WO2010124626A1 - 电动缝纫机 - Google Patents

电动缝纫机 Download PDF

Info

Publication number
WO2010124626A1
WO2010124626A1 PCT/CN2010/072255 CN2010072255W WO2010124626A1 WO 2010124626 A1 WO2010124626 A1 WO 2010124626A1 CN 2010072255 W CN2010072255 W CN 2010072255W WO 2010124626 A1 WO2010124626 A1 WO 2010124626A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
signal
steel ring
angle
sewing machine
Prior art date
Application number
PCT/CN2010/072255
Other languages
English (en)
French (fr)
Inventor
郝双晖
郝明晖
Original Assignee
浙江关西电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江关西电机有限公司 filed Critical 浙江关西电机有限公司
Publication of WO2010124626A1 publication Critical patent/WO2010124626A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B69/00Driving-gear; Control devices
    • D05B69/10Electrical or electromagnetic drives
    • D05B69/12Electrical or electromagnetic drives using rotary electric motors
    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B69/00Driving-gear; Control devices
    • D05B69/30Details
    • D05B69/32Vibration-minimising devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present invention relates to a sewing machine, and more particularly to an electric sewing machine having an improved drive structure. Background technique
  • Industrial sewing machines are generally driven by electric motors, and the motors used are asynchronous motors, brushless DC motors, and AC servo motors.
  • the current electric sewing machine is basically driven by a single motor.
  • the motor is connected to the main shaft through a belt or a coupling to drive the main shaft.
  • the main shaft is connected to the bottom shaft through a timing belt or a gear transmission shaft to drive the bottom shaft to rotate.
  • FIG. 1 shows a typical sewing machine structure.
  • the main drive structure includes the spindle 2.
  • the motor drives the spindle 2 through the coupling.
  • the spindle 2 rotates the bottom shaft 3 through the timing belt 4, and the other mechanisms are driven by the spindle 2 and the bottom shaft 3 to complete the sewing function.
  • the timing belt 4 Since the main shaft 2 needs to rotate the bottom shaft 3 through the timing belt 4, the timing belt 4 has a large force and large deformation, and is easily worn.
  • the main shaft 2, the bottom shaft 3, and the mechanism connected to the main shaft 2 and the bottom shaft 3 are integrally connected, so that the vibration of the sewing machine is large, the noise is large, and the vibration also affects the sewing quality of the sewing machine.
  • vibration and noise problems are urgently needed.
  • the patents 200810006028.0, 200810005210.4 and 95108467.4 have improved the sewing machine for vibration and noise of the sewing machine, and have certain effects.
  • the spindle 2 necessarily drives the bottom shaft 3 to rotate through the transmission mechanism, so that the entire sewing machine is coupled as a whole. It is because of the large coupling and correlation of the mechanism that the sewing machine vibrates and the noise is large, which is the vibration of the sewing machine. The source of noise.
  • the technical problem to be solved by the present invention is to provide an electric sewing machine with less vibration, less noise, and higher sewing quality in view of the deficiencies of the prior art.
  • the present invention provides a motor sewing machine including a handpiece including a main shaft and a bottom shaft, and a motor and a controller for respectively driving the main shaft and the bottom shaft, and the controller Control the two motors to work synchronously.
  • the controller may also be two for respectively controlling the operation of the two motors, and the two controllers perform synchronous communication through the data lines.
  • the motor and the controller for controlling its operation may be integrally provided.
  • position detecting means for detecting the position of the motor shaft is provided on the shaft of each motor, and the position information is transmitted to the corresponding controller for precise control of the position of the motor.
  • the position detecting device comprises a magnetic steel ring, a magnetic flux ring and a magnetic induction element, wherein the magnetic conductive ring is composed of two or more segments of the same radius and the same center, and the adjacent two arc segments are left.
  • a magnetic induction element is disposed in the gap, and when the magnetic steel ring and the magnetic conductive ring rotate relative to each other, the magnetic induction element converts the sensed magnetic signal into a voltage signal, and transmits the voltage signal to Corresponding signal processing device.
  • the magnetic conductive ring is composed of two arc segments of the same radius and the same center, which are respectively a quarter arc segment and a 3/4 arc segment, corresponding to The magnetic induction element is two; or, the magnetic conductive ring is composed of three arc segments of the same radius, respectively, which are 1/3 arc segments, and the corresponding magnetic induction elements are three; or, the magnetic conductive ring is Four segments of the same radius are formed, which are respectively 1/4 arc segments, and the corresponding magnetic induction elements are four; or, the magnetic conductive ring is composed of six segments of the same radius, which are respectively 1/6 arc segments. , the corresponding magnetic induction elements are six.
  • the position detecting device includes a rotor and a stator that surrounds the rotor, the rotor including a first magnetic steel ring and a second magnetic steel ring;
  • first magnetic steel ring and the second magnetic steel ring may be respectively fixed on a motor shaft
  • the magnetic pole magnetization sequence of the second magnetic steel ring causes the n magnetic sensing elements to output in a Gray code format, and the adjacent two outputs have only one bit change.
  • m (m is an integer multiple of 2 or 3) is disposed at an angle on the same circumference centered on the center of the first magnetic steel ring.
  • a magnetic induction element the total magnetic pole of the first magnetic steel ring is equal to the total number of magnetic poles of the second magnetic steel ring, and the polarities of the adjacent two poles are opposite;
  • the magnetic induction element converts the sensed magnetic signal into a voltage signal when the rotor is relatively rotationally moved relative to the stator, and outputs the voltage signal to a signal processing device.
  • the angle between the adjacent two magnetic induction elements on the stator corresponding to the first magnetic steel ring when m is 2 or 4, the included angle is 90° / g ; when m is 3, the The angle is 120° / g ; when m is 6, the angle is 60 ° / g, where g is the total number of magnetic poles of the second magnetic steel ring.
  • the position detecting device also includes a rotor and a stator that surrounds the rotor, the rotor including a first magnetic steel ring and a second magnetic steel ring;
  • m (m is an integer multiple of 2 or 3) is disposed at an angle on the same circumference centered on the center of the first magnetic steel ring.
  • the magnetic sensing element converts the sensed magnetic signal into a voltage signal when the rotor is relatively rotationally moved relative to the stator, and outputs the voltage signal to a signal processing device.
  • an angle between adjacent two magnetic induction elements corresponding to the second magnetic steel ring on the stator is 360 ° /N.
  • the angle between each adjacent two magnetic induction elements is 90° / N, when m is 3, the angle between each adjacent two magnetic induction elements is 120 N; when m is 6, the angle between each adjacent two magnetic induction elements is 60 ° / N.
  • the position detecting device further includes two magnetic permeability rings respectively built on the inner surface of the stator and corresponding to the first magnetic steel ring and the first magnetic steel ring, wherein each of the magnetic conductive rings is composed of a plurality of the same center, The arc segments of the same radius are formed, and the adjacent two arc segments are left with gaps, and the magnetic induction elements corresponding to the two magnetic steel rings are respectively disposed in the gaps.
  • the end portion of the arc of the magnetic conductive ring is chamfered.
  • the chamfer is a chamfer formed by cutting axially or radially or simultaneously in the axial direction and in the radial direction.
  • the controller includes a control module, and the control module includes first and second motor control sub-modules and a synchronization control sub-module;
  • the first and second motor control submodules are respectively used to control the operation of two motors, and the synchronization signal control submodule is configured to calculate, according to the received angle instruction of the user, the two motors are used for synchronous operation. An angle command sent to the first or/and two motor control submodules.
  • the first and second motor control submodules respectively comprise a data processing unit, a motor driving unit and a current sensor
  • the data processing unit receives a command signal input by a user or a command signal sent by the synchronization signal control submodule, and a current sensor.
  • the collected motor input current signal and the motor position signal output by the position detecting module are subjected to data processing, and output a control signal to the motor driving unit, and the motor driving unit outputs a suitable voltage to the motor according to the control signal, thereby realizing Precise control of the motor.
  • the data processing unit includes a mechanical loop control subunit, a current loop control subunit, a PWM control signal generating subunit, and a signal processing subunit;
  • the sensor signal processing subunit receives the current signal detected by the current sensor, and is output to the current loop control subunit after being sampled by A/D;
  • the mechanical loop control subunit calculates the command information sent by the submodule and the rotation angle of the motor shaft sent by the position detecting module according to the command signal or the synchronization signal input by the user, and obtains a current command through the operation, and outputs the current command to the Current loop control subunit;
  • the current loop control subunit obtains a duty control signal of the three-phase voltage according to the received current command and the current signal output by the current sensor, and outputs the duty control signal to the PWM control signal generating subunit;
  • the PWM control signal generating sub-unit generates six PWM signals having a certain output sequence according to the received duty control signal of the three-phase voltage, and respectively acts on the motor driving unit.
  • the motor drive unit comprises six power switch tubes, the switch tubes are connected in series in two groups, and three groups are connected in parallel between the DC power supply lines, and the control end of each switch tube Controlled by the PWM signal to generate the PWM signal output by the subunit, the two switching tubes in each group are time-divisionally turned on.
  • the signal processing subunit includes a signal processing circuit of the position detecting module, configured to obtain a rotation angle of the motor shaft according to the voltage signal of the position detecting module, and specifically includes: A/D conversion a circuit that performs A/D conversion on a voltage signal sent from a magnetic sensing element in the position detecting module to convert the analog signal into a digital signal; and a synthesizing circuit that selects and outputs a plurality of A/D converted voltage signals sent by the position detecting module Obtaining a reference signal D; an angle obtaining circuit, according to the reference signal D, selecting an angle opposite thereto as an offset angle in an angle storage table; and storing a circuit for storing the data and the angle storage table in the processing .
  • a temperature compensation circuit is further included between the A/D conversion circuit and the synthesis circuit for eliminating the influence of temperature on the voltage signal transmitted from the position detecting device.
  • the temperature compensation circuit includes a plurality of multipliers, each of the multipliers multiplying a voltage signal sent by the A/D converted position detecting device by the output signal K, and outputting the multiplied result to the composite Circuit. If the voltage signal sent by the position detecting means is a multiple of 2 or 3, a differential amplifying circuit is further included before the temperature compensating module.
  • the signal processing unit further includes a coefficient correction circuit that performs an operation according to an output of the synthesis module to obtain an output signal 1 ⁇ .
  • the signal processing subunit also includes a signal processing circuit of the position detecting module, which is configured to obtain a rotation angle of the motor shaft according to the voltage signal of the position detecting module, and specifically includes: A/D conversion a circuit for performing A/D conversion on a voltage signal sent from the position detecting device to convert the analog signal into a digital signal; and a relative offset angle calculating circuit for calculating a magnetic sensing element corresponding to the first magnetic steel ring in the position detecting device The first voltage signal coming from the letter The relative offset amount in the number period; the absolute offset calculation circuit determines, according to the second voltage signal sent from the magnetic induction element corresponding to the second magnetic steel ring in the position detecting device, by calculation An absolute offset of the first position of the signal period; an angle synthesis and output circuit, configured to add the relative offset and the absolute offset to synthesize a rotation angle represented by the first voltage signal at the moment; Circuit, used to store data during processing.
  • A/D conversion a circuit for performing A/D conversion on a voltage signal sent from the position
  • a signal amplifying module is further included for amplifying the voltage signal from the position detecting device before the A/D conversion module performs A/D conversion.
  • the absolute offset calculation circuit includes a second synthesis unit and a second angle acquisition subunit, and the second synthesis unit is configured to transmit a second voltage corresponding to the position detecting device corresponding to the second magnetic steel ring.
  • the signal is decoded to obtain a signal E.
  • the second angle acquisition subunit selects an angle relative to the signal in the second angle storage table as the absolute deviation of the first position of the signal period in which the first voltage signal is located. Transfer amount.
  • the sewing machine is driven by two motors.
  • the main shaft and the bottom shaft are driven by one motor respectively, and the two motors are always in synchronous operation. This reduces the mechanical coupling of the sewing machine and divides the sewing machine into upper and lower parts.
  • the main shaft and the bottom shaft are no longer in the synchronous belt.
  • the equal drive maintains synchronous rotation, but through the controller, the two motors are controlled to keep running synchronously, so that the main shaft and the bottom shaft rotate synchronously.
  • the main shaft and the mechanism connected to the main shaft are independent parts, and the mechanism for connecting the bottom shaft and the bottom shaft is a separate portion. There is no power transmission between the two parts, and the vibrations of the main shaft and the bottom shaft do not affect each other, and the vibration is reduced. Vibration and noise.
  • Timing belts that connect the main shaft and the bottom shaft are less stressed, less deformed, and less prone to wear.
  • the timing belt no longer functions as a power transmission between the main shaft and the bottom shaft, so the force is small, the deformation is small, and the wear is not easy.
  • the reason for retaining the timing belt is: When sewing, sometimes it is necessary to manually rotate the spindle to make the sewing machine work, so it is necessary to keep the timing belt, but it will only transmit the force when it is manually.
  • the sewing quality is high.
  • the existing sewing machine main shaft and bottom shaft power transmission components are deformed, and the vibration is large, which affects the sewing quality.
  • the patented spindle and bottom shaft are driven by two motors, which are always in synchronous operation, with low vibration and high sewing quality.
  • the failure rate is low. Since the vibration is small, the transmission components such as the timing belt are not easily worn, so the failure rate is low.
  • Figure 1 is a schematic view showing the structure of a typical sewing machine head
