as a three-key groove.
  • the convex portion is a three-core connector, and the concave portion is correspondingly disposed as a three-core groove.
  • the convex portion is a cross connector, and the concave portion is correspondingly disposed as a cross recess.
  • the speed reducer is a worm gear reducer or a spur gear reducer or a bevel gear reducer or a planetary gear reducer or a combination thereof.
  • the servo motor is preferably an AC servo motor.
  • the position detecting device, the servo controller and the servo motor can be integrally provided.
  • the servo controller includes a data processing unit, a motor driving unit and a current sensor, and the data processing unit receives the input command signal, the motor input current signal collected by the current sensor, and the information representing the motor angle output by the position detecting device, and the data Processing, outputting a control signal to the motor driving unit, the motor driving unit outputting a suitable voltage to the servo motor according to the control signal, thereby achieving precise control of the servo motor.
  • the data processing unit includes a mechanical loop control subunit, a current loop control subunit, a PWM control signal generating subunit, and a sensor signal processing subunit;
  • the sensor signal processing subunit receives information representing a motor angle output by the position detecting device, and transmits an angle of the motor to the mechanical ring control subunit; the sensor signal processing subunit further receives the current sensor The detected current signal is sampled by A/D and output to the current loop control subunit;
  • the mechanical ring control subunit obtains a current command through operation according to the received command signal and the rotation angle of the motor shaft, and outputs the current command to the current loop control subunit;
  • the current loop control subunit obtains a duty control signal of the three-phase voltage according to the current signal output by the current sensor of the received current command, and outputs the duty control signal to the PWM control signal generating subunit;
  • the PWM control signal generating sub-unit generates six PWM signals having a certain order according to the received duty control signal of the three-phase voltage, and respectively acts on the motor driving unit.
  • the motor drive unit comprises six power switch tubes, the switch tubes are connected in series in two groups, three groups are connected in parallel between the DC power supply lines, and the control end of each switch tube is output by the PWM control signal generating sub-unit.
  • the control of the PWM signal, the two switching tubes in each group are time-divisionally turned on.
  • the data processing unit is an MCU
  • the motor driving unit is an IPM module.
  • the position detecting device comprises a magnetic steel ring, a magnetic flux ring and a magnetic induction element, wherein the magnetic conductive ring is composed of two or more segments of the same radius and the same center, and the adjacent two arc segments a gap is left, the magnetic induction element is placed in the gap, and when the magnetic steel ring and the magnetic flux ring rotate relative to each other, the magnetic induction element converts the sensed magnetic signal into a voltage signal, and transmits the voltage signal Give the corresponding signal processing device.
  • the magnetic conductive ring is composed of two arc segments of the same radius and the same center, which are respectively a quarter arc segment and a 3/4 arc segment, and the corresponding magnetic induction elements are two; or, the magnetic conductive ring is The three segments are formed by arcs of the same radius, respectively, which are 1/3 arc segments, and the corresponding magnetic induction elements are three; or, the magnetic conductive ring is composed of four segments of the same radius, which are respectively 1/4 arc segments.
  • the corresponding magnetic induction elements are four; or, the magnetic conductive ring is composed of six segments of the same radius, which are respectively 1/6 arc segments, and the corresponding magnetic induction elements are six.
  • the end of the arc of the magnetically permeable ring may be chamfered to form a chamfer formed by cutting axially or radially or simultaneously in the axial direction and in the radial direction.
  • the position detecting device further includes a skeleton for fixing the magnetic conductive ring; the magnetic conductive ring is disposed on the skeleton forming mold, and is fixed to the skeleton when the skeleton is integrally formed.
  • the sensor signal processing subunit or the position detecting device includes a signal processing circuit of the position detecting device, configured to obtain a rotation angle of the motor shaft according to the voltage signal of the position detecting device, and specifically includes: an A/D conversion circuit, a position
  • the voltage signal sent from the magnetic induction element in the detecting device is A/D converted to convert the analog signal into a digital signal; and the synthesizing circuit processes the A/D converted plurality of voltage signals sent from the position detecting device to obtain the reference signal D.
  • An angle obtaining circuit that selects an angle opposite thereto as an offset angle in the standard angle table according to the reference signal D; and a storage circuit for storing the standard angle table.
  • the position detecting device includes a rotor and a stator that surrounds the rotor, the rotor including a first magnetic steel ring and a second magnetic steel ring;
  • first magnetic steel ring and the second magnetic steel ring are respectively fixed on a rotating shaft
  • the magnetic pole magnetization sequence of the second magnetic steel ring causes the output of the n magnetic induction elements to be in a Gray code format, and only one bit of the adjacent two outputs changes;
  • the stator On the stator, corresponding to the first magnetic steel ring, there are m magnetic induction elements distributed at an angle on the same circumference centered on the center of the first magnetic steel ring, wherein m is an integer multiple of 2 or 3
  • the total magnetic pole number of the first magnetic steel ring is equal to the total number of magnetic poles of the second magnetic steel ring, and the polarities of the adjacent two poles are opposite;
  • the magnetic induction element converts the sensed magnetic signal into a voltage signal when the rotor is relatively rotationally moved relative to the stator, and outputs the voltage signal to the signal processing device.
  • the angle between the adjacent two magnetic induction elements on the stator corresponding to the first magnetic steel ring when m is 2 or 4, the included angle is 90° / g; when m is 3, the included angle is 120° / g; when m is 6, the angle is 60° / g, where g is the total number of magnetic poles of the second magnetic steel ring.
  • the position detecting device includes a rotor and a stator that surrounds the rotor, the rotor including a first magnetic steel ring and a second magnetic steel ring;
  • n 0, 1
  • the magnetic induction element converts the sensed magnetic signal into a voltage signal when the rotor is relatively rotationally moved relative to the stator, and outputs the voltage signal to the signal processing device.
  • the angle between adjacent two magnetic sensing elements on the stator corresponding to the second magnetic steel ring is 360° /N.
  • an angle between each adjacent two magnetic induction elements is 90° /N
  • the angle between each adjacent two magnetic induction elements is 120° / N; when m is 6, the angle between each adjacent two magnetic induction elements is 60 ° /N.
  • the magnetic sensing element can be directly attached to the inner surface of the stator.
  • the position detecting device further includes two magnetic conductive rings respectively embedded in the inner surface of the stator corresponding to the first magnetic steel ring and the second magnetic steel ring, wherein each of the magnetic conductive rings is composed of a plurality of The same center and the arc of the same radius are formed, and the adjacent two arc segments are left with gaps, and the magnetic induction elements corresponding to the two magnetic steel rings are respectively disposed in the gap.
  • end portion of the arc of the magnetic flux ring may be chamfered to be a chamfer formed by cutting axially or radially or simultaneously in the axial direction and in the radial direction.
  • the magnetic sensing element is preferably a Hall sensing element.
  • the sensor signal processing subunit or the position detecting device includes a signal processing circuit of the position detecting device, and is configured to obtain a rotation angle of the motor shaft according to the voltage signal of the position detecting device, and specifically includes:
  • the A/D conversion circuit performs A/D conversion on the voltage signal sent from the position detecting device to convert the analog signal into a digital signal.
  • a relative offset angle calculating circuit configured to calculate a relative offset of the first voltage signal sent by the magnetic sensing element corresponding to the first magnetic steel ring in the position detecting device during the signal period;
  • An absolute offset calculation circuit determines, by calculation, an absolute offset of a first position of a signal period at which the first voltage signal is located, according to a second voltage signal transmitted from a magnetic induction element corresponding to the second magnetic steel ring in the position detecting device ;
  • An angle synthesis and output module configured to add the relative offset and the absolute offset to synthesize a rotation angle represented by the first voltage signal at the moment;
  • a storage module for storing data.
  • a signal amplifying circuit for amplifying the voltage signal from the magnetoelectric sensor before the A/D conversion circuit performs A/D conversion.
  • the relative offset angle calculation circuit includes a first synthesis circuit and a first angle acquisition circuit, and the first synthesis circuit processes the A/D-converted voltage signals sent by the position detection device to obtain a reference signal. D.
  • the first angle acquiring circuit selects an angle opposite to the first standard angle table as an offset angle according to the reference signal D.
  • the relative offset angle calculation circuit or before the synthesis circuit further includes a temperature compensation circuit for eliminating the influence of temperature on the voltage signal transmitted from the magneto-electric sensor.
  • the output of the synthesis circuit or the first synthesis circuit further includes a signal R;
  • the temperature compensation unit includes a coefficient aligner and a multiplier, and the signal of the coefficient aligner to the output of the synthesis module
  • the multiplier is a plurality, and each of the multipliers outputs a voltage signal that is A/D converted from the position detecting device and an output signal K of the coefficient correction module. Multiply, and the multiplied result is output to the first synthesizing circuit.
  • the absolute offset calculation circuit includes a second synthesis circuit and a second angle acquisition circuit, and the second synthesis circuit is configured to synthesize a second voltage signal sent by the position detecting device corresponding to the second magnetic steel ring. Obtaining a signal E; the second The angle acquisition circuit selects an angle relative thereto in the second standard angle table according to the signal E as an absolute offset of the first position of the signal period in which the first voltage signal is located.
  • the invention also provides a control method of the above servo power steering system, comprising the following steps:
  • Step 1 In the non-steering state, detect the angular position difference between the first steering shaft and the second steering shaft, and set it to S Q ;
  • Step 2 In the state of turning the steering wheel, detect the first steering shaft and The angular position difference between the second steering shafts, and set it to S 1 ;
  • Step 3 Calculate 8. The difference from Si is AS ;
  • Step 4 The servo controller calculates the driving angle of the motor shaft according to the transmission ratio of the AS and the reducer, and performs position control by the servo motor to control the AS to zero, so that the second steering shaft tracks the rotation of the first steering shaft to realize the wheel steering. .
  • the specific steps detected in the steps 1 and 2 are: the servo controller reads the voltage signal of the position detecting device every other fixed period, and converts the voltage signal into an An angular position of the steering shaft, the second steering shaft, and the motor shaft.
  • Servo power steering system is a new type of electric power steering system, which has the advantages of electric power steering system, such as reducing energy consumption, no hydraulic oil circuit, no oil leakage and environmental pollution.
  • the torque sensor is not required, and the vehicle speed sensor is not required.
  • the existing power steering system has high requirements for the steering shaft, and the steering shaft is difficult to process and has high cost.
  • the patent No. 200710041156.4 refers to a steering shaft.
  • the servo power steering system of this patent has no special requirements for the steering shaft, and the cost of the steering shaft is also reduced.
  • Patent No. 200420110889.0 which refers to a power steering shaft that reduces the cost of existing electric steering systems, but is still relatively expensive and complex in structure compared to this patent.
  • the patent number 200520035963.1 is also a method of improving the steering shaft of an automobile.
  • the patent adds a position detecting device the cost of the position detecting device is very low.
  • there are no hydraulic components such as oil pumps, tubing, valves, etc., and the cost is much lower.
  • the steering wheel, the steering shaft 1 and the claw-shaped connector 1 have a large connection rigidity, so that the rotation of the steering wheel can be immediately detected by the position detecting device, and the response of the AC servo system is also very fast, which is millisecond, so the claw-shaped connector 2 is The tracking characteristics of the claw connector 1 are very fast.
  • the steering wheel is stable and is not affected by the vibration of the engine or the wheel. Since the claws of the claw-shaped joints 1, 2 are not in contact, the vibration of the engine or the wheel is not transmitted to the steering wheel.
  • the existing power steering system cannot completely eliminate the vibration of the steering wheel caused by the vibration of the engine or the wheel.
  • a coupling is mentioned for reducing the vibration of the steering wheel.
  • Figure 1 is a schematic view of the overall structure of the present invention
  • 2 is a schematic diagram of a control structure of a servo power steering system according to the present invention
  • FIG. 3 is a first embodiment of a control structure diagram of a servo power steering system according to the present invention.
  • Figure 4 is a mechanical ring diagram of the control system of the servo power steering system
  • FIG. 5 is a schematic diagram of a second embodiment of a control structure of a servo power steering system according to the present invention.
  • FIG. 6 is a schematic structural view of a single pole position detecting device mounted on a shaft
  • Figure 7 is an exploded perspective view of the unipolar position detecting device
  • Figure 10 to Figure 13 are chamfered design drawings of the magnetically permeable ring
  • FIG. 14 is a schematic structural view of a first embodiment of a unipolar position detecting device
  • Figure 15 is a block diagram of a signal processing apparatus of the first embodiment of the unipolar position detecting device
  • 16 is a schematic structural view of a second embodiment of a unipolar position detecting device
  • Figure 17 is a block diagram of a signal processing apparatus of the second embodiment of the unipolar position detecting device
  • FIG. 18 is a schematic structural view of a third embodiment of a unipolar position detecting device
  • Figure 19 is a block diagram of a signal processing apparatus of a third embodiment of the unipolar position detecting device.
  • 20 is a schematic structural view of a fourth embodiment of a unipolar position detecting device
  • Figure 21 is a block diagram of a signal processing apparatus of a fourth embodiment of the unipolar position detecting device.
  • Figure 22 is an exploded perspective view of the multi-pole position detecting device
  • Figure 23 is a schematic view showing the structure of combining the components of the position detecting device provided with two magnetically conductive rings;
  • Figure 24 is a flow chart showing a signal processing method of the multi-pole position detecting device arranged in sequence
  • Figure 25 is a second flowchart of the signal processing method of the position detecting device arranged in sequence
  • 26 is a third flowchart of a signal processing method of the position detecting device sequentially disposed
  • Figure 27 is a fourth flowchart of the signal processing method of the position detecting device arranged in sequence
  • Figure 28 is a structural view showing a first magnetic steel ring, a magnetic flux ring, and a magnetic induction element of the first embodiment of the position detecting device; and Figure 29 is a first magnetic steel ring charging of the first embodiment of the position detecting device. Magnetic magnetic sequence and positional relationship with magnetic sensing elements;
  • Figure 30 is a flow chart of the algorithm of the magnetic steel ring 303
  • Figure 31 is a block diagram of a signal processing device of the first embodiment of the position detecting device sequentially disposed;
  • Figure 32 is a schematic view showing the structure of a first magnetic steel ring Hall element, a magnetic conductive ring, and a magnetic induction element of the second embodiment of the position detecting device of the sequential arrangement;
  • Figure 33 is a view showing the positional relationship between the magnetic flux of the first magnetic steel ring and the position of the magnetic induction element in the second embodiment of the position detecting device of the sequential setting mode;
  • Figure 34 is a block diagram of a signal processing device of a second embodiment of the position detecting device of the sequential setting mode
  • Figure 35 is a schematic view showing the structure of a first magnetic steel ring Hall element, a magnetic conductive ring, and a magnetic induction element of the third embodiment of the position detecting device of the sequential arrangement;
  • Figure 36 is a view showing the positional relationship between the magnetic flux of the first magnetic steel ring and the position of the magnetic induction element in the third embodiment of the position detecting device of the sequential setting mode;
  • Figure 37 is a block diagram of a signal processing device of a third embodiment of the position detecting device of the sequential setting mode
  • Figure 38 is a schematic view showing the structure of a first magnetic steel ring Hall element, a magnetic conductive ring, and a magnetic induction element of the fourth embodiment of the position detecting device;
  • Figure 39 is a diagram showing the magnetic flux of the first magnetic steel ring and the position of the magnetic sensing element of the fourth embodiment of the position detecting device which are sequentially disposed. relation chart;
  • Figure 40 is a block diagram of a signal processing apparatus of a fourth embodiment of the position detecting device sequentially disposed;
  • FIGS. 42 to 45 are structures in which the magnetic induction element corresponding to the first magnetic steel ring is directly attached to the position detecting device, respectively.
  • the schematic diagram 46 is a positional inspection of the uniform arrangement; the first embodiment of the apparatus corresponds to the code obtained when the second magnetic steel ring is provided with three magnetic induction elements;
  • Figure 47 is a positional check of the uniform arrangement; the first embodiment of the device corresponds to the magnetization sequence of the second magnet ring when the second magnetic steel ring is provided with three magnetic induction elements;
  • Figure 48 is a structural view of the second magnetic steel ring, the magnetic flux ring, and the magnetic induction element of the embodiment of the position detecting device which is uniformly disposed.
  • Fig. 49 is a positional inspection of the uniform arrangement: the first magnetic steel of the embodiment of the J device The arrangement diagram of the corresponding component of the ring when the ring is uniformly magnetized to 6 pairs of poles;
  • Figure 50 is a structural view of a first magnetic steel ring, a magnetic flux ring, and a magnetic induction element of an embodiment of a position detecting device uniformly disposed;
  • Figure 51 is a first magnetic steel of the embodiment - two of the uniformly disposed position detecting device
  • FIG. 52 is a structural view of the first magnetic steel ring, the magnetic flux ring, and the magnetic induction element of the third embodiment of the position detecting device uniformly disposed;
  • FIG. 53 is a position detecting device uniformly disposed.
  • FIG. 54 is a perspective exploded view of another structure of the first to fourth embodiments of the position detecting device which is uniformly disposed;
  • FIG. 55 is a structural view of the first magnetic steel ring, the magnetic flux ring, and the magnetic induction element of the fourth embodiment;
  • Figure 56 is a schematic structural view of another type of reduction gear
  • Figure 57 is a schematic structural view of a connecting device
  • Figure 58 is a schematic structural view of another connecting device
  • Figure 59 is a schematic structural view of another connecting device
  • Figure 60 is an exploded view of the all-in-one. Detailed ways
  • FIG. 1 is a schematic view of the overall structure of the present invention.
  • the present invention provides a servo power steering system including a steering wheel 1, a first steering shaft 2, a second steering shaft 3, a speed reducer 4, a steering mechanism 5, and a wheel 6, the steering wheel 1 and the One end of a steering shaft 2 is connected, the other end of the first steering shaft 2 is connected to the second steering shaft 3, and the second steering shaft 3 is provided with a speed reducer 4, and the second steering shaft 3 is connected to the wheel 6 via a steering mechanism 5,
  • the first steering shaft 2, the second steering shaft 3, and the servo motor 10 are provided with position detecting devices 7 (7a, 7b, 7c in Fig.
  • the position detecting device 7 inputs signals to the servo through the signal line 8.
  • the controller 9, the servo controller 9 outputs a voltage to the servo motor 10, and the servo motor 10 drives the speed reducer 4 and steers the wheel 6 through the steering mechanism 5.
  • FIG. 2 is a schematic diagram of a control structure of a servo power steering system according to the present invention.
  • the electric power steering control system is composed of a servo controller 9, a servo motor 10, and a position detecting device 7.
  • the servo controller 9 includes a data processing unit, a motor driving unit and a current sensor.
  • the data processing unit receives the input command signal, the motor input current signal collected by the current sensor, and the information representing the motor angle output by the position detecting device 7, after data processing,
  • the control signal is output to the motor drive unit, and the motor drive unit outputs a suitable voltage to the servo motor 10 according to the control signal, thereby achieving precise control of the servo motor 10.
