WO2010121488A1 - 一种制备空心微珠的方法和装置 - Google Patents

一种制备空心微珠的方法和装置 Download PDF

Info

Publication number
WO2010121488A1
WO2010121488A1 PCT/CN2010/000538 CN2010000538W WO2010121488A1 WO 2010121488 A1 WO2010121488 A1 WO 2010121488A1 CN 2010000538 W CN2010000538 W CN 2010000538W WO 2010121488 A1 WO2010121488 A1 WO 2010121488A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow
ceramic
slurry
metal
molding chamber
Prior art date
Application number
PCT/CN2010/000538
Other languages
English (en)
French (fr)
Inventor
杨金龙
蔡锴
席小庆
葛国军
黄勇
Original Assignee
河北勇龙邦大新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北勇龙邦大新材料有限公司 filed Critical 河北勇龙邦大新材料有限公司
Priority to US13/265,463 priority Critical patent/US8845936B2/en
Priority to BRPI1013934A priority patent/BRPI1013934A2/pt
Priority to AU2010239045A priority patent/AU2010239045B2/en
Priority to CA2759758A priority patent/CA2759758C/en
Priority to EP10766579.6A priority patent/EP2431344B1/en
Priority to EA201171263A priority patent/EA020857B1/ru
Publication of WO2010121488A1 publication Critical patent/WO2010121488A1/zh
Priority to ZA2011/07654A priority patent/ZA201107654B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0016Granular materials, e.g. microballoons
    • C04B20/002Hollow or porous granular materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • B01J13/043Drying and spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • B22F1/0655Hollow particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/145After-treatment of oxides or hydroxides, e.g. pulverising, drying, decreasing the acidity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0687After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0888Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting construction of the melt process, apparatus, intermediate reservoir, e.g. tundish, devices for temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the invention relates to the technical field of material forming, in particular to a hollow ceramic or metal microbead, a method and a device for preparing a hollow ceramic or a metal microbead. Background technique
  • the hollow ceramic microbead is a small hollow inorganic non-metallic material sphere with a particle size range of 0.01-1.0 mm. It has the advantages of light weight, low thermal conductivity, sound insulation, wear resistance, high electrical resistance, good electrical insulation and thermal stability, low manufacturing cost, etc. It is a new lightweight material with wide application, light weight, high strength and excellent performance.
  • hollow ceramic microbeads are used to reduce the weight of the product and improve the crack resistance of the product.
  • Synthetic wood is made from hollow ceramic microbeads, which have the same look, appearance and structure as wood. Mainly used in high-end furniture, sanitary ware, furniture castings, decorative plates, etc.
  • Hollow ceramic microbeads are used for repairing composite materials. Typical applications are to add hollow glass beads to the resin to replace some of the calcium carbonate, talc and other fillers to make various putty (ash). This new type of greasy, light weight, strong adhesion, easy to apply, low shrinkage, short curing time, etc., especially significantly improve sanding and polishing performance. It is widely used in various vehicle, ship, machine tool and other repair operations.
  • the hollow ceramic microbeads can be hollow spheres containing a certain amount of gas inside, and have low thermal conductivity. Therefore, the hollow glass microbeads have the characteristics of sound insulation and heat insulation, and are excellent fillers for various insulation materials and sound insulation products. At the same time, hollow ceramic microbeads are also widely used in thermal insulation coatings.
  • the hollow ceramic microbeads are excellent sensitizers for emulsion explosives, which can improve the sensitivity of emulsion explosives and prolong the storage period of explosives.
  • the existing hollow ceramic microbeads especially refer to a hollow microsphere or a hollow floating bead composed of silicon dioxide (Si0 2 ) and aluminum trioxide (A1 2 0 3 ), which is floated by fly ash or coal stone. Selected by the classification method, it is actually a micro- or sub-micron glass microsphere with a hollow structure and an aluminosilicate glass shell, which is widely used in inks, adhesives, engineering plastics, modified rubber, and electrical insulation parts. However, it is currently difficult to obtain hollow ceramic microspheres other than the aluminosilicate glass body by this method.
  • hollow microbeads prepared by other researchers such as Ti0 2 (Zhang Junling et al., CN101580275A), ZnO (Xu Zhibing et al., CN1807254A), CdS (Xie Rongguo et al., CN1559911A), Fe 3 0 4 (Nie Yuren et al., CN101475223A), Si0 2 (Yin Hengbo et al., CN 101559951A), however, these methods are limited by the process and are basically limited to the preparation of hollow microbeads which can be obtained by a solution chemical process, and are still difficult to apply to the preparation of hollow microbeads other than specific components. .
  • the present invention has successfully produced various materials such as A1 2 0 3 , Zr0 2 , Si 3 N 4 , SiC, coal, fly ash, WC, Ni by preparing a foam-stabilized slurry by centrifugal atomization. Hollow microbeads.
  • One of the key steps used in the preparation method is a centrifugal atomization method, which is a commonly used one of atomization techniques.
  • the cooling rate obtained by the method is faster than that of the gas atomization method.
  • the centrifugal atomization method is used for the production of a powder or a rapidly solidified alloy powder, that is, after the metal is heated and melted, it is broken down into small droplets by centrifugal force.
  • the microcrystalline powder prepared by the method has fine microstructure, small segregation, low cost, and is easy to be industrially produced.
  • the centrifugal atomization technology is first used for the preparation of ceramic hollow microspheres, by preparing a water-based or non-aqueous slurry having a certain characteristic (a highly stable foam having a certain solid phase content) by using centrifugation.
  • the atomization technique atomizes the foam slurry to form hollow slurry droplets, and after rapid drying, ceramic hollow microspheres are obtained.
  • the technology was first successfully applied to ceramic systems and solid wastes containing inorganic non-metallic materials, which not only greatly expanded the application range and application prospects of hollow microspheres, but also provided a new way for the recycling of solid waste; It has also been successfully applied to the preparation of hollow microspheres of metal and alloy materials.
  • the method and device have universal applicability to ceramic powders of various material systems, and can prepare hollow microbeads of different ceramic materials (for example, A1 2 0 3 , Zr0 2 , Si 3 N 4 , SiC, etc.), Solid wastes containing inorganic non-metallic materials (such as coal gangue, fly ash, etc.) and different metal and alloy material systems (such as WC, Ni, etc.), hollow beads with a diameter of 0.001 - 1.5mm, including closed cells Hollow microbeads and open-celled hollow microspheres. Open-cell or closed-cell hollow microbeads of 0.001-1.5 mm in diameter for this series of materials have not been reported. Summary of the invention
  • the invention provides a hollow ceramic or metal microbead, a method and a device for preparing a hollow ceramic or a metal microbead, and the method and the device are suitable for ceramic or metal powder of various material systems, and can prepare hollow microbeads of various inorganic non-metal materials.
  • various inorganic non-metal materials include: oxide and non-oxide ceramics, solid waste materials such as: coal, fly ash, tailings, sludge, waste stone, etc., as well as metal and alloy materials.
  • the method is simple in operation, and the target hollow microbead can be prepared by directly preparing the raw material powder into a foam-stabilized slurry having a solid phase content. It is universal for raw materials and has no restrictions on application. Hollows can be successfully prepared which are difficult to prepare by other methods.
  • a hollow ceramic or metal microbead having a diameter of from 0.001 to 1.5 mm.
  • the hollow beads have a diameter greater than 1 micron, such as 1 - 1 Q 0 microns, or such as 500-150 Q microns, and have components other than aluminum silicate, such as selected from non-oxidizing High temperature (heat resistant) ceramics and high temperature (heat resistant) metals/alloys, or selected from non-oxide ceramics and hard alloys.
  • the hollow ceramic microbeads are composed of a component selected from the group consisting of Zr0 2 , Si 3 N 4 , WC, SiC.
  • the hollow ceramic microbeads have pores that are open on the surface.
  • the present invention also provides a method of preparing hollow ceramic or metal microbeads, comprising the steps of: using a blowing agent to make a ceramic having a certain solid phase content of ceramic or metal powder, water and dispersant or The metal slurry is formed into a stable foam slurry; the stabilized foam slurry is added to a centrifugal atomization device, atomized to form a hollow slurry droplet, and sprayed into the molding chamber to be rapidly dried to form a hollow Microbead body. The hollow microbead body is collected and sintered.
  • a ceramic or metal paste having a solid phase content is prepared by mixing a ceramic or metal powder with water, a dispersant, and ball milling.
