WO2010119936A1 - 偏性嫌気性に変異化された乳酸菌およびその作製方法ならびに偏性嫌気性乳酸菌で機能する発現ベクター - Google Patents
偏性嫌気性に変異化された乳酸菌およびその作製方法ならびに偏性嫌気性乳酸菌で機能する発現ベクター Download PDFInfo
- Publication number
- WO2010119936A1 WO2010119936A1 PCT/JP2010/056806 JP2010056806W WO2010119936A1 WO 2010119936 A1 WO2010119936 A1 WO 2010119936A1 JP 2010056806 W JP2010056806 W JP 2010056806W WO 2010119936 A1 WO2010119936 A1 WO 2010119936A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lactobacillus
- lactic acid
- anaerobic
- acid bacterium
- expression vector
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/74—Bacteria
- A61K35/741—Probiotics
- A61K35/744—Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
- A61K35/747—Lactobacilli, e.g. L. acidophilus or L. brevis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- the present invention is useful as a therapeutic agent for diseases in anaerobic environments such as solid tumors, lactic acid bacteria mutated from facultative anaerobic to obligate anaerobic, a method for producing the same, and functions in obligate anaerobic lactic acid bacteria To an expression vector.
- an obligate anaerobic lactic acid bacterium that does not grow in an aerobic environment or has a very low growth rate and has been mutated from facultative anaerobic to obligate anaerobic so as to grow in an anaerobic environment
- obligate anaerobic lactic acid bacteria that can be transformed with expression vectors, methods for producing them, pharmaceutical compositions containing the obligate anaerobic lactic acid bacteria as active ingredients, and good protein expression that functions in obligate anaerobic lactic acid bacteria And an expression vector capable of promoting protein secretion.
- Lactic acid bacteria are generic names for bacteria that produce energy by degrading sugar to produce lactic acid. Examples include Lactobacillus bacteria, Bifidobacterium bacteria, Lactococcus bacteria, Streptococcus bacteria, Enterococcus bacteria, etc. . On the other hand, bacteria are largely divided into aerobic bacteria that require oxygen for growth and anaerobes that do not require oxygen, depending on the oxygen demand for growth, and anaerobic bacteria grow when oxygen is present. It is divided into obligatory anaerobes that cannot be grown and facultative anaerobes that can grow with or without oxygen.
- Bifidobacterium bacteria are obligate anaerobes
- Lactobacillus bacteria, Lactococcus bacteria, Streptococcus bacteria, Enterococcus bacteria, etc. are facultative anaerobes.
- Lactic acid bacteria have been widely used in the food field, and recently, they have been effective as probiotics that can promote the maintenance of the health of the host by improving the balance of the intestinal flora. Attention has been paid. In addition, many uses in the pharmaceutical field have been reported. Regarding tumor treatment, in addition to direct antitumor agents, immunostimulators, IgE production inhibitors, humoral immune recovery agents, interleukin 12 production promoters Application as such is reported.
- compositions containing one or more selected from Lactobacillus bacteria, Bifidobacterium bacteria, Pediococcus bacteria, Streptococcus bacteria, and Leuconostoc genus bacteria has an immunostimulatory action (antitumor) Activity) has been reported (see, for example, Patent Document 1).
- various lactic acid bacteria useful as tumor therapeutic agents such as antitumor agents, IgE production inhibitors, humoral immune recovery agents, interleukin 12 production promoters, and immunostimulants have been reported (for example, patents) Reference 2-7).
- Lactobacillus bacteria Lactobacillus bacteria useful as tumor growth inhibitors or malignant tumor recurrence inhibitors have been reported (see, for example, Patent Documents 8 to 11).
- Bifidobacterium which is an obligate anaerobic bacterium, for the treatment of diseases in an anaerobic environment such as solid tumors.
- Bifidobacterium longum a bacterium belonging to the genus Bifidobacterium, disappears rapidly from normal tissues even when administered intravenously, and it accumulates and grows specifically at the solid tumor site. Therefore, application to treatment for solid tumors is expected (see, for example, Non-Patent Documents 1 and 2).
- 5-fluorocytosine As an active protein for exerting an antitumor effect, 5-fluorocytosine (hereinafter referred to as 5-FC), which is a prodrug (precursor) of 5-fluorouracil (hereinafter referred to as 5-FU) having antitumor activity.
- 5-FU 5-fluorouracil
- Bifidobacterium longum which is transformed to express cytosine deaminase (hereinafter referred to as CD), which is an enzyme that converts) into 5-FU, is specific at the tumor site when administered intravenously. It has been reported that it is highly promising as a safe solid tumor treatment agent that has been confirmed to accumulate and grow and express the desired protein, and has no fear of side effects in normal tissues (for example, Patent Document 2 and (See Non-Patent Documents 3 and 4).
- lactic acid bacteria other than Bifidobacterium which is essentially a facultative anaerobe, can be mutated to obligate anaerobes such as Bifidobacterium, Like Fidobacterium, it can be expected as a therapeutic agent for diseases in anaerobic environments such as safe solid tumors that have no fear of side effects in normal tissues.
- the lactic acid bacterium of the present invention does not grow in an aerobic environment or has a very low growth rate, and artificially changes from facultative anaerobic to obligate anaerobic so as to grow in an anaerobic environment.