  • the data processing unit includes a mechanical loop control subunit, a current loop control subunit, a PWM control signal generating subunit, and a sensor signal processing subunit;
  • the sensor signal processing subunit receives information representing the angle of the motor output by the position detecting device, and transmits the angle of the motor to the mechanical ring control subunit; the sensor signal processing subunit further receives the detected current of the current sensor The signal is output to the current loop control subunit after being sampled by A/D;
  • the mechanical ring control subunit obtains a current command through operation according to the received command signal and the rotation angle of the motor shaft, and outputs the current command to the current loop control subunit;
  • the current loop control subunit obtains a duty control signal of the three-phase voltage according to the current signal output by the current sensor of the received current command, and outputs the duty control signal to the PWM control signal generating sub-unit;
  • the PWM control signal generating sub-unit generates six PWM signals having a certain order according to the received duty control signal of the three-phase voltage, and respectively acts on the motor driving unit.
  • the motor drive unit comprises six power switch tubes, the switch tubes are connected in series in two groups, three groups are connected in parallel between the DC power supply lines, and the control end of each switch tube is subjected to a PWM control signal to generate a PWM signal output by the subunit. Control, the two switching tubes in each group are time-divisionally turned on.
  • the motor drive unit generates a three-phase voltage to the servo motor 10 according to the PWM signal, and controls the servo motor 10 to operate.
  • the servo motor 10 drives the steering shaft 2 to rotate by the speed reducer 4, thereby achieving servo tracking of the steering shaft 2 to the steering shaft 1.
  • FIG. 3 is a first embodiment of a control structure diagram of a servo power steering system according to the present invention. As shown in Figure 3, the data processing unit is
  • the motor drive unit is an IPM module.
  • the voltage signal is output from the position detecting means 7, so that an angle calculating unit is required in the data processing unit of the servo controller 9, and the voltage signal outputted from the position detecting means 7 is converted into angle information.
  • Figure 4 is a mechanical ring diagram of the control system of the servo power steering system.
  • the steering shaft 2 angle feedback after calculation, obtains the steering shaft 3 angle command as the input of the mechanical ring.
  • the mechanical ring calculates the current command based on the steering shaft 3 angle command and the steering shaft 3 angle feedback, motor angle feedback, and transmits it to the current loop.
  • the mechanical ring includes the steering shaft 3 position ring, motor position ring and speed ring, steering shaft 3 position ring output motor angle command, motor position ring output speed command, speed loop output current command.
  • the driver turns the steering wheel to drive the steering shaft 2 to rotate.
  • the position detecting device 7 senses the angular position of the steering shaft 2, and transmits the induced voltage signal to the MCU, which is sampled by A/D, converted into a digital signal, and the CPU runs an angle solving algorithm.
  • the steering shaft 2 angle feedback is obtained.
  • Steering axis 2 angle feedback, after calculation, the steering shaft 3 angle command is obtained as the input of the mechanical ring.
  • the position detecting device 7 senses the angular position of the steering shaft 3, and transmits the induced voltage signal to the MCU, and obtains a digital signal containing the angle information through A/D sampling, and transmits it to the CPU in the MCU, and the CPU runs the angle solving algorithm to obtain the steering.
  • Axis 3 angle feedback is obtained.
  • the steering shaft 3 angle command subtracts the steering shaft 3 angle feedback, and the steering shaft 3 angle error is obtained.
  • the PID controller controls the angle of the steering shaft 3 to obtain the motor angle command.
  • the PID control of the steering shaft 3 angle is called the steering shaft 3 position.
  • Ring, steering shaft 3 position loop output is the motor angle command, which is transmitted to the motor position loop.
  • the position detecting device 7 senses the angular position of the motor shaft, and transmits the induced voltage signal to the MCU, and obtains a digital signal containing the angle information through A/D sampling, and transmits the digital signal to the CPU in the MCU, and the CPU runs the angle solving algorithm to obtain the motor angle. Feedback.
  • the motor angle command subtracts the motor angle feedback to obtain the motor angle error.
  • PID control is performed on the motor angle by the PID controller to obtain the speed command.
  • the PID control of the motor angle is called the motor position loop, and the motor position loop outputs the speed command, which is transmitted to Speed loop.
  • the motor angle feedback obtains the speed feedback through the differentiator, the speed command subtracts the speed feedback, and obtains the speed error.
  • the PID controller controls the speed by the PID controller to obtain the current command 1 q- ref .
  • the PID control of speed is called the speed loop.
  • the current command is the output of the speed loop, also the output of the mechanical loop, and the mechanical loop outputs the current command 1 q- ref to the current loop.
  • FIG. 5 is a schematic diagram of a second embodiment of a control structure of a servo power steering system according to the present invention. As shown in Figure 5, with the control junction of Figure 3. The difference is that, in this embodiment, the position detecting device 7 is integrated with the angle calculating unit, so that the conversion of the voltage signal into the angle signal is completed in the position detecting device 7. The direct output angle signal is input into the mechanical ring subunit through the synchronization port communication.
  • the control method of the servo power steering system of the present invention will be described in conjunction with the control structure diagram of the servo power steering system described above.
  • the servo controller 9 reads the voltage signal of the position detecting device 7 every other fixed period, and converts the voltage signal into an angular position of the first steering shaft 2, the second steering shaft 3 and the motor shaft by an angle solving algorithm. .
  • the angular position difference between the first steering shaft 2 and the second steering shaft 3 detected in the non-steering state is set to S Q .
  • the angular position difference between the detected first steering shaft 2 and the second steering shaft 3 is set to Si. Calculate the difference AS between 80 and Si.
  • the servo controller 9 calculates the driving angle of the motor shaft according to the transmission ratio of the AS and the speed reducer 4, and performs position control by the servo motor 10 to control the AS to zero, so that the second steering shaft 3 tracks the rotation of the first steering shaft 2, thereby realizing The wheel 6 is turned.
  • the position detecting device of the present invention is provided with a magnetic steel ring and a magnetic conductive ring, and is called a unipolar position detecting device.
  • a plurality of magnetic steel rings and a corresponding plurality of magnetic conductive rings may be provided, which are called multi-pole position detecting devices.
  • one or more magnetic steel rings are arranged on the rotating shaft, the magnetic steel ring is externally sheathed with a magnetic conductive ring, and the magnetic sensing element is inserted in the magnetic conductive ring.
  • a skeleton is further provided to integrally form the magnetic flux guiding ring and the skeleton.
  • FIG. 6 is a schematic structural view of a single pole position detecting device mounted on a shaft
  • FIG. 7 is an exploded perspective view of the single pole position detecting device
  • FIGS. 8 and 9 are perspective views of the single pole position detecting device mounted on the shaft
  • the position detecting device of the present invention is composed of a magnetic induction element board 102, a magnetic steel ring 103, a magnetic conductive ring 104, and a skeleton 105.
  • the magnetic induction element board 102 is composed of a PCB board and a magnetic induction element 106, which is on the magnetic induction element board 102.
  • a connector 108 is also provided.
  • the magnet ring 103 is mounted on the shaft 107, and the magnetic ring 104 is fixed to the bobbin 105, and the bobbin 105 is fixed at a suitable position of the motor.
  • the magnetic steel ring 103 rotates to generate a sinusoidal magnetic field
  • the magnetic conductive ring 104 acts as a collecting magnet
  • the magnetic flux generated by the magnetic steel ring 103 passes through the magnetic conductive ring 104.
  • the magnetic sensing element 106 fixed on the PCB converts the magnetic field passing through the magnetic flux ring 104 into a voltage signal and outputs it, and the voltage signal directly enters the main control board chip.
  • the voltage signal is processed by the chip on the main control board, and finally the angular displacement is obtained.
  • the magnetic flux ring 104 is disposed on the skeleton forming mold, and is fixed to the skeleton 105 when the skeleton is integrally formed.
  • Figs. 10 to 13 illustrate a chamfering design of the magnetic flux guiding ring of the present invention by taking a magnetic conducting ring composed of a 1/4 arc segment and a 3/4 arc segment as an example.
  • the magnetic flux ring is composed of two or more segments of the same radius and the same center.
  • the magnetic ring shown in FIG. 10 has no chamfer design, and the arc segments shown in FIG. 11 to FIG.
  • the end portion is provided with a chamfer, which is a chamfer formed by cutting in the axial direction (Fig. 11) or the radial direction (Fig. 12) or simultaneously in the axial direction and the radial direction (Fig.
  • the axial section 151, 154, radial section 152, 153 is left between two adjacent arc segments, and a magnetic induction element is placed in the gap.
  • the magnetic induction element converts the sensed magnetic signal into a voltage signal, and This voltage signal is transmitted to the corresponding controller.
  • the present invention also provides a signal processing apparatus based on the position detecting apparatus of the above structure, comprising: an A/D conversion circuit, a synthesizing module, an angle acquiring module, and a storage module, wherein the A/D converting circuit is magnetically sensed in the position detecting device
  • the voltage signal sent from the component is A/D converted, and the analog signal is converted into a digital signal corresponding to the number of magnetic sensing elements.
  • the angle obtaining module selects an angle opposite to the angle storage table as an offset angle according to the reference signal 0; the storage module is configured to store data.
  • Each of the above modules may constitute an MCU.
  • the position detecting device of the present invention and its signal processing device will be described in detail below by way of embodiments.
  • the senor is a magnetic induction element.
  • Two magnetic induction elements are provided in the unipolar position detecting device.
  • Figure 14 is a schematic view showing the structure of the first embodiment of the unipolar position detecting device.
  • the magnetic flux ring is composed of two arc segments of the same radius, which are respectively a quarter arc segment 111 and a 3/4 arc segment 112, and the positions A and B are at an angle of 90° and are slit.
  • Two magnetic sensing elements 109 and 110 are placed in the slits at A and B, respectively.
  • the magnetic flux ring 104 is mounted concentrically with the magnetic steel ring 113.
  • FIG. 15 is a block diagram of a signal processing device of the first embodiment of the unipolar position detecting device.
  • the output signals of the magnetic sensing elements H la and H 2a are connected to the analog input port of the built-in A/D converter of the MCU, and the output signals are obtained after analog-to-digital conversion.
  • the multipliers 20a, 21a, the output signal K of the coefficient corrector 5a is connected to the input terminals of the multipliers 20a, 21a, the output signals of the multipliers 20a, 21a are coupled to the input of the device 3a, and the synthesizer 3a outputs the signals D and R, coefficients
  • the aligner 5a receives the signals D and R output from the synthesizer 3a, obtains the signal K by operation, and multiplies the signals of the magnetic induction elements H la and H 2a by the signal K, thereby performing temperature compensation and eliminating the temperature versus signal. Impact.
  • An angle storage table is stored in the memory 40a, and the MCU selects an angle opposite thereto in the angle storage table as the offset angle according to the signal D.
  • the processing of the signal that is, the processing principle of the synthesizer 3a on the signal is: comparing the magnitude of the values of the two signals, the signal D having a small value for output, and the structure of the signal D is ⁇ the coincidence of the first signal, The coincidence bit of the second signal, the numerical value of the signal of the smaller value ⁇ .
  • _0 indicates the value bit of the data X (the absolute value of the data), that is, the remaining data bits are removed from the sign bit.
  • R A 2 + B 2 ;
  • R A 2 + B 2 .
  • a standard angle table is stored in the storage module in which a series of codes are stored, each code corresponding to an angle.
  • the table is obtained by calibration, and the calibration method is: using the detecting device of the embodiment and a high-precision position sensor, the signals output by the magnetic sensing element in the embodiment and the angle of the high-precision position sensor output are in one-to-one correspondence. In order to establish a relationship between the signal and the angle of the output of a magnetic induction element.
  • some data correction tables are also stored in the storage module, and the tables include a correspondence table of the signal D and the signal R Q , wherein the signal R.
  • a signal R can be obtained by looking up the signal through the synthesis module, that is, the signal D obtained by the synthesizer 3a. By comparing the signal R Q with the signal R, such as division, the signal 1 ⁇ is obtained.
  • Embodiment 2 In the second embodiment of the unipolar position detecting device, four magnetic sensing elements are provided.
  • FIG. 16 is a schematic structural view of a second embodiment of a unipolar position detecting device.
  • the position detecting device is provided differently from the position detecting device provided with two magnetic sensing elements in that the magnetic conducting ring is composed of four quarter-arc segments 118, 119, 120 and 121 of the same radius, A, B, C. , D four positions are sequentially separated by 90°.
  • Four magnetic sensing elements 114, 115, 116 and 117 are placed at slits A, B, C and D, respectively.
  • FIG. 17 is a block diagram of a signal processing apparatus of the second embodiment of the unipolar position detecting device.
  • the signal processing apparatus and the processing method are similar to those in the first embodiment, except that since there are four magnetic sensing elements that are 90 degrees apart from each other in the second embodiment, a subtractor is added to the signal processing apparatus.
  • 30b, 31b that is, the digital difference module, the temperature and zero drift are suppressed by the subtractors 30b, 31b, thereby improving the data precision, and finally the signal output to the synthesizer 4b is still two, the processing procedure and the method and the first embodiment the same. Therefore, it will not be described here.
  • FIG. 18 is a schematic structural view of a third embodiment of the unipolar position detecting device.
  • the position detecting device is different from the position detecting device provided with four magnetic sensing elements in that the magnetic conducting ring is composed of three segments of the same radius of 1/3 arc segments 126, 127 and 128, A, B, C The positions are 120° apart.
  • Three sensors 123, 124, and 125 are placed at slits A, B, and C, respectively.
  • Fig. 19 is a block diagram showing a signal processing device of a third embodiment of the unipolar position detecting device. Different from the first embodiment, there are three magnetic sensing elements, and three signals are output to the synthesizer 3c. The synthesizer is different from the first embodiment in processing signals in 3c, and the rest is the same as in the first embodiment. Here, only how the synthesizer 3c processes the signal will be explained.
  • the processing of the signal that is, the processing principle of the synthesizer 3c for the signal is: first, the coincidence bits of the three signals are judged, and the magnitudes of the values of the signals conforming to the same bit are compared, and the value is small for output.
  • Signal D the structure of signal D is ⁇ the coincidence of the first signal, the coincidence of the second signal, the coincidence of the third signal, the value of the signal of the smaller value ⁇ .
  • _0 indicates the value bit of the data X (the absolute value of the data), that is, the remaining data bits are removed from the sign bit.
  • FIG. 20 is a schematic structural view of Embodiment 4 of the unipolar position detecting device.
  • the magnetic flux ring is composed of six segments of the same radius 1/6 arc segments 136, 137, 138, 139, 140 and 141, and the six positions A, B, C, D, E, F are 60 degrees apart.
  • 6 sensors 130, 131, 132, 133, 134 are placed at slits A, B, C, D, E, F, respectively.
  • Figure 21 is a block diagram of a signal processing apparatus of a fourth embodiment of the unipolar position detecting device.
  • the difference from the position detecting device provided with three magnetic sensing elements is that there are six magnetic sensing elements, and therefore, subtractors 20d, 21d, 22d are added to the signal processing device, and the temperature is suppressed by the subtractors 20d, 21d, 22d.
  • zero drift, in order to improve the accuracy of the data, the final output to the synthesizer 4d is still three signals, the processing and method are the same as the position detecting device with three magnetic sensing elements.
  • Multi-pole position detecting device
  • Figure 22 is an exploded perspective view of the multi-pole position detecting device.
  • the position detecting device includes a rotor and a stator that surrounds the rotor.
  • the rotor includes a first magnetic steel ring 302 and a second magnetic steel ring 303, and the diameters of the magnetic steel rings 302, 303 are smaller than the guide.
  • Fig. 23 is a structural schematic view showing the components of the position detecting device provided with two magnetic flux guiding rings.
  • the magnetic steel ring 302 and the magnetic steel ring 303 are arranged in parallel on the shaft 301, and two magnetic sensing elements 308 and 309 are respectively provided corresponding to the magnetic steel ring 302 and the magnetic steel ring 303.
  • the first magnetic sensing elements that is, the plurality of magnetic sensing elements corresponding to the magnetic steel ring 302 and the magnetic conductive ring 304 are all represented by the magnetic sensing element 308, and the second magnetic sensing element is the corresponding magnetic steel ring 303 and the guiding A plurality of magnetic sensing elements of the magnetic ring 305 are all represented by magnetic sensing elements 309.
  • the magnetic steel ring 302 is defined as a first magnetic steel ring
  • the magnetic steel ring 303 is defined as a second magnetic steel ring
  • the magnetic conductive ring 304 is defined to correspond to the first magnetic steel ring 302, which will be magnetically guided.
  • the ring 305 is defined to correspond to the second magnet ring 303, and the invention is not limited to the above definitions.
  • the magnetic flux rings 304 and 305 may also be chamfered, and the structure thereof is the same as that of the unipolar position detecting device. Referring to FIG. 10 to FIG.
  • the arrangement of the magnetic sensing elements and the magnetization of the magnetic steel ring may be different.
  • the present invention also provides a signal processing apparatus for the above position detecting apparatus, comprising an A/D conversion circuit, a relative offset angle calculation circuit, an absolute offset calculation circuit, an angle synthesis and output module, and a storage module, wherein
  • the A/D conversion circuit performs A/D conversion on the voltage signal sent from the position detecting device, and converts the analog signal into a digital signal;
  • the relative offset angle calculating circuit is configured to calculate a position corresponding to the first magnetic field in the position detecting device The relative offset of the first voltage signal sent by the magnetic sensing element of the steel ring in the signal period;
  • the absolute offset calculating circuit is sent according to the magnetic sensing element corresponding to the second magnetic steel ring in the position detecting device
  • the second voltage signal is determined by calculation to determine an absolute offset of the first position of the signal period at which the first voltage signal is located ;
  • the angle synthesis and output module is configured to apply the relative offset and the absolute offset a port, synthesizing a rotation angle represented by the first voltage signal at the
  • Fig. 24 is a flow chart showing a signal processing method of the multi-pole position detecting device which is sequentially disposed.
  • the voltage signal sent from the first magnetic steel ring and the second magnetic steel ring in the position detecting device is A/D converted, and the analog signal is converted into a digital signal;
  • the first voltage signal corresponding to the first magnetic steel ring sent by the detecting device is angularly solved, and the relative offset of the signal corresponding to the first magnetic steel ring in the signal period is calculated;
  • the absolute offset calculating circuit Performing an angle solution on the first voltage signal corresponding to the second magnetic steel ring sent by the position detecting device to determine an absolute offset of the first position of the signal period at which the first voltage signal is located; through the angle synthesis and output module And an adder, for adding the above-mentioned relative offset and the absolute offset ⁇ , synthesizing the rotation angle ⁇ at the moment represented by the first voltage signal.
  • Fig. 25 is a second flowchart of the signal processing method of the position detecting means arranged in series.
  • a signal amplifying module such as an amplifier, is added to amplify the voltage signal from the position detecting device before the A/D conversion circuit performs A/D conversion.
  • Fig. 26 is a third flowchart of the signal processing method of the position detecting device which is sequentially provided. As shown in Figure 26, the temperature compensation process is also included before the angle is solved.
  • Fig. 27 is a fourth flowchart of the signal processing method of the position detecting means arranged in series.
  • the coefficient correction is performed first, and then the signal output from the A/D converter and the coefficient-corrected output are passed through a multiplier. Multiply the specific way to compensate for the temperature.
  • a multiplier Multiply the specific way to compensate for the temperature.
  • Embodiment 1 of the sequentially disposed position detecting device provides that the first column of magnetic sensing elements is provided with two magnetic sensing elements 308, and the second column of sensing elements is provided with three magnetic sensing elements 309 for position detecting means.
