WO2010124629A1 - 油田控制系统 - Google Patents

油田控制系统 Download PDF

Info

Publication number
WO2010124629A1
WO2010124629A1 PCT/CN2010/072264 CN2010072264W WO2010124629A1 WO 2010124629 A1 WO2010124629 A1 WO 2010124629A1 CN 2010072264 W CN2010072264 W CN 2010072264W WO 2010124629 A1 WO2010124629 A1 WO 2010124629A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
signal
angle
sensor
control
Prior art date
Application number
PCT/CN2010/072264
Other languages
English (en)
French (fr)
Inventor
郝双晖
郝明晖
Original Assignee
浙江关西电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江关西电机有限公司 filed Critical 浙江关西电机有限公司
Publication of WO2010124629A1 publication Critical patent/WO2010124629A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/008Monitoring of down-hole pump systems, e.g. for the detection of "pumped-off" conditions

Definitions

  • the invention relates to an oil field control system, in particular to a networked oil field control system. Background technique
  • Oilfield control involves the control of many factors or parameters, such as pressure, temperature, and operating state of the submersible motor.
  • the monitoring and control of these factors or parameters is also an important part of the oilfield control system. Summary of the invention
  • the technical problem to be solved by the present invention is that, in view of the deficiencies of the prior art, an oilfield control system is proposed, which can monitor the downhole condition of each oil well in the oil field and can be controlled in real time.
  • the present invention provides an oilfield control system, comprising a central control station and a plurality of downhole oil servo drag control subsystems respectively communicating with the same, each submersible oil servo drag control subsystem and The oil recovery modules in the well are connected, and the conditions in the well are sent to the central control station while controlling the operation of the oil production module according to the commands and control parameters received from the central control station or the human-computer interaction interface of the subsystem.
  • each of the downhole oil servo drag control subsystems comprises a ground control module and a power module located on the ground and a servo motor, a motor control module and a sensor located underground; the ground control module and the central control station respectively Communicating with the motor control module for transmitting user commands and set parameters from the ground control module and the central control station to the motor control module; or transmitting information received from the motor control module Giving the central control station; the power module converts the three-phase alternating current on the ground into a motor control module that inputs the direct current into the well; the motor control module receives the commands and parameters sent by the ground control module and sends the sensor to represent the operation of the motor. Information, controlling the operation of the servo motor, and transmitting the information sensed by the sensor to the ground control module.
  • the ground control module comprises a ground processing unit, a ground communication unit and a human-machine interaction interface; a human-machine interaction interface is used for providing user setting instructions and parameters, and performing related display; the ground communication unit is used for the central control station and the underground Motor control module communication.
  • the ground control module further includes a power detecting unit, wherein the power detecting unit is configured to detect whether the power module is normal, and send the detection result to the ground processing unit.
  • the motor control module comprises a downhole processing unit, a motor drive unit and a downhole communication unit; the downhole communication unit is connected to the ground communication unit for receiving instructions and parameters sent by the ground communication unit and transmitting to the downhole processing unit; the downhole processing unit Receiving information about the running of the motor sent by the sensor, generating a corresponding control signal to the motor driving unit according to the user's instruction and the set parameter and the information sent by the sensor; the motor driving unit converts the direct current into three according to the control signal The phase motor electrically drives the servo motor to operate.
  • the senor includes position detecting means for collecting motor shaft position information.
  • the senor comprises a pressure sensor and/or a temperature sensor.
  • the position detecting device is a photoelectric sensor or a magnetoelectric sensor.
  • the magnetoelectric sensor comprises a sensor body, a stainless steel cover, a sealing device and a casing;
  • the sensor body comprises a magnetic steel ring, a magnetic flux ring and a magnetic induction element;
  • the magnetic flux ring is arranged on the outer wall of the stainless steel cover, and is composed of two or more segments The radius and the arc of the same center are formed, and the adjacent two arc segments are left with a slit;
  • the magnetic induction element is placed in the gap;
  • the magnetic steel ring is disposed in the inner cavity of the stainless steel cover and fixed on the motor shaft;
  • the stainless steel cover is externally passed through the sealing device Sealed and fixed with the outer casing; when the magnetic steel ring and the magnetic flux ring rotate relative to each other, the magnetic induction element converts the sensed magnetic signal into a voltage signal, and transmits the voltage signal to the corresponding servo controller.
  • an angle between adjacent two magnetic induction elements corresponding to the second magnetic steel ring is 360° /2 n .
  • an angle between each adjacent two magnetic induction elements is 90 2 n
  • the angle between each adjacent two magnetic sensing elements is 120 ° / 2 n
  • the angle between each adjacent two magnetic sensing elements is 60 ° / 2 n .
  • the magnetoelectric sensor comprises a sensor body, a stainless steel cover, a sealing device and a casing
  • the magnetic pole magnetization sequence of the second magnetic steel ring is such that the output of the n magnetic induction elements is in a Gray code format, and the adjacent two outputs have only one bit change; on the stainless steel cover, Corresponding to the first magnetic steel ring, the same circumference of the center of the first magnetic steel ring is provided with a magnetic induction element with m (m is an integer multiple of 2 or 3) distributed at an angle, the first magnetic The total number of magnetic poles of the steel ring is equal to the total number of magnetic poles of the second magnetic steel ring, and the polarities of the adjacent two poles are opposite; the outer portion of the stainless steel cover is sealed and fixed to the outer casing by a sealing device; when the rotor rotates, the magnetic induction The component converts the sensed magnetic signal into a voltage signal and outputs the voltage signal to the signal processing circuit.
  • the angle between the adjacent two magnetic induction elements on the stator corresponding to the first magnetic steel ring when m is 2 or 4, the included angle is 90° / g ; when m is 3, the The angle is 120° / g ; when m is 6, the angle is 60 ° / g, where g is the total number of magnetic poles of the second magnetic steel ring.
  • the magnetoelectric sensor further includes a signal processing circuit
  • the signal processing circuit includes an A/D conversion module, The module, the angle acquisition module, and the storage module;
  • the A/D conversion module performs A/D conversion on the voltage signal sent from the magnetic induction element in the magnetoelectric sensor, and converts the analog signal into a digital signal;
  • the synthesis module transmits the magnetic energy sensor
  • the plurality of A/D-converted voltage signals are selected to obtain a reference signal D.
  • the angle acquisition module selects an angle relative to the angle storage table as an offset angle according to the reference signal D.
  • the storage module is used for storing processing. The data and angle storage tables in the process.
  • the magnetoelectric sensor further includes a signal processing circuit
  • the signal processing circuit includes an A/D conversion module, a relative offset angle calculation module, an absolute offset calculation module, an angle synthesis and output module, and a storage module.
  • the A/D conversion module performs A/D conversion on the voltage signal sent from the magnetoelectric sensor to convert the analog signal into a digital signal; and the relative offset angle calculation module is used to calculate the corresponding magnetic magnet in the magnetoelectric sensor.
  • the signal processing circuit further comprises a signal amplifying module for amplifying the voltage signal from the magnetoelectric sensor before the A/D conversion module performs A/D conversion.
  • the relative offset angle calculation module includes a synthesizing unit and a first angle acquiring unit, and the synthesizing unit performs a tradeoff of the A/D converted plurality of voltage signals sent by the magnetoelectric sensor to obtain a reference signal D;
  • the first angle acquiring unit selects an angle opposite thereto as an offset angle in the first angle storage table according to the reference signal 0.
  • the relative offset angle calculation module further includes a temperature compensation unit for eliminating the influence of temperature on the voltage signal transmitted by the magnetoelectric sensor.
  • the relative offset angle calculation module further includes a coefficient correction unit that performs an operation according to an output of the synthesis unit to obtain an output signal.
  • the temperature compensation unit comprises a plurality of multipliers, each of the multipliers multiplying a voltage signal sent by the A/D converted magnetoelectric sensor by the signal K output by the coefficient correction unit, The result of the multiplication is output to the synthesis unit.
  • the absolute offset calculation module includes a synthesizer and a second angle acquisition unit, and the synthesizer is configured to decode the second voltage signal sent by the magnetoelectric sensor corresponding to the second magnetic steel ring to obtain a
  • the signal E is selected according to the signal E in the second angle storage table to select an angle opposite thereto as the absolute offset of the first position of the signal period in which the first voltage signal is located.
  • the downhole processing unit includes a motor control subunit and a signal processing subunit that receives information transmitted by the magnetoelectric sensor and processes the information into a rotation angle of the motor.
  • the motor control subunit comprises a pressure loop control subunit, a mechanical loop control subunit, a current loop control subunit, and
  • the PWM control signal generating subunit receives the pressure information sensed by the pressure sensor, performs an operation with the received pressure command to obtain an angle command, and outputs the same to the mechanical ring control subunit; the mechanical ring control subunit And according to the received command signal and/or the angle command output by the pressure ring control subunit and the rotation angle of the motor shaft output by the magnetoelectric sensor, the current command is obtained through operation, and is output to the current loop control subunit;
  • the loop control subunit obtains a duty control signal of the three-phase voltage according to the received current command and the current signal output by the current sensor, and outputs the duty control signal to the PWM control signal generating subunit; the PWM control signal generating subunit According to the received duty control signal of the three-phase voltage, six PWM signals having a certain sequence are generated and respectively applied to the motor driving unit.
  • the motor drive unit is an IPM module.
  • the servo motor is a permanent magnet synchronous servo motor.
  • each of the downhole submersible servo drag control subsystems communicates with the central control station by wire or wirelessly.
  • the central control station or the ground processing unit or the motor control module includes a well data processing sub-unit for processing data collected by the pressure sensor or/and the temperature sensor to know the depth of the downhole level or/and the well temperature.
  • the operation condition of the underground submersible servo-drag system can be accurately monitored to facilitate the operator to perform reasonable control, which helps to improve production efficiency and save operating costs.
  • FIG. 1A and 1B are overall block diagrams of the oilfield control system of the present invention, wherein the wired communication mode is adopted in FIG. 1A and the wireless communication mode is adopted in FIG. 1B;
  • FIG. 2 is a schematic structural view of an oil field dragging system according to an embodiment of the present invention.
  • Figure 3 is a control schematic diagram of the oilfield control system
  • Figure 4 is a structural schematic diagram of the downhole controller
  • Figure 5 is an exploded schematic view showing a magnetoelectric sensor solution in which two magnetic induction elements are mounted according to a first embodiment of the present invention
  • Figure 6 is a block diagram of a signal processing apparatus of a magnetoelectric sensor scheme in which two magnetic induction elements are mounted according to a first embodiment of the present invention
  • Figure 7 is an exploded perspective view showing a magnetoelectric sensor solution in which three magnetic induction elements are mounted according to a first embodiment of the present invention
  • Figure 8 is a block diagram of a signal processing apparatus of a magnetoelectric sensor scheme in which three magnetic induction elements are mounted according to a first embodiment of the present invention
  • Figure 9 is an exploded perspective view showing a magnetoelectric sensor solution in which four magnetic induction elements are mounted according to a first embodiment of the present invention
  • Figure 10 is a block diagram of a signal processing apparatus of a magnetoelectric sensor scheme in which four magnetic induction elements are mounted according to a first embodiment of the present invention
  • Figure 11 is an exploded perspective view showing a magnetoelectric sensor solution in which six magnetic induction elements are mounted according to a first embodiment of the present invention
  • Figure 12 is a block diagram of a signal processing apparatus of a magnetoelectric sensor scheme in which six magnetic induction elements are mounted according to a first embodiment of the present invention
  • 13A-13D are schematic views of a chamfering design of a magnetically permeable ring
  • Figure 14 is an exploded perspective view of key components of a magnetoelectric sensor solution according to a second embodiment of the present invention
  • Figure 15 is a schematic view showing the mounting of a magnetoelectric sensor solution according to a second embodiment of the present invention
  • Figure 16 is a schematic view showing the arrangement of two magnetic induction elements corresponding to the first magnetic steel ring in the second embodiment
  • Figure 17 is a schematic view showing the arrangement of the magnetic induction element when the first magnetic steel ring is uniformly magnetized into six pairs of poles in the second embodiment;
  • Figure 18 is the number of magnetic induction elements corresponding to the second magnetic steel ring in the second embodiment. The code obtained at the time;
  • FIG. 19 is a magnetization sequence of the second magnetic steel ring in the second embodiment;
  • Figure 20 is a schematic view showing the arrangement of the magnetic induction elements corresponding to the second magnetic steel ring in the second embodiment
  • Figure 21 is a block diagram of a signal processing device of the magnetoelectric sensor of the second embodiment
  • 22 is a schematic structural view of a magnetoelectric sensor in which a magnetic induction element is mounted by a surface mount;
  • Figure 23 is an exploded perspective view of a magnetoelectric sensor according to a third embodiment
  • Figure 24 is a flow chart of an algorithm for determining the magnetic order of the magnetic steel ring 303;
  • Figure 25 is a diagram showing a magnetization structure of a magnetic steel ring obtained in Figure 24 and an arrangement example of a magnetic induction element
  • Figure 26 is a block diagram of a signal processing apparatus of a magnetoelectric sensor according to a third embodiment
  • Figure 27 is a control block diagram of the pressure ring control subunit
  • Figure 28 is a control block diagram of the mechanical ring control subunit
  • Figure 29 is a control block diagram of the current loop control subunit
  • Figure 30 is a control block diagram of the PWM control signal generating subunit
  • Figure 31 is a detailed view of the submersible servo system 7 of Figure 2;
  • Figure 32 is a wiring diagram of the motor control module and sensor section. detailed description