- Bifidobacterium that can be transformed with an expression vector such as a plasmid derived from an anaerobic bacterium into which an expression gene of a protein having activity useful for the treatment of a lactic acid bacterium mutated or a disease in an anaerobic environment has been introduced
- No obligate anaerobic lactic acid bacteria other than the genus bacteria have been reported.
- transformation using a lactic acid bacterium transformed with a conventional expression vector such as a plasmid derived from an anaerobic bacterium into which an expression gene of a protein having an activity of converting an antitumor substance precursor into an antitumor substance is introduced.
- a conventional expression vector such as a plasmid derived from an anaerobic bacterium into which an expression gene of a protein having an activity of converting an antitumor substance precursor into an antitumor substance is introduced.
- a conventional expression vector such as a plasmid derived from an anaerobic bacterium into which an expression gene of a protein having an activity of converting an antitumor substance precursor into an antitumor substance is introduced.
- active proteins produced in the cells are not secreted outside the cells.
- An expression vector in which the active protein expressed by such transformation is not secreted outside the cells is also useful in applications where the active protein produced according to the type of the active protein acts locally.
- an expression vector that can be transformed so that, for example, an active protein expression gene such as cytokines having antitumor activity is introduced and the produced active protein is secreted outside the cell can be developed, solid An obligate anaerobic lactic acid bacterium capable of responding to various uses depending on the purpose and case of treatment, the type of active protein to be expressed, etc. as a therapeutic agent and gene transport carrier for diseases under anaerobic environment such as tumors Can be produced.
- an expression gene of a protein that functions in obligate anaerobic lactic acid bacteria, such as the expression vector of the present invention, and has an activity useful for the treatment of diseases in an anaerobic environment has been introduced so far.
- Japanese Patent Laid-Open No. 6-80575 JP 2002-97144 A Japanese Patent Laid-Open No. 9-2959 JP-A-9-249574 Japanese Patent Laid-Open No. 10-29946 Japanese Patent Laid-Open No. 10-139664 JP-A-11-199494 JP 7-228536 A Japanese Patent Laid-Open No. 9-30981 Japanese Patent Laid-Open No. 9-301878 Japanese Patent No. 3014148
- lactic acid bacteria such as Lactobacillus genus bacteria, Bifidobacterium genus bacteria, Pediococcus genus bacteria, Streptococcus genus bacteria, Leuconostoc genus bacteria, antitumor agents, IgE production inhibitors, humoral immune recovery agents, It is already known that it has a useful effect as a tumor therapeutic agent such as an interleukin 12 production promoter and an immunostimulant.
- a microorganism When a microorganism is used as a therapeutic agent for a disease in an anaerobic environment such as a malignant tumor, it exhibits an antitumor effect only in a tumor tissue in an anaerobic environment, and has an action effect in a normal tissue not in an anaerobic environment. In order not to exert it, it is desirable that the anaerobic bacterium be specifically accumulated, engrafted or proliferated in tumor tissue under anaerobic environment, and not engrafted or proliferated in normal tissue not in anaerobic environment .
- lactic acid bacteria other than Bifidobacterium are not obligate anaerobic bacteria, but are facultative anaerobic bacteria that can grow even in an aerobic environment. Therefore, when facultative anaerobic lactic acid bacteria other than Bifidobacteria are systemically administered by intravenous injection, not only tumor tissues in anaerobic environment but also normal tissues can be engrafted and proliferated. There is an extremely high risk of side effects on tissues.
- lactic acid bacteria other than Bifidobacterium when used as an antitumor agent, they must be limited to oral administration, intratumoral administration, or intramuscular administration, and thus there are limitations on the method of use. Furthermore, even in the case of oral administration or intratumoral administration, viable bacteria enter the blood vessels from the intestinal tract or leak out of the tumor tissue, resulting in survival and growth in normal tissues, with side effects on normal tissues. There was a risk of expression. For this reason, in the field of anti-tumor treatment, it has been desired to develop lactic acid bacteria that are mutated from facultative anaerobic to obligate anaerobic for lactic acid bacteria other than Bifidobacterium.
- lactic acid bacteria other than Bifidobacterium bacteria for example, in Lactobacillus bacteria, are obligately anaerobic that have extremely low viability in an aerobic environment due to spontaneous mutation or evolution. It is known that there are bacteria (hereinafter referred to as spontaneous mutant anaerobic bacteria). For example, Lactobacillus johnsonii JCM 2012 T strain or Lactobacillus ruminis is known.
- Gene recombination vectors in lactic acid bacteria generally have high host specificity and need to be examined at the strain level.
- natural mutant obligate anaerobes such as Lactobacillus johnsonii JCM 2012 T strain and Lactobacillus ruminis reported so far are generally genes of lactic acid bacteria.
- expression vectors used for recombination such as pLP401, pLP402, pLP403, etc. (hereinafter referred to as pLP400 vectors) cannot function and express an active protein having antitumor activity Therefore, it is necessary to newly develop an expression vector for the strain. Therefore, these naturally-mutated obligate anaerobic bacteria could not be used as parent bacteria for gene transport carriers that are useful as therapeutic agents for diseases in an anaerobic environment.
