WO2010124624A1 - 一体化轮毂电机及其控制方法 - Google Patents

一体化轮毂电机及其控制方法 Download PDF

Info

Publication number
WO2010124624A1
WO2010124624A1 PCT/CN2010/072249 CN2010072249W WO2010124624A1 WO 2010124624 A1 WO2010124624 A1 WO 2010124624A1 CN 2010072249 W CN2010072249 W CN 2010072249W WO 2010124624 A1 WO2010124624 A1 WO 2010124624A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
magnetic
angle
motor
position detecting
Prior art date
Application number
PCT/CN2010/072249
Other languages
English (en)
French (fr)
Inventor
郝双晖
郝明晖
Original Assignee
浙江关西电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江关西电机有限公司 filed Critical 浙江关西电机有限公司
Publication of WO2010124624A1 publication Critical patent/WO2010124624A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors

Definitions

  • the invention relates to an integrated hub motor and a control method thereof, in particular to a permanent magnet synchronous hub motor using a position detecting device and a control method thereof.
  • electric vehicles such as electric bicycles, electric bicycles, electric motorcycles, small electric vehicles, electric cars, and electric buses have emerged in urban transportation.
  • electric wheel vehicles need to be improved on key component hub motors to improve performance and reduce costs.
  • the operating characteristics of the vehicle drive motor are that the motor is powered by the battery and strives to enable the limited energy to travel the longest mileage, which is closely related to the performance of the drive motor. Therefore, the starting torque of the motor, the overload capacity of the motor, the operating efficiency of the motor, the weight and volume of the motor are the main indicators for the comprehensive evaluation of the motor for the vehicle, and will also affect the technical performance and technical indicators of the electric vehicle.
  • a wheel motor wheel is disclosed, which eliminates the intermediate transmission mechanism, thereby greatly improving the utilization efficiency of electric energy.
  • the existing hub motors are usually brushed DC motors and brushless DC motors. They have the same weight, the same speed, low power, low starting torque, low overload capability, large torque fluctuation, large current, soft features and energy. High cost and other shortcomings.
  • Permanent magnet motors especially rare earth permanent magnet motors, have a simple structure and reliable operation; small size and light weight; low loss and high efficiency; and the shape and size of the motor can be flexible and diverse. Therefore, permanent magnet motor products, especially rare earth permanent magnet motor products, have been continuously developed and widely used.
  • a permanent magnet synchronous hub motor is disclosed in the document No. 03103047.5, which adopts an integrated design to reduce torque ripple to a certain extent.
  • it uses a position sensor and only uses fractional slot windings. Make a request for the pole arc coefficient.
  • One disadvantage of the position sensor is that the signal of the back EMF is small at low speed, which is usually not enough to meet the control requirements. Therefore, the control performance of the scheme is not ideal at low speed, and the torque ripple is relatively large, resulting in motor heating, noise and durability. Adverse effects such as decreased sex.
  • the photoelectric position detecting device In order to accurately control the operation of the motor at low speeds, it is necessary to use a position detecting device in the hub motor, and the photoelectric position detecting device is not suitable for the hub motor because it is made of glass as the main material and is not strong in vibration resistance and impact resistance. Position detection device.
  • the magnetoelectric position detecting device can overcome the shortcomings of the photoelectric position detecting device.
  • the conventional magnetoelectric position detecting device has a relatively low measurement accuracy and can only realize incremental output.
  • a magnetic-electric position detecting device that realizes absolute position detection is disclosed in the document No. 200410024190.7.
  • the magnetic induction sensor adopts a surface-mounting method, that is, a magnetic induction sensor is arranged on the inner side wall of the circular ring stator to sense the rotating magnetic field, and then the rotation angle value is obtained according to the sensor voltage value.
  • the magnetoelectric position detecting device has the following disadvantages in physical structure: The inner side of the stator is generally circular and smooth, and the sensor is not easy to be mounted and fixed, which easily causes a positioning error, thereby causing a phase deviation of the signal, so that the signal has higher harmonics.
  • the sensor is evenly distributed on the inner side wall, the supporting substrate of the sensor must be a flexible body such as FPC, etc., its tensile strength is not high, it is easy to contact with the processing body
  • the rupture increases the difficulty of processing and affects the life of the product.
  • the magnetic field induced by the sensor is leaking, the magnetic field cannot be fully applied, and the noise in the signal is large, which affects the measurement accuracy.
  • the sensor is required to be small, which makes the product cost relatively high. Summary of the invention
  • the technical problem to be solved by the present invention is to provide an integrated hub motor for the deficiencies of the prior art, which has the advantages of simple structure, energy saving, good starting characteristics, small volume and high efficiency.
  • An integrated hub motor includes a motor shaft and a stator fixed thereon, the stator casing is provided with a rotor casing, and the front and rear ends of the rotor casing are rotatably fixed on the motor shaft through the rotor end cover and the bearing, and both ends of the motor shaft A long end and a short end are formed outside the rotor end cover, and a bearing end cover is fixed on an outer side of the rotor end cover, and a short end of the motor shaft is sleeved therein, and a bearing end cover shaft is convexly disposed in a middle of the bearing end cover.
  • a position detecting device is disposed at a corresponding position of the motor shaft end portion and the bearing end cover shaft; the motor shaft is further provided with a servo controller; the position detecting device senses The bearing end cover shaft rotates, and the sensed signal is transmitted to the servo controller, and the angle or position of the rotor rotation is obtained by the processing of the servo controller, thereby achieving precise control of the motor.
  • the position detecting device comprises a magnetic steel ring, a magnetic conductive ring and a magnetic induction element, wherein the magnetic conductive ring is fixed on the motor shaft, and is composed of two or more segments of the same radius and the same center, and the adjacent two arc segments a gap is left, the magnetic induction element is placed in the gap, and the magnetic steel ring is correspondingly disposed on the bearing end cover shaft.
  • the magnetic induction element senses The resulting magnetic signal is converted to a voltage signal and transmitted to the corresponding signal processing device.
  • the magnetic flux ring is composed of two arc segments of the same radius and the same center, which are respectively a quarter arc segment and a 3/4 arc segment, and the corresponding magnetic induction elements are two; or, the magnetic conductive ring is The three segments are formed by arcs of the same radius, respectively, which are 1/3 arc segments, and the corresponding magnetic induction elements are three; or, the magnetic conductive ring is composed of four segments of the same radius, which are respectively 1/4 arc segments.
  • the corresponding magnetic induction elements are four; or, the magnetic conductive ring is composed of six segments of the same radius, which are respectively 1/6 arc segments, and the corresponding magnetic induction elements are six.
  • the end of the arc of the magnetically permeable ring is chamfered to form a chamfer formed by axial or radial cutting in the axial or radial direction or the same direction.
  • the position detecting device further includes a skeleton for fixing the magnetic conductive ring; the magnetic conductive ring is disposed on the skeleton forming mold, and is fixed to the skeleton when the skeleton is integrally formed; the skeleton is fixed at On the motor shaft.
  • the signal processing device of the position detecting device comprises an A/D conversion module, a synthesizing module, an angle acquiring module and a storage module; and the A/D conversion module performs A/D conversion on the voltage signal sent by the magnetic sensing element in the position detecting device. Converting the analog signal into a digital signal; the synthesizing module processes the A/D converted plurality of voltage signals sent by the position detecting device to obtain a reference signal D; the angle obtaining module selects the standard angle table according to the reference signal D The relative angle is used as the offset angle ⁇ storage module for storing the standard angle table.
  • the signal processing device of the position detecting device further includes a temperature compensation module between the A/D conversion module and the synthesizing module for eliminating the influence of temperature on the voltage signal sent by the position detecting device.
  • the output signal of the synthesis module of the signal processing device of the position detecting device further comprises a signal R.
  • the temperature compensation module in the signal processing device of the position detecting device includes a coefficient correction module and a multiplier, the signal R of the output of the synthesis module by the coefficient correction module and the signal R in a standard state corresponding to the signal .
  • the multiplier is a plurality, and each of the multipliers outputs a voltage signal that is A/D converted from the position detecting device and an output signal K of the coefficient correction module. Multiply, and output the multiplied result to the synthesis module.
  • a differential module is further included before the temperature compensation module, for suppressing temperature and zero drift , and increase the number According to the accuracy.
  • the position detecting device comprises a first magnetic steel ring and a second magnetic steel ring respectively fixed on the bearing end cover shaft; a second magnetic steel ring disposed on the motor shaft corresponding to the second magnetic steel ring
  • the angle between the adjacent two magnetic induction elements on the stator corresponding to the first magnetic steel ring when m is 2 or 4, the included angle is 90° / g ; when m is 3 ⁇ , The angle is 120 ° / g; when m is 6, the angle is 60 ° / g, where g is the total number of magnetic poles of the second magnetic steel ring.
  • the magnetic induction element converts the sensed magnetic signal into The voltage signal is output to a signal processing device.
  • the angle between adjacent two magnetic sensing elements on the stator corresponding to the second magnetic steel ring is 360 ° /N.
  • an angle between each adjacent two magnetic induction elements is 90° /N
  • the angle between each adjacent two magnetic induction elements is 120 ° /N; when m is 6, the angle between each adjacent two magnetic induction elements is 60 ° /N.
  • the magnetic sensing element is directly attached to the surface of the motor shaft.
  • the position detecting device further comprises two magnetic conductive rings, each of the magnetic conductive rings is composed of a plurality of arcs of the same center and the same radius, and the adjacent two arc segments have a gap corresponding to the two magnetic steels.
  • the magnetic sensing elements of the ring are respectively disposed within the gap.
  • the end of the arc of the magnetically permeable ring is chamfered to form a chamfer formed by axial or radial cutting in the axial or radial direction or the same direction.
  • the invention also provides a signal processing device for a position detecting device for an integrated hub motor, comprising an A/D conversion module, a relative offset angle calculation module, an absolute offset calculation module, an angle synthesis and output module, and a storage module: A a /D conversion module, performing A/D conversion on the voltage signal sent by the position detecting device to convert the analog signal into a digital signal; and a relative offset angle calculating module for calculating a position detecting device corresponding to the first magnetic steel ring a relative offset of the first voltage signal sent by the magnetic sensing element in the signal period; an absolute offset calculating module, according to the second voltage signal sent by the magnetic sensing element corresponding to the second magnetic steel ring in the position detecting device Calculating to determine an absolute offset of a first position of a signal period at which the first voltage signal is located; an angle synthesis and output module, configured to add the relative offset and the absolute offset to synthesize the first voltage The angle of rotation of the signal represented by the signal; a storage module for storing data.
  • the signal processing device of the position detecting device further comprises a signal amplifying module for amplifying the voltage signal from the position detecting device before the A/D conversion module performs A/D conversion.
  • the relative offset angle calculating module includes a first synthesizing unit And the first angle acquiring unit, the first combining unit processes the AD-converted voltage signals sent by the position detecting device to obtain a reference signal D; the first angle acquiring unit is configured according to the reference signal D, In the first standard angle table, an angle opposite thereto is selected as the offset angle.
  • the relative offset angle calculation module in the signal processing device of the position detecting device further includes a temperature compensation unit for canceling the influence of the temperature on the voltage signal transmitted from the position detecting device.
  • the output of the first synthesizing unit in the signal processing device of the position detecting device further includes a signal R.
  • the temperature compensating unit includes a coefficient corrector and a multiplier, the signal R of the output of the synthesizing module and the signal in a standard state corresponding to the signal R. Comparing to obtain an output signal K: the plurality of multipliers, each of the multipliers transmitting a voltage signal A/D converted from the position detecting device and the output signal K of the coefficient correction module Multiply, and the multiplied result is output to the first synthesizing unit.
  • the absolute offset calculating module includes a second synthesizing unit and a second angle acquiring unit, and the second synthesizing unit is configured to position the second magnet ring
  • the second voltage signal sent by the detecting device is combined to obtain a signal E.
  • the second angle acquiring unit selects an angle opposite to the signal in the second standard angle table as the signal of the first voltage signal according to the signal E. The absolute offset of the first position of the cycle.
  • the magnetic sensing element is a Hall sensing element.
  • the invention also provides a control method for an integrated hub motor, the method comprising the following steps:
  • Step 1 The position detecting device detects the position of the motor rotor and outputs a signal to the servo controller, and the servo controller calculates the command speed according to the position command;
  • Step 2 The speed controller calculates the feedback speed by the differentiator according to the command speed in step 1;
  • Step 3 The current controller obtains three voltage signals u, v, w according to the command and feedback current through 2 to 3;
  • Step 4 The three voltage signals in step 3 are driven by the pulse width modulation and power amplification to achieve the corresponding control effect.
  • the control module of the integrated hub motor comprises a data processing unit MCU, a motor power control unit IPM power module and a current sensor, and the data processing unit receives the input command signal and the motor input current signal collected by the current sensor. And the voltage signal outputted by the position detecting device is subjected to data processing, and outputs a control signal to the motor power control unit, and the motor power control unit outputs an appropriate voltage to the motor according to the control signal, thereby achieving accurate motor control.
  • the data processing unit comprises a mechanical loop control subunit, a current loop control subunit, a PWM control signal generating subunit and a sensor signal processing subunit;
  • the sensor signal processing subunit receives the voltage signal of the position detecting device, and passes through the A/ D sampling, angle solving, obtaining the rotation angle of the motor shaft, and transmitting the angle to the mechanical ring control subunit:
  • the sensor signal processing subunit further receives the detected current signal of the current sensor, after A /D is sampled and output to the current loop control subunit;
  • the mechanical loop control subunit obtains a current command according to the received command signal and the rotation angle of the motor shaft, and outputs the current command to the current loop control subunit
  • the current loop control sub-unit obtains a duty control signal of the three-phase voltage according to the current signal output by the current sensor of the received current command, and outputs the duty control signal to the PWM control signal to generate the sub-unit: PWM control signal generation
  • the subunit controls the signal according to the duty ratio of the
  • the motor power control unit comprises six power switch tubes, the switch tubes are connected in series in two groups, three groups are connected in parallel between the DC power supply lines, and the control end of each switch tube is generated by the PWM control signal.
  • the control of the output PWM signal, the two switching tubes in each group are time-divisionally turned on.
  • the data processing unit is an MCU
  • the motor power control unit is an IPM module.
  • the present invention has the following advantages:
  • the invention adopts an inexpensive magnetic induction element sensor for position detection, and the installation process is extremely convenient. Extremely reliable. With the magnetic induction element, the product is very resistant to impact and oil, and is suitable for high-precision control in harsh working environments. The system should be fast. With the built-in angle detection method, there is no delay of angle information and errors caused by communication, which greatly shortens the control period and improves the system's rapid response to load disturbance.
  • the permanent magnet synchronous motor of the invention uses permanent magnets instead of electric excitation, without excitation loss, saving energy and improving efficiency.
  • the controller of the control box can change according to the change of the load torque of the motor. When the load torque is large, the motor outputs a large torque. When the load torque is small, the motor outputs a small torque: This greatly saves the power consumption, at the same time, in the brake system. When moving, the motor is turned off, and the motor acts as a generator to generate electricity and save energy.
  • This design connects the motor's controller and motor together to make it integrated, saving space.
  • the control box is powered by a DC power supply and can be powered by battery or fuel cell. Moreover, the control box is further simplified in structure, saving cost and installation space.
  • the motor speed of the invention can be arbitrarily adjusted from zero to the highest speed, and the speed adjustment range is very wide.
  • the acceleration during the starting process can be arbitrarily set, and the soft start of the hub motor can be realized, which can effectively reduce the motor current (ie, torque) during the starting process, so that the electrical and mechanical systems during the starting process are free from any impact, and the realization is realized.
  • the high inertia mechanical load is truly flexible and smooth to start.
  • the invention adopts a novel electromagnetic structure permanent magnet synchronous hub motor, which is used for low speed direct driving in the range of 0-500 rpm, and the efficiency reaches 86% or more; Compared with the conventional motor, the utility model has the advantages of small volume, high efficiency, strong overload capability, etc. Features. DRAWINGS
  • Figure 1 is a partial cross-sectional view showing the structure of an integrated hub motor of the present invention
  • Figure 2 is a perspective cross-sectional view showing the structure of an integrated hub motor of the present invention
  • Figure 3 is a partial enlarged view of the bearing end cover of the present invention.
  • Figure 4 is an outline view of the integrated hub motor of the present invention.
  • Figure 5 is an outline view of the other side of the integrated hub motor of the present invention.
  • Figure 6 is a schematic view showing the arrangement of magnetic tiles of the integrated hub motor of the present invention.
  • FIG. 7 and 8 are schematic views showing the mounting of the position detecting device in the in-wheel motor of the present invention.
  • Figure 9 is a schematic view of a punching piece of the integrated hub motor of the present invention.
  • Figure 10 is a schematic illustration of another die of the integrated hub motor of the present invention:
  • Figure 11 is a schematic view showing the superposition of two kinds of punching sheets