  • a central control station controls multiple submersible pumping systems to form a control network.
  • the connection between the central control station and the submersible pumping system can be wired or wireless.
  • the wired connection is shown in Figure 1A.
  • a communication cable is generally used to communicate between the central control station and the submersible pumping system.
  • Wireless communication can also be used, as shown in Figure 1B, using communication methods such as CDMA and GPRS.
  • the central control station communicates with the ground controller of the submersible pumping system to obtain well condition information, submersible pumping system information, etc., and can issue control commands to the corresponding ground controller according to the obtained information, such as adjusting the control mode. Set control parameters and more.
  • the ground controller sends commands to the downhole controller based on the received signals to control the downhole controller.
  • the downhole controller controls the submersible servo motor according to the set command.
  • FIG. 2 is a schematic view for explaining a submersible servo drag control subsystem.
  • 1 is a central control station, which communicates with the submersible servo drag control subsystems 17, 19 via control signal cables 16, 18, respectively.
  • the submersible servo drag control subsystem 17 includes a power module, a ground control module 3, a servo motor 4, a motor control module 5, and a sensor 6.
  • Other reference numerals indicate: ground cable 2, submersible servo system 7, submersible cable 8, wellhead device 9, tubing 10, bushing 11, outlet connector 12, pump 13, protector 14, magnetoelectric sensor and seal Component 15.
  • the submersible servo system 7 includes a servo motor 4, a magnetoelectric sensor and sealing assembly 15, a motor control module 5 and a sensor 6.
  • the ground control module 3 communicates with the central control station 1 and the motor control module 5, respectively, for transmitting user commands and set parameters from the ground control module 3 and the central control station 1 to the The motor control module 5; or the information received from the motor control module 5 is sent to the central control station 1; the power module converts the three-phase alternating current on the ground into direct current, and is input through the ground cable 2 and the submarine cable 8.
  • the motor control module 5 receives the commands and parameters sent by the ground control module 3 and the information sent by the sensor to represent the operation of the motor, controls the operation of the servo motor 4, and senses the sensor 6 The incoming information is sent to the ground control module 3.
  • the ground control module 3 includes a ground processing unit, a ground communication unit, and a human-machine interaction interface; the human-machine interaction interface is configured to provide user setting instructions and parameters, and perform related display; the ground communication unit is used for the central control station 1 Communicates with the downhole motor control module 5.
  • the ground control module 3 further includes a power detecting unit, wherein the power detecting unit is configured to detect whether the power module is normal, and send the detection result to the ground processing unit.
  • the motor control module 5 includes a downhole processing unit, a motor drive unit and a downhole communication unit; the downhole communication unit is connected to the ground communication unit for receiving commands and parameters sent by the ground communication unit and transmitting to the downhole processing unit; the downhole processing unit receiving the sensor
  • the sent information about the operation of the motor is generated according to the user's instruction and the set parameters and the information sent by the sensor to generate a corresponding control signal to the motor drive unit;
  • the motor drive unit converts the direct current into three-phase electricity according to the control signal.
  • the servo motor is driven to operate. Among them, the servo motor is preferably a permanent magnet synchronous servo motor.
  • Figure 3 is a control schematic diagram of the oilfield control system.
  • the control portion of each submersible servo system includes a ground controller and a downhole controller.
  • the ground controller includes MCU1, rectification and filtering circuit and control panel.
  • the functions of the ground controller are as follows: (1) providing DC power to the downhole controller; (2) communicating with the central control station, transmitting information obtained from the downhole controller to The central control station receives and receives control commands from the central control station to control the downhole controller; (3) communicates with the downhole controller, receives information transmitted by the downhole controller, and sets control parameters and control modes of the downhole controller.
  • the downhole controller includes MCU2, IPM, current sensor and pressure sensor.
  • the function of the downhole controller is to control the operation of the submersible servo motor according to the control parameters and control mode set by the ground controller, and to simultaneously report downhole information (such as pressure and current). , torque, etc.) are passed to the ground controller.
  • the function of the pressure sensor is to detect the pressure of the downhole fluid. The depth of the oil well can be determined according to the pressure, so that the oil well level can be controlled by the submersible servo system.
  • the ground controller and the downhole controller are connected by cables.
  • the cable is a multi-core cable, including the communication line for the ground controller MCU1 to communicate with the downhole controller MCU2 and the line for supplying power to the IPM.
  • the operator can operate the ground controller through the control panel or control the ground controller through the central control station to set the corresponding control parameters and control mode.
  • the MCU1 of the ground controller communicates with the downhole controller MCU2 via the communication line, and transmits the set control parameters and control mode to the downhole controller to obtain downhole information.
  • the external three-phase AC input ground controller converts the three-phase AC power into DC power through the rectification and filtering circuit, and then transmits it to the IPM of the downhole controller through the cable.
  • the positive and negative poles of the DC power are respectively connected to ⁇ 1? , N pole.
  • the ground-controlled MCU1 also performs voltage detection, including three-phase AC voltage detection and DC voltage detection to ensure that the DC power delivered to the downhole controller is normal. If not, an alarm signal will be issued.
  • the downhole controller MCU2 runs the control program according to the control parameters and control modes set by the ground controller MCU1, as well as the feedback signals of the current sensor and the magnetoelectric sensor and the pressure feedback signal of the pressure sensor, to generate the PWM signal control IPM. Based on the PWM signal, the IPM generates a three-phase voltage to the AC servo motor.
  • the downhole controller includes MCU2, IPM, current sensor, pressure sensor and temperature sensor.
  • the function of the downhole controller is to control the operation of the submersible servo motor according to the control parameters and control mode set by the ground controller, and at the same time the downhole information (such as Pressure, temperature, current, torque, etc.) are passed to the ground controller.
  • the role of the temperature sensor is to detect downhole temperatures.
  • FIG. 4 is a structural schematic diagram of the downhole controller.
  • the downhole controller is composed of a single chip microcomputer (MCU), IPM, current sensor, pressure sensor and the like.
  • the one-chip computer receives the current sensor, the position detecting device (ie, the encoder, a magneto-electric sensor) and the feedback signal of the pressure sensor, runs the control program, and generates the PWM signal to control the IPM. Based on the PWM signal, the IPM generates a three-phase voltage to the AC servo motor.
  • the CPU Inside the MCU, there are CPU, A/D conversion module, synchronous communication port and PWM signal generation module.
  • the A/D conversion module converts the analog signal input from the current sensor to the MCU into a digital signal to obtain current feedback.
  • the magnetoelectric sensor transmits the motor angular position information to the MCU through the synchronous port communication.
  • the pressure sensor transmits the detected downhole pressure signal to the MCU, and is subjected to A/D sampling to obtain pressure feedback.
  • the CPU in the MCU runs the control program based on current feedback, angle feedback, and pressure feedback.
  • the control program mainly includes a pressure ring, a mechanical ring and a current loop.
  • the pressure ring calculates an angle command according to the setting command and the pressure feedback.
  • the mechanical ring calculates the current command according to the angle command and the angle feedback; the current loop is based on the current command and the current feedback. , Calculate the three-phase voltage duty cycle.
  • the PWM signal generation module generates a PWM signal based on the three-phase voltage duty cycle and transmits it to the IPM. Based on the PWM signal, the IPM generates a three-phase voltage to the AC servo motor.
  • the plurality of sensors used in the present invention include position detecting means, pressure sensor, temperature sensor and the like, wherein the position detecting means may be a photoelectric type position detecting means or a magnetoelectric type position detecting means.
  • the design of the position detecting device of the present invention will now be described in a preferred embodiment.
  • FIG. 5 is an exploded perspective view of a magnetoelectric sensor scheme in which two magnetic sensing elements are mounted in accordance with a first embodiment of the present invention.
  • the magnetoelectric sensor includes an inductive element 710, a circuit board 711, a magnetically permeable ring 712, a stainless steel cover 713, a magnetic steel ring 715, and the like.
  • a portion of the casing (not shown), the magnet ring 715 is mounted to the motor tail shaft 716, and the remainder is mounted to the stainless steel cover 713 of the high pressure threading seal assembly 714.
  • the present invention is characterized in that the magnetoelectric sensor has two magnetic sensing elements, and the magnetic conducting ring 712 is also composed of two parts, one is a 1/4 magnetic ring, and the other is a 3/4 magnetic ring. Two incomplete magnetic rings form two slits for use with the two magnetic sensing elements.
  • FIG. 6 is a block diagram of a signal processing apparatus of a magnetoelectric sensor scheme in which two magnetic induction elements are mounted, in accordance with a first embodiment of the present invention.
  • the output signals of the magnetic sensing elements H la and H 2a are connected to the analog input port of the built-in A/D converter of the MCU, and the output signals are multiplied by the analog-to-digital converters 20a, 21a, and the output signal K of the coefficient corrector 5a is connected to the multiplier 20a.
  • the output signals of the multipliers 20a, 21a are coupled to the input of the comparator 3a, the synthesizer 3a outputs the signals D and R, and the coefficient corrector 5a receives the signal R output from the synthesizer 3a and the signal from the memory 41a.
  • R The signal K is obtained by calculation, and the signals of the magnetic induction elements H la and H 2a are multiplied by the signal K to perform temperature compensation, thereby eliminating the influence of temperature on the signal.
  • An angle storage table is stored in the memory 40a, and the MCU selects an angle opposite thereto in the angle storage table as the offset angle according to the signal D.
  • a standard angle table is stored in the storage module in which a series of codes are stored, each code corresponding to an angle.
  • the table is obtained by calibration, and the calibration method is: using the detecting device of the embodiment and a high-precision position sensor, the signals output by the magnetic sensing element in the embodiment and the angle of the high-precision position sensor output are in one-to-one correspondence. In order to establish a relationship between the signal and the angle of the output of a magnetic induction element.
  • some data correction tables are stored in the storage module, and these tables include a signal D and a signal R.
  • Correspondence table where signal R.
  • a signal R can be obtained by looking up the signal through the synthesis module, that is, the signal D obtained by the synthesizer 3a. , by passing the signal R. Compare with signal R, such as division, to get signal 1 ⁇ .
  • the processing of the signal that is, the processing principle of the synthesizer 3a on the signal is: comparing the magnitude of the values of the two signals, the signal D having a small value for output, and the structure of the signal D is ⁇ the coincidence of the first signal, The coincidence bit of the second signal, the numerical value of the signal of the smaller value ⁇ .
  • _0 indicates the value bit of the data X (the absolute value of the data), that is, the remaining data bits are removed from the sign bit.
  • Fig. 7 is an exploded perspective view showing a magnetoelectric sensor solution in which three magnetic induction elements are mounted according to a first embodiment of the present invention.
  • the magnetoelectric sensor comprises an inductive component 717, a circuit board 718, a magnetically conductive ring 719, a stainless steel cover 720, a magnetic steel ring 722 and a housing (not shown), a high voltage threading sealing assembly 721, a motor tail shaft 723, and various parts thereof.
  • the assembly of the components is similar to that of the two magnetic induction components and will not be repeated here.
  • the present invention is characterized in that the magnetoelectric sensor has three magnetic sensing elements, and the magnetic conducting ring is also composed of three parts, and each two incomplete magnetic rings form slits, and a total of three slits are formed for the same three Magnetic induction components are used together.
  • FIG. 8 is a signal processing device of a magnetoelectric sensor solution in which three magnetic induction elements are mounted according to a first embodiment of the present invention.
  • the signal processing device of the present scheme is similar to that of the two magnetic sensing elements, except that there are three magnetic sensing elements and three signals output to the synthesizer, and the synthesizer has a signal in the above-mentioned scheme. different. Here, only how the synthesizer chooses the signal is explained.
  • the principle of processing the signal by the synthesizer 3c is: first determine the coincidence bits of the three signals, and compare the magnitudes of the values of the signals conforming to the same bit.
  • the value of the signal D for the output is small, and the structure of the signal D is ⁇ first The coincidence bit of the signal, the coincidence bit of the second signal, the coincidence bit of the third signal, and the value bit of the signal of the smaller value ⁇ .
  • _0 indicates the value bit of the data X (the absolute value of the data), that is, the remaining data bits are removed from the sign bit.
  • Fig. 9 is an exploded perspective view showing a magnetoelectric sensor scheme in which four magnetic induction elements are mounted according to a first embodiment of the present invention.
  • the magnetoelectric sensor includes an inductive element 724, a circuit board 725, a magnetic ring 726, a stainless steel cover 727, a magnetic steel ring 729 and a casing (not shown), a high voltage threading seal assembly 728, and a motor tail shaft 730.
  • the assembly of its various components is similar to that of the two magnetic sensing components and will not be repeated here.
  • the present invention is characterized in that the magnetoelectric sensor has four magnetic sensing elements, and the magnetic conducting ring is also composed of four parts. Each two incomplete magnetic rings form slits, and a total of four slits are formed for the same four.
  • a magnetic induction element is used in combination.
  • FIG 10 is a block diagram of a signal processing apparatus of a magnetoelectric sensor scheme in which four magnetic induction elements are mounted according to a first embodiment of the present invention.
  • the signal processing device of the scheme is similar to that of the two magnetic induction components, except that the differential amplification module is added, and the temperature and zero drift are suppressed by the differential amplification module, thereby improving the data precision and finally outputting to
  • the signal of the synthesizer is still two, and the processing and method are the same as those of the two sensors, and will not be repeated here.