- an expression vector such as a lactic acid bacterium-E. Coli shuttle vector into which an expression gene of a protein having an activity of converting an antitumor substance precursor into an antitumor substance has been introduced, or a bimorph transformed with the expression vector.
- Lactobacillus of the genus Fidobacterium is already known.
- the conventional expression vector has a drawback that expression of the recombinant protein by the expression gene of the introduced active protein is suppressed in a medium containing glucose as a sugar source.
- the active protein produced in the cells is not secreted outside the cells, so the purpose of treating diseases in an anaerobic environment Depending on the case, the effect of the recombinant protein by the gene expressed by the introduced active protein could not be fully exhibited. From this, in the field of antitumor treatment, it is possible to efficiently produce the active protein by introducing an expression gene of a protein that functions in an anaerobic bacterium and has an activity useful for the treatment of a disease in an anaerobic environment. Therefore, it has been desired to develop an expression vector that can be transformed so that the produced active protein is secreted outside the cell.
- the object of the present invention is to solve the above-mentioned problems, from growing anaerobic to obligate anaerobic so that it does not grow in an aerobic environment or has a very low growth rate and grows in an anaerobic environment.
- Obligate anaerobic that can be transformed with an expression vector such as a plasmid derived from an anaerobic bacterium introduced with an expression gene of a protein having activity useful for the treatment of mutated lactic acid bacteria and diseases under anaerobic environment
- Another object of the present invention is to introduce an expression gene of a protein that functions in obligate anaerobic lactic acid bacteria and has an activity useful in the treatment of diseases under an anaerobic environment. It is another object of the present invention to provide an expression vector that can be efficiently produced and further transformed so that the produced active protein is secreted outside the cells.
- a wild-type lactic acid bacterium can be mutated from facultative anaerobic bacteria to obligate anaerobic bacteria. Furthermore, by introducing a marker gene into the mutated lactic acid bacterium and selecting a transformable bacterium using the marker as an indicator, expression of an anaerobic bacterium-derived plasmid or the like into which an expression gene for a useful active protein has been introduced It has been found that obligate anaerobic lactic acid bacteria that can be transformed with a vector can be obtained.
- the present inventors have also studied expression vectors that function in obligate anaerobic lactic acid bacteria, and have derived plasmid replication protein genes (Rep) derived from Lactobacillus, s-layer gene promoters derived from Lactobacillus and Lactobacillus derived
- Rep derived plasmid replication protein genes
- s-layer gene promoters derived from Lactobacillus and Lactobacillus derived
- the present invention is an obligate anaerobic lactic acid bacterium that does not grow in an aerobic environment or has a very low growth rate, and has been mutated from facultative anaerobic to obligate anaerobic so as to grow in an anaerobic environment.
- the present invention further relates to the obligately anaerobic lactic acid bacterium that can be transformed with an expression vector.
- the present invention relates to the obligate anaerobic lactic acid bacterium, wherein the expression vector is an expression vector into which an expression gene of a protein having activity useful for treatment of a disease in an anaerobic environment is introduced.
- the present invention also relates to the obligately anaerobic lactic acid bacterium, wherein the lactic acid bacterium is one selected from the group consisting of Lactobacillus bacteria, Streptococcus bacteria, Enterococcus bacteria and Lactococcus bacteria. Furthermore, the present invention relates to the obligately anaerobic lactic acid bacterium, wherein the lactic acid bacterium is a genus Lactobacillus.
- the Lactobacillus genus bacterium is Lactobacillus acidophilus, Lactobacillus gasseri, Lactobacillus johnsonii, Lactobacillus helsonticus, Lactobacillus helveticus, Lactobacillus helveticus, ⁇ Salivarius (Lactobacillus salivarius), Lactobacillus delbrueckii (Lactobacillus plantarum), Lactobacillus casei (Lactobacillus casei), Lactobacillus rhamsus (Lactobacillus rhamsus reuteri) and Lactobacillus paracasei, which is one species selected from the group consisting of Lactobacillus paracasei.
- the present invention relates to the obligate anaerobic lactic acid bacterium, wherein the Lactobacillus genus bacterium is Lactobacillus casei.
- the present invention also relates to the obligately anaerobic lactic acid bacterium, wherein Lactobacillus casei is Lactobacillus casei KK378 (deposit number: NITE BP-654) or a transformed bacterium thereof.
- the present invention relates to the obligate anaerobic lactic acid bacterium, wherein the transformed bacterium of Lactobacillus casei KK378 is Lactobacillus casei KJ686 (deposit number: NITE BP-615).
- the present invention also relates to the obligate anaerobic lactic acid bacterium, wherein the transformed bacterium of Lactobacillus casei KK378 is Lactobacillus casei KJ474.
- the present invention relates to an expression vector that functions in an obligate anaerobic lactic acid bacterium, comprising a lactobacillus-derived plasmid replication protein gene (Rep), a lactobacillus-derived s-layer gene promoter, and a lactobacillus-derived PrtP protein secretion signal.
- the present invention relates to an expression vector comprising a secretory signal sequence (PslpA-SSartP) containing, and one or more selectable marker genes.
