WO2010123035A1 - ハイブリッド溶接方法及びハイブリッド溶接装置 - Google Patents

ハイブリッド溶接方法及びハイブリッド溶接装置 Download PDF

Info

Publication number
WO2010123035A1
WO2010123035A1 PCT/JP2010/057089 JP2010057089W WO2010123035A1 WO 2010123035 A1 WO2010123035 A1 WO 2010123035A1 JP 2010057089 W JP2010057089 W JP 2010057089W WO 2010123035 A1 WO2010123035 A1 WO 2010123035A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
laser beam
base material
wire
spot
Prior art date
Application number
PCT/JP2010/057089
Other languages
English (en)
French (fr)
Inventor
桂 大脇
松坂文夫
藤田秀一
猪瀬幸太郎
Original Assignee
株式会社Ihi検査計測
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi検査計測, 株式会社Ihi filed Critical 株式会社Ihi検査計測
Priority to JP2011510348A priority Critical patent/JPWO2010123035A1/ja
Priority to US13/263,602 priority patent/US20120024828A1/en
Publication of WO2010123035A1 publication Critical patent/WO2010123035A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1093Consumable electrode or filler wire preheat circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/242Fillet welding, i.e. involving a weld of substantially triangular cross section joining two parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding

Definitions

  • the present invention relates to a hybrid welding method and a hybrid welding apparatus suitable for use in welding of difficult-to-weld materials such as thick plate welding, overlay welding, and high-tensile steel plate.
  • This hot wire TIG welding method is a method for supplying a welding wire heated by energization into a TIG arc, and is a method for compensating for a small amount of welding in normal TIG welding.
  • the hot wire TIG welding method described above when used for thick plate welding, the heat input to the welded portion by the TIG arc increases and the base material is distorted. That is, the above-described hot wire welding method has a problem that a process for removing this distortion is required or the work accuracy is reduced. And this hot wire TIG welding method has a problem that an increase in weight cannot be avoided if the plate thickness is increased in order to avoid distortion in the base material.
  • the present invention has been made paying attention to the above-described conventional problems, and when used for welding thick plates, the work can be performed without increasing the weight by the amount that the deformation amount of the base material can be reduced. It aims at providing the hybrid welding method and hybrid welding apparatus which can implement
  • the present invention also provides a hybrid welding method and a hybrid welding apparatus that can perform high-quality welding without causing deterioration or cracking of the metal structure when used for welding difficult-to-weld materials such as high-tensile steel plates. The purpose is to provide.
  • the present inventors paid attention to a laser diode which is a kind of laser used for laser welding.
  • This laser diode is a laser with extremely high oscillation efficiency.
  • laser diodes are limited to applications such as surface modification. This is because the laser diode has a structure in which elements are integrated in an array to obtain a high output, and therefore has a limited light collecting performance unlike a YAG laser or the like.
  • the laser diode has excellent uniformity of irradiation power distribution and can accurately control heat input to the base material. From this, the present inventors have obtained the knowledge that the surface of the base material can be melted uniformly and shallowly when performing heat conduction type welding using a laser diode.
  • the base material is uniformly and minimally heated to melt only the surface or its vicinity and heated to the point where it melts to the melted portion.
  • the present inventors have found that high-quality welding can be realized if a wire (hot wire) is supplied and heated and melted to a minimum by energization and a laser diode.
  • the heat input for heating the base metal and the heat source for the welding wire are properly used, so that the low heat input required for welding difficult-to-weld materials such as thick plates and high-tensile steel plates.
  • the present inventors have found that stable welding conditions can be produced, and have led to the present invention.
  • the base material when performing welding on difficult-to-weld materials such as thick plate welding and high-tensile steel plate, the base material is irradiated with a laser beam emitted from a laser diode to melt and move the surface of the base material.
  • the structure is such that, for example, a welding wire having a wire diameter of 1.2 mm is continuously supplied to the melted portion of the surface of the base material that moves in accordance with the movement of the laser beam. (Claim 1).
  • the shape of the spot on the surface of the base material of the laser beam irradiated to the base material is not particularly limited.
  • the spot can be circular, oval or rectangular, and the spot size in the direction perpendicular to the moving direction of the laser beam is the spot width (if the spot is circular) Spot diameter).
  • the spot on the surface of the base material of the laser beam irradiated to the base material has a spot width of 5 to 11 mm in a direction orthogonal to the moving direction of the laser beam (the spot forms a circular shape).
  • the spot diameter is 5 to 11 mm.
  • the spot on the surface of the base material of the laser beam irradiated to the base material has an oval shape along the moving direction of the laser beam (Claim 3).
  • the spot on the surface of the base material of the laser beam irradiated onto the base material has a configuration in which a circle is shifted and overlapped in the moving direction of the laser beam (Claim 4).
  • the welding wire is supplied from the front in the moving direction of the laser beam (Claim 5).
  • the present invention also relates to a hybrid welding apparatus for performing welding on difficult-to-weld materials such as thick plate welding and high-tensile steel plate, and irradiates a laser beam with a laser beam from the laser diode to the base material.
  • a wire supply unit that continuously supplies a wire, and a wire heating power source that energizes the welding wire to bring the welding wire positioned at the melting portion of the surface of the base material to the point of melting (claim) Item 6).
  • a spot width (a spot diameter of 5 to 11 mm when the spot is circular) of the laser beam irradiated from the irradiation unit is set to 5 to 11 mm. 7).
  • the apparatus includes a spot shape changing unit that extends a spot on the surface of the base material of the laser beam irradiated from the irradiation unit into an elliptical shape along a moving direction of the laser beam. 8).
  • the laser beam irradiated from the irradiation unit includes a spot shape changing unit configured to make a spot on the surface of the base material overlapped by shifting the circle in the moving direction of the laser beam ( Claim 9).
  • the spot width dimension is smaller than 5 mm, the heat input does not stop on the surface of the base material or the vicinity thereof but reaches the back.
  • the spot width dimension is larger than 11 mm, insufficient melting occurs. Therefore, the spot width dimension is desirably 6 to 10 mm, and the spot width dimension is more desirably 7 to 9 mm.
  • the spot on the surface of the base material of the laser beam is divided into a plurality of parts along the moving direction of the laser beam, and each part has a predetermined irradiation intensity. You may make it set so that it may become.