  • FIG 11 is an exploded perspective view showing a magnetoelectric sensor scheme in which six magnetic induction elements are mounted according to a first embodiment of the present invention.
  • the magnetoelectric sensor includes an inductive element 731, a circuit board 732, a magnetic flux ring 733, a stainless steel cover 734, a magnetic steel ring 736 and a casing (not shown), a high voltage threading seal assembly 735, and a motor tail shaft 737.
  • the assembly of its various components is similar to that of the two magnetic sensing components and will not be repeated here.
  • the present invention is characterized in that the magnetoelectric sensor has six magnetic sensing elements, and the magnetic conducting ring is also composed of six parts. Each two incomplete magnetic rings form slits, and a total of six slits are formed for the same six.
  • a magnetic induction element is used in combination.
  • Figure 12 is a block diagram of a signal processing apparatus of a magnetoelectric sensor scheme in which six magnetic induction elements are mounted according to a first embodiment of the present invention.
  • the signal processing device of the solution is similar to that of the three magnetic induction elements, except that the differential amplification module is added, and the temperature and zero drift are suppressed by the differential amplification module, thereby improving the data precision and finally outputting to
  • the signal of the synthesizer is still three, and the processing and method are the same as those of the three sensors, and will not be repeated here.
  • FIG. 13A to 13D illustrate, by way of example, a magnetically permeable ring composed of a 1/4 arc segment and a 3/4 arc segment, illustrating a chamfering design of the magnetic permeable ring of the present invention.
  • the magnetic flux ring is composed of two or more segments of the same radius and the same center, and the magnetic ring shown in FIG. 13A is not designed to be chamfered, and the arc shown in FIG. 13B to FIG. 13D.
  • the end portion is provided with a chamfer which is a chamfer formed by cutting in the axial direction (Fig. 13B) or the radial direction (Fig. 13C) or simultaneously in the axial direction and the radial direction (Fig.
  • the magnetic field strength of the end portion can be increased, so that the output signal of the magnetic induction element is enhanced.
  • Such a signal pickup structure has a simple manufacturing process, low signal noise picked up, low production cost, high reliability, and small size.
  • FIG 14 is an exploded perspective view of key components of a magnetoelectric sensor scheme in accordance with a second embodiment of the present invention.
  • Figure 15 is a schematic view showing the mounting of a magnetoelectric sensor solution according to a second embodiment of the present invention.
  • the magnetoelectric sensor of the present embodiment includes a rotor and a stator (i.e., a stainless steel cover) that encloses the rotor inside, and the rotor includes a first magnetic steel ring 201a and a second magnetic steel ring 201b, and a first magnetic conductive ring 205a and a second guide.
  • a stator i.e., a stainless steel cover
  • the magnetic ring 205b, the first magnetic steel ring 201a and the second magnetic steel ring 201b are respectively fixed to the motor shaft 200, wherein the stator is a bracket 203.
  • the first magnetic conductive ring 205a and the second magnetic conductive ring 205b are respectively formed by a plurality of arcs of the same center and the same radius, and a gap is left between the adjacent two arc segments, corresponding to the magnetic sensing elements 204 of the two magnetic steel rings. They are respectively disposed in the gap.
  • the magnetic induction element is disposed on the outer wall of the stainless steel cover, and the outer portion of the stainless steel cover is sealed and fixed to the outer casing by a sealing device. When the rotor rotates, the magnetic induction element converts the sensed magnetic signal into a voltage signal, and outputs the voltage signal. Give a signal processing device.
  • the first magnet ring 201a has a uniform magnetization of g (the value of g is equal to the total number of poles in the second magnet ring) and the opposite pole (the N pole and the S pole are alternately arranged), when the total number of magnetic poles in the second magnet ring is At 6 o'clock, the number of pole pairs of the first magnet ring 201a is six pairs.
  • m magnetic sensing elements such as two, are provided, and as shown in Fig. 16, the angle between the two magnetic sensing elements ⁇ 2 is 90° /6.
  • the arrangement of the magnetic induction element when the first magnetic steel ring is uniformly magnetized into 6 pairs of poles is as shown in the figure
  • the magnetic sensing element converts the sensed magnetic signal into a voltage signal when the rotor is relatively rotationally moved relative to the stator, and outputs the voltage signal to a signal processing device.
  • the angular displacement can be considered to consist of two parts: 1. Relative bias in the first signal period The displacement, magnetic induction element and H 2 induce the magnetic field of the first magnetic th steel ring to determine the offset within this "NS" signal period (value greater than 0 less than 360 ° / g); 2. “signal cycle head position” The absolute offset of the sensor is used to sense the magnetic field of the second magnet ring to determine which "NS" the rotor is in at that time to get 6 * 2.
  • the magnetic pole magnetization sequence causes the n magnetic induction original outputs to be in the form of a Gray code.
  • the polarity of the magnetic pole is that the first digit of the Gray code is "0" corresponding to the "N/S" pole, and the first digit is "1" corresponding to the "S/N” pole.
  • n is 3
  • the magnetization sequence of the second magnetic steel ring as shown in Fig. 19 is obtained.
  • the three magnetic induction elements are uniformly distributed around the cloth.
  • Figure 21 is a block diagram of a signal processing device of the magnetoelectric sensor of the present embodiment.
  • the first magnetic steel ring is provided with two magnetic induction elements, and the output signals of the sensors l_la and l_2a are amplified by the amplifiers 2_la, 2_2a, and then connected to the A/D converters 3_la, 3_2a, and the output signals are obtained after analog-to-digital conversion.
  • the multipliers 4_la, 5_la, the coefficient aligner 10_la outputs the input terminals of the signal multipliers 4_la, 5_la, the output signals A, B of the multipliers 4_la, 5_la are connected to the input end of the first synthesizer 6_la, the first synthesizer 6_la pairs
  • the signals A, B are processed to obtain signals D, R, and an angle opposite thereto is selected from the standard angle table stored in the memory 8 as the offset angle based on the signal D.
  • the output signal R of the fifth synthesizer 6_la is supplied to the coefficient aligner 10_la, and the coefficient aligner 10_la obtains the signal R based on the signal R and the lookup table from the memory 9_la.
  • a signal K is obtained which is used as the other input of the multipliers 4_la, 5_la, multiplied by the signals C1, C2 output from the amplifiers 2_la, 2_2a to obtain the signals A, B as inputs to the first synthesizer 6_la.
  • the output signals of the sensors l_3a, l_4a, .. . l_na are amplified by the amplifiers 2_3a, 2_4a, .. .2_na, respectively, and then connected to the A/D converters 3_3a, 3_4a, .. .3_na for analog-to-digital conversion and then by the second synthesis.
  • 7_l a is synthesized to obtain a signal
  • the function of the second synthesizer 7_l a is to synthesize the signals of the sensors l_3a, l_4a, .. . l_na to obtain which "N-S" signal period the rotor is in at the moment.
  • E ⁇ C3_0; C4_0; Cn_0 ⁇ .
  • the processing of the signal by the first synthesizer 6_l a is: comparing the magnitudes of the values of the two signals, the signal D having a small value for output, the structure of the signal D is ⁇ the coincidence of the first signal, the second The coincidence bit of the signal, the numerical value of the signal of the smaller value ⁇ . details as follows:
  • the signal K is generally passed by the signal R. And R is divided.
  • first and second standard angle tables two tables are stored in the memory, each table corresponding to a series of codes, each code corresponding to an angle.
  • the table is obtained by calibration, and the calibration method is: using the detecting device of the embodiment and a high-precision position sensor, the signals output by the magnetic sensing element in the embodiment and the angle of the high-precision position sensor output are in one-to-one correspondence.
  • a first standard angle table is stored corresponding to the signal D, and each signal D represents a relative offset.
  • signal E corresponding to signal E, a second standard angle table is stored, and each signal E represents an absolute offset.
  • the present invention is not limited to the above example, the first magnetic steel ring may also be provided with three, four, six magnetic induction elements, and the corresponding magnetic conductive ring and signal processing circuit also have to be changed accordingly, however, the variation is the same as in the first embodiment. The similarities are described, so they are not described here.
  • the end of the arc of the magnetically permeable ring is chamfered to form a chamfer formed by cutting axially or radially or simultaneously in the axial direction and in the radial direction.
  • the magnetic sensing element can be directly attached to the outer surface of the stainless steel cover, i.e., without a magnetically permeable ring, as shown in FIG.
  • Other components and their signal processing devices are similar to those having a magnetically permeable ring and will not be described herein.
  • Figure 23 is an exploded perspective view of a magnetoelectric sensor according to a third embodiment.
  • Two rows of magnetic sensing elements 307 are respectively disposed on the skeleton (i.e., the stainless steel cover) 306 corresponding to the magnetic steel ring 302 and the magnetic steel ring 303. Only one magnetic sensing element is shown in the figure.
  • the first magnetic sensing elements that is, the plurality of magnetic sensing elements corresponding to the magnetic steel ring 302 and the magnetic conductive ring 304 are all represented by the magnetic sensing element 307, and the second magnetic sensing element is used. That is, a plurality of magnetic induction elements corresponding to the magnetic steel ring 303 and the magnetic conductive ring 305 are also magnetically induced.
  • the magnetic steel ring 302 is defined as a first magnetic steel ring
  • the magnetic steel ring 303 is defined as a second magnetic steel ring
  • the magnetic conductive ring 304 is defined to correspond to the first magnetic steel ring
  • the magnetic conductive ring is to be 305 is defined to correspond to the second magnetic steel ring, however the invention is not limited to the above definition.
  • Figure 24 is a flow chart of the magnetic sequence algorithm of the magnetic steel ring 303.
  • the current code last bit is decremented by 0; then it is checked whether the current code has entered the code set, and if the code set is not entered, the current code is added to the code set. Perform the above steps. If the code set has been entered, check whether the current code is "0...0", and then it ends. Otherwise, the current coded direct forward code bit is decremented to 0 by 1; then it is checked whether the current code has been encoded. Set, if the code set is not entered, the current code is entered into the code set to continue the above steps. If the code set has been entered, it is checked whether the current code is "0...0", and then the following procedure is continued. Where 0 is magnetized as "N” and 1 magnetized as "S”. Thus, the magnetization structure diagram of the magnetic steel ring 303 shown in Fig. 25 and the arrangement order of H 3 and H 4 are obtained.
  • the angle between adjacent two magnetic sensing elements corresponding to the second magnetic steel ring is 360° /N.
  • the angle between each adjacent two magnetic induction elements corresponding to the first magnetic steel ring when m is 2 or 4, the angle between each adjacent two magnetic induction elements is 90 N, when m is At 3 o'clock, the angle between each adjacent two magnetic sensing elements is 120 N; when m is 6, the angle between each adjacent two magnetic sensing elements is 60 ° / N.
  • Figure 26 is a block diagram of a signal processing device of a magnetoelectric sensor according to a third embodiment. Since the signal processing manner is similar to that of the second embodiment, it will not be described herein.
  • the first magnetic steel ring may be provided with two, three, four, six magnetic induction elements, and the corresponding magnetic conductive ring and signal processing circuit also have corresponding changes, but the changes are similar to those described in the first embodiment. Therefore, it will not be repeated here.
  • the end of the arc of the magnetically permeable ring is chamfered to form a chamfer formed by cutting axially or radially or simultaneously in the axial direction and in the radial direction.
  • the magnetic sensing element may be directly attached to the outer surface of the stainless steel cover, i.e., the magnetically permeable ring is not provided, and other components and their signal processing means are similar to those of the magnetically permeable ring, and will not be described herein.
  • the signal processing method of the magnetoelectric sensor of the present embodiment is similar to that in the second embodiment, and thus a repeated description thereof will be omitted herein.
  • a photoelectric magnetoelectric sensor can also be used. Since the signal processing device is similar to the magnetoelectric type, it will not be described here.
  • the downhole processing unit includes a motor control subunit and a signal processing subunit that receives information transmitted by the magnetoelectric sensor and processes the information into a rotation angle of the motor.
  • the motor control subunit includes a pressure loop control subunit, a mechanical loop control subunit, a current loop control subunit, and a PWM control signal generating subunit, and FIGS. 27 to 30 are a pressure loop control subunit, a mechanical loop control subunit, and a current, respectively.
  • the input of the pressure ring is the pressure command and pressure feedback, and the output is the angle command.
  • the pressure command subtracts the pressure feedback to obtain the pressure error, and the angle command is obtained through the PID controller.
  • the pressure ring controls the downhole pressure, the pressure and the depth of the well.
  • the control pressure actually controls the depth of the downhole liquid level.
  • the pressure ring control subunit receives the pressure information sensed by the pressure sensor, and operates with the received pressure command to obtain an angle command, and outputs the angle command to the mechanical ring control subunit.
  • a downhole level concentration calculation unit is included in the central control station or the control subsystem of each well, the unit calculating the downhole level based on the pressure sensor data.
  • the mechanical ring control subunit obtains a current command according to the received command signal and/or the angle command outputted by the pressure ring control subunit and the rotation angle of the motor shaft output by the magnetoelectric sensor, and outputs the current command, and outputs
  • the sub-unit is controlled by the current loop.
  • the current loop control subunit obtains a duty control signal of the three-phase voltage according to the received current command and the current signal output by the current sensor, and outputs the duty control signal to the PWM control signal generating subunit. .
  • the PWM control signal generating sub-unit generates six PWM signals having a certain order according to the received duty control signal of the three-phase voltage, respectively acting on the motor driving unit.
  • the motor drive unit can be an IPM module.
  • Figure 31 is a schematic view of the incoming line of the cable of Figure 2.
  • the cable in the submersible servo system enters the well from the ground along the outer wall of the casing, and enters the inside of the casing through the connector 21 from the head of the servo motor 4, wherein the sensor 6 may be a temperature sensor and/or Pressure Sensor.
  • Figure 32 is a wiring diagram of the motor control module and sensor section.
  • the temperature sensor 29 and the pressure sensor 28 are taken as an example to illustrate the routing.
  • Other reference numerals indicate: magnetoelectric sensor and seal assembly 15, motor control module 5, motor power line 22, power line 23, controller outer wall 24, circuit board 25, pressure signal line 26, controller end cover 27, temperature The sensor signal line 30, the heat sink 31, the magnetoelectric sensor line 32, and the communication signal line 33.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