- the present invention also provides that the obligate anaerobic lactic acid bacteria are mutated from facultative anaerobic to obligate anaerobic so that they do not grow in an aerobic environment or have a very low growth rate and grow in an anaerobic environment.
- the present invention relates to the expression vector, which is an obligate anaerobic lactic acid bacterium. Furthermore, the present invention relates to the expression vector further comprising a desired protein expression gene downstream of a secretory signal sequence (PslpA-SSartP).
- the present invention also relates to the expression vector, wherein the desired protein is a protein (A) having an antitumor activity and / or a protein (B) having an activity of converting an antitumor substance precursor into an antitumor substance. .
- the protein (A) having antitumor activity is interferon (IFN) - ⁇ , ⁇ and ⁇ , granulocyte macrophage colony stimulating factor (GM-CSF), interleukin (IL) -1 ⁇ , 1 ⁇ , 2 3, 4, 6, 7, 10, 12, 13, 15 and 18, tumor necrosis factor (TNF) - ⁇ , lymphotoxin (LT) - ⁇ , granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), macrophage migration inhibitory factor (MIF), leukemia inhibitory factor (LIF), T cell activation costimulatory factors B7 (CD80) and B7-2 (CD86), kit ligand and oncostatin M
- IFN interferon
- GM-CSF granulocyte macrophage colony stimulating factor
- IL interleukin
- TNF tumor necrosis factor
- LT lymphotoxin
- G-CSF granulocyte colony stimulating factor
- M-CSF macrophage colony stimulating
- the present invention also relates to the expression vector, wherein the protein (B) having an activity of converting an antitumor substance precursor into an antitumor substance is one selected from the group consisting of cytosine deaminase, ⁇ -glucuronidase and nitroreductase. . Furthermore, the present invention relates to the expression vector, wherein the selectable marker activity is one or more selected from the group consisting of drug resistance, auxotrophy and medium selectivity. The present invention also relates to the expression vector, wherein the drug resistance is one or more selected from the group consisting of erythromycin resistance, ampicillin resistance, tetracycline resistance, neomycin resistance and kanamycin resistance.
- the present invention relates to the expression vector, wherein the selection marker gene is one or two selected from an erythromycin resistance gene derived from Lactobacillus and an ampicillin resistance gene derived from E. coli.
- the present invention also relates to the expression vector, wherein the plasmid pLPD8s or an arbitrary gene expression gene is further introduced into the plasmid pLPD8s.
- the present invention relates to an obligate anaerobic lactic acid bacterium transformed with any of the above expression vectors.
- the present invention also relates to a pharmaceutical composition comprising one or more of the above-mentioned obligate anaerobic lactic acid bacteria as an active ingredient.
- the present invention provides a pharmaceutical composition containing the obligate anaerobic lactic acid bacterium as an active ingredient, and an anti-tumor substance that is converted into an anti-tumor substance by a protein (B) having an activity of converting an anti-tumor substance precursor into an anti-tumor substance.
- the present invention relates to an antitumor agent comprising a combination of a pharmaceutical composition containing a tumor substance precursor as an active ingredient.
- the present invention also relates to an obligate anaerobic lactic acid bacterium that has been mutated from facultative anaerobic to obligate anaerobic so that it does not grow or has a very low growth rate in an aerobic environment.
- a production method comprising the step (1) of mutating facultative anaerobic wild type lactic acid bacteria, and cultivating the mutated bacteria under anaerobic and aerobic conditions and growing only under anaerobic conditions. And a step (2) of selecting an obligate anaerobic mutant bacterium.
- the present invention further comprises a step (3) of transforming an obligate anaerobic mutant bacterium using an anaerobic bacterium-derived expression vector having one or more selection markers, and the transformed bacterium. And (4) selecting a transformed bacterium transformed with the expression vector using the selectable marker, and a method for producing the obligately anaerobic lactic acid bacterium.
- the present invention also relates to a method for producing the obligately anaerobic lactic acid bacterium, wherein the mutation is chemical mutation with a mutagen. Furthermore, the present invention relates to a method for producing the obligately anaerobic lactic acid bacterium, wherein the mutagen is a nitrosoguanidine derivative. The present invention also relates to a method for producing the obligately anaerobic lactic acid bacterium, wherein the mutagen is N-methyl-N′-nitro-nitrosoguanidine (MNNG). Furthermore, the present invention relates to a method for producing the obligate anaerobic lactic acid bacterium using any of the expression vectors described above.
- MNNG N-methyl-N′-nitro-nitrosoguanidine
- the present invention provides the obligately anaerobic lactic acid bacterium, wherein the facultative anaerobic lactic acid bacterium is one selected from the group consisting of Lactobacillus bacteria, Streptococcus bacteria, Enterococcus bacteria, and Lactococcus bacteria. Regarding the method. Furthermore, the present invention relates to a method for producing the obligate anaerobic lactic acid bacterium, wherein the facultative anaerobic wild type lactic acid bacterium is a bacterium belonging to the genus Lactobacillus.