  • pressure control means such as an actuator may be provided so as to keep the contact pressure of the welding wire with respect to the base material surface constant.
  • a laser beam and a welding wire swing mechanism are provided, and at the time of butt welding, the laser beam and the cycle with an amplitude equal to or smaller than a groove width and a predetermined value or smaller. You may make it make a welding wire swing.
  • a hybrid welding method and a hybrid welding apparatus include a structure made of a steel plate having a thickness of 5 to 8 mm or a high-tensile steel plate, for example, a steel member in a steel concrete composite structure such as a bridge or a highway, a so-called composite floor slab. It is suitable to be used for fillet welding of the upper structure of the hull or for fillet welding of the superstructure of the hull.
  • the base material when the base material is irradiated with the laser beam emitted from the laser diode, the base material is uniformly and receives the minimum heat, and only the surface or the vicinity thereof is melted.
  • the laser beam is moved, and a welding wire that is about to be melted by energization is continuously supplied to the melted portion of the surface of the base material that moves as the laser beam moves.
  • the welding wire also receives a minimum amount of heat and melts, so that high-quality welding is achieved.
  • the spot diameter of the laser beam on the surface of the base material is set to 5 to 11 mm (preferably 6 to 10 mm, more preferably 7 to 9 mm), the melted portion of the base material surface such as irregularities and skin disturbance may be disturbed. Since a welding wire can be supplied with respect to a few area
  • the spot on the surface of the base material of the laser beam is formed into an oval shape along the moving direction of the laser beam, or the circle is shifted and overlapped in the moving direction of the laser beam. If it becomes such a shape, welding with higher stability will be achieved.
  • the laser beam follows the welding wire. It is possible to repair the defects of the weld bead such as.
  • the hybrid welding method and the hybrid welding apparatus according to the present invention it is possible to suppress the thermal influence on the base material, and as a result, when used for welding thick plates, the amount of deformation can be almost eliminated. Therefore, it is possible to achieve an excellent effect that it is possible to improve work efficiency and work accuracy without increasing the weight.
  • the hybrid welding method and hybrid welding apparatus according to the present invention when used for welding difficult-to-weld materials such as high-tensile steel plates, high-quality welding is performed without causing deterioration or cracking of the metal structure. This is a very good effect that is possible.
  • FIG. 6 is a partial configuration explanatory view showing a state in which the welding torch in the hybrid welding apparatus shown in FIG. 5 takes another posture. It is a whole perspective explanatory view of the steel member in the steel concrete composite structure manufactured by the hybrid welding apparatus shown in FIG.
  • the hybrid welding apparatus 1 includes a laser diode 2 and an irradiation unit 4.
  • the laser diode 2 and the irradiation unit 4 are connected via an optical fiber 3.
  • the irradiation unit 4 includes an irradiation head 4A and a drive mechanism 4B that moves the irradiation head 4A.
  • the irradiation head 4A irradiates the base material B with the output from the laser diode 2 transmitted through the optical fiber 3 as a laser beam LB, and melts the surface BS of the base material B.
  • the hybrid welding apparatus 1 includes a wire supply unit 5 and a wire heating power source 7.
  • the wire supply unit 5 continuously supplies the welding wire W to the melted portion BW of the surface BS of the base material B that moves as the laser beam LB irradiated from the irradiation head 4A moves.
  • the wire heating power source 7 energizes the welding wire W to bring the tip end portion of the welding wire W located at the melting portion BW of the surface BS of the base material B to the point of melting.
  • the spot on the surface BS of the base material B of the laser beam LB irradiated from the irradiation head 4A of the irradiation unit 4 has a circular shape, that is, a spot width in a direction orthogonal to the moving direction of the laser beam LB, that is, The spot diameter D is 5 to 11 mm.
  • a cylindrical lens (spot shape changing means) 8 is installed on the optical path of the laser beam LB, and the spot S on the surface BS of the base material B of the laser beam LB is converted into a laser beam.
  • An oval shape may be formed along the moving direction of the LB.
  • the base materials B1 and B2 are irradiated with the laser beam LB emitted from the irradiation head 4A of the irradiation unit 4 as shown in FIG.
  • the base materials B1 and B2 are both uniformly and subjected to the minimum heat, and only the surface BS or the vicinity thereof is melted.
  • the laser beam LB is moved together with the irradiation head 4A by the operation of the drive mechanism 4B of the irradiation unit 4.
  • the welding wire W is continuously supplied from the front in the moving direction of the laser beam LB to the melted portion BW of the surface BS of each of the base materials B1 and B2 that move with the movement of the laser beam LB.
  • the welding wire W is supplied in a state immediately before melting by energization from the wire heating power source 7.
  • the welding wire W that is about to be melted is heated by the laser beam LB, the welding wire W is melted by receiving a minimum amount of heat, so that high-quality welding is performed.
  • the spot diameter D of the laser beam LB on the surface BS of the base material B is set to 5 to 11 mm, the region where there is less violence such as unevenness of the melted portion BW of the base material surface BS or disturbance of the skin. Since the welding wire W can be supplied, highly stable welding is performed.
  • a cylindrical lens 8 is installed on the optical path of the laser beam LB so that the spot S on the surface BS of the base material B of the laser beam LB is in the moving direction of the laser beam LB. If it becomes an oblong shape along, welding with higher stability will be achieved.
  • the welding wire W is supplied from the front in the moving direction of the laser beam LB, the laser beam LB follows the welding wire W. Therefore, the welding wire W is not welded or the like. The defect of the weld bead can be repaired.
  • the hybrid welding method and the hybrid welding apparatus 1 according to this example can perform high-quality welding as compared with the conventionally known hot wire TIG welding.
  • FIG. 5 and 6 show a hybrid welding apparatus according to another embodiment of the present invention.
  • a case where the hybrid welding apparatus of the present invention is used for fillet welding is shown.
  • a steel member so-called composite floor slab
  • a steel concrete composite structure such as a bridge or a highway.
  • the case where it is used for fillet welding of is shown.
  • the hybrid welding apparatus 11 includes a laser diode 12, a welding torch (irradiation unit) 14, a wire supply unit 15, a control unit 16, a wire heating power source 17, a chiller 18, and welding.
  • a dolly 19 is provided.