油田控制系统
技术领域
本发明涉及一种油田控制系统, 具体涉及一种网络化的油田控制系统。 背景技术
油田的信息化、 网络化建设意义重大, 其不仅关系油田的安全生产, 而且能使经营者直观地 了解地下生产动态和更准确预测未来动态变化以便及时采取措施提高产量和进行有效的油田管 理。
1998年美国前副总统戈尔提出的数字地球概念中涉及了数字油田的概念, 这一概念迅速得到
BP、 壳牌、 斯伦贝谢、 雪佛龙、 挪威 Hydro等全球的石油公司、 技术服务公司以及能源咨询服务 公司的广泛关注, 并引发了对数字油田技术研究热潮的兴起。 数字油田已经成为石油企业未来发 展趋势, 我国以数字油田为内容的油田信息化建设也再次急剧升温。纵观国内外数字油田的建设, 不管从技术还是管理的层面上看, 都还存在不少难题, 尤其是业务流程革新、 多元异构数据整合 以及专业技术软件的开发将在相当长一段时间内困扰数字油田的发展。 而油气工业的各种工作流 程和不同领域活动所采用的技术与地下油藏、 油井生产监控和地面控制系统的数据流整合在一起 更是一个极大的挑战。
油田控制中涉及众多因素或参数的控制, 例如压力、 温度、 潜油电机的运行状态等。 对这些 因素或参数的监测与控制也是油田控制系统中重要的一环。 发明内容
本发明要解决的技术问题在于, 针对现有技术的不足, 提出一种油田控制系统, 可以监测油 田中每一口油井的井下情况, 并可以实时控制。
为解决上述技术问题, 本发明提供了一种油田控制系统, 包括中心控制站和分别与其相通信 的多个井下潜油伺服拖动控制子系统, 每一井下潜油伺服拖动控制子系统与其所在井内的采油模 块相连接, 在根据从中心控制站或该子系统的人机交互界面接收的指令和控制参数、 控制采油模 块工作的同时, 将该井内的情况发送给中心控制站。
优选地, 每一所述井下潜油伺服拖动控制子系统包括位于地面上的地面控制模块和电源模块 和位于井下的伺服电机、 电机控制模块和传感器; 地面控制模块分别与所述中心控制站和所述电 机控制模块通信, 用于将用户指令和设定的参数从所述地面控制模块和所述中心控制站发送给所 述电机控制模块; 或者将从所述电机控制模块接收的信息发送给所述中心控制站; 电源模块将地 面上的三相交流电转换为直流电输入到井下的电机控制模块; 电机控制模块接收所述地面控制模 块发送来的指令和参数及传感器发送来代表电机运行的信息, 控制伺服电机工作, 并将所述传感 器感测的进下信息发送给所述地面控制模块。
优选地, 地面控制模块包括地面处理单元、 地面通信单元和人机交互界面; 人机交互界面用 于提供用户设定指令和参数, 并进行相关显示; 地面通信单元用于与中心控制站和井下电机控制 模块通信。
优选地, 地面控制模块还包括电源检测单元, 电源检测单元用于检测所述电源模块是否正常, 并将检测结果发送给所述地面处理单元。 优选地, 电机控制模块包括井下处理单元、 电机驱动单元和井下通信单元; 井下通信单元与 地面通信单元相连接, 用于接收地面通信单元发送的指令和参数并传递给井下处理单元; 井下处 理单元接收传感器发送来的关于电机运行的信息, 根据用户的指令和设定的参数及传感器发送来 的信息, 生成相应的控制信号给电机驱动单元; 电机驱动单元根据该控制信号, 将直流电转换成 三相电驱动所述伺服电机运行。
优选地, 传感器包括采集电机轴位置信息的位置检测装置。
优选地, 传感器包括压力传感器和 /或温度传感器。
优选地, 位置检测装置为光电式传感器或磁电式传感器。
优选地, 磁电式传感器包括传感器本体、 不锈钢罩、 密封装置和外壳; 传感器本体包括磁钢 环、 导磁环和磁感应元件; 导磁环设置在不锈钢罩的外壁上, 由两段或多段同半径、 同圆心的弧 段构成, 相邻两弧段留有缝隙; 磁感应元件置于该缝隙内; 磁钢环设置在不锈钢罩的内腔中, 固 定在电机转轴上; 不锈钢罩外部通过密封装置与外壳密封并固定; 当磁钢环与导磁环发生相对旋 转运动时, 磁感应元件将感测到的磁信号转换为电压信号, 并将该电压信号传输给相应的伺服控 制器。
优选地, 磁电式传感器包括传感器本体、 不锈钢罩、 密封装置和外壳; 传感器本体包括转子, 所述转子包括第一磁钢环、 第二磁钢环; 其中, 所述第一磁钢环和第二磁钢环分别固定在转轴上, 所述第一磁钢环被均匀地磁化为 N [ N<=2n(n=0, 1, 2…! i) ]对磁极, 并且相邻两极的极性相反; 所述第二磁钢环的磁极总数为 N, 其磁序按照特定磁序算法确定; 在不锈钢罩上, 对应于第一磁 钢环, 以第一磁钢环的中心为圆心的同一圆周上设有 m(m为 2或 3的整数倍)个呈一定角度分布 的磁感应元件; 对应于第二磁钢环, 以第二磁钢环的中心为圆心的同一圆周上设有 n(n=0, 1, 2— n)个呈一定角度分布的磁感应元件; 不锈钢罩外部通过密封装置与外壳密封并固定; 当转子旋转 运动时, 磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号输出给信号处理装置。
优选地, 对应于所述的第二磁钢环的相邻两个磁感应元件之间的夹角为 360° /2n
优选地, 对应于第一磁钢环相邻两个磁感应元件之间的夹角, 当 m为 2或 4时, 每相邻两个 磁感应元件之间的夹角为 90 2n, 当 m为 3时, 每相邻两个磁感应元件之间的夹角为 120°/2n ; 当 m为 6时, 每相邻两个磁感应元件之间的夹角为 60°/2n
优选地, 磁电式传感器包括传感器本体、 不锈钢罩、 密封装置和外壳, 传感器本体包括转子, 所述转子包括第一磁钢环、 第二磁钢环; 其中, 所述第一磁钢环和第二磁钢环分别固定在电机轴 上, 设置在不锈钢罩的内腔中, 对应于第二磁钢环, 以第二磁钢环的中心为圆心的同一圆周上设 有 n (n=l, 2…! i)个均匀分布的磁感应元件, 所述第二磁钢环的磁极磁化顺序使得 n个磁感应元件 输出呈格雷码格式, 相邻两个输出只有一位变化; 在不锈钢罩上, 对应于第一磁钢环, 以第一磁 钢环的中心为圆心的同一圆周上设有有 m(m为 2或 3的整数倍)个呈一定角度分布的磁感应元件, 所述第一磁钢环的磁极总对数与第二磁钢环的磁极总数相等, 并且相邻两极的极性相反; 不锈钢 罩外部通过密封装置与外壳密封并固定; 当转子旋转运动时, 所述磁感应元件将感测到的磁信号 转变为电压信号, 并将该电压信号输出给信号处理电路。
优选地, 在定子上对应于第一磁钢环的相邻两个磁感应元件之间的夹角, 当 m为 2或 4时, 该夹角为 90° /g; 当 m为 3时, 该夹角为 120° /g; 当 m为 6时, 该夹角为 60° /g, 其中, g为 第二磁钢环的磁极总数。
可选地, 磁电式传感器还包括一种信号处理电路, 所述信号处理电路包括 A/D转换模块、 合 成模块、 角度获取模块、 存储模块; A/D转换模块对磁电式传感器中磁感应元件发送来的电压信 号进行 A/D转换, 将模拟信号转换为数字信号; 合成模块对磁电式传感器发送来的经过 A/D转换 的多个电压信号进行取舍, 得到基准信号 D ; 角度获取模块根据该基准信号 D, 在角度存储表中 选择与其相对的角度作为偏移角度 ; 存储模块用于存储处理过程中的数据和角度存储表。
可选地, 磁电式传感器还包括一种信号处理电路, 所述信号处理电路包括 A/D转换模块、 相 对偏移角度 计算模块、 绝对偏移量 计算模块、 角度合成及输出模块、 存储模块; A/D转换模 块对磁电式传感器发送来的电压信号进行 A/D转换, 将模拟信号转换为数字信号; 相对偏移角度 计算模块用于计算磁电式传感器中对应于第一磁钢环的磁感应元件发送来的第一电压信号在所 处信号周期内的相对偏移量 ; 绝对偏移量 计算模块根据磁电式传感器中对应于第二磁钢环的 磁感应元件发送来的第二电压信号, 通过计算来确定第一电压信号所处的信号周期首位置的绝对 偏移量 ; 角度合成及输出模块用于将上述相对偏移量 和绝对偏移量 相加,合成所述第一电 压信号所代表的在该时刻的旋转角度 ; 存储模块, 用于存储处理过程中的数据。
优选地, 信号处理电路还包括信号放大模块, 用于在 A/D转换模块进行 A/D转换之前, 对来 自于磁电式传感器的电压信号进行放大。
优选地, 相对偏移角度 计算模块包括合成单元和第一角度获取单元, 所述合成单元对磁电 式传感器发送来的经过 A/D转换的多个电压信号进行取舍, 得到一基准信号 D ; 所述第一角度获 取单元根据该基准信号0, 在第一角度存储表中选择一与其相对的角度作为偏移角度 。
优选地, 相对偏移角度 计算模块还包括温度补偿单元, 用于消除温度对磁电式传感器发送 来的电压信号的影响。
优选地,相对偏移角度 计算模块还包括一系数矫正单元,其根据合成单元的输出进行运算, 得到一输出信号]^。
优选地, 温度补偿单元包括多个乘法器, 每一所述乘法器将经过 A/D转换的、 磁电式传感器 发送来的一个电压信号与所述系数矫正单元输出的信号 K相乘,将相乘后的结果输出给合成单元。
优选地, 绝对偏移量 计算模块包括合成器和第二角度获取单元, 所述合成器用于对对应于 第二磁钢环的磁电式传感器发送来的第二电压信号进行译码, 得到一信号 E; 所述第二角度获取 单元根据该信号 E在第二角度存储表中选择一与其相对的角度作为第一电压信号所处的信号周期 首位置的绝对偏移量 。
优选地, 井下处理单元包括电机控制子单元和信号处理子单元, 信号处理子单元接收所述磁 电式传感器发送来的信息, 并将该信息处理成电机的旋转角度。
优选地, 电机控制子单元包括压力环控制子单元、 机械环控制子单元、 电流环控制子单元和
PWM控制信号产生子单元;压力环控制子单元接收压力传感器感测的压力信息, 将与接收的压力 指令进行运算得到角度指令, 并输出给所述的机械环控制子单元; 机械环控制子单元根据接收到 的指令信号和 /或压力环控制子单元输出的角度指令及磁电式传感器输出的电机轴的旋转角度, 经 过运算得到电流指令, 并输出给所述的电流环控制子单元; 电流环控制子单元根据接收到的电流 指令和电流传感器输出的电流信号, 经过运算得到三相电压的占空比控制信号, 并输出给所述的 PWM控制信号产生子单元; PWM控制信号产生子单元根据接收到的三相电压的占空比控制信号, 生成具有一定顺序的六路 PWM信号, 分别作用于电机驱动单元。
优选地, 电机驱动单元为 IPM模块。
优选地, 伺服电机为永磁同步伺服电机。 优选地, 每一所述井下潜油伺服拖动控制子系统通过有线或无线的方式与中心控制站通信。 优选地, 在中心控制站或地面处理单元或电机控制模块包括井内数据处理子单元, 用于对压 力传感器或 /和温度传感器采集的数据进行处理, 以得知井下液面的深度或 /和井内的温度。
根据本发明的油田控制系统, 能够准确监测井下潜油伺服拖动系统的运行状况以便于运营者 进行合理的控制, 有助于提高生产效率, 节省运营成本。 附图说明