  • Figure 28 is a structural view showing a first magnetic steel ring, a magnetic flux ring, and a magnetic induction element of the first embodiment of the position detecting device; and Figure 29 is a first magnetic steel ring charging of the first embodiment of the position detecting device.
  • the angle between adjacent two magnetic sensing elements 308 corresponding to the first magnetic steel ring 302 is 90° /8.
  • the program ends, otherwise the current code is shifted to the left by one bit, followed by 0; then it is checked whether the current code has entered the code set. If the code set is not entered, the current code is entered into the code set to continue the above steps, if Into the code set, the current code last bit is decremented by 0; then it is checked whether the current code has entered the code set. If the code set is not entered, the current code is entered into the code set to continue the above steps, and if the code set has been entered, the current code is checked.
  • Fig. 31 is a block diagram showing a signal processing device of the first embodiment of the position detecting device which is sequentially provided.
  • the output signals of the magnetic sensing elements H le and H 2e are connected to the amplifier, and the output signals of the amplifiers are input to the analog input port of the A/D converter, and the output signals are multiplied by the analog-to-digital converters 4_1, 5_1, coefficients.
  • the output signal of the aligner 10_1 is connected to the input terminals of the multipliers 4_1, 5_1, the output signals A, B of the multipliers 4_1, 5_1 are coupled to the input terminal of the coder 6_1, and the output signal D of the first synthesizer 6_1 is used as the memory 8_1 and the memory 9_1.
  • the input signal, the output signal of the memory 9_1 is connected to the coefficient corrector 10_1, and the output signal of the memory 8_1 is used as the input terminal of the adder 12_1.
  • the output signals of the sensors 1_3, 1_4, ... l_n are respectively amplified by three amplifiers 2_3, 2_4 and 2_n, and then connected to the AD converter for analog-to-digital conversion, and then synthesized by the second synthesizer 7_1, and then connected to the memory 11_1. And the measured absolute angular displacement output is obtained by the adder 12_1.
  • the output of the first synthesizer 6_1 is performed as follows:
  • _0 indicates the value bit of the data X (the absolute value of the data), that is, the remaining data bits are removed from the sign bit.
  • the structure of the signal D is ⁇ the coincidence of the first signal, the coincidence of the second signal, the numerical value of the signal of the smaller value ⁇ . details as follows:
  • R A 2 + B 2 ;
  • R VA 2 + B 2 .
  • the output of the second synthesizer 7 is performed as follows:
  • the signal K is generally obtained by dividing the signals R Q and R.
  • first and second standard angle tables two tables are stored in the memory, each table corresponding to a series of codes, each code corresponding to an angle.
  • the table is obtained by calibration, and the calibration method is: using the detecting device of the embodiment and a high-precision position sensor, the signals output by the magnetic sensing element in the embodiment and the angle of the high-precision position sensor output are in one-to-one correspondence.
  • a first standard angle table is stored corresponding to the signal D, and each signal D represents a relative offset.
  • a second standard angle table is stored, each signal E representing an absolute offset.
  • Embodiment 2 of the sequentially disposed position detecting device provides a schematic corresponding to the provision of four magnetic induction elements of the first magnetic steel ring 302.
  • FIG. 32 is a schematic structural view of a first magnetic steel ring Hall element, a magnetic conductive ring, and a magnetic induction element according to a second embodiment of the position detecting device of the sequential arrangement mode;
  • FIG. 33 is a second embodiment of the position detecting device of the sequential arrangement mode.
  • the angle between adjacent two magnetic sensing elements 308 corresponding to the first magnetic steel ring 302 is 90° /8.
  • the magnetization sequence of the magnetic steel ring 302 and the magnetic poles of ⁇ 2 , 3 ⁇ 4 and ⁇ 4 are arranged.
  • the magnetization structure and algorithm flow of the first magnetic steel ring 302 are the same as those of the first embodiment, and the description thereof will be omitted herein.
  • Figure 34 is a block diagram of a signal processing device of a second embodiment of the position detecting device of the sequential setting mode.
  • the signal processing device and the processing method are similar to the first embodiment. The difference is that, since there are four magnetic sensing elements in the second embodiment, the output signals of the sensors 1_1 and 1_2 are differentially amplified by the amplifier 2_1, and the output signals of the sensors 1_3 and 1_4 are output.
  • the amplifier 2-2 performs differential amplification, and the signal outputted to the first synthesizer 6_1 is still two.
  • the processing and method are the same as those in the first embodiment, and will not be described again.
  • the third embodiment of the position detecting device for the sequential arrangement provides a structural view in which three magnetic induction elements are provided corresponding to the first magnetic steel ring.
  • FIG. 35 is a schematic structural view of a first magnetic steel ring Hall element, a magnetic flux ring, and a magnetic induction element in a third embodiment of the position detecting device of the sequential arrangement mode;
  • FIG. 36 is a third embodiment of the position detecting device of the sequential arrangement mode.
  • the angle between adjacent two magnetic sensing elements 308 corresponding to the first magnetic steel ring 302 is 120° /8.
  • the magnetization sequence of the magnetic steel ring 302 and the magnetic pole arrangement of 3 ⁇ 4 and 3 ⁇ 4 are arranged.
  • the magnetization structure and algorithm flow of the first magnet ring 302 are the same as those of the first embodiment, and the description thereof will be omitted herein.
  • Figure 37 is a block diagram of a signal processing device of a third embodiment of the position detecting device of the sequential setting mode. Different from the first embodiment, there are three magnetic induction elements, and the signals output from the sensors 1_1, 1_2, and 1_3 to the first synthesizer 7_1 are three, and the first synthesizer 7_1 is different from the first embodiment in processing the signals, and the rest is implemented. Example 1 is the same. Here, only the first synthesizer 7_1 is processed to obtain D and R.
  • the processing of the signal is: first determining the coincidence bits of the three signals, and comparing the magnitudes of the values of the signals conforming to the same bit, and the values are small for output.
  • Signal D the structure of signal D is ⁇ the coincidence of the first signal, the coincidence of the second signal, the coincidence of the third signal, the value of the signal of the smaller value ⁇ .
  • _0 indicates the value bit of the data X (the absolute value of the data), that is, the remaining data bits are removed from the sign bit.
  • the fourth embodiment of the position detecting device is provided with a structural diagram corresponding to the six magnetic induction elements of the first magnetic steel ring.
  • Figure 38 is a schematic view showing the structure of a first magnetic steel ring Hall element, a magnetic conductive ring, and a magnetic induction element of the fourth embodiment of the position detecting device; and
  • Figure 39 is a first magnetic field of the fourth embodiment of the position detecting device which is sequentially disposed. Steel ring magnetization magnetic sequence and positional relationship with magnetic induction elements.
  • the angle between the adjacent two magnetic sensing elements 308 corresponding to the first magnetic steel ring 302 is 60° / 8.
  • the magnetization sequence of the magnetic steel ring 302 and the arrangement of ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 and ⁇ 6 are shown.
  • the magnetization structure and algorithm flow of the first magnetic steel ring 302 are the same as those of the first embodiment, and the description thereof will be omitted herein.
  • Figure 40 is a block diagram of a signal processing device of a fourth embodiment of the position detecting device which is sequentially provided.
  • the output signals of the sensors 1_1 and 1_2 are differentially amplified by the amplifier 2_1
  • the output signals of the sensors 1_3 and 1_4 are differentially amplified by the amplifier 2-2
  • the sensor 1_5 The output signal of the 1_6 is differentially amplified by the amplifier 2_3, and the signal outputted to the first synthesizer 7_1 is still 3, and the processing and method are the same as those in the third embodiment.
  • Figure 41 is an exploded perspective view showing the structure of the position detecting device in which the magnetic sensing element is directly attached to the position detecting device.
  • Figure 42 Figure 41
  • FIG. 45 is a schematic structural view of the magnetic induction element corresponding to the first magnetic steel ring directly attached to the position detecting device.
  • the order of arrangement of the magnetic sensing elements is the same as that of the above-described magnetic conducting ring, and the signal processing device and method are also the same, and detailed description thereof will be omitted.
  • the magnetic pole magnetization sequence of the second magnetic steel ring causes the n magnetic induction original outputs to be in the form of a Gray code.
  • the polarity of the magnetic pole is that the first position of the Gray code is "0" corresponding to the "N/S” pole, and the first position is "1" corresponding to the "S/N” pole.
  • the first magnetic steel ring is sequentially magnetized to g (the value of g is equal to the total number of magnetic poles in the second magnetic steel ring) to the opposite pole (the N pole and the S pole are alternately arranged), when the total number of magnetic poles in the second magnetic steel ring is 6
  • the first magnetic steel ring has a pole pair number of six pairs.
  • m magnetic sensing elements such as two, are disposed, and the angle between the two magnetic sensing elements ⁇ 2 is 90° 16.
  • the mechanical angle corresponding to any "NS" is 360° / g (g is "NS" number), assuming that the rotor is at time t
  • the rotation angle is within the ⁇ ⁇ signal period, then the angular displacement can be considered to be composed of two parts: 1.
  • the relative offset in the ⁇ signal period, the magnetic induction element and the 11 2 inductive magnetic field of the first magnetic steel ring Determine the offset in this "NS" signal period (value greater than 0 is less than 360° / g) ; 2.
  • the signal processing means of the position detecting means uniformly arranged is the same as that of the sequence setting, and will not be described in detail herein.
  • Fig. 46 shows a first embodiment of the position detecting device which is uniformly disposed corresponding to the code obtained when the second magnetic steel ring is provided with three magnetic sensing elements.
  • Figure 47 is a first embodiment of the position detecting device which is uniformly disposed corresponding to the magnetization sequence of the second magnet ring when the second magnet ring is provided with three magnetic induction elements;
  • Figure 48 is a first embodiment of the position detecting device uniformly disposed. A structural view of the second magnetic steel ring, the magnetic flux ring, and the magnetic sensing element.
  • the magnetic induction sequence of the second magnetic steel ring causes the output of the n magnetic induction elements to be in a Gray code form.
  • the polarity of the magnetic pole is that the first position of the Gray code is "0" corresponding to the "N/S" pole, and the first position is “1” corresponding to the "S/N” pole. Therefore, in the present embodiment, since ⁇ is 3, the code shown in Fig. 46 is obtained, and 6 codes are obtained, that is, 6 poles are obtained, and the magnetization sequence is as shown in Fig. 47, and the magnetic induction elements are read around the uniform cloth. .
  • Figure 49 is a plan view showing the arrangement of two magnetic induction elements when the first magnetic steel ring is uniformly magnetized to 6 poles in the first embodiment of the position detecting device;
  • Fig. 50 is a first embodiment of the position detecting device which is uniformly disposed. a magnetic steel ring, a magnetically conductive ring and a magnetic induction element The structure of the piece. As shown in the figure, since the total number of magnetic poles of the second magnetic steel ring is 6, the first magnetic steel ring is sequentially magnetized to 6 poles, and the arrangement and magnetic sequence of the two magnetic induction elements are as shown in FIG. The positional relationship between the first magnetic steel ring, the magnetic flux ring and the magnetic induction element is as shown in FIG.
  • Fig. 51 is a view showing the configuration of a first magnetic steel ring, a magnetic flux ring, and a magnetic induction element of the second embodiment of the position detecting device which is uniformly disposed.
  • four magnetic induction elements are disposed corresponding to the first magnetic steel ring, and the angle between the four magnetic induction elements ⁇ 2 , ⁇ 3 , and ⁇ 4 is It is 90° / 6.
  • Figure 52 is a structural view showing a first magnetic steel ring, a magnetic flux ring, and a magnetic induction element of the third embodiment of the position detecting device which is uniformly disposed. As shown in FIG. 52, this embodiment is different from the first embodiment and the second embodiment in that three magnetic induction elements are disposed corresponding to the first magnetic steel ring, and the angle between the three magnetic induction elements ⁇ 2 and ⁇ 3 is 120° / 6.
  • Figure 53 is a view showing the configuration of a first magnetic steel ring, a magnetic flux ring, and a magnetic induction element of the fourth embodiment of the position detecting device which is uniformly disposed. As shown in Fig. 53, this embodiment differs from the third embodiment in that six magnetic induction elements are provided corresponding to the first magnetic steel ring, and the angle between the six magnetic induction elements is 60° / 6.
  • Fig. 54 is an exploded perspective view showing another configuration of the first to fourth embodiments of the position detecting device which is evenly arranged.
  • the position detecting device includes a rotor and a stator that surrounds the rotor.
  • the rotor includes a first magnetic steel ring 201a and a second magnetic steel ring 201b.
  • the first magnetic steel ring 201a and the second magnetic steel ring 201b are respectively fixed to the motor shaft 200.
  • the stator is a bracket 203.
  • the magnetic sensing element 204 is directly attached to the inner surface of the bracket 203.
  • the first magnetic steel ring in the position detecting device of Fig. 53 can be provided with 2, 4, 3, and 6 magnetic induction elements.
  • the signal processing apparatus and the signal processing method based on the position detecting means of the different numbers of magnetic induction elements are the same as the methods of the first to fourth embodiments, respectively.
  • the servo motor 10 is preferably an AC servo motor.
  • the reducer 4 is a worm gear reducer.
  • the speed reducer 4 and the servo controller 9, the servo motor 10, the position detecting device 7, and the like constitute a speed reducing device.
  • the servo motor 10 drives the worm 25 to rotate by the coupling, and the worm 25 drives the worm wheel 24 to rotate.
  • the turbine 24 is disposed on the second steering shaft 3, and the second steering shaft 3 and the motor shaft are respectively provided with position detecting means 7 for sensing the angular position of the second steering shaft 3 and the motor shaft.
  • the position detecting device 7 outputs a voltage signal induced by the Hall element inside thereof, and the position detecting device 7 transmits the induced voltage signal to the servo controller 9 through the signal line 8, and the servo controller 9 performs A/D sampling and operates at an angle.
  • the solving algorithm obtains the angular position of the second steering shaft 3 and the motor shaft, and then runs a control program to perform full closed loop control of the speed reducing device.
  • Figure 55 is a schematic view showing the structure of another type of reduction gear.
  • the speed reducer 4 may be a cylindrical gear reducer.
  • Figure 56 is a schematic view showing the structure of another type of reduction gear.
  • the speed reducer 4 may be a bevel gear reducer.
  • other types of speed reducers known in the art such as planetary gear reducers, or combinations of the above-described types of speed reducers, may be employed as needed.
  • the first steering shaft 2 and the second steering shaft 3 can be connected by a connecting device 11.
  • Figure 57 is a schematic view showing the structure of a connecting device.
  • the connecting device 11 includes a first connecting head 11a and a second connecting head 11b which are respectively connected to the first steering shaft 2 and the second steering shaft 3.
  • the first connector 11a has a body 12a and a protrusion 13, and the protrusion 13 is a protrusion that protrudes outside the body 12a in the axial direction;
  • the second connector 1b has a body 12b and a recess 14, and the recess 14 is along the axis The recess is recessed into the body 12b.
  • the number of the convex portion 13 of the first connecting head 11a and the concave portion 14 of the second connecting head 1 ib are all three. However, it can be understood that the above number may also be two or more.
  • the above bumps may also be claws.
  • the projection is a claw
  • the recess is a groove formed between two adjacent claws provided on the second joint.
  • the above-mentioned bumps may also be a one-word structure, and accordingly, the recessed portions 14 may be indented grooves recessed into the body 2b in the axial direction.
  • the convex portion 13 of the first connecting head 11a and the concave portion 14 of the second connecting head l ib are disposed correspondingly, and the convex portion 13 and the concave portion 14 are engaged with each other, and a gap exists between the convex portion 13 and the concave portion 14 after the nip.
  • Figure 58 is a schematic view showing the structure of another connecting device.
  • the embodiment is different from the above-mentioned connecting device 11 in that the convex portion 13 is a cross connector protruding in the axial direction outside the body 12a; the concave portion 14 is recessed into the body 12b in the axial direction.
  • the cross groove can be understood that the cross connector in this embodiment can be replaced with a three-core connector, and accordingly, the cross recess can be replaced with a three-core groove.
  • FIG. 59 is a schematic view showing the structure of another connecting device.
  • the convex portion 13 is a three-key connecting head which is protruded radially outside the outer surface of the body 12a; the concave portion 14 is recessed in the body 12b in the radial direction. A three-key groove inside the outer surface.
  • the convex portion is equal to or shorter than the first connector body, and the concave portion is equal to or shorter than the second connector body.
  • the connecting device 11 the case where three convex portions and concave portions are provided is shown, and it should be understood that three or more convex portions and concave portions may be provided.
  • the convex portion 13 and the concave portion 14 are engaged with each other, and a gap is provided between the convex portion and the concave portion after the nip.
  • the function of the gap is that when the servo power steering system works normally, there is a buffer space when the first connector 11a rotates, and does not contact the second connector l ib, and the second connector l ib is tracked by the servo motor. The rotation of the first connector 11a.
  • the first connector 11a is in contact with the second connector l ib only when the tracking speed of the second connector l ib is insufficient or the system fails.
  • the response speed of the servo system can reach milliseconds, so the tracking speed of the second connector l ib is very fast, and there is almost no problem of tracking. If the servo system fails, the motor does not work.
  • the driver turns the steering wheel 1
  • the first connector 11a will be in contact with the second connector l ib, and the second connector 1 ib is directly contacted by the first connector 11a to rotate.
  • the two steering shafts 3 are coupled to the second connecting head 1 ib and rotate with the second connecting head 1 ib.
  • the second steering shaft 3 drives the steering mechanism 5 of the wheel 6 to realize the steering of the wheel 6. Therefore, even if the servo system fails, the driver can control the steering of the car, ensuring the reliability and safety of driving.
  • the servo system tracks the steering wheel 1 to keep the gap between the convex portion 13 and the concave portion 14, so that the steering force that the driver needs to provide is the steering wheel 1, the steering shafts 2 and 3, and the connection.
  • the force of the convex portion 13 of the device, and the rotation of the concave portion 14 to the portion of the wheel 6 is completely driven by the servo motor 10.
  • the driver's steering force is small and always constant, independent of road conditions and speed, thus providing optimum assistance.
  • the steering wheel 1 can be made smooth without being affected by the vibration of the engine or the wheel 6.
  • the convex portion 13 of the first joint head 11a and the concave portion 14 of the second joint head l ib are not in contact, the vibration of the engine or the wheel 6 is not transmitted to the steering wheel 1, and the steering wheel 1 is smooth.
  • the material and machining accuracy of the first steering shaft 2, the first connecting head l la of the connecting device, the second connecting head l ib and the second steering shaft 3 are not high, such as: processing using ordinary 45 steel, ordinary machine tools Accuracy is fine, no special processing is required, and cost is reduced.
  • Fig. 60 is an exploded view of the integrated machine. As shown in Fig. 60, the position detecting device 7, the servo controller 9, and the servo motor 10 are integrally provided. In this embodiment, the position detecting device 7 is of a single magnetic pole structure and is located behind the servo controller 9, and the servo controller 9 is fixed to the servo motor 10 through a connecting member. However, it should be understood that the position detecting device 7 may also be a multi-pole structure. Further, the position detecting device 7 can be located between the servo motor 10 and the servo controller 9.
  • the specific working process of the servo power steering system of the present invention is as follows: When the steering wheel 1 rotates, the first steering shaft 2 and the connecting device l la, l ib are rotated.