  • a blowing agent is added to the ceramic or metal slurry of a certain solid phase content, stirred well, and the slurry is formed into a stable foam slurry.
  • the solid phase content means that the solid phase (ceramic or metal) powder accounts for the volume content of the slurry, and is generally between 5 and 60%.
  • a stable foam slurry means that the foam slurry remains stable for a relatively long period of time, for example at least 6 hours, usually 1-3 days, without significant solid phase particle agglomeration or sedimentation in the slurry.
  • the foam does not defoam or blister.
  • a stable foam slurry can be obtained by the proper action of the dispersing agent and the foaming agent.
  • the particles are stably dispersed in the solution by the steric hindrance effect of the dispersant and the electrostatic effect.
  • the foaming agent mainly considers the foaming effect, so that the foaming rate of the slurry reaches between 20% and 600%, and the bubble diameter is 0.001-1.5 mm, which is basically 1-10 days.
  • the expansion ratio is defined as the volume ratio of the slurry after foaming to the unfoamed slurry.
  • the foaming effect is poor, for example, the foaming rate is low, or the foam is unstable to cause blistering or defoaming, the hollow ratio of the final hollow microspheres and the diameter of the beads are directly affected.
  • the diameter of the bubble can be adjusted by the amount of the blowing agent added and the stirring or ball milling time after the addition of the blowing agent.
  • the droplets after centrifugal atomization need to be instantaneously dried and conformal solid. If the drying speed is not fast enough, the droplets are deformed by the influence of gravity or blowing force.
  • a certain solid phase content of ceramic or metal paste can be obtained by mixing the powder with water, a dispersant, and ball milling.
  • the ceramic powder may be a raw material of various ceramic materials, and the raw material may be selected from a generalized inorganic non-metallic material powder, for example, an oxide powder, a non-oxide ceramic powder, and a solid containing an inorganic non-metal material. Wastes such as coal gangue, fly ash, tailings, sludge, may also be loess powder, etc., and metal or alloy powders may also be used. Some specific examples are Zr0 2 , Si 3 N 4 , SiC, coal, fly ash, WC, Ni, and the like.
  • the present invention does not rely on the selection of a particular dispersant as long as the dispersant can properly disperse the ceramic powder in the paddle.
  • Some examples of dispersing agents which can be used are ammonium polyacrylate, tetradecyl ammonium hydroxide, ammonium citrate, ammonium polydecyl phthalate, tetradecyl ethylenediamine, sodium hexametaphosphate and the like.
  • the corresponding dispersant can be selected for different powders, such as zirconia powder, ammonium citrate, and silicon nitride powder, tetrakis ammonium hydroxide.
  • the present invention does not depend on the selection of a specific foaming agent, as long as the foaming agent can make a certain solid phase content ceramic slurry into a stable foam slurry, for example, it can be selected to react with the powder.
  • Foaming agent Some examples of blowing agents that can be used are Triton, propyl gallate.
  • the foaming agent preferably has a foaming ratio of between 20% and 600%, a bubble diameter of from 0.001 to 1.5 mm, and substantially no defoaming or blistering for 1-10 days.
  • the ratio between the ceramic or metal powder and water and the dispersant is preferably a slurry capable of obtaining a certain solid phase content.
  • the volume of the powder is from about 5 to about 60% by volume of the solution after the addition of the powder, from about 0.1% to about 3% of the total volume of the dispersion, and from about 0.1% to about 1% of the total volume of the blowing agent. For water.
  • a ceramic or metal paste having a certain solid phase content can be obtained using a ball milling process.
  • a ball milling process is not particularly limited as long as a ceramic or metal paste having a certain solid phase content can be obtained.
  • the invention provides an apparatus for preparing hollow microbeads.
  • the schematic structure of the device is as shown in FIG.
  • centrifugal atomizing device 1 which comprises a centrifugal atomizing device 1, a molding chamber 2, an exhaust system 4, a separation system 3, and a hot air system 5 for supplying hot air to the molding chamber; wherein the centrifugal mist
  • the chemical equipment is located at the upper part, and the lower part is connected with a molding chamber.
  • the upper part of the molding chamber is connected with an exhaust system, and a separation system is arranged below the molding chamber, and the molding chamber is connected with the hot air system.
  • the centrifugal atomization system is a key component of the device.
  • the centrifugal atomization mechanism and equipment can be referred to, for example, "Production of metal powder by centrifugal atomization" (Wen Shude, "Foreign Metal Heat Treatment", No. 3, 1997).
  • the foam slurry can be dispersed into hollow droplets having a diameter of 0.2-1.5 mm by a centrifugal atomization system and sprayed into the molding chamber.
  • the hot air system filters air and, if necessary, other gases such as inert gas, and heats it to 80-300 ° C. It spirally and uniformly enters the molding chamber from the upper part of the molding chamber, and is in parallel with the hollow droplets.
  • the time (in an instant, usually in less than 1 second) is dried into a hollow bead blank.
  • the exhaust gas is discharged from the exhaust system, and the hollow microbead blank is continuously output from the bottom separation system of the molding chamber.
  • the device has a high molding speed, and the foam slurry is completely dispersed and dried in a few seconds, and is particularly suitable for industrial production.
  • the hollow microbead body formed by the device has a good particle size distribution, and the product particle size can be adjusted by changing the operating conditions, the product strength is high, the production process is simple, and the operation and control are convenient.
  • the method and device have universality with powders of various material systems, and can prepare different ceramic materials (A1 2 0 3 , Zr0 2 , Si 3 N 4 , SiC, etc.), solid wastes containing inorganic non-metal materials.
  • Ceramic materials such as coal gangue, fly ash, etc.
  • metal and alloy materials WC, Ni, etc.
  • hollow ceramic beads with a diameter of 0.001-1.5mm refers to closed-cell hollow microspheres and openings Two kinds of hollow microbeads.
  • the beneficial effects of the invention are as follows: the hollow microbead body formed by the device has a good particle size distribution, the product particle size can be adjusted by changing the operating conditions, the product strength is high, the production process is simple, the operation control is convenient, and various kinds of preparations can be prepared.
  • the hollow ceramic microbeads of the ceramic material system, and the particle size distribution of the beads and the wall thickness of the hollow microbeads can be adjusted by the production industry, the preparation process is simple, the production efficiency is high, and it is suitable for large-scale industrial production.
  • Figure 1 is a block diagram showing a method of preparing hollow ceramic microbeads of the present invention.
  • FIG. 2 is a schematic view showing the structure of an apparatus for preparing hollow ceramic microbeads according to the present invention.
  • FIG. 3 is a photomicrograph of a silicon nitride open-cell hollow ceramic microbead prepared according to the present invention.
  • Fig. 4 is a photograph showing the gangue hollow ceramic microbead prepared by the present invention.
  • the slurry droplets quickly lose moisture and dry, forming a hollow eight 1 2 0 3 1 bead 3 ⁇ 4
  • the hollow A1 2 0 3 microbead body was collected, sintered in a silicon molybdenum rod sintering furnace at 1580 ° C, and hollow A1 2 0 3 microbeads were obtained.
  • the size of the hollow microspheres is between 10 ⁇ m and 200 ⁇ m.
  • the hollow Si 3 N bead body was collected and sintered in a pressureless vacuum sintering furnace at 1780 ° C to obtain hollow Si 3 N 4 microbeads.
  • the morphology of the microbeads is shown in Figure 3 (the scale in the figure indicates 50 ⁇ m) ). Hollow bead size Between 10 ⁇ and 300 ⁇ .
  • Example 4 Preparation of coal stone hollow microspheres
  • the volume ratio of coal gangue powder to water is 1:4, and lvol% (total volume) of citric acid cerium is added and ball milled to prepare a ceramic slurry having a solid phase content of 20 vol.%; Add lvol.% Triton X-100 foaming agent, stir well, make the slurry into a stable foam slurry; Add the stable foam slurry to the centrifugal atomization equipment, and atomize it to form a hollow slurry. The droplets are sprayed into the molding chamber, and the temperature in the molding chamber is 200 ° C.
  • the slurry droplets quickly lose moisture and dry, forming a hollow coal stone microbead blank; collecting the hollow coal gangue microbead blanks and placing them in a rotary kiln: furnace Sintering at 1200 ° C to obtain hollow coal bead beads, the morphology of the beads is shown in Figure 4 (the scale in the figure indicates 50 microns).
  • the size of the hollow microspheres is between 10 ⁇ m and 100 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Nanotechnology (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Glanulating (AREA)