  • FIG. 2 is a schematic view showing the overall structure of a power sewing machine head according to a first embodiment of the present invention
  • Figure 3 is a block diagram showing the servo control of the electric sewing machine of the first embodiment of the present invention
  • Figure 4 is a schematic view showing the overall structure of a power sewing machine head according to a second embodiment of the present invention.
  • Figure 5 is a schematic view showing the overall structure of a handpiece of an electric sewing machine according to a third embodiment of the present invention.
  • Figure 6 is a block diagram showing the servo control of the electric sewing machine of the third embodiment of the present invention.
  • Figure 7 is an exploded perspective view of a position detecting device of the present invention.
  • Figure 8 is a perspective view of the position detecting device of the present invention mounted on a shaft
  • 9A-9D are chamfering designs of a magnetic flux guiding ring of a position detecting device according to the present invention.
  • Figure 10 is a schematic structural view of Embodiment 1 of the position detecting device of the present invention.
  • Figure 11 is a block diagram of a signal processing device of Embodiment 1 of the position detecting device of the present invention.
  • Figure 12 is a schematic structural view of a position detecting device of Embodiment 2 of the position detecting device of the present invention.
  • Figure 13 is a block diagram of a signal processing apparatus of Embodiment 2 of the position detecting device of the present invention
  • Figure 14 is a schematic structural view of Embodiment 3 of the position detecting device of the present invention
  • Figure 15 is a block diagram of a signal processing apparatus of Embodiment 3 of the position detecting device of the present invention.
  • Figure 16 is an exploded perspective view showing the four-dimensional structure of Embodiment 4 and Embodiment 5 of the position detecting device of the present invention
  • FIG. 17 is a code obtained when Embodiment 4 of the position detecting device of the present invention corresponds to when the second magnetic steel ring is provided with three magnetic induction elements;
  • FIG. 18 is a position detecting device according to the fourth embodiment of the present invention corresponding to the second magnetic steel ring. The magnetization sequence of the second magnetic steel ring when the magnetic induction elements are;
  • Figure 19 is a layout view of the two magnetic induction elements corresponding to the first magnetic steel ring of the fourth embodiment of the position detecting device of the present invention.
  • Figure 20 is a circuit block diagram of a signal processing device of Embodiment 4 of the position detecting device of the present invention.
  • Figure 21 is an exploded perspective view showing another structure of Embodiment 4 of the position detecting device of the present invention.
  • Figure 22 is a diagram showing the positional relationship between the magnetic flux of the first magnetic steel ring and the position of the magnetic induction element in the fifth embodiment of the position detecting device of the present invention
  • Figure 23 is the magnetizing of the second magnetic steel ring in the fifth embodiment of the position detecting device of the present invention. Algorithm flow chart of magnetic sequence;
  • Figure 24 is a view showing the positional relationship between the magnetic flux of the second magnetic steel ring and the position of the magnetic induction element in the fifth embodiment of the position detecting device of the present invention
  • Figure 25 is a magnetic induction of the second magnetic steel ring according to the fifth embodiment of the position detecting device of the present invention. Distribution of components and magnetically permeable rings and stators. detailed description
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 2 is a schematic view showing the overall structure of an electric sewing machine according to a first embodiment of the present invention.
  • the electric sewing machine has a main shaft 2, a bottom shaft 3, and a timing belt 4 between the main shaft 2 and the bottom shaft 3, like the conventional sewing machine.
  • the transmission components are connected, and the servo motor 9a is connected to the main shaft 2 via a coupling 6a.
  • the difference from the existing motor is that the bottom shaft 3 is driven by a servo motor 9b, and the servo motor 9b is connected to the bottom shaft 3 via the coupling 6b, thus constituting a two-motor sewing machine.
  • the servo motor 9a and the servo controller 11a are connected via a cable 12a including a three-phase power line and a signal line of the position detecting module, and the servo controller 11a controls the operation of the servo motor 9a.
  • the servo motor 9b is connected to the servo controller l ib via a cable 12b, which includes a three-phase power line and an encoder signal line, and the servo controller l ib controls the operation of the servo motor 9b.
  • the servo controller 11a and the servo controller l ib are connected by a data line 13 for communication, and the synchronization between the two is maintained, so that the servo motor 9a and the servo motor 9b are always kept in synchronization.
  • the timing belt 4 no longer functions as a power transmission from the main shaft 2 to the bottom shaft 3, but rotates with the rotation of the main shaft 2 and the bottom shaft 3, and the reason for retaining the timing belt is that during sewing, sometimes it is necessary Turn the spindle 2 manually to operate the sewing machine.
  • FIG. 3 is a block diagram of the servo control of the first embodiment.
  • the two-motor sewing machine consists of two AC servo systems, and the servo controllers of the two AC servo systems are connected by data lines for data communication.
  • the AC servo system consists of a servo controller, an AC servo motor, and a position detecting device.
  • the servo controller 11a receives the setting command, obtains the angle command 1 according to the setting command, and inputs the mechanical ring of the servo controller 11a, and the servo controller 11a calculates the angle command 2 according to the angle command 1, and the angle command 2 is It is transmitted to the servo controller l ib through the data line as an input to the mechanical ring of the servo controller 1 ib.
  • the angle command 1 and the angle command 2 are both given by the servo controller 11a, and the two AC servo controller angle commands are synchronized, and the servo controller 11a needs to calculate the angle command 1 and the timing belt.
  • the angle command 2 required for the synchronous rotation of the spindle 2 and the bottom shaft 3 is calculated.
  • the AC servo controllers l la, l ib respectively perform position control on the two AC servo motors, with high control precision and fast response. Thereby achieving synchronous control of the two-motor sewing machine.
  • the control module in each servo controller is implemented as an MCU, wherein the MCU has a CPU, an A/D conversion module, a synchronous communication port, and a PWM signal generation module, and the A/D conversion module will The analog signal input from the current sensor to the MCU is converted into a digital signal to obtain current feedback.
  • the position detection module transmits the AC servo motor angular position information to the MCU through the synchronization port communication.
  • the servo controller receives the input angle command as an input to the mechanical ring.
  • the CPU in the MCU runs the control program based on current feedback and angle feedback.
  • the control program mainly includes a mechanical ring and a current loop.
  • the mechanical loop calculates the current command according to the angle command and the angle feedback.
  • the current loop calculates the three-phase voltage duty cycle according to the current command and the current feedback.
  • the PWM signal generation module generates a PWM signal based on the three-phase voltage duty cycle and transmits it to the IPM. Based on the PWM signal, the IPM generates a three-phase voltage to the AC servo motor.
  • the second angle command is calculated according to the first angle command and the gear ratio between the spindle and the bottom shaft, and is sent to the servo controller in the second system.
  • the servo controller receives the second angle command sent by the servo controller in the first system
  • the CPU in the MCU runs the control program based on current feedback and angle feedback. Since the internal structure of the servo controller in the second system is the same as that of the servo system in the first system, it will not be repeated here.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 4 is a schematic view of the overall structure of the electric sewing machine according to the second embodiment of the present invention.
  • the servo motor is integrated with the servo controller for controlling its operation.
  • the transmission path of the position detecting device signal is shortened, and signal interference is reduced, thereby improving the reliability of the control.
  • the signal processing method based on the position detecting device of the present embodiment is the same as that of the first embodiment.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 5 is a schematic view showing the overall structure of the electric sewing machine according to the third embodiment of the present invention.
  • most of the structures are the same as those in the first embodiment, and the same structures are not described herein again. The difference is that in this embodiment, two servo motors are operated using a single controller.
  • Fig. 6 is a block diagram showing the servo control of the electric sewing machine of the third embodiment of the present invention.
  • the controller includes an MCU and two IPMs (Intelligent Power Modules). Inside the MCU, there are two motor running control modules, namely a mechanical ring, a current loop and a PWM signal generating module. Based on the feedback current and angle signals, the MCU runs the control program to generate two sets of PWM signals to control the two IPMs. The two IPMs will separately add three-phase voltages to the two AC servo motors to achieve simultaneous control of the two AC servo motors.
  • IPMs Intelligent Power Modules
  • the method of calculating the angle command 2 based on the angle command 1 is the same as that of the first embodiment.
  • the position detecting device directly outputs the angle signal of the motor. Therefore, the servo controller can receive the angle signal through the synchronization port. In the present invention, the position detecting device can also output only the voltage signal. The processing of the voltage signal can be performed by the MCU in the servo controller. According to the above three embodiments of the present invention, the position detecting device of the present invention and its signal processing device and method are described in detail below.
  • Fig. 7 is an exploded perspective view showing a position detecting device of the present invention.
  • the position detecting device of the present invention is composed of a magnetic induction element board 102, a magnetic steel ring 103, a magnetic conductive ring 104, and a skeleton 105.
  • the magnetic induction element board 102 is composed of a PCB board and a magnetic induction element 106, and the magnetic induction element board 102 A connector 108 is also mounted thereon.
  • the magnet ring 103 is mounted on the shaft 107, and the magnetic ring 104 is fixed to the bobbin 105, and the bobbin 105 is fixed at a suitable position of the motor.
  • the magnetic steel ring 103 rotates to generate a sinusoidal magnetic field
  • the magnetic conductive ring 104 acts as a collecting magnet
  • the magnetic flux generated by the magnetic steel ring 103 passes through the magnetic conductive ring 104.
  • the magnetic induction element 106 fixed on the PCB converts the magnetic field passing through the magnetically conductive ring 104 into a voltage signal.
  • the number is output and the voltage signal directly enters the main control board chip.
  • the voltage signal is processed by the chip on the main control board, and finally the angular displacement is obtained.
  • the magnetic flux ring 104 is disposed on the skeleton forming mold, and is fixed to the skeleton 105 when the skeleton is integrally formed.
  • Fig. 8 is a perspective view showing the entire position detecting device of the present invention mounted on a shaft.
  • the magnetic flux ring 104 is mounted on the skeleton 105
  • the magnetic steel ring 103 is mounted on the shaft 107
  • the magnetic flux ring 104 and the magnetic steel ring 103 are relatively rotatable.
  • the present invention can reduce the size of the position detecting device by rationally arranging the layout of the components.
  • FIG. 9A to 9D illustrate, as an example, a magnetically permeable ring composed of a 1/4 arc segment and a 3/4 arc segment, and the chamfering design of the magnetic permeable ring of the present invention is illustrated.
  • the magnetic flux ring is composed of two or more segments of the same radius and the same center, and the magnetic ring shown in FIG. 9A has no chamfer design, and the arc segments shown in FIG. 9B to FIG. 9D.
  • the end portion is chamfered, and the chamfer is a chamfer formed by cutting in the axial direction (Fig. 9B) or the radial direction (Fig. 9C) or simultaneously in the axial direction and the radial direction (Fig.
  • 151, 154 represents the shaft.
  • 152, 153 represent the radial section. a gap is left between two adjacent arc segments, and a magnetic induction element is placed in the gap. When the magnetic steel ring and the magnetic flux ring rotate relative to each other, the magnetic induction element converts the sensed magnetic signal into a voltage signal, and This voltage signal is transmitted to the corresponding controller.
  • the enthalpy is relatively small, so that the heat generation due to the alternating magnetic field can be reduced.
  • the magnetic field strength of the end portion can be increased, so that the output signal of the magnetic induction element is enhanced.
  • Such a signal pickup structure has a simple manufacturing process, low signal noise picked up, low production cost, high reliability, and small size.
  • a position detecting device provided with two magnetic sensing elements is provided.
  • Fig. 10 is a view showing the configuration of a first embodiment of the position detecting device of the present invention.
  • the magnetic flux ring is composed of two arc segments of the same radius, which are respectively a quarter arc segment 111 and a 3/4 arc segment 112, and the positions ⁇ and ⁇ are at an angle of 90° and are slit.
  • the two magnetic inductive elements H la and H 2a respectively indicated at 109 and 110 are placed in the slits at A and B.
  • This structure is advantageous for reducing magnetic field leakage, increasing the magnetic flux induced by the magnetic induction element, and being induced by the magnetic surface.
  • Magnetic flux is the integral of the magnetic field, so there is a use to reduce the signal noise to the higher harmonics in the signal.
  • a magnetically permeable ring composed of two arc segments 111, 112 of the same radius is mounted concentrically with the magnetic steel ring 113.
  • FIG. 11 is a block diagram of a signal processing apparatus according to a first embodiment of the present invention.
  • the output signals of the magnetic sensing elements H la and H 2a are connected to the analog input port of the built-in A/D converter of the MCU, and the output signal multiplier is obtained after analog-to-digital conversion.
  • 20a, 21a the output signal K of the coefficient aligner 5a is connected to the input terminals of the multipliers 20a, 21a, the output signals of the multipliers 20a, 21a are coupled to the input of the device 3a, and the synthesizer 3a outputs the signals D and R, the coefficient aligner 5a receives the signal R output from the synthesizer 3a and the signal R from the standard state of the corresponding signal R of the memory 41a.
  • the signal K is obtained by calculation, and the signals of the magnetic induction elements H la and H 2a are multiplied by the signal K to perform temperature compensation, thereby eliminating the influence of temperature on the signal.
  • An angle storage table is stored in the memory 40a, and the MCU selects an angle opposite thereto in the angle storage table as the offset angle according to the signal D.
  • Embodiment 2 of the position detecting device of the present invention a position detecting device provided with four magnetic induction elements is provided.
  • Fig. 12 is a view showing the configuration of a second embodiment of the position detecting device of the present invention.