  • the laser diode 12, the control unit 16, and the chiller 18 are all installed on the foundation E, and the welding torch 14, the wire supply unit 15, and the wire heating power source 17 are all mounted on the welding carriage 19.
  • the steel member G is formed by arranging a plurality of channel members G2 in parallel with each other on a steel plate G1 (steel plate having a thickness of about 8 mm). It arrange
  • the rail 20 is parallel to the channel material G2 which is fillet welded to the steel plate G1, and the welding carriage 19 travels on the rail 20 at a constant speed not exceeding 2 m / min.
  • the laser diode 12 has a maximum output of 6 kW, and the welding torch 14 irradiates the steel plate G1 as a base material with a laser beam propagated through an optical fiber 13 having a wire diameter of 1 mm to melt its surface.
  • the wire supply unit 15 continuously supplies the welding wire W to the molten portion of the steel plate G1 that moves as the laser beam irradiated from the welding torch 14 moves.
  • the wire heating power source 17 heats the welding wire W by supplying a current of 300 A at maximum, and the tip portion of the welding wire W located at the melting portion of the steel sheet G1 is set to be on the verge of melting.
  • the welding carriage 19 is provided with a wire guide 22 for guiding the tip portion of the welding wire W to the molten portion of the steel plate G1.
  • the welding carriage 19 is provided with a turning mechanism 23 that supports the welding torch 14 and the wire guide 22.
  • the turning mechanism 23 supports both the welding torch 14 and the wire guide 22 so as to face the fillet portion, and supports the welding torch 14 and the wire guide 22 so as to be turnable around the vertical axis.
  • the welding torch 14 and the wire guide 22 are shifted from the welding posture shown in FIG. 5 to the welding posture shown in FIG. 6 while maintaining the mutual positional relationship by operating the turning mechanism 23.
  • the spot of the laser beam irradiated from the welding torch 14 is set in a circular shape by an optical lens built in the welding torch 14.
  • the laser beam is condensed so that the spot width in the direction orthogonal to the moving direction of the laser beam, that is, the spot diameter is 5 to 11 mm. Irradiation is performed obliquely from above so as to face the weld line of the meat part.
  • the welding wire W is supplied in front of the welding movement direction and obliquely from above, and is adjusted so that the distal end portion of the welding wire W is applied to the most moving direction side of the focused laser beam spot.
  • each joint surface of the steel plate G1 and the channel material G2 is smoothed by performing grinder processing, and then welding.
  • both the steel plate G1 and the channel material G2 receive uniform and minimal heat, and only the respective surfaces or the vicinity thereof melt.
  • the laser beam is moved together with the welding torch 14 by the traveling of the welding carriage 19 at a constant speed.
  • a welding wire W is continuously supplied from the front in the moving direction of the laser beam to the melted portions of the respective surfaces of the steel plate G1 and the channel material G2 that move along with the movement of the laser beam.
  • the welding wire W is supplied in an almost melted state by energization from the wire heating power source 17.
  • the welding wire W just before melting is heated by a laser beam, the welding wire W is melted by receiving a minimum amount of heat, so that high-quality welding is performed.
  • the above-described hybrid welding apparatus 11 was used to take a cross-sectional photograph of the fillet welded portion when the fillet weld of the channel material G2 to the steel plate G1 was taken, the result shown in FIG. 8 was obtained.
  • the fillet welding was performed with a laser output of 4 to 6 kW, a welding speed of 0.8 to 1.2 m / min, a wire supply speed of 8 to 12 m / min, and a wire supply current of 175 to 205 A.
  • the steel plate G1 and the channel material G2 are not deformed and the melted portion is extremely shallow. Therefore, it has been proved that the high-quality steel member G can be obtained by the hybrid welding method and the hybrid welding apparatus 11 according to this embodiment.
  • fillet welding is performed after a smooth surface GG is obtained by performing grinder processing on each joint surface of the steel plate G1 and the channel material G2.
  • the surface treatment is performed on each joint surface of the steel plate G1 and the channel material G2.
  • the laser output is 4 to 6 kW
  • the welding speed is 0.8 to 1.2 m / min
  • the wire supply speed is 8 to 12 m / min
  • the wire is supplied in the same manner as when the grinder processing is performed.
  • the current was set between 175 and 205A.
  • the hybrid welding apparatus 11 described above is used in both cases where the smooth surface GS is obtained by performing shot blasting and when the untreated surface GK is not subjected to surface treatment.
  • the steel plate G1 and the channel material G2 are not deformed and the melted portion is extremely shallow. Therefore, in the hybrid welding method and the hybrid welding apparatus 11 according to this embodiment, the surface treatment (including the case where the surface treatment is not performed) for each joint surface of the steel plate G1 and the channel material G2 can be appropriately selected. Reduction of welding man-hours and welding costs will be achieved.
  • FIG. 12 shows a hybrid welding method according to another embodiment of the present invention.
  • the hybrid welding method according to this embodiment is different from the hybrid welding method according to the previous embodiment, as shown in FIG. 12, in the vicinity of the welding torch 14 in the moving direction side (near the left side in the drawing). Is that another welding torch (spot shape changing means) 24 is arranged.
  • the circular shape by the laser beam irradiated from the welding torch 24 is located closest to the moving direction side (the left side in the drawing) of the circular spot Dr by the laser beam irradiated from the welding torch 14.
  • the spots Df are overlapped. Note that the spots Dr and Df may each have an oval shape.
  • the spot Df by the laser beam irradiated from the welding torch 24 located on the moving direction side of the spot Dr is preheated prior to the movement of the spot Dr, and dirt and adsorption on the surface of the steel sheet G1. Since the gas is removed, the energization of the welding wire W becomes more reliable, and the contact failure between the welding wire W and the steel plate G1 caused by the discharge of dirt and adsorbed gas during rapid heating can be avoided. It will be possible to achieve the stability.
  • the spot Df is formed by arranging the welding torch 24 as the spot shape changing means separately from the welding torch 14, but the present invention is not limited to this, and other configurations are possible.
  • the spot Df may be formed by dividing the laser beam in the welding torch 14. In this case, after the laser beam has passed through the optical lens inside the welding torch 14 using a polarizer, the propagation direction is slightly polarized, or the part of the optical lens inside the welding torch 14 that is converted into parallel light is partially reflected. There is a method of determining a transmission ratio by installing a mirror and selecting the transmittance of the partial reflection mirror.
  • the welding wire is supplied from the front in the moving direction of the laser beam.