Description

一种制备空心微珠的方法和装置
技术领域
本发明涉及材料成型技术领域, 特别是提供空心陶瓷或金属微珠、 制备空心陶瓷或金属微珠的方法及装置。 背景技术
空心陶瓷微珠是一种尺寸微小的空心无机非金属材料球体, 粒径范 围 0.01-1.0mm。 具有质轻、 低导热、 隔音、 耐磨、 高^ t、 电绝缘性和 热稳定性好、 制造成本低等优点, 是一种用途广泛的质轻、 高强, 性能 优异的新型轻质材料。 能够满足石油固井、 汽车底盘抗震、 船身曱板、 树脂等有机物的填料、 乳化炸药、 高档防火涂料、 保温耐火材料, 建筑 夹层保温、 吸声降燥、 建筑外墙的保温节能、 回归反射材料、 生物制药 緩释药物的载体等要求, 此外在电子工业轻质封装材料、 吸波材料、 深 水浮力材料、 低密度粘合剂、 轻质高强混凝土等方面也有潜在的用途。 与传统的空心玻璃 珠相比, 空心陶瓷微珠抗压强度更高, 可以达到前 者数十倍。
在人造大理石的生产中, 用空心陶瓷微珠减轻制品重量, 提高制品 的抗龟裂能力。 用空心陶瓷微珠制造合成木材, 制成品具有与木材同样 的视感、 外观和结构。 主要用于高档家具, 卫生洁具, 家具铸塑件, 装 饰板材等。
空心陶瓷微珠用于修补用复合材料, 典型应用是在树脂中加入空心玻 璃微珠取代部分碳酸钙、 滑石粉等填料制成各种腻子 (原子灰)。 这种新型 补腻, 具有重量轻, 附着力强, 容易涂抹, 低收缩, 固化时间短等优点, 尤其是显著提高砂磨和抛光性能。 广泛用于各种车辆、 船舶、 机床等修 补作业中。
空心陶瓷微珠可以是内部含有一定量的气体的中空的球体, 其导热系 数低, 所以空心玻璃微珠具有隔音、 隔热的特性, 是作为各种保温材料、 隔音产品的极佳填充剂。 同时空心陶瓷微珠在保温涂料中也得到广泛应 用。
另外, 空心陶瓷微珠还是乳化炸药优良的敏化剂, 能提高乳化炸药敏 感度, 延长炸药的储存期。 现有的空心陶瓷微珠尤指一种由二氧化硅 (Si02)和三氧二铝 (A1203). 组成的空心微珠或者空心飘珠, 由粉煤灰或者煤 石通过浮选等分级方 法得到, 实际上是一种具有空心结构和硅铝酸盐玻璃体外壳的微米或亚 微米的玻璃微珠, 广泛用于油墨、 胶粘剂、 工程塑料、 改性橡胶、 电器 绝缘件中。 但是, 目前还难以通过该法类似地得到硅铝酸盐玻璃体以外 的空心陶瓷微珠。
此外, 还有研究者制备其它材料的空心微珠例如 Ti02 (张军玲等, CN101580275A ) 、 ZnO (徐志兵等, CN1807254A ) 、 CdS (谢荣国等, CN1559911A ) 、 Fe304 (聂祚仁等, CN101475223A ) 、 Si02 (殷恒波等, CN 101559951A ) , 然而这些方法受到工艺的限制, 基本局限于制备可以 通过溶液化学工艺得到的特定成分的空心微珠, 尚很难应用于制备特定 成分之外的空心微珠。
本发明通过制备泡沫稳定的浆料, 利用离心雾化法申请人已经成功 制备出多种材料例如 A1203、 Zr02、 Si3N4、 SiC、 煤 石、 粉煤灰、 WC、 Ni等的空心微珠。 所述制备方法中所用的关键步骤之一为离心雾化法, 离心雾化法是雾化技术常用的一种。 该方法所获得的冷却速率比气体雾 化法要快, 目前离心雾化法用于制^ ^属粉末或快速凝固合金粉体, 即 将金属加热熔化后在离心力作用下被甩出破碎成小液滴, 再由液氮冷却 使其凝固成粉末, 该法制出的微晶粉末组织微细、 偏析小, 并且成本较 低, 易于进行工业化生产。 在本发明中, 首次将离心雾化技术用于陶瓷 空心微珠的制备, 通过制备具有一定特性的 (具有一定固相含量的高稳 定的泡沫) 水基或非水基浆料, 通过采用离心雾化技术使泡沫浆料雾化 形成空心浆料液滴, 快速干燥后得到陶瓷空心微珠。 该技术首先成功应 用于陶瓷体系以及含无机非金属材料的固体废弃物, 不仅大大扩展空心 微珠的应用范围及应用前景, 并且为固体废弃物的循环再利用提供了新 的途径; 同时该技术也成功应用于金属及合金材料空心微珠的制备。
该方法与装置对与各种材料体系的陶瓷粉体具有普适性, 可以制备 不同陶瓷材料(例如 A1203、 Zr02、 Si3N4、 SiC等多种材料)的空心微珠、 含无机非金属材料的固体废弃物 (例如煤矸石、 粉煤灰等) 以及不同的 金属及合金材料体系 (例如 WC、 Ni等材料) , 空心微珠直径为 0.001 - 1.5mm, 包括闭孔的空心微珠和开孔的空心微珠两种。这一系列材料的直 径为 0.001-1.5mm的开孔或者闭孔空心微珠尚未见报道。 发明内容
本发明提供空心陶瓷或金属微珠、 制备空心陶瓷或金属微珠的方法 与装置, 该方法与装置适用于各种材料体系的陶瓷或金属粉, 可以制备 各种无机非金属材料的空心微珠, 例如包括: 氧化物和非氧化物陶瓷, 固体废弃物材料如: 煤 石、 粉煤灰、 尾矿、 污泥、 废石材等, 以及金 属及合金材料。 该方法操作简单, 通过原料粉体直接配制成一定固相含 量的泡沫稳定的浆料, 即可制备目标空心微珠。 对原料具有普适性, 对 应用没有限制。 可以成功制备出其他方法难以制备的空心^朱。