- the bacterium belonging to the genus Lactobacillus is Lactobacillus acidophilus, Lactobacillus gasseri, Lactobacillus johnsonii, Lactobacillus helveticus, Lactobacillus helveticus, Lactobacillus helveticus, ⁇ Lactobacillus salivarius, Lactobacillus delbrueckii, Lactobacillus plantarum, Lactobacillus casei, Lactobacillus rhamnoact, Lactobacillus rhamnoact reuteri) and Lactobacillus paracasei, which is one type selected from the group consisting of Lactobacillus paracasei.
- the present invention relates to a method for producing the obligately anaerobic lactic acid bacterium, wherein the Lactobacillus genus bacterium is Lactobacillus casei.
- the present invention also relates to a method for producing the obligate anaerobic lactic acid bacterium, wherein Lactobacillus casei is Lactobacillus casei IGM393.
- the obligate anaerobic lactic acid bacterium of the present invention is specifically engrafted in a tumor tissue or the like in an anaerobic environment, while the bacterium grows, whereas it rapidly disappears from a normal tissue in an aerobic environment. Because it does not grow or has a very low growth rate, it does not act on tissues or organs other than the diseased part, but can act only on diseased parts in an anaerobic environment, such as malignant tumors, etc. It is extremely useful as a therapeutic agent for a disease in an anaerobic environment, a gene transporter microorganism capable of expressing a protein useful for the disease, and a parental fungus thereof.
- the obligately anaerobic lactic acid bacterium of the present invention for example, Lactobacillus casei KJ686, showed an antitumor effect. Therefore, by containing the obligate anaerobic lactic acid bacteria of the present invention as an active ingredient, there is no risk of side effects on normal tissues even in systemic administration such as intravenous injection, and there is no restriction on the administration method, and it is extremely safe. An easy-to-use antitumor agent can be produced.
- the obligate anaerobic lactic acid bacterium of the present invention produces a gene transport carrier capable of expressing any active protein by transforming with an expression vector incorporating any active protein expression gene that functions in the lactic acid bacterium. can do.
- the gene transport carrier thus prepared can be expected to have a combined and synergistic effect with the action effect of the active protein in addition to the antitumor effect of the bacterium itself, and further excellent antitumor effect It can be an agent.
- the obligately anaerobic lactic acid bacterium of the present invention is an expression vector of the present invention described later, for example, pLPD8s which is an E. coli-Lactobacillus shuttle vector, or a vector in which any protein expression gene is introduced, such as human IL- 2 Transformation with pLPD8s :: hIL-2 or the like, which is a vector into which the production gene has been introduced, is possible, and the transformed bacteria transformed with these expression vectors of the present invention are transformed with the conventional expression vector.
- active proteins produced and useful by the expressed gene can be secreted outside the cell. Accordingly, by incorporating a desired protein expression gene into these expression vectors of the present invention for transformation, a gene transport carrier that secretes any active protein outside the cell can be produced.
- gene recombination vectors in lactic acid bacteria generally have high host specificity, and natural mutant obligate anaerobes reported so far are commonly used for gene recombination of lactic acid bacteria.
- Vectors such as pLP400-based vectors cannot function and require the development of special expression vectors for the strain.
- the obligate anaerobic lactic acid bacterium of the present invention can function a general expression vector used for genetic recombination of the lactic acid bacterium, unlike the naturally mutated obligate anaerobic bacterium.
- the obligate anaerobic lactic acid bacterium of the present invention has been mutated from facultative anaerobic to obligate anaerobic while retaining the function of being capable of being transformed by a general expression vector originally possessed. This is a feature of this point.
- the obligate anaerobic lactic acid bacterium of the present invention has characteristics that it does not grow in an aerobic environment or has a very low growth rate and can grow in animal tissues in an anaerobic environment. Furthermore, it may have the property of being capable of transformation with an expression vector.
- the expression vector of the present invention functions in obligate anaerobic lactic acid bacteria and obligate anaerobic lactic acid bacteria mutated from facultative anaerobic to obligate anaerobic, and promotes good protein expression and protein secretion. It has the characteristic that it is possible.
- the obligate anaerobic lactic acid bacterium of the present invention is extremely useful as a therapeutic agent for a disease in an anaerobic environment such as a malignant tumor, and as a parent bacterium for any gene transport carrier useful as a therapeutic agent for the disease.
- the expression vector of the present invention is extremely useful as an expression vector for producing the therapeutic agent and gene transport carrier.
- FIG. 2 is a map diagram showing the construction of plasmid vector pLPEmpty and plasmid vector pLPD8s :: IL-2. It is a figure which shows the result of having culture
- KJ686 was administered to LLC-bearing C57BL / 6 mice for 2 consecutive days via the tail vein, and the tumor tissue and normal tissue (lung and liver) at the end point (when the tumor diameter reached 17 mm) were removed and homogenized. It is a figure which shows the result of having apply
- Lactic acid bacteria mutated from facultative anaerobic to obligate anaerobic of the present invention are non-pathogenic and do not grow in an aerobic environment or have a very low growth rate, Furthermore, it may have a characteristic that it can be transformed by an expression vector such as a plasmid derived from an anaerobic bacterium into which an expression gene of a protein having an activity useful for treatment of a disease in an anaerobic environment is introduced. It is. Any species or strain is included as long as it is a lactic acid bacterium having the above characteristics.