Abstract

 レーザダイオード(2)と、このレーザダイオードからの出力をレーザビーム(LB)にして母材(B)に照射してこの母材の表面(BS)を溶融させると共にレーザビームを移動させる照射部(4)と、照射部から照射されるレーザビームの移動に伴って移動する母材の表面の溶融部分(BW)に対して、溶接ワイヤ(W)を連続して供給するワイヤ供給部(5)と、溶接ワイヤに通電して母材の表面の溶融部分に位置する溶接ワイヤの先端部分を溶融寸前とするワイヤ溶接電源(7)を備えている。厚板溶接の場合には、作業効率及び工作精度の向上を実現可能であり、高張力鋼板などの難溶接材料に対する溶接の場合には、金属組織の劣化や割れを生じさせることなく溶接を行うことができる。

Description

ハイブリッド溶接方法及びハイブリッド溶接装置
 本発明は、厚板の溶接や、肉盛溶接や、高張力鋼板などの難溶接材料に対する溶接に用いるのに好適なハイブリッド溶接方法及びハイブリッド溶接装置に関するものである。
 従来、上記した厚板の溶接や、高張力鋼板などの難溶接材料に対する溶接を行う場合には、例えば、ホットワイヤティグ溶接方法が広く用いられている(例えば、非特許文献1参照)。このホットワイヤティグ溶接方法は、通電により加熱された溶接ワイヤをティグアーク中に供給する方法であり、通常のティグ溶接の溶着量の少なさを補うための方法である。
溶接・接合便覧 溶接学会編 第2版 902頁
 ところが、上記したホットワイヤティグ溶接方法は、厚板の溶接に用いた場合、ティグアークによる溶接箇所への入熱量が大きくなって母材に歪が生じてしまう。つまり、上記したホットワイヤティグ溶接方法は、この歪を除去する工程を必要としたり、工作精度の低下を招いたりするという問題を有している。そして、このホットワイヤティグ溶接方法では、母材に歪が生じるのを回避するべく板厚を増すようにすると、重量の増加を避け得ないという問題を有している。
 一方、上記したホットワイヤティグ溶接方法は、高張力鋼板などの難溶接材料に対する溶接に用いた場合も、上記と同様に、ティグアークによる溶接箇所への入熱により母材に与える熱影響が大きくなって、金属組織の劣化や割れが発生してしまうという問題を有しており、これらの問題を解決することが従来の課題となっていた。
 本発明は、上記した従来の課題に着目してなされたもので、厚板の溶接に用いた場合には、母材の変形量を低減することができる分だけ、重量を増加させることなく作業効率及び工作精度の向上を実現することが可能なハイブリッド溶接方法及びハイブリッド溶接装置を提供することを目的としている。
 また、本発明は、高張力鋼板などの難溶接材料に対する溶接に用いた場合には、金属組織の劣化や割れを生じさせることなく高品質な溶接を行うことができるハイブリッド溶接方法及びハイブリッド溶接装置を提供することを目的としている。
 上記目的を達成するために、本発明者らは、レーザ溶接に用いられるレーザの一種であるレーザダイオードに着目した。
 このレーザダイオードは、極めて発振効率の高いレーザである。しかし、レーザダイオードは、表面改質などの用途に限定されている。何故なら、レーザダイオードは、素子をアレイ状に集積して高出力を得る構造となっているため、YAGレーザなどとは違って集光性能に限界があるからである。
 しかしながら、レーザダイオードは、照射パワー分布の均一性が優れていると共に、母材に対する入熱制御を精密に行い得る。このことから、本発明者らは、レーザダイオードを用いて熱伝導型の溶接を行う場合には、母材の表面を広く浅く均一に溶融させることができるという知見を得た。
 そこで、レーザダイオードを用いた熱伝導型の溶接を行うことによって、母材を均一且つ最小限に加熱して表面ないしその近傍のみを溶融させ、この溶融部分に対して溶ける寸前にまで加熱した溶接ワイヤ(ホットワイヤ)を供給して、通電とレーザダイオードにより最小限に加熱して溶融させれば、高品質の溶接が実現できることを本発明者らは見出した。
 つまり、レーザダイオード及びホットワイヤを組み合わせて、母材に対する加熱の熱源及び溶接ワイヤに対する加熱の熱源を使い分けることによって、厚板の溶接や高張力鋼板などの難溶接材料の溶接に必要な低入熱溶接の安定条件を生み出し得ることを本発明者らは見出し、本発明をするに至った。
 すなわち、本発明は、厚板溶接や、高張力鋼板などの難溶接材料に対する溶接を行うに際して、レーザダイオードから出射したレーザビームを母材に照射して該母材の表面を溶融させると共に移動させ、このレーザビームの移動に伴って移動する前記母材の表面の溶融部分に対して、通電により溶融寸前とした、例えば、線径1.2mmの溶接ワイヤを連続して供給する構成としたことを特徴としている(請求項1)。
 本発明において、母材に対して照射するレーザビームの母材の表面におけるスポットの形状は、とくに限定しない。例えば、スポットを円形状としたり、長円形状としたり、矩形状としたりすることができ、レーザビームの移動方向に直交する方向のスポットの大きさをスポット幅(スポットが円形状を成す場合はスポット径)とする。
 そこで、好ましくは、前記母材に対して照射する前記レーザビームの前記母材の表面におけるスポットは、前記レーザビームの移動方向に直交する方向に5~11mmのスポット幅(スポットが円形状を成す場合は5~11mmのスポット径)を有している構成とする(請求項2)。
 好ましくは、前記母材に対して照射する前記レーザビームの前記母材の表面におけるスポットは、前記レーザビームの移動方向に沿う長円形状である構成とする(請求項3)。
 好ましくは、前記母材に対して照射する前記レーザビームの前記母材の表面におけるスポットは、前記レーザビームの移動方向に円をずらして重ねた形状である構成とする(請求項4)。
 好ましくは、前記レーザビームの移動方向の前方から前記溶接ワイヤを供給する構成とする(請求項5)。
 また、本発明は、厚板溶接や、高張力鋼板などの難溶接材料に対する溶接を行うハイブリッド溶接装置であって、レーザダイオードと、このレーザダイオードからの出力をレーザビームにして母材に照射して該母材の表面を溶融させると共に、該レーザビームを移動させる照射部と、この照射部から照射されるレーザビームの移動に伴って移動する前記母材の表面の溶融部分に対して、溶接ワイヤを連続して供給するワイヤ供給部と、前記溶接ワイヤに通電して前記母材の表面の溶融部分に位置する該溶接ワイヤを溶融寸前とするワイヤ加熱電源を備えている構成としている(請求項6)。
 好ましくは、前記照射部から照射される前記レーザビームの前記母材の表面におけるスポット幅(スポットが円形状を成す場合は5~11mmのスポット径)を5~11mmとした構成とする(請求項7)。
 好ましくは、前記照射部から照射される前記レーザビームの前記母材の表面におけるスポットを前記レーザビームの移動方向に沿って長円形状に伸ばすスポット形状変更手段を備えている構成とする(請求項8)。
 好ましくは、前記照射部から照射される前記レーザビームの前記母材の表面におけるスポットを前記レーザビームの移動方向に円をずらして重ねた形状とするスポット形状変更手段を備えている構成とする(請求項9)。
 ここで、スポット幅寸法が5mmよりも小さいと、入熱が母材の表面ないしその近傍にとどまらず奥まで達することとなる。一方、スポット幅寸法が11mmよりも大きいと、溶け込み不足を生じる。したがって、スポット幅寸法は、6~10mmであることが望ましく、スポット幅寸法が、7~9mmであることがより望ましい。
 また、本発明に係るハイブリッド溶接方法及びハイブリッド溶接装置において、レーザビームの母材の表面におけるスポットは、レーザビームの移動方向に沿って複数の部分に分割されて、各部分が所定の照射強度になるように設定されるようにしてもよい。
 さらに、本発明に係るハイブリッド溶接方法及びハイブリッド溶接装置では、アクチュエータのような圧力制御手段を設けて、溶接ワイヤの母材表面に対する接触圧を一定に維持するようにしてもよい。
 さらにまた、本発明に係るハイブリッド溶接方法及びハイブリッド溶接装置では、レーザビーム及び溶接ワイヤの首振り機構を設けて、突き合わせ溶接時に、開先幅以下の振幅で且つ所定値以下の周期でレーザビーム及び溶接ワイヤに首振りを行わせるようにしてもよい。