  • Figure 12 is an exploded perspective view of the position detecting device of the integrated hub motor of the present invention.
  • 13A-13D are schematic views of a segment arrangement of a magnetically permeable ring
  • 14A-14D are schematic views of a chamfering design of a magnetically permeable ring
  • Figure 15 is a block diagram of a signal processing apparatus of a position detecting device scheme in which two magnetic sensing elements are mounted:
  • Figure 16 is a block diagram of a signal processing device of a position detecting device scheme in which three magnetic sensing elements are mounted;
  • Figure 17 is a block diagram of a signal processing device of a position detecting device scheme in which four magnetic sensing elements are mounted;
  • Figure 18 is a block diagram of a signal processing device of a position detecting device scheme in which six magnetic sensing elements are mounted;
  • Figure 19 is an exploded perspective view showing the essential parts of the second aspect of the position detecting device for the hub motor of the present invention
  • Figure 20 is a schematic view showing the mounting of the second embodiment of the position detecting device for the hub motor of the present invention
  • Figure 21 is a schematic view showing the arrangement of two magnetic sensing elements corresponding to the first magnetic steel ring in the second embodiment of the position detecting device
  • Figure 23 is a code obtained when the number of magnetic induction elements corresponding to the second magnetic steel ring in the second embodiment of the position detecting device is three;
  • Figure 24 is a magnetization sequence of the second magnetic steel ring in the second embodiment of the position detecting device
  • Figure 25 is a schematic view showing the arrangement of a magnetic induction element corresponding to the second magnetic steel ring in the second embodiment of the position detecting device;
  • Figure 26 is a block diagram showing a signal processing device of the second embodiment of the position detecting device for the hub motor of the present invention;
  • FIG. 27 is a schematic structural view of a position detecting device in which a magnetic induction element is mounted by a surface mount;
  • Figure 28 is an exploded perspective view of the position detecting device according to the third embodiment of the position detecting device.
  • Figure 29 is a flow chart of an algorithm for determining the magnetic order of the magnetic steel ring 303;
  • Figure 30 is a diagram showing the magnetization structure of the magnetic steel ring obtained in Figure 29 and an example of the arrangement of the magnetic induction elements;
  • Figure 31 is a block diagram of the signal processing device of the position detecting device of the third embodiment of the position detecting device;
  • Figure 32 is a wiring diagram of the inside of the integrated hub motor of the present invention.
  • Figure 33 is a flow chart showing a control method of the integrated hub motor of the present invention.
  • Figure 34 is a block diagram showing a control method of the integrated hub motor of the present invention.
  • 35 is a schematic structural view of an AC servo system of the present invention focusing on an MCU portion;
  • Figure 36 is a schematic view showing the structure of the AC servo system of the present invention focusing on the IPM portion;
  • Figure 37 is a graph showing the relationship between efficiency and torque of the motor obtained by the present invention. detailed description
  • the present invention provides an integrated hub motor including a motor shaft 4 and a stator 12 fixed thereto.
  • the stator 12 is jacketed with a rotor housing 10, and the rotor housing 10 is front and rear. Both ends are rotatably fixed to the motor shaft 4 through the rotor end caps 8, 14 and the bearing 6, and the bearing 19 is protruded from the rotor end caps 8 and 14 to form a short end and a long end, and the rotor end A bearing end cover 1 is fixed on the outer side of the cover 8, and a short end of the motor shaft 4 is covered therein.
  • a bearing end cover shaft 26 is protruded in the middle of the bearing end cover 1, and protrudes toward the motor shaft 4, and the motor shaft 4 ends and The corresponding position of the bearing end cover shaft 26 is provided with a position detecting device 3:
  • the motor shaft 4 is further provided with a servo controller 11:
  • the above position detecting device 3 can adopt various structural forms, including single-stage and multi-stage, and its structure The signal processing device and the signal processing method will be described in detail below.
  • the position detecting device 3 fixes the magnetic steel ring 2 therein to the bearing end cover shaft 26, and a magnetic conductive ring can be disposed at the end of the motor shaft 4, and A magnetic induction element is disposed in the gap of the magnetic flux ring, and the magnetic induction element generally employs a Hall sensing element.
  • the rotor casing 10 of the hub motor rotates around the axis of the motor shaft 4, and the bearing end cover 1 fixed to the rotor end cover 8 also rotates, and the bearing end cover shaft 26 rotates relative to the motor shaft 4, and is disposed on the motor shaft.
  • the magnetic induction element on the 4 senses the rotation of the bearing end cover shaft 26, and transmits the sensed position signal to the servo controller 11, and obtains the angle or position of the rotor rotation by the processing of the servo controller 11, thereby realizing the motor Precise control.
  • the motor provided by the present invention is a hub-type outer rotor structure, and its internal structure is basically the same as that of a conventional hub motor.
  • the bearing 6, the servo controller 11, the stator 12, the windings, the bearing 19, and the spline sleeve magnetic tile 20 are sequentially installed in the middle of the hub motor.
  • the hub and the like; the external mounting is composed of the rotor end cover 8, the rotor end cover 14, the magnetic tile 13, the rotor housing 10, the brake pad 17, the bearing end cover 1; the bearing end cover 1 and the rotor end cover 8 pass the hexagon socket screw 7
  • the rotor end cap 8, the rotor end cap 14 and the rotor housing 10 are connected by hexagon socket head bolts 9, 15.
  • the brake pad 17 is fixed to the rotor end cover 14 by a hexagon socket screw 18; the longer end of the motor shaft 4 has a spline sleeve 20, the spline sleeve 20 is placed at one end of the bearing 19, and the other end of the spline sleeve is provided with two
  • the round nuts 21, 22 are fastened, and the short end of the motor shaft 4 has a bearing 6, the outer part of the bearing 6 is a fixing screw 5, and the position detecting device is fixed outside, that is, the position detecting device 3 in the figure, the position detecting device
  • the magnetic steel ring 2 of 3 is fixed to the bearing end cover shaft 26.
  • the spline sleeve 20 has bolt holes for connecting to the chassis of the automobile; the controller 11 is fixed to the stator by screws 23; the stators 12 are superposed together and fixed to the motor shaft 4 by round nuts 22 and keys.
  • the threading holes 24, 25 are used to arrange the routing of the position detecting device.
  • the bolt hole designed by the invention and connected to the hub, the steering knuckle and the brake pad is convenient to be integrated with the wheel. Since the design of the integrated structure eliminates the speed reduction mechanism, the mechanical loss is reduced, and the overall efficiency is improved.
  • the motor rotating shaft is provided with a position detecting device 3 and a servo controller 11.
  • the position detecting device 3 outputs the detected position signal to the servo controller 11, and the angle of the motor shaft rotation is obtained by the processing of the servo controller 11. Position, which in turn enables precise control of the motor.
  • FIGS. 4 and 5 are external views of the in-wheel motor of the present invention. As shown in Figs. 4 and 5, the rotor surrounded by the rotor end caps 14, 8 and the rotor housing 10 and the bearing end cap 1 is fixed to the motor shaft 4 via a bearing 6, and a threading hole 24 is left in the motor shaft 4.
  • the permanent magnet synchronous hub motor of the permanent magnet synchronous hub motor is composed of a magnetic circuit 34 and a yoke 35, and 16 magnetic tiles are evenly arranged on the outer rotor to form 16 magnetic poles of 1 and S alternately arranged. Arranged as an air gap facing structure.
  • the permanent magnet is a surface type, not a built-in type, so the process is simple and the magnetic energy of the permanent magnet can be fully utilized. This slot fit is different from a normal permanent magnet synchronous motor.
  • Ordinary permanent magnet synchronous motors are all 8/9 slot poles.
  • the permanent magnet synchronous motor with this kind has a large magnetic pulling force, which makes the generated torque unstable and generates large harmonics, resulting in motor loss. And noise, and the permanent magnet synchronous motor with 16/18 slot matching can avoid these problems.
  • the magnetic arc has a pole arc coefficient of about 0.88 and a radial thickness of 6 mm.
  • the material is a neodymium iron boron magnetic pole which is uniformly bonded to the inner surface of the rotor yoke cylinder by glue.
  • the magnetization mode of the magnetic tile having a pole arc coefficient of less than 1 is parallel magnetization.
  • a sinusoidal magnetized magnetic tile may be used, or a magnetic tile may be arranged by Helbach, or a magnetic tile of unequal thickness may be used, or a magnetic tile having a pole arc coefficient of less than 1 may be used;
  • the permanent magnet synchronous motor has other methods for improving the sinusoidality of the air gap, and the magnetic tile method with a pole arc coefficient of less than 1 is simple and easy to implement.
  • FIG. 7 and 8 are schematic views showing the mounting of the position detecting device in the in-wheel motor of the present invention.
  • the magnetic induction element 106 is mounted on the motor shaft 4, and the magnetic steel ring 2 is mounted on the bearing end cover shaft 25 to rotate as the bearing end cover 1 rotates.
  • the stator magnetic circuit of the permanent magnet synchronous hub motor is formed by laminating two different shapes of punches shown in FIG. 9 and FIG. 10, and the screw is pressed in the middle; the stator punch 40 having a small inner diameter is sandwiched by the inner diameter. Between the stator punching pieces 41, the superposed shape is as shown in Fig. 11; the both ends are fixed to the shaft by a stator baffle, a key bolt 42, and a nut 43.
  • the windings use concentrated windings, a total of 18 slots, three-phase windings, 6 windings per phase, 3 of which are lined up together, the other three are arranged 180 apart; three slots are a group,
  • the input voltage is three phases, which are A phase, B phase, and C phase, and the order of the six groups is A phase, B phase, C phase, A phase, B phase, and C phase.
  • the use of concentrated windings makes better use of space and improves heat dissipation.
  • a unipolar position detecting device is provided.
  • the position detecting device corresponding to the motor shaft 4 and the bearing end cover shaft 26 is composed of a magnetic induction element board 102, a magnetic steel ring 2, a magnetic conductive ring 104, and a skeleton 105;
  • the magnetic induction element board 102 is composed of a PCB board.
  • magnetic induction element 106, skeleton 105 is fixed to the motor shaft 4 for fixing the magnetic flux ring 104 and connecting the entire position detecting device 3 to the hub motor.
  • the magnetic steel ring 2 mainly generates a sinusoidal magnetic field; the magnetic conductive ring 104 is disposed on the skeleton forming mold, and is fixed to the skeleton 105 when the skeleton 105 is integrally formed.
  • the magnetic conductive ring 104 functions as a magnetic collecting mechanism, and is composed of two or more arc segments of the same radius and the same center, and gaps are left between the adjacent arc segments, and the magnetic induction element is placed in the gap, and the magnetic force generated by the magnetic steel ring Pass through the magnetically permeable ring.
  • the PCB board is a fixed magnetic induction element and outputs six signal lines.
  • the magnetic induction element converts the magnetic field passing through the magnetic conductive ring into a voltage signal, and the voltage signal directly enters the main control board chip, and the voltage signal is processed by the chip on the main control board, and finally Obtain an angular displacement.
  • the magnetically permeable ring 104 can be composed of two segments of the same radius and the same center, which are 1/4 arc segment and 3/4 arc segment respectively.
  • the corresponding magnetic sensing element 102 is two: Or, the magnetic conductive ring 104 is composed of three arc segments of the same radius, respectively, which are 1/3 arc segments, and the corresponding magnetic sensing elements 102 are three; or, the magnetic conductive ring 104 is composed of Four segments of the same radius are formed, which are respectively 1/4 arc segments, and the corresponding magnetic induction elements 102 are four; or, the magnetic flux ring 104 is composed of six segments of the same radius, which are respectively 1/6 arc segments.
  • the corresponding magnetic induction elements are six.
  • the magnetic sensing element 102 therein generally uses a magnetically permeable ring 104 to enclose the magnetic steel ring 2 in its middle portion.
  • FIG. 14A to 14D illustrate a chamfering design of the magnetic flux guiding ring of the present invention by taking a magnetic conducting ring composed of a 1/4 arc segment and a 3/4 arc segment as an example.
  • the magnetic flux ring is composed of two or more segments of the same radius and the same center, and the magnetic ring shown in Fig. 14A is not designed to be chamfered, and the arc shown in Figs. 14B to 14D.
  • the end portion is provided with a chamfer which is a chamfer formed by cutting in the axial direction (Fig. 14B) or the radial direction (Fig. 14C) or simultaneously in the axial direction and the radial direction (Fig. 14D), and 151, 153 represents the shaft.
  • a chamfer which is a chamfer formed by cutting in the axial direction (Fig. 14B) or the radial direction (Fig. 14C) or simultaneously in the axial direction and the radial direction (Fig. 14D)
  • 152, 154 represent radial sections.
  • it can be known that when a certain time, S can be increased by decreasing 5 . Since the magnetic flux generated by the permanent magnet is constant, S is large in the magnetically permeable ring, so £ is relatively small, so that heat generation due to alternating magnetic fields can be reduced. By reducing the area of the end of the magnetic ring, the magnetic field strength of the end portion can be increased, so that the output signal of the magnetic induction element is enhanced.
  • Such a signal pickup structure has a simple manufacturing process, low signal noise picked up, low production cost, high reliability, and small size.
  • the present invention also provides a signal processing apparatus based on the position detecting apparatus of the above structure, comprising: an A/D conversion module, a synthesis module, an angle acquisition module, and a storage module, wherein the A/D conversion module detects the magnetic induction in the position detecting device
  • the voltage signal sent from the component is A/D converted, and the analog signal is converted into a digital signal corresponding to the number of magnetic sensing elements.
  • the module has a plurality of A/D converters for transmitting to each magnetic sensing element.
  • the voltage signal is subjected to A/D conversion; the synthesis module processes the plurality of A/D converted voltage signals to obtain a reference signal D; and the angle acquisition module selects in the angle storage table according to the reference signal D An angle opposite thereto is used as an offset angle; the storage module is configured to store data.
  • Each of the above modules can constitute an MCU.
  • FIG. 15 is a block diagram of a signal processing device of a position detecting device scheme in which two magnetic sensing elements are mounted.
  • the output signals of the magnetic sensing elements H la and H 2a are connected to the analog input port of the built-in A/D converter of the MCU, and the output signals are multiplied by the analog-to-digital converters 20a, 21 a, and the output signal K of the coefficient corrector 5a is connected to the multiplier
  • the input ends of 20a, 21a, the output signals of the multipliers 20a, 21a are coupled to the input of the 3a, the synthesizer 3a outputs the signals D and R, and the coefficient corrector 5a receives the signals D and R output by the synthesizer 3a, and operates
  • the signal K is obtained, and by multiplying the signals of the magnetic induction elements H la and H 2a by the signal K, temperature compensation is performed to eliminate the influence of temperature on the signal.
  • An angle storage table is stored in the memory 40a, and the MCU selects an
  • the processing of the signal that is, the processing principle of the synthesizer 3a on the signal is: comparing the magnitudes of the values of the two signals, the value is small
  • the signal D for output, the structure of the signal D is ⁇ the coincidence of the first signal, the coincidence of the second signal, the value of the signal of the smaller value ⁇ .
  • X - D represents the value bit of the data X (the absolute value of the data), that is, the remaining data bits are removed from the sign bit.
  • R VA 2 + S 2 ;
  • R A 2 + 5 2 .
  • a standard angle table is stored in the storage module in which a series of codes are stored, each code corresponding to an angle.
  • the table is obtained by calibration, and the calibration method is: using the detecting device of the embodiment and a high-precision position sensor, the signals output by the magnetic sensing element in the embodiment and the angle of the high-precision position sensor output are in one-to-one correspondence. In order to establish a relationship between the signal and the angle of the output of a magnetic induction element.
  • some data correction tables are stored in the storage module, and these tables include a signal D and a signal R.
  • Correspondence table where signal R.
  • a signal R can be obtained by looking up the signal through the synthesis module, that is, the signal D obtained by the synthesizer 3a. , by passing the signal R. Compare with signal R, such as division, to get signal] ⁇ .
  • Figure 16 is a block diagram of a signal processing device of a position detecting device scheme in which three magnetic sensing elements are mounted.
  • the signal processing device of the present scheme is similar to that of the two magnetic sensing elements, except that there are three magnetic sensing elements and three signals output to the synthesizer, and the synthesizer has a signal in the above-mentioned scheme. different. Here, only how the synthesizer chooses the signal is explained.
  • the processing of the signal that is, the processing principle of the synthesizer 4 on the signal is: first, the coincidence bits of the three signals are judged, and the magnitudes of the values of the signals conforming to the same bit are compared, and the value is small for output.
  • Signal D the structure of the signal D is (the coincidence of the first signal, the coincidence of the second signal, the coincidence of the third signal, the numerical value of the signal of the smaller value).
  • X - D represents the value bit of the data X (the absolute value of the data), that is, the remaining data bits are removed from the sign bit.
  • Figure ⁇ is a block diagram of a signal processing device of a position detecting device scheme in which four magnetic sensing elements are mounted.
  • the signal processing device and the processing method are similar to those of the first embodiment, except that since there are four magnetic sensing elements that are 90 degrees apart from each other in the second embodiment, a subtractor, that is, a digital differential module is added to the signal processing device. The temperature and zero drift are suppressed by the subtractor module, thereby improving the data precision, and finally the signal output to the synthesizer is still two, and the processing procedure and method are the same as in the first embodiment. Therefore, it will not be described here.
  • Figure 18 is a block diagram of a signal processing device of a position detecting device scheme in which six magnetic sensing elements are mounted.
  • the signal processing device of the solution is similar to that of the three magnetic induction elements, except that the differential amplification module is added, and the temperature and zero drift are suppressed by the differential amplification module, thereby improving the data precision and finally outputting to
  • the signal of the synthesizer is still three, and the processing and method are the same as those of the three sensors, and will not be repeated here.
  • the mounting scheme of the position detecting device of the present invention has been described above by taking a scheme using a magnetically permeable ring as an example, and the present invention can also mount a magnetic sensing element by means of a surface mount. Since the mounting manner of the dam portion other than the mounting manner of the magnetic sensing element is similar to that of the above embodiment, it will not be described herein.
  • the magnetic steel ring and the magnetic flux ring are each two, and the magnetic induction element has two rows correspondingly, wherein the magnetic steel ring is different from the first embodiment.