  • the magnetic flux ring is composed of four segments of the same radius of 1/4 arc segments 118, 119, 120 and 121, and the four positions A, B, C, and D are sequentially separated by 90 degrees, and both have
  • the four magnetic sensing elements H lb , H 2b , H 3b , H 4b denoted by 114, 115, 116 and 117, respectively, are placed at slits 8, B, C and D, respectively, and this structure is advantageous for reducing magnetic field leakage and improving
  • the magnetic flux induced by the magnetic sensing element, and because the magnetic flux induced by the magnetic surface is the integral of the magnetic field, there is a use of reducing the signal noise to neutralize the higher harmonics in the signal.
  • the magnetic conductive ring and the magnetic steel ring 122 composed of four segments of the same radius 1/4 arc segments 118, 119, 120 and 121 are concentrically
  • Figure 13 is a block diagram of a signal processing apparatus of a second embodiment of the present invention.
  • the signal processing device and the processing method are similar to those of the first embodiment, except that since there are four magnetic sensing elements that are 90 degrees apart from each other in the second embodiment, a subtractor, that is, a digital differential module is added to the signal processing device. The temperature and zero drift are suppressed by the subtractor module, thereby improving the data precision, and finally the signal output to the synthesizer is still two, and the processing procedure and method are the same as in the first embodiment. Therefore, it will not be described here.
  • a position detecting device provided with three magnetic sensing elements is provided.
  • Fig. 14 is a view showing the configuration of a position detecting device according to a third embodiment of the present invention.
  • the magnetic flux ring is composed of three 1/3 arc segments 126, 127 and 128 of the same radius, and the three positions A, B and C are 120° apart from each other, and a slit is opened, respectively, 123.
  • the three sensors H lc , H 2c , and H 3c indicated by 124 and 125 are respectively placed at the slits.
  • This structure is advantageous for reducing the magnetic field leakage, increasing the magnetic flux induced by the sensor, and since the magnetic flux induced by the sensor surface is the integral of the magnetic field, Therefore, there is a use of reducing signal noise to neutralize higher harmonics in the signal.
  • the magnetic conductive ring and the magnetic steel ring 129 composed of three segments of the 1/3 arc segments 126, 127 and 128 of the same radius are concentrically mounted.
  • Figure 15 is a block diagram of a signal processing device of a third embodiment of the present invention.
  • the synthesizer is different from the first embodiment in processing signals, and the rest is the same as the first embodiment. Here, only how the synthesizer processes the signal is explained.
  • the processing of the signal that is, the processing principle of the synthesizer 3c for the signal is: first, the coincidence bits of the three signals are judged, and the magnitudes of the values of the signals conforming to the same bit are compared, and the value is small for output.
  • Signal D the structure of signal D is ⁇ the coincidence of the first signal, the coincidence of the second signal, the coincidence of the third signal, the value of the signal of the smaller value ⁇ .
  • _0 indicates the value bit of the data X (the absolute value of the data), that is, the remaining data bits are removed from the sign bit.
  • Fig. 16 is an exploded perspective view showing the fourth embodiment of the position detecting device of the present invention.
  • the position detecting device includes a rotor and a stator that surrounds the rotor, the rotor includes a first magnetic steel ring 201a and a second magnetic steel ring 201b, and a first magnetic conductive ring 205a and a second magnetic conductive ring 205b, the first magnetic steel ring
  • the 201a and the second magnetic steel ring 201b are respectively fixed to the motor shaft 200, wherein the stator is a bracket 203.
  • the first magnetic conductive ring 205a and the second magnetic conductive ring 205b are respectively formed by a plurality of arcs of the same center and the same radius, and a gap is left between the adjacent two arc segments, corresponding to two magnetic steel rings.
  • the magnetic sensing elements 204 are respectively disposed within the gap.
  • the magnetic pole magnetization sequence causes the n magnetic induction original outputs to be in the form of a Gray code.
  • the polarity of the magnetic pole is that the first digit of the Gray code is "0" corresponding to the "N/S" pole, and the first digit is "1" corresponding to the "S/N” pole.
  • the first magnet ring 201a has a uniform magnetization of g (the value of g is equal to the total number of poles in the second magnet ring) and the opposite pole (the N pole and the S pole are alternately arranged), when the total number of magnetic poles in the second magnet ring is At 6 o'clock, the number of pole pairs of the first magnet ring 201a is six pairs.
  • m magnetic sensing elements such as two, are provided, and the magnetic sensing element transforms the sensed magnetic signal when the rotor rotates relative to the stator. It is a voltage signal and outputs the voltage signal to a signal processing device.
  • the mechanical angle corresponding to any "NS" is 360° / g (g is the number of "NS"), assuming that the rotor rotates at the moment. The angle is within the " ⁇ 3 ⁇ 4 signal period, then the angular displacement can be considered to consist of two parts: 1.
  • the relative offset in the first signal period, the magnetic induction element and H 2 induce the magnetic field of the first magnetic steel ring to determine The offset of this "NS" signal period (value greater than 0 is less than 360 ° / g); 2.
  • the absolute offset of the first position of the "signal period", the magnetic field of the second magnet ring is sensed by the sensor to determine the time Which "NS" the rotor is in is actually obtained.
  • the signal processing device based on the position detecting device and the principle includes: an A/D conversion module, a relative offset calculation module, an absolute offset calculation module, and a storage module. The signal processing flow is shown in Figure 8-11.
  • A/D conversion is performed on the voltage signal sent from the first magnetic steel ring and the second magnetic steel ring in the position detecting device, and the analog signal is converted into a digital signal;
  • the displacement calculation module performs an angle solution on the first voltage signal corresponding to the first magnetic steel ring sent by the position detecting device, and calculates a relative offset of the signal corresponding to the first magnetic steel ring in the signal period;
  • the absolute offset calculation module performs an angle solution on the first voltage signal corresponding to the second magnetic steel ring sent by the position detecting device to determine an absolute offset of the first position of the signal period where the first voltage signal is located;
  • a synthesizing and outputting module such as an adder, for adding the relative offset and the absolute offset to synthesize a rotation angle represented by the first voltage signal at the moment.
  • the above scheme is a scheme in the case where the voltage signal is very good, but if the signal is not good, a signal amplification module which can be added on the basis of the foregoing scheme, such as an amplifier, is used for A/D in the A/D conversion module.
  • a signal amplification module which can be added on the basis of the foregoing scheme, such as an amplifier, is used for A/D in the A/D conversion module.
  • the voltage signal from the position detecting device is amplified.
  • the process of temperature compensation is also included.
  • the specific process of temperature compensation is to perform coefficient correction first, and then multiply the output signal of the A/D converter and the coefficient corrected output by a multiplier.
  • the specific way to perform temperature compensation is not introduced here.
  • the relative offset calculation module includes a signal synthesis unit, a first angle acquisition unit, and a temperature compensation unit.
  • the signal synthesis unit processes the A/D converted voltage signal sent by the different position detection devices to obtain a reference signal D.
  • the first angle acquiring unit selects an angle opposite to the first standard angle table as an offset angle; wherein, before obtaining the reference signal D, the signal input to the signal synthesizing unit is firstly temperature
  • the compensation unit performs temperature compensation, and then processes the temperature-compensated signal to obtain a signal D. The processing described here will be described in detail later.
  • the absolute offset calculation module includes a second synthesizer and the second angle acquisition unit, configured to synthesize the second voltage signal sent by the position detecting device corresponding to the second magnetic steel ring to obtain a shaft rotation signal period a number, thereby determining an absolute offset of the first position of the signal period at which the first voltage signal is located, the specific implementation being the second voltage signal sent by the second synthesizer to the position detecting device corresponding to the second magnetic steel ring Synthesizing, a signal E is obtained; the second angle acquiring unit selects an angle opposite thereto in the second standard angle table according to the signal E as an absolute offset of the first position of the signal period in which the first voltage signal is located.
  • the n magnetic induction original outputs are in the form of a Gray code.
  • the polarity of the magnetic pole is that the first digit of the Gray code is "0" corresponding to the "N/S" pole, and the first digit is "1" corresponding to the "S/N” pole. Therefore, in the present embodiment, since n is 3, the code shown in Fig. 17 is obtained, and 6 codes are obtained, that is, 6 poles are obtained, and the magnetization sequence is as shown in Fig. 18, and the magnetic induction elements are uniformly distributed around the periphery. reading.
  • the first magnet ring Since the total number of magnetic poles of the second magnet ring is 6, the first magnet ring is uniformly magnetized to 6 poles, and the arrangement and magnetic sequence of the two magnetic sensing elements are as shown in Fig. 19.
  • Fig. 20 is a circuit block diagram showing a signal processing apparatus in the case where two magnetic induction elements are provided for the first magnetic steel ring and three magnetic induction elements are provided for the second magnetic steel ring in the embodiment.
  • the output signals of the sensors l_la and l_2a are amplified by the amplifiers 2_1a, 2_2a, and then connected to the A/D converters 3_la, 3_2a, and the output signals are multiplied by the analog-to-digital converters 4_la, 5_la, and the coefficient corrector 10_la outputs the signal multiplier
  • the input terminals of 4_la, 5_la, the output signals A, B of the multipliers 4_la, 5_la are connected to the input ends of the first synthesizer 6_la, and the first synthesizer 6_la processes the signals A, B to obtain signals D, R, according to the signal D
  • An angle opposite thereto is selected from the standard angle table stored in the memory 8_la as an offset angle.
  • the output signal R of the first synthesizer 6_la is supplied to the coefficient aligner 10_la, and the coefficient aligner 10_la pairs the signal R and the signal R from the memory 9_la according to the signal D.
  • a comparison is made to obtain a signal K which is used as the other input of the multipliers 4_la, 5_la, multiplied by the signals C1, C2 output from the amplifiers 2_la, 2_2a to obtain the signals A, B as inputs to the first synthesizer 6_la.
  • the output signals of the sensors l_3a, l_4a, ... l_n are amplified by the amplifiers 2_3a, 2_4a, ...
  • the device 7_la performs synthesis to obtain a signal E; according to the signal E, a relative angle between the second standard angle table in the memory 111_la is selected as the absolute offset of the first position of the signal period in which the first voltage signal is located, And the measured absolute angular displacement output is obtained by the adder 12_la.
  • the function of the second synthesizer 7_la is to synthesize the signals of the sensors l_3a, l_4a, ... l_na to obtain which "N-S" signal period the rotor is in at this time.
  • E ⁇ C3_0; C4_0; Cn_0 ⁇ .
  • the processing of the signal by the first synthesizer 6 is: comparing the magnitudes of the values of the two signals, the signal having a small value for outputting 0, the structure of the signal D is ⁇ the coincidence of the first signal, and the second signal The coincidence bit, the numerical value of the signal of a smaller value ⁇ . details as follows:
  • the signal K is generally passed by the signal R. And R is divided.
  • first and second standard angle tables two tables are stored in the memory, each table corresponding to a series of codes, each code corresponding to an angle.
  • the table is obtained by calibration, and the calibration method is: using the detecting device of the embodiment and a high-precision position detecting module, the signal output by the magnetic sensing element in the embodiment and the angle output by the high-precision position detecting module are performed.
  • a table of the relationship between the signal output and the angle of the magnetic induction element is established. That is, a first standard angle table is stored corresponding to the signal D, and each signal D represents a relative offset.
  • signal E a second standard angle table is stored, and each signal E represents an absolute offset.
  • Fig. 21 is an exploded perspective view showing another configuration of the position detecting device of the fourth embodiment of the position detecting device of the present invention.
  • the position detecting device includes a rotor and a stator that surrounds the rotor.
  • the rotor includes a first magnetic steel ring 201a and a second magnetic steel ring 201b.
  • the first magnetic steel ring 201a and the second magnetic steel ring 201b are respectively fixed to the motor shaft 200.
  • the stator is a bracket 203.
  • the magnetic sensing element 204 is directly attached to the inner surface of the bracket 203.
  • the structure is basically the same as that of Embodiment 4, and the same points are not described again, except that the first magnetic field is
  • FIG. 22 is a view showing a positional relationship between a magnetic flux sequence of a first magnetic steel ring and a magnetic induction element according to a fifth embodiment of the position detecting device of the present invention
  • FIG. 24 is a view showing a fifth embodiment of the detecting device. The magnetic flux sequence of the two magnetic steel rings and the positional relationship with the magnetic induction elements.
  • the angle between the adjacent two magnetic sensing elements 308 corresponding to the first magnetic steel ring 201a is 90°/8.
  • the code set has been entered, it is checked whether the current code is "0... ... 0", yes, then, otherwise, the current coded direct forward code end bit is 0 to 1; then it is checked whether the current code has entered the code set, if the code set is not entered, the current code is entered into the code set to continue the above steps. If the code set has been entered, check if the current code is "0... 0", and then proceed to the following procedure. Among them, 0 magnetization is "N/S”, and 1 magnetization is "S/N". Thus, the magnetization structure diagram of the magnetic steel ring 201b shown in Fig. 24 and the arrangement order of 3 ⁇ 4 , H 4 and are obtained.
  • the respective magnetization sequences and algorithm flows are similar to those of Figs. 23 and 24, respectively, and a detailed description thereof will be omitted herein.
  • the above position detecting device adopts a magnetoelectric type. Due to the component placement mode and the signal processing mode, the magnetic field distribution is uniform, the leakage is small, the original signal quality is good, the amplitude is large, the signal noise is small, and the detection precision is improved, and in the signal processing, The temperature and zero drift caused by the analog device are reduced, and the magnetic sensing element can be directly fixed on the circuit board without the need for an adapter, which improves the reliability and stability of the circuit.
  • the present invention enables the present invention to achieve synchronous control more accurately by using the above-described position detecting device with higher detection accuracy, thereby reducing the vibration and noise of the sewing machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Sewing Machines And Sewing (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