在本发明的一些实施方案中, 提供一种空心陶瓷或金属微珠, 所述 微珠的直径为 0.001-1.5mm。 在一些实施方案, 所述空心^:珠直径大于 1 个微米, 例如是 1 - 1 Q 0微米, 或者例如 500- 150 Q微米, 并具有除硅酸铝 之外的成分, 例如选自非氧化物系的高温 (耐热) 陶瓷和高温 (耐热) 金属 /合金, 或者选自非氧化物陶瓷、 硬质合金。 在一些实施方案中, 空 心陶瓷微珠由选自 Zr02、 Si3N4、 WC、 SiC的成分构成。 在一些实施方案 中, 空心陶瓷微珠具有在表面开放的孔。
在一些实施方案中, 本发明还提供一种制备空心陶瓷或金属微珠的 方法, 包括以下步骤: 利用发泡剂使包含陶瓷或金属粉体、 水和分散剂 的一定固相含量的陶瓷或金属浆料形成为稳定的泡沫浆料; 将所述的稳 定的泡沫浆料加入离心雾化设备, 使其雾化形成空心浆料液滴, 并喷入 成型室内, 使其快速干燥, 形成空心微珠坯体。 收集空心微珠坯体, 并 进行烧结。 在本发明制备方法的一些实施方案中, 通过将陶瓷或金属粉 体与水、 分散剂混合并球磨, 制备出一定固相含量的陶瓷或金属浆料。 在一些实施方案中, 在一定固相含量的陶瓷或金属浆料中加入发泡剂, 充分搅拌, 将浆料制成为稳定的泡沫浆料。 在本发明中, 固相含量是指 固相 (陶瓷或金属)粉体占浆料的体积含量, 一般可以在 5-60%之间。
在本发明中,稳定的泡沫浆料是指在相当长的一段时间例如至少 6小 时、通常为 1-3天内泡沫浆料维持稳定而不发生明显的固相颗粒凝聚或沉 降, 浆料中的泡沫没有消泡或合泡。 通过分散剂和发泡剂的适当作用, 可以获得稳定的泡沫浆料。 通过分散剂的空间位阻效应及静电效应, 使 颗粒在溶液中保持稳定分散。 发泡剂主要考虑发泡效果, 使得浆料发泡 率达到 20%-600%之间, 其气泡直径为 0.001-1.5mm, 放置 1-10天基本没 有明显的消泡或者合泡现象。 发泡率定义为发泡后浆料与未发泡浆料的 体积比。 发泡效果不良时, 例如发泡率低, 或者泡沫不稳定造成合泡或 消泡, 则直接影响最终空心微珠的空心率及微珠直径。 所述的气泡直径 可以通过发泡剂加入量和加入发泡剂后的搅拌或者球磨时间来调整。 经 离心雾化后的液滴需要瞬间干燥保形固形, 如果干燥速度不够快, 则液 滴受重力或吹力的影响变形。
在一些实施方案中, 一定固相含量的陶瓷或金属浆料可以通过将粉 体与水、 分散剂混合并球磨获得。 其中陶瓷粉体可以使用各种陶瓷材料 的原料, 所述原料可以从广义的无机非金属材料粉体中选择, 例如可以 是氧化物粉、 非氧化物陶瓷粉, 以及含无机非金属材料的固体废弃物如 煤矸石、 粉煤灰、 尾矿、 污泥, 也可以是黄土粉体等, 此外还可以使用 金属或合金粉末。 一些具体例子为 Zr02、 Si3N4、 SiC、 煤 石、 粉煤灰、 WC、 Ni等。
对于分散剂, 本发明并不依赖特定分散剂的选择, 只要分散剂可以 使得陶瓷粉体在桨料中适当分散即可。 一些可以使用的分散剂的例子是 聚丙烯酸铵、 四曱基氢氧化铵、 拧檬酸铵、 聚曱基丙浠酸铵盐、 四曱基 乙二胺、 六偏磷酸钠等。 为了取得更好的分散效果, 可以针对不同的粉 体选择相应的分散剂, 如氧化锆粉体选择柠檬酸铵、 氮化硅粉体选择四 曱基氢氧化铵等。
对于发泡剂, 本发明不依赖特定发泡剂的选择, 只要发泡剂可以使 得一定固相含量的陶瓷浆料形成为稳定的泡沫浆料即可, 例如可以选择 与粉体不会发生反应的发泡剂。 一些可以使用的发泡剂的例子是曲拉通、 没食子酸丙酯。 在本发明中, 发泡剂的发泡率优选达到 20%-600%之间, 其气泡直径为 0.001-1.5mm, 放置 1-10天基本没有消泡或者合泡现象。
陶瓷或金属粉体与水、 分散剂之间的比例优选为能够获得一定固相 含量的浆料。 在某些实施方案中, 粉体的体积占加入粉料后溶液总体积 为约 5-60%, 分散剂占总体积约 0.1 -3%, 发泡剂占总体积约 0.1- 1%, 其 余为水。
在本发明中可以使用球磨工艺获得一定固相含量的陶瓷或金属浆 料。 但是本领域技术人员能够理解, 还可以使用其它工艺类似地获得一 定固相含量的浆料, 例如搅拌机搅拌。 在本发明中, 并不具体限制球磨 工艺, 只要能够获得一定固相含量的陶瓷或金属浆料即可。 另一方面, 本发明提供一种制备空心微珠的装置。 在一个实施方案 中, 所述装置的结构示意图如图 2, 其包含离心雾化设备 1、 成型室 2、 废气系统 4、 分离系统 3, 及为成型室提供热风的热风系统 5; 其中离心 雾化设备位于上部, 其下部连接有成型室, 成型室上部连接有废气系统, 成型室下方设有分离系统, 成型室与热风系统相连接。 离心雾化系统是 该装置的关键组成部分, 离心雾化机理及设备可以参考例如 "采用离心 式雾化生产金属粉末" (温树德, 《国外金属热处理》 1997年第 3期) 中 的描述。 泡沫浆料经离心雾化系统可分散为直径为 0.2-1.5mm 的空心液 滴, 并喷入成型室内。 热风系统将空气(如果需要, 也可以使用其它气 体例如惰性气体)过滤并加热到 80-300°C , 从成型室上部呈螺旋状均匀 地进入成型室内, 与空心液滴并流接触在极短的时间 (瞬间, 通常在不 超过 1 秒的时间内) 内干燥为空心敖珠坯体。 废气由废气系统排出, 空 心微珠坯体连续地由成型室底部分离系统输出。 该装置成型速度快, 泡 沫浆料数秒内完全分散并干燥, 特别适用于工业化生产。 该装置成型的 空心微珠坯体具有良好的粒径分布, 产品粒径可通过改变操作条件进行 调整, 产品强度高, 生产过程简捷, 操作控制方便。