图 1A和图 1B是本发明的油田控制系统的总体框图, 图 1A中采用有线通讯方式, 图 1B中 采用无线通讯方式;
图 2为本发明一实施例中油田拖动系统的结构示意图;
图 3是油田控制系统的控制原理图;
图 4是井下控制器的结构原理图;
图 5 是根据本发明的第一实施例的安装有两个磁感应元件的磁电式传感器方案的分解示意 图;
图 6是根据本发明的第一实施例的安装有两个磁感应元件的磁电式传感器方案的信号处理装 置的框图;
图 7 是根据本发明的第一实施例的安装有三个磁感应元件的磁电式传感器方案的分解示意 图;
图 8是根据本发明的第一实施例的安装有三个磁感应元件的磁电式传感器方案的信号处理装 置的框图;
图 9 是根据本发明的第一实施例的安装有四个磁感应元件的磁电式传感器方案的分解示意 图;
图 10 是根据本发明的第一实施例的安装有四个磁感应元件的磁电式传感器方案的信号处理 装置的框图;
图 11 是根据本发明的第一实施例的安装有六个磁感应元件的磁电式传感器方案的分解示意 图;
图 12 是根据本发明的第一实施例的安装有六个磁感应元件的磁电式传感器方案的信号处理 装置的框图;
图 13A-图 13D是导磁环的倒角设计的示意图;
图 14是根据本发明的第二实施例的磁电式传感器方案的关键部件的分解立体图; 图 15是根据本发明的第二实施例的磁电式传感器方案的安装示意图;
图 16是第二实施例中的与第一磁钢环对应的两个磁感应元件的布置示意图;
图 17是第二实施例中的第一磁钢环均匀磁化为六对极时磁感应元件的布置示意图; 图 18是第二实施例中的第二磁钢环所对应的磁感应元件个数为三个时所得到的编码; 图 19是第二实施例中的第二磁钢环的充磁顺序;
图 20是第二实施例中的第二磁钢环所对应的磁感应元件布置示意图;
图 21是第二实施例的磁电式传感器的一个信号处理装置的框图;
图 22是磁感应元件采用表贴式安装的磁电式传感器的结构示意图;
图 23是根据第三实施例的磁电式传感器的分解立体图; 图 24是确定磁钢环 303的磁序的算法流程图;
图 25是由图 24得到的磁钢环的充磁结构图以及磁感应元件的排布顺序的一个示例; 图 26是根据第三实施例的磁电式传感器的信号处理装置的框图;
图 27是压力环控制子单元的控制框图;
图 28是机械环控制子单元的控制框图;
图 29是电流环控制子单元的控制框图;
图 30是 PWM控制信号产生子单元的控制框图;
图 31是图 2中的潜油伺服系统 7的细节图; 以及
图 32是电机控制模块和传感器部分的走线图。 具体实施方式
一个中心控制站控制多个潜油抽油系统, 构成一个控制网络。 中心控制站与潜油抽油系统的 连接可以为有线或无线连接。 有线连接如图 1A所示, 一般采用通讯电缆, 用于实现中心控制站 与潜油抽油系统的通讯。 也可以采用无线通讯方式, 如图 1B所示, 采用如 CDMA、 GPRS等通讯 方式。 中心控制站与潜油抽油系统的地面控制器通讯, 获取井况信息、 潜油抽油系统信息等, 并 可以根据获得的信息, 发出控制指令给相应的地面控制器, 如调整控制方式, 设置控制参数等等。 地面控制器根据接收的信号, 发送指令给井下控制器, 从而控制井下控制器。 井下控制器根据设 定的指令控制潜油伺服电机。
图 2是用于说明潜油伺服拖动控制子系统的示意图。 图中 1为中心控制站, 通过控制信号线 缆 16、 18分别与潜油伺服拖动控制子系统 17、 19相通信。 以潜油伺服拖动控制子系统 17为例, 其包括电源模块、 地面控制模块 3、 伺服电机 4、 电机控制模块 5和传感器 6。 其它的附图标记表 示: 地面电缆 2, 潜油伺服系统 7, 潜油电缆 8, 井口装置 9, 油管 10, 套管 11, 出口接头 12, 泵 13, 保护器 14, 磁电式传感器及密封组件 15。 由图中可以看出, 潜油伺服系统 7包括伺服电 机 4、 磁电式传感器及密封组件 15、 电机控制模块 5和传感器 6。 其中, 地面控制模块 3分别与 所述中心控制站 1和所述电机控制模块 5通信, 用于将用户指令和设定的参数从所述地面控制模 块 3和所述中心控制站 1发送给所述电机控制模块 5 ; 或者将从所述电机控制模块 5接收的信息 发送给所述中心控制站 1 ; 电源模块将地面上的三相交流电转换为直流电, 通过地面电缆 2和潜 油电缆 8输入到井下的电机控制模块 5 ; 电机控制模块 5接收所述地面控制模块 3发送来的指令 和参数及传感器发送来代表电机运行的信息, 控制伺服电机 4工作, 并将所述传感器 6感测的进 下信息发送给所述地面控制模块 3。
地面控制模块 3包括地面处理单元、 地面通信单元和人机交互界面; 所述人机交互界面用于 提供用户设定指令和参数, 并进行相关显示; 所述地面通信单元用于与中心控制站 1和井下电机 控制模块 5通信。 地面控制模 3块还包括电源检测单元, 所述电源检测单元用于检测所述电源模 块是否正常, 并将检测结果发送给所述地面处理单元。
电机控制模块 5包括井下处理单元、 电机驱动单元和井下通信单元; 井下通信单元与地面通 信单元相连接, 用于接收地面通信单元发送的指令和参数并传递给井下处理单元; 井下处理单元 接收传感器发送来的关于电机运行的信息,根据用户的指令和设定的参数及传感器发送来的信息, 生成相应的控制信号给电机驱动单元; 电机驱动单元根据该控制信号, 将直流电转换成三相电驱 动所述伺服电机运行。 其中, 伺服电机优选地为永磁同步伺服电机。 图 3是油田控制系统的控制原理图。 每一个潜油伺服系统的控制部分包括地面控制器和井下 控制器。 地面控制器包括 MCU1、 整流滤波电路和控制面板等, 地面控制器的功能有: (1)为井下 控制器提供直流电; (2)与中心控制站通讯, 将从井下控制器获取的信息传递给中心控制站, 并接 收中心控制站的控制指令, 控制井下控制器; (3)与井下控制器通讯, 接收井下控制器的传递的信 息, 设置井下控制器的控制参数和控制模式。 井下控制器包括 MCU2、 IPM、 电流传感器和压力 传感器等, 井下控制器的功能是根据地面控制器设定的控制参数和控制模式, 控制潜油伺服电机 运行, 同时将井下信息 (如压力、 电流、 转矩等) 传递给地面控制器。 压力传感器的作用是检测 井下液体压力, 根据压力可以求出油井液面的深度, 从而通过潜油伺服系统控制油井液面。
地面控制器和井下控制器通过电缆连接, 电缆为多芯电缆, 包括地面控制器 MCU1与井下控 制器 MCU2通讯用的通讯线和给 IPM提供功率电即输送直流电的线。操作人员可以通过控制面板 操作地面控制器或者通过中心控制站控制地面控制器, 设定相应的控制参数和控制模式。 地面控 制器的 MCU1通过通讯线与井下控制器 MCU2通讯,将设定的控制参数和控制模式传递给井下控 制器, 同时获取井下信息。 外部三相交流电输入地面控制器, 通过整流滤波电路, 将三相交流电 转换为直流电, 然后通过电缆输送给井下控制器的 IPM, 直流电的正、 负极分别接入 ^1的?、 N极。 地面控制的 MCU1同时会进行电压检测, 包括三相交流电压检测和直流电压检测, 确保输 送到井下控制器的直流电正常, 如果不正常则会发出报警信号。 井下控制器 MCU2根据地面控制 器 MCU1设定的控制参数和控制模式, 以及电流传感器和磁电式传感器的反馈信号以及压力传感 器的压力反馈信号, 运行控制程序, 产生 PWM信号控制 IPM。 IPM根据 PWM信号, 产生三相 电压给交流伺服电机。
井下控制器包括 MCU2、 IPM、 电流传感器、 压力传感器和温度传感器等, 井下控制器的功 能是根据地面控制器设定的控制参数和控制模式, 控制潜油伺服电机运行, 同时将井下信息 (如 压力、 温度、 电流、 转矩等) 传递给地面控制器。 温度传感器的作用是检测井下温度。
图 4是井下控制器的结构原理图。 井下控制器由单片机(MCU)、 IPM, 电流传感器、 压力传 感器等组成。 单片机接收电流传感器、 位置检测装置 (即编码器, 一种磁电式传感器) 和压力传 感器的反馈信号, 运行控制程序, 产生 PWM信号控制 IPM。 IPM根据 PWM信号, 产生三相电 压给交流伺服电机。
在 MCU的内部有 CPU、 A/D转换模块、 同步通讯口和 PWM信号产生模块等, A/D转换模 块将电流传感器输入到 MCU 的模拟信号转换为数字信号, 从而得到电流反馈。 磁电式传感器将 电机角度位置信息通过同步口通讯传递给 MCU。 压力传感器将检测到的井下压力信号传递给 MCU, 经过 A/D采样, 得到压力反馈。 MCU中的 CPU根据电流反馈、 角度反馈、 压力反馈运行 控制程序。 控制程序主要包含压力环、 机械环和电流环, 压力环根据设定指令和压力反馈, 计算 出角度指令; 机械环根据角度指令和角度反馈, 计算出电流指令; 电流环根据电流指令和电流反 馈, 计算出三相电压占空比。 PWM信号产生模块根据三相电压占空比, 产生 PWM信号, 传递给 IPM。 IPM根据 PWM信号, 产生三相电压给交流伺服电机。
本发明所用到的众多传感器包括位置检测装置、 压力传感器、 温度传感器等, 其中位置检测 装置可以是光电式位置检测装置或磁电式位置检测装置。 以下以优选的实施例介绍本发明的位置 检测装置的设计。
图 5 是根据本发明的第一实施例的安装有两个磁感应元件的磁电式传感器方案的分解示意 图。 磁电式传感器包括感应元件 710、 电路板 711、 导磁环 712、 不锈钢罩 713、 磁钢环 715及外 壳 (未图示) 等部分, 磁钢环 715安装于电机尾轴 716上, 其余部分可安装于高压穿线密封组件 714 的不锈钢罩 713上。 本方案的特征之处在于, 磁电式传感器有两个磁感应元件, 导磁环 712 也由两部分组成, 一个是 1/4的磁环, 一个是 3/4的磁环。 两个不完整的磁环形成两个狭缝, 用于 同两个磁感应元件配合使用。
图 6是根据本发明的第一实施例的安装有两个磁感应元件的磁电式传感器方案的信号处理装 置的框图。磁感应元件 Hla和 H2a的输出信号接 MCU的内置 A/D转换器模拟输入口, 经模数转换 后得到输出信号接乘法器 20a、 21a, 系数矫正器 5a的输出信号 K接乘法器 20a、 21a的输入端, 乘法器 20a、 21a的输出信号接合成器 3a的输入端, 合成器 3a输出信号 D和 R, 系数矫正器 5a 接收合成器 3a输出的信号 R和来自于存储器 41a的信号 R。, 通过运算得到信号 K, 通过使磁感 应元件 Hla和 H2a的信号与该信号 K进行相乘, 以此来进行温度补偿, 消除温度对信号的影响。 存储器 40a中存储有一角度存储表, MCU根据信号 D在角度存储表中选择与其相对的角度作为 偏移角度 。