电动缝纫机
技术领域
本发明涉及一种缝纫机, 尤其是一种改进了驱动结构的电动缝纫机。 背景技术
工业用缝纫机一般采用电动机驱动, 所用的电动机有异步电机、 直流无刷电机和交流伺服电 机等。
目前的电动缝纫机基本采用单电机驱动, 电动机通过皮带或联轴器与主轴连接驱动主轴, 主 轴通过同步带或者齿轮传动轴等与底轴连接, 带动底轴转动。
如图 1所示为一种典型的缝纫机结构示意图。 主要驱动结构包括主轴 2、 电动机通过联轴器 带动主轴 2旋转, 主轴 2通过同步带 4带动底轴 3旋转, 通过主轴 2和底轴 3带动其他的机构运 动, 从而完成缝纫功能。
由于主轴 2需通过同步带 4带动底轴 3旋转, 同步带 4的受力大、 变形大, 容易磨损。 主轴 2、 底轴 3以及连接在主轴 2和底轴 3上的机构连成一个整体, 使缝纫机的振动大、 噪声大, 振动 也会影响缝纫机的缝纫质量。 随着缝纫机高速、 高质量的要求不断提高, 以及环保的需要, 振动 和噪声问题急需解决。
专利 200810006028.0、 200810005210.4和 95108467.4针对缝纫机的振动和噪声对缝纫机进行 了改进, 有一定的效果。 然而, 由于缝纫机本身结构的限制, 主轴 2必然通过传动机构带动底轴 3旋转, 使整个缝纫机耦合为一个整体, 正是由于机构耦合、 关联大, 使得缝纫机振动和噪声大, 这是缝纫机振动和噪声的根源。
基于上述现有技术中电动式缝纫机存在的缺陷, 有必要提供一种磨损更小, 缝纫质量更高的 缝纫机以满足工业生产和生活的需要。 发明内容
本发明要解决的技术问题在于, 针对现有技术的不足, 提供一种电动缝纫机, 振动小、 噪声 小、 缝纫质量更高。
为解决上述的技术问题, 本发明提供一种电机缝纫机, 包括机头, 在所述机头上包括主轴和 底轴, 还包括两个分别驱动主轴和底轴的电动机及控制器, 通过控制器控制两个电动机同步工作。
优选地, 在上述的电动缝纫机中, 所述控制器也可为两个, 分别用于控制两个电动机工作, 并且, 所述两个控制器通过数据线进行同步通讯。
优选地, 所述电机与用于控制其工作的控制器可为一体设置。
另外, 在上述的电动缝纫集中, 在每一电动机的轴上还包括位置检测装置, 用于检测电机轴 的位置, 并将该位置信息传送给相应的控制器, 用于电机位置的精确控制。
优选地, 所述位置检测装置包括磁钢环、 导磁环和磁感应元件, 其特征在于, 所述导磁环由 两段或多段同半径、 同圆心的弧段构成, 相邻两弧段留有缝隙, 所述磁感应元件置于该缝隙内, 当磁钢环与导磁环发生相对旋转运动时, 所述磁感应元件将感测到的磁信号转换为电压信号, 并 将该电压信号传输给相应的信号处理装置。
优选地, 所述的导磁环由两段同半径、 同圆心的弧段构成, 分别为 1/4弧段和 3/4弧段, 对应 的磁感应元件为 2个; 或者, 所述的导磁环由三段同半径的弧段构成, 分别为 1/3弧段, 对应的 磁感应元件为 3个; 或者, 所述的导磁环由四段同半径的弧段构成, 分别为 1/4弧段, 对应的磁 感应元件为 4个; 或者, 所述的导磁环由六段同半径的弧段构成, 分别为 1/6弧段, 对应的磁感 应元件为 6个。
优选地, 所述位置检测装置包括转子和将转子套在内部的定子, 所述转子包括第一磁钢环、 第二磁钢环;
其中, 所述第一磁钢环和第二磁钢环可以分别固定在一电机轴上;
在所述定子上,对应于第二磁钢环, 以第二磁钢环的中心为圆心的同一圆周上设有 n (n=0, 1, 2…! 1)个均匀分布的磁感应元件,所述第二磁钢环的磁极磁化顺序使得 n个磁感元件输出呈格雷码 格式, 相邻两个输出只有一位变化。
另外, 在所述定子上, 对应于第一磁钢环, 以第一磁钢环的中心为圆心的同一圆周上设有有 m(m为 2或 3的整数倍)个呈一定角度分布的磁感应元件,所述第一磁钢环的磁极总对数与第二磁 钢环的磁极总数相等, 并且相邻两极的极性相反;
当转子相对于定子发生相对旋转运动时,所述磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号输出给一信号处理装置。
优选地, 在定子上对应于第一磁钢环的相邻两个磁感应元件之间的夹角, 当 m为 2或 4时, 该夹角为 90° /g; 当 m为 3时, 该夹角为 120° /g; 当 m为 6时, 该夹角为 60° /g, 其中, g为 第二磁钢环的磁极总数。
优选地, 所述位置检测装置也包括转子和将转子套在内部的定子, 所述转子包括第一磁钢环、 第二磁钢环;
其中, 所述第一磁钢环和第二磁钢环分别固定在电机轴上, 所述第一磁钢环被均匀地磁化为 N对磁极, N<=2n(n=0, 1, 2…! 1)对磁极, 并且相邻两极的极性相反; 所述第二磁钢环的磁极总数 为 N, 其磁序按照磁序算法确定;
优选地, 在所述定子上, 对应于第一磁钢环, 以第一磁钢环的中心为圆心的同一圆周上设有 m(m为 2或 3的整数倍)个呈一定角度分布的磁感应元件; 对应于第二磁钢环, 以第二磁钢环的中 心为圆心的同一圆周上设有 n(n=0, 1, 2…! 1)个呈一定角度分布的磁感应元件;
当所述转子相对于定子发生相对旋转运动时, 所述磁感应元件将感测到的磁信号转变为电压 信号, 并将该电压信号输出给一信号处理装置。
进一步, 在定子上对应于第二磁钢环的相邻两个磁感应元件之间的夹角为 360° /N。
更进一步地,在定子上对应于第一磁钢环相邻两个磁感应元件之间的夹角,当 m为 2或 4时, 每相邻两个磁感应元件之间的夹角为 90°/N, 当 m为 3时, 每相邻两个磁感应元件之间的夹角为 120 N; 当 m为 6时, 每相邻两个磁感应元件之间的夹角为 60°/N。
另外, 所述位置检测装置还包括两个内置于定子内表面、 分别与第一磁钢环、 第一磁钢环对 应的导磁环, 每一所述导磁环是由多个同圆心、 同半径的弧段构成, 相邻两弧段留有空隙, 对应 于两个磁钢环的磁感应元件分别设在该空隙内。
在本发明中, 在所述电动缝纫机中, 所述的导磁环的弧段端部设有倒角。
优选地, 所述倒角为沿轴向或径向或同时沿轴向、 径向切削而形成的倒角。
另外, 在所述电动缝纫机中, 所述控制器包括一控制模块, 该控制模块包括第一、 二电机控 制子模块和同步控制子模块; 优选地, 所述第一、 二电机控制子模块分别用于控制两个电动机工作, 所述同步信号控制子 模块用于根据接收到的用户的角度指令, 计算使两个电动机同步工作的用于发送给第一或 /和二电 机控制子模块的角度指令。
优选地, 所述第一、 二电机控制子模块分别包括数据处理单元、 电机驱动单元和电流传感器, 所述数据处理单元接收用户输入的指令信号或同步信号控制子模块发送的指令信息、 电流传感器 采集的电机输入电流信号和位置检测模块输出的电机位置信号, 经过数据处理, 输出控制信号给 所述电机驱动单元, 所述电机驱动单元根据所述的控制信号输出合适的电压给电机, 从而实现对 电机的精确控制。
优选地, 所述数据处理单元包括机械环控制子单元、 电流环控制子单元、 PWM控制信号产生 子单元和信号处理子单元;
优选地, 所述传感器信号处理子单元接收所述电流传感器检测到的电流信号, 经过 A/D采样 后输出给所述的电流环控制子单元;
优选地, 所述机械环控制子单元根据接收用户输入的指令信号或同步信号计算子模块发送的 指令信息和位置检测模块发送的电机轴的转动角度, 经过运算得到电流指令, 并输出给所述的电 流环控制子单元;
所述电流环控制子单元根据接收到的电流指令和电流传感器输出的电流信号, 经过运算得到 三相电压的占空比控制信号, 并输出给所述的 PWM控制信号产生子单元;
所述 PWM控制信号产生子单元根据接收到的三相电压的占空比控制信号, 生成具有一定输 出顺序的六路 PWM信号, 分别作用于电机驱动单元。
优选地, 在上述电动缝纫机中, 所述电机驱动单元包括六个功率开关管, 所述开关管每两个 串联成一组, 三组并联连接在直流供电线路之间, 每一开关管的控制端受 PWM控制信号产生子 单元输出的 PWM信号的控制, 每一组中的两个开关管分时导通。
优选地, 在上述信号处理单元中, 所述信号处理子单元包括位置检测模块的信号处理电路, 用于根据所述位置检测模块的电压信号得到电机轴的转动角度, 具体包括: A/D转换电路, 对位 置检测模块中磁感应元件发送来的电压信号进行 A/D转换, 将模拟信号转换为数字信号; 合成电 路, 对位置检测模块发送来的经过 A/D转换的多个电压信号进行取舍, 得到一基准信号 D ; 角度 获取电路, 根据该基准信号 D, 在一角度存储表中选择一与其相对的角度作为偏移角度 ; 和存 储电路, 用于存储处理过程中的数据和角度存储表。
优选地, 在 A/D转换电路和合成电路之间还包括温度补偿电路, 用于消除温度对位置检测装 置发送来的电压信号的影响。 所述温度补偿电路包括多个乘法器, 每一所述乘法器将经过 A/D转 换的、位置检测装置发送来的一个电压信号与输出信号 K相乘,将相乘后的结果输出给合成电路。 如果位置检测装置发送来的一个电压信号为 2或 3的倍数, 则在所述温度补偿模块之前还包括一 差动放大电路。
优选地, 在上述信号处理单元中还包括一系数矫正电路, 其根据合成模块的输出进行运算, 得到一输出信号1^。
另外, 在上述信号处理单元中, 所述信号处理子单元也包括位置检测模块的信号处理电路, 用于根据所述位置检测模块的电压信号得到电机轴的转动角度, 具体包括: A/D转换电路, 对位 置检测装置发送来的电压信号进行 A/D转换, 将模拟信号转换为数字信号; 相对偏移角度 计算 电路, 用于计算位置检测装置中对应于第一磁钢环的磁感应元件发送来的第一电压信号在所处信 号周期内的相对偏移量 ; 绝对偏移量 计算电路, 根据位置检测装置中对应于第二磁钢环的磁 感应元件发送来的第二电压信号, 通过计算来确定第一电压信号所处的信号周期首位置的绝对偏 移量 ; 角度合成及输出电路, 用于将上述相对偏移量 和绝对偏移量 相加, 合成所述第一电 压信号所代表的在该时刻的旋转角度 ; 存储电路, 用于存储处理过程中的数据。
优选地,在信号处理模块中,还包括信号放大模块,用于在 A/D转换模块进行 A/D转换之前, 对来自于位置检测装置的电压信号进行放大。