 本発明に係るハイブリッド溶接方法及びハイブリッド溶接装置は、板厚が5~8mmの鋼板や高張力鋼板から成る構造物、例えば、橋梁や高速道路等の鋼コンクリート合成構造における鋼部材、いわゆる合成床版の隅肉溶接に用いたり、船体の上部構造物の隅肉溶接に用いたりするのに好適である。
 本発明に係るハイブリッド溶接方法及びハイブリッド溶接装置では、レーザダイオードから出射したレーザビームを母材に照射すると、母材は均一にそして最小限の熱を受けて表面ないしその近傍のみが溶融する。
 この状態でレーザビームを移動させて、このレーザビームの移動に伴って移動する母材の表面の溶融部分に対して、通電により溶融寸前とした溶接ワイヤを連続して供給しつつ、レーザビームによる加熱を行うと、溶接ワイヤも最小限の熱を受けて溶融することから、高品質の溶接が成されることとなる。
 この際、レーザビームの母材の表面におけるスポット径を5~11mm(望ましくは6~10mm、より望ましくは7~9mm)とすると、母材表面の凹凸や肌の乱れ等の溶融部分の暴れが少ない領域に対して、溶接ワイヤを供給し得ることから、安定性の高い溶接が成されることとなる。
 また、本発明に係るハイブリッド溶接方法及びハイブリッド溶接装置では、レーザビームの母材の表面におけるスポットをレーザビームの移動方向に沿う長円形状としたり、レーザビームの移動方向に円をずらして重ねたような形状としたりすると、より安定性の高い溶接が成されることとなる。
 さらに、本発明に係るハイブリッド溶接方法及びハイブリッド溶接装置では、レーザビームの移動方向の前方から溶接ワイヤを供給するように成せば、溶接ワイヤをレーザビームが追うことになるので、溶接ワイヤの未溶着等の溶接ビードの不具合を修復し得ることとなる。
 本発明に係るハイブリッド溶接方法及びハイブリッド溶接装置では、母材への熱影響を少なく抑えることが可能であり、その結果、厚板の溶接に用いた場合には、変形量をほとんどなくすことができる分だけ、重量を増加させることなく作業効率及び工作精度の向上を実現することが可能であるという非常に優れた効果がもたらされる。
 また、本発明に係るハイブリッド溶接方法及びハイブリッド溶接装置では、高張力鋼板などの難溶接材料に対する溶接に用いた場合には、金属組織の劣化や割れを生じさせることなく高品質の溶接を行うことが可能であるという非常に優れた効果がもたらされる。
本発明の一実施例に係るハイブリッド溶接装置の構成説明図である。 図1に示したハイブリッド溶接装置により隅肉溶接を行っている状況の断面説明図である。 図1に示したハイブリッド溶接装置による隅肉溶接箇所の拡大写真である。 従来周知のホットワイヤティグ溶接による隅肉溶接箇所の拡大写真である。 本発明の他の実施例に係るハイブリッド溶接装置の構成説明図である。 図5に示したハイブリッド溶接装置における溶接トーチが他の姿勢をとっている状態の部分構成説明図である。 図5に示したハイブリッド溶接装置により製造された鋼コンクリート合成構造における鋼部材の全体斜視説明図である。 グラインダー加工済み部位における図5のハイブリッド溶接装置による隅肉溶接箇所の拡大写真である。 グラインダー加工済み部位,ショットブラスト加工済み部位及び表面加工なしの部位を示す隅肉溶接箇所の斜視説明図である。 ショットブラスト加工済み部位における図5のハイブリッド溶接装置による隅肉溶接箇所の拡大写真である。 表面加工なしの部位における図5のハイブリッド溶接装置による隅肉溶接箇所の拡大写真である。 本発明の他の実施例に係るハイブリッド溶接方法による隅肉溶接箇所の斜視説明図である。
 以下、本発明を図面に基づいて説明する。
 図1及び図2は本発明に係るハイブリッド溶接装置の一実施例を示している。
 図1に示すように、このハイブリッド溶接装置1は、レーザダイオード2と、照射部4を備えている。このレーザダイオード2と照射部4とは、光ファイバー3を介して接続している。
 上記照射部4は、照射ヘッド4Aと、この照射ヘッド4Aを移動させる駆動機構4Bを具備している。照射ヘッド4Aは、光ファイバー3を介して伝達されるレーザダイオード2からの出力をレーザビームLBにして母材Bに照射し、そして、この母材Bの表面BSを溶融させる。
 また、このハイブリッド溶接装置1は、ワイヤ供給部5と、ワイヤ加熱電源7を備えている。ワイヤ供給部5は、上記照射ヘッド4Aから照射されるレーザビームLBの移動に伴って移動する母材Bの表面BSの溶融部分BWに対して、溶接ワイヤWを連続して供給する。ワイヤ加熱電源7は、溶接ワイヤWに通電して、母材Bの表面BSの溶融部分BWに位置する溶接ワイヤWの先端部分を溶融寸前とする。
 この場合、照射部4の照射ヘッド4Aから照射されるレーザビームLBの母材Bの表面BSにおけるスポットは円形状を成しており、レーザビームLBの移動方向に直交する方向のスポット幅、すなわち、スポット径Dを5~11mmとしている。
 なお、図1に仮想線で示すように、レーザビームLBの光路上にシリンドリカルレンズ(スポット形状変更手段)8を設置して、レーザビームLBの母材Bの表面BSにおけるスポットSが、レーザビームLBの移動方向に沿って長円形状を成すようにしてもよい。
 このような構成を成すハイブリッド溶接装置1では、例えば、隅肉溶接を行うに際して、図2にも示すように、照射部4の照射ヘッド4Aから出射したレーザビームLBを母材B1,B2に照射すると、母材B1,B2はいずれも均一にそして最小限の熱を受けて各々の表面BSないしその近傍のみが溶融する。
 次いで、照射部4の駆動機構4Bの動作によって照射ヘッド4AとともにレーザビームLBを移動させる。このレーザビームLBの移動に伴って移動する母材B1,B2の各々の表面BSの溶融部分BWに対して、溶接ワイヤWをレーザビームLBの移動方向の前方から連続して供給する。このとき、ワイヤ加熱電源7からの通電により溶接ワイヤWを溶融寸前とした状態で供給する。
 そして、この溶融寸前とした溶接ワイヤWに対してレーザビームLBによる加熱を行うと、溶接ワイヤWも最小限の熱を受けて溶融することから、高品質の溶接が成されることとなる。
 この実施例では、レーザビームLBの母材Bの表面BSにおけるスポット径Dを5~11mmとしているので、母材表面BSの溶融部分BWの凹凸や肌の乱れ等といった暴れが少ない領域に対して、溶接ワイヤWを供給し得ることから、安定性の高い溶接が成されることとなる。
 この際、図1に仮想線で示すように、レーザビームLBの光路上にシリンドリカルレンズ8を設置して、レーザビームLBの母材Bの表面BSにおけるスポットSが、レーザビームLBの移動方向に沿う長円形状になるようにすると、より安定性の高い溶接が成されることとなる。
 また、この実施例では、レーザビームLBの移動方向の前方から溶接ワイヤWを供給するようにしているので、溶接ワイヤWをレーザビームLBが追うことになり、したがって、溶接ワイヤWの未溶着等の溶接ビードの不具合を修復し得ることとなる。
 そこで、この隅肉溶接箇所の断面写真を撮影して、従来周知のホットワイヤティグ溶接による隅肉溶接箇所の断面写真と比較したところ、図3及び図4に示す結果を得た。
 図3及び図4から判るように、この実施例に係るハイブリッド溶接方法及びハイブリッド溶接装置1による隅肉溶接では、母材B1,B2が変形していないうえに溶融部分BWが極浅い。これに対して、従来周知のホットワイヤティグ溶接による隅肉溶接では、母材B1,B2が変形して溶融部分BWが深くなっている。
 したがって、この実施例に係るハイブリッド溶接方法及びハイブリッド溶接装置1では、従来周知のホットワイヤティグ溶接と比べて、高品質の溶接を行い得ることが実証できた。
 図5及び図6は、本発明の他の実施例によるハイブリッド溶接装置を示している。この実施例では、本発明のハイブリッド溶接装置を隅肉溶接に用いた場合を示し、具体的には、橋梁や高速道路等の鋼コンクリート合成構造における鋼部材(いわゆる合成床版)を製造する際の隅肉溶接に用いた場合を示す。
 図5に示すように、このハイブリッド溶接装置11は、レーザダイオード12と、溶接トーチ(照射部)14と、ワイヤ供給部15と、制御部16と、ワイヤ加熱電源17と、チラー18と、溶接台車19を備えている。