在存储模块中存储有一标准角度表, 其中存储了对应于一系列的码, 每一个码对应于一个角 度。 该表是通过标定得到的, 标定方法是, 利用本施例的检测装置和一高精度位置传感器, 将本 施例中的磁感应元件输出的信号和该高精度位置传感器输出的角度进行一一对应, 以此建立出一 磁感应元件输出的信号与角度之间的关系表。
另外, 在存储模块中还存储了一些数据修正表, 这些表中包括一个信号 D与信号 R。的对应 表, 其中信号 R。为信号 R在标准状态下的信号, 通过合成模块, 即合成器 3a得到的信号 D, 通 过査表可以得到一信号 R。, 通过将信号 R。和信号 R进行比较, 如除法运算, 得到信号1^。
其中对信号的处理, 即合成器 3a对信号的处理原则是: 比较两个信号的数值的大小, 数值小 的用于输出的信号 D, 信号 D的结构为 {第一个信号的符合位, 第二个信号的符合位, 较小数值 的信号的数值位}。 以本实施例为例, 说明如下:
约定:
当数据 X为有符号数时, 数据 X的第 0位(二进制左起第 1位) 为符号位, X_0=1表示数据 X为负, X_0=0表示数据 X为正。
_0表示数据 X的数值位 (数据的绝对值), 即去除符号位剩下数据位。
如果 A_D>=B_D
D={ A_0; B_0; B_D }
Figure imgf000009_0001
否则:
D={ A_0; B_0; A_D }
Figure imgf000009_0002
图 7 是根据本发明的第一实施例的安装有三个磁感应元件的磁电式传感器方案的分解示意 图。 磁电式传感器包括感应元件 717、 电路板 718、 导磁环 719、 不锈钢罩 720、 磁钢环 722及外 壳(未图示) 等部分, 高压穿线密封组件 721, 电机尾轴 723, 其各部分组件的安装方式与两个磁 感应元件的方案的相似, 故在此不再重复。 本方案的特征之处在于, 磁电式传感器有三个磁感应 元件, 导磁环也由三部分组成, 每两个不完整的磁环形成狭缝, 总共形成三个狭缝, 用于同三个 磁感应元件配合使用。
图 8是根据本发明的第一实施例的安装有三个磁感应元件的磁电式传感器方案的信号处理装 置的框图。 本方案的信号处理装置与两个磁感应元件的方案中的相似, 不同之处在于, 磁感应元 件有三个, 输出给合成器的信号为三个, 合成器在取舍信号时与上述方案中的有所不同。 在这里, 仅说明合成器如何取舍信号。
合成器 3c对信号的处理原则是: 先判断三个信号的符合位, 并比较符合位相同的信号的数值 的大小, 数值小的用于输出的信号 D, 信号 D的结构为 {第一个信号的符合位, 第二个信号的符 合位, 第三个信号的符合位, 较小数值的信号的数值位 }。 以本实施例为例:
约定:
当数据 X为有符号数时, 数据 X的第 0位(二进制左起第 1位) 为符号位, X_0=1表示数据 X为负, X_0=0表示数据 X为正。
_0表示数据 X的数值位 (数据的绝对值), 即去除符号位剩下数据位。
如果 { A_0; B_0; C_0}=010 并且 A_D>= C_D
D={ A_0; B_0; C_0 ; C_D } 如果 { A_0 ; B_0; C_0}=010 并且 A_D< C_D
D={ A_0; B_0; C_0 ; A_D } 如果 { A_0 ; B_0; C_0}=101 并且 A_D>= C_D
D={ A_0; B_0; C_0 ; C_D } 如果 { A_0; B_0; C_0}=101 并且 A_D< C_D
D={ A_0; B_0; C_0 ; A_D } 如果 { A_0; B_0; C_0}=011 并且 B_D>=C_D
D={ A_0; B_0; C_0 ; C_D } 如果 { A_0; B_0; C_0}=011 并且 B_D<C_D
D={ A_0; B_0; C_0 ; B_D } 如果 { A_0; B_0; C_0}=100 并且 B_D>=C_D
D={ A_0; B_0; C_0 ; C_D } 如果 { A_0; B_0; C_0}=100 并且 B_D<C_D
D={ A_0; B_0; C_0 ; B_D } 如果 { A_0; B_0; C_0}=001 并且 B_D>=A_D
D={ A_0; B_0; C_0 ; A_D } 如果 { A_0; B_0; C_0}=001 并且 B_D<A_D
D={ A_0; B_0; C_0 ; B_D } 如果 { A_0; B_0; C_0}=110 并且 B_D>=A_D
D={ A_0; B_0; C_0 ; A_D } 如果 { A_0; B_0; C_0}=110 并且 B_D<A_D
D={ A_0; B_0; C_0 ; B_D }
71 71
a = A - B x cos (―) - Cx cos (―) β = Β χ sin(—) - C x sin (―)
Figure imgf000011_0001
图 9 是根据本发明的第一实施例的安装有四个磁感应元件的磁电式传感器方案的分解示意 图。 磁电式传感器包括感应元件 724、 电路板 725、 导磁环 726、 不锈钢罩 727、 磁钢环 729及外 壳(未图示) 等部分, 高压穿线密封组件 728, 电机尾轴 730。 其各部分组件的安装方式与两个磁 感应元件的方案的相似, 故在此不再重复。 本方案的特征之处在于, 磁电式传感器有四个磁感应 元件, 导磁环也由四部分组成, 每两个不完整的磁环形成狭缝, 总共形成四个狭缝, 用于同四个 磁感应元件配合使用。
图 10 是根据本发明的第一实施例的安装有四个磁感应元件的磁电式传感器方案的信号处理 装置的框图。 方案的信号处理装置与两个磁感应元件的方案中的相似, 不同之处在于, 增加了差 动放大模块, 通过该差动放大模块抑制温度和零点漂移, 以此来提高数据精度, 最终输出给合成 器的信号仍为两个, 处理过程及方法与两个传感器的方案的相同, 在此不再重复。
图 11 是根据本发明的第一实施例的安装有六个磁感应元件的磁电式传感器方案的分解示意 图。 磁电式传感器包括感应元件 731、 电路板 732、 导磁环 733、 不锈钢罩 734、 磁钢环 736及外 壳(未图示) 等部分, 高压穿线密封组件 735, 电机尾轴 737。 其各部分组件的安装方式与两个磁 感应元件的方案的相似, 故在此不再重复。 本方案的特征之处在于, 磁电式传感器有六个磁感应 元件, 导磁环也由六部分组成, 每两个不完整的磁环形成狭缝, 总共形成六个狭缝, 用于同六个 磁感应元件配合使用。
图 12 是根据本发明的第一实施例的安装有六个磁感应元件的磁电式传感器方案的信号处理 装置的框图。 方案的信号处理装置与三个磁感应元件的方案中的相似, 不同之处在于, 增加了差 动放大模块, 通过该差动放大模块抑制温度和零点漂移, 以此来提高数据精度, 最终输出给合成 器的信号仍为三个, 处理过程及方法与三个传感器的方案的相同, 在此不再重复。
图 13A到图 13D以由 1/4弧段和 3/4弧段构成的导磁环为例, 图示了本发明的导磁环的倒角 设计。 如图 13A到图 13D所示, 导磁环由两段或多段同半径、 同圆心的弧段构成, 图 13A所示 的导磁环没有设计倒角, 图 13B到图 13D所示的弧段端部设有倒角, 所述倒角为沿轴向(图 13B ) 或径向 (图 13C ) 或同时沿轴向、 径向 (图 13D ) 切削而形成的倒角, 151、 153表示轴向切面, 152、 154表示径向切面。 相邻两弧段间留有缝隙, 磁感应元件置于该缝隙内, 当磁钢环与导磁环 发生相对旋转运动时, 所述磁感应元件将感测到的磁信号转换为电压信号, 并将该电压信号传输 给相应的控制器。 根据磁密公式 B = 可以知道, 当 ^一定时候, 可以通过减少 , 增加 β。 因 为永磁体产生的磁通是一定的, 在导磁环中 较大, 所以 Β比较小, 因此可以减少因为磁场交变 而导致的发热。 而通过减少导磁环端部面积能够增大端部的磁场强度, 使得磁感应元件的输出信 号增强。 这样的信号拾取结构制造工艺简单, 拾取的信号噪声小, 生产成本低, 可靠性高, 而且 尺寸小。 虽然以两个弧段的方案为例描述了导磁环的倒角设计, 然而本发明不限于此, 导磁环为 三弧段、 四弧段、 六弧段的方案都可以采用类似的倒角设计, 在此不再详细描述。
图 14是根据本发明的第二实施例的磁电式传感器方案的关键部件的分解立体图。 图 15是根 据本发明的第二实施例的磁电式传感器方案的安装示意图。 本实施例的磁电式传感器包括转子和 将转子套在内部的定子(即不锈钢罩), 转子包括第一磁钢环 201a和第二磁钢环 201b以及第一导 磁环 205a和第二导磁环 205b, 第一磁钢环 201a和第二磁钢环 201b分别固定在电机轴 200上, 其中定子为支架 203。 第一导磁环 205a和第二导磁环 205b分别由多个同圆心、 同半径的弧段构 成, 相邻两个弧段之间留有空隙, 对应于两个磁钢环的磁感应元件 204分别设在该空隙内。 磁感 应元件设置在不锈钢罩的外壁上, 不锈钢罩外部通过密封装置与外壳密封并固定, 当转子旋转运 动时, 所述磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号输出给一信号处理装 置。
第一磁钢环 201a均匀的磁化为 g (g的取值等于第二磁钢环中的磁极总数) 对极 (N极和 S 极交替排列), 当第二磁钢环中的磁极总数为 6时, 第一磁钢环 201a的极对数为 6对。 以第一磁 钢环 201a的中心为圆心的同一圆周上, 设置有 m个磁感应元件, 如 2个, 如图 16所示, 二个磁 感应元件 Η2之间的夹角为 90° /6。第一磁钢环均匀地磁化为 6对极时磁感应元件的布置如图
17所示。 当转子相对于定子发生相对旋转运动时, 所述磁感应元件将感测到的磁信号转变为电压 信号, 并将该电压信号输出给一信号处理装置。
定义第一磁钢环中相邻一对 "N-S"为一个信号周期, 因此, 任一 "N-S"对应的机械角度为
360° /g (g为 "N-S"个数), 假定转子在 时刻旋转角度 位于第" ί¾信号周期内, 则此时刻角位 移 可认为由两部分构成: 1. 在第 信号周期内的相对偏移量,磁感应元件 和 H2感应第一磁 th 钢环的磁场来确定在此 " N-S"信号周期内的偏移量 (值大于 0小于 360° /g); 2. 第" 信号周 期首位置的绝对偏移量 , 用传感器感应第二磁钢环的磁场来确定此时转子究竟是处于哪一个 "N-S"来得到6 *2。