该方法与装置对与各种材料体系的粉体具有普适性, 可以制备不同 陶瓷材料(A1203、 Zr02、 Si3N4、 SiC等)、 含无机非金属材料的固体废弃 物 (煤矸石、 粉煤灰等)、 金属及合金材料( WC、 Ni等)等多种材料的 空心^朱, 空心陶瓷微珠直径为 0.001-1.5mm, 指闭孔的空心微珠和开孔 的空心微珠两种。
本发明的有益效果为: 该装置成型的空心微珠坯体具有良好的粒径 分布, 产品粒径可通过改变操作条件进行调整, 产品强度高, 生产过程 简捷, 操作控制方便, 可以制备各种陶瓷材料体系的空心陶瓷微珠, 且 其微珠粒径分布和空心微珠壁厚可以通过生产工业来调节, 制备工艺简 捷, 生产效率高, 适合规模化工业生产。
附图说明
图 1为本发明一种制备空心陶瓷微珠的方法框图。
图 2为本发明一种制备空心陶瓷微珠的装置的结构示意图。
图 3 为本发明制备出的氮化硅开孔空心陶瓷微珠显微照片。
图 4 为本发明制备出的煤矸石空心陶瓷微珠显 t照片。
附图 2中标记的说明 1 离心雾化设备 2 成型室
3 分离系统 4 废气系统
5 热风系统 体实施方式
实施例 1 : A1203 空心^ t珠的制备
控制 A1203陶瓷粉体与水的体积比为 1:3,加入 0.1vol% (占总体积) 聚 丙烯酸铵分散剂, 混合并球磨, 制备出固相含量为 25vol.%的陶瓷浆料; 悴该陶瓷浆料加入 0.3vol%没食子酸丙酯发泡剂, 充分搅拌或球磨, 将该 高固相含量的浆料制成稳定的泡沫浆料; 将稳定的泡沫浆料通过隔膜泵 ¾入离心雾化设备, 使其雾化形成空心浆料液滴, 并喷入成型室内, 成 型室内温度为 280°C , 浆料液滴快速失去水分干燥, 形成空心八1203 1珠 ¾体; 收集空心 A1203微珠坯体, 放入硅钼棒烧结炉在 1580°C进行烧结, 削得空心 A1203微珠。 空心微珠的尺寸在 10μιη-200μπι之间。
实施例 2: Zr02 空心^:珠的制备
控制 Zr02陶瓷粉体与水的体积比为 1:5, 加入 1.5vol% (占总体积) 聚丙烯酸铵分散剂, 混合并球磨, 制备出固相含量为 16.7vol.%的陶瓷浆 丰牛; 将该陶瓷浆料加入 1.5vol.%曲拉通 X-100发泡剂中, 充分搅拌, 将 该高固相含量的浆料制成稳定的泡沫浆料; 将稳定的泡沫浆料加入离心 雾化设备, 使其雾化形成空心浆料液滴, 并喷入成型室内, 成型室内温 为 280°C, 浆料液滴快速失去水分干燥, 形成空心 2!"02微珠坯体; 收 集空心 Zr02微珠坯体, 放入硅钼棒高温电炉中在 1520°C进行烧结, 制得 空心 Zr02微珠。 空心微珠的尺寸在 10μιη-300μηι之间。
实施例 3: Si3N4 空心微珠的制备
控制 Si3N4陶瓷粉体与水的体积比为 1 :3, 然后 2vol% (占总体积) 的四曱基氢氧化铵,混合并球磨,制备出固相含量为 25vol.%的陶瓷浆料; 挎该陶瓷浆料加入 0.8vol.%的曲拉通 X-114发泡剂中,充分搅拌,将该高 固相含量的浆料制成稳定的泡沫浆料; 将稳定的泡沫浆料加入离心雾化 没备, 使其雾化形成空心浆料液滴, 并喷入成型室内, 成型室内温度为 250°C , 浆料液滴快速失去水分干燥, 形成空心 Si3N 鼓珠坯体; 收集空 心 Si3N 珠坯体,放入无压真空烧结炉中在 1780°C烧结,制得空心 Si3N4 微珠, 微珠的形貌参见附图 3 (图中标尺表示 50微米)。 空心微珠的尺寸 在 10μιη-300μιη之间。 实施例 4: 煤 石空心微珠的制备
将煤矸石粉体与水的体积比为 1 :4, 同时加入 lvol% (占总体积)柠檬酸 绥混合并球磨, 制备出固相含量为 20vol.%的陶瓷浆料; 将该陶瓷浆料加 入 lvol.%曲拉通 X-100发泡剂中, 充分搅拌, 将该浆料制成稳定的泡沫 浆料; 将稳定的泡沫浆料加入离心雾化设备, 使其雾化形成空心浆料液 滴, 并喷入成型室内, 成型室内温度为 200°C , 浆料液滴快速失去水分干 燥, 形成空心煤 石微珠坯体; 收集空心煤矸石微珠坯体, 放入回转窑 :炉中 1200°C进行烧结, 制得空心煤 石微珠,微珠的形貌参见附图 4 (图 中标尺表示 50微米)。 空心微珠的尺寸在 10μιη-100μηι之间。 虽然在上面参照本发明的一些具体实施方案对本发明进行了描述, 但是本发明不限于此, 而是可以在下面权利要求书的范围内进行各种修 改和替换。