  • the position detecting device 7 mounted on the first steering shaft 2 can sense the angular position of the first steering shaft 2, transmit the induced voltage signal to the servo controller 9, and the servo controller 9 calculates to obtain the first steering shaft 2.
  • the angular position The position detecting device 7 mounted on the second steering shaft 3 can sense the angular position of the second steering shaft 3, transmit the induced voltage signal to the servo controller 9, and the servo controller 9 calculates to obtain the second steering shaft 3.
  • Angle position is as follows: When the steering wheel 1 rotates, the first steering shaft 2 and the connecting device l la, l ib are rotated.
  • the position detecting device 7 mounted on the first steering shaft 2 can sense the angular position of the first steering shaft 2, transmit the induced voltage signal to the servo controller 9, and the servo controller
  • the position detecting device 7 mounted on the servo motor can sense the angular position of the motor shaft, transmit the induced voltage signal to the servo controller 9, and the servo controller 9 calculates the angular position of the motor shaft.
  • the gap is a fixed value, and the angular position difference between the first steering shaft 2 and the second steering shaft 3 is also A fixed value.
  • the steering wheel 1 rotates the angular position of the first steering shaft 2 changes, and the angular position difference between the first steering shaft 2 and the second steering shaft 3 also changes.
  • the task of the servo controller 9 is to drive the second steering shaft by controlling the motor. 3 Rotation, so that the angular position difference between the first steering shaft 2 and the second steering shaft 3 is always a constant value. That is to say, the second steering shaft 3 is controlled to track the movement of the first steering shaft 2, the second steering shaft 3 tracks the first steering shaft 2 to rotate through an angle of the same size and direction, and the steering mechanism of the second steering shaft 3 and the wheel 6 5 is connected to achieve steering of the wheel 6.
  • the built-in angle detection method is adopted, so there is no delay of the angle information and errors caused by the communication, the control period is shortened, and the system is quickly responded to the load disturbance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Power Steering Mechanism (AREA)

Description

伺服助力转向系统及其控制方法
技术领域
本发明涉及一种伺服助力转向系统及其控制方法, 属于汽车制造技术领域。
背景技术
现有的汽车转向系统可分为机械转向系统和动力转向系统两类。 机械转向系统是依靠驾驶员 操纵转向盘的转向力来实现车轮转向; 动力转向系统则是在驾驶员的控制下, 借助于汽车发动机 产生的液体压力或电动机驱动力来实现车轮转向, 分别称之为液压助力转向系统和电动助力转向 系统。
液压助力转向系统由液压和机械等两部分组成, 它是以液压油做动力传递介质, 通过液压泵 产生动力来推动机械转向器, 从而实现转向的。 液压泵依靠发动机的动力工作, 发动机运行时液 压泵始终处于工作状态, 使发动机燃油消耗增加。 液压系统包含油泵、 油管、 压力流量控制阀、 储油罐等, 零件数目多, 同时还存在漏油问题, 对环境有污染。
电动助力转向系统一般由机械转向系统加上转矩传感器、 车速传感器、 电子控制单元、 减速 器、 电动机等组成, 它在传统机械转向系统的基础上, 根据方向盘上的转矩信号和汽车的行驶车 速信号, 利用电子控制装置使电动机产生相应大小和方向的辅助动力, 协助驾驶员进行转向操作。 电动助力转向系统仅在需要转向时才启动电动机产生助力, 相比于液压助力转向系统, 降低了能 耗。 同时没有液压系统复杂的油路零部件, 不会因漏油造成环境污染。 控制装置根据不同行驶工 况提供助力,减小由路面不平所引起电动机的输出转矩通过传动装置的作用对助力向系统的扰动, 改善汽车的转向特性。 因此, 电动助力转向系统是现代汽车转向系统的发展方向。
现有电动助力转向系统都包含转矩传感器, 根据方向盘的转矩和车速来提供助力, 转矩传感 器的价格较高, 而且是根据方向盘连接杆的变形来检测转矩, 对连接杆的要求高, 难加工。 响应 慢, 驾驶员转动方向盘后, 引起方向盘连接杆变形, 转矩传感器根据变形检测转矩, 控制器根据 转矩计算, 控制电动机运行, 整个过程需要较长的响应时间。 现有助力转向系统同时将转矩信号 和车速信号作为控制电动机的参数, 在一定程序上改善了助力, 但是相同车速下不同的路况需要 的助力不同, 因此助力效果不是最佳, 不同车速或者不同路况下, 驾驶员转动方向盘需要的力仍 差别较大。 发明内容
本发明所要解决的技术问题在于针对现有技术的不足, 提供一种伺服助力转向系统及其控制 方法, 降低了能耗, 避免环境污染; 成本低、 结构简单; 保证了驾驶的可靠性和安全性; 系统响 应快并可以提供最佳助力, 驾驶员转向力小且始终恒定, 与路况、 车速无关; 方向盘平稳, 不受 发动机或车轮振动的影响。
本发明所要解决的技术问题是通过如下技术方案实现的:
一种伺服助力转向系统, 包括方向盘、 第一转向轴、 第二转向轴、 减速器、 转向机构和车轮, 所述的方向盘与第一转向轴的一端连接, 第一转向轴的另一端与第二转向轴连接, 第二转向轴上 设有减速器, 第二转向轴通过转向机构与车轮连接, 所述的第一转向轴、 第二转向轴和伺服电机 轴上设有位置检测装置, 位置检测装置感测到转轴的转动输入信号给伺服控制器, 伺服控制器控 制伺服电机驱动减速器并通过转向机构使车轮转向。
所述的第一转向轴与第二转向轴之间通过连接装置相连。 所述的连接装置包括对应设置的第一、 第二连接头, 两者分别与第一、 第二转向轴相连, 所 述的第一、 第二连接头上对应设置有凸部和凹部, 凸部和凹部相互咬合连接, 咬合后凸部与凹部 之间设有间隙。
进一步地, 所述的第一连接头包括连接头本体, 所述的凸部沿轴向凸伸于第一连接头本体之 外。 相对应的, 所述的第二连接头包括连接头本体, 所述的凹部沿轴向凹陷入第二连接头本体之 内。
在另一个实施例中, 所述的第一连接头包括连接头本体, 所述的凸部沿径向凸设在第一连接 头本体的外表面之外。 相对应的, 所述的第二连接接头包括连接接头本体, 所述的凹部沿径向凹 陷在第二连接接头本体的外表面之内。
所述的凸部与第一连接头本体等长或比第一连接头本体短。 所述的凹部与第二连接头本体等 长或比第二连接头本体短。
此外, 根据不同的需要, 所述的凸部或凹部为 1个或 1个以上。
进一步地, 所述的凸部为一凸块, 所述的凹部对应设置为一凹槽。
在另一个实施例中, 所述的凸部为设置在第一连接接头上的凸爪, 所述的凹部为设置在第二 连接接头上的相邻的两个凸爪之间构成的凹槽。进一步地, 所述的凸部或凹部的设置数量为 3个。
在另一个实施例中, 优选地, 所述的凸部为三键连接头, 所述的凹部对应设置为三键凹槽。 优选地, 所述的凸部为三芯连接头, 所述的凹部对应设置为三芯凹槽。 优选地, 所述的凸部为十 字连接头, 所述的凹部对应设置为十字凹槽。
所述的减速器为蜗轮蜗杆减速器或圆柱齿轮减速器或圆锥齿轮减速器或行星齿轮减速器或其 组合。
所述的伺服电机优选为交流伺服电机。
所述的位置检测装置、 伺服控制器和伺服电机可一体设置。
所述伺服控制器包括数据处理单元、 电机驱动单元和电流传感器, 所述数据处理单元接收输 入的指令信号、电流传感器采集的电机输入电流信号和位置检测装置输出的代表电机角度的信息, 经过数据处理, 输出控制信号给所述的电机驱动单元, 所述电机驱动单元根据所述的控制信号输 出合适的电压给伺服电机, 从而实现对伺服电机的精确控制。
具体地, 所述数据处理单元包括机械环控制子单元、 电流环控制子单元、 PWM控制信号产生 子单元和传感器信号处理子单元;
所述传感器信号处理子单元接收所述位置检测装置输出的代表电机角度的信息, 将电机的角 度传输给所述的机械环控制子单元; 所述传感器信号处理子单元还接收所述电流传感器的检测到 的电流信号, 经过 A/D采样后输出给所述的电流环控制子单元;
所述机械环控制子单元根据接收到的指令信号和电机轴的转动角度,经过运算得到电流指令, 并输出给所述的电流环控制子单元;
所述电流环控制子单元根据接收到的电流指令的电流传感器输出的电流信号, 经过运算得到 三相电压的占空比控制信号, 并输出给所述的 PWM控制信号产生子单元;
所述 PWM控制信号产生子单元根据接收到的三相电压的占空比控制信号, 生成具有一定顺 序的六路 PWM信号, 分别作用于电机驱动单元。
所述电机驱动单元包括六个功率开关管, 所述开关管每两个串联成一组, 三组并联连接在直 流供电线路之间, 每一开关管的控制端受 PWM控制信号产生子单元输出的 PWM信号的控制, 每一组中的两个开关管分时导通。 优选地, 所述数据处理单元为 MCU, 所述电机驱动单元为 IPM模块。
在一个实施例中, 所述的位置检测装置, 包括磁钢环、 导磁环和磁感应元件, 所述导磁环由 两段或多段同半径、 同圆心的弧段构成, 相邻两弧段留有缝隙, 所述磁感应元件置于该缝隙内, 当磁钢环与导磁环发生相对旋转运动时, 所述磁感应元件将感测到的磁信号转换为电压信号, 并 将该电压信号传输给相应的信号处理装置。
所述的导磁环由两段同半径、 同圆心的弧段构成, 分别为 1/4弧段和 3/4弧段, 对应的磁感应 元件为 2个; 或者, 所述的导磁环由三段同半径的弧段构成, 分别为 1/3弧段, 对应的磁感应元 件为 3个; 或者, 所述的导磁环由四段同半径的弧段构成, 分别为 1/4弧段, 对应的磁感应元件 为 4个; 或者, 所述的导磁环由六段同半径的弧段构成, 分别为 1/6弧段, 对应的磁感应元件为 6 个。
优选地, 所述的导磁环的弧段端部可以设有倒角, 为沿轴向或径向或同时沿轴向、 径向切削 而形成的倒角。
所述的位置检测装置还包括骨架, 用于固定所述导磁环; 所述导磁环设置在骨架成型模具上, 在所述骨架一体成型时与骨架固定在一起。
所述传感器信号处理子单元或位置检测装置中包括位置检测装置的信号处理电路, 用于根据 所述位置检测装置的电压信号得到电机轴的转动角度, 具体包括: A/D转换电路, 对位置检测装 置中磁感应元件发送来的电压信号进行 A/D转换, 将模拟信号转换为数字信号; 合成电路, 对位 置检测装置发送来的经过 A/D转换的多个电压信号进行处理得到基准信号 D ; 角度获取电路, 根 据该基准信号 D, 在标准角度表中选择与其相对的角度作为偏移角度 ; 以及存储电路, 用于存 储标准角度表。
在本发明的另一个实施例中, 所述的位置检测装置包括转子和将转子套在内部的定子, 所述 转子包括第一磁钢环、 第二磁钢环;
其中, 所述第一磁钢环和第二磁钢环可以分别固定在一转动轴上;
在定子上, 对应于第二磁钢环, 以第二磁钢环的中心为圆心的同一圆周上设有 n个顺序分布 的磁感应元件, 其中, n=l, 2…! 1, 所述第二磁钢环的磁极磁化顺序使得 n个磁感应元件输出呈格 雷码格式, 相邻两个输出只有一位变化;
在定子上, 对应于第一磁钢环, 以第一磁钢环的中心为圆心的同一圆周上设有 m个呈一定角 度分布的磁感应元件, 其中, m为 2或 3的整数倍, 所述第一磁钢环的磁极总对数与第二磁钢环 的磁极总数相等, 并且相邻两极的极性相反;
当转子相对于定子发生相对旋转运动时,所述磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号输出给信号处理装置。
在定子上对应于第一磁钢环的相邻两个磁感应元件之间的夹角, 当 m为 2或 4时, 该夹角为 90° /g; 当 m为 3时, 该夹角为 120° /g; 当 m为 6时, 该夹角为 60° /g, 其中, g为第二磁钢环 的磁极总数。
在本发明的另一个实施例中, 所述的位置检测装置包括转子和将转子套在内部的定子, 所述 转子包括第一磁钢环、 第二磁钢环;
其中, 所述第一磁钢环和第二磁钢环分别固定在转轴上, 所述第一磁钢环被顺序地磁化为 N 对磁极, 其中, N<=2n并且 n=0, 1, 2…! i, 并且相邻两极的极性相反; 所述第二磁钢环的磁极总 数为 N, 其磁序按照特定磁序算法确定;
在定子上, 对应于第一磁钢环, 以第一磁钢环的中心为圆心的同一圆周上设有 m个呈一定角 度分布的磁感应元件, 其中, m为 2或 3的整数倍; 对应于第二磁钢环, 以第二磁钢环的中心为 圆心的同一圆周上设有 n个呈一定角度分布的磁感应元件, 其中, n=0, 1,
当转子相对于定子发生相对旋转运动时,所述磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号输出给信号处理装置。
在定子上对应于第二磁钢环的相邻两个磁感应元件之间的夹角为 360° /N。
具体地, 在定子上对应于第一磁钢环相邻两个磁感应元件之间的夹角, 当 m为 2或 4时, 每 相邻两个磁感应元件之间的夹角为 90° /N, 当 m为 3 时, 每相邻两个磁感应元件之间的夹角为 120° /N; 当 m为 6时, 每相邻两个磁感应元件之间的夹角为 60° /N。
所述磁感应元件可直接表贴在定子的内表面上。
优选地, 所述的位置检测装置还包括两个内置于定子内表面的、 分别对应于第一磁钢环和第 二磁钢环的导磁环, 每一所述导磁环是由多个同圆心、 同半径的弧段构成, 相邻两弧段留有空隙, 对应于两个磁钢环的磁感应元件分别设在该空隙内。
进一步地, 所述的导磁环的弧段端部可以设有倒角, 为沿轴向或径向或同时沿轴向、 径向切 削而形成的倒角。
所述的磁感应元件优选为霍尔感应元件。
所述传感器信号处理子单元或位置检测装置中包括位置检测装置的信号处理电路, 用于根据 所述位置检测装置的电压信号得到电机轴的转动角度, 具体包括:
A/D转换电路, 对位置检测装置发送来的电压信号进行 A/D转换, 将模拟信号转换为数字信 号 ·
相对偏移角度 计算电路, 用于计算位置检测装置中对应于第一磁钢环的磁感应元件发送来 的第一电压信号在所处信号周期内的相对偏移量 ;
绝对偏移量 计算电路, 根据位置检测装置中对应于第二磁钢环的磁感应元件发送来的第二 电压信号, 通过计算来确定第一电压信号所处的信号周期首位置的绝对偏移量 ;
角度合成及输出模块, 用于将上述相对偏移量 和绝对偏移量 相加, 合成所述第一电压信 号所代表的在该时刻的旋转角度 ;
存储模块, 用于存储数据。
还包括信号放大电路, 用于在 A/D转换电路进行 A/D转换之前, 对来自于磁电式传感器的电 压信号进行放大。
所述相对偏移角度 计算电路包括第一合成电路和第一角度获取电路, 所述第一合成电路对 位置检测装置发送来的经过 A/D转换的多个电压信号进行处理, 得到一基准信号 D ; 所述第一角 度获取电路根据该基准信号 D, 在第一标准角度表中选择一与其相对的角度作为偏移角度
所述相对偏移角度 计算电路内或在合成电路之前还包括温度补偿电路, 用于消除温度对磁 电式传感器发送来的电压信号的影响。
所述合成电路或所述第一合成电路的输出还包括信号 R;
所述温度补偿单元包括系数矫正器和乘法器, 所述系数矫正器对所述合成模块的输出的信号
R和对应该信号的标准状态下的信号 R。进行比较得到输出信号 K; 所述乘法器为多个, 每一所述 乘法器将从位置检测装置发送来的、 经过 A/D转换的一个电压信号与所述系数矫正模块的输出信 号 K相乘, 将相乘后的结果输出给第一合成电路。
所述绝对偏移量 计算电路包括第二合成电路和第二角度获取电路, 所述第二合成电路用于 对对应于第二磁钢环的位置检测装置发送来的第二电压信号进行合成, 得到一信号 E; 所述第二 角度获取电路根据该信号 E在第二标准角度表中选择一与其相对的角度作为第一电压信号所处的 信号周期首位置的绝对偏移量 。
本发明还提供一种上述伺服助力转向系统的控制方法, 包括如下步骤:
步骤 1 : 非转向状态下, 检测第一转向轴与第二转向轴之间的角度位置差, 并将其设定为 SQ ; 步骤 2: 在转动方向盘的状态下, 检测第一转向轴与第二转向轴之间的角度位置差, 并将其 设定为 S1 ;
步骤 3 : 计算出 8。与 Si的差值 AS ;
步骤 4: 伺服控制器根据 A S以及减速器的传动比, 计算电机轴的驱动角度, 并通过伺服电机 进行位置控制, 控制 A S为零, 使第二转向轴跟踪第一转向轴旋转, 实现车轮转向。