  • the mounting and construction of components other than the key components of these position detecting devices are similar to those in the first embodiment, and will not be described herein.
  • FIG 19 is an exploded perspective view of key components of a position detecting device scheme in accordance with a second embodiment of the present invention.
  • Figure 20 is a schematic view showing the installation of a position detecting device according to a second embodiment of the present invention.
  • the position detecting device 3 of the present embodiment includes a rotor And a stator that surrounds the rotor, the rotor includes a first magnetic steel ring 201a and a second magnetic steel ring 201b, and a first magnetic conductive ring 205a and a second magnetic conductive ring 205b, a first magnetic steel ring 201a and a second magnetic
  • the steel rings 201b are respectively fixed to the motor shaft 200, wherein the stator is a bracket 203.
  • the first magnetic conductive ring 205a and the second magnetic conductive ring 205b are respectively formed by a plurality of arcs of the same center and the same radius, and a gap is left between the adjacent two arc segments, corresponding to the magnetic sensing elements 204 of the two magnetic steel rings. They are respectively disposed in the gap.
  • the magnetic sensing element is fixed to the outer casing, and the magnetic sensing element converts the sensed magnetic signal into a voltage signal when the rotor rotates, and outputs the voltage signal to a signal processing device.
  • the uniform magnetization of the first magnet ring 201a is g (the value of g is equal to the total number of poles in the second magnet ring) and the opposite pole (the N pole and the S pole are alternately arranged), when the total number of magnetic poles in the second magnet ring is At 6 o'clock, the number of pole pairs of the first magnet ring 201a is six pairs.
  • m magnetic sensing elements such as two, are provided, and as shown in Fig. 21, the angle between the two magnetic sensing elements 204 is 90 ° /6.
  • the arrangement of the magnetic induction element when the first magnetic steel ring is uniformly magnetized to 6 poles is as shown in FIG.
  • the magnetic sensing element converts the sensed magnetic signal into a voltage signal when the rotor is relatively rotationally moved relative to the stator, and outputs the voltage signal to a signal processing device.
  • the mechanical angle corresponding to any "NS" is 360 ° / g (g is the number of "NS"), assuming that the rotor rotates at the moment Angle 0 is located in the " A signal period, then the angular displacement can be considered to consist of two parts: 1.
  • the relative offset in the "signal period”, the magnetic sensing element and the magnetic field of the first magnetic steel ring are determined.
  • the offset in this "NS" signal period (value greater than 0 is less than 360° / g) ; 2.
  • the absolute offset of the first position of the " A signal period sensed by sensors H 3 , H 4 , ... ⁇
  • the magnetic field of the magnetic ring 2 is used to determine which "NS" the rotor is in at that time.
  • the magnetization sequence causes the n magnetic induction original outputs to be in the form of a Gray code.
  • the polarity of the magnetic pole is that the first position of the Gray code is "0" corresponding to the "N/S" pole, and the first position is "1" corresponding to the "S/N” pole.
  • n 3
  • the encoding as shown in Fig. 23 is obtained
  • the magnetization sequence of the second magnetic steel ring as shown in Fig. 24 is obtained.
  • the three magnetic induction elements are uniformly distributed around the cloth.
  • Fig. 26 is a circuit block diagram showing a signal processing apparatus in which two magnetic induction elements are provided in the first magnetic steel ring and three magnetic induction elements are provided in the second magnetic steel ring in the present embodiment.
  • the output signals of the sensors 1 - la and 1 - 2a are amplified by the amplifiers 2 - la, 2 - 2a, and then connected to the A / D converter 3 - la, 3_2a, after the analog-to-digital conversion to obtain the output signal multiplier 4 - la , 5 - la, coefficient corrector 10 - la output signal multipliers 4 - la, - la 5 input, multipliers 4 - la, 5 - la output signals A, B connected to the first synthesizer 6 - la
  • the first synthesizer 6-la processes the signals A, B to obtain the signals D, R, and selects an angle relative to the angle from the standard angle table stored in the memory 8-la as the offset angle according to the signal D.
  • the output signal R of the first synthesizer 6- la is supplied to the coefficient aligner 10-la, and the coefficient aligner 10-la obtains the signal R based on the signal R and from the memory 9-la.
  • a signal K is obtained, which is used as the other input terminal of the multipliers 4-la, 5-la, and is multiplied by the signals CI and C2 output from the amplifiers 2 - la, 2 - 2a to obtain signals A and B as the first A synthesizer 6 - la input.
  • the output signals of the sensors 1 - 3a, 1 - 4a, ... 1 - na are amplified by the amplifiers 2 - 3a, 2 - 4a, ... 2 - na, respectively, and then connected to the A / D converter 3 - 3a, 3 4a, ...3-na are subjected to analog-to-digital conversion and then synthesized by a second synthesizer 7-la to obtain a signal E ; according to the signal E, one of the second standard angle tables in the memory 11-la is selected The relative angle is taken as the absolute offset of the first position of the signal period in which the first voltage signal is located, and the absolute angular displacement output ⁇ ? obtained by the adder 12-la.
  • the function of the second synthesizer 7-la is to synthesize the signal of the second magnetic steel ring of the sensor to obtain which "N-S" signal period the rotor is in at this moment.
  • the processing of the second synthesizer 7 is:
  • E ⁇ C3 - 0; C4 - 0; Cn_0 ⁇ .
  • the processing of the signal by the first synthesizer 6 is: comparing the magnitudes of the values of the two signals, the signal D having a small value for output, the structure of the signal D is ⁇ the coincidence of the first signal, and the second signal The coincidence bit, the numerical value of the signal of a smaller value ⁇ . details as follows:
  • R A 2 + S 2 ;
  • the signal K is generally passed by the signal R. And R is divided.
  • first and second standard angle tables two tables are stored in the memory, each table corresponding to a series of codes, each code corresponding to an angle.
  • the table is obtained by calibration, and the calibration method is: using the detecting device of the embodiment and a high-precision position sensor, the signals output by the magnetic sensing element in the embodiment and the angle of the high-precision position sensor output are in one-to-one correspondence.
  • a first standard angle table is stored corresponding to the signal D, and each signal D represents a relative offset.
  • signal E corresponding to signal E, a second standard angle table is stored, and each signal E represents an absolute offset.
  • the present invention is not limited to the above example, the first magnetic steel ring may also be provided with three, four, six magnetic induction elements, and the corresponding magnetic conductive ring and signal processing circuit also have to be changed accordingly, however, the variation is the same as in the first embodiment. The similarities are described, so they are not described here.
  • the end portion of the arc of the magnetic flux ring is chamfered to form an axial or radial or simultaneous axial and radial cutting.
  • the magnetic sensing element can be directly attached to the surface of the motor shaft, i.e., no magnetically conductive ring is provided, as shown in FIG.
  • Other components and their signal processing devices are similar to those having a magnetically permeable ring and will not be described herein.
  • the number of the respective components and the mounting scheme thereof are similar to those in the second embodiment, except that the magnetization mode of the magnetic steel ring and the magnetic induction element are different. Arranged location.
  • Figure 28 is an exploded perspective view of the position detecting device according to the third embodiment.
  • two rows of magnetic sensing elements 307 are respectively provided.
  • the first magnetic sensing elements of the first row that is, the plurality of magnetic sensing elements corresponding to the magnetic steel ring 302 and the magnetic conductive ring 304 are all represented by the magnetic sensing element 307
  • the second magnetic sensing element is the corresponding magnetic steel ring 303 and magnetically conductive.
  • the plurality of magnetic sensing elements of the ring 305 are all represented by magnetic sensing elements 307.
  • the magnetic steel ring 302 is defined as a first magnetic steel ring
  • the magnetic steel ring 303 is defined as a second magnetic steel ring
  • the magnetic conductive ring 304 is defined to correspond to the first magnetic steel ring
  • the magnetic conductive ring is to be 305 is defined to correspond to the second magnetic steel ring, however the invention is not limited to the above definition.
  • N 2 n
  • the object of the present invention can also be achieved when ⁇ ⁇ 2°, and the polarities of adjacent poles are opposite;
  • the total number of magnetic poles of the steel ring 303 is N, and the magnetic order is determined according to a specific magnetic sequence algorithm; on the shaft 301, corresponding to the first magnetic steel
  • the ring 302 is provided with m magnetic induction elements 307 distributed at an angle on the same circumference centered on the center of the first magnetic steel ring 302, wherein m is an integral multiple of 2 or 3; corresponding to the second magnetic steel ring 303,
  • the angle between adjacent two magnetic sensing elements 307 corresponding to the second magnetic steel ring 303 on the stator is 360 ° /N.
  • the magnetic sensing element converts the sensed magnetic signal into a voltage signal when the rotor is relatively rotationally moved relative to the stator, and outputs the voltage signal to a signal processing device.
  • FIG. 29 is a flow chart of a magnetic sequence algorithm of the magnetic steel ring 303.
  • the current code is added to the code set to continue the above steps. If the code set has been entered, the current code is checked. Whether it is "0...0", yes, then, otherwise, the current coded direct forward code end bit is 0 to 1; then it is checked whether the current code has entered the code set, if the code set is not entered, the current code is encoded. The set continues with the above steps. If the code set has been entered, it is checked whether the current code is "0...0", and then the following procedure is continued. Where 0 magnetization is "N/S" and 1 magnetization is "S/N". Thus, the magnetization structure diagram of the magnetic steel ring 303 shown in Fig. 30 and the arrangement order of H 3 and 3 ⁇ 4 are obtained.
  • the angle between each adjacent two magnetic sensing elements is 90°.
  • /N when m is 3, the angle between each adjacent two magnetic induction elements is 120 ° /N; when m is 6, the angle between each adjacent two magnetic induction elements is 60 ° /N .
  • Figure 31 is a block diagram of a signal processing device of the position detecting device according to the third embodiment. Since the signal processing manner is similar to that of the second embodiment, it will not be described herein.
  • the first magnetic steel ring may be provided with two, three, four, six magnetic sensing elements, and the corresponding magnetic conducting ring and signal processing circuit also have corresponding changes, however The changes are similar to those described in the first embodiment, and therefore will not be described again.
  • the end portion of the arc of the magnetic flux ring is chamfered to form an axial or radial or simultaneous axial and radial cutting.
  • the magnetic sensing elements in the embodiments of the above position detecting device may be directly attached to the surface of the motor shaft, that is, the magnetic conducting ring is not disposed, and other components and signal processing devices thereof are similar to those having a magnetically conductive ring. Let me repeat.
  • the magnetic sensing element is preferably a Hall sensing element.
  • Products with Hall-inductive components are extremely resistant to shock and oil, and are suitable for high-precision control in harsh working environments. The system responds quickly. With the built-in angle detection method, there is no delay of angle information and errors caused by communication, which greatly shortens the control period and improves the system's rapid response to load disturbance. Compared with the position sensorless, this sensor scheme has obvious advantages in the detection performance of low speed ⁇ .
  • the position detecting device cannot be mounted on the end cover like the inner rotor; this design fixes the position detecting device on the shaft, and a small shaft is extended backward on the end cover, and the motor rotor rotates. Then install the magnetic steel on the small shaft.
  • the position detecting device consists of a cage and a ferrite. The position detecting device only uses the magnetic induction element to collect the motor speed signal without processing, and the position detecting device transmits the signal to the controller, and uses the chip in the controller to process the signal to calculate the motor speed.
  • Figure 32 is a wiring diagram inside the integrated hub motor.
  • the 1000 line indicated by the two-dot chain line is the control box to the winding power supply line.
  • the 2000 line indicated by the dotted line is the position detection device trace.
  • the indicated 3000 lines are the control box wiring.
  • Bit The detecting device is fixed on the shaft by three screws, and the inner circumference of the position detecting device is concentric with the shaft, and the magnetic steel is mounted on the tail shaft extending inside the end cover to keep the inner circumference of the magnetic steel and the position detecting device concentric.
  • the wiring of the position detecting device enters the inner hole of the shaft through the slot on the shaft, and is connected to the control box through the vertical hole on the shaft to input a signal to the control box.
  • the control box is powered by a DC power supply and can be powered by battery or fuel cell. Moreover, the control box is further simplified in structure, saving cost and installation space.
  • the voltage signal collected by the position detecting device is connected to the main board through a connector.
  • the invention also provides a control method for the integrated hub motor.
  • the method comprises the following steps: Step 1: The position detecting device detects the position of the motor rotor and outputs a signal to the servo controller, the servo The controller calculates the command speed according to the position command; Step 2: According to the command speed in step 1, the speed controller calculates the feedback speed by the differentiator to calculate the command current: Step 3: The current controller obtains 2 according to the command and feedback current. u, v, w three-way voltage signal: Step 4: The three-way voltage signal in step 3 is driven by pulse width modulation and power amplification to achieve the corresponding control effect.
  • FIG 35 is a structural schematic diagram of the AC servo system of the present invention, which mainly illustrates the structure of the data processing unit MCU.
  • the control module includes a data processing unit MCU, a motor power control unit IPM power module and a current sensor, and the data processing unit receives the input command signal, the motor input current signal collected by the current sensor, and the voltage signal output by the position detecting device, and is processed by data processing.
  • the control signal is sent to the motor power control unit, and the motor power control unit outputs a suitable voltage to the motor according to the control signal, thereby achieving precise control of the motor.
  • the data processing unit MCU includes a mechanical loop control subunit, a current loop control subunit, a PWM control signal generating subunit, and a sensor signal processing subunit; the sensor signal processing subunit receives the voltage signal of the position detecting device, and is subjected to A/D sampling, angle Solving, obtaining the rotation angle of the motor shaft, and transmitting the angle to the mechanical ring control subunit; the sensor signal processing subunit also receives the current signal detected by the current sensor, and is output to the current loop controller after A/D sampling
  • the mechanical ring control subunit obtains a current command according to the received command signal and the rotation angle of the motor shaft, and outputs the current command to the current loop control subunit; the current loop control subunit outputs the current sensor according to the received current command.
  • the current signal is calculated to obtain a duty control signal of the three-phase voltage, and is output to the PWM control signal generating subunit; the PWM control signal generating subunit generates a certain amount according to the received duty control signal of the three-phase voltage.
  • Sequential six-way PWM signals respectively Power supply to the motor control unit.
  • FIG 36 is a block diagram showing the structure of the AC servo system of the present invention, in which the structure of the motor power supply control unit IPM is mainly illustrated.
  • the motor power control unit IPM comprises six power switch tubes, the switch tubes are connected in series in two groups, three groups are connected in parallel between the DC power supply lines, and the control end of each switch tube is output by the PWM control signal generating sub-unit.
  • the control of the PWM signal, the two switching tubes in each group are time-divisionally turned on.
  • the motor speed can be adjusted freely from zero speed to the highest speed, and the speed range is very wide. It can also arbitrarily set the acceleration during the starting process to realize the soft start of the hub motor, which can effectively reduce the motor current (corresponding to the torque) during the starting process, so that the electrical and mechanical systems during the starting process are free from any impact, achieving a large
  • the inertia mechanical load is truly flexible and smooth.
  • the current signal and the voltage signal obtained by the current sensor and the magnetic induction element sensing module are respectively used as feedback signals of the current loop and the mechanical loop, and the mechanical loop and the current loop respectively convert the setting command into a current command and a voltage duty ratio, and finally input to The PWM signal is generated in the module.
  • the AC servo system stepless speed regulation and soft start are possible.
  • the AC servo system can also generate different torques according to the resistance distance under different road conditions when the wheel rotates, saving energy.
  • the AC servo system also has the ability to triple overload between short turns.
  • the controller gives three times the overload current. In the case of unsaturated motor current, it can allow three times the overload torque in a short time.
  • the efficiency versus torque of the resulting motor is shown in Figure 37 in accordance with an embodiment of the present invention. Since the present invention adopts a permanent magnet synchronous hub motor with a novel electromagnetic structure, the efficiency is 86% or more when used for low speed direct driving in the range of 0-500 rpm. Compared with traditional motors, it has the characteristics of small size, high efficiency and strong overload capability.
  • the invention adopts a 16/18 fit on the pole slot matching, which avoids the unstable torque generated inside the permanent magnet synchronous motor and generates large harmonics, thereby avoiding motor loss and noise.
  • 16 magnetic tiles are evenly arranged on the outer rotor to form 16 magnetic poles of alternating arrangement of N and S, which are arranged to face the structure of the air gap.
  • the permanent magnet is a surface type, not a built-in type, so the process is simple and the magnetic energy of the permanent magnet can be fully utilized.
  • the stator magnetic circuit of the stator is formed by laminating two different shapes of punches, and the screw is pressed in the middle; the stator punch having a small inner diameter is sandwiched between the stator punches having a large inner diameter, superimposed
  • the rear ends are fixed to the shaft with stator baffles, key bolts and nuts.
  • the windings use concentrated windings to reduce the windings at the ends, which shortens the length of the ends of the motor windings.
  • the length of the end of the motor winding is shortened, the copper consumption is reduced, and the efficiency of the motor is improved.
  • the length of the motor end is shortened, the axial structure of the motor is reduced, the length of the motor is shortened, and the volume of the corresponding motor is also reduced, which increases the power density of the motor.
  • the motor of the present invention has a magnetic pole pole coefficient of less than 1, which can improve the sinusoidality of the air gap magnetic density, so as to control and reduce the fluctuation of the torque.
  • the method is simple and easy to implement.
  • the motor of the invention has large starting torque, fast starting speed, large output power and hard characteristics, especially low energy consumption, and the efficiency is up to 90%.
  • the overload capability is strong. Generally speaking, the overload can be tripled between the short turns, and the torque can be provided after the vehicle is started.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Description