- the expression vector used for transformation of lactic acid bacteria mutated from facultative anaerobic to obligate anaerobic of the present invention is not particularly limited as long as it is an expression vector that functions in the mutated lactic acid bacterium, a plasmid derived from lactic acid bacteria, Examples include plasmids derived from lactic acid bacteria or a part thereof, plasmids derived from a plasmid derived from E. coli or a part thereof, plasmids derived from anaerobic bacteria such as a lactic acid bacteria-E. Coli shuttle vector, and the like. Specifically, pLPD8s, which is a lactic acid bacteria-E. Coli shuttle vector described later, and a vector in which an arbitrary protein expression gene is introduced, for example, pLPD8s :: hIL-2, which is a vector in which a human IL-2 production gene is introduced. Can be mentioned.
- Examples of lactic acid bacteria mutated from facultative anaerobic to obligate anaerobic of the present invention include various lactic acid bacteria used as probiotics such as Lactobacillus acidophilus and Lactobacillus gasseri. ), Lactobacillus johnsonii, Lactobacillus helveticus, Lactobacillus salivarius, Lactobacillus delbrueckii, Lactobacillus delbrueckii, Lactobacillus cilbrutumii Lactobacillus such as Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus paracasei Bacteria, Streptococcus thermophilus and other Streptococcus bacteria, Enterococcus faecalis, Enterococcus faecium and other Enterococcus actors, Lactococcus Examples include Coccus bacteria.
- Lactobacillus bacteria are particularly preferable.
- Lactobacillus casei is most preferable, and specific examples include Lactobacillus casei KK378 (deposit number: NITE BP-654).
- the obligate anaerobic lactic acid bacterium that has been mutated from the facultative anaerobic to the obligate anaerobic and further transformed is, for example, an obligate anaerobic bacterium transformed with the above-mentioned various anaerobic lactic acid bacteria.
- Specific examples include Lactobacillus casei KJ686 (deposit number: NITE (BP-615) and Lactobacillus casei KJ474, which are transformants of Lactobacillus casei KK378.
- the expression vector of the present invention comprises a plasmid replication protein gene (Rep) derived from Lactobacillus, a s-layer gene promoter derived from Lactobacillus and a PrtP protein secretion signal derived from Lactobacillus which functions in obligate anaerobic lactic acid bacteria.
- Rep plasmid replication protein gene
- a plasmid derived from lactic acid bacteria examples include an expression vector in which the above gene is introduced into a plasmid or a part thereof and a plasmid derived from Escherichia coli or a plasmid derived therefrom or a part thereof, a lactic acid bacteria-E. Coli shuttle vector, and the like.
- pLPD8s which is a lactic acid bacteria-Escherichia coli shuttle vector, and a vector in which any protein expression gene is introduced, such as pLPD8s :: hIL-2, which is a vector into which a human IL-2 production gene is introduced Can do.
- pLPD8s is an improved vector of pLP402 that has been conventionally used for transformation of anaerobic bacteria.
- pLP402 is a plasmid replication protein gene derived from Lactobacillus (Rep), an erythromycin resistance gene derived from Lactobacillus (Em r ), an ampicillin resistance gene derived from E. coli (Amp r ), an ⁇ -amylase gene promoter region and a secretion signal.
- pLPD8s removes the ⁇ -amylase gene promoter region and secretory signal sequence (Pamy-SSamy) and optional insertion gene expression sequence (BamHI-genegX-XhoI) possessed by pLP402, and instead, derived from Lactobacillus brevis A promoter and a secretory signal sequence (PslpA-SSprtP) derived from the L. casei PrtP gene are inserted. Thereby, even in a medium containing glucose as a sugar source, the expression of the recombinant protein is not suppressed, and good protein expression and secretion can be promoted.
- the obligate anaerobic lactic acid bacteria that function the expression vector of the present invention and the obligate anaerobic lactic acid bacteria transformed with the expression vector of the present invention include various lactic acid bacteria used as probiotics, such as Lactobacillus acidophilus ( Lactobacillus acidophilus), Lactobacillus gasseri, Lactobacillus johnsonii, Lactobacillus helveticus, Lactobacillus salivarius, L Lactobacillus plantarum, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus reuteri and Lactobacillus reuteri Lactobacillus bacteria such as Lactobacillus paracasei, Streptococcus bacteria such as Streptococcus thermophilus, Enterococcus faecalis and Enterococcus faecium ectococus
- Examples include obligate anaerobic lactic acid bacteria obtained by mutating lactococc
- Bifidobacterium adolescentis Bifidobacterium animalis, Bifidobacterium infantis, Bifidobacterium thermophilum, Bifidobacteria such as Bifidobacterium pseudolongum, Bifidobacterium bifidum, Bifidobacterium breve and Bifidobacterium longum
- Bifidobacterium adolescentis Bifidobacterium animalis, Bifidobacterium infantis
- Bifidobacterium thermophilum Bifidobacteria such as Bifidobacterium pseudolongum
- Bifidobacterium bifidum Bifidobacterium breve
- Bifidobacterium longum examples include obligate anaerobic lactic acid bacteria such as the genus Baum. Among these lactic acid bacteria, Lactobacillus bacteria and Bifidobacterium bacteria mutated from facultative an
- Lactobacillus casei is particularly preferred, and specific examples include Lactobacillus casei KK378 (deposit number: NITE BP-654).