所述的步骤 1和步骤 2中检测的具体步骤为: 所述的伺服控制器每隔一个固定周期, 读取位 置检测装置的电压信号, 并将所述的电压信号通过角度求解算法转换成第一转向轴、 第二转向轴 和电机轴的角度位置。
与现有技术相比, 本发明的有益效果在于:
1. 伺服助力转向系统属于一种新的电动助力转向系统, 具有电动助力转向系统的优点, 如降 低了能耗, 不存在液压油路, 不会漏油造成环境污染等。
2. 成本低。 与现有的电动助力系统相比, 不需要用转矩传感器, 也不需要用到车速传感器。 现有助力转向系统对转向轴的要求很高, 转向轴难加工, 成本高, 如专利号为 200710041156.4的 专利提到了一种转向轴。 本专利的伺服助力转向系统对转向轴没有特殊的要求, 转向轴的成本也 降低了。专利号为 200420110889.0的专利, 提到了一种助力转向轴, 降低现有电动转向系统成本, 但与本专利相比成本仍较高, 而且结构复杂。 专利号为 200520035963.1的专利也是改进汽车转向 轴的一种方法。 本专利虽然增加了位置检测装置, 但是位置检测装置的成本非常低。 与液压助力 系统相比, 没有油泵、 油管、 阀等液压部件, 成本也降低了很多。
3. 可靠性高。 在交流伺服系统的控制程序中, 加了很多保护功能, 系统不容易损坏或失效。 如果控制器失效或者电机失效, 伺服助力转向系统只是没有了助力, 相当于机械转向系统, 驾驶 员仍可以转动方向盘来控制转向, 保证了可靠性和安全性, 只是需要的转向力大一些。
4. 响应快。 方向盘、 转向轴 1和爪形连接头 1的连接刚性大, 因此方向盘的转动能立即被位 置检测装置检测到, 交流伺服系统的响应也非常快, 是毫秒级的, 因此爪形连接头 2对爪形连接 头 1的跟踪特性非常快。
5. 可以提供最佳助力。 两个爪形连接头的爪之间存在间隙, 驾驶员转动方向盘, 伺服系统跟 踪方向盘的转动, 使两个爪之间始终保持这个间隙, 因此驾驶员需要提供的转向力是转动方向盘、 转向轴 1和爪形连接头 1的力, 而爪形连接头 2至车轮部分的转动完全由伺服电机驱动。 驾驶员 的转向力很小, 而且始终是恒定的, 与路况、 车速无关, 因此可以提供最佳助力。
6. 方向盘平稳, 不受发动机或车轮的振动的影响。 因为爪形连接头 1, 2 的爪不接触, 所以 发动机或车轮的振动不会传递到方向盘上。 现有的助力转向系统不可能完全消除发动机或车轮的 振动引起方向盘的振动。 如专利号为 03820579.3的专利, 提到了一种联轴器, 用于减小方向盘的 振动。
下面结合附图和具体实施例对本发明的技术方案进行详细地说明。 附图说明
图 1为本发明的整体结构示意图; 图 2为本发明伺服助力转向系统的控制结构简图;
图 3为本发明伺服助力转向系统的控制结构简图的实施例一;
图 4为伺服助力转向系统的控制系统的机械环框图;
图 5为本发明伺服助力转向系统的控制结构实施例二的简图;
图 6为单极位置检测装置安装于轴上的结构示意图;
图 7为单极位置检测装置的立体分解图;
图 8〜图 9为单极位置检测装置安装于轴上的立体图;
图 10~图 13为导磁环的倒角设计图;
图 14为单极位置检测装置实施例一的结构示意图;
图 15为单极位置检测装置实施例一的信号处理装置的框图;
图 16为单极位置检测装置实施例二的结构示意图;
图 17为单极位置检测装置实施例二的信号处理装置的框图;
图 18为单极位置检测装置实施例三的结构示意图;
图 19为单极位置检测装置实施例三的信号处理装置的框图;
图 20为单极位置检测装置实施例四的结构示意图;
图 21为单极位置检测装置实施例四的信号处理装置的框图;
图 22为多极位置检测装置的立体分解图;
图 23为将设有两个导磁环的位置检测装置的各元件组合到一起的结构示意图;
图 24为顺序设置的多极位置检测装置的信号处理方法的流程图之一;
图 25为顺序设置的位置检测装置的信号处理方法的流程图之二;
图 26为顺序设置的位置检测装置的信号处理方法的流程图之三;
图 27为顺序设置的位置检测装置的信号处理方法的流程图之四;
图 28为顺序设置的位置检测装置的实施例一的第一磁钢环、 导磁环和磁感应元件的结构图; 图 29 为顺序设置的位置检测装置的实施例一的第一磁钢环充磁磁序及与磁感应元件的位置 关系图;
图 30为磁钢环 303的算法流程图;
图 31为顺序设置的位置检测装置的实施例一的信号处理装置的框图;
图 32为顺序设置方式的位置检测装置的实施例二的第一磁钢环霍尔元件和导磁环、磁感应元 件的结构示意图;
图 33 为顺序设置方式的位置检测装置的实施例二的第一磁钢环充磁磁序及与磁感应元件的 位置关系图;
图 34为顺序设置方式的位置检测装置的实施例二的信号处理装置的框图;
图 35为顺序设置方式的位置检测装置的实施例三的第一磁钢环霍尔元件和导磁环、磁感应元 件的结构示意图;
图 36 为顺序设置方式的位置检测装置的实施例三的第一磁钢环充磁磁序及与磁感应元件的 位置关系图;
图 37为顺序设置方式的位置检测装置的实施例三的信号处理装置的框图;
图 38为顺序设置的位置检测装置的实施例四的第一磁钢环霍尔元件和导磁环、磁感应元件的 结构示意图;
图 39 为顺序设置的位置检测装置的实施例四的第一磁钢环充磁磁序及与磁感应元件的位置 关系图;
图 40为顺序设置的位置检测装置的实施例四的信号处理装置的框图;
图 41为磁感应元件直接表贴于位置检测装置上的位置检测装置结构的立体分解图; 图 42~图 45 分别是对应于第一磁钢环的磁感应元件直接表贴于位置检测装置上的结构示意 图 46为均匀设置的位置检; 装置的实施例一对应于第二磁钢环设有 3个磁感应元件时得到的 编码;
图 47为均匀设置的位置检; 装置的实施例一对应于第二磁钢环设有 3个磁感应元件时第二磁 钢环的充磁顺序;
图 48为均匀设置的位置检 S装置的实施例- 的第二磁钢环、 导磁环和磁感应元件的结构图 图 49为均匀设置的位置检: J装置的实施例- 的第一磁钢环均匀磁化为 6对极时对应 2 应元件的布置图;
图 50为均匀设置的位置检 装置的实施例-一的第一磁钢环、 导磁环和磁感应元件的结构图; 图 51为均匀设置的位置检 装置的实施例-二的第一磁钢环、 导磁环和磁感应元件的结构图 图 52为均匀设置的位置检 装置的实施例三的第一磁钢环、 导磁环和磁感应元件的结构图; 图 53为均匀设置的位置检 装置的实施例四的第一磁钢环、 导磁环和磁感应元件的结构图; 图 54是均匀设置的位置检 装置的实施例一至实施例四的另一种结构的立体分解图; 图 55为另一种减速装置的结构示意图;
图 56为另一种减速装置的结构示意图;
图 57为一种连接装置的结构示意图;
图 58为另一种连接装置的结构示意图;
图 59为另一种连接装置的结构示意图; 以及
图 60为一体机的分解图。 具体实施方式
图 1为本发明的整体结构示意图。 如图 1所示, 本发明提供一种伺服助力转向系统, 包括方 向盘 1、 第一转向轴 2、 第二转向轴 3、 减速器 4、 转向机构 5和车轮 6, 所述的方向盘 1与第一 转向轴 2的一端连接, 第一转向轴 2的另一端与第二转向轴 3连接, 第二转向轴 3上设有减速器 4, 第二转向轴 3通过转向机构 5与车轮 6连接, 所述的第一转向轴 2、 第二转向轴 3和伺服电机 10上设有位置检测装置 7 (图 1中分别为 7a、 7b、 7c ) , 位置检测装置 7通过信号线 8输入信号 给伺服控制器 9, 伺服控制器 9输出电压给伺服电机 10, 伺服电机 10驱动减速器 4并通过转向机 构 5使车轮 6转向。
图 2为本发明伺服助力转向系统的控制结构简图。 如图 2所示, 电动助力转向控制系统由伺 服控制器 9、 伺服电机 10、 位置检测装置 7组成。
伺服控制器 9包括数据处理单元、 电机驱动单元和电流传感器, 数据处理单元接收输入的指 令信号、 电流传感器采集的电机输入电流信号和位置检测装置 7输出的代表电机角度的信息, 经 过数据处理, 输出控制信号给所述的电机驱动单元, 所述电机驱动单元根据所述的控制信号输出 合适的电压给伺服电机 10, 从而实现对伺服电机 10的精确控制。
数据处理单元包括机械环控制子单元、 电流环控制子单元、 PWM控制信号产生子单元和传感 器信号处理子单元; 传感器信号处理子单元接收位置检测装置输出的代表电机角度的信息, 将电机的角度传输给 所述的机械环控制子单元; 所述传感器信号处理子单元还接收所述电流传感器的检测到的电流信 号, 经过 A/D采样后输出给所述的电流环控制子单元;
所述机械环控制子单元根据接收到的指令信号和电机轴的转动角度,经过运算得到电流指令, 并输出给所述的电流环控制子单元;
电流环控制子单元根据接收到的电流指令的电流传感器输出的电流信号, 经过运算得到三相 电压的占空比控制信号, 并输出给 PWM控制信号产生子单元;
PWM控制信号产生子单元根据接收到的三相电压的占空比控制信号,生成具有一定顺序的六 路 PWM信号, 分别作用于电机驱动单元。
电机驱动单元包括六个功率开关管, 所述开关管每两个串联成一组, 三组并联连接在直流供 电线路之间, 每一开关管的控制端受 PWM控制信号产生子单元输出的 PWM信号的控制, 每一 组中的两个开关管分时导通。 电机驱动单元根据 PWM信号, 产生三相电压给伺服电机 10, 控制 伺服电机 10运行。 伺服电机 10通过减速器 4驱动转向轴 2转动, 实现转向轴 2对转向轴 1的伺 服跟踪。
图 3为本发明伺服助力转向系统的控制结构简图的实施例一。 如图 3所示, 数据处理单元为
MCU, 电机驱动单元为 IPM模块。 在该实施例中, 从位置检测装置 7中输出电压信号, 因此在伺 服控制器 9的数据处理单元中需要角度计算单元, 将位置检测装置 7中输出的电压信号转换成角 度信息。
图 4为伺服助力转向系统的控制系统的机械环框图。 如图 4所示, 转向轴 2角度反馈, 经过 计算, 得到转向轴 3角度指令, 作为机械环的输入。 机械环根据转向轴 3角度指令和转向轴 3角 度反馈, 电机角度反馈, 计算出电流指令, 传递给电流环。 机械环包括转向轴 3位置环、 电机位 置环和速度环, 转向轴 3位置环输出电机角度指令, 电机位置环输出速度指令, 速度环输出电流 指令。
驾驶员转动方向盘, 带动转向轴 2转动, 位置检测装置 7感应转向轴 2的角度位置, 并将感 应的电压信号传递给 MCU, 经过 A/D采样, 转换为数字信号, CPU运行角度求解算法, 得到转 向轴 2角度反馈。 转向轴 2角度反馈, 经过计算, 得到转向轴 3角度指令, 作为机械环的输入。 位置检测装置 7感应转向轴 3的角度位置, 并将感应的电压信号传递给 MCU, 经过 A/D采样得 到包含角度信息的数字信号, 传递给 MCU内的 CPU, CPU运行角度求解算法, 得到转向轴 3角 度反馈。 转向轴 3角度指令减去转向轴 3角度反馈, 得到转向轴 3角度误差, 通过 PID控制器对 转向轴 3角度进行 PID控制,得到电机角度指令,转向轴 3角度的 PID控制叫做转向轴 3位置环, 转向轴 3位置环输出的是电机角度指令, 传递给电机位置环。
位置检测装置 7感应电机轴的角度位置, 并将感应的电压信号传递给 MCU, 经过 A/D采样 得到包含角度信息的数字信号, 传递给 MCU内的 CPU, CPU运行角度求解算法, 得到电机角度 反馈。电机角度指令减去电机角度反馈,得到电机角度误差,通过 PID控制器对电机角度进行 PID 控制, 得到速度指令, 电机角度的 PID控制叫做电机位置环, 电机位置环输出的是速度指令, 传 递给速度环。
电机角度反馈通过微分器得到速度反馈, 速度指令减去速度反馈, 得到速度误差, 通过 PID 控制器对速度进行 PID控制, 得到电流指令1 q-ref 。 速度的 PID控制叫做速度环。 电流指令为速 度环的输出, 也为机械环的输出, 机械环输出电流指令1 q-ref给电流环。
图 5为本发明伺服助力转向系统的控制结构实施例二的简图。 如图 5所示, 与图 3的控制结 构不同之处在于, 在该实施例中, 位置检测装置 7集成有角度计算单元, 因此在位置检测装置 7 内完成了将电压信号转换成角度信号。直接输出的角度信号通过同步口通讯输入机械环子单元中。
结合上述伺服助力转向系统的控制结构简图, 来说明本发明伺服助力转向系统的控制方法。 伺服控制器 9每隔一个固定周期, 读取位置检测装置 7的电压信号, 并将所述的电压信号通过角 度求解算法转换成第一转向轴 2、 第二转向轴 3和电机轴的角度位置。 在非转向状态下检测出的 第一转向轴 2与第二转向轴 3之间的角度位置差被设定为 SQ。 在转动方向盘 1的状态下, 检测出 的第一转向轴 2与第二转向轴 3之间的角度位置差被设定为 Si。 计算出 80与 Si的差值 AS。
伺服控制器 9根据 A S以及减速器 4的传动比, 计算电机轴的驱动角度, 并通过伺服电机 10 进行位置控制, 控制 A S为零, 使第二转向轴 3跟踪第一转向轴 2旋转, 实现车轮 6转向。
本发明的位置检测装置设有 1个磁钢环和 1个导磁环, 被称为单极位置检测装置。 然而, 在 本发明的位置检测装置中可以设有多个磁钢环和相应的多个导磁环, 被称为多极位置检测装置。 无论采用单级或者多级的位置检测装置, 都是将 1个或多个磁钢环设置在转轴上, 磁钢环的外部 套设导磁环, 并将磁感应元件插设在导磁环的间隙中, 为了便于固定导磁环, 还设置有骨架, 使 导磁环和骨架一体成型。 当转轴发生转动时, 磁感应元件感测到转轴的转动输入信号给伺服控制 器, 伺服控制器控制伺服电机驱动减速器并通过转向机构使车轮转向。
单极位置检测装置
图 6为单极位置检测装置安装于轴上的结构示意图; 图 7为单极位置检测装置的立体分解图; 图 8和图 9是单极位置检测装置安装于轴上的立体图; 如图 6〜图 9所示, 本发明的位置检测装置 由磁感应元件板 102、 磁钢环 103、 导磁环 104、 骨架 105组成; 磁感应元件板 102由 PCB板和 磁感应元件 106组成, 磁感应元件板 102上还装有接插件 108。
磁钢环 103装在轴 107上, 导磁环 104固定在骨架 105上, 骨架 105固定在电机的合适位置。 当轴 107转动时, 磁钢环 103转动, 产生正弦磁场, 而导磁环 104起聚磁作用, 磁钢环 103产生 的磁通通过导磁环 104。 PCB板上固定的磁感应元件 106把通过导磁环 104的磁场转换成电压信 号并输出, 该电压信号直接进入主控板芯片。 由主控板上芯片对电压信号进行处理, 最后得到位 角位移。
其中, 在制作所述的位置检测装置时, 导磁环 104设置在骨架成型模具上, 在所述骨架一体 成型时与骨架 105固定在一起。
图 10~图 13以由 1/4弧段和 3/4弧段构成的导磁环为例, 图示了本发明的导磁环的倒角设计。 如图 10~图 13所示, 导磁环由两段或多段同半径、 同圆心的弧段构成, 图 10所示的导磁环没有 设计倒角, 图 11~图 13所示的弧段端部设有倒角, 所述倒角为沿轴向 (图 11 ) 或径向 (图 12 ) 或同时沿轴向、 径向 (图 13 ) 切削而形成的倒角, 轴向切面 151、 154, 径向切面 152、 153。 相邻两弧段间留有缝隙, 磁感应元件置于该缝隙内, 当磁钢环与导磁环发生相对旋转运动时, 所 述磁感应元件将感测到的磁信号转换为电压信号, 并将该电压信号传输给相应的控制器。
β _ Φ
根据磁密公式 = 可以知道, 当 ^一定时候, 可以通过减少 S, 增加 B。
因为永磁体产生的磁通是一定的, 在导磁环中 S较大, 所以 B比较小, 因此可以减少因为磁 场交变而导致的发热。 而通过减少导磁环端部面积能够增大端部的磁场强度, 使得磁感应元件的 输出信号增强。
本发明还提供了一种基于上述结构的位置检测装置的信号处理装置, 包括: A/D 转换电路、 合成模块、 角度获取模块和存储模块, 其中, A/D转换电路对位置检测装置中磁感应元件发送来 的电压信号进行 A/D转换, 将模拟信号转换为数字信号, 对应于磁感应元件的个数, 该模块中具 有多个 A/D转换器, 分别用于对每个磁感应元件发送来的电压信号进行 A/D转换; 所述合成模块 对经过 A/D转换的多个电压信号进行处理, 得到基准信号 D; 所述角度获取模块, 根据该基准信 号0, 在角度存储表中选择与其相对的角度作为偏移角度 ; 所述存储模块用于存储数据。
上述各个模块可以构成一 MCU。以下通过实施例详细描述本发明的位置检测装置及其信号处 理装置。
在下述的实施例中, 传感器即为磁感应元件。
实施例一
在单极位置检测装置中设有两个磁感应元件。
图 14为单极位置检测装置实施例一的结构示意图。 如图 14所示, 导磁环由两段同半径的弧 段构成, 分别为 1/4弧段 111和 3/4弧段 112, 位置 A和 B相距角度为 90° , 并开有狭缝, 两个 磁感应元件 109和 110分别放置于 A和 B处的狭缝中。 在电机轴上, 导磁环 104与磁钢环 113同 心安装。
图 15为单极位置检测装置实施例一的信号处理装置的框图, 磁感应元件 Hla和 H2a的输出信 号接 MCU的内置 A/D转换器模拟输入口, 经模数转换后得到输出信号接乘法器 20a、 21a, 系数 矫正器 5a的输出信号 K接乘法器 20a、 21a 的输入端, 乘法器 20a、 21a 的输出信号接合成器 3a 的输入端, 合成器 3a输出信号 D和 R, 系数矫正器 5a接收合成器 3a输出的信号 D和 R, 通过运 算得到信号 K, 通过使磁感应元件 Hla和 H2a的信号与该信号 K进行相乘, 以此来进行温度补偿, 消除温度对信号的影响。 存储器 40a中存储有一角度存储表, MCU根据信号 D在角度存储表中 选择与其相对的角度作为偏移角度 。
其中对信号的处理, 即合成器 3a对信号的处理原则是: 比较两个信号的数值的大小, 数值小 的用于输出的信号 D, 信号 D的结构为 {第一个信号的符合位, 第二个信号的符合位, 较小数值 的信号的数值位}。 以本实施例为例, 说明如下:
约定:
当数据 X为有符号数时, 数据 X的第 0位 (二进制左起第 1位) 为符号位, X_0=1表示数据 X为负, X_0=0表示数据 X为正。
_0表示数据 X的数值位 (数据的绝对值), 即去除符号位剩下数据位。
如果 A_D>=B_D
D={ A_0; B_0; B_D }
R= A2 + B2
否则:
D={ A_0; B_0; A_D }
R= A2 + B2
在存储模块中存储有一标准角度表, 其中存储了对应于一系列的码, 每一个码对应于一个角 度。 该表是通过标定得到的, 标定方法是, 利用本施例的检测装置和一高精度位置传感器, 将本 施例中的磁感应元件输出的信号和该高精度位置传感器输出的角度进行一一对应, 以此建立出一 磁感应元件输出的信号与角度之间的关系表。
另外,在存储模块中还存储了一些数据修正表,这些表中包括一个信号 D与信号 RQ的对应表, 其中信号 R。为信号 R在标准状态下的信号, 通过合成模块, 即合成器 3a得到的信号 D, 通过査 表可以得到一信号 R。, 通过将信号 RQ和信号 R进行比较, 如除法运算, 得到信号1^。
实施例二 在单极位置检测装置的实施例二中设有四个磁感应元件。
图 16为单极位置检测装置实施例二的结构示意图。 如图 16所示, 与设有两个磁感应元件的 位置检测装置不同之处在于, 导磁环由四段同半径的 1/4弧段 118、 119、 120和 121构成, A, B, C, D四个位置角度依次相隔为 90° 。 4个磁感应元件 114、 115、 116和 117分别放置于狭缝 A、 B、 C和 D处。