 レーザダイオード12,制御部16及びチラー18は、いずれも基礎E上に設置されており、溶接トーチ14,ワイヤ供給部15及びワイヤ加熱電源17は、いずれも溶接台車19に搭載されている。
 図7にも示すように、鋼部材Gは、鋼板G1(肉厚8mm程度の鋼板)の上に複数のチャンネル材G2を互いに平行に配置して成っており、この実施例において、レール20が鋼板G1上に基台21を介して配置されている。このレール20は、鋼板G1に隅肉溶接されるチャンネル材G2と平行を成しており、溶接台車19は、このレール20上を2m/minを超えない一定速度で走行する。
 レーザダイオード12は最大出力が6kWであり、溶接トーチ14は、線径1mmの光ファイバー13を介して伝搬されるレーザダイオード12からのレーザビームを母材である鋼板G1に照射してその表面を溶融させる。
 ワイヤ供給部15は、上記溶接トーチ14から照射されるレーザビームの移動に伴って移動する鋼板G1の溶融部分に対して、溶接ワイヤWを連続して供給する。ワイヤ加熱電源17は、最大300Aの電流を溶接ワイヤWに供給することで加熱し、鋼板G1の溶融部分に位置する溶接ワイヤWの先端部分を溶融寸前とする。
 この場合、溶接台車19には、溶接ワイヤWの先端部分を鋼板G1の溶融部分に案内するワイヤガイド22が備えられている。また、溶接台車19には、溶接トーチ14及びワイヤガイド22を支持する旋回機構23が備えられている。この旋回機構23は、溶接トーチ14及びワイヤガイド22がそれぞれ隅肉部を向くように両者を支持すると共に、溶接トーチ14及びワイヤガイド22を鉛直軸回りに旋回可能に支持する。溶接トーチ14及びワイヤガイド22は、旋回機構23を動作させることで、互いの位置関係を保ったまま図5に示す溶接姿勢から図6に示す溶接姿勢へとシフトする。
 溶接トーチ14から照射されるレーザビームのスポットは、該溶接トーチ14に内蔵された光学レンズにより円形状に設定される。例えば、隅肉部の脚長を考慮して、レーザビームの移動方向に直交する方向のスポット幅、すなわち、スポット径が5~11mmとなるように集光され、レーザビームは、その光軸が隅肉部の溶接線上を向くようにして斜め上方から照射される。
 溶接ワイヤWは、溶接の移動方向の前方で且つ斜め上方から供給され、集光されたレーザビームのスポットの最も移動方向側に溶接ワイヤWの先端部分がかかるように調整される。
 このような構成を成すハイブリッド溶接装置11では、鋼板G1に対するチャンネル材G2の隅肉溶接を行うに際して、まず、鋼板G1及びチャンネル材G2の各接合面にグラインダー加工を施して平滑化した後、溶接トーチ14から出射したレーザビームを鋼板G1,チャンネル材G2に照射すると、鋼板G1,チャンネル材G2はいずれも均一にそして最小限の熱を受けて各々の表面ないしその近傍のみが溶融する。
 次いで、溶接台車19の一定速度の走行によって溶接トーチ14とともにレーザビームを移動させる。このレーザビームの移動に伴って移動する鋼板G1,チャンネル材G2の各々の表面の溶融部分に対して、溶接ワイヤWをレーザビームの移動方向の前方から連続して供給する。このとき、ワイヤ加熱電源17からの通電により溶接ワイヤWを溶融寸前とした状態で供給する。
 そして、この溶融寸前の溶接ワイヤWに対してレーザビームによる加熱を行うと、溶接ワイヤWも最小限の熱を受けて溶融することから、高品質の溶接が成されることとなる。
 そこで、上記したハイブリッド溶接装置11によって、鋼板G1に対するチャンネル材G2の隅肉溶接を行った場合の隅肉溶接箇所の断面写真を撮影したところ、図8に示す結果を得た。なお、この隅肉溶接は、レーザ出力を4~6kW、溶接速度を0.8~1.2m/min、ワイヤ供給速度を8~12m/min、ワイヤ供給電流を175~205Aとして行った。
 図8から判るように、この実施例に係るハイブリッド溶接方法及びハイブリッド溶接装置11による隅肉溶接では、鋼板G1,チャンネル材G2が変形していないうえに溶融部分が極浅い。したがって、この実施例に係るハイブリッド溶接方法及びハイブリッド溶接装置11では、高品質の鋼部材Gが得られることが実証できた。
 上記した実施例では、図9に示すように、鋼板G1及びチャンネル材G2の各接合面にグラインダー加工を施して平滑面GGを得た後に、隅肉溶接を行っている。
 そこで、鋼板G1及びチャンネル材G2の各接合面にショットブラスト加工を施して平滑面GSを得た後に隅肉溶接を行った場合と、鋼板G1及びチャンネル材G2の各接合面に表面処理を施さずに未処理面GKのまま隅肉溶接を行った場合とのそれぞれについて、隅肉溶接箇所の断面写真を撮影したところ、図10及び図11に示す結果を得た。なお、この隅肉溶接も、グラインダー加工を施した場合と同様に、レーザ出力を4~6kW、溶接速度を0.8~1.2m/min、ワイヤ供給速度を8~12m/min、ワイヤ供給電流を175~205Aとして行った。
 図10及び図11から判るように、ショットブラスト加工を施して平滑面GSを得た場合及び表面処理を施さずに未処理面GKとした場合のいずれの場合も、上記したハイブリッド溶接装置11による隅肉溶接では、鋼板G1,チャンネル材G2が変形していないうえに溶融部分が極浅い。したがって、この実施例に係るハイブリッド溶接方法及びハイブリッド溶接装置11では、鋼板G1及びチャンネル材G2の各接合面に対する表面処理(表面処理をしない場合も含む)を適宜選択することができ、その結果、溶接工数及び溶接コストの低減が図られることとなる。
 図12は、本発明の他の実施例によるハイブリッド溶接方法を示している。この実施例に係るハイブリッド溶接方法が、先の実施例によるハイブリッド溶接方法と異なるところは、図12に示すように、溶接トーチ14の移動方向側近傍(図示左側近傍)に、この溶接トーチ14とは別の溶接トーチ(スポット形状変更手段)24を配置した点にある。
 すなわち、この実施例に係るハイブリッド溶接方法では、溶接トーチ14から照射されるレーザビームによる円形状のスポットDrの最も移動方向側(図示左側)に、溶接トーチ24から照射されるレーザビームによる円形状のスポットDfが重なるようにしている。なお、スポットDr,Dfは、いずれも長円形状を成していてもよい。
 この実施例に係るハイブリッド溶接方法では、スポットDrの移動方向側に位置する溶接トーチ24から照射されるレーザビームによるスポットDfが、スポットDrの移動に先立って予熱して鋼板G1表面の汚れや吸着ガスを除去するので、溶接ワイヤWに対する通電がより確実になって、汚れや吸着ガスが急速加熱時に噴出すことで生じる溶接ワイヤWと鋼板G1との接触不良を回避でき、その結果、溶接品質の安定を実現し得ることとなる。
 この実施例では、溶接トーチ14とは別にスポット形状変更手段としての溶接トーチ24を配置することで、スポットDfを形成するようにしているが、これに限定されるものではなく、他の構成として、例えば、溶接トーチ14内においてレーザビームを分割することで、スポットDfを形成するようにしてもよい。この場合、偏光子を用いて、レーザビームが溶接トーチ14内部の光学レンズを透過した後に、伝搬方向を僅かに偏光させる方法や、溶接トーチ14内部の光学レンズにおける平行光化する部分に部分反射鏡を設置して、この部分反射鏡の透過率を選択することで透過比率を決定する方法がある。
 なお、上記した実施例では、いずれもレーザビームの移動方向の前方から溶接ワイヤを供給するようにしているが、レーザビームの移動方向の後方から溶接ワイヤを供給するように成すことも可能である。
  1  ハイブリッド溶接装置
  2  レーザダイオード
4  照射部
5  ワイヤ供給部
7  ワイヤ加熱電源
8  シリンドリカルレンズ(スポット形状変更手段)
11 ハイブリッド溶接装置
12 レーザダイオード
14 溶接トーチ(照射部)
15 ワイヤ供給部
17 ワイヤ加熱電源
24 他の溶接トーチ(スポット形状変更手段)
B  母材
BS 母材の表面
BW 表面の溶融部分
LB レーザビーム
G1 鋼板(母材)
G2 チャンネル材(母材)
W  溶接ワイヤ