- Lactobacillus casei KK378 deposit number: NITE BP-654.
- Bifidobacterium bacteria Bifidobacterium longum is particularly preferable.
- a protein having an activity useful for treating a disease in an anaerobic environment encoded by a gene possessed by the expression vector of the present invention it has an antitumor activity as an active protein useful for treating various solid tumors.
- examples include proteins and proteins having an activity of converting an antitumor substance precursor into an antitumor substance, and examples of active proteins useful for the treatment of ischemic diseases include proteins having angiogenesis promoting activity.
- Examples of the protein having antitumor activity include cytokines. Specifically, interferon (IFN) - ⁇ , ⁇ and ⁇ , granulocyte macrophage colony stimulating factor (GM-CSF), interleukin (IL) -1 ⁇ , 1 ⁇ , 2, 3, 4, 6, 7, 10, 12, 13, 15 and 18, tumor necrosis factor (TNF) - ⁇ , lymphotoxin (LT) - ⁇ , granulocyte colony stimulating factor (G-CSF) ), Macrophage colony stimulating factor (M-CSF), macrophage migration inhibitory factor (MIF), leukemia inhibitory factor (LIF), T cell activation costimulators B7 (CD80) and B7-2 (CD86), kit ligand, Oncostatin M and the like can be mentioned.
- angiogenesis inhibitors such as endostatin, angiostatin, kringle-1, 2, 3, 4 and 5 can be mentioned.
- 5-fluorocytosine As a protein having an activity to convert an antitumor substance precursor into an antitumor substance, 5-fluorocytosine (hereinafter referred to as 5-FC) is converted into 5-fluorouracil (hereinafter referred to as 5-FU) as an antitumor active substance.
- Cytosine deaminase hereinafter referred to as CD
- ⁇ -glucuronidase an enzyme that converts glucuronide of various antitumor substances into antitumor substances
- nitroreductase an enzyme that converts CB1954 as an antitumor substance into antitumor substances And so on.
- Examples of the protein having angiogenesis promoting activity include various growth factors such as fibroblast growth factor 2 (FGF2), endothelial cell growth factor (ECGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor ( HGF).
- FGF2 fibroblast growth factor 2
- ECGF endothelial cell growth factor
- VEGF vascular endothelial growth factor
- HGF hepatocyte growth factor
- the selection marker included in the expression vector of the present invention is not particularly limited as long as it can be confirmed that the expression vector is functioning, and examples thereof include drug resistance, auxotrophy and medium selectivity.
- drug resistance such as erythromycin resistance, ampicillin resistance, tetracycline resistance, neomycin resistance and kanamycin resistance is more preferable from the viewpoint of convenience of operation and reliable selection.
- the expression vector of the present invention only needs to have at least one selected from these selection markers.
- the obligately anaerobic lactic acid bacteria of the present invention can be prepared by combining ordinary mutation techniques, gene conversion techniques, cloning techniques, and the like. That is, an operation (1) for mutating wild-type lactic acid bacteria, Performing the operation (2) of culturing the mutated bacterium under anaerobic and aerobic conditions and selecting an obligate anaerobic mutated bacterium that grows only under anaerobic conditions, An obligate anaerobic lactic acid bacterium that does not grow in an aerobic environment or has a very low growth rate and grows in an anaerobic environment can be produced.
- the operation (3) for transforming the obligately anaerobic mutant bacterium using an expression vector having one or more selection markers By performing the operation (4) of selecting the transformed bacterium transformed with the expression vector using the selection marker, the transformed bacterium, To produce an obligate anaerobic lactic acid bacterium that can be transformed with an expression vector such as a plasmid derived from an anaerobic bacterium into which an expression gene of a protein having an activity useful for treatment of a disease in an anaerobic environment is introduced. it can.
- the mutation method of the operation (1) is anaerobic by introducing a gene expressing a protein having an activity useful for the treatment of a disease in an anaerobic environment possessed by a wild-type lactic acid bacterium by performing the mutation.
- An anaerobic environment that does not grow in an aerobic environment or has a very low growth rate, which wild-type lactic acid bacteria do not have, while retaining the characteristics that it can be transformed with an expression vector such as a plasmid derived from a fungus
- Any mutagenesis method can be used as long as it can impart the characteristics of growing under the water, including chemical mutagenesis and radiation irradiation.
- chemical mutagenesis with a mutagen is preferable.
- the mutagen used for chemical mutagenesis is not particularly limited as long as it is a mutagen having the above characteristics, but a nitrosoguanidine derivative is preferable, and specifically, N-methyl-N′-nitro-nitrosoguanidine. (MNNG).
- the wild-type lactic acid bacterium used for producing the obligate anaerobic lactic acid bacterium of the present invention is not particularly limited as long as it is a non-pathogenic lactic acid bacterium, and may be any species or strain.
- Anaerobic characteristics with the characteristics that it does not grow in an aerobic environment or grows in an anaerobic environment with a very low growth rate, and an expression gene of a protein having activity useful for the treatment of diseases in an anaerobic environment
- the property that transformation is possible with an expression vector such as a plasmid derived from a bacterium may be any of those having neither or both of the properties.