对应于第二磁钢环 201b, 以第二磁钢环 201b的中心为圆心的同一圆周上设有 n (n=l, 2…! i) 个均匀分布的磁感应元件, 第二磁钢环的磁极磁化顺序使得 n个磁感应原件输出呈格雷码形式。 磁极的极性为格雷码的首位为 "0"对应于 "N/S" 极, 首位为 "1"对应于 "S/N"极。 例如, 当 n为 3时, 得到如图 18所示的编码, 得到如图 19所示的第二磁钢环的充磁顺序, 如图 20所示, 三个磁感应元件均布周围进行读数。
图 21是本实施例的磁电式传感器的一个信号处理装置的框图。本示例中, 第一磁钢环设有两 个磁感应元件, 传感器 l_la和 l_2a的输出信号接放大器 2_la、 2_2a进行放大, 然后接 A/D转换 器 3_la、 3_2a, 经模数转换后得到输出信号接乘法器 4_la、 5_la, 系数矫正器 10_la输出信号接 乘法器 4_la、 5_la的输入端, 乘法器 4_la、 5_la的输出信号 A、 B接第一合成器 6_la的输入端, 第一合成器 6_la对信号 A、 B进行处理, 得到信号 D、 R, 根据信号 D从存储器 8中存储的标准 角度表中选择一与其相对的角度作为偏移角度 。 其中, 第五合成器 6_la的输出信号 R输送给 系数矫正器 10_la,系数矫正器 10_la根据信号 R和从存储器 9_la中査表得到信号 R。得到信号 K, 该信号 Κ作为乘法器 4_la、 5_la的另一输入端, 与从放大器 2_la、 2_2a输出的信号 Cl、 C2分 虽相乘得到信号 A、 B作为第一合成器 6_la的输入。 传感器 l_3a、 l_4a、 .. . l_na的输出信号分别接放大器 2_3a、 2_4a、 .. .2_na进行放大, 然后 接 A/D转换器 3_3a、 3_4a、 .. .3_na进行模数转换后通过第二合成器 7_l a进行合成, 得到一信号
E ; 根据该信号 E在存储器 l l_l a中的第二标准角度表中选择一与其相对的角度作为第一电压信 号所处的信号周期首位置的绝对偏移量 , θι和 θ通过加法器 12_l a得到测量的绝对角位移输出 θ。
第二合成器 7_l a的功能是, 通过对传感器 l_3a、 l_4a、 .. . l_na 的信号进行合成, 得到此时 刻转子处于哪一个 " N-S "信号周期内。 第二合成器 7_l a的处理是: 当数据 X为有符号数时, 数 据 X的第 0位 (二进制左起第 1位) 为符号位, X_0= 1表示数据 X为负, X_0=0表示数据 X为 正。 也即当感应的磁场为 N时, 输出为 X_0=0, 否则为 X_0= 1。
则对于本实施例, E ={ C3_0; C4_0; Cn_0 }。
其中, 第一合成器 6_l a对信号的处理是: 比较两个信号的数值的大小, 数值小的用于输出的 信号 D, 信号 D的结构为 {第一个信号的符合位, 第二个信号的符合位, 较小数值的信号的数值 位}。 具体如下:
这里约定 (后文各合成器均使用该约定), 当数据 X为有符号数时, 数据 X的第 0位 (二进 制左起第 1位) 为符号位, X_0= 1表示数据 X为负, X_0=0表示数据 X为正。 X_D表示数据 X 的数值位 (数据的绝对值), 即去除符号位剩下的数据位。
如果 A_D>=B_D
否则:
Figure imgf000013_0001
信号 K一般是通过将信号 R。和 R进行除法运算得到。
对于第一、 二标准角度表, 在存储器中存储了两个表, 每个表对应于一系列的码, 每一个码 对应于一个角度。 该表是通过标定得到的, 标定方法是, 利用本施例的检测装置和一高精度位置 传感器, 将本施例中的磁感应元件输出的信号和该高精度位置传感器输出的角度进行一一对应, 以此建立出一磁感应元件输出的信号与角度之间的关系表。 也就是, 对应于信号 D存储了一个第 一标准角度表, 每一个信号 D代表一个相对偏移量 。 对应于信号 E, 存储了一个第二标准角度 表, 每一个信号 E代表一个绝对偏移量 。
本发明不限于上述示例, 第一磁钢环还可以设有三个、 四个、 六个磁感应元件, 相应的导磁 环和信号处理电路也要做相应变化, 然而其变化与第一实施例中所述的类似, 故在此不再赘述。
当设有导磁环时, 导磁环的弧段端部设有倒角, 为沿轴向或径向或同时沿轴向、 径向切削而 形成的倒角。
作为替代,磁感应元件可以直接表贴在不锈钢罩的外表面上,即不设有导磁环,如图 22所示。 其它部件以及其信号处理装置与有导磁环的类似, 在此不再赘述。
图 23是根据第三实施例的磁电式传感器的分解立体图。 在骨架 (即不锈钢罩) 306上对应于 磁钢环 302、 磁钢环 303分别设有两列磁感应元件 307。 图中只示出一列磁感应元件, 为了说明方 便, 这里将第一列磁感应元件即对应磁钢环 302和导磁环 304的多个磁感应元件都用磁感应元件 307表示, 而将第二列磁感应元件即对应磁钢环 303和导磁环 305 的多个磁感应元件也用磁感应 元件 307表示。 为了说明方便, 这里将磁钢环 302定义为第一磁钢环, 将磁钢环 303定义为第二 磁钢环, 将导磁环 304限定为对应于第一磁钢环, 将导磁环 305限定为对应于第二磁钢环, 然而 本发明不限于上述的限定。
第一磁钢环 302被均匀地磁化为 N对磁极, N 2n(n=0, 1, 2…! i)对磁极, 并且相邻两极的极 性相反, 第二磁钢环的磁极总数为 2n, 其磁序按照磁序算法确定; 在轴 301上, 对应于第一磁钢 环 302,以第一磁钢环 302的中心为圆心的同一圆周上设有 m(m为 2或 3的整数倍)个呈一定角度 分布的磁感应元件 307 ; 对应于第二磁钢环 303, 以第二磁钢环 303的中心为圆心的同一圆周上设 有 n(n=0, 1, 2…! 1)个呈 360° /2n角度分布的磁感应元件 307。
图 24是磁钢环 303的磁序算法流程图。 如图 25所示, 以三个磁感应元件的情况为例, 首先 进行初始化 a[3]= " 0, 0, 0"; 然后将当前编码入编码集, 即编码集中有 " 0, 0, 0"; 接着检验入 编码集的集合元素是否达到 2n, 如果是则程序结束, 反之将当前编码左移一位, 后面补 0; 然后 检验当前编码是否已入编码集, 如果未入编码集则将当前编码入编码集继续进行上述步骤, 如果 已入编码集则将当前码末位去 0补 1 ; 接着检验当前编码是否已入编码集, 如果未入编码集则将 当前编码入编码集继续进行上述步骤,如果已入编码集则检验当前码是否为" 0…… 0",是则结束, 否则将当前编码的直接前去码末位去 0补 1 ; 接着检验当前编码是否已入编码集, 如果未入编码 集则将当前编码入编码集继续进行上述步骤, 如果已入编码集则检验当前码是否为 " 0…… 0 ", 然 后继续进行下面的程序。 其中 0磁化为 " N", 1磁化为 " S "。 这样得到了图 25所示的磁钢环 303 充磁结构图以及 H3、 H4和 的排布顺序。
本实施例中, 对应于所述的第二磁钢环的相邻两个磁感应元件之间的夹角为 360° /N。 关于 对应于所述的第一磁钢环相邻两个磁感应元件之间的夹角, 当 m为 2或 4时, 每相邻两个磁感应 元件之间的夹角为 90 N, 当 m为 3时, 每相邻两个磁感应元件之间的夹角为 120 N; 当 m为 6 时, 每相邻两个磁感应元件之间的夹角为 60°/N。
图 26是根据第三实施例的磁电式传感器的信号处理装置的框图。由于其信号处理方式与第二 实施例的类似, 故在此不再赘述。
第一磁钢环可以设有两个、 三个、 四个、 六个磁感应元件, 相应的导磁环和信号处理电路也 要做相应变化, 然而其变化与第一实施例中所述的类似, 故在此不再赘述。
当设有导磁环时, 导磁环的弧段端部设有倒角, 为沿轴向或径向或同时沿轴向、 径向切削而 形成的倒角。
作为替代, 磁感应元件可以直接表贴在不锈钢罩的外表面上, 即不设有导磁环, 其它部件以 及其信号处理装置与有导磁环的类似, 在此不再赘述。
本实施例的磁电式传感器的信号处理方法与第二实施例中的类似,故在此省略对其重复描述。 除了磁电式磁电式传感器以外, 还可以采用光电式磁电式传感器, 由于其信号处理装置与磁 电式的类似, 故在此不再赘述。
井下处理单元包括电机控制子单元和信号处理子单元, 信号处理子单元接收磁电式传感器发 送来的信息, 并将该信息处理成电机的旋转角度。 电机控制子单元包括压力环控制子单元、 机械 环控制子单元、 电流环控制子单元和 PWM控制信号产生子单元, 图 27到图 30分别是压力环控 制子单元、 机械环控制子单元、 电流环控制子单元和 PWM控制信号产生子单元的控制框图。
如图 27所示, 压力环的输入为压力指令和压力反馈, 输出为角度指令。 压力指令减去压力反 馈得到压力误差, 通过 PID控制器得到角度指令。 压力环控制的是井下压力, 压力与井下液面深 度相对应, 控制压力实际上是控制井下液面的深度。 压力环控制子单元接收压力传感器感测的压 力信息, 将与接收的压力指令进行运算得到角度指令, 并输出给所述的机械环控制子单元。 优选 地, 在中心控制站或每一口井的控制子系统中包括井下液面浓度计算单元, 该单元基于压力传感 器的数据计算出井下液面浓度。
如图 28所示, 机械环控制子单元根据接收到的指令信号和 /或压力环控制子单元输出的角度 指令及磁电式传感器输出的电机轴的旋转角度, 经过运算得到电流指令, 并输出给所述的电流环 控制子单元。
如图 29所示, 电流环控制子单元根据接收到的电流指令和电流传感器输出的电流信号, 经过 运算得到三相电压的占空比控制信号, 并输出给所述的 PWM控制信号产生子单元。
如图 30所示, PWM控制信号产生子单元根据接收到的三相电压的占空比控制信号, 生成具 有一定顺序的六路 PWM信号, 分别作用于电机驱动单元。 其中, 电机驱动单元可以为 IPM模块。
图 31是图 2中的电缆的进线示意图。 由图中可以看到, 潜油伺服系统中的电缆沿着壳体外壁 从地面进入井下,通过连接头 21从伺服电机 4的头部进入壳体内部其中的传感器 6可以是温度传 感器和 /或压力传感器。
图 32是电机控制模块和传感器部分的走线图。 图中以温度传感器 29和压力传感器 28为例, 图示了其走线。 其它附图标记表示: 磁电式传感器及密封组件 15, 电机控制模块 5, 电机动力线 22, 电源线 23, 控制器外壁 24, 电路板 25, 压力信号线 26, 控制器端盖 27, 温度传感器信号线 30, 散热片 31, 磁电式传感器线 32, 通讯信号线 33。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案而非限制。 尽管参照上述实施例 对本发明进行了详细说明, 本领域的普通技术人员应当理解, 依然可以对本发明的技术方案进行 修改和等同替换, 而不脱离本技术方案的精神和范围, 其均应涵盖在本发明的权利要求范围当中。