Claims

权 利 要 求 书
1、 一种制备空心陶瓷或金属微珠的方法, 包括以下步骤: 利用发泡 剂使包含陶瓷或金属粉体、 水和分散剂的一定固相含量的陶瓷或金属浆 料形成为稳定的泡沫浆料; 将所述的稳定的泡沫浆料加入离心雾化设备, 使其雾化形成空心浆料液滴, 并喷入成型室内, 使其快速干燥, 形成空 心微珠坯体; 收集空心微珠坯体, 并进行烧结。
2、 如权利要求 1所述的方法, 其中, 所述陶瓷或金属粉体选自氧化 物陶瓷、 非氧化物陶瓷、 固体废弃物材料如: 煤矸石、 粉煤灰、 尾矿、 污泥、 废石材等、 以及金属 /合金材料。
3、 如权利要求 1所述的方法, 其中, 在所述的一定固相含量的陶瓷 或金属浆料中, 所述粉体的体积占加入所述粉料后溶液总体积的 5-60%, 分散剂占总体积 0.1-3%, 发泡剂占总体积的 0.1 -1%, 其余为水。
4、 如权利要求 1所述的方法, 其中, 所述分散剂选自现有常用分散 剂, 尤其是柠檬酸铵、 聚曱基丙浠酸铵盐、 四曱基乙二胺、 六偏磷酸钠 等, 所述的发泡剂选自现有常用发泡剂尤其是曲拉通、 没食子酸丙脂等。
5、 如权利要求 1所述的方法, 其中, 通过将陶瓷或金属粉体与水、 分散剂混合并球磨, 制备出所述一定固相含量的陶瓷或金属浆料, 在所 述一定固相含量的陶瓷或金属浆料中加入所述发泡剂, 充分搅拌, 将所 述浆料制成为稳定的泡沫浆料。。
6、 如权利要求 1所述的方法, 其中, 所述的稳定的泡沫浆料的浆料 发泡率达到 20%-600%之间, 其气泡直径为 0.001-1.5mm, 放置 1-10天基 本没有明显的消泡或者合泡。
7、一种用于制备空心陶瓷或金属微珠的装置,其包含离心雾化设备、 成型室、 废气系统、 分离系统, 及为成型室提供热风的热风系统;
其中离心雾化设备位于上部, 其下部连接有成型室, 成型室上部连 接有废气系统, 成型室下方设有分离系统, 成型室与热风系统相连接。
8. 根据权利要求 7所述的装置, 其中, 所述离心雾化设备使泡沫浆 料雾化形成空心浆料液滴。
9. 根据权利要求 7 所述的装置, 其中, 所述成型室内温度为 80-500°C。
10.—种空心微珠, 所述微珠的直径为 0.001-1.5mm, 例如是 1-100微 米, 或者例如 500-1500微米, 并具有除硅酸盐之外的陶瓷或金属成分, 例如选自非氧化物系的高温 (耐热) 陶瓷和高温 (耐热)金属或合金, 尤其是选自 Zr02、 Si3N4、 WC、 SiC中的成分。
PCT/CN2010/000538 2009-04-21 2010-04-20 一种制备空心微珠的方法和装置 WO2010121488A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/265,463 US8845936B2 (en) 2009-04-21 2010-04-20 Process and device for the preparation of hollow microspheres comprising centrifugal atomization
BRPI1013934A BRPI1013934A2 (pt) 2009-04-21 2010-04-20 processo e dispositivo para a preparação de microesferas oca
AU2010239045A AU2010239045B2 (en) 2009-04-21 2010-04-20 Method and device for producing hollow microspheres
CA2759758A CA2759758C (en) 2009-04-21 2010-04-20 Process and device for the preparation of hollow microspheres
EP10766579.6A EP2431344B1 (en) 2009-04-21 2010-04-20 Method for producing hollow microspheres
EA201171263A EA020857B1 (ru) 2009-04-21 2010-04-20 Способ получения полых микросфер
ZA2011/07654A ZA201107654B (en) 2009-04-21 2011-10-19 Method and device for producing hollow microspheres