一体化轮毂电机及其控制方法 技术领域
本发明涉及一种一体化轮毂电机及其控制方法, 尤其是一种应用位置检测装置的永磁同步轮 毂电机及其控制方法。 背景技术
随着经济发展和人民生活水平的提高, 城市交通中的诸如电动助力车、 电动自行车、 电动摩 托车、 小型电动车、 电动轿车、 电动大巴等电动车辆逐渐兴起。 作为新一代电动汽车的电动轮汽 车, 需要对关键部件轮毂电机加以改进, 以便改进性能并降低成本。
车用驱动电动机的运行特点是, 电机由蓄电池供电, 力求使有限的能量能够行驶最长的里程, 这是与驱动电机性能紧密相关的。 因此电机的启动转矩、 电机的过载能力、 电机的运行效率、 电 机的重量和体积是对车用电机综合评价的主要指标, 也将影响到对电动车的技术性能及其技术指 标。 申请号为 2008100008271.6 的文献中公开了一种轮毂电机车轮, 省去了中间的传动机构, 从 而大大提高了电能的利用效率。
现有的轮毂电机通常为有刷直流电机和无刷直流电机, 它们存在同等重量、 同等转速情况下 功率小、 启动转矩小、 过载能力小、 转矩波动大、 电流大、 特性软及能耗高等缺点。
永磁电动机, 特别是稀土永磁电动机具有结构简单, 运行可靠; 体积小, 质量轻; 损耗小, 效率髙; 电机的形状和尺寸可以灵活多样等显著优点。 因此永磁电动机产品, 特别是稀土永磁电 机产品得到不断的开发和极其广泛的应用。
申请号为 03103047.5的文献中公开了一种永磁同步轮毂电机, 其采用一体化设计, 在一定程 度上减少了转矩脉动, 然而其采用无位置传感器, 且只是采用了分数槽绕组, 而未对极弧系数做 出要求。 无位置传感器的一个缺点就是在低速时反电势的信号小, 通常不足以达到控制的要求, 因此该方案在低速吋的控制性能不理想, 转矩脉动比较大, 从而造成电机发热、 噪声及耐用性下 降等不良影响。
为了在低速时也能精确控制电机的运转, 需要在轮毂电机中使用位置检测装置, 而光电式位 置检测装置因为以玻璃为主要材质, 抗震动和冲击能力不强, 故不适用于做轮毂电机的位置检测 装置。 磁电式位置检测装置可以克服光电式位置检测装置的不足, 然而传统磁电式位置检测装置 测量精度比较低, 且只能实现增量输出。
申请号为 200410024190.7的文献中公开了一种磁电式位置检测装置, 其实现了绝对式位置检 测。 该专利中, 磁感应传感器采用表面贴的方式, 即在圆环形定子内侧壁布置磁感应传感器, 进 行旋转磁场的感应, 然后根据传感器电压值求出旋转角度值。 然而所述磁电式位置检测装置在物 理结构上具有以下缺点: 定子内侧一般呈圆弧形且光滑, 传感器不易安装固定, 容易引起定位误 差, 进而引起信号的相位偏差, 使得信号中高次谐波分量大; 加工制造工艺复杂, 不利于产业化; 可靠性低, 传感器均布于内侧壁, 传感器的支持基体必须为柔性体如 FPC等, 其与处理本体接触 处其抗拉强度不高, 容易破裂, 增加了加工难度, 影响产品的寿命; 传感器感应的磁场泄露大, 磁场不能得到充分应用, 使得信号中噪声大, 影响测量精度; 要求传感器体积小, 使得产品成本 比较高 发明内容
本发明所要解决的技术问题在于, 针对现有技术的不足提出一种一体化轮毂电机, 结构简单、 节能、 启动特性好、 体积小、 效率高。
本发明所要解决的技术问题是通过如下技术方案实现的:
一种一体化轮毂电机, 包括电机轴和固定在其上的定子, 定子外套设有转子外壳, 转子外壳 的前后两端通过转子端盖和轴承可旋转固定在电机轴上, 电机轴的两端凸伸于转子端盖之外形成 长端和短端, 转子端盖的外侧固定有轴承端盖, 将电机轴的短端罩在其中, 所述的轴承端盖中部 凸设有轴承端盖轴, 朝电机轴方向凸设, 所述的电机轴端部和轴承端盖轴的对应位置设有位置检 测装置; 所述的电机轴上还套设有伺服控制器; 所述位置检测装置感测到轴承端盖轴的转动, 并 将感测到的信号传输给伺服控制器, 通过伺服控制器的处理, 获得转子转动的角度或位置, 进而 实现对电机的精确控制。
可选地, 位置检测装置包括磁钢环、 导磁环和磁感应元件, 所述导磁环固定在电机轴上, 由 两段或多段同半径、 同圆心的弧段构成, 相邻两弧段留有缝隙, 所述磁感应元件置于该缝隙内, 所述的磁钢环对应设置在轴承端盖轴上, 当磁钢环与导磁环发生相对旋转运动吋, 所述磁感应元 件将感测到的磁信号转换为电压信号, 并将该电压信号传输给相应的信号处理装置。
优选地, 导磁环由两段同半径、 同圆心的弧段构成, 分别为 1/4弧段和 3/4弧段, 对应的磁感 应元件为 2个; 或者, 所述的导磁环由三段同半径的弧段构成, 分别为 1/3弧段, 对应的磁感应 元件为 3个; 或者, 所述的导磁环由四段同半径的弧段构成, 分别为 1/4弧段, 对应的磁感应元 件为 4个; 或者, 所述的导磁环由六段同半径的弧段构成, 分别为 1/6弧段, 对应的磁感应元件 为 6个。
优选地, 导磁环的弧段端部设有倒角, 为沿轴向或径向或同吋沿轴向、 径向切削而形成的倒 角。
优选地, 位置检测装置还包括骨架, 用于固定所述导磁环; 所述导磁环设置在骨架成型模具 上, 在所述骨架一体成型时与骨架固定在一起; 所述的骨架固定在电机轴上。
优选地, 位置检测装置的信号处理装置包括 A/D转换模块、 合成模块、 角度获取模块、 存储 模块; A/D转换模块对位置检测装置中磁感应元件发送来的电压信号进行 A/D转换, 将模拟信号 转换为数字信号; 合成模块对位置检测装置发送来的经过 A/D转换的多个电压信号进行处理得到 基准信号 D ; 角度获取模块根据该基准信号 D, 在标准角度表中选择与其相对的角度作为偏移角 度^ 存储模块, 用于存储标准角度表。
优选地,位置检测装置的信号处理装置在 A/D转换模块和合成模块之间还包括温度补偿模块, 用于消除温度对位置检测装置发送来的电压信号的影响。
优选地, 位置检测装置的信号处理装置的所述合成模块的输出信号还包括信号 R。
优选地, 位置检测装置的信号处理装置中所述温度补偿模块包括系数矫正模块和乘法器, 所 述系数矫正模块对所述合成模块的输出的信号 R和对应该信号的标准状态下的信号 R。进行比较 得到输出信号 K; 所述乘法器为多个, 每一所述乘法器将从位置检测装置发送来的、 经过 A/D转 换的一个电压信号与所述系数矫正模块的输出信号 K相乘, 将相乘后的结果输出给合成模块。
优选地, 位置检测装置的信号处理装置中, 如果位置检测装置发送来的一个电压信号为 2或 3 的倍数, 则在所述温度补偿模块之前还包括差分模块, 对用于抑制温度和零点漂移, 并提高数 据精度。
可选地, 位置检测装置包括分别固定在轴承端盖轴上的第一磁钢环和第二磁钢环; 设置在电 机轴上的对应于第二磁钢环, 以第二磁钢环的中心为圆心的同一圆周上设有 n个均匀分布的磁感 应元件, n=l, 2—n, 所述第二磁钢环的磁极磁化顺序使得 n个磁感应元件输出呈格雷码格式, 相 邻两个输出只有一位变化; 在定子上, 对应于第一磁钢环, 以第一磁钢环的中心为圆心的同一圆 周上设有 m个呈一定角度分布的磁感应元件, m为 2或 3的整数倍, 所述第一磁钢环的磁极总对 数与第二磁钢环的磁极总数相等, 并且相邻两极的极性相反; 当轴承端盖轴相对于电机轴发生相 对旋转运动时, 所述磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号输出给一信 号处理装置。
优选地, 在定子上对应于第一磁钢环的相邻两个磁感应元件之间的夹角, 当 m为 2或 4时, 该夹角为 90° /g; 当 m为 3吋, 该夹角为 120 ° /g ; 当 m为 6时, 该夹角为 60° /g, 其中, g为 第二磁钢环的磁极总数。
可优选地, 位置检测装置包括分别固定在轴承端盖轴上的第一磁钢环和第二磁钢环, 所述第 一磁钢环被均勾地磁化为 N对磁极, 其中 N<=2n且 n=0, 1, 2…! 1, 并且相邻两极的极性相反; 所述第二磁钢环的磁极总数为 N, 其磁序按照特定磁序算法确定; 在电机轴上, 对应于第一磁钢 环, 以第一磁钢环的中心为圆心的同一圆周上设有 m个呈一定角度分布的磁感应元件, m为 2或 3 的整数倍; 对应于第二磁钢环, 以第二磁钢环的中心为圆心的同一圆周上设有 n个呈一定角度 分布的磁感应元件, n=0, 1 , 当轴承端盖轴相对于电机轴发生相对旋转运动时, 所述磁感 应元件将感测到的磁信号转变为电压信号, 并将该电压信号输出给一信号处理装置。
优选地, 在定子上对应于第二磁钢环的相邻两个磁感应元件之间的夹角为 360 ° /N。
优选地, 在定子上对应于第一磁钢环相邻两个磁感应元件之间的夹角, 当 m为 2或 4时, 每 相邻两个磁感应元件之间的夹角为 90° /N, 当 m为 3 时, 每相邻两个磁感应元件之间的夹角为 120 ° /N; 当 m为 6时, 每相邻两个磁感应元件之间的夹角为 60 ° /N。
优选地, 所述磁感应元件直接表贴在电机轴的表面。
优选地, 位置检测装置还包括两个导磁环, 每一所述导磁环是由多个同圆心、 同半径的弧段 构成, 相邻两弧段留有空隙, 对应于两个磁钢环的磁感应元件分别设在该空隙内。
优选地, 导磁环的弧段端部设有倒角, 为沿轴向或径向或同吋沿轴向、 径向切削而形成的倒 角。
本发明还提供了一体化轮毂电机用的位置检测装置的信号处理装置, 包括 A/D转换模块、 相 对偏移角度 计算模块、 绝对偏移量 计算模块、 角度合成及输出模块、 存储模块: A/D转换模 块, 对位置检测装置发送来的电压信号进行 A/D转换, 将模拟信号转换为数字信号; 相对偏移角 度 计算模块, 用于计算位置检测装置中对应于第一磁钢环的磁感应元件发送来的第一电压信号 在所处信号周期内的相对偏移量 ; 绝对偏移量 计算模块, 根据位置检测装置中对应于第二磁 钢环的磁感应元件发送来的第二电压信号, 通过计算来确定第一电压信号所处的信号周期首位置 的绝对偏移量 ; 角度合成及输出模块, 用于将上述相对偏移量 和绝对偏移量 相加, 合成所 述第一电压信号所代表的在该吋刻的旋转角度 ; 存储模块, 用于存储数据。
优选地, 位置检测装置的信号处理装置还包括信号放大模块, 用于在 A/D转换模块进行 A/D 转换之前, 对来自于位置检测装置的电压信号进行放大。
优选地, 位置检测装置的信号处理装置中, 所述相对偏移角度 计算模块包括第一合成单元 和第一角度获取单元, 所述第一合成单元对位置检测装置发送来的经过 A D转换的多个电压信号 进行处理, 得到一基准信号 D; 所述第一角度获取单元根据该基准信号 D, 在第一标准角度表中 选择一与其相对的角度作为偏移角度 。
优选地,位置检测装置的信号处理装置中所述相对偏移角度 计算模块还包括温度补偿单元, 用于消除温度对位置检测装置发送来的电压信号的影响。
优选地, 位置检测装置的信号处理装置中所述第一合成单元的输出还包括信号 R。
优选地, 位置检测装置的信号处理装置中, 所述温度补偿单元包括系数矫正器和乘法器, 所 述系数矫正器对所述合成模块的输出的信号 R和对应该信号的标准状态下的信号 R。进行比较得 到输出信号 K: 所述乘法器为多个, 每一所述乘法器将从位置检测装置发送来的、 经过 A/D转换 的一个电压信号与所述系数矫正模块的输出信号 K相乘, 将相乘后的结果输出给第一合成单元。
优选地, 位置检测装置的信号处理装置中, 所述绝对偏移量 计算模块包括第二合成单元和 第二角度获取单元, 所述第二合成单元用于对对应于第二磁钢环的位置检测装置发送来的第二电 压信号进行合成, 得到一信号 E; 所述第二角度获取单元根据该信号 E在第二标准角度表中选择 一与其相对的角度作为第一电压信号所处的信号周期首位置的绝对偏移量 。
优选地, 磁感应元件为霍尔感应元件。
本发明还提供了一种一体化轮毂电机的控制方法, 该方法包括如下步骤:
步骤 1 : 位置检测装置检测电机转子的位置并输出信号给伺服控制器, 伺服控制器根据位置 指令计算出指令速度;
步骤 2 : 速度控制器根据步骤 1中的指令速度, 通过微分器算出反馈速度算出指令电流; 步骤 3 : 电流控制器根据指令和反馈电流经 2变 3得到 u、 v、 w三路电压信号; 步骤 4: 步骤 3 中的三路电压信号经脉宽调制和功率放大驱动电机运转, 达到相应的控制效 果。
优选地, 根据本发明的一体化轮毂电机的控制模块包括数据处理单元 MCU、 电机电源控制单 元 IPM功率模块和电流传感器, 所述数据处理单元接收输入的指令信号、 电流传感器采集的电机 输入电流信号和位置检测装置输出的电压信号, 经过数据处理, 输出控制信号给所述的电机电源 控制单元, 所述电机电源控制单元根据所述的控制信号输出合适的电压给电机, 从而实现对电机 的精确控制。