优选地, 所述绝对偏移量 计算电路包括第二合成单元和第二角度获取子单元, 所述第二合 成单元用于对对应于第二磁钢环的位置检测装置发送来的第二电压信号进行译码,得到一信号 E; 所述第二角度获取子单元根据该信号 E在第二角度存储表中选择一与其相对的角度作为第一电压 信号所处的信号周期首位置的绝对偏移量 。
本申请的优点
1. 振动小、 噪声小。 缝纫机采用双电机驱动, 主轴和底轴分别用一个电机驱动, 并且两个电 机始终保持同步运行, 这样降低了缝纫机的机构耦合, 将缝纫机分为上下两部分, 主轴和底轴不 再靠同步带等的传动保持同步旋转, 而是通过控制器, 控制两台电机保持同步运行, 从而使主轴 和底轴同步旋转。 这样, 主轴以及主轴上连接的机构为一个独立的部分, 底轴以及底轴上连接的 机构为一个独立的部分, 两部分之间没有动力传动, 主轴和底轴的振动不会相互影响, 降低了振 动和噪声。
2. 连接主轴和底轴的同步带等传动部件受力小、 变形小, 不易磨损。 同步带不再起主轴和底 轴间动力传递的作用, 因此受力小、 变形小, 不易磨损。 保留同步带的原因是: 在缝纫的时候, 有时候需要手动转动主轴使缝纫机工作, 因此需要保留同步带, 但只有在手动时才会起到传递力 的作用。
3. 缝纫质量高。 现有缝纫机主轴和底轴动力传动部件存在变形, 同时振动较大, 影响缝纫质 量。 本专利主轴和底轴分别通过两台电机带动, 始终保持同步运行, 同时振动小, 缝纫质量高。
4. 故障率低。 由于振动小, 同步带等传动部件不易磨损, 因此故障率低。 附图说明
图 1为一种典型的缝纫机机头的结构示意图;
图 2为本发明中第一实施例的电动缝纫机机头的总体结构示意图;
图 3为本发明中第一实施例的电动缝纫机的伺服控制框图;
图 4为本发明中第二实施例的电动缝纫机机头的总体结构示意图;
图 5为本发明中第三实施例的电动缝纫机的机头总体结构示意图;
图 6为本发明中第三实施例的电动缝纫机的伺服控制框图;
图 7为本发明一种位置检测装置的的立体分解图;
图 8为本发明一种位置检测装置的安装于轴上的立体图;
图 9 A-图 9D为本发明一种位置检测装置的导磁环的倒角设计图;
图 10为本发明位置检测装置实施例 1的结构示意图;
图 11为本发明位置检测装置实施例 1的信号处理装置的框图;
图 12为本发明位置检测装置实施例 2的位置检测装置的结构示意图;
图 13为本发明位置检测装置实施例 2的信号处理装置的框图; 图 14为本发明位置检测装置实施例 3的结构示意图;
图 15为本发明位置检测装置实施例 3的信号处理装置的框图;
图 16为本发明位置检测装置实施例 4和实施例 5的立体结构分解图;
图 17为本发明位置检测装置实施例 4对应于第二磁钢环设有 3个磁感应元件时得到的编码; 图 18为本发明位置检测装置实施例 4对应于第二磁钢环设有 3个磁感应元件时第二磁钢环的 充磁顺序;
图 19为本发明位置检测装置实施例 4的第一磁钢环均匀磁化为 6对极时对应 2个磁感应元件 的布置图;
图 20为本发明位置检测装置实施例 4的信号处理装置的电路框图;
图 21为本发明位置检测装置实施例 4的另一种结构的立体分解图;
图 22为本发明位置检测装置实施例 5的第一磁钢环充磁磁序及与磁感应元件的位置关系图; 图 23为本发明位置检测装置实施例 5中第二磁钢环的充磁磁序的算法流程图;
图 24为本发明位置检测装置实施例 5的第二磁钢环充磁磁序及与磁感应元件的位置关系图; 图 25为本发明位置检测装置实施例 5对应于第二磁钢环的磁感应元件与导磁环、定子的分布 图。 具体实施方式
下面参照附图详细说明本发明的实施例。
实施例一:
参照图 2为本发明中第一实施例的电动缝纫机的总体结构示意图, 所述电动缝纫机与现有缝 纫机一样, 有主轴 2、 底轴 3, 主轴 2与底轴 3之间通过同步带 4等传动部件连接, 伺服电机 9a 通过联轴器 6a与主轴 2相连。 与现有电机不一样的地方在于, 底轴 3由一个伺服电机 9b驱动, 伺服电机 9b通过联轴器 6b与底轴 3相连, 这样构成了双电机缝纫机。伺服电机 9a与伺服控制器 11a之间能过线缆 12a连接, 该线缆包括三相动力线和位置检测模块的信号线, 由伺服控制器 11a 控制伺服电机 9a的运行。 伺服电机 9b与伺服控制器 l ib之间通过线缆 12b连接, 该线缆包括三 相动力线和编码器信号线, 由伺服控制器 l ib控制伺服电机 9b的运行。 伺服控制器 11a和伺服控 制器 l ib之间通过数据线 13连接, 用于通讯, 保持两者之间的同步, 使伺服电机 9a和伺服电机 9b始终保持同步运行。 在本发明中, 同步带 4不再起从主轴 2到底轴 3的动力传递的作用, 只是 随着主轴 2和底轴 3的转动而转动, 保留同步带的原因是在缝纫的时候, 有时候需要手动转动主 轴 2使缝纫机工作。
如图 3所示为本实施例一的伺服控制框图。 双电机缝纫机包含两个交流伺服系统, 两个交流 伺服系统的伺服控制器之间通过数据线连接, 用于数据通讯。 交流伺服系统由伺服控制器、 交流 伺服电机和位置检测装置组成。 伺服控制器 11a接收设定指令, 根据设定指令得到角度指令 1, 作为伺服控制器 11a机械环的输入, 同时伺服控制器 11a根据角度指令 1, 计算出角度指令 2, 并 将该角度指令 2通过数据线传递给伺服控制器 l ib, 作为伺服控制器 l ib机械环的输入。
其中, 角度指令 1和角度指令 2都是由伺服控制器 11a给出, 保证了两个交流伺服控制器角 度指令同步, 伺服控制器 11a需要由角度指令 1和同步带的传动比进行计算, 以计算出主轴 2与 底轴 3同步转动需要的角度指令 2。
然后交流伺服控制器 l la, l ib分别对两个交流伺服电机进行位置控制,控制精度高, 响应快, 从而实现双电机缝纫机同步控制。
在具体实施时,每一伺服控制器中的控制模块实施为一 MCU,其中,该 MCU的内部有 CPU、 A/D转换模块、 同步通讯口和 PWM信号产生模块等, A/D转换模块将电流传感器输入到 MCU的 模拟信号转换为数字信号, 从而得到电流反馈。 在第一个系统中, 位置检测模块将交流伺服电机 角度位置信息通过同步口通讯传递给 MCU。伺服控制器接收输入的角度指令, 将其作为机械环的 输入。 MCU中的 CPU根据电流反馈和角度反馈运行控制程序。 控制程序主要包含机械环和电流 环, 机械环根据角度指令和角度反馈, 计算出电流指令, 电流环根据电流指令和电流反馈, 计算 出三相电压占空比。 PWM信号产生模块根据三相电压占空比,产生 PWM信号,传递给 IPM。 IPM 根据 PWM信号, 产生三相电压给交流伺服电机。 CPU在根据电流反馈和角度反馈运行控制程序 时, 根据第一角度指令和主轴与底轴之间的传动比计算第二角度指令, 并将其发送给第二个系统 中的伺服控制器。
在第二个系统中, 伺服控制器接收第一个系统中的伺服控制器发送来的第二角度指令, 由
MCU中的 CPU根据电流反馈和角度反馈运行控制程序。 由于第二个系统中伺服控制器的内部结 构与第一个系统中的伺服控制器相同, 在此不再重说明。
实施例二:
参见图 4为本发明第二实施例的电动缝纫机的总体结构示意图, 在本实施例中, 大部分结构 与实施例一相同, 相同的结构在此不再赘述。 不同的是, 伺服电机与用于控制其工作的伺服控制 器一体化设置, 通过一体化设置, 缩短了位置检测装置信号的传输路径, 降低了信号干扰, 因此, 提高了控制的可靠性。 基于本实施例的位置检测装置的信号处理方法与实施例一的方法相同。
实施例三:
参见图 5为本发明第三实施例的电动缝纫机的总体结构示意图, 在本实施例中, 大部分结构 与实施例一相同, 相同的结构在此不再赘述。 不同的是, 本实施例中使用单控制器操控两台伺服 电机。
参见图 6为本发明中第三实施例的电动缝纫机的伺服控制框图。 在该控制器内包括 MCU和 两个 IPM (智能功率模块), 在 MCU的内部有两个电机运行控制模块, 分别为机械环、 电流环和 PWM信号产生模块。 MCU根据反馈的电流和角度信号, 运行控制程序, 产生两组 PWM信号, 分别控制两个 IPM。 两个 IPM将分别将三相电压加给两个交流伺服电机, 从而实现对两个交流伺 服电机的同步控制。
其中, 根据角度指令 1计算角度指令 2的方法与实施例一相同。
在上述三个实施例中, 位置检测装置直接输出电机的角度信号, 因此, 伺服控制器通过同步 口接收该角度信号即可, 在本发明中, 位置检测装置也可以只输出电压信号, 对该电压信号的处 理可以由伺服控制器中的 MCU来完成, 根据本发明以上的三种实施例, 通过以下详细描述本发 明的位置检测装置及其信号处理装置与方法。
图 7是表示本发明的一种位置检测装置的立体结构分解图。 如图 7所示, 本发明的位置检测 装置由磁感应元件板 102、 磁钢环 103、 导磁环 104、 骨架 105组成; 磁感应元件板 102由 PCB 板和磁感应元件 106组成,, 磁感应元件板 102上还装有接插件 108。
磁钢环 103装在轴 107上, 导磁环 104固定在骨架 105上, 骨架 105固定在电机的合适位置。 当轴 107转动时, 磁钢环 103转动, 产生正弦磁场, 而导磁环 104起聚磁作用, 磁钢环 103产生 的磁通通过导磁环 104。 PCB板上固定的磁感应元件 106把通过导磁环 104的磁场转换成电压信 号并输出, 该电压信号直接进入主控板芯片。 由主控板上芯片对电压信号进行处理, 最后得到位 角位移。
其中, 在制作所述的位置检测装置时, 导磁环 104设置在骨架成型模具上, 在所述骨架一体 成型时与骨架 105固定在一起。
图 8是本发明的位置检测装置安装于轴上的总体的立体图。 导磁环 104安装于骨架 105上, 磁钢环 103安装轴 107上, 导磁环 104与磁钢环 103可以相对转动。 本发明通过合理安排各部件 的布局, 可以减少位置检测装置的尺寸。
图 9A到图 9D以由 1/4弧段和 3/4弧段构成的导磁环为例, 图示了本发明的导磁环的倒角设 计。 如图 9A到图 9D所示, 导磁环由两段或多段同半径、 同圆心的弧段构成, 图 9A所示的导磁 环没有设计倒角, 图 9B到图 9D所示的弧段端部设有倒角, 所述倒角为沿轴向 (图 9B ) 或径向 (图 9C ) 或同时沿轴向、 径向 (图 9D ) 切削而形成的倒角, 151、 154表示轴向切面, 152、 153 表示径向切面。 相邻两弧段间留有缝隙, 磁感应元件置于该缝隙内, 当磁钢环与导磁环发生相对 旋转运动时, 所述磁感应元件将感测到的磁信号转换为电压信号, 并将该电压信号传输给相应的 控制器。