Claims (9)

  1.  厚板溶接や、高張力鋼板などの難溶接材料に対する溶接を行うハイブリッド溶接方法であって、
     厚板溶接や、高張力鋼板などの難溶接材料に対する溶接を行うに際して、
     レーザダイオードから出射したレーザビームを母材に照射して該母材の表面を溶融させると共に移動させ、
     このレーザビームの移動に伴って移動する前記母材の表面の溶融部分に対して、通電により溶融寸前とした溶接ワイヤを連続して供給する
     ことを特徴とする。
  2.  請求項1に記載のハイブリッド溶接方法であって、前記母材に対して照射する前記レーザビームの前記母材の表面におけるスポットは、前記レーザビームの移動方向に直交する方向に5~11mmのスポット幅を有していることを特徴とする。
  3.  請求項1に記載のハイブリッド溶接方法であって、前記母材に対して照射する前記レーザビームの前記母材の表面におけるスポットは、前記レーザビームの移動方向に沿う長円形状であることを特徴とする。
  4.  請求項1に記載のハイブリッド溶接方法であって、前記母材に対して照射する前記レーザビームの前記母材の表面におけるスポットは、前記レーザビームの移動方向に円をずらして重ねた形状であることを特徴とする。
  5.  請求項1に記載のハイブリッド溶接方法であって、前記レーザビームの移動方向の前方から前記溶接ワイヤを供給することを特徴とする。
  6.  厚板溶接や、高張力鋼板などの難溶接材料に対する溶接を行うハイブリッド溶接装置であって、
     レーザダイオードと、
     このレーザダイオードからの出力をレーザビームにして母材に照射して該母材の表面を溶融させると共に、該レーザビームを移動させる照射部と、
     この照射部から照射されるレーザビームの移動に伴って移動する前記母材の表面の溶融部分に対して、溶接ワイヤを連続して供給するワイヤ供給部と、
     前記溶接ワイヤに通電して前記母材の表面の溶融部分に位置する該溶接ワイヤを溶融寸前とするワイヤ加熱電源を備えている
     ことを特徴とする。
  7.  請求項6に記載のハイブリッド溶接装置であって、前記照射部から照射される前記レーザビームの前記母材の表面におけるスポット幅を5~11mmとしたことを特徴とする。
  8.  請求項6に記載のハイブリッド溶接装置であって、前記照射部から照射される前記レーザビームの前記母材の表面におけるスポットを前記レーザビームの移動方向に沿って長円形状に伸ばすスポット形状変更手段を備えていることを特徴とする。
  9.  請求項6に記載のハイブリッド溶接装置であって、前記照射部から照射される前記レーザビームの前記母材の表面におけるスポットを前記レーザビームの移動方向に円をずらして重ねた形状とするスポット形状変更手段を備えていることを特徴とする。
PCT/JP2010/057089 2009-04-22 2010-04-21 ハイブリッド溶接方法及びハイブリッド溶接装置 WO2010123035A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011510348A JPWO2010123035A1 (ja) 2009-04-22 2010-04-21 ハイブリッド溶接方法及びハイブリッド溶接装置
US13/263,602 US20120024828A1 (en) 2009-04-22 2010-04-21 Method of hybrid welding and hybrid welding apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009103874 2009-04-22
JP2009-103874 2009-04-22

Publications (1)

Publication Number Publication Date
WO2010123035A1 true WO2010123035A1 (ja) 2010-10-28

Family

ID=43011151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057089 WO2010123035A1 (ja) 2009-04-22 2010-04-21 ハイブリッド溶接方法及びハイブリッド溶接装置

Country Status (5)

Country Link
US (1) US20120024828A1 (ja)
JP (1) JPWO2010123035A1 (ja)
KR (1) KR20120022787A (ja)
TR (1) TR201110415T1 (ja)
WO (1) WO2010123035A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7410408B2 (ja) 2020-07-08 2024-01-10 日本製鉄株式会社 隅肉溶接継手を備えた溶接構造体の製造方法及び隅肉溶接継手を備えた溶接構造体

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130020289A1 (en) * 2009-01-13 2013-01-24 Lincoln Global Inc. Method and system to start and stop a hot wire system
US9085041B2 (en) 2009-01-13 2015-07-21 Lincoln Global, Inc. Method and system to start and use combination filler wire feed and high intensity energy source for welding
US10086461B2 (en) 2009-01-13 2018-10-02 Lincoln Global, Inc. Method and system to start and use combination filler wire feed and high intensity energy source for welding
DE102009048496A1 (de) * 2009-08-28 2011-03-03 Reiner Wagner Brille, Vorrichtung mit einem Brillenelement und einem Scharnierteil, und Verfahren zum Befestigen eines Scharnierteils auf einem Brillenelement
US9687929B2 (en) * 2012-07-06 2017-06-27 Lincoln Global, Inc. Method and system of using consumable with weld puddle
US20140034621A1 (en) * 2012-08-03 2014-02-06 Lincoln Global, Inc. Method and system of hot wire joint design for out-of-position welding
US10040143B2 (en) 2012-12-12 2018-08-07 Illinois Tool Works Inc. Dabbing pulsed welding system and method
US10906114B2 (en) 2012-12-21 2021-02-02 Illinois Tool Works Inc. System for arc welding with enhanced metal deposition
US9950383B2 (en) 2013-02-05 2018-04-24 Illinois Tool Works Inc. Welding wire preheating system and method
US10835983B2 (en) 2013-03-14 2020-11-17 Illinois Tool Works Inc. Electrode negative pulse welding system and method
US20140263231A1 (en) * 2013-03-15 2014-09-18 Lincoln Global, Inc. Tandem hot-wire systems
US11045891B2 (en) 2013-06-13 2021-06-29 Illinois Tool Works Inc. Systems and methods for anomalous cathode event control
US10828728B2 (en) 2013-09-26 2020-11-10 Illinois Tool Works Inc. Hotwire deposition material processing system and method
US10464168B2 (en) 2014-01-24 2019-11-05 Lincoln Global, Inc. Method and system for additive manufacturing using high energy source and hot-wire
DE102014001979A1 (de) * 2014-02-17 2015-08-20 Wisco Tailored Blanks Gmbh Verfahren zum Laserschweißen eines oder mehrerer Werkstücke aus härtbarem Stahl im Stumpfstoß
US11154946B2 (en) 2014-06-30 2021-10-26 Illinois Tool Works Inc. Systems and methods for the control of welding parameters
US11198189B2 (en) 2014-09-17 2021-12-14 Illinois Tool Works Inc. Electrode negative pulse welding system and method
US11478870B2 (en) 2014-11-26 2022-10-25 Illinois Tool Works Inc. Dabbing pulsed welding system and method
US10189106B2 (en) 2014-12-11 2019-01-29 Illinois Tool Works Inc. Reduced energy welding system and method
US11370050B2 (en) 2015-03-31 2022-06-28 Illinois Tool Works Inc. Controlled short circuit welding system and method
US11285559B2 (en) 2015-11-30 2022-03-29 Illinois Tool Works Inc. Welding system and method for shielded welding wires
US10610946B2 (en) 2015-12-07 2020-04-07 Illinois Tool Works, Inc. Systems and methods for automated root pass welding
US10675699B2 (en) 2015-12-10 2020-06-09 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US10766092B2 (en) 2017-04-18 2020-09-08 Illinois Tool Works Inc. Systems, methods, and apparatus to provide preheat voltage feedback loss protection
US10870164B2 (en) 2017-05-16 2020-12-22 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
WO2018227195A1 (en) 2017-06-09 2018-12-13 Illinois Tool Works Inc. Welding torch with a first contact tip to preheat welding wire and a second contact tip
US11524354B2 (en) 2017-06-09 2022-12-13 Illinois Tool Works Inc. Systems, methods, and apparatus to control weld current in a preheating system
EP3634683B1 (en) 2017-06-09 2022-03-23 Illinois Tool Works, Inc. Welding assembly for a welding torch, with two contact tips and a cooling body to cool and conduct current
US11590598B2 (en) 2017-06-09 2023-02-28 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
CN111315524A (zh) 2017-06-09 2020-06-19 伊利诺斯工具制品有限公司 具有两个触头和用于将电流传导至触头的多个液冷组件的焊接炬
US11020813B2 (en) 2017-09-13 2021-06-01 Illinois Tool Works Inc. Systems, methods, and apparatus to reduce cast in a welding wire
US11027362B2 (en) 2017-12-19 2021-06-08 Lincoln Global, Inc. Systems and methods providing location feedback for additive manufacturing
WO2020047438A1 (en) 2018-08-31 2020-03-05 Illinois Tool Works Inc. Submerged arc welding systems and submerged arc welding torches to resistively preheat electrode wire
US11014185B2 (en) 2018-09-27 2021-05-25 Illinois Tool Works Inc. Systems, methods, and apparatus for control of wire preheating in welding-type systems
CN113474113A (zh) 2018-12-19 2021-10-01 伊利诺斯工具制品有限公司 接触端头、焊丝预加热组件、接触端头组件和自耗电极送给焊接型系统
US11772182B2 (en) 2019-12-20 2023-10-03 Illinois Tool Works Inc. Systems and methods for gas control during welding wire pretreatments
CN114289961B (zh) * 2021-12-25 2022-11-25 佛山市桥鑫重型钢构安装工程有限公司 一种龙门焊接平台