优选地, 数据处理单元包括机械环控制子单元、 电流环控制子单元、 PWM控制信号产生子单 元和传感器信号处理子单元;传感器信号处理子单元接收所述位置检测装置的电压信号,经过 A/D 采样、 角度求解, 得到电机轴的转动角度, 并将该角度传输给所述的机械环控制子单元: 所述传 感器信号处理子单元还接收所述电流传感器的检测到的电流信号, 经过 A/D采样后输出给所述的 电流环控制子单元; 机械环控制子单元根据接收到的指令信号和电机轴的转动角度, 经过运算得 到电流指令, 并输出给所述的电流环控制子单元; 电流环控制子单元根据接收到的电流指令的电 流传感器输出的电流信号, 经过运算得到三相电压的占空比控制信号, 并输出给所述的 PWM控 制信号产生子单元: PWM控制信号产生子单元根据接收到的三相电压的占空比控制信号,生成具 有一定顺序的六路 PWM信号, 分别作用于电机电源控制单元。
优选地, 电机电源控制单元包括六个功率开关管, 所述开关管每两个串联成一组, 三组并联 连接在直流供电线路之间, 每一开关管的控制端受 PWM控制信号产生子单元输出的 PWM信号 的控制, 每一组中的两个开关管分时导通。 优选地, 数据处理单元为 MCU, 所述电机电源控制单元为 IPM模块。
综上所述, 本发明具有如下优点:
本发明采用廉价的磁感应元件传感器进行位置检测, 安装加工极为方便。 可靠性极高。 采用 所述磁感应元件, 产品抗冲击和油污能力非常强, 适用于恶劣工作环境下高精度的控制。 系统晌 应速度快。 采用内置角度检测方式, 不存在角度信息的延时和通信引起的错误, 极大缩短了控制 周期, 提高了系统对负载扰动的快速响应性。
本发明中的永磁同步电机采用永磁体代替电励磁, 没有了励磁损耗, 节约了能量, 提高了效 率。 控制箱的控制器能根据电机负载扭矩的变化而变化, 当负载扭矩大吋, 电机输出大扭矩, 当 负载扭矩小时, 电机输出小扭矩: 这样大大节约了用电量, 同吋, 在刹车制动时, 关断电机, 电 机作为发电机, 产生电能, 节约能量。
本设计将电机的控制器和电机连接在一起, 做成一体化, 节约了空间。 控制箱采用直流电源 供电, 可以使用蓄电池供电或者燃料电池供电。 而且控制箱在结构上进一步简化, 节约了成本和 安装空间。
本发明的电机转速可以在零至最高速之间任意调节, 调速范围十分宽泛。
本发明中可任意设定启动过程中的加速度, 实现轮毂电机的软启动, 可以有效降低启动过程 中的电机电流(即转矩), 使启动过程中电气和机械系统不受任何冲击, 实现了大惯量机械负载真 正意义上的柔性、 平滑启动。
本发明采用新型的电磁结构的永磁同步轮毂电机, 用于车轮 0-500转 /分范围内的低速直接驱 动, 效率达到 86%以上; 较传统电机具有体积小、 效率高、 过载能力强等特点。 附图说明
图 1是表示本发明的一体化轮毂电机的结构的局部剖面图;
图 2是表示本发明的一体化轮毂电机的结构的立体剖面图;
图 3是本发明轴承端盖的局部放大图;
图 4是本发明的一体化轮毂电机的外形图;
图 5是本发明的一体化轮毂电机的另一侧的外形图;
图 6是表示本发明的一体化轮毂电机的磁瓦排列分布示意图;
图 7和图 8是位置检测装置在本发明的轮毂电机中的安装示意图;
图 9是本发明的一体化轮毂电机的一种冲片的示意图;
图 10是本发明的一体化轮毂电机的另一种冲片的示意图:
图 11是两种冲片叠加后的示意图;
图 12是本发明的一体化轮毂电机的位置检测装置的立体分解图;
图 13A-图 13D是导磁环分段布置的示意图;
图 14A-图 14D是导磁环的倒角设计的示意图;
图 15是安装有两个磁感应元件的位置检测装置方案的信号处理装置的框图:
图 16是安装有三个磁感应元件的位置检测装置方案的信号处理装置的框图;
图 17是安装有四个磁感应元件的位置检测装置方案的信号处理装置的框图;
图 18是安装有六个磁感应元件的位置检测装置方案的信号处理装置的框图;
图 19是本发明的轮毂电机用的位置检测装置第二方案的关键部件的分解立体图; 图 20是本发明的轮毂电机用的位置检测装置第二方案的安装示意图; 图 21是位置检测装置第二实施例中的与第一磁钢环对应的两个磁感应元件的布置示意图; 图 22 是位置检测装置第二实施例中的第一磁钢环均匀磁化为六对极时磁感应元件的布置示 意图;
图 23 是位置检测装置第二实施例中的第二磁钢环所对应的磁感应元件个数为三个时所得到 的编码;
图 24是位置检测装置第二实施例中的第二磁钢环的充磁顺序;
图 25是位置检测装置第二实施例中的第二磁钢环所对应的磁感应元件布置示意图; 图 26是本发明的轮毂电机用的位置检测装置的第二实施例的一个信号处理装置的框图: 图 27是磁感应元件采用表贴式安装的位置检测装置的结构示意图;
图 28是根据位置检测装置的第三实施例的位置检测装置的分解立体图;
图 29是确定磁钢环 303的磁序的算法流程图;
图 30是由图 29得到的磁钢环的充磁结构图以及磁感应元件的排布顺序的一个示例; 图 31是位置检测装置的第三实施例的位置检测装置的信号处理装置的框图;
图 32是本发明的一体化轮毂电机内部的走线图;
图 33是本发明的一体化轮毂电机的控制方法的流程图;
图 34是本发明的一体化轮毂电机的控制方法的框图;
图 35是本发明的交流伺服系统的侧重于 MCU部分的结构示意图;
图 36是本发明的交流伺服系统的侧重于 IPM部分的结构示意图; 以及
图 37是本发明所得到的电机的效率与转矩的关系图。 具体实施方式
以下参照附图, 结合具体的优选实施例对本发明进行描述。 然而本领域的技术人员应理解, 本发明不限于所述实施例, 而是可以根据具体的应用要求进行相应的变化。
如图 1、 图 2并结合图 3所示, 本发明提供一种一体化轮毂电机, 包括电机轴 4和固定在其 上的定子 12, 定子 12外套设有转子外壳 10, 转子外壳 10的前后两端通过转子端盖 8、 14和轴承 6、 轴承 19可旋转固定在电机轴 4上, 电机轴 4的两端凸伸于转子端盖 8、 14之外形成短端和长 端, 转子端盖 8的外侧固定有轴承端盖 1, 将电机轴 4的短端罩在其中, 轴承端盖 1中部凸设有 轴承端盖轴 26, 朝电机轴 4方向凸设, 电机轴 4端部和轴承端盖轴 26的对应位置设有位置检测 装置 3 : 电机轴 4上还套设有伺服控制器 11 : 上述的位置检测装置 3可以采用多种结构形式, 包 括单级和多级, 其结构、 信号处理装置和信号处理方法, 会在如下的内容中详细说明。 位置检测 装置 3无论采用单级或多级的哪种具体结构, 都是将其中的磁钢环 2固定在轴承端盖轴 26上, 在 电机轴 4的端部可以设置导磁环, 并在导磁环的间隙中设置磁感应元件, 该磁感应元件通常采用 霍尔感应元件。轮毂电机的转子外壳 10以电机轴 4的轴线为中心旋转, 固定在转子端盖 8上的轴 承端盖 1也随之转动, 轴承端盖轴 26与电机轴 4发生相对转动, 设置在电机轴 4上的磁感应元件 感应到轴承端盖轴 26的转动, 并将感测到的位置信号传输给伺服控制器 11, 通过伺服控制器 11 的处理, 获得转子转动的角度或位置, 进而实现对电机的精确控制。
本发明所提供的电机为轮毂型外转子结构, 其内部结构和普通的轮毂电机基本相同。 具体来 说, 轮毂电机的中间依次安装轴承 6、 伺服控制器 11、 定子 12、 绕组、 轴承 19、 花键套磁瓦 20 和轮毂等部件; 外部安装由转子端盖 8、 转子端盖 14、 磁瓦 13、 转子外壳 10、 刹车片 17、 轴承 端盖 1组成; 轴承端盖 1和转子端盖 8通过内六角螺钉 7连接; 转子端盖 8、 转子端盖 14和转子 外壳 10通过内六角螺栓 9、 15连接。 刹车片 17通过内六角螺钉 18固定在转子端盖 14上; 电机 轴 4上较长的一端有花键套 20,花键套 20顶在轴承 19的一端,花键套的另一端用两个圆螺母 21、 22紧固, 电机轴 4上较短的一端有轴承 6, 轴承 6外是固定用的螺钉 5, 再外面固定有位置检测 装置, 即图中的位置检测装置 3, 位置检测装置 3的磁钢环 2固定在轴承端盖轴 26上。 花键套 20 上有螺栓孔, 可以连接汽车的底盘; 控制器 11通过螺钉 23固定在定子上; 定子 12叠加在一起, 通过圆螺母 22和键固定于电机轴 4上。 穿线孔 24、 25用于布置位置检测装置的走线。 本发明设 计的与轮毂、 转向节和刹车片连接的螺栓孔便于与车轮转配成一体, 由于一体化结构的设计省去 了减速机构, 减少了机械损耗, 提高了整体效率。 所述的电机转轴上设有位置检测装置 3以及伺 服控制器 11, 位置检测装置 3将检测到的位置信号输出给伺服控制器 11, 通过伺服控制器 11的 处理, 获得电机轴转动的角度或位置, 进而实现对电机的精确控制。
图 4和图 5是本发明的轮毂电机的外形图。 如图 4和图 5所示, 由转子端盖 14、 8、 转子外 壳 10和轴承端盖 1所围成的转子通过轴承 6固定于电机轴 4上, 电机轴 4上留有穿线孔 24。
如图 6所示, 所述的永磁同步轮毂电机的电机转子磁路由磁瓦 34和磁轭 35组成, 外转子上 均匀布置 16块磁瓦, 形成 16个1 、 S交替排列的磁极, 其布置为面向气隙的结构。 永磁体是表 面式, 而不是内置式, 这样工艺简单, 能够充分利用永磁体的磁能。 这种槽极配合与普通永磁同 步电机不同。 普通永磁同步电机都是 8/9槽极配合, 采用这种配合的永磁同步电机内部有很大的 磁拉力, 使产生的转矩不平稳, 同时产生很大的谐波, 造成电机损耗和噪音, 而采用 16/18槽极 配合的永磁同步电机可以避免这些问题。
磁瓦的极弧系数约为 0.88, 径向厚度为 6mm, 材料为钕铁硼磁极, 其通过胶均匀地粘贴在转 子磁轭圆筒内表面。 极弧系数小于 1的磁瓦的充磁方式为平行充磁。 采用这种磁瓦极弧系数, 可 以提升气隙磁密的正弦性, 以便于控制和减少力矩的波动。 为了提高气隙磁密的正弦性, 可以采 用正弦充磁的磁瓦, 也可用 Helbach排列磁瓦, 或者使用不等厚的磁瓦, 还可以用极弧系数小于 1 的磁瓦; 相比于永磁同步电机其它提高气隙正弦性的方法, 采用极弧系数小于 1的磁瓦方法工艺 简单, 容易实现。
图 7和图 8是表示位置检测装置在本发明的轮毂电机中的安装示意图。 如图 7和图 8所示, 磁感应元件 106安装在电机轴 4上, 磁钢环 2安装在轴承端盖轴 25上, 随着轴承端盖 1的旋转而 旋转。
所述的永磁同步轮毂电机的电机定子磁路由图 9和图 10所示的两种不同形状的冲片叠压而 成, 中间用螺杆压紧; 内径小的定子冲片 40夹在内径大的定子沖片 41之间, 叠加后的形状如附 图 11所示; 两端用定子挡板、 键螺栓 42和螺母 43固定在轴上。
绕组采用集中绕组, 总共是 18槽, 三相绕组, 每一相绕 6个线包, 其中 3个线包排在一起, 其余三个在 180对面排列在一起; 三个槽为一组, 分为 6组, 输入的电压为 3相, 分别为 A相、 B相、 C相, 6组的排列顺序为 A相、 B相、 C相、 A相、 B相、 C相。 采用集中绕组更好地利用 了空间, 且改善了散热条件。
根据本发明的轮毂电机用的位置检测装置 3 的第一实施例, 提供了一种单极位置检测装置。 如图 12所示, 对应安装在电机轴 4和轴承端盖轴 26上的位置检测装置由磁感应元件板 102、 磁 钢环 2、 导磁环 104、 骨架 105组成; 磁感应元件板 102由 PCB板和磁感应元件 106组成, 骨架 105固定在电机轴 4上, 用于固定导磁环 104并且把整个位置检测装置 3连接到轮毂电机上。 磁 钢环 2主要是产生正弦磁场; 导磁环 104设置在骨架成型模具上, 在骨架 105—体成型时与骨架 105 固定在一起。 导磁环 104起聚磁作用, 由两段或多段同半径、 同圆心的弧段构成, 相邻两弧 段留有缝隙, 所述磁感应元件置于该缝隙内, 磁钢环所产生的磁通通过导磁环。 PCB板是固定磁 感应元件并且输出六路信号线。 当磁钢环与导磁环发生相对旋转运动时, 磁感应元件把通过导磁 环的磁场转换成电压信号, 电压信号直接进入主控板芯片, 由主控板上芯片对电压信号进行处理, 最后得到角位移。
图 13A-图 13D是导磁环分段布置的示意图, 如图所示导磁环 104可以由两段同半径、 同圆心 的弧段构成, 分别为 1/4弧段和 3/4弧段, 对应的磁感应元件 102为 2个: 或者, 导磁环 104由三 段同半径的弧段构成, 分别为 1/3弧段, 对应的磁感应元件 102为 3个; 或者, 导磁环 104由四 段同半径的弧段构成, 分别为 1/4弧段, 对应的磁感应元件 102为 4个; 或者, 导磁环 104由六 段同半径的弧段构成, 分别为 1/6弧段, 对应的磁感应元件为 6个。 其中的磁感应元件 102通常 采用导磁环 104将磁钢环 2围设在其中部。