根据磁密公式 s = 可以知道, 当 ^一定时候, 可以通过减少 , 增加 β。
因为永磁体产生的磁通是一定的, 在导磁环中 较大, 所以 Β比较小, 因此可以减少因为磁 场交变而导致的发热。 而通过减少导磁环端部面积能够增大端部的磁场强度, 使得磁感应元件的 输出信号增强。 这样的信号拾取结构制造工艺简单, 拾取的信号噪声小, 生产成本低, 可靠性高, 而且尺寸小。
以下通过实施例详细描述本发明的位置检测装置及其信号处理装置与方法。
位置检测装置的实施例 1
根据本位置检测装置的第一实施例, 提供了设有两个磁感应元件的位置检测装置。
图 10是本发明位置检测装置第 1实施例的结构示意图。 如图 10所示, 导磁环由两段同半径 的弧段构成, 分别为 1/4弧段 111和 3/4弧段 112, 位置 Α和 Β相距角度为 90° , 并开有狭缝, 分别以 109和 110表示的两个磁感应元件 Hla、 H2a放置于 A和 B处的狭缝中, 采用此结构有利于 减少磁场泄露, 提高磁感应元件感应的磁通量, 并且由于磁表面感应的磁通是磁场的积分, 因此 有利用降低信号噪声以和信号中的高次谐波。 在电机轴上, 由两段同半径的弧段 111、 112构成的 导磁环与磁钢环 113同心安装。
图 11是本发明第一实施例的信号处理装置的框图,磁感应元件 Hla和 H2a的输出信号接 MCU 的内置 A/D转换器模拟输入口, 经模数转换后得到输出信号接乘法器 20a、 21a, 系数矫正器 5a 的输出信号 K接乘法器 20a、 21a 的输入端, 乘法器 20a、 21a 的输出信号接合成器 3a的输入端, 合成器 3a输出信号 D和 R,系数矫正器 5a接收合成器 3a输出的信号 R和来自于存储器 41a的对 应信号 R的标准状态的信号 R。,, 通过运算得到信号 K, 通过使磁感应元件 Hla和 H2a的信号与该 信号 K进行相乘, 以此来进行温度补偿, 消除温度对信号的影响。 存储器 40a中存储有一角度存 储表, MCU根据信号 D在角度存储表中选择与其相对的角度作为偏移角度 。
位置检测装置的实施例 2
根据本发明位置检测装置的实施例 2, 提供了设有四个磁感应元件的位置检测装置。
图 12是本发明位置检测装置的实施例 2的结构示意图。 如图 12所示, 导磁环由四段同半径 的 1/4弧段 118、 119、 120和 121构成, A, B, C, D四个位置角度依次相隔为 90° , 并且都有 分别以 114、 115、 116和 117表示的 4个磁感应元件 Hlb、 H2b、 H3b、 H4b分别放置于狭 缝八、 B、 C和 D处, 采用此结构有利于减少磁场泄露, 提高磁感应元件感应的磁通量, 并且由 于磁表面感应的磁通是磁场的积分, 因此有利用降低信号噪声以和信号中的高次谐波。 四段同半 径的 1/4弧段 118、 119、 120和 121构成的导磁环和磁钢环 122同心安装。
图 13是本发明第二实施例的信号处理装置的框图。
信号处理装置与处理方法与实施例 1相类似, 不同在于, 由于本实施例 2中有 4个互成 90 度的磁感应元件, 因此, 在信号处理装置上增加了减法器, 即数字差分模块, 通过该减法器模块 抑制温度和零点漂移, 以此来提高数据精度, 最终输出给合成器的信号仍为 2个, 处理过程及方 法与实施例 1相同。 因此, 在此不再赘述。
位置检测装置的实施例 3
根据本位置检测装置的实施例 3, 提供了设有三个磁感应元件的位置检测装置。
图 14是本发明第三实施例的位置检测装置的结构示意图。 如图 14所示, 导磁环由三段同半 径的 1/3弧段 126、 127和 128构成, A, B, C三个位置依次相距 120° , 并且开有一狭缝, 分别 以 123、 124和 125表示的 3个传感器 Hlc、 H2c、 H3c分别放置狭缝处, 采用此结构有利于减少磁 场泄露, 提高传感器感应的磁通量, 并且由于传感器表面感应的磁通是磁场的积分, 因此有利用 降低信号噪声以和信号中的高次谐波。 三段同半径的 1/3弧段 126、 127和 128构成的导磁环和磁 钢环 129同心安装。
图 15是本发明第三实施例的信号处理装置的框图。
与实施例 1不同的是, 磁感应元件有三个, 输出给合成器的信号为三个, 合成器在处理信号 时与实施例 1不同, 其余与实施例 1相同。 在这里, 仅说明合成器如何处理信号。
在本实施例中,对信号的处理, 即合成器 3c对信号的处理原则是:先判断三个信号的符合位, 并比较符合位相同的信号的数值的大小, 数值小的用于输出的信号 D, 信号 D的结构为 {第一个 信号的符合位, 第二个信号的符合位, 第三个信号的符合位, 较小数值的信号的数值位 }。 以本实 施例为例:
约定:
当数据 X为有符号数时, 数据 X的第 0位(二进制左起第 1位) 为符号位, X_0=1表示数据 X为负, X_0=0表示数据 X为正。
_0表示数据 X的数值位 (数据的绝对值), 即去除符号位剩下数据位。
如果 { A_0; B_0; C_0}=010 并且 A_D>= C_D
D={ A_0; B_0; C_0 ; C_D }
如果 { A_0 ; B_0; C_0}=010 并且 A_D< C_D
D={ A_0; B_0; C_0 ; A_D }
如果 { A_0 ; B_0; C_0}=101 并且 A_D>= C_D
D={ A_0; B_0; C_0 ; C_D }
如果 { A_0; B_0; C_0}=101 并且 A_D< C_D
D={ A_0; B_0; C_0 ; A_D }
如果 { A_0; B_0; C_0}=011 并且 B_D>=C_D
D={ A_0; B_0; C_0 ; C_D }
如果 { A_0; B_0; C_0}=011 并且 B_D<C_D D= A— 0; B_0; C_0; B—— D }
如果 { A- _0; B. _0; C_0}: = 100 并且 B_ — D>=C_D
D= A— 0; B_0; C_0; c— — D }
如果 { A- _0; B. _0; C_0}: = 100 并且 B_ — D<C_D
D= A— 0; B_0; C_0; B— — D }
如果 { A- _0; B. _0; C_0}: =001 并且 B_ — D>=A_D
D= A— 0; B_0; C_0; A— _D }
如果 { A- _0; B. _0; C_0}: =001 并且 B_ _D<A_D
D= A— 0; B_0; C_0; B— — D }
如果 { A- _0; B. _0; C_0}: = 110 并且 B_ — D>=A_D
D= A— 0; B_0; C_0; A— _D }
如果 { A- _0; B. _0; C_0}: = 110 并且 B_ — D<A_D
D= A— 0; B_0; C_0; B— — D }
= A-Bx cos (―) -Cx cos (―) β = Βχ sin(—) -Cx sin (―)
位置检测装置实施例 4
参照附图, 图 16是本发明的位置检测装置实施例 4的立体结构分解图。该位置检测装置包括 转子和将转子套在内部的定子,转子包括第一磁钢环 201a和第二磁钢环 201b以及第一导磁环 205a 和第二导磁环 205b, 第一磁钢环 201a和第二磁钢环 201b分别固定在电机轴 200上, 其中定子为 支架 203。
如图 16, 第一导磁环 205a和第二导磁环 205b分别由多个同圆心、 同半径的弧段构成, 相邻 两个弧段之间留有空隙, 对应于两个磁钢环的磁感应元件 204分别设在该空隙内。
对应于第二磁钢环 201b, 以第二磁钢环 201b的中心为圆心的同一圆周上设有 n (n=l, 2…! i) 个均匀分布的磁感应元件, 第二磁钢环的磁极磁化顺序使得 n个磁感应原件输出呈格雷码形式。 磁极的极性为格雷码的首位为 "0"对应于 "N/S" 极, 首位为 "1"对应于 "S/N"极。
第一磁钢环 201a均匀的磁化为 g (g的取值等于第二磁钢环中的磁极总数) 对极 (N极和 S 极交替排列), 当第二磁钢环中的磁极总数为 6时, 第一磁钢环 201a的极对数为 6对。 以第一磁 钢环 201a的中心为圆心的同一圆周上, 设置有 m个磁感应元件, 如 2个, 当转子相对于定子发 生相对旋转运动时, 所述磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号输出给 一信号处理装置。
定义第一磁钢环中相邻一对 "N-S"为一个信号周期, 因此, 任一 "N-S"对应的机械角度为 360° /g (g为 "N-S"个数), 假定转子在 时刻旋转角度 位于第" ί¾信号周期内, 则此时刻角位 移 可认为由两部分构成: 1. 在第 信号周期内的相对偏移量,磁感应元件 和 H2感应第一磁 钢环的磁场来确定在此 " N-S"信号周期内的偏移量 (值大于 0小于 360° /g); 2. 第" 信号周 期首位置的绝对偏移量 , 用传感器感应第二磁钢环的磁场来确定此时转子究竟是处于哪一个 "N-S"来得到 。 基于该位置检测装置及原理的信号处理装置包括: A/D转换模块、 相对偏移量 计算模块、 绝对偏移量 计算模块和存储模块。其信号处理流程如图 8-11所示,对位置检测装置中第一磁钢 环和第二磁钢环发送来的电压信号进行 A/D转换, 将模拟信号转换为数字信号; 由相对偏移量 计算模块对位置检测装置发送来的对应于第一磁钢环的第一电压信号进行角度 求解, 计算对应 于第一磁钢环的信号在所处信号周期内的相对偏移量 ; 由绝对偏移量 计算模块对位置检测装 置发送来的对应于第二磁钢环的第一电压信号进行角度 求解, 来确定第一电压信号所处的信号 周期首位置的绝对偏移量 ; 通过角度合成及输出模块, 如加法器用于将上述相对偏移量 和绝 对偏移量 相加, 合成所述第一电压信号所代表的在该时刻的旋转角度 。 上述方案是在电压信 号非常好的情况下的方案, 但是, 如果信号不好, 则可以在前述方案的基础上增加的信号放大模 块, 具体如放大器, 用于在 A/D转换模块进行 A/D转换之前, 对来自于位置检测装置的电压信号 进行放大。 再有, 在进行角度 求解之前, 还包括温度补偿的过程, 温度补偿的具体过程为, 先 进行系数矫正, 而后再将 A/D转换器输出的信号与系数矫正的输出通过乘法器进行相乘的具体方 式来进行温度补偿。 当然, 温度补偿的具体方式还有很多种, 在此就不一一介绍。