Claims

权利要求书
1. 一种油田控制系统, 其特征在于, 包括中心控制站和分别与其相通信的多个井下潜油伺服 拖动控制子系统, 每一井下潜油伺服拖动控制子系统与其所在井内的采油模块相连接, 在根据从 中心控制站或该子系统的人机交互界面接收的指令和控制参数、 控制采油模块工作的同时, 将该 井内的情况发送给中心控制站。
2. 根据权利要求 1所述的油田控制系统, 其特征在于, 每一所述井下潜油伺服拖动控制子系 统包括:
位于地面上的地面控制模块和电源模块; 和
位于井下的伺服电机、 电机控制模块和传感器;
所述地面控制模块分别与所述中心控制站和所述电机控制模块通信, 用于将用户指令和设定 的参数从所述地面控制模块和 /或所述中心控制站发送给所述电机控制模块, 或者将从所述电机控 制模块接收的信息发送给所述中心控制站;
所述电源模块将地面上的三相交流电转换为直流电输入到井下的电机控制模块;
所述电机控制模块接收所述地面控制模块发送来的指令和参数及传感器发送来代表电机运行 的信息, 控制伺服电机工作, 并将所述传感器感测的进下信息发送给所述地面控制模块。
3. 如权利要求 2所述的油田控制系统, 其特征在于, 所述地面控制模块包括地面处理单元、 地面通信单元和人机交互界面; 所述人机交互界面用于提供用户设定指令和参数, 并进行相关显 示; 所述地面通信单元用于与中心控制站和井下电机控制模块通信。
4. 如权利要求 3所述的油田控制系统,其特征在于,所述地面控制模块还包括电源检测单元, 所述电源检测单元用于检测所述电源模块是否正常, 并将检测结果发送给所述地面处理单元。
5. 如权利要求 3所述的油田控制系统, 其特征在于, 所述电机控制模块包括井下处理单元、 电机驱动单元和井下通信单元;
所述井下通信单元与地面通信单元相连接, 用于接收地面通信单元发送的指令和参数并传递 给井下处理单元;
所述井下处理单元接收传感器发送来的关于电机运行的信息, 根据用户的指令和设定的参数 及传感器发送来的信息, 生成相应的控制信号给电机驱动单元;
所述电机驱动单元根据该控制信号, 将直流电转换成三相电驱动所述伺服电机运行。
6. 如权利要求 2-5任一所述的油田控制系统, 其特征在于, 所述传感器包括采集电机轴位置 信息的位置检测装置。
7. 如权利要求 6所述的油田控制系统,其特征在于,所述传感器还包括压力传感器和 /或温度 传感器。
8. 如权利要求 6所述的油田控制系统, 其特征在于, 所述位置检测装置为光电式传感器或磁 电式传感器。
9. 如权利要求 8所述的油田控制系统, 其特征在于, 所述磁电式传感器包括传感器本体、 不 锈钢罩、 密封装置和外壳;
所述传感器本体包括磁钢环、 导磁环和磁感应元件; 所述导磁环设置在不锈钢罩的外壁上, 由两段或多段同半径、 同圆心的弧段构成, 相邻两弧段留有缝隙; 所述磁感应元件置于该缝隙内; 所述磁钢环设置在不锈钢罩的内腔中, 固定在电机转轴上; 不锈钢罩外部通过密封装置与外壳密 封并固定; 当磁钢环与导磁环发生相对旋转运动时, 所述磁感应元件将感测到的磁信号转换为电 压信号, 并将该电压信号传输给相应的信号处理电路。
10. 如权利要求 8所述的油田控制系统, 其特征在于, 所述磁电式传感器包括传感器本体、 不锈钢罩、 密封装置和外壳,
所述传感器本体包括转子, 所述转子包括第一磁钢环、 第二磁钢环;
其中, 所述第一磁钢环和第二磁钢环分别固定在转轴上, 所述第一磁钢环被均匀地磁化为 N
[ N<=2n(n=0, 1, 2…! 1) ]对磁极, 并且相邻两极的极性相反; 所述第二磁钢环的磁极总数为 N, 其磁序按照特定磁序算法确定;
在不锈钢罩上, 对应于第一磁钢环, 以第一磁钢环的中心为圆心的同一圆周上设有 m(m为 2 或 3的整数倍)个呈一定角度分布的磁感应元件; 对应于第二磁钢环, 以第二磁钢环的中心为圆心 的同一圆周上设有 n(n=0, 1, 2…! 1)个呈一定角度分布的磁感应元件; 磁感应元件设置在不锈钢罩 的外壁上;
不锈钢罩外部通过密封装置与外壳密封并固定;
当转子相对于不锈钢罩发生相对旋转运动时, 所述磁感应元件将感测到的磁信号转变为电压 信号, 并将该电压信号输出给信号处理电路。
11. 如权利要求 10所述的油田控制系统, 其特征在于, 对应于所述的第二磁钢环的相邻两个 磁感应元件之间的夹角为 360° /N。
12. 如权利要求 10所述的油田控制系统, 其特征在于, 对应于所述的第一磁钢环相邻两个磁 感应元件之间的夹角, 当 m为 2或 4时, 每相邻两个磁感应元件之间的夹角为 90°/N, 当 m为 3 时, 每相邻两个磁感应元件之间的夹角为 120 N; 当 m为 6时, 每相邻两个磁感应元件之间的夹 角为 60 N。
13. 如权利要求 8所述的油田控制系统, 其特征在于, 所述磁电式传感器包括传感器本体、 不锈钢罩、 密封装置和外壳,
传感器本体包括转子, 所述转子包括第一磁钢环、 第二磁钢环,
其中, 所述第一磁钢环和第二磁钢环分别固定在电机轴上, 设置在不锈钢罩的内腔中, 对应 于第二磁钢环, 以第二磁钢环的中心为圆心的同一圆周上设有 η (η=1, 2…! ι)个均匀分布的磁感应 元件, 所述第二磁钢环的磁极磁化顺序使得 n个磁感应元件输出呈格雷码格式, 相邻两个输出只 有一位变化;
在不锈钢罩上, 对应于第一磁钢环, 以第一磁钢环的中心为圆心的同一圆周上设有 m(m为 2 或 3的整数倍)个呈一定角度分布的磁感应元件, 所述第一磁钢环的磁极总对数与第二磁钢环的磁 极总数相等, 并且相邻两极的极性相反; 磁感应元件设置在不锈钢罩的外壁上;
不锈钢罩外部通过密封装置与外壳密封并固定;
当转子相对于不锈钢罩发生相对旋转运动时, 所述磁感应元件将感测到的磁信号转变为电压 信号, 并将该电压信号输出给信号处理电路。
14. 如权利要求 13所述的油田控制系统, 其特征在于, 对应于第一磁钢环的相邻两个磁感应 元件之间的夹角, 当 m为 2或 4时, 该夹角为 90 ° /g; 当 m为 3时, 该夹角为 120° /g; 当 m为
6时, 该夹角为 60° /g, 其中, g为第二磁钢环的磁极总数。
15. 如权利要求 9所述的油田控制系统, 其特征在于, 所述磁电式传感器还包括信号处理电 路, 所述信号处理电路包括:
A/D转换模块, 对磁电式传感器中磁感应元件发送来的电压信号进行 A/D转换, 将模拟信号 转换为数字信号;
合成模块, 对磁电式传感器发送来的经过 A/D转换的多个电压信号进行取舍, 得到基准信号
D ;
角度获取模块, 根据该基准信号 D, 在角度存储表中选择与其相对的角度作为偏移角度 ; 以及
存储模块, 用于存储处理过程中的数据和角度存储表。
16. 如权利要求 10或 13所述的油田控制系统, 其特征在于, 所述磁电式传感器还包括信号 处理电路, 所述信号处理电路包括:
A/D转换模块, 对磁电式传感器发送来的电压信号进行 A/D转换, 将模拟信号转换为数字信 号;
相对偏移角度 计算模块, 用于计算磁电式传感器中对应于第一磁钢环的磁感应元件发送来 的第一电压信号在所处信号周期内的相对偏移量 ;
绝对偏移量 计算模块, 根据磁电式传感器中对应于第二磁钢环的磁感应元件发送来的第二 电压信号, 通过计算来确定第一电压信号所处的信号周期首位置的绝对偏移量 ;
角度合成及输出模块, 用于将上述相对偏移量 和绝对偏移量 相加, 合成所述第一电压信 号所代表的在该时刻的旋转角度 ; 和
存储模块, 用于存储处理过程中的数据。
17. 根据权利要求 15或 16所述的油田控制系统, 其特征在于, 所述信号处理电路还包括: 信号放大模块, 用于在 A/D转换模块进行 A/D转换之前, 对来自于磁电式传感器的电压信号 进行放大。
18. 根据权利要求 16所述的油田控制系统, 其特征在于, 所述相对偏移角度 计算模块包括 合成单元和第一角度获取单元, 所述合成单元对磁电式传感器发送来的经过 A/D转换的多个电压 信号进行取舍, 得到一基准信号 D ; 所述第一角度获取单元根据该基准信号 D, 在第一角度存储 表中选择一与其相对的角度作为偏移角度 。
19. 如权利要求 18所述的油田控制系统, 其特征在于, 所述相对偏移角度 计算模块还包括 温度补偿单元, 用于消除温度对磁电式传感器发送来的电压信号的影响。
20. 如权利要求 19所述的油田控制系统, 其特征在于, 所述相对偏移角度 计算模块还包括 一系数矫正单元, 其根据合成单元的输出进行运算, 得到一输出信号1^。
21. 如权利要求 20所述的油田控制系统, 其特征在于, 所述温度补偿单元包括多个乘法器, 每一所述乘法器将经过 A/D转换的、 磁电式传感器发送来的一个电压信号与所述系数矫正单元输 出的信号 K相乘, 将相乘后的结果输出给合成单元。
22. 根据权利要求 16所述的油田控制系统, 其特征在于, 所述绝对偏移量 计算模块包括合 成器和第二角度获取单元, 所述合成器用于对对应于第二磁钢环的磁电式传感器发送来的第二电 压信号进行译码, 得到一信号 E; 所述第二角度获取单元根据该信号 E在第二角度存储表中选择 一与其相对的角度作为第一电压信号所处的信号周期首位置的绝对偏移量 。
23. 如权利要求 6所述的油田控制系统, 其特征在于, 所述井下处理单元包括电机控制子单 元和信号处理子单元, 所述信号处理子单元接收所述磁电式传感器发送来的信息, 并将该信息处 理成电机的旋转角度。
24. 如权利要求 23所述的油田控制系统, 其特征在于, 所述电机控制子单元包括包括压力环 控制子单元、 机械环控制子单元、 电流环控制子单元和 PWM控制信号产生子单元; 所述压力环控制子单元接收压力传感器感测的压力信息, 将与接收的压力指令进行运算得到 角度指令, 并输出给所述的机械环控制子单元;
所述机械环控制子单元根据接收到的指令信号和 /或压力环控制子单元输出的角度指令及位 置检测装置输出的电机轴的旋转角度, 经过运算得到电流指令, 并输出给所述的电流环控制子单 元;
所述电流环控制子单元根据接收到的电流指令和电流传感器输出的电流信号, 经过运算得到 三相电压的占空比控制信号, 并输出给所述的 PWM控制信号产生子单元;
所述 PWM控制信号产生子单元根据接收到的三相电压的占空比控制信号, 生成具有一定顺 序的六路 PWM信号, 分别作用于电机驱动单元。
25. 如权利要求 5所述的油田控制系统, 其特征在于, 所述电机驱动单元为 IPM模块。
26. 如权利要求 2所述的油田控制系统, 其特征在于, 所述伺服电机为永磁同步伺服电机。
27. 根据权利要求 1 所述的抽油控制系统, 其特征在于, 每一所述井下潜油伺服拖动控制子 系统通过有线或无线的方式与中心控制站通信。
28. 根据权利要求 7所述的抽油控制系统, 其特征在于, 在中心控制站或地面处理单元或电 机控制模块包括井内数据处理子单元, 用于对压力传感器或 /和温度传感器采集的数据进行处理, 以得知井下液面的深度或 /和井内的温度。
PCT/CN2010/072264 2009-04-30 2010-04-27 油田控制系统 WO2010124629A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910137772.9 2009-04-30
CN2009101377729A CN101876823B (zh) 2009-04-30 2009-04-30 油田控制系统

Publications (1)

Publication Number Publication Date
WO2010124629A1 true WO2010124629A1 (zh) 2010-11-04

Family

ID=43019398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072264 WO2010124629A1 (zh) 2009-04-30 2010-04-27 油田控制系统

Country Status (2)

Country Link
CN (1) CN101876823B (zh)
WO (1) WO2010124629A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110249A (zh) * 2014-07-07 2014-10-22 因为科技无锡有限公司 油井状态信息采集与预处理系统
CN111766931A (zh) * 2020-06-28 2020-10-13 沈阳金凯瑞科技有限公司 一种抽油机井系统效率测试仪
CN114086926A (zh) * 2021-11-17 2022-02-25 国网河北省电力有限公司沧州供电分公司 油田机采系统的控制方法、装置及油田机采系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644106B (zh) * 2013-11-11 2016-04-20 山东祺龙海洋石油钢管股份有限公司 电动潜油往复泵控制柜
CN104696215B (zh) * 2013-12-06 2017-06-06 中国石油天然气股份有限公司 井下直驱螺杆泵的智能控制装置及其操作方法
CN104038137B (zh) * 2014-06-27 2016-04-20 山东联创高科自动化有限公司 一种往复式潜油直线电机变频控制装置
CN114625043A (zh) * 2022-02-28 2022-06-14 中国科学院深圳先进技术研究院 基于互联网的设备动作远程控制系统及方法
CN114726460B (zh) * 2022-06-07 2022-09-20 华中科技大学 一种井间镜像差分电流型地面收发天线装置及其通信方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1181450A (zh) * 1997-11-13 1998-05-13 深圳市南和汇安电子科技有限公司 油田采油智能化管理系统
CN1437331A (zh) * 2002-02-09 2003-08-20 哈尔滨理工大学 油田用远程无线监控系统
CN1554870A (zh) * 2003-12-26 2004-12-15 哈尔滨工业大学 潜油螺杆泵的动力系统
US20080066536A1 (en) * 2006-09-18 2008-03-20 Goodwin Anthony R H Method and apparatus for sampling formation fluids
WO2008083011A1 (en) * 2006-12-29 2008-07-10 Schlumberger Canada Limited Method and system for altering pore pressure in a fracturing operation
CN201212467Y (zh) * 2008-06-30 2009-03-25 四川晨洋科技研究所有限公司 远程数控采油机

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201574744U (zh) * 2009-04-30 2010-09-08 浙江关西电机有限公司 油田控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1181450A (zh) * 1997-11-13 1998-05-13 深圳市南和汇安电子科技有限公司 油田采油智能化管理系统
CN1437331A (zh) * 2002-02-09 2003-08-20 哈尔滨理工大学 油田用远程无线监控系统
CN1554870A (zh) * 2003-12-26 2004-12-15 哈尔滨工业大学 潜油螺杆泵的动力系统
US20080066536A1 (en) * 2006-09-18 2008-03-20 Goodwin Anthony R H Method and apparatus for sampling formation fluids
WO2008083011A1 (en) * 2006-12-29 2008-07-10 Schlumberger Canada Limited Method and system for altering pore pressure in a fracturing operation
CN201212467Y (zh) * 2008-06-30 2009-03-25 四川晨洋科技研究所有限公司 远程数控采油机

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110249A (zh) * 2014-07-07 2014-10-22 因为科技无锡有限公司 油井状态信息采集与预处理系统
CN111766931A (zh) * 2020-06-28 2020-10-13 沈阳金凯瑞科技有限公司 一种抽油机井系统效率测试仪
CN111766931B (zh) * 2020-06-28 2023-06-27 沈阳金凯瑞科技有限公司 一种抽油机井系统效率测试仪
CN114086926A (zh) * 2021-11-17 2022-02-25 国网河北省电力有限公司沧州供电分公司 油田机采系统的控制方法、装置及油田机采系统
CN114086926B (zh) * 2021-11-17 2024-03-01 国网河北省电力有限公司沧州供电分公司 油田机采系统的控制方法、装置及油田机采系统

Also Published As

Publication number Publication date
CN101876823B (zh) 2012-05-30
CN101876823A (zh) 2010-11-03

Similar Documents

Publication Publication Date Title
WO2010124629A1 (zh) 油田控制系统
WO2010124627A1 (zh) 位置检测装置及其信号处理装置
WO2010124611A1 (zh) 抽油系统的控制系统
WO2010124595A1 (zh) 多节伺服潜油电机
CN101615825B (zh) 一种永磁同步电机旋转变压器标定及调零系统及其运作方法
CN103944317B (zh) 无刷直流电机转子位置任意角度检测方法
US9059650B2 (en) Angle detecting module and method for motor rotor
CN103609005B (zh) 由带有电子控制元件的无刷直流电机构成的电机总成
WO2010124606A1 (zh) 潜油伺服拖动系统
CN201860242U (zh) 电机转子位置及速度的检测装置
CN111740672B (zh) 基于线性霍尔传感器的永磁同步电机角度检测方法和系统
CN109617464A (zh) 一种基于pwm信号激磁的旋转变压器解码方法及系统
WO2010124626A1 (zh) 电动缝纫机
CN105811828A (zh) 一种基于线性霍尔传感器的飞轮转速控制装置及方法
WO2010124590A1 (zh) 电动机
CN104796053B (zh) 基于旋转变压器的直流电机控制器及控制方法
CN107276481B (zh) 基于旋转变压器的矢量控制方法、系统及电机系统
CN2731096Y (zh) 潜油(水)电泵机组井下智能多参数测试装置
CN103997262B (zh) 基于无传感器轮毂式电机的电动自行车正弦波控制方法
WO2010124587A1 (zh) 位置检测装置及其信号处理装置和方法
CN107040172A (zh) 一种无轴承磁通切换电机转子径向偏移观测方法
CN109714059B (zh) 正余弦磁编码器的解码方法和系统
CN201478959U (zh) 多节伺服潜油电机
CN201574744U (zh) 油田控制系统
CN104316085B (zh) 基于双速感应同步机的绝对值旋转编码器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769318

Country of ref document: EP

Kind code of ref document: A1