图 14A到图 14D以由 1/4弧段和 3/4弧段构成的导磁环为例, 图示了本发明的导磁环的倒角 设计。 如图 14A到图 14D所示, 导磁环由两段或多段同半径、 同圆心的弧段构成, 图 14A所示 的导磁环没有设计倒角, 图 14B到图 14D所示的弧段端部设有倒角,所述倒角为沿轴向(图 14B ) 或径向 (图 14C ) 或同时沿轴向、 径向 (图 14D ) 切削而形成的倒角, 151、 153表示轴向切面,
152、 154表示径向切面。
_ Φ
根据磁密公式 β = 可以知道, 当 一定时候, 可以通过减少 5, 增加 S。 因为永磁体产生的 磁通是一定的, 在导磁环中 S较大, 所以 £比较小, 因此可以减少因为磁场交变而导致的发热。 而通过减少导磁环端部面积能够增大端部的磁场强度, 使得磁感应元件的输出信号增强。 这样的 信号拾取结构制造工艺简单, 拾取的信号噪声小, 生产成本低, 可靠性高, 而且尺寸小。
本发明还提供了一种基于上述结构的位置检测装置的信号处理装置, 包括: A/D 转换模块、 合成模块、 角度获取模块和存储模块, 其中, A/D转换模块对位置检测装置中磁感应元件发送来 的电压信号进行 A/D转换, 将模拟信号转换为数字信号, 对应于磁感应元件的个数, 该模块中具 有多个 A/D转换器, 分别用于对每个磁感应元件发送来的电压信号进行 A/D转换; 所述合成模块 对经过 A/D转换的多个电压信号进行处理, 得到基准信号 D ; 所述角度获取模块, 根据该基准信 号 D, 在角度存储表中选择与其相对的角度作为偏移角度 ; 所述存储模块用于存储数据。 上述 各个模块可以构成一 MCU。以下通过实施例详细描述本发明的位置检测装置及其信号处理装置与 方法。
图 15是安装有两个磁感应元件的位置检测装置方案的信号处理装置的框图。 磁感应元件 Hla 和 H2a的输出信号接 MCU的内置 A/D转换器模拟输入口, 经模数转换后得到输出信号接乘法器 20a、 21 a, 系数矫正器 5a的输出信号 K接乘法器 20a、 21a的输入端, 乘法器 20a、 21 a 的输出 信号接合成器 3a的输入端, 合成器 3a输出信号 D和 R, 系数矫正器 5a接收合成器 3a输出的信 号 D和 R, 通过运算得到信号 K, 通过使磁感应元件 Hla和 H2a的信号与该信号 K进行相乘, 以 此来进行温度补偿, 消除温度对信号的影响。 存储器 40a中存储有一角度存储表, MCU根据信号 D在角度存储表中选择与其相对的角度作为偏移角度 。
其中对信号的处理, 即合成器 3a对信号的处理原则是: 比较两个信号的数值的大小, 数值小 的用于输出的信号 D, 信号 D的结构为 {第一个信号的符合位, 第二个信号的符合位, 较小数值 的信号的数值位}。 以本实施例为例, 说明如下:
约定:
当数据 X为有符号数吋, 数据 X的第 0位 (二进制左起第 1位) 为符号位, X— 0=1表示数据 X为负, X— 0=0表示数据 X为正。
X— D表示数据 X的数值位 (数据的绝对值), 即去除符号位剩下数据位。
如果 A— D>=B— D
D={ A— 0 ; B— 0; B_D
R= VA2 + S2
否则:
D={ A— 0 ; B— 0; A_D
R= A2 + 52
在存储模块中存储有一标准角度表, 其中存储了对应于一系列的码, 每一个码对应于一个角 度。 该表是通过标定得到的, 标定方法是, 利用本施例的检测装置和一高精度位置传感器, 将本 施例中的磁感应元件输出的信号和该高精度位置传感器输出的角度进行一一对应, 以此建立出一 磁感应元件输出的信号与角度之间的关系表。
另外,在存储模块中还存储了一些数据修正表,这些表中包括一个信号 D与信号 R。的对应表, 其中信号 R。为信号 R在标准状态下的信号, 通过合成模块, 即合成器 3a得到的信号 D, 通过査 表可以得到一信号 R。, 通过将信号 R。和信号 R进行比较, 如除法运算, 得到信号]^。
图 16是安装有三个磁感应元件的位置检测装置方案的信号处理装置的框图。本方案的信号处 理装置与两个磁感应元件的方案中的相似, 不同之处在于, 磁感应元件有三个, 输出给合成器的 信号为三个, 合成器在取舍信号时与上述方案中的有所不同。 在这里, 仅说明合成器如何取舍信 号。
在本实施例中, 对信号的处理, 即合成器 4对信号的处理原则是: 先判断三个信号的符合位, 并比较符合位相同的信号的数值的大小, 数值小的用于输出的信号 D, 信号 D的结构为 (第一个 信号的符合位, 第二个信号的符合位, 第三个信号的符合位, 较小数值的信号的数值位 }。 以本实 施例为例:
约定:
当数据 X为有符号数吋, 数据 X的第 0位 (二进制左起第 1位) 为符号位, X— 0=1表示数据 X为负, X— 0=0表示数据 X为正。
X— D表示数据 X的数值位 (数据的绝对值), 即去除符号位剩下数据位。
如果 { A_0; B_0; C— 0}=010 并且 A— D>= C_D
D={ A— 0 ; B_0; C_0 ; C_D }
如果 { A_0 ; B— 0 ; C— 0 }=010 并且 A— D< C— D
D={ A_0 ; B— 0; C_0 ; A— D }
如果 { A_0 ; B_0 ; C_0 }=101 并且 A— D>= C— D
D={ A— 0 ; B— 0; C— 0 ; C_D }
如果 { A_0; B_0; C_0}= 101 并且 A— D< C— D
D={ A— 0 ; B— 0; C— 0 ; A— D } 如果 { A— 0; B— 0; C_0}= =011 并且 B— _D>=C_D
D= ={ A_0 ; B— 0; C_0 ; C_D }
如果 { A— 0; B_0; C— 0}= :011 并且 B— — D<C— D
D= { A_0 ; B_0; C_0 ; B_D }
如果 { A— 0; B— 0; C_0}= = 100 并且 B— _D>=C_D
D= { A— 0 ; B_0; C_0 ; C_D }
如果 { A— 0; B— 0; C_0}= = 100 并且 B— — D<C— D
D= { A— 0 ; B— 0; C— 0 ; B_D }
如果 { A— 0: B_0; C_0}= 001 并且 B— — D>=A— D
D= ={ A— 0 ; B— 0; C_0 ; A— D }
如果 { A— 0; B_0; C_0}= 001 并且 B— _D<A_D
D= { A— 0 ; B_0; C— 0 ; B_D }
如果 { A— 0; B_0; C— 0}= : 110 并且 B— — D>=A— D
D= -{ A— 0 ; B— 0; C— 0 ; A— D }
如果 { A— 0; B_0; C_0}= = 110 并且 B— _D<A_D
D= { A_0 ; B_0; C_0 ; B_D }
Figure imgf000012_0001
β = Βχ sin (―) - C x ύ (―)
Figure imgf000012_0002
图 Π是安装有四个磁感应元件的位置检测装置方案的信号处理装置的框图。信号处理装置与 处理方法与实施例 1相类似,不同在于, 由于本实施例 2中有 4个互成 90度的磁感应元件,因此, 在信号处理装置上增加了减法器, 即数字差分模块, 通过该减法器模块抑制温度和零点漂移, 以 此来提高数据精度, 最终输出给合成器的信号仍为 2个, 处理过程及方法与实施例 1相同。 因此, 在此不再赘述。
图 18是安装有六个磁感应元件的位置检测装置方案的信号处理装置的框图。方案的信号处理 装置与三个磁感应元件的方案中的相似, 不同之处在于, 增加了差动放大模块, 通过该差动放大 模块抑制温度和零点漂移, 以此来提高数据精度, 最终输出给合成器的信号仍为三个, 处理过程 及方法与三个传感器的方案的相同, 在此不再重复。
以上以采用导磁环的方案为例描述了本发明的位置检测装置的安装方案, 而本发明还可以采 用表贴的方式安装磁感应元件。 由于除了磁感应元件的安装方式之外的其佘部分的安装方式与上 述实施例中的类似, 故在此不再赘述。
根据本发明的轮毂电机用的位置检测装置的第二实施例中, 磁钢环、 导磁环各为两个, 磁感 应元件也相应地有两列, 其中磁钢环不同于第一实施例中的只有一对磁极, 而是可以被磁化有多 对磁极。除了这些位置检测装置的关键部件以外的其它部件的安装与结构与第一实施例中的相似, 在此不再赘述。
图 19是根据本发明的第二实施例的位置检测装置方案的关键部件的分解立体图。 图 20是根 据本发明的第二实施例的位置检测装置方案的安装示意图。 本实施例的位置检测装置 3包括转子 和将转子套在内部的定子,转子包括第一磁钢环 201 a和第二磁钢环 201b以及第一导磁环 205a和 第二导磁环 205b, 第一磁钢环 201a和第二磁钢环 201b分别固定在电机轴 200上, 其中定子为支 架 203。 第一导磁环 205a和第二导磁环 205b分别由多个同圆心、 同半径的弧段构成, 相邻两个 弧段之间留有空隙, 对应于两个磁钢环的磁感应元件 204分别设在该空隙内。 磁感应元件与外壳 固定, 当转子旋转运动时, 所述磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号 输出给一信号处理装置。
第一磁钢环 201a均匀的磁化为 g ( g的取值等于第二磁钢环中的磁极总数) 对极 (N极和 S 极交替排列), 当第二磁钢环中的磁极总数为 6时, 第一磁钢环 201 a的极对数为 6对。 以第一磁 钢环 201 a的中心为圆心的同一圆周上, 设置有 m个磁感应元件, 如 2个, 如图 21所示, 二个磁 感应元件 204之间的夹角为 90 ° /6。 第一磁钢环均匀地磁化为 6对极时磁感应元件的布置如图 22 所示。 当转子相对于定子发生相对旋转运动时, 所述磁感应元件将感测到的磁信号转变为电压信 号, 并将该电压信号输出给一信号处理装置。
定义第一磁钢环中相邻一对 " N-S " 为一个信号周期, 因此, 任一 " N-S "对应的机械角度为 360 ° /g ( g为 " N-S "个数), 假定转子在 时刻旋转角度 0位于第《A信号周期内, 则此时刻角位 移 可认为由两部分构成: 1. 在第 " 信号周期内的相对偏移量,磁感应元件 和 ¾感应第一磁 钢环的磁场来确定在此 " N-S "信号周期内的偏移量 (值大于 0小于 360° /g ) ; 2. 第" A信号周 期首位置的绝对偏移量 , 用传感器 H3, H4, …^^感应磁环 2的磁场来确定此时转子究竟是处 于哪一个 "N-S "来得到 。
对应于第二磁钢环 201b, 以第二磁钢环 201b的中心为圆心的同一圆周上设有 n (n=l, 2—n) 个均匀分布的磁感应元件, 第二磁钢环的磁极磁化顺序使得 n个磁感应原件输出呈格雷码形式。 磁极的极性为格雷码的首位为 " 0"对应于 " N/S " 极, 首位为 " 1 "对应于 " S/N"极。 例如, 当 n为 3时, 得到如图 23所示的编码, 得到如图 24所示的第二磁钢环的充磁顺序, 如图 25所示, 三个磁感应元件均布周围进行读数。
图 26示出了本实施例中对应于第一磁钢环设有 2个磁感应元件、第二磁钢环设有 3个磁感应 元件吋信号处理装置的电路框图。传感器 1— l a和 1— 2a的输出信号接放大器 2— la、 2— 2a进行放大, 然后接 A/D转换器 3— la、 3_2a, 经模数转换后得到输出信号接乘法器 4— l a、 5— la, 系数矫正器 10— l a输出信号接乘法器 4— l a、 —la 5的输入端, 乘法器 4— la、 5— l a的输出信号 A、 B接第一合 成器 6— l a的输入端, 第一合成器 6— la对信号 A、 B进行处理, 得到信号 D、 R, 根据信号 D从存 储器 8— l a中存储的标准角度表中选择一与其相对的角度作为偏移角度 。其中,第一合成器 6— la 的输出信号 R输送给系数矫正器 10— la,系数矫正器 10— la根据信号 R和从存储器 9— la中查表得 到信号 R。得到信号 K, 该信号 K作为乘法器 4— la、 5— l a的另一输入端, 与从放大器 2— la、 2— 2a 输出的信号 CI、 C2分虽相乘得到信号 A、 B作为第一合成器 6— l a的输入。
传感器 1— 3a、 1— 4a、 ...1— na的输出信号分别接放大器 2— 3a、 2— 4a、 ...2— na进行放大, 然后接 A/D转换器 3— 3a、 3— 4a、 ...3— na进行模数转换后通过第二合成器 7— la进行合成, 得到一信号 E; 根据该信号 E在存储器 11— la中的第二标准角度表中选择一与其相对的角度作为第一电压信号所 处的信号周期首位置的绝对偏移量 , 和 通过加法器 12— la得到测量的绝对角位移输出 <?。
其中, 第二合成器 7— la的功能是, 通过对传感器第二磁钢环 的信号进行合成, 得到此时刻 转子处于哪一个 " N-S " 信号周期内。