相对偏移量 计算模块包括信号合成单元、 第一角度获取单元和温度补偿单元, 信号合成单 元对不同位置检测装置发送来的经过 A/D转换的电压信号进行处理, 得到一基准信号 D ; 所述第 一角度获取单元根据该基准信号 D,在第一标准角度表中选择一与其相对的角度作为偏移角度 ; 其中, 在得到基准信号 D之前, 先对输入给信号合成单元的信号由温度补偿单元进行温度补偿, 再将温度补偿后的信号进行处理得到信号 D。 这里所述的处理将在后面详细说明。 绝对偏移量 计算模块包括第二合成器和所述第二角度获取单元, 用于对对应于第二磁钢环的位置检测装置发 送来的第二电压信号进行合成, 得到轴转过信号周期数, 从而确定第一电压信号所处的信号周期 首位置的绝对偏移量 , 具体实现方式是所述第二合成器对对应于第二磁钢环的位置检测装置发 送来的第二电压信号进行合成, 得到一信号 E ; 所述第二角度获取单元根据该信号 E在第二标准 角度表中选择一与其相对的角度作为第一电压信号所处的信号周期首位置的绝对偏移量 。
在实施例 4中, 对应于第二磁钢环设有 3磁感应元件, 对应于第一磁钢环设有 2磁感应元件。 由于第二磁钢环的磁极磁化顺序使得 n个磁感应原件输出呈格雷码形式。 磁极的极性为格雷 码的首位为 " 0"对应于 " N/S "极, 首位为 " 1 "对应于 " S/N"极。 因此, 在本实施例中, 由于 n为 3时, 得到如图 17所示的编码, 得到 6个码, 即得到 6个极, 充磁顺序如图 18所示, 各磁 感应元件均布周围进行读数。
由于第二磁钢环的磁极总数为 6, 因此, 第一磁钢环被均匀的磁化为 6对极, 其与 2个磁感 应元件的布置图及磁序如图 19所示。
图 20示出了本实施例中对应于第一磁钢环设有 2个磁感应元件、第二磁钢环设有 3个磁感应 元件时信号处理装置的电路框图。传感器 l_la和 l_2a的输出信号接放大器 2_la、 2_2a进行放大, 然后接 A/D转换器 3_la、 3_2a, 经模数转换后得到输出信号接乘法器 4_la、 5_la, 系数矫正器 10_la输出信号接乘法器 4_la、 5_la的输入端, 乘法器 4_la、 5_la的输出信号 A、 B接第一合成 器 6_la的输入端, 第一合成器 6_la对信号 A、 B进行处理, 得到信号 D、 R, 根据信号 D从存储 器 8_la中存储的标准角度表中选择一与其相对的角度作为偏移角度 。 其中, 第一合成器 6_la 的输出信号 R输送给系数矫正器 10_la,系数矫正器 10_la对信号 R和根据信号 D从存储器 9_la 中査表得到信号 R。进行比较得到信号 K, 该信号 Κ作为乘法器 4_la、 5_la的另一输入端, 与从 放大器 2_la、 2_2a输出的信号 Cl、 C2分虽相乘得到信号 A、 B作为第一合成器 6_la的输入。 传感器 l_3a、 l_4a、 ... l_n的输出信号分别接放大器 2_3a、 2_4a、 ...2_na进行放大, 然后接 A/D转换器 3_3a、 3_4a、 ...3_na进行模数转换后通过第二合成器 7_la进行合成, 得到一信号 E; 根据该信号 E在存储器 l l_la中的第二标准角度表中选择一与其相对的角度作为第一电压信号所 处的信号周期首位置的绝对偏移量 , 和 通过加法器 12_la得到测量的绝对角位移输出 。
其中, 第二合成器 7_la的功能是, 通过对传感器 l_3a、 l_4a、 ... l_na的信号进行合成, 得 到此时刻转子处于哪一个 " N-S " 信号周期内。
第二合成器 7_la的处理是: 当数据 X为有符号数时, 数据 X的第 0位(二进制左起第 1位) 为符号位, X_0=1表示数据 X为负, X_0=0表示数据 X为正。 也即当感应的磁场为 N时, 输出 为 X_0=0, 否则为 X_0=1。
则对于本实施例, E ={ C3_0; C4_0; Cn_0 }。
其中, 第一合成器 6对信号的处理是: 比较两个信号的数值的大小, 数值小的用于输出的信 号0,信号 D的结构为{第一个信号的符合位,第二个信号的符合位,较小数值的信号的数值位 }。 具体如下:
这里约定 (后文各合成器均使用该约定), 当数据 X为有符号数时, 数据 X的第 0位 (二进 制左起第 1位) 为符号位, X_0=1表示数据 X为负, X_0=0表示数据 X为正。 X_D表示数据 X 的数值位 (数据的绝对值), 即去除符号位剩下的数据位。
如果 A_D>=B_D
D={ A_0; B_0; B_D }
Figure imgf000013_0001
否则:
D={ A_0; B_0; A_D }
Figure imgf000013_0002
信号 K一般是通过将信号 R。和 R进行除法运算得到。
对于第一、 二标准角度表, 在存储器中存储了两个表, 每个表对应于一系列的码, 每一个码 对应于一个角度。 该表是通过标定得到的, 标定方法是, 利用本施例的检测装置和一高精度位置 检测模块, 将本施例中的磁感应元件输出的信号和该高精度位置检测模块输出的角度进行一一对 应, 以此建立出一磁感应元件输出的信号与角度之间的关系表。 也就是, 对应于信号 D存储了一 个第一标准角度表, 每一个信号 D代表一个相对偏移量 。 对应于信号 E, 存储了一个第二标准 角度表, 每一个信号 E代表一个绝对偏移量 。
图 21是本发明位置检测装置的实施例 4的位置检测装置的另一种结构的立体分解图。该位置 检测装置包括转子和将转子套在内部的定子, 转子包括第一磁钢环 201a和第二磁钢环 201b, 第 一磁钢环 201a和第二磁钢环 201b分别固定在电机轴 200上, 其中定子为支架 203。 磁感应元件 204直接表贴在支架 203的内表面。
上述实施例 4是在 n=2的情况下, m值变化的实施例, 本位置检测装置不限于此, 第二磁钢 环上的磁感应元件 n可以是任意整数 (n=0, 1, 2…! ι), 当 n=4时, 其磁化顺序及算法流程与上述 位置检测装置的实施例 2相同; 当 n=3时, 其磁化顺序及算法流程与上述位置检测装置的实施例 3相同。
位置检测装置的实施例 5
在本实施例中, 结构与实施例 4基本相同, 相同之处不再赘述, 不同之处在于, 所述第一磁 钢环被均匀地磁化为 N对磁极, 其中, N<=2n(n=0, 1, 2…! 1) , 并且相邻两极的极性相反; 所述 第二磁钢环的磁极总数为 N, 其磁序按照如图 23所示的磁序算法确定; 对应于第一磁钢环, 以第 一磁钢环的中心为圆心的同一圆周上设有 m(m为 2或 3的整数倍)个呈一定角度分布的磁感应元 件; 对应于第二磁钢环, 以第二磁钢环的中心为圆心的同一圆周上设有 n(n=0, 1, 2…! 1)个呈一定 角度分布的磁感应元件。 如图 22、 24为例, 图 22为本发明位置检测装置的实施例 5的第一磁钢 环充磁磁序及与磁感应元件的位置关系图,图 24为检测装置的实施例 5的第二磁钢环充磁磁序及 与磁感应元件的位置关系图。 根据对应第二磁钢环的磁感应元件的个数, 在本实施例中, n=3, 可 以确定第一磁钢环的极对数, 最大为 n3=8, 当然也可以小于 8, 在本实施例为 8, 第一磁钢环的 总极数为 8, 其磁序由图 23所示的算法确定。
如图 22、 24所示, 对应于第一磁钢环 201a的第一列磁感应元件 204为 2个, 即 m=2, 用 和 H2表示, 这两个磁感应元件 和 H2分别放置于对应导磁环 205a的两个夹缝中。 对应于第二 磁钢环 201b的第二列磁感应元件 204为 3个, 即 n=3,用 ¾、 H4和 表示。取磁极数 N=8,这样, 对应于第二磁钢环 201b的相邻两个磁感应元件 204之间的夹角为 360° /8。对应于第一磁钢环 201a 的相邻两个磁感应元件 308之间的夹角为 90°/8。
图 23所示的算法如下:
首先进行初始化 a[0]= " 0…… 0 "; 然后将当前编码入编码集, 即编码集中有 " 0…… 0 "; 接着 检验入编码集的集合元素是否达到 2n, 如果是则程序结束, 反之将当前编码左移一位, 后面补 0; 然后检验当前编码是否已入编码集, 如果未入编码集则将当前编码入编码集继续进行上述步骤, 如果已入编码集则将当前码末位去 0补 1 ; 接着检验当前编码是否已入编码集, 如果未入编码集 则将当前编码入编码集继续进行上述步骤, 如果已入编码集则检验当前码是否为 " 0…… 0", 是则 结束, 否则将当前编码的直接前去码末位去 0补 1 ; 接着检验当前编码是否已入编码集, 如果未 入编码集则将当前编码入编码集继续进行上述步骤, 如果已入编码集则检验当前码是否为" 0…… 0", 然后继续进行下面的程序。 其中 0磁化为 " N/S ", 1磁化为 " S/N"。 这样得到了图 24所示的 磁钢环 201b充磁结构图以及 ¾、 H4和 的排布顺序。
上述实施例 4是在 n=2的情况下, m值变化的实施例, 本位置检测装置不限于此, 第二磁钢 环上的磁感应元件 n可以是任意整数 (n=0, 1, 2…! ι), 如图 25所示, 分别为当 n=3、 4、 5时的第 二磁钢环、 导磁环和磁感应元件的分布图。 其各自的磁化顺序及算法流程分别与图 23、 24类似, 在此省略对它们的详细说明。
上述的位置检测装置采用磁电式, 由于元件放置方式及信号处理方式使得磁场分布均匀, 泄 露小, 原始信号质量好、 幅值大、 信号噪声小, 提高了检测精度, 在其信号处理上, 减少了因为 模拟器件导致的温度和零点漂移, 且磁感应元件可直接固定在电路板上, 无需转接件, 提高了电 路的可靠性和稳定性。
本发明通过使用上述检测精度更高的位置检测装置,使得本发明能更加精确地实现同步控制, 因而减小了缝纫机的振动和噪音。
最后所应说明的是: 以上实施例仅用以说明本发明而非限制, 尽管参照较佳实施例对本发明 进行了详细说明, 本领域的普通技术人员应当理解, 可以对本发明进行修改或者等同替换, 而不 脱离本发明的精神和范围, 其均应涵盖在本发明的权利要求范围当中。