图 17为单极位置检测装置实施例二的信号处理装置的框图。 如图 17所示, 信号处理装置与 处理方法与实施例一相类似,不同在于, 由于本实施例二中有 4个互成 90度的磁感应元件,因此, 在信号处理装置上增加了减法器 30b、 31b, 即数字差分模块, 通过该减法器 30b、 31b抑制温度 和零点漂移, 以此来提高数据精度, 最终输出给合成器 4b的信号仍为 2个, 处理过程及方法与实 施例一相同。 因此, 在此不再赘述。
实施例三
图 18为单极位置检测装置实施例三的结构示意图。 如图 18所示, 与设有四个磁感应元件的 位置检测装置不同之处在于, 导磁环由三段同半径的 1/3弧段 126、 127和 128构成, A, B, C 三个位置依次相距 120° 。 3个传感器 123、 124和 125分别放置狭缝 A, B, C处。
图 19为单极位置检测装置实施例三的信号处理装置的框图。 与实施例一不同的是, 磁感应元 件有三个, 输出给合成器 3c的信号为三个, 合成器在 3c处理信号时与实施例一不同, 其余与实 施例一相同。 在这里, 仅说明合成器 3c如何处理信号。
在本实施例中,对信号的处理, 即合成器 3c对信号的处理原则是:先判断三个信号的符合位, 并比较符合位相同的信号的数值的大小, 数值小的用于输出的信号 D, 信号 D的结构为 {第一个 信号的符合位, 第二个信号的符合位, 第三个信号的符合位, 较小数值的信号的数值位 }。 以本实 施例为例:
约定:
当数据 X为有符号数时, 数据 X的第 0位 (二进制左起第 1位) 为符号位, X_0=1表示数据 X为负, X_0=0表示数据 X为正。
_0表示数据 X的数值位 (数据的绝对值), 即去除符号位剩下数据位。
如果 { A_0 ; B_0; C_0 }=010 并且 A_D>= C_D
D={ A_0 ; B_0; C_0; C_D }
如果 { A_0; B_0; C_0}=010 并且 A_D< C_D
D={ A_0 ; B_0; C_0; A_D }
如果 { A_0; B_0; C_0}=101 并且 A_D>= C_D
D={ A_0 ; B_0; C_0; C_D }
如果 { A_0 ; B_0; C_0 }=101 并且 A_D< C_D
D={ A_0 ; B_0; C_0; A_D }
如果 { A_0 ; B_0; C_0 }=011 并且 B_D>=C_D
D={ A_0 ; B_0; C_0; C_D }
如果 { A_0 ; B_0; C_0 }=011 并且 B_D<C_D
D={ A_0 ; B_0; C_0; B_D }
如果 { A_0 ; B_0; C_0 }=100 并且 B_D>=C_D
D={ A_0 ; B_0; C_0; C_D }
如果 { A_0 ; B_0; C_0 }=100 并且 B_D<C_D D=:{ A_0; B_0; C_0; B— D }
如果 { A_0; B_0; C_0}: =001 并且 B_D>=A_D
D= :{ A_0; B_0; C_0; A— -D }
如果 { A_0; B_0; C_0}: =001 并且 B_D<A_D
D= :{ A_0; B_0; C_0; B— D }
1∞
如果 { A_0; B_0; C_0}: =110 并且 B_D>=A_D
D= :{ A_0; B_0; C_0; A— -D }
如果 { A_0; B_0; C_0}: =110 并且 B_D<A_D
D= :{ A_0; B_0; C_0; B— D }
= A - B β = Βχ sin (―) -Cx sin (―)
3 3 实施例四
图 20为单极位置检测装置实施例四的结构示意图。 如图 20所示, 导磁环由六段同半径的 1/6 弧段 136、 137、 138、 139、 140和 141 构成, A, B, C, D, E, F六个位置依次相距 60° , 6 个传感器 130、 131、 132、 133、 134分别放置在狭缝 A, B, C, D, E, F处。
图 21为单极位置检测装置实施例四的信号处理装置的框图。与设有三个磁感应元件的位置检 测装置不同之处在于,磁感应元件有六个, 因此,在信号处理装置上增加了减法器 20d、 21d、 22d, 通过该减法器 20d、 21d、 22d抑制温度和零点漂移, 以此来提高数据精度, 最终输出给合成器 4d 的信号仍为 3个, 处理过程及方法与设有三个磁感应元件的位置检测装置相同。
多极位置检测装置
图 22为多极位置检测装置的立体分解图。 如图 22所示, 该位置检测装置包括转子和将转子 套在内部的定子, 具体地, 转子包括第一磁钢环 302和第二磁钢环 303, 磁钢环 302、 303的直径 小于导磁环 304、 305 的直径, 因而导磁环 304、 305分别套设在磁钢环 302、 303外侧, 磁钢环 302、 303固定在转轴 301上, 且导磁环 304、 305与磁钢环 302、 303可以相对转动, 从而使设置 在支架 306内表面上的多个传感器元件 307处于磁钢环的空隙内。
图 23为将设有两个导磁环的位置检测装置的各元件组合到一起的结构示意图。 从图 23可以 看出, 磁钢环 302、 磁钢环 303平行布置在轴 301上, 对应于磁钢环 302、 磁钢环 303分别设有两 列磁感应元件 308和 309。 这里为下文说明方便, 将第一列磁感应元件即对应磁钢环 302和导磁 环 304的多个磁感应元件都用磁感应元件 308表示, 而将第二列磁感应元件即对应磁钢环 303和 导磁环 305的多个磁感应元件都用磁感应元件 309表示。 为了说明方便, 这里将磁钢环 302定义 为第一磁钢环, 将磁钢环 303定义为第二磁钢环, 将导磁环 304限定为对应于第一磁钢环 302, 将导磁环 305限定为对应于第二磁钢环 303, 然后本发明不限于上述的限定。
其中, 导磁环 304、 305上也可以设有倒角, 其结构与单极位置检测装置的导磁环相同, 具体 参照图 10〜图 13。
对于多极位置检测装置而言, 其磁感应元件的布置方式, 磁钢环的磁化方式可以不同。
顺序设置方式
第一磁钢环 302被顺序地磁化为 N对磁极, 其中, N<=2n并且 n=0, 1, 2…! ι, N=2n为本发 明的最佳实施例, 当 N 2n的时候, 也可以实现本发明的发明目的。 并且相邻两极的极性相反, 第二磁钢环的磁极总数为 N, 其磁序按照磁序算法确定; 在支架 306上, 对应于第一磁钢环 302, 以第一磁钢环 302的中心为圆心的同一圆周上设有 m个呈一定角度分布的磁感应元件 308,其中, m为 2或 3的整数倍; 对应于第二磁钢环 303, 以第二磁钢环 303的中心为圆心的同一圆周上设 有 n个呈 360° /N角度分布的磁感应元件 309, 其中, n=0, 1, 2…! ι。
本发明还提供了一种上述位置检测装置的信号处理装置, 其包括 A/D转换电路、 相对偏移角 度 计算电路、 绝对偏移量 计算电路、 角度合成及输出模块和存储模块, 其中, 所述 A/D转换 电路对位置检测装置发送来的电压信号进行 A/D转换, 并将模拟信号转换为数字信号; 所述相对 偏移角度 计算电路用于计算位置检测装置中对应于第一磁钢环的磁感应元件发送来的第一电压 信号在所处信号周期内的相对偏移量 ; 所述绝对偏移量 ^计算电路根据位置检测装置中对应于 第二磁钢环的磁感应元件发送来的第二电压信号, 通过计算来确定第一电压信号所处的信号周期 首位置的绝对偏移量 ^ ; 所述角度合成及输出模块用于将上述相对偏移量 和绝对偏移量 相 力口, 合成所述第一电压信号所代表的在该时刻的旋转角度 ; 所述存储模块用于存储标定过程中 得到的角度和系数 κ矫正用数据。
图 24为顺序设置的多极位置检测装置的信号处理方法的流程图之一。 如图 24所示, 对位置 检测装置中第一磁钢环和第二磁钢环发送来的电压信号进行 A/D转换, 将模拟信号转换为数字信 号; 由相对偏移量 计算电路对位置检测装置发送来的对应于第一磁钢环的第一电压信号进行角 度 求解, 计算对应于第一磁钢环的信号在所处信号周期内的相对偏移量 ; 由绝对偏移量 计 算电路对位置检测装置发送来的对应于第二磁钢环的第一电压信号进行角度 ^求解, 来确定第一 电压信号所处的信号周期首位置的绝对偏移量 ^; 通过角度合成及输出模块, 如加法器用于将上 述相对偏移量 和绝对偏移量 ^相加, 合成所述第一电压信号所代表的在该时刻的旋转角度 Θ。
图 25为顺序设置的位置检测装置的信号处理方法的流程图之二。 在图 24的基础上增加了信 号放大模块, 如放大器, 用于在 A/D转换电路进行 A/D转换之前, 对来自于位置检测装置的电压 信号进行放大。
图 26为顺序设置的位置检测装置的信号处理方法的流程图之三。如图 26所示,在进行角度 求解之前, 还包括温度补偿的过程。
图 27为顺序设置的位置检测装置的信号处理方法的流程图之四。 如图 27所示, 为基于图 5 的温度补偿的具体过程, 即进行温度补偿时, 要先进行系数矫正, 而后再将 A/D转换器输出的信 号与系数矫正的输出通过乘法器进行相乘的具体方式来进行温度补偿。 当然, 温度补偿的具体方 式还有很多种, 在此就不一一介绍。
以下通过实施例详细说明顺序设置方式的位置检测装置及其信号处理装置与方法。
实施例一
顺序设置的位置检测装置的实施例一提供了第一列磁感应元件设有两个磁感应元件 308, 第 二列感应元件设有三个磁感应元件 309的位置检测装置。
图 28为顺序设置的位置检测装置的实施例一的第一磁钢环、 导磁环和磁感应元件的结构图; 图 29 为顺序设置的位置检测装置的实施例一的第一磁钢环充磁磁序及与磁感应元件的位置关系 图。 对应于第一磁钢环 302的第一列磁感应元件 308为 2个, 即 m=2, 用 和 112表示, 这两个 磁感应元件 和 112分别放置于对应导磁环 304的两个夹缝中。 对应于第二磁钢环 303的第二列 磁感应元件 309为 3个, 即 n=3,用 H3、 和 表示。 取磁极数 N=8, 这样, 对应于第二磁钢环 303的相邻两个磁感应元件 309之间的夹角为 360° /8。对应于第一磁钢环 302的相邻两个磁感应 元件 308之间的夹角为 90° /8。 从图 29可以看出, 磁钢环 302的充磁顺序以及 和 H2的磁极排布; 图 30为磁钢环 303的 算法流程图。 如图 30所示, 首先进行初始化 a[0]= " 0…… 0"; 然后将当前编码入编码集, 即编码 集中有 " 0…… 0"; 接着检验入编码集的集合元素是否达到 8, 如果是则程序结束, 反之将当前编 码左移一位, 后面补 0; 然后检验当前编码是否已入编码集, 如果未入编码集则将当前编码入编 码集继续进行上述步骤, 如果已入编码集则将当前码末位去 0补 1 ; 接着检验当前编码是否已入 编码集, 如果未入编码集则将当前编码入编码集继续进行上述步骤, 如果已入编码集则检验当前 码是否为 " 0…… 0", 是则结束, 否则将当前编码的直接前去码末位去 0补 1 ; 接着检验当前编码 是否已入编码集, 如果未入编码集则将当前编码入编码集继续进行上述步骤, 如果已入编码集则 检验当前码是否为 " 0…… 0", 然后继续进行下面的程序。 其中 0磁化为 " N/S ", 1磁化为 " S/N"。
图 31为顺序设置的位置检测装置的实施例一的信号处理装置的框图。 如图 31所示, 磁感应 元件 Hle和 H2e的输出信号接放大器, 放大器的输出信号输入给 A/D转换器模拟输入口, 经模数 转换后得到输出信号接乘法器 4_1、 5_1, 系数矫正器 10_1的输出信号接乘法器 4_1、 5_1的输入 端, 乘法器 4_1、 5_1的输出信号 A, B接合成器 6_1的输入端, 第一合成器 6_1的输出信号 D作 为存储器 8_1和存储器 9_1的输入信号, 存储器 9_1的输出信号接系数矫正器 10_1, 存储器 8_1 的输出信号 作为加法器 12_1的输入端。
传感器 1_3、 1_4、 ... l_n 的输出信号分别接三个放大器 2_3、 2_4和 2_n进行放大, 然后接 AD转换器进行模数转换后通过第二合成器 7_1进行合成,然后接存储器 11_1得到 。 和 通 过加法器 12_1得到测量的绝对角位移 输出。
其中, 在信号的处理过程中, 第一合成器 6_1的输出按以下方式进行:
约定:
当数据 X为有符号数时, 数据 X的第 0位 (二进制左起第 1位) 为符号位, X_0=1表示数据 X为负, X_0=0表示数据 X为正。
_0表示数据 X的数值位 (数据的绝对值), 即去除符号位剩下数据位。
比较两个信号的数值的大小, 数值小的用于输出的信号 D, 信号 D的结构为 {第一个信号的 符合位, 第二个信号的符合位, 较小数值的信号的数值位 }。 具体如下:
如果 A_D>=B_D
D={ A_0; B_0; B_D }
R= A2 + B2
否则:
D={ A_0; B_0; A_D }
R= VA2 + B2
第二合成器 7的输出按以下方式进行:
E={ C3_0; C4_0; ... Cn_0 }
信号 K一般是通过将信号 RQ和 R进行除法运算得到。
对于第一、 二标准角度表, 在存储器中存储了两个表, 每个表对应于一系列的码, 每一个码 对应于一个角度。 该表是通过标定得到的, 标定方法是, 利用本施例的检测装置和一高精度位置 传感器, 将本施例中的磁感应元件输出的信号和该高精度位置传感器输出的角度进行一一对应, 以此建立出一磁感应元件输出的信号与角度之间的关系表。 也就是, 对应于信号 D存储了一个第 一标准角度表, 每一个信号 D代表一个相对偏移量 。 对应于信号 E, 存储了一个第二标准角度 表, 每一个信号 E代表一个绝对偏移量 。 实施例二
顺序设置的位置检测装置的实施例二提供了对应于第一磁钢环 302设有四个磁感应元件的示 意图。
图 32为顺序设置方式的位置检测装置的实施例二的第一磁钢环霍尔元件和导磁环、磁感应元 件的结构示意图;图 33为顺序设置方式的位置检测装置的实施例二的第一磁钢环充磁磁序及与磁 感应元件的位置关系图。
如图 32所示, 对应于第一磁钢环 302的第一列磁感应元件 308为 4个, 即 m=4, 用!^、 H2、 H3和 H4表示, 这四个磁感应元件 Η2、 Η3和 Η4分别放置于对应第一导磁环 304的四个夹缝 中。 对应于第二磁钢环 303的第二列磁感应元件 309为 3个, 即 η=3, 用 Η5、 ¾和 Η7表示。 取 Ν=8, 这样, 对应于第二磁钢环 303的相邻两个磁感应元件 309之间的夹角为 360° /8。 对应于第 一磁钢环 302的相邻两个磁感应元件 308之间的夹角为 90° /8。
从图 33可以看出, 磁钢环 302的充磁顺序以及 Η2、 ¾和 Η4的磁极排布。 第一磁钢环 302的充磁结构及算法流程与实施例一的相同, 在此省略对它们的说明。
图 34为顺序设置方式的位置检测装置的实施例二的信号处理装置的框图。信号处理装置与处 理方法与实施例一相类似, 不同在于, 由于本实施例二中有 4 个磁感应元件, 传感器 1_1、 1_2 的输出信号接放大器 2_1进行差动放大,传感器 1_3、 1_4的输出信号接放大器 2—2进行差动放大, 最终输出给第一合成器 6_1的信号仍为 2个, 处理过程及方法与实施例一相同, 不再赘述。
实施例三
为顺序设置方式的位置检测装置的实施例三提供了对应于第一磁钢环设有三个磁感应元件的 结构图。
图 35为顺序设置方式的位置检测装置的实施例三的第一磁钢环霍尔元件和导磁环、磁感应元 件的结构示意图;图 36为顺序设置方式的位置检测装置的实施例三的第一磁钢环充磁磁序及与磁 感应元件的位置关系图;
如图 35所示, 对应于第一磁钢环 302的第一列磁感应元件 308为 3个, 即 m=3, 用!^、 ¾ 和 ¾表示, 这两个磁感应元件 Η2和 ¾分别放置于对应第一导磁环 304的三个夹缝中。 对应 于第二磁钢环 303的第二列磁感应元件 309为 3个, 即 η=3, 用 Η4、 Η5和 ¾表示。 取 Ν=8, 这 样, 对应于第二磁钢环 303的相邻两个磁感应元件 309之间的夹角为 360° /8。对应于第一磁钢环 302的相邻两个磁感应元件 308之间的夹角为 120° /8。
从图 36可以看出, 磁钢环 302的充磁顺序以及 ¾和 ¾的磁极排布。 第一磁钢环 302的 充磁结构及算法流程与实施例一的相同, 在此省略对它们的说明。
图 37为顺序设置方式的位置检测装置的实施例三的信号处理装置的框图。与实施例一不同的 是, 磁感应元件有三个, 传感器 1_1、 1_2、 1_3输出给第一合成器 7_1的信号为三个, 第一合成 器 7_1在处理信号时与实施例一不同, 其余与实施例一相同。 在这里, 仅说明第一合成器 7_1如 何进行处理得到 D和 R。
在本实施例中, 对信号的处理, 即第一合成器 7_1的输出原则是: 先判断三个信号的符合位, 并比较符合位相同的信号的数值的大小, 数值小的用于输出的信号 D, 信号 D的结构为 {第一个 信号的符合位, 第二个信号的符合位, 第三个信号的符合位, 较小数值的信号的数值位 }。 以本实 施例为例:
约定:
当数据 X为有符号数时, 数据 X的第 0位 (二进制左起第 1位) 为符号位, X_0=1表示数据 X为负, X_0=0表示数据 X为正。
_0表示数据 X的数值位 (数据的绝对值), 即去除符号位剩下数据位。
如果 { A_0; B_0; C_0}=010 并且 A_D>= C_D
D={ A_0; B_0; C_0; C— D }
如果 { A_0; B_0; C_0}=010 并且 A_D< C_D
D={ A_0; B_0; C_0; A— -D };
如果 { A_0; B_0; C_0}=101 并且 A_D>= C_D
D={ A_0; B_0; C_0; C— D };
如果 { A_0; B_0; C_0}=101 并且 A_D< C_D
D={ A_0; B_0; C_0; A— -D };
如果 { A_0; B_0; C_0}=011 并且 B_D>=C_D
D={ A_0; B_0; C_0; C— D };
如果 { A_0; B_0; C_0}=011 并且 B_D<C_D
D={ A_0; B_0; C_0; B— D };
如果 { A_0; B_0; C_0}=100 并且 B_D>=C_D
D={ A_0; B_0; C_0; C— D };
如果 { A_0; B_0; C_0}=100 并且 B_D<C_D
D={ A_0; B_0; C_0; B— D };
如果 { A_0; B_0; C_0}=001 并且 B_D>=A_D
D={ A_0; B_0; C_0; A— -D };
如果 { A_0; B_0; C_0}=001 并且 B_D<A_D
D={ A_0; B_0; C_0; B— D };
如果 { A_0; B_0; C_0}=110 并且 B_D>=A_D
D={ A_0; B_0; C_0; A— -D };
如果 { A_0; B_0; C_0}=110 并且 B_D<A_D
D={ A_0; B_0; C_0; B— D };
a = A- B x cos (―) -C x cos (―)
3 3
22
实施例四
顺序设置的位置检测装置实施例四提供了对应于第一磁钢环设有六个磁感应元件的结构图。 图 38为顺序设置的位置检测装置的实施例四的第一磁钢环霍尔元件和导磁环、磁感应元件的 结构示意图;图 39为顺序设置的位置检测装置的实施例四的第一磁钢环充磁磁序及与磁感应元件 的位置关系图。