第二合成器 7的处理是: 当数据 X为有符号数吋, 数据 X的第 0位(二进制左起第 1位) 为 符号位, X— 0=1表示数据 X为负, X— 0=0表示数据 X为正。 也即当感应的磁场为 N吋, 输出为 X— 0=0, 否则为 X— 0= 1。
则对于本实施例, E ={ C3— 0; C4— 0; Cn_0 }。
其中, 第一合成器 6对信号的处理是: 比较两个信号的数值的大小, 数值小的用于输出的信 号 D,信号 D的结构为{第一个信号的符合位,第二个信号的符合位,较小数值的信号的数值位 }。 具体如下:
这里约定 (后文各合成器均使用该约定), 当数据 X为有符号数吋, 数据 X的第 0位 (二进 制左起第 1位) 为符号位, X— 0=1表示数据 X为负, X— 0=0表示数据 X为正。 X— D表示数据 X 的数值位 (数据的绝对值), 即去除符号位剩下的数据位。
如果 A— D>=B— D
D={ A— 0; B_0; B_D }
R= A2 + S2
否则:
D={ A_0; B_0; A— D }
= ^ + B1 .
信号 K一般是通过将信号 R。和 R进行除法运算得到。
对于第一、 二标准角度表, 在存储器中存储了两个表, 每个表对应于一系列的码, 每一个码 对应于一个角度。 该表是通过标定得到的, 标定方法是, 利用本施例的检测装置和一高精度位置 传感器, 将本施例中的磁感应元件输出的信号和该高精度位置传感器输出的角度进行一一对应, 以此建立出一磁感应元件输出的信号与角度之间的关系表。 也就是, 对应于信号 D存储了一个第 一标准角度表, 每一个信号 D代表一个相对偏移量 。 对应于信号 E, 存储了一个第二标准角度 表, 每一个信号 E代表一个绝对偏移量 。
本发明不限于上述示例, 第一磁钢环还可以设有三个、 四个、 六个磁感应元件, 相应的导磁 环和信号处理电路也要做相应变化, 然而其变化与第一实施例中所述的类似, 故在此不再赘述。
类似于位置检测装置的第一实施例, 当设有导磁环时, 导磁环的弧段端部设有倒角, 为沿轴 向或径向或同时沿轴向、 径向切削而形成的倒角。
作为替代, 磁感应元件可以直接表贴在电机轴表面上, 即不设置导磁环, 如图 27所示。 其它 部件以及其信号处理装置与有导磁环的类似, 在此不再赘述。
根据本发明的轮毂电机用的位置检测装置的第三实施例中, 各个部件的个数及其安装方案与 第二实施例中的类似, 所不同的是磁钢环的充磁方式及磁感应元件的布置位置。
图 28是根据第三实施例的位置检测装置的分解立体图。 对应于磁钢环 302、 磁钢环 303分别 设有两列磁感应元件 307。 为了说明方便, 这里将第一列磁感应元件即对应磁钢环 302和导磁环 304的多个磁感应元件都用磁感应元件 307表示, 而将第二列磁感应元件即对应磁钢环 303和导 磁环 305的多个磁感应元件都用磁感应元件 307表示。 为了说明方便, 这里将磁钢环 302定义为 第一磁钢环, 将磁钢环 303定义为第二磁钢环, 将导磁环 304限定为对应于第一磁钢环, 将导磁 环 305限定为对应于第二磁钢环, 然而本发明不限于上述的限定。
第一磁钢环 302被均匀地磁化为 N对磁极, 1^<=2 且11=0, 1, 2…! 1, 当 N = 2n时为本发明的 最佳实施例, 当 ^^ < 2°的吋候, 也可以实现本发明的发明目的, 并且相邻两极的极性相反; 所述 第二磁钢环 303的磁极总数为 N, 其磁序按照特定磁序算法确定; 在轴 301上, 对应于第一磁钢 环 302,以第一磁钢环 302的中心为圆心的同一圆周上设有 m个呈一定角度分布的磁感应元件 307, m为 2或 3的整数倍; 对应于第二磁钢环 303, 以第二磁钢环 303的中心为圆心的同一圆周上设 有 n个呈一定角度分布的磁感应元件 307, 其中 n=0, 1, 2…! ι。 在定子上对应于第二磁钢环 303 的相邻两个磁感应元件 307之间的夹角为 360 ° /N。 当转子相对于定子发生相对旋转运动时, 所 述磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号输出给一信号处理装置。
图 29是磁钢环 303的磁序算法流程图。 如图 29所示, 首先进行初始化 a[0]= " 0…… 0"; 然 后将当前编码入编码集, 即编码集中有 " 0…… 0"; 接着检验入编码集的集合元素是否达到 8, 如 果是则程序结束, 反之将当前编码左移一位, 后面补 0; 然后检验当前编码是否已入编码集, 如 果未入编码集则将当前编码入编码集继续进行上述步骤, 如果已入编码集则将当前码末位去 0补 1 ;接着检验当前编码是否已入编码集,如果未入编码集则将当前编码入编码集继续进行上述步骤, 如果已入编码集则检验当前码是否为 " 0…… 0", 是则结束, 否则将当前编码的直接前去码末位去 0补 1 ; 接着检验当前编码是否已入编码集, 如果未入编码集则将当前编码入编码集继续进行上述 步骤, 如果已入编码集则检验当前码是否为 " 0…… 0 ", 然后继续进行下面的程序。 其中 0磁化为 "N/S ", 1磁化为 " S/N "。 这样得到了图 30所示的磁钢环 303充磁结构图以及 H3、 和¾的排 布顺序。
本实施例中,在定子上对应于第一磁钢环相邻两个磁感应元件之间的夹角, 当 m为 2或 4吋, 每相邻两个磁感应元件之间的夹角为 90° /N, 当 m为 3时, 每相邻两个磁感应元件之间的夹角为 120 ° /N; 当 m为 6时, 每相邻两个磁感应元件之间的夹角为 60 ° /N。
图 31是根据第三实施例的位置检测装置的信号处理装置的框图。由于其信号处理方式与第二 实施例的类似, 故在此不再赘述。
类似于位置检测装置的第一实施例, 第一磁钢环可以设有两个、 三个、 四个、 六个磁感应元 件, 相应的导磁环和信号处理电路也要做相应变化, 然而其变化与第一实施例中所述的类似, 故 在此不再赘述。
类似于位置检测装置的第一实施例, 当设有导磁环时, 导磁环的弧段端部设有倒角, 为沿轴 向或径向或同时沿轴向、 径向切削而形成的倒角。
作为替代, 以上位置检测装置的各实施例中的磁感应元件可以直接表贴在电机轴的表面, 即 不设置导磁环, 其它部件以及其信号处理装置与有导磁环的类似, 在此不再赘述。
以上位置检测装置的各实施例中, 磁感应元件优选为霍尔感应元件。 采用霍尔感应元件的产 品抗沖击和抗油污能力非常强, 适用于恶劣工作环境下高精度的控制。 系统响应速度快。 采用内 置角度检测方式, 不存在角度信息的延时和通信引起的错误, 极大缩短了控制周期, 提高了系统 对负载扰动的快速响应性。 相比于无位置传感器, 本传感器方案在低速吋的检测性能具有明显优 势。
由于电机结构为外转子, 位置检测装置安装不能像内转子一样安装在端盖上; 本设计将位置 检测装置固定在轴上, 在端盖上反向伸出一小轴, 随电机转子转动, 再在小轴上安装磁钢。 位置 检测装置由保持架和铁氧体组成。 位置检测装置只用磁感应元件来采集电机转速信号, 而不进行 处理, 位置检测装置将信号传输到控制器, 利用控制器中的芯片对信号进行处理, 计算出电机的 转速。
图 32是一体化轮毂电机内部的走线图, 由双点划线表示的 1000线为控制箱给绕组供电线路 走线, 由虚线表示的 2000线为位置检测装置走线, 由单点划线表示的 3000线为控制箱走线。 位 置检测装置是通过三个螺钉固定在轴上的, 保持位置检测装置内圆与轴同心, 磁钢装在端盖内部 伸出的尾轴上, 保持磁钢和位置检测装置内圆同心。 位置检测装置的接线通过轴上的开槽进入轴 的内孔, 再由轴上竖直孔连接到控制箱, 给控制箱输入信号。 控制箱采用直流电源供电, 可以使 用蓄电池供电或者燃料电池供电。 而且控制箱在结构上进一步简化, 节约了成本和安装空间。 位 置检测装置采集的电压信号通过接插件与主板相连。
本发明还提供了一种一体化轮毂电机的控制方法, 如图 33和图 34所示, 该方法包括如下步 骤: 步骤 1 : 位置检测装置检测电机转子的位置并输出信号给伺服控制器, 伺服控制器根据位置 指令计算出指令速度; 步骤 2 : 速度控制器根据步骤 1 中的指令速度, 通过微分器算出反馈速度 算出指令电流: 步骤 3 : 电流控制器根据指令和反馈电流经 2变 3得到 u、 v、 w三路电压信号: 步骤 4 : 步骤 3中的三路电压信号经脉宽调制和功率放大驱动电机运转, 达到相应的控制效果。
图 35是本发明的交流伺服系统的结构原理图,该图中重点图示了数据处理单元 MCU的结构。 控制模块包括数据处理单元 MCU、 电机电源控制单元 IPM功率模块和电流传感器, 数据处理单 元接收输入的指令信号、 电流传感器采集的电机输入电流信号和位置检测装置输出的电压信号, 经过数据处理, 输出控制信号给电机电源控制单元, 电机电源控制单元根据控制信号输出合适的 电压给电机, 从而实现对电机的精确控制。
数据处理单元 MCU包括机械环控制子单元、 电流环控制子单元、 PWM控制信号产生子单元 和传感器信号处理子单元;传感器信号处理子单元接收位置检测装置的电压信号,经过 A/D采样、 角度求解, 得到电机轴的转动角度, 并将该角度传输给的机械环控制子单元; 传感器信号处理子 单元还接收电流传感器的检测到的电流信号, 经过 A/D采样后输出给电流环控制子单元; 机械环 控制子单元根据接收到的指令信号和电机轴的转动角度, 经过运算得到电流指令, 并输出给电流 环控制子单元; 电流环控制子单元根据接收到的电流指令的电流传感器输出的电流信号, 经过运 算得到三相电压的占空比控制信号, 并输出给 PWM控制信号产生子单元; PWM控制信号产生子 单元根据接收到的三相电压的占空比控制信号, 生成具有一定顺序的六路 PWM信号, 分别作用 于电机电源控制单元。
图 36是本发明的交流伺服系统结构示意图, 该图中重点图示了电机电源控制单元 IPM的结 构。 电机电源控制单元 IPM包括六个功率开关管, 所述开关管每两个串联成一组, 三组并联连接 在直流供电线路之间, 每一幵关管的控制端受 PWM控制信号产生子单元输出的 PWM信号的控 制, 每一组中的两个开关管分时导通。
电机转速可以在零速至最高速之间任意调节, 调速范围十分宽泛。 还可任意设定启动过程中 的加速度, 实现轮毂电机的软启动, 可以有效降低启动过程中的电机电流(对应于转矩), 使启动 过程中电气和机械系统不受任何冲击, 实现了大惯量机械负载真正意义上的柔性、 平滑启动。
由电流传感器和磁感应元件感应模块得到的电流信号和电压信号分别用作电流环和机械环的 反馈信号, 机械环和电流环分别将设定指令转换为电流指令和电压占空比, 最终输入到 PWM信 号产生模块中。 由于采用了交流伺服系统, 故能够实现无级调速和软启动。 本交流伺服系统还能 根据车轮转动时不同的路况下的阻力距, 电机来产生不同的扭矩, 节约电能。 本交流伺服系统还 具有短吋间三倍过载的能力, 控制器给出三倍过载电流, 在电机电流未饱和的情况下, 可以在短 时间内允许三倍过载转矩。
根据本发明的实施例, 所得到的电机的效率与转矩的关系图 37所示。 由于本发明采用新型电 磁结构的永磁同步轮毂电机,用于车轮 0-500转 /分范围内的低速直接驱动时,效率达到 86%以上; 较传统电机具有体积小、 效率高、 过载能力强等特点。
另外, 本发明在极槽配合上采用 16/18 配合, 避免了永磁同步电机内部产生的转矩不平稳以 及产生很大的谐波, 进而避免了电机损耗和噪音。 外转子上均匀布置 16块磁瓦, 形成 16个N、 S 交替排列的磁极, 其布置为面向气隙的结构。 永磁体是表面式, 而不是内置式, 这样工艺简单, 能够充分利用永磁体的磁能。
本发明中的定子一体化轮毂电机的电机定子磁路由两种不同形状的冲片叠压而成, 中间用螺 杆压紧; 内径小的定子冲片夹在内径大的定子冲片之间, 叠加后两端用定子挡板、 键螺栓和螺母 固定在轴上。 绕组采用集中式绕组, 减少了端部的绕线, 这样就使电机绕组的端部长度变短。 电 机绕组的端部长度变短, 减少了铜耗, 电机效率提高。 同时电机端部长短变短, 电机的轴向结构 尺寸减小, 电机长度变短, 相应电机体积也减小, 提高了电机的功率密度。
本发明的电机的磁瓦极弧系数小于 1, 可以提升气隙磁密的正弦性, 以便于控制和减少力矩 的波动 这种方法工艺简单, 容易实现。
本发明的电机启动转矩大、启动速度快、输出功率大、特性硬,特别是能耗低,效率高达 90%。 过载能力强, 一般来说, 短吋间可以达到三倍过载, 在车辆启动吋可以提供大转矩。 以上实施例仅用以说明本发明的技术方案而非限制。 尽管参照上述实施例对本发明进行了详 细说明, 本领域的普通技术人员应当理解, 依然可以对本发明的技术方案进行修改和等同替换, 而不脱离本技术方案的精神和范围, 其均应涵盖在本发明的权利要求范围当中。