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101310517A CN101870588B (zh) 2009-04-21 2009-04-21 一种制备空心陶瓷微珠的方法与装置
CN200910131051.7 2009-04-21

Publications (1)

Publication Number Publication Date
WO2010121488A1 true WO2010121488A1 (zh) 2010-10-28

Family

ID=42995695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000538 WO2010121488A1 (zh) 2009-04-21 2010-04-20 一种制备空心微珠的方法和装置

Country Status (9)

Country Link
US (1) US8845936B2 (zh)
EP (1) EP2431344B1 (zh)
CN (1) CN101870588B (zh)
AU (1) AU2010239045B2 (zh)
BR (1) BRPI1013934A2 (zh)
CA (1) CA2759758C (zh)
EA (1) EA020857B1 (zh)
WO (1) WO2010121488A1 (zh)
ZA (1) ZA201107654B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011882A (zh) * 2012-12-29 2013-04-03 清华大学 一种具有三级孔结构的无机保温材料及其制备方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102603305B (zh) * 2012-03-03 2014-03-19 赣州虔东稀土集团股份有限公司 一种陶瓷微珠生坯的成型方法与装置
US8733500B1 (en) 2012-11-12 2014-05-27 Hexcel Corporation Acoustic structure with internal thermal regulators
CN103172253B (zh) * 2013-04-17 2016-05-11 清华大学 一种利用煤矸石空心微珠自发泡制备无机泡沫材料的方法
CN103570463B (zh) * 2013-10-30 2015-06-10 清华大学 一种基于煤矸石微米级空心球的保水缓释化肥及其制备方法
CN103553343B (zh) * 2013-10-31 2015-12-09 河北勇龙邦大新材料有限公司 一种利用废玻璃制备微孔泡沫玻璃的方法
CN104649234A (zh) * 2013-11-25 2015-05-27 中国人民解放军军械工程学院 一种氧化物空心微球的制备方法
JP6434237B2 (ja) * 2014-02-19 2018-12-05 学校法人慶應義塾 中空金属粒子の製造方法と中空金属粒子
US9901844B2 (en) * 2014-03-07 2018-02-27 University of Pittsburgh—of the Commonwealth System of Higher Education Nano seeding tools to generate nanometer size crystallization seeds
CN103880549B (zh) * 2014-03-27 2016-06-15 清华大学 一种空心陶瓷微珠附载脲醛缓释化肥的方法
CN103880550B (zh) * 2014-03-27 2016-06-15 清华大学 利用空心陶瓷微珠包覆法制备的缓释化肥及其制备方法
CN104016703B (zh) * 2014-06-09 2016-06-15 清华大学 一种超轻质闭孔陶瓷的制备方法
CN104310787A (zh) * 2014-09-28 2015-01-28 中国建材国际工程集团有限公司 粉煤灰人造空心漂珠的制备方法
CN106431396A (zh) * 2016-08-31 2017-02-22 赣州科盈结构陶瓷有限公司 一种陶瓷坯制备方法
KR20200070244A (ko) 2017-09-11 2020-06-17 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 다분산성 중합체 나노구체들을 포함하는 마이크로구체들 및 다공성 금속 산화물 마이크로구체들
KR102651206B1 (ko) 2017-09-11 2024-03-25 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 다공성 금속 산화물 마이크로구체들
CN109694240A (zh) * 2017-10-24 2019-04-30 天津大学(青岛)海洋工程研究院有限公司 一种耐高温漂珠/莫来石固体浮力材料的制备方法
CN108856703B (zh) * 2018-06-29 2021-02-19 中国电子科技集团公司第二十六研究所 两相球形材料及其制造装置、制造方法及板材的制造方法
CN112654494B (zh) * 2018-08-08 2022-12-23 法斯特建筑系统私人有限公司 预成型件、复合结构和面板及其形成方法
CN111848206A (zh) * 2020-07-20 2020-10-30 贵州正业龙腾新材料开发有限公司 一种单分散微米级中空陶瓷微球的制备方法
CN112358351A (zh) * 2020-11-10 2021-02-12 宁波大学 一种陶瓷空心微珠包衣鱼蛋白氨基酸水溶缓释肥及其制备方法
CN113045263B (zh) * 2021-03-18 2022-11-08 西南石油大学 一种混杂纤维水泥基泡沫复合吸波材料及其制备方法
CN113372131B (zh) * 2021-04-26 2022-06-07 西安理工大学 微纳孔道结构四方相BaTiO3/HA空心微球的制备方法
CN113976876B (zh) * 2021-11-23 2023-03-21 西北有色金属研究院 一种金属空心球的制备方法
CN113979746A (zh) * 2021-11-29 2022-01-28 天津大学(青岛)海洋工程研究院有限公司 一种氧化物结构陶瓷基空心浮球的制备方法
CN114230365A (zh) * 2021-12-28 2022-03-25 黄世荣 一种微纳米陶瓷粉体复合材料制备方法
CN115594475B (zh) * 2022-09-28 2023-06-30 杭州蓝田涂料有限公司 一种保温石膏基自流平砂浆及其制备方法
CN116422224B (zh) * 2023-04-14 2024-03-12 北京华圻生态科技有限公司 一种球形空心粉体及其制备方法和应用
CN116425564B (zh) * 2023-04-14 2024-03-12 北京华圻生态科技有限公司 一种氧化铝耐火材料及其制备方法
CN116422225B (zh) * 2023-04-14 2023-11-28 北京华圻生态科技有限公司 一种球形空心粉体及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1113922A (zh) * 1994-06-02 1995-12-27 中国科学院化学研究所 粒径均匀的氧化物多孔微球及其制备方法
CN1123772A (zh) * 1994-11-29 1996-06-05 淄博市新材料研究所 空心玻璃微球的制造方法
CN1559911A (zh) 2004-02-20 2005-01-05 浙江大学 制备单分散硫化镉空心球的方法
CN1807254A (zh) 2006-01-26 2006-07-26 徐志兵 氧化锌空心微球的制备方法
CN2931473Y (zh) * 2006-06-09 2007-08-08 杨勇 用于生产空心玻璃微球的成球塔
CN101475223A (zh) 2009-01-16 2009-07-08 北京工业大学 一种纳米结构α型三氧化二铁空心亚微球的制备方法
CN101559951A (zh) 2009-05-15 2009-10-21 江苏大学 一种制备纳米级二氧化硅空心微球的方法
CN101580275A (zh) 2008-05-15 2009-11-18 中国科学院过程工程研究所 一种制备二氧化钛空心球状粉体的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522522B2 (zh) * 1972-07-17 1980-06-17
US4127158A (en) * 1973-10-15 1978-11-28 Toyo Kohan Co., Ltd. Process for preparing hollow metallic bodies
DE3640586A1 (de) * 1986-11-27 1988-06-09 Norddeutsche Affinerie Verfahren zur herstellung von hohlkugeln oder deren verbunden mit wandungen erhoehter festigkeit
JP2705133B2 (ja) 1988-08-30 1998-01-26 東ソー株式会社 ジルコニア質微小中空球状粒子及びその製造方法
US5322821A (en) * 1993-08-23 1994-06-21 W. R. Grace & Co.-Conn. Porous ceramic beads
US5492870A (en) * 1994-04-13 1996-02-20 The Board Of Trustees Of The University Of Illinois Hollow ceramic microspheres by sol-gel dehydration with improved control over size and morphology
JP2002029764A (ja) 2000-07-19 2002-01-29 Asahi Glass Co Ltd 微小中空ガラス球状体およびその製造方法
CA2328285A1 (fr) 2000-12-15 2002-06-15 Gauthier, Alain Blindage anti projectile a charge creuse
JP2002355544A (ja) * 2001-05-30 2002-12-10 Tdk Corp 球状セラミックス粉末の製造方法、球状セラミックス粉末および複合材料
CN2582742Y (zh) * 2002-11-29 2003-10-29 舒永兴 泡沫离心喷雾干燥造粒装置
JP5349043B2 (ja) 2005-06-27 2013-11-20 アプライド シン フィルムズ,インコーポレイティッド 燐酸アルミニウム系マイクロスフェア
JP4235644B2 (ja) * 2005-12-01 2009-03-11 株式会社ニワショーセラム 多孔質セラミック焼結体の製造方法
WO2008123558A1 (ja) * 2007-03-29 2008-10-16 Toho Titanium Co., Ltd. チタン酸アルカリ及びチタン酸アルカリの中空体粉末の製造方法、並びにこれにより得られたチタン酸アルカリ及びその中空体粉末、並びにこれを含む摩擦材
EP2167209A4 (en) * 2007-07-18 2013-03-06 Univ Nanyang Tech HOLLOW POROUS MICRO BEADS