Claims

权利要求书
1. 一种电动缝纫机, 包括机头, 在所述机头上包括主轴和底轴, 其特征在于, 还包括控制器 及两个分别驱动主轴和底轴的电动机, 由控制器控制两个电动机同步工作。
2. 根据权利要求 1所述的电动缝纫机, 其特征在于, 所述控制器为两个, 分别用于控制两个 电动机工作, 并且, 所述两个控制器通过数据线进行同步通讯。
3. 根据权利要求 2所述的电动缝纫机, 其特征在于, 所述电机与用于控制其工作的控制器一 体设置。
4. 根据权利要求 1-3任一所述的电动缝纫机, 其特征在于, 在每一电动机的轴上还包括位置 检测装置, 用于检测电机轴的位置, 并将该位置信息传送给相应的控制器, 用于电机位置的精确 控制。
5. 根据权利要求 4所述的电动缝纫机, 其特征在于, 所述位置检测装置包括磁钢环、 导磁环 和磁感应元件, 其特征在于, 所述导磁环由两段或多段同半径、 同圆心的弧段构成, 相邻两弧段 留有缝隙, 所述磁感应元件置于该缝隙内, 所述磁钢环固定在电机轴上, 所述导磁环和磁感应元 件固定在电动机本体上, 当磁钢环与导磁环发生相对旋转运动时, 所述磁感应元件将感测到的磁 信号转换为电压信号, 并将该电压信号传输给相应的信号处理装置。
6. 如权利要求 5所述的电动缝纫机, 其特征在于, 所述的导磁环由两段同半径、 同圆心的弧 段构成, 分别为 1/4弧段和 3/4弧段, 对应的磁感应元件为 2个; 或者, 所述的导磁环由三段同半 径的弧段构成, 分别为 1/3弧段, 对应的磁感应元件为 3个; 或者, 所述的导磁环由四段同半径 的弧段构成, 分别为 1/4弧段, 对应的磁感应元件为 4个; 或者, 所述的导磁环由六段同半径的 弧段构成, 分别为 1/6弧段, 对应的磁感应元件为 6个。
7. 根据权利要求 4所述的电动缝纫机, 其特征在于, 所述位置检测装置包括固定在电动机轴 上的转子和将转子套在内部、 固定在电动机本体上的定子, 所述转子包括第一磁钢环、 第二磁钢 环;
其中, 所述第一磁钢环和第二磁钢环分别固定在同一电机轴上;
在定子上, 对应于第二磁钢环, 以第二磁钢环的中心为圆心的同一圆周上设有 n (n=l, 2…! i) 个均匀分布的磁感应元件, 所述第二磁钢环的磁极磁化顺序使得 n个磁感应元件输出呈格雷码格 式, 相邻两个输出只有一位变化;
在定子上, 对应于第一磁钢环, 以第一磁钢环的中心为圆心的同一圆周上设有有 m(m为 2或 3的整数倍)个呈一定角度分布的磁感应元件, 所述第一磁钢环的磁极总对数与第二磁钢环的磁极 总数相等, 并且相邻两极的极性相反;
当转子相对于定子发生相对旋转运动时,所述磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号输出给一信号处理装置。
8. 如权利要求 7所述的电动缝纫机, 其特征在于, 在定子上对应于第一磁钢环的相邻两个磁 感应元件之间的夹角, 当 m为 2或 4时, 该夹角为 90° /g; 当 m为 3时, 该夹角为 120° /g; 当 m为 6时, 该夹角为 60° /g, 其中, g为第二磁钢环的磁极总数。
9. 如权利要求 4所述的电动缝纫机, 其特征在于, 所述位置检测装置包括固定在电动机轴上 的转子和将转子套在内部、 固定在电动机本体上的定子, 所述转子包括第一磁钢环、 第二磁钢环; 其中, 所述第一磁钢环和第二磁钢环分别固定在同一电机轴上, 所述第一磁钢环被均匀地磁 化为 N 对磁极, 在这里, N<=2n, (n=0, 1, 2…! ι), 并且相邻两极的极性相反; 所述第二磁钢环 的磁极总数为 N, 其磁序按照特定磁序算法确定;
在定子上, 对应于第一磁钢环, 以第一磁钢环的中心为圆心的同一圆周上设有 m个呈一定角 度分布的磁感应元件, 在这里, m为 2或 3的整数倍; 对应于第二磁钢环, 以第二磁钢环的中心 为圆心的同一圆周上设有 n个呈一定角度分布的磁感应元件;
当转子相对于定子发生相对旋转运动时,所述磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号输出给一信号处理装置。
10. 如权利要求 9所述的电动缝纫机, 其特征在于, 在定子上对应于第二磁钢环的相邻两个 磁感应元件之间的夹角为 360° 12
11. 如权利要求 9所述的电动缝纫机, 其特征在于, 在定子上对应于第一磁钢环相邻两个磁 感应元件之间的夹角, 当 m为 2或 4时, 每相邻两个磁感应元件之间的夹角为 90 2n, 当 m为 3 时, 每相邻两个磁感应元件之间的夹角为 120 2n ; 当 m为 6时, 每相邻两个磁感应元件之间的夹 角为 60 2n
12. 如权利要求 7或 9所述的电动缝纫机, 其特征在于, 所述位置检测装置还包括两个内置 于定子内表面、 分别与第一磁钢环、 第一磁钢环对应的导磁环, 每一所述导磁环是由多个同圆心、 同半径的弧段构成, 相邻两弧段留有空隙, 对应于两个磁钢环的磁感应元件分别设在该空隙内。
13. 如权利要求 5或 6或 12所述的电动缝纫机, 其特征在于, 所述的导磁环的弧段端部设有 倒角。
14. 如权利要求 13所述的电动缝纫机,其特征在于,所述倒角为沿轴向或径向或同时沿轴向、 径向切削而形成的倒角。
15. 如权利要求 4所述的电动缝纫机, 其特征在于, 所述控制器包括一控制模块, 该控制模 块包括第一、 二电机控制子模块和同步控制子模块;
其中, 所述第一、 二电机控制子模块分别用于控制两个电动机工作, 所述同步信号控制子模 块用于根据接收到的用户的角度指令, 计算使两个电动机同步工作的用于发送给第一或 /和二电机 控制子模块的角度指令。
16. 如权利要求 15所述的电动缝纫机, 其特征在于, 所述第一、 二电机控制子模块分别包括 数据处理单元、 电机驱动单元和电流传感器, 所述数据处理单元接收用户输入的指令信号或同步 信号控制子模块发送的指令信息、 电流传感器采集的电机电流信号和位置检测模块输出的电机位 置信号, 经过数据处理, 输出控制信号给所述电机驱动单元, 所述电机驱动单元根据所述的控制 信号输出合适的电压给电动机, 从而实现对电动机的精确控制。
17. 如权利要求 16所述的电动缝纫机, 其特征在于, 所述数据处理单元包括机械环控制子单 元、 电流环控制子单元、 PWM控制信号产生子单元和信号处理子单元;
所述传感器信号处理子单元接收所述电流传感器检测到的电流信号, 经过 A/D采样后输出给 所述的电流环控制子单元;
所述机械环控制子单元根据接收用户输入的指令信号或同步信号计算子模块发送的指令信息 和位置检测模块发送的代表电机轴的位置信息, 经过运算得到电流指令, 并输出给所述的电流环 控制子单元;
所述电流环控制子单元根据接收到的电流指令和电流传感器输出的电流信号, 经过运算得到 三相电压的占空比控制信号, 并输出给所述的 PWM控制信号产生子单元;
所述 PWM控制信号产生子单元根据接收到的三相电压的占空比控制信号, 生成具有一定输 出顺序的六路 PWM信号, 分别作用于电机驱动单元。
18. 如权利要求 16所述的电动缝纫机,其特征在于,所述电机驱动单元包括六个功率开关管, 所述开关管每两个串联成一组,三组并联连接在直流供电线路之间,每一开关管的控制端受 PWM 控制信号产生子单元输出的 PWM信号的控制, 每一组中的两个开关管分时导通。
19. 如权利要求 17所述的电动缝纫机, 其特征在于, 所述信号处理子单元还包括位置检测模 块的信号处理电路, 用于根据所述位置检测模块的电压信号得到电机轴的转动角度, 具体包括:
A/D转换电路, 对位置检测模块中磁感应元件发送来的电压信号进行 A/D转换, 将模拟信号 转换为数字信号;
合成电路, 对位置检测模块发送来的经过 A/D转换的多个电压信号进行取舍, 得到一基准信 号 D ;
角度获取电路, 根据该基准信号 D, 在一角度存储表中选择一与其相对的角度作为偏移角度 Θ 和
存储电路, 用于存储处理过程中的数据和角度存储表。
20. 如权利要求 19所述的电动缝纫机, 其特征在于, 在 A/D转换电路和合成电路之间还包括 温度补偿电路, 用于消除温度对位置检测装置发送来的电压信号的影响。
21. 如权利要求 20所述的电动缝纫机, 其特征在于, 所述温度补偿电路包括系数矫正电路和 乘法器, 每一所述乘法器将经过 A/D转换的、 位置检测装置发送来的一个电压信号与所述系数矫 正电路的输出信号 K相乘, 将相乘后的结果输出给合成电路, 所述合成电路的输出包括信号 R, 所述系数矫正电路根据所述合成电路的输出信号 D, 从一存储器中査表得到信号 R。, 对所述信号 R和信号 R。进行比较得到信号 K。
22. 如权利要求 21所述的电动缝纫机, 其特征在于, 所述温度补偿电路包括多个乘法器。
23. 如权利要求 20所述的电动缝纫机, 其特征在于, 如果位置检测装置发送来的一个电压信 号为 2或 3的倍数, 则在所述温度补偿模块之前还包括一差动放大电路。
24. 如权利要求 17所述的电动缝纫机, 其特征在于, 所述信号处理子单元包括位置检测模块 的信号处理电路, 用于根据所述位置检测模块的电压信号得到电机轴的转动角度, 具体包括:
A/D转换电路, 对位置检测装置发送来的电压信号进行 A/D转换, 将模拟信号转换为数字信 号 ·
相对偏移角度 计算电路, 用于计算位置检测装置中对应于第一磁钢环的磁感应元件发送来 的第一电压信号在所处信号周期内的相对偏移量 ;
绝对偏移量 计算电路, 根据位置检测装置中对应于第二磁钢环的磁感应元件发送来的第二 电压信号, 通过计算来确定第一电压信号所处的信号周期首位置的绝对偏移量 ;
角度合成及输出电路, 用于将上述相对偏移量 和绝对偏移量 相加, 合成所述第一电压信 号所代表的在该时刻的旋转角度 ;
存储电路, 用于存储处理过程中的数据。
25. 根据权利要求 24所述的电动缝纫机, 其特征在于, 还包括:
信号放大模块, 用于在 A/D转换模块进行 A/D转换之前, 对来自于位置检测装置的电压信号 进行放大。
26. 根据权利要求 24所述的电动缝纫机, 其特征在于, 所述绝对偏移量 计算电路包括第二 合成单元和第二角度获取子单元, 所述第二合成单元用于对位置检测装置发送来的对应于第二磁 钢环的第二电压信号进行合成, 得到一号 E; 所述第二角度获取子单元根据该信号 E在第二角度 存储表中选择一与其相对的角度作为第一电压信号所处的信号周期首位置的绝对偏移 j θ
PCT/CN2010/072255 2009-04-30 2010-04-27 电动缝纫机 WO2010124626A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910137779.0A CN101876125B (zh) 2009-04-30 2009-04-30 电动缝纫机
CN200910137779.0 2009-04-30

Publications (1)

Publication Number Publication Date
WO2010124626A1 true WO2010124626A1 (zh) 2010-11-04

Family

ID=43018799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072255 WO2010124626A1 (zh) 2009-04-30 2010-04-27 电动缝纫机

Country Status (2)

Country Link
CN (1) CN101876125B (zh)
WO (1) WO2010124626A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3184683A1 (de) * 2015-12-23 2017-06-28 Frankl & Kirchner GmbH & Co KG Fabrik für Elektromotoren u. elektrische Apparate Magnetisches encodersystem für einen servomotor einer nähmaschine
CN112444206A (zh) * 2020-11-13 2021-03-05 广州高梭自动化科技有限公司 一种卧式缝骨检测机构及缝纫机

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014082249A1 (zh) * 2012-11-29 2014-06-05 Li Lihui 直联式伺服电机传动结构及其控制系统
CN110661454A (zh) * 2018-06-28 2020-01-07 比亚迪股份有限公司 双电机同步控制方法、装置、存储介质及车辆
CN109868573B (zh) * 2019-04-10 2021-10-22 杰克缝纫机股份有限公司 一种缝纫机及其打线机构
CN110714282A (zh) * 2019-11-15 2020-01-21 拓卡奔马机电科技有限公司 电子手轮控制缝纫机上轴和下轴同步转动的系统和方法
CN111364178A (zh) * 2020-04-17 2020-07-03 浙江众邦机电科技有限公司 一种缝纫机振动检测控制方法及系统
CN113890437B (zh) * 2021-09-28 2024-01-30 北京交通大学 高速花样机主轴运动系统复合抗干扰控制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1136610A (zh) * 1995-02-09 1996-11-27 兄弟工业株式会社 缝纫机
US5860377A (en) * 1996-11-19 1999-01-19 Brother Kogyo Kabushiki Kaisha Sewing machine with a speed correcting unit and an independently driven main shaft and loop taker
US6201389B1 (en) * 1997-04-23 2001-03-13 Ab Eletronik Gmbh Device for determining the angular position of a rotating shaft
CN101634092A (zh) * 2009-06-04 2010-01-27 浙江新杰克缝纫机股份有限公司 绷缝机上下轴伺服驱动装置
CN201473728U (zh) * 2009-04-30 2010-05-19 浙江关西电机有限公司 电动缝纫机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1136610A (zh) * 1995-02-09 1996-11-27 兄弟工业株式会社 缝纫机
US5860377A (en) * 1996-11-19 1999-01-19 Brother Kogyo Kabushiki Kaisha Sewing machine with a speed correcting unit and an independently driven main shaft and loop taker
US6201389B1 (en) * 1997-04-23 2001-03-13 Ab Eletronik Gmbh Device for determining the angular position of a rotating shaft
CN201473728U (zh) * 2009-04-30 2010-05-19 浙江关西电机有限公司 电动缝纫机
CN101634092A (zh) * 2009-06-04 2010-01-27 浙江新杰克缝纫机股份有限公司 绷缝机上下轴伺服驱动装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3184683A1 (de) * 2015-12-23 2017-06-28 Frankl & Kirchner GmbH & Co KG Fabrik für Elektromotoren u. elektrische Apparate Magnetisches encodersystem für einen servomotor einer nähmaschine
CN112444206A (zh) * 2020-11-13 2021-03-05 广州高梭自动化科技有限公司 一种卧式缝骨检测机构及缝纫机

Also Published As

Publication number Publication date
CN101876125A (zh) 2010-11-03
CN101876125B (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
WO2010124626A1 (zh) 电动缝纫机
WO2010124620A1 (zh) 汽车电动雨刮器及其控制方法
CN201348929Y (zh) 霍尔旋转变压器及由其制成的霍尔转角编码器
WO2010124600A1 (zh) 伺服电动阀及其控制方法
WO2010124598A1 (zh) 伺服助力转向系统及其控制方法
WO2010124627A1 (zh) 位置检测装置及其信号处理装置
CN109617464A (zh) 一种基于pwm信号激磁的旋转变压器解码方法及系统
JP2023523149A (ja) 多重位相レゾルバ装置および差動位相合成装置
JP7574165B2 (ja) モータ制御のための磁気センサーシステム
WO2010124615A1 (zh) 减速装置及其控制方法
WO2010124595A1 (zh) 多节伺服潜油电机
JP6417699B2 (ja) 回転検知装置及び回転検知方法
CN111740672B (zh) 基于线性霍尔传感器的永磁同步电机角度检测方法和系统
WO2010124587A1 (zh) 位置检测装置及其信号处理装置和方法
WO2010124590A1 (zh) 电动机
JP6780855B2 (ja) サーボアクチュエータ
CN112865436B (zh) 特种电动机及其控制方法和控制装置
CN201435666Y (zh) 一种电动机
CN201473728U (zh) 电动缝纫机
WO2010124604A1 (zh) 位置检测装置及其信号处理装置和方法
CN100449931C (zh) 开关磁阻电机电子齿轮功能实现装置及方法
WO2019192470A1 (zh) 一种具有双路备份信号的传感器
CN117348612A (zh) 工业级自动控制系统
CN101877527B (zh) 一种电动机
JPH02264306A (ja) モータ・ドライブ・システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769315

Country of ref document: EP

Kind code of ref document: A1