如图 38所示, 对应于第一磁钢环 302的第一列磁感应元件 308为 6个, 即 m=6, 用!^、 H2、 H3、 H4、 H5和 H6表示, 这两个磁感应元件 H2、 H3、 H4、 H5和 H6分别放置于对应第一导磁 环 304的六个夹缝中。 对应于第二磁钢环 303的第二列磁感应元件 309为 3个, 即 n=3, 用 H7、 和 表示。 取 N=8, 这样, 对应于第二磁钢环 303的相邻两个磁感应元件 309之间的夹角为 360° /8。 对应于第一磁钢环 302的相邻两个磁感应元件 308之间的夹角为 60° /8。 从图 39可以看出, 磁钢环 302的充磁顺序以及 Η2、 Η3、 Η4、 Η5和 Η6的排布。 第一磁钢 环 302的充磁结构及算法流程与实施例一的相同, 在此省略对它们的说明。
图 40为顺序设置的位置检测装置的实施例四的信号处理装置的框图。 与实施例三不同的是, 磁感应元件有六个, 因此, 传感器 1_1、 1_2的输出信号接放大器 2_1进行差动放大, 传感器 1_3、 1_4的输出信号接放大器 2—2进行差动放大, 传感器 1_5、 1_6的输出信号接放大器 2_3进行差动 放大, 最终输出给第一合成器 7_1的信号仍为 3个, 处理过程及方法与实施例三相同。
上述四个实施例是在 η=3的情况下, m值变化的各种实施例, 本发明不限于此, 第二磁钢环 上的磁感应元件 n可以是任意整数, n=0, 1, 2…! i, 如图 40所示, 分别为当 n=3、 4、 5时的第 二磁钢环、 导磁环和磁感应元件的分布。
图 41为磁感应元件直接表贴于位置检测装置上的位置检测装置结构的立体分解图。 图 42〜图
45分别是对应于第一磁钢环的磁感应元件直接表贴于位置检测装置上的结构示意图。 在磁感应元 件直接表贴于位置检测装置上的情况下, 磁感应元件的排布顺序与上述带有导磁环的顺序相同, 且信号处理装置及方法也相同, 在此省略详细说明。
均匀设置的位置检测装置
与顺序设置的多极位置检测装置不同的是, 对应于第二磁钢环, 以第二磁钢环的中心为圆心 的同一圆周上设有 n 个顺序分布的磁感应元件, n=l, 2…! 1, 第二磁钢环的磁极磁化顺序使得 n 个磁感应原件输出呈格雷码形式。 磁极的极性为格雷码的首位为 " 0"对应于 " N/S "极, 首位为 " 1 "对应于 " S/N" 极。
第一磁钢环顺序磁化为 g ( g的取值等于第二磁钢环中的磁极总数)对极(N极和 S极交替排 列), 当第二磁钢环中的磁极总数为 6时, 第一磁钢环的极对数为 6对。 以第一磁钢环的中心为圆 心的同一圆周上, 设置有 m个磁感应元件, 如 2个, 二个磁感应元件 Η2之间的夹角为 90° 16。
定义第一磁钢环中相邻一对 " N-S " 为一个信号周期, 因此, 任一 " N-S "对应的机械角度为 360° /g ( g为 " N-S " 个数), 假定转子在 t时刻旋转角度 位于第 ηΛ信号周期内, 则此时刻角位 移 可认为由两部分构成: 1. 在第 ηΛ信号周期内的相对偏移量, 磁感应元件 和112感应第一磁 钢环的磁场来确定在此 " N-S "信号周期内的偏移量 (值大于 0小于 360° /g ) ; 2. 第 ηΛ信号周 期首位置的绝对偏移量 , 用传感器 Η3, Η4, …!^感应磁环 2的磁场来确定此时转子究竟是处 于哪一个 " N-S " 来得到 。
均匀设置的位置检测装置的信号处理装置与顺序设置的相同, 在此不再做详细说明。
实施例一
在实施例一中, 对应于第二磁钢环设有 3磁感应元件, 对应于第一磁钢环设有 2磁感应元件。 图 46为均匀设置的位置检测装置的实施例一对应于第二磁钢环设有 3个磁感应元件时得到的 编码。图 47为均匀设置的位置检测装置的实施例一对应于第二磁钢环设有 3个磁感应元件时第二 磁钢环的充磁顺序; 图 48为均匀设置的位置检测装置的实施例一的第二磁钢环、 导磁环和磁感应 元件的结构图。 如图所示, 由于第二磁钢环的磁极磁化顺序使得 η个磁感应原件输出呈格雷码形 式。 磁极的极性为格雷码的首位为 " 0"对应于 " N/S "极, 首位为 " 1 "对应于 " S/N"极。 因此, 在本实施例中, 由于 η为 3时, 得到如图 46所示的编码, 得到 6个码, 即得到 6个极, 充磁顺序 如图 47所示, 磁感应元件均布周围进行读数。
图 49为均匀设置的位置检测装置的实施例一的第一磁钢环均匀磁化为 6对极时对应 2个磁感 应元件的布置图; 图 50为均匀设置的位置检测装置的实施例一的第一磁钢环、导磁环和磁感应元 件的结构图。 如图所示, 由于第二磁钢环的磁极总数为 6, 因此, 第一磁钢环被顺序的磁化为 6 对极, 其与 2个磁感应元件的布置图及磁序如图 49所示, 第一磁钢环、 导磁环和磁感应元件的位 置关系如图 50所示。
实施例二
图 51为均匀设置的位置检测装置的实施例二的第一磁钢环、 导磁环和磁感应元件的结构图。 如图 51所示, 与实施例一不同的, 在本实施例中, 对应于第一磁钢环设置有 4个磁感应元件, 四 个磁感应元件 Η2、 Η3、 Η4之间的夹角为 90° /6。
实施例三
图 52为均匀设置的位置检测装置的实施例三的第一磁钢环、 导磁环和磁感应元件的结构图。 如图 52所示, 本实施例与实施例一和二不同的是对应于第一磁钢环设置有 3个磁感应元件, 三个 磁感应元件 Η2、 Η3之间的夹角为 120° /6。
实施例四
图 53为均匀设置的位置检测装置的实施例四的第一磁钢环、 导磁环和磁感应元件的结构图。 如图 53所示, 本实施例与实施例三的不同在于, 对应于第一磁钢环设置有 6个磁感应元件, 六个 磁感应元件之间的夹角为 60° /6。
图 54是均匀设置的位置检测装置的实施例一至实施例四的另一种结构的立体分解图。该位置 检测装置包括转子和将转子套在内部的定子, 转子包括第一磁钢环 201a和第二磁钢环 201b, 第 一磁钢环 201a和第二磁钢环 201b分别固定在电机轴 200上, 其中定子为支架 203。 磁感应元件 204直接表贴在支架 203的内表面。
与实施例一至四类似, 图 53中的位置检测装置中的第一磁钢环可以设置有 2、 4、 3、 6个磁 感应元件。 基于不同数目的磁感应元件的位置检测装置的信号处理装置和信号处理方法分别与实 施例一至四的方法相同。
在本发明的伺服助力转向系统中, 伺服电机 10优选为交流伺服电机。
再参照图 1, 减速器 4为蜗轮蜗杆减速器。 减速器 4与伺服控制器 9、 伺服电机 10、 位置检 测装置 7等构成减速装置。伺服电机 10在伺服控制器 9的控制下, 通过联轴器带动蜗杆 25转动, 蜗杆 25再带动蜗轮 24转动。涡轮 24设置在第二转向轴 3上, 在第二转向轴 3和电机轴上分别装 有位置检测装置 7, 用于感应第二转向轴 3和电机轴的角度位置。 位置检测装置 7输出的是其内 部的霍尔元件感应的电压信号, 位置检测装置 7通过信号线 8将感应的电压信号传递给伺服控制 器 9, 伺服控制器 9经过 A/D采样并运行角度求解算法获得第二转向轴 3和电机轴的角度位置, 然后运行控制程序对减速装置进行全闭环控制。
图 55为另一种减速装置的结构示意图。 如图 55所示, 减速器 4可以是圆柱齿轮减速器。 图 56为另一种减速装置的结构示意图。 如图 56所示, 减速器 4可以是圆锥齿轮减速器。 此外, 在实际的应用中, 还可以根据需要采用本领域已知的其它类型减速器, 如行星齿轮减 速器, 或者是上述类型减速器的组合。
第一转向轴 2与第二转向轴 3之间可以通过连接装置 11相连。
图 57为一种连接装置的结构示意图。 如图 57所示, 连接装置 11包括分别与第一转向轴 2和 第二转向轴 3相连的第一连接头 11a和第二连接头 l lb。 第一连接头 11a具有本体 12a和凸部 13, 且凸部 13为沿轴向凸伸于本体 12a之外的凸块; 第二连接头 l ib具有本体 12b和凹部 14, 凹部 14为沿轴向凹陷入本体 12b之内的凹槽。
图 57所示的实施例中, 第一连接头 11a的凸部 13和第二连接头 l ib的凹部 14的个数均为三 个, 然而可以理解的是, 上述个数也可以为两个或者三个以上。
上述凸块也可以为凸爪。 当凸块为凸爪时, 所述的凹部为设置在第二连接接头上的相邻的两 个凸爪之间构成的凹槽。 此外, 上述凸块也可以是一字结构, 相应地, 凹部 14可以是沿轴向凹陷 入本体 2b之内的一字凹槽。
第一连接头 11a的凸部 13和第二连接头 l ib的凹部 14对应设置, 且凸部 13和凹部 14相互 咬合连接, 咬合后凸部 13与凹部 14之间存在间隙。
图 58为另一种连接装置的结构示意图。 如图 58所示, 该实施例与上述连接装置 11不同之处 在于, 凸部 13为沿轴向凸伸于本体 12a之外的十字连接头; 凹部 14为沿轴向凹陷入本体 12b之 内的十字凹槽。 此外, 可理解的是, 该实施例中的十字连接头可以替换为三芯连接头, 相应地, 十字凹槽可替换为三芯凹槽。
图 59为另一种连接装置的结构示意图。 如图 59所示, 与上述连接装置 11不同之处在于, 凸 部 13为沿径向凸设在本体 12a的外表面之外的三键连接头; 凹部 14为沿径向凹陷在本体 12b的 外表面之内的三键凹槽。 其中, 凸部与第一连接头本体等长或比第一连接头本体短, 凹部与第二 连接头本体等长或比第二连接头本体短。在该连接装置 11的实施例中示出了设有三个凸部和凹部 的情况, 应理解的是, 也可以设有三个以上的凸部和凹部。
在以上各实施例的连接装置 11的结构中, 凸部 13和凹部 14相互咬合连接, 咬合后凸部与凹 部之间设有间隙。 该间隙的作用是当伺服助力转向系统正常工作时, 第一连接头 11a转动时存在 一个缓冲空间, 不与第二连接头 l ib接触到, 第二连接头 l ib在伺服电机的带动下跟踪第一连接 头 11a的转动。 只有在第二连接头 l ib跟踪速度不够或者系统失效时第一连接头 11a才会与第二 连接头 l ib接触到。 伺服系统的响应速度可以达到毫秒级, 所以第二连接头 l ib的跟踪速度非常 快, 几乎不存在跟踪不上的问题。 如果伺服系统失效, 电机不工作, 当驾驶员转动方向盘 1, 第 一连接头 11a将和第二连接头 l ib接触到, 通过第一连接头 11a直接接触带动第二连接头 l ib转 动, 第二转向轴 3与第二连接头 l ib连在一起, 随第二连接头 l ib—起转动, 第二转向轴 3带动 车轮 6的转向机构 5, 实现车轮 6的转向。 因此, 即使伺服系统失效, 驾驶员仍可以控制汽车转 向, 保证了驾驶的可靠性和安全性。
当驾驶员转动方向盘 1时, 伺服系统跟踪方向盘 1转动, 使凸部 13和凹部 14之间始终保持 这个间隙, 因此驾驶员需要提供的转向力是转动方向盘 1、 转向轴 2和 3、 以及连接装置的凸部 13的力, 而凹部 14至车轮 6部分的转动完全由伺服电机 10驱动。 驾驶员的转向力很小, 而且始 终是恒定的, 与路况、 车速无关, 因此可以提供最佳助力。 此外, 利用本发明提供的连接装置 11, 可以使方向盘 1平稳, 不受发动机或车轮 6的振动的影响。 因为第一连接头 11a的凸部 13和第二 连接头 l ib的凹部 14不接触,所以发动机或车轮 6的振动不会传递到方向盘 1上,方向盘 1平稳。 对第一转向轴 2、 连接装置的第一连接头 l la、 第二连接头 l ib和第二转向轴 3的材料及加工精度 要求都不高, 如: 采用普通 45钢, 普通机床的加工精度即可, 不需要做特殊的处理, 降低成本。
图 60为一体机的分解图, 如图 60所示, 位置检测装置 7、 伺服控制器 9和伺服电机 10—体 设置。 在该实施例中, 位置检测装置 7是单磁极结构, 并位于伺服控制器 9之后, 而伺服控制器 9通过连接件与伺服电机 10固定在一起。 然而, 应理解的是, 位置检测装置 7也可以是多磁极结 构。 此外, 位置检测装置 7可以位于伺服电机 10和伺服控制器 9之间。
本发明的伺服助力转向系统的具体工作过程如下: 当方向盘 1转动时, 带动第一转向轴 2和 连接装置 l la、 l ib—起转动。 安装在第一转向轴 2上的位置检测装置 7可以感应到第一转向轴 2 的角度位置, 将感应电压信号传递给伺服控制器 9, 伺服控制器 9经过计算, 获得第一转向轴 2 的角度位置。 安装在第二转向轴 3上的位置检测装置 7可以感应到第二转向轴 3的角度位置, 将 感应电压信号传递给伺服控制器 9, 伺服控制器 9经过计算, 获得第二转向轴 3的角度位置。 安 装在伺服电机上的位置检测装置 7可以感应电机轴的角度位置, 将感应电压信号传递给伺服控制 器 9, 伺服控制器 9经过计算, 获得电机轴的角度位置。 连接装置 11a的凸部 13和连接装置 l ib 的凹部 14之间存在间隙, 方向盘 1不转动时这个间隙为一个固定的值, 第一转向轴 2和第二转向 轴 3的角度位置差也为一个定值。 方向盘 1转动时, 第一转向轴 2的角度位置发生变化, 第一转 向轴 2和第二转向轴 3的角度位置差也发生变化, 伺服控制器 9的任务是通过控制电机带动第二 转向轴 3转动, 使第一转向轴 2与第二转向轴 3的角度位置差始终为一个定值, 设为 。 也就是 说控制第二转向轴 3跟踪第一转向轴 2的运动, 第二转向轴 3跟踪第一转向轴 2转过一个相同大 小和方向的角度, 第二转向轴 3与车轮 6的转向机构 5相连, 从而实现车轮 6的转向。 在本发明的伺服助力转向系统中采用内置角度检测方式, 因此不存在角度信息的延时和通信 引起的错误, 缩短了控制周期, 提高了系统对负载扰动的快速响应性。 最后应说明的是: 以上实施例仅用以说明本发明的技术方案而非限制。 尽管参照上述实施例 对本发明进行了详细说明, 本领域的普通技术人员应当理解, 依然可以对本发明的技术方案进行 修改和等同替换, 而不脱离本技术方案的精神和范围, 其均应涵盖在本发明的权利要求范围当中。

Claims

权利要求书
1、 一种伺服助力转向系统, 包括方向盘、 第一转向轴、 第二转向轴、 减速器、 转向机构和车 轮, 所述的方向盘与第一转向轴的一端连接, 第一转向轴的另一端与第二转向轴连接, 第二转向 轴上设有减速器, 第二转向轴通过转向机构与车轮连接, 其特征在于, 所述的第一转向轴、 第二 转向轴和伺服电机轴上设有位置检测装置, 位置检测装置感测到转轴的转动输入信号给伺服控制 器, 伺服控制器控制伺服电机驱动减速器并通过转向机构使车轮转向。
2、 如权利要求 1所述的伺服助力转向系统, 其特征在于, 所述的第一转向轴与第二转向轴之 间通过连接装置相连。
3、 如权利要求 2所述的伺服助力转向系统, 其特征在于, 所述的连接装置, 包括对应设置的 第一、 第二连接头, 两者分别与第一、 第二转向轴相连, 所述的第一、 第二连接头上对应设置有 凸部和凹部, 凸部和凹部相互咬合连接, 咬合后凸部与凹部之间设有间隙。
4、如权利要求 3所述的伺服助力转向系统,其特征在于,所述的第一连接头包括连接头本体, 所述的凸部沿轴向凸伸于第一连接头本体之外; 所述的第二连接头包括连接头本体, 所述的凹部 沿轴向凹陷入第二连接头本体之内。
5、如权利要求 3所述的伺服助力转向系统,其特征在于,所述的第一连接头包括连接头本体, 所述的凸部沿径向凸设在第一连接头本体的外表面之外;所述的第二连接接头包括连接接头本体, 所述的凹部沿径向凹陷在第二连接接头本体的外表面之内。
6、 如权利要求 5所述的伺服助力转向系统, 其特征在于, 所述的凸部与第一连接头本体等长 或比第一连接头本体短; 所述的凹部与第二连接头本体等长或比第二连接头本体短。
7、 如权利要求 3所述的伺服助力转向系统, 其特征在于, 所述的凸部或凹部为 1个或 1个以 上。
8、 如权利要求 7所述的伺服助力转向系统, 其特征在于, 所述的凸部为一凸块, 所述的凹部 对应设置为一凹槽;
或者所述的凸部为设置在第一连接接头上的凸爪, 所述的凹部为设置在第二连接接头上的相 邻的两个凸爪之间构成的凹槽; 且凸部或凹部的设置数量为 3个;
或者所述的凸部为三键连接头, 所述的凹部对应设置为三键凹槽;
或者所述的凸部为三芯连接头, 所述的凹部对应设置为三芯凹槽;
或者所述的凸部为十字连接头, 所述的凹部对应设置为十字凹槽。
9、 如权利要求 1所述的伺服助力转向系统, 其特征在于, 所述的减速器为蜗轮蜗杆减速器或 圆柱齿轮减速器或圆锥齿轮减速器或行星齿轮减速器或其组合。
10、 如权利要求 1所述的伺服助力转向系统, 其特征在于, 所述的伺服电机优选为交流伺服 电机。
11、 如权利要求 1所述的伺服助力转向系统, 其特征在于, 所述的位置检测装置、 伺服控制 器和伺服电机一体设置。
12、 如权利要求 1-11任一项所述的伺服助力转向系统, 其特征在于, 所述伺服控制器包括数 据处理单元、 电机驱动单元和电流传感器, 所述数据处理单元接收输入的指令信号、 电流传感器 采集的电机输入电流信号和位置检测装置输出的代表电机角度的信息, 经过数据处理, 输出控制 信号给所述的电机驱动单元,所述电机驱动单元根据所述的控制信号输出合适的电压给伺服电机, 从而实现对伺服电机的精确控制。
13、 如权利要求 12所述的伺服助力转向系统, 其特征在于, 所述数据处理单元包括机械环控 制子单元、 电流环控制子单元、 PWM控制信号产生子单元和传感器信号处理子单元; 所述传感器信号处理子单元接收所述位置检测装置输出的代表电机角度的信息, 将电机的角 度传输给所述的机械环控制子单元; 所述传感器信号处理子单元还接收所述电流传感器的检测到 的电流信号, 经过 A/D采样后输出给所述的电流环控制子单元;
所述机械环控制子单元根据接收到的指令信号和电机轴的转动角度,经过运算得到电流指令, 并输出给所述的电流环控制子单元;
所述电流环控制子单元根据接收到的电流指令的电流传感器输出的电流信号, 经过运算得到 三相电压的占空比控制信号, 并输出给所述的 PWM控制信号产生子单元;
所述 PWM控制信号产生子单元根据接收到的三相电压的占空比控制信号, 生成具有一定顺 序的六路 PWM信号, 分别作用于电机驱动单元。
14、 如权利要求 12所述的伺服助力转向系统, 其特征在于, 所述电机驱动单元包括六个功率 开关管, 所述开关管每两个串联成一组, 三组并联连接在直流供电线路之间, 每一开关管的控制 端受 PWM控制信号产生子单元输出的 PWM信号的控制, 每一组中的两个开关管分时导通。
15、 如权利要求 12所述的伺服助力转向系统, 其特征在于, 所述数据处理单元为 MCU, 所 述电机驱动单元为 IPM模块。
16、如权利要求 13所述的伺服助力转向系统,其特征在于,所述的位置检测装置包括磁钢环、 导磁环和磁感应元件, 其特征在于, 所述导磁环由两段或多段同半径、 同圆心的弧段构成, 相邻 两弧段留有缝隙, 所述磁感应元件置于该缝隙内, 当磁钢环与导磁环发生相对旋转运动时, 所述 磁感应元件将感测到的磁信号转换为电压信号, 并将该电压信号传输给相应的信号处理装置。
17、 如权利要求 16所述的伺服助力转向系统, 其特征在于, 所述的导磁环由两段同半径、 同 圆心的弧段构成, 分别为 1/4弧段和 3/4弧段, 对应的磁感应元件为 2个; 或者, 所述的导磁环由 三段同半径的弧段构成, 分别为 1/3弧段, 对应的磁感应元件为 3个; 或者, 所述的导磁环由四 段同半径的弧段构成, 分别为 1/4弧段, 对应的磁感应元件为 4个; 或者, 所述的导磁环由六段 同半径的弧段构成, 分别为 1/6弧段, 对应的磁感应元件为 6个。
18、 如权利要求 17所述的伺服助力转向系统, 其特征在于, 所述的导磁环的弧段端部设有倒 角, 为沿轴向或径向或同时沿轴向、 径向切削而形成的倒角。
19、如权利要求 16所述的伺服助力转向系统,其特征在于,所述的位置检测装置还包括骨架, 用于固定所述导磁环; 所述导磁环设置在骨架成型模具上, 在所述骨架一体成型时与骨架固定在 一起。