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1113922A (zh) * 1994-06-02 1995-12-27 中国科学院化学研究所 粒径均匀的氧化物多孔微球及其制备方法
CN1123772A (zh) * 1994-11-29 1996-06-05 淄博市新材料研究所 空心玻璃微球的制造方法
CN1559911A (zh) 2004-02-20 2005-01-05 浙江大学 制备单分散硫化镉空心球的方法
CN1807254A (zh) 2006-01-26 2006-07-26 徐志兵 氧化锌空心微球的制备方法
CN2931473Y (zh) * 2006-06-09 2007-08-08 杨勇 用于生产空心玻璃微球的成球塔
CN101580275A (zh) 2008-05-15 2009-11-18 中国科学院过程工程研究所 一种制备二氧化钛空心球状粉体的方法
CN101475223A (zh) 2009-01-16 2009-07-08 北京工业大学 一种纳米结构α型三氧化二铁空心亚微球的制备方法
CN101559951A (zh) 2009-05-15 2009-10-21 江苏大学 一种制备纳米级二氧化硅空心微球的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHENG, XIAOSU ET AL.: "Study on Preparation Technology and Properties of Ceramic Microspheres.", THE CHINESE JOURNAL OF PROCESS ENGINEERING., vol. 4, no. SUPPL., August 2004 (2004-08-01), pages 291 - 296, XP008148118 *
See also references of EP2431344A4
WEN SHUDE, HEAT TREATMENT OF METALS ABROAD, no. 3, 1997

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011882A (zh) * 2012-12-29 2013-04-03 清华大学 一种具有三级孔结构的无机保温材料及其制备方法

Also Published As

Publication number Publication date
EP2431344B1 (en) 2017-07-12
CN101870588B (zh) 2012-10-31
EP2431344A4 (en) 2015-03-25
ZA201107654B (en) 2012-07-25
CA2759758A1 (en) 2010-10-28
CN101870588A (zh) 2010-10-27
BRPI1013934A2 (pt) 2016-08-09
US20120107611A1 (en) 2012-05-03
US8845936B2 (en) 2014-09-30
AU2010239045B2 (en) 2013-10-03
EA020857B1 (ru) 2015-02-27
CA2759758C (en) 2016-11-29
EA201171263A1 (ru) 2012-03-30
EP2431344A1 (en) 2012-03-21
AU2010239045A1 (en) 2011-11-17

Similar Documents

Publication Publication Date Title
WO2010121488A1 (zh) 一种制备空心微珠的方法和装置
EP0717675B1 (en) Hollow borosilicate microspheres and method of making
AU2007282111B2 (en) A composition and method for making a proppant
US8012533B2 (en) Composition and method for making a proppant
US20120003136A1 (en) Proppants With Carbide And/Or Nitride Phases
CN103922768B (zh) 一种功能复合型氧化锆耐火制品及其制备方法
CN116422225B (zh) 一种球形空心粉体及其制备方法和应用
CN112662982A (zh) 一种适合等离子喷涂的纳米结构Yb2Si2O7球形喂料的制备方法
CN110526270A (zh) 一种低钠球形纳米α-氧化铝粉体的制备方法
CN112851391B (zh) 节能轻质莫来石耐火材料及其制备方法
CN103803952A (zh) 一种高强度轻质铝锆空心微球的制备方法
AU2013200446B2 (en) A composition and method for making a proppant
CN112920683B (zh) 一种环保自清洁的高性能陶瓷粉末材料及其制备方法
CN116422224B (zh) 一种球形空心粉体及其制备方法和应用
CN115745638B (zh) 一种莫来石-碳化硼轻质耐火材料及其制备方法
CN117447053A (zh) 以废玻璃为原料制备高漂浮率空心玻璃微珠的方法
JP2023014063A (ja) 軽量多孔質材料粒子の製造方法
CN117430335A (zh) 一种真密度和抗压强度可调的高漂浮率空心玻璃微珠的制备方法
CN115536372A (zh) 一种陶瓷岩板、干法制粉陶瓷岩板坯体及其制备方法
Kimura et al. Preparation of titania microballoons by sol-gel process in reverse dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766579

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 4328/KOLNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2759758

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2010766579

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010766579

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010239045

Country of ref document: AU

Date of ref document: 20100420

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201171263

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 13265463

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1013934

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1013934

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111021