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54171639U (ja) * 1978-05-22 1979-12-04
JPS61232080A (ja) * 1985-04-09 1986-10-16 Nippon Kokan Kk <Nkk> レ−ザ溶接方法
JPH02137687A (ja) * 1988-11-18 1990-05-25 Fuji Electric Co Ltd レーザ集光装置
JPH09300087A (ja) * 1996-05-14 1997-11-25 Suzuki Motor Corp レーザ溶接方法
JP2000280080A (ja) * 1999-03-30 2000-10-10 Mitsubishi Heavy Ind Ltd レーザ溶接方法及び装置
JP2003251479A (ja) * 2002-03-01 2003-09-09 Daihen Corp レーザ溶接方法
JP2006224129A (ja) * 2005-02-16 2006-08-31 Tokyu Car Corp レーザ溶接構造及びレーザ溶接方法
JP2008188660A (ja) * 2007-02-07 2008-08-21 Tokyu Car Corp レーザ溶接方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119483A (ja) * 1982-01-08 1983-07-15 Kawasaki Steel Corp レ−ザ溶接装置
JPS6192791A (ja) * 1984-10-11 1986-05-10 Mitsubishi Electric Corp レ−ザ溶接装置
US4803334A (en) * 1987-11-16 1989-02-07 Westinghouse Electric Corp. Method for laser beam welding metal matrix composite components
US5595670A (en) * 1995-04-17 1997-01-21 The Twentyfirst Century Corporation Method of high speed high power welding
JP3762676B2 (ja) * 2001-09-17 2006-04-05 本田技研工業株式会社 ワークの溶接方法
US20060049153A1 (en) * 2004-09-08 2006-03-09 Cahoon Christopher L Dual feed laser welding system
JP2007190586A (ja) * 2006-01-18 2007-08-02 Mitsubishi Heavy Ind Ltd 溶接方法及び液化ガスタンクの製造方法
US8257049B2 (en) * 2008-04-25 2012-09-04 Caterpillar Inc. Process for building up an edge of a machine component, and machine component remanufacturing strategy

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54171639U (ja) * 1978-05-22 1979-12-04
JPS61232080A (ja) * 1985-04-09 1986-10-16 Nippon Kokan Kk <Nkk> レ−ザ溶接方法
JPH02137687A (ja) * 1988-11-18 1990-05-25 Fuji Electric Co Ltd レーザ集光装置
JPH09300087A (ja) * 1996-05-14 1997-11-25 Suzuki Motor Corp レーザ溶接方法
JP2000280080A (ja) * 1999-03-30 2000-10-10 Mitsubishi Heavy Ind Ltd レーザ溶接方法及び装置
JP2003251479A (ja) * 2002-03-01 2003-09-09 Daihen Corp レーザ溶接方法
JP2006224129A (ja) * 2005-02-16 2006-08-31 Tokyu Car Corp レーザ溶接構造及びレーザ溶接方法
JP2008188660A (ja) * 2007-02-07 2008-08-21 Tokyu Car Corp レーザ溶接方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7410408B2 (ja) 2020-07-08 2024-01-10 日本製鉄株式会社 隅肉溶接継手を備えた溶接構造体の製造方法及び隅肉溶接継手を備えた溶接構造体

Also Published As

Publication number Publication date
TR201110415T1 (tr) 2012-09-21
JPWO2010123035A1 (ja) 2012-10-25
KR20120022787A (ko) 2012-03-12
US20120024828A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
WO2010123035A1 (ja) ハイブリッド溶接方法及びハイブリッド溶接装置
TWI483801B (zh) 鋼板之雷射熔接方法及雷射熔接裝置
JP6095456B2 (ja) レーザ溶接方法およびレーザ・アークハイブリッド溶接方法
JP2013086180A (ja) 溶接用レーザ装置
US20140216648A1 (en) Method and apparatus for laser welding of two joining members of plastic material
US20140042140A1 (en) Welding process for repair of thick sections
JP2010167436A (ja) レーザ溶接方法
JP6299136B2 (ja) 鋼板のレーザー溶接方法およびレーザー溶接装置
JP6391412B2 (ja) レーザ溶接方法及びレーザ溶接装置
JP2011230158A (ja) 亜鉛めっき鋼板のレーザ重ね溶接方法
JP2005021912A (ja) 形鋼のレーザ溶接方法
JP2012206145A (ja) ホットワイヤレーザ溶接方法と装置
JP2011224655A (ja) レーザ溶接鋼管の製造方法
JP2012135796A (ja) 突き合わせ溶接方法
JP6441788B2 (ja) レーザ加工装置、レーザ加工方法、光学系、及び肉盛り加工品
JP2010167435A (ja) レーザ溶接方法。
JP5931341B2 (ja) 溶接方法
JP7082329B2 (ja) き裂補修方法
WO2019039529A1 (ja) ハイブリッド溶接方法及びハイブリッド溶接装置
JP2014024078A (ja) レーザ溶接装置
WO2020203411A1 (ja) 既設鋼構造物のき裂補修方法
JP5000982B2 (ja) 差厚材のレーザ溶接方法
JP6092163B2 (ja) 溶接装置及び溶接方法
JP6261406B2 (ja) 溶接装置および溶接方法
KR20120077094A (ko) 코팅강판의 접합방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10767092

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13263602

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117024592

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011/10415

Country of ref document: TR

ENP Entry into the national phase

Ref document number: 2011510348

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10767092

Country of ref document: EP

Kind code of ref document: A1