20、 如权利要求 16所述的伺服助力转向系统, 其特征在于, 所述传感器信号处理子单元或位 置检测装置中包括信号处理装置,用于根据所述位置检测装置的电压信号得到电机轴的转动角度, 具体包括:
A/D转换电路, 对位置检测装置中磁感应元件发送来的电压信号进行 A/D转换, 将模拟信号 转换为数字信号;
合成电路,对位置检测装置发送来的经过 A/D转换的多个电压信号进行处理得到基准信号 D ; 角度获取电路, 根据该基准信号 D, 在标准角度表中选择与其相对的角度作为偏移角度 ; 以及
存储电路, 用于存储标准角度表。
21、 如权利要求 13所述的伺服助力转向系统, 其特征在于, 所述的位置检测装置包括转子和 将转子套在内部的定子, 所述转子包括第一磁钢环、 第二磁钢环; 其中, 所述第一磁钢环和第二磁钢环分别固定在同一转动轴上;
在定子上, 对应于第二磁钢环, 以第二磁钢环的中心为圆心的同一圆周上设有 n个顺序分布 的磁感应元件, 其中, n=l, 2…! 1, 所述第二磁钢环的磁极磁化顺序使得 n个磁感应元件输出呈格 雷码格式, 相邻两个输出只有一位变化;
在定子上, 对应于第一磁钢环, 以第一磁钢环的中心为圆心的同一圆周上设有 m个呈一定角 度分布的磁感应元件, 其中, m为 2或 3的整数倍, 所述第一磁钢环的磁极总对数与第二磁钢环 的磁极总数相等, 并且相邻两极的极性相反;
当转子相对于定子发生相对旋转运动时,所述磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号输出给信号处理装置。
22、 如权利要求 21所述的伺服助力转向系统, 其特征在于, 在定子上对应于第一磁钢环的相 邻两个磁感应元件之间的夹角, 当 m为 2或 4时,该夹角为 90° /g; 当 m为 3时,该夹角为 120° /g; 当 m为 6时, 该夹角为 60° /g, 其中, g为第二磁钢环的磁极总数。
23、 如权利要求 13所述的伺服助力转向系统, 其特征在于, 所述的位置检测装置, 包括转子 和将转子套在内部的定子, 所述转子包括第一磁钢环、 第二磁钢环;
其中, 所述第一磁钢环和第二磁钢环分别固定在转轴上, 所述第一磁钢环被顺序地磁化为 N 对磁极, 其中, N<=2n并且 n=0, 1, 2…! i, 并且相邻两极的极性相反; 所述第二磁钢环的磁极总 数为 N, 其磁序按照特定磁序算法确定;
在定子上, 对应于第一磁钢环, 以第一磁钢环的中心为圆心的同一圆周上设有 m个呈一定角 度分布的磁感应元件, 其中, m为 2或 3的整数倍; 对应于第二磁钢环, 以第二磁钢环的中心为 圆心的同一圆周上设有 n个呈一定角度分布的磁感应元件, 其中, n=0, 1, 2—n;
当转子相对于定子发生相对旋转运动时,所述磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号输出给信号处理装置。
24、 如权利要求 23所述的伺服助力转向系统, 其特征在于, 在定子上对应于第二磁钢环的相 邻两个磁感应元件之间的夹角为 360° /N。
25、 如权利要求 23所述的伺服助力转向系统, 其特征在于, 在定子上对应于第一磁钢环相邻 两个磁感应元件之间的夹角, 当 m为 2或 4时, 每相邻两个磁感应元件之间的夹角为 90° /N, 当 m为 3时, 每相邻两个磁感应元件之间的夹角为 120° /N; 当 m为 6时, 每相邻两个磁感应元件 之间的夹角为 60° /N。
26、 如权利要求 21或 23任一项所述的伺服助力转向系统, 其特征在于, 所述磁感应元件直 接表贴在定子的内表面。
27、 如权利要求 21或 23任一项所述的伺服助力转向系统, 其特征在于, 所述的位置检测装 置还包括两个导磁环, 每一所述导磁环是由多个同圆心、 同半径的弧段构成, 相邻两弧段留有空 隙, 对应于两个磁钢环的磁感应元件分别设在该空隙内。
28、 如权利要求 27所述的伺服助力转向系统, 其特征在于, 所述的导磁环的弧段端部设有倒 角, 为沿轴向或径向或同时沿轴向、 径向切削而形成的倒角。
29、 如权利要求 16、 21或 23任一项所述的伺服助力转向系统, 其特征在于, 所述的磁感应 元件为霍尔感应元件。
30、 如权利要求 21或 23任一项所述的伺服助力转向系统, 其特征在于, 所述传感器信号处 理子单元或位置检测装置中包括信号处理装置, 用于根据所述位置检测装置的电压信号得到电机 轴的转动角度, 具体包括: A/D转换电路, 对位置检测装置发送来的电压信号进行 A/D转换, 将模拟信号转换为数字信 号 ·
相对偏移角度 计算电路, 用于计算位置检测装置中对应于第一磁钢环的磁感应元件发送来 的第一电压信号在所处信号周期内的相对偏移量 ;
绝对偏移量 ^计算电路, 根据位置检测装置中对应于第二磁钢环的磁感应元件发送来的第二 电压信号, 通过计算来确定第一电压信号所处的信号周期首位置的绝对偏移量 ;
角度合成及输出模块, 用于将上述相对偏移量 和绝对偏移量 ^相加, 合成所述第一电压信 号所代表的在该时刻的旋转角度 ;
存储模块, 用于存储数据。
31、 如权利要求 30所述的伺服助力转向系统, 其特征在于, 所述的信号处理装置还包括: 信号放大电路, 用于在 A/D转换电路进行 A/D转换之前, 对来自于磁电式传感器的电压信号 进行放大。
32、 如权利要求 30所述的伺服助力转向系统, 其特征在于, 所述相对偏移角度 计算电路包 括第一合成电路和第一角度获取电路, 所述第一合成电路对位置检测装置发送来的经过 A/D转换 的多个电压信号进行处理, 得到一基准信号 D ; 所述第一角度获取电路根据该基准信号 D, 在第 一标准角度表中选择一与其相对的角度作为偏移角度 。
33、 如权利要求 32所述的伺服助力转向系统, 其特征在于, 所述相对偏移角度 计算电路内 或在合成电路之前还包括温度补偿电路,用于消除温度对磁电式传感器发送来的电压信号的影响。
34、 如权利要求 32所述的伺服助力转向系统, 其特征在于, 所述合成电路或所述第一合成电 路的输出还包括信号 R;
所述温度补偿单元包括系数矫正器和乘法器, 所述系数矫正器对所述合成模块的输出的信号
R和对应该信号的标准状态下的信号 R。进行比较得到输出信号 K; 所述乘法器为多个, 每一所述 乘法器将从位置检测装置发送来的、 经过 A/D转换的一个电压信号与所述系数矫正模块的输出信 号 K相乘, 将相乘后的结果输出给第一合成电路。
35、 根据权利要求 30所述的伺服助力转向系统, 其特征在于, 所述绝对偏移量 计算电路 包括第二合成电路和第二角度获取电路, 所述第二合成电路用于对对应于第二磁钢环的位置检测 装置发送来的第二电压信号进行合成, 得到一信号 E; 所述第二角度获取电路根据该信号 E在第 二标准角度表中选择一与其相对的角度作为第一电压信号所处的信号周期首位置的绝对偏移量 θ
36、 一种如权利要求 1-35任一项所述的伺服助力转向系统的控制方法, 其特征在于, 该方法 包括如下步骤:
步骤 1 : 非转向状态下, 检测第一转向轴与第二转向轴之间的角度位置差, 并将其设定为 SQ ; 步骤 2: 在转动方向盘的状态下, 检测第一转向轴与第二转向轴之间的角度位置差, 并将其 设定为 S1 ;
步骤 3: 计算出 8。与 Si的差值 A S ;
步骤 4: 伺服控制器根据 A S以及减速器的传动比, 计算电机轴的驱动角度, 并通过伺服电机 进行位置控制, 控制 A S为零, 使第二转向轴跟踪第一转向轴旋转, 实现车轮转向。
37、 如权利要求 36所述的控制方法, 其特征在于, 所述的步骤 1和步骤 2中检测的具体步骤 为: 所述的伺服控制器每隔一个固定周期, 读取位置检测装置的电压信号, 并将所述的电压信号 通过角度求解算法转换成第一转向轴、 第二转向轴和电机轴的角度位置。
PCT/CN2010/072157 2009-04-30 2010-04-23 伺服助力转向系统及其控制方法 WO2010124598A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910137766.3 2009-04-30
CN2009101377663A CN101875369B (zh) 2009-04-30 2009-04-30 伺服助力转向系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2010124598A1 true WO2010124598A1 (zh) 2010-11-04

Family

ID=43018079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072157 WO2010124598A1 (zh) 2009-04-30 2010-04-23 伺服助力转向系统及其控制方法

Country Status (2)

Country Link
CN (1) CN101875369B (zh)
WO (1) WO2010124598A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564775A (zh) * 2012-01-16 2012-07-11 全兴精工集团有限公司 动力转向系统数据采集仪及动力转向系统测试方法
CN111186478A (zh) * 2020-03-31 2020-05-22 杨亮终 一种行星齿轮式纯电动助力转向器

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941877A (zh) * 2012-12-04 2013-02-27 中国北方车辆研究所 一种空间多连杆闭链转向机构
FR3010378B1 (fr) * 2013-09-10 2017-01-13 Jtekt Europe Sas Procede de calcul en temps reel de la position absolue d’un organe de direction assistee a precision amelioree
US20150375781A1 (en) * 2014-06-26 2015-12-31 GM Global Technology Operations LLC Methods and systems for providing steering compensation
FR3035157B1 (fr) 2015-04-16 2017-04-21 Continental Automotive France Procede et dispositif de detection de rotation inverse d'un moteur a combustion interne
JP7076683B2 (ja) * 2016-06-27 2022-05-30 Smc株式会社 位置検出装置
CN107263445A (zh) * 2017-06-20 2017-10-20 成都黑盒子电子技术有限公司 一种用于服务型机器人的复合型传动机构
CN108275200B (zh) * 2018-03-16 2023-08-01 吉林大学 一种电动轮驱动汽车复合节能助力转向装置及其控制方法
CN110350711A (zh) * 2018-04-04 2019-10-18 上海汽车集团股份有限公司 一种电动机及具有该电动机的电动助力转向系统
CN108613624A (zh) * 2018-05-24 2018-10-02 深圳市傲睿智能科技有限公司 一种磁敏传感器、伺服系统、贯穿型集成电路模块及磁敏传感器制作工艺
CN110304140B (zh) * 2019-07-09 2023-12-22 中国农业大学 一种电动高尔夫球车自动转向改装套件及其控制方法
US11505238B2 (en) * 2020-03-03 2022-11-22 Steering Solutions Ip Holding Corporation Handwheel position measurement system and method
CN114312987B (zh) * 2020-09-09 2023-11-03 东风汽车有限公司 一种自动驾驶转向角度检测方法及电子设备
CN113844531B (zh) * 2021-10-20 2022-06-17 上海汽车工业(集团)总公司 Eps目标转速、助力力矩计算方法和模块及转角跟随控制方法和系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2338229Y (zh) * 1998-09-03 1999-09-15 潘光显 电动转向助力器
CN1651293A (zh) * 2004-02-04 2005-08-10 株式会社电装 具有异常补偿功能的电动转向系统和方法
CN1704725A (zh) * 2004-06-03 2005-12-07 威海华控电工有限公司 六传感器式编码装置
CN1704724A (zh) * 2004-06-03 2005-12-07 威海华控电工有限公司 三传感器式编码装置
CN1704723A (zh) * 2004-06-03 2005-12-07 威海华控电工有限公司 四传感器式编码装置
US7032706B2 (en) * 2003-03-27 2006-04-25 Toyoda Koki Kabushiki Kaisha Setting method for control parameter, setting device for control parameter, and electric power steering device
US20070017734A1 (en) * 2005-07-25 2007-01-25 Trw Automotive U.S. Llc Steering apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19716985A1 (de) * 1997-04-23 1998-10-29 A B Elektronik Gmbh Vorrichtung zur Ermittlung der Position und/oder Torsion rotierender Wellen
JP4604551B2 (ja) * 2003-09-24 2011-01-05 株式会社ジェイテクト レゾルバ信号の演算処理方法および演算処理装置
JP4984598B2 (ja) * 2006-03-30 2012-07-25 日本精工株式会社 電動パワーステアリング装置
CN201580429U (zh) * 2009-04-30 2010-09-15 浙江关西电机有限公司 伺服助力转向系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2338229Y (zh) * 1998-09-03 1999-09-15 潘光显 电动转向助力器
US7032706B2 (en) * 2003-03-27 2006-04-25 Toyoda Koki Kabushiki Kaisha Setting method for control parameter, setting device for control parameter, and electric power steering device
CN1651293A (zh) * 2004-02-04 2005-08-10 株式会社电装 具有异常补偿功能的电动转向系统和方法
CN1704725A (zh) * 2004-06-03 2005-12-07 威海华控电工有限公司 六传感器式编码装置
CN1704724A (zh) * 2004-06-03 2005-12-07 威海华控电工有限公司 三传感器式编码装置
CN1704723A (zh) * 2004-06-03 2005-12-07 威海华控电工有限公司 四传感器式编码装置
US20070017734A1 (en) * 2005-07-25 2007-01-25 Trw Automotive U.S. Llc Steering apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564775A (zh) * 2012-01-16 2012-07-11 全兴精工集团有限公司 动力转向系统数据采集仪及动力转向系统测试方法
CN111186478A (zh) * 2020-03-31 2020-05-22 杨亮终 一种行星齿轮式纯电动助力转向器

Also Published As

Publication number Publication date
CN101875369A (zh) 2010-11-03
CN101875369B (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
WO2010124598A1 (zh) 伺服助力转向系统及其控制方法
WO2010124620A1 (zh) 汽车电动雨刮器及其控制方法
US8278916B2 (en) Rotational angle sensor, motor, rotational angle detector, and electric power steering system
US7743875B2 (en) Power steering apparatus having failure detection device for rotation angle sensors
JP6394399B2 (ja) 回転角検出装置
JP5131318B2 (ja) モータ制御装置
WO2010124615A1 (zh) 减速装置及其控制方法
WO2010124600A1 (zh) 伺服电动阀及其控制方法
CN101977012A (zh) 无传感器磁场定向控制车轮方法及装置
JP2016191702A (ja) 回転検出装置、回転角検出装置および電動パワーステアリング装置
WO2010124624A1 (zh) 一体化轮毂电机及其控制方法
WO2010124627A1 (zh) 位置检测装置及其信号处理装置
CN102597709A (zh) 旋转角检测装置
US10298157B2 (en) Brushless motor and electric power steering apparatus
CN103261842A (zh) 旋转角度检测装置、扭矩检测装置和电动助力转向装置
WO2010124595A1 (zh) 多节伺服潜油电机
WO2010124629A1 (zh) 油田控制系统
WO2010124626A1 (zh) 电动缝纫机
WO2010124590A1 (zh) 电动机
EP1586864A2 (en) Rotation angle detecting apparatus and electric power steering apparatus
CN104494690A (zh) 一种汽车eps电机控制器
CN107276481B (zh) 基于旋转变压器的矢量控制方法、系统及电机系统
JP5995079B2 (ja) モータ制御装置
CN202550953U (zh) 基于巨磁电阻传感器的车用永磁同步电机控制系统
CN112556732A (zh) 一种磁电角度传感器、编码器和电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769287

Country of ref document: EP

Kind code of ref document: A1