Claims

权利要求书
1、 一种一体化轮毂电机, 包括电机轴和固定在其上的定子, 定子外套设有转子外壳, 转子 外壳的前后两端通过转子端盖和轴承可旋转固定在电机轴上, 电机轴的两端凸伸于转子端盖之外 形成长端和短端, 转子端盖的外侧固定有轴承端盖, 将电机轴的短端罩在其中, 其特征在于, 所 述的轴承端盖中部凸设有轴承端盖轴, 朝电机轴方向凸设, 所述的电机轴端部和轴承端盖轴的对 应位置设有位置检测装置; 所述的电机轴上还套设有伺服控制器; 所述位置检测装置感测到轴承 端盖轴的转动, 并将感测到的信号传输给伺服控制器, 通过伺服控制器的处理, 获得转子转动的 角度或位置, 进而实现对电机的精确控制。
2、 如权利要求 1所述的一体化轮毂电机, 其特征在于, 所述的位置检测装置, 包括磁钢环、 导磁环和磁感应元件, 所述导磁环固定在电机轴上, 由两段或多段同半径、 同圆心的弧段构成, 相邻两弧段留有缝隙, 所述磁感应元件置于该缝隙内, 所述的磁钢环对应设置在轴承端盖轴上, 当磁钢环与导磁环发生相对旋转运动时, 所述磁感应元件将感测到的磁信号转换为电压信号, 并 将该电压信号传输给相应的信号处理装置。
3、 如权利要求 2所述的一体化轮毂电机, 其特征在于, 所述的导磁环由两段同半径、 同圆 心的弧段构成, 分别为 1/4弧段和 3/4弧段, 对应的磁感应元件为 2个; 或者, 所述的导磁环由三 段同半径的弧段构成, 分别为 1/3弧段, 对应的磁感应元件为 3个; 或者, 所述的导磁环由四段 同半径的弧段构成, 分别为 1/4弧段, 对应的磁感应元件为 4个; 或者, 所述的导磁环由六段同 半径的弧段构成, 分别为 1/6弧段, 对应的磁感应元件为 6个。
4、 如权利要求 3所述的一体化轮毂电机, 其特征在于, 所述的导磁环的弧段端部设有倒角。
5、 如权利要求 4所述的一体化轮毂电机, 其特征在于, 所述的倒角为沿轴向或径向或同吋 沿轴向、 径向切削而形成的倒角。
6、 如权利要求 2所述的一体化轮毂电机, 其特征在于, 所述的位置检测装置还包括骨架, 用于固定所述导磁环。
7、 如权利要求 6所述的一体化轮毂电机, 其特征在于, 所述导磁环设置在骨架成型模具上, 在所述骨架一体成型时与骨架固定在一起: 所述的骨架固定在电机轴上。
8、 基于权利要求 2-7任一项所述的一体化轮毂电机, 其特征在于, 所述的位置检测装置中 包括有信号处理装置, 该信号处理装置包括:
A/D转换模块, 对位置检测装置中磁感应元件发送来的电压信号进行 A/D转换, 将模拟信 号转换为数字信号;
合成模块, 对位置检测装置发送来的经过 A/D转换的多个电压信号进行处理得到基准信号
D ;
角度获取模块, 根据该基准信号 D, 在标准角度表中选择与其相对的角度作为偏移角度^ 以及
存储模块, 用于存储标准角度表。
9、 如权利要求 8所述的一体化轮毂电机, 其特征在于, 所述的信号处理装置还包括温度补 偿模块, 设置在 A/D转换模块和合成模块之间, 用于消除温度对位置检测装置发送来的电压信号 的影晌
10、 如权利要求 9所述的一体化轮毂电机, 其特征在于, 所述的合成模块的输出信号还包括 信号 R。
11、 如权利要求 9所述的一体化轮毂电机, 其特征在于, 所述的温度补偿模块包括系数矫正 模块和乘法器, 所述系数矫正模块对所述合成模块的输出的信号 R和对应该信号的标准状态下的 信号 R。进行比较得到输出信号 K; 所述乘法器为多个, 每一所述乘法器将从位置检测装置发送来 的、经过 A/D转换的一个电压信号与所述系数矫正模块的输出信号 K相乘, 将相乘后的结果输出 给合成模块。
12、 如权利要求 11所述的一体化轮毂电机, 其特征在于, 所述的温度补偿模块之前还包括 差分模块, 当位置检测装置发送来的一个电压信号为 2或 3的倍数吋, 用于抑制温度和零点漂移, 并提高数据精度。
13、 如权利要求 1所述的一体化轮毂电机, 其特征在于, 所述的位置检测装置, 包括: 分别固定在轴承端盖轴上的第一磁钢环和第二磁钢环;
设置在电机轴上的对应于第二磁钢环,以第二磁钢环的中心为圆心的同一圆周上设有 n个均 匀分布的磁感应元件, n=l, 2…! 1, 所述第二磁钢环的磁极磁化顺序使得 n个磁感应元件输出呈格 雷码格式, 相邻两个输出只有一位变化;
在定子上, 对应于第一磁钢环, 以第一磁钢环的中心为圆心的同一圆周上设有 m个呈一定 角度分布的磁感应元件, m为 2或 3的整数倍, 所述第一磁钢环的磁极总对数与第二磁钢环的磁 极总数相等, 并且相邻两极的极性相反;
当轴承端盖轴相对于电机轴发生相对旋转运动时,所述磁感应元件将感测到的磁信号转变为 电压信号, 并将该电压信号输出给一信号处理装置。
14、 如权利要求 13所述的一体化轮毂电机, 其特征在于, 在所述的定子上对应于第一磁钢 环的相邻两个磁感应元件之间的夹角, 当 m为 2或 4时, 该夹角为 90° /g; 当 m为 3时, 该夹角 为 120 ° /g; 当 m为 6吋, 该夹角为 60° /g, 其中, g为第二磁钢环的磁极总数。
15、 如权利要求 1所述的一体化轮毂电机, 其特征在于, 所述的位置检测装置, 包括: 分别固定在轴承端盖轴上的第一磁钢环和第二磁钢环, 所述第一磁钢环被均匀地磁化为 N 对磁极, 其中
Figure imgf000019_0001
1, 2〜n, 并且相邻两极的极性相反; 所述第二磁钢环的磁极总数为 N, 其磁序按照特定磁序算法确定;
在电机轴上, 对应于第一磁钢环, 以第一磁钢环的中心为圆心的同一圆周上设有 m个呈一 定角度分布的磁感应元件, 其中 m为 2或 3的整数倍; 对应于第二磁钢环, 以第二磁钢环的中心 为圆心的同一圆周上设有 n个呈一定角度分布的磁感应元件, 其中 n=0, 1, 2〜n ;
当轴承端盖轴相对于电机轴发生相对旋转运动吋,所述磁感应元件将感测到的磁信号转变为 电压信号, 并将该电压信号输出给一信号处理装置。
16、 如权利要求 15所述的一体化轮毂电机, 其特征在于, 在所述的定子上对应于第二磁钢 环的相邻两个磁感应元件之间的夹角为 360° /N。
17、 如权利要求 16所述的一体化轮毂电机, 其特征在于, 在所述的定子上对应于第一磁钢 环相邻两个磁感应元件之间的夹角, 当 m为 2或 4时, 每相邻两个磁感应元件之间的夹角为 90° /N, 当 m为 3时, 每相邻两个磁感应元件之间的夹角为 120° /N ; 当 m为 6时, 每相邻两个磁感 应元件之间的夹角为 60 ° /N。
18、 如权利要求 13或 15任一项所述的一体化轮毂电机, 其特征在于, 所述磁感应元件直接 表贴在电机轴的表面。
19、 如权利要求 13或 15任一项所述的一体化轮毂电机, 其特征在于, 还包括两个导磁环, 每一所述导磁环是由多个同圆心、 同半径的弧段构成, 相邻两弧段留有空隙, 对应于两个磁钢环 的磁感应元件分别设在该空隙内。
20、 如权利要求 19所述的一体化轮毂电机, 其特征在于, 所述的导磁环的弧段端部设有倒 角, 为沿轴向或径向或同时沿轴向、 径向切削而形成的倒角。
21 种基于上述权利要求 13-20任一项所述的一体化轮毂电机, 其特征在于, 所述的位置 检测装置中包括信号处理装置, 该信号处理装置包括:
A/D转换模块, 对位置检测装置发送来的电压信号进行 A/D转换, 将模拟信号转换为数字 信号;
相对偏移角度 计算模块, 用于计算位置检测装置中对应于第一磁钢环的磁感应元件发送 来的第一电压信号在所处信号周期内的相对偏移量 ;
绝对偏移量 计算模块, 根据位置检测装置中对应于第二磁钢环的磁感应元件发送来的第 二电压信号, 通过计算来确定第一电压信号所处的信号周期首位置的绝对偏移量 ;
角度合成及输出模块, 用于将上述相对偏移量 和绝对偏移量 相加, 合成所述第一电压 信号所代表的在该时刻的旋转角度 0 ;
存储模块, 用于存储数据。
22、 根据权利要求 21所述的一体化轮毂电机, 其特征在于, 所述的信号处理装置还包括: 信号放大模块, 用于在 A/D转换模块进行 A/D转换之前, 对来自于位置检测装置的电压信 号进行放大。
23、 根据权利要求 21 所述的一体化轮毂电机, 其特征在于, 所述的相对偏移角度 计算 模块包括第一合成单元和第一角度获取单元, 所述第一合成单元对位置检测装置发送来的经过
A/D转换的多个电压信号进行处理, 得到一基准信号 D ; 所述第一角度获取单元根据该基准信号 D , 在第一标准角度表中选择一与其相对的角度作为偏移角度 。
24、 如权利要求 23所述的一体化轮毂电机, 其特征在于, 所述的相对偏移角度 计算模块 还包括温度补偿单元, 用于消除温度对位置检测装置发送来的电压信号的影响。
25、 如权利要求 23所述的一体化轮毂电机, 其特征在于, 所述的第一合成单元的输出还包 括信号 R。
26、 如权利要求 24所述的一体化轮毂电机, 其特征在于, 所述的温度补偿单元包括系数矫 正器和乘法器, 所述系数矫正器对所述合成模块的输出的信号 R和对应该信号的标准状态下的信 号 R。进行比较得到输出信号 K;所述乘法器为多个,每一所述乘法器将从位置检测装置发送来的、 经过 A/D转换的一个电压信号与所述系数矫正模块的输出信号 K相乘,将相乘后的结果输出给第 一合成单元。
27、 根据权利要求 21所述的一体化轮毂电机, 其特征在于, 所述的绝对偏移量 计算模块 包括第二合成单元和第二角度获取单元, 所述第二合成单元用于对对应于第二磁钢环的位置检测 装置发送来的第二电压信号进行合成, 得到一信号 E; 所述第二角度获取单元根据该信号 E在第 二标准角度表中选择一与其相对的角度作为第一电压信号所处的信号周期首位置的绝对偏移量 。
28、 如权利要求 2 13或 15任一项所述的一体化轮毂电机, 其特征在于, 所述的磁感应元 件为霍尔感应元件。
29、 如权利要求 1所述的一体化轮毂电机, 其特征在于, 所述伺服控制器中的控制模块包括 数据处理单元、 电机电源控制单元、 功率模块和电流传感器, 所述数据处理单元接收输入的指令 信号、 电流传感器采集的电机输入电流信号和位置检测装置输出的电压信号, 经过数据处理, 输 出控制信号给所述的电机电源控制单元, 所述电机电源控制单元根据所述的控制信号输出合适的 电压给电机, 从而实现对电机的精确控制。
30、 如权利要求 29所述的一体化轮毂电机, 其特征在于, 所述数据处理单元包括机械环控 制子单元、 电流环控制子单元、 PWM控制信号产生子单元和传感器信号处理子单元;
所述传感器信号处理子单元接收所述位置检测装置的电压信号, 经过 A/D采样、 角度求解, 得到电机轴的转动角度, 并将该角度传输给所述的机械环控制子单元; 所述传感器信号处理子单 元还接收所述电流传感器的检测到的电流信号,经过 A/D采样后输出给所述的电流环控制子单元: 所述机械环控制子单元根据接收到的指令信号和电机轴的转动角度, 经过运算得到电流指 令, 并输出给所述的电流环控制子单元;
所述电流环控制子单元根据接收到的电流指令的电流传感器输出的电流信号,经过运算得到 三相电压的占空比控制信号, 并输出给所述的 PWM控制信号产生子单元;
所述 PWM控制信号产生子单元根据接收到的三相电压的占空比控制信号,生成具有一定顺 序的六路 PWM信号, 分别作用于电机电源控制单元。
31、 如权利要求 29所述的一体化轮毂电机, 其特征在于, 所述电机电源控制单元包括六个 功率开关管, 所述开关管每两个串联成一组, 三组并联连接在直流供电线路之间, 每一开关管的 控制端受 PWM控制信号产生子单元输出的 PWM信号的控制, 每一组中的两个开关管分时导通。
32、 如权利要求 29所述的一体化轮毂电机, 其特征在于, 所述数据处理单元为 MCU, 所述 电机电源控制单元为 IPM模块。
33、 一种一体化轮毂电机的控制方法, 其特征在于, 该方法包括如下步骤:
步骤 1 : 位置检测装置检测电机转子的位置并输出信号给伺服控制器, 伺服控制器根据位置 指令计算出指令速度;
步骤 2: 速度控制器根据步骤 1中的指令速度, 通过微分器算出反馈速度算出指令电流; 步骤 3 : 电流控制器根据指令和反馈电流经 2变 3得到 u、 v、 w三路电压信号; 步骤 4: 步骤 3中的三路电压信号经脉宽调制和功率放大驱动电机运转, 达到相应的控制效 果。
PCT/CN2010/072249 2009-04-30 2010-04-27 一体化轮毂电机及其控制方法 WO2010124624A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910137765.9 2009-04-30
CN 200910137765 CN101877524B (zh) 2009-04-30 2009-04-30 一体化轮毂电机

Publications (1)

Publication Number Publication Date
WO2010124624A1 true WO2010124624A1 (zh) 2010-11-04

Family

ID=43020005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072249 WO2010124624A1 (zh) 2009-04-30 2010-04-27 一体化轮毂电机及其控制方法

Country Status (2)

Country Link
CN (1) CN101877524B (zh)
WO (1) WO2010124624A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109167501A (zh) * 2018-09-21 2019-01-08 沈阳工业大学 一种混合转子外转子同步电机
EP3505435A1 (en) * 2017-12-28 2019-07-03 Reduce Carbon Energy Develop Co., Ltd. Heat dissipation structure of axle shaft for power wheel of electric motorcycle
CN112431901A (zh) * 2020-11-23 2021-03-02 佛山市南海珠江减速机有限公司 一种蜗轮蜗杆减速机及蜗轮蜗杆升降机
CN114792595A (zh) * 2022-05-27 2022-07-26 浙江远鸿新能源科技有限公司 一种直流电机用充磁组件及充磁方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011007147A1 (de) * 2011-04-11 2012-10-11 Robert Bosch Gmbh Elektronisch kommutierter Elektromotor mit einer Rotorpositionserfassung mit Störfeldkompensation
CN102332857B (zh) * 2011-09-26 2013-11-13 东华大学 基于磁环及霍尔传感器的pet-ct机轮毂电机位置检测方法
CN102355182B (zh) * 2011-09-26 2013-12-11 东华大学 基于磁环及霍尔传感器的ct机轮毂电机的位置检测方法
CN102324879B (zh) * 2011-09-26 2013-11-13 东华大学 一种ct机轮毂电机轮毂的位置检测方法
CN103023259A (zh) * 2011-09-28 2013-04-03 浙江中科德润科技有限公司 轮毂电机及其控制方法
CN102386820B (zh) * 2011-11-22 2013-06-26 陕西航空电气有限责任公司 一种带补偿能力的电机转子位置测量方法及其装置
CN102624117A (zh) * 2012-04-01 2012-08-01 天津大学 电动汽车用油内冷式高功率密度轮毂永磁电机
CN105024493A (zh) * 2015-07-29 2015-11-04 无锡赛盈电机科技有限公司 一种电动车用电动机的电机轴
CN105365580B (zh) * 2015-12-10 2017-11-17 福州大学 一种电动汽车智能控制方法及系统
CN106357074A (zh) * 2016-09-28 2017-01-25 深圳市雅腾电机有限公司 机器人行走系统用轮毂电机
CN106849518B (zh) * 2017-02-17 2020-06-05 深圳市踏路科技有限公司 一种轮毂电机信号检测装置校准方法
CN107294337B (zh) * 2017-05-22 2019-12-27 江苏雅迪科技发展有限公司宁波分公司 一种轮毂电机及其位置信号处理方法
CN111749856B (zh) * 2019-03-29 2022-07-05 北京金风科创风电设备有限公司 气隙检测方法、风力发电机组以及气隙监测系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770933A (en) * 1996-01-31 1998-06-23 Cymer, Inc. Blower motor with adjustable timing
CN2377762Y (zh) * 1998-11-02 2000-05-10 万德鸿 机电一体永磁无刷电机
CN2935612Y (zh) * 2006-06-22 2007-08-15 江苏超力电器有限公司 汽车电动助力转向永磁无刷直流电动机
CN100413207C (zh) * 2006-11-17 2008-08-20 清华大学 一种异频供电永磁同步电动机矢量控制系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3336870B2 (ja) * 1996-09-04 2002-10-21 三菱電機株式会社 回転磁石形多相同期電動機の制御方法及びその装置
CN100536287C (zh) * 2005-05-18 2009-09-02 江苏大学 无轴承永磁同步电机数控伺服系统与控制方法
CN201478969U (zh) * 2009-04-30 2010-05-19 浙江关西电机有限公司 一体化轮毂电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770933A (en) * 1996-01-31 1998-06-23 Cymer, Inc. Blower motor with adjustable timing
CN2377762Y (zh) * 1998-11-02 2000-05-10 万德鸿 机电一体永磁无刷电机
CN2935612Y (zh) * 2006-06-22 2007-08-15 江苏超力电器有限公司 汽车电动助力转向永磁无刷直流电动机
CN100413207C (zh) * 2006-11-17 2008-08-20 清华大学 一种异频供电永磁同步电动机矢量控制系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3505435A1 (en) * 2017-12-28 2019-07-03 Reduce Carbon Energy Develop Co., Ltd. Heat dissipation structure of axle shaft for power wheel of electric motorcycle
CN109167501A (zh) * 2018-09-21 2019-01-08 沈阳工业大学 一种混合转子外转子同步电机
CN109167501B (zh) * 2018-09-21 2023-10-31 沈阳工业大学 一种混合转子外转子同步电机
CN112431901A (zh) * 2020-11-23 2021-03-02 佛山市南海珠江减速机有限公司 一种蜗轮蜗杆减速机及蜗轮蜗杆升降机
CN114792595A (zh) * 2022-05-27 2022-07-26 浙江远鸿新能源科技有限公司 一种直流电机用充磁组件及充磁方法
CN114792595B (zh) * 2022-05-27 2022-12-23 浙江远鸿新能源科技有限公司 一种直流电机用充磁组件及充磁方法

Also Published As

Publication number Publication date
CN101877524B (zh) 2013-03-20
CN101877524A (zh) 2010-11-03

Similar Documents

Publication Publication Date Title
WO2010124624A1 (zh) 一体化轮毂电机及其控制方法
CN202260955U (zh) 轮毂电机
CN103023259A (zh) 轮毂电机及其控制方法
US8544580B2 (en) In-wheel switched reluctance motor drive
CN209852516U (zh) 电动助力自行车及其中置电机驱动系统
WO2010124620A1 (zh) 汽车电动雨刮器及其控制方法
US10218249B2 (en) Brushless DC motorization apparatus
WO2010124598A1 (zh) 伺服助力转向系统及其控制方法
CN101030712A (zh) 分段式模块化定子结构直驱型低速直流无刷电动机
TW201737602A (zh) 一種盤型電動馬達、電力驅動載具以及控制電動馬達之方法
CN103222167B (zh) 一种三相多态伺服电机
WO2010124615A1 (zh) 减速装置及其控制方法
CN2822017Y (zh) 轴向磁路双驱动式无刷无齿直流轮毂电机
CN102055294B (zh) 永磁倍极开关磁阻电动机
CN203714124U (zh) 自平衡电动车轮毂电机
CN207595181U (zh) 霍尔型力矩传感器及电机
WO2010124590A1 (zh) 电动机
CN101662199B (zh) 具有启动绕组的单相开关磁阻式多功能电机
CN202550953U (zh) 基于巨磁电阻传感器的车用永磁同步电机控制系统
CN105576856A (zh) 电动汽车用外转子双凸极永磁轮毂电动机
CN203398967U (zh) 电动汽车用外转子双凸极永磁轮毂电动机
CN2514544Y (zh) 永磁无刷电机
CN201667596U (zh) 永磁倍极开关磁阻电动机发电机
CN103546010A (zh) 一种轴向磁通开关磁阻电机
CN203562921U (zh) 一种轴向磁通开关磁阻电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769313

Country of ref document: EP

Kind code of ref document: A1