- Examples of the wild-type lactic acid bacterium used for producing the obligate anaerobic lactic acid bacterium of the present invention include lactic acid bacteria used as probiotics such as Lactobacillus acidophilus, Lactobacillus gasseri, Lactobacillus gasseri, and Lactobacillus johnsonii.
- Lactobacillus johnsonii Lactobacillus helveticus, Lactobacillus salivarius, Lactobacillus delbrueckii, Lactobacillus cilplantaactus luscilus Lactobacillus plantarum ), Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus paracasei, etc.
- Streptococcus sp Can be mentioned.
- Lactobacillus bacteria are particularly preferable.
- Lactobacillus casei is the most preferable, and specific examples include Lactobacillus casei IGM393. All of these bacteria are commercially available or can be easily obtained from depository institutions.
- the pharmaceutical composition of the present invention is an obligate anaerobic lactic acid bacterium mutated from facultative anaerobic to obligate anaerobic of the present invention, or the obligate anaerobic lactic acid bacterium further transformed with the expression vector of the present invention.
- the antitumor agent of the present invention is not particularly limited as long as it contains the obligate anaerobic lactic acid bacterium or the transformed obligate anaerobic lactic acid bacterium of the present invention.
- the pharmaceutical composition and antitumor agent of the present invention may contain two or more of the obligate anaerobic lactic acid bacterium and the transformed obligate anaerobic lactic acid bacterium of the present invention.
- the pharmaceutical composition and antitumor agent of the present invention contain any component in addition to the obligate anaerobic lactic acid bacterium of the present invention as long as it does not prevent the engraftment, survival and growth of the obligate anaerobic bacterium of the present invention. You may do it.
- optional components include pharmacologically acceptable carriers, diluents, suspending agents, pH adjusting agents, cryoprotective agents and the like.
- a pharmacologically acceptable nutrient for bacteria may be included.
- the obligate anaerobic lactic acid bacteria that are the main components of the pharmaceutical composition and antitumor agent of the present invention are extremely safe, and the dosage of the pharmaceutical composition and antitumor agent of the present invention is the administration route, the degree of disease, It can be appropriately selected according to the patient's weight, age, and sex, and can be appropriately increased or decreased according to the degree of improvement.
- the dosage range is an amount sufficient to express a protein having an effective therapeutic amount of an anti-tumor activity, an amount sufficient for the fungus itself to exhibit effective anti-tumor activity, and to grow at the tumor site, Or, as long as it is sufficient to express an amount of protein that can convert the antitumor precursor into an effective therapeutic amount of antitumor, it is not particularly limited, but avoids economic viewpoints and side effects as much as possible. From the viewpoint, it is preferable that the amount is as small as possible within a range where necessary antitumor activity can be obtained.
- the antitumor activity exhibited by the obligate anaerobic lactic acid bacteria used when actually used for treatment, the antitumor activity exhibited by the obligate anaerobic lactic acid bacteria used, the type of protein having antitumor activity produced by the obligate anaerobic lactic acid bacteria used, and the antitumor substance precursor It is appropriately set according to the effective therapeutic amount of the antitumor substance to be converted and the production amount of the active protein of the obligate anaerobic lactic acid bacterium to be used.
- the cells of the obligate anaerobic lactic acid bacterium of the present invention are administered 10 6 to 10 12 cfu per kg of body weight 1 to 3 times a day, preferably 1 to 3 days continuously.
- a preparation containing 10 4 to 10 10 cfu / mL of the obligate anaerobic lactic acid bacterium of the present invention is diluted 1 to 1000 mL per adult directly or with an appropriate replacement fluid, Preferably, the dose is divided into 1 to 3 times a day, more preferably 1 to 3 days continuously.
- the dose is divided into 1 to 3 times a day, more preferably 1 to 3 days continuously.
- it is desirable to administer a high-concentration injection at a plurality of locations in the tumor tissue as much as possible.
- the cells of the obligately anaerobic lactic acid bacterium of the present invention are administered 10 6 to 10 12 cfu per kg of body weight once a day, if necessary, for 1 to 3 days continuously. More specifically, a preparation containing 10 4 to 10 10 cfu / mL of the obligate anaerobic lactic acid bacterium of the present invention is required directly from 1 to 1000 mL per adult, preferably once a day. Depending on the dose, it is administered continuously for 1 to 3 days. When it is confirmed that the bacteria in the tumor tissue have disappeared during the treatment period, the treatment is temporarily interrupted and the bacteria are administered in the same manner.
- the obligate anaerobic lactic acid bacterium of the present invention is an obligate anaerobic lactic acid bacterium incorporating a gene capable of expressing a protein having an activity of converting an antitumor substance precursor into an antitumor substance
- the obligate anaerobic lactic acid bacterium Is used in combination with an antitumor substance precursor in an amount that can be converted into an effective amount of an antitumor substance by a protein expressed by the obligate anaerobic lactic acid bacterium. can do.
- This antitumor substance precursor may be contained in a pharmaceutical composition or antitumor agent containing the obligately anaerobic lactic acid bacterium of the present invention as an active ingredient, but as a pharmaceutical composition containing the antitumor substance precursor, It is preferable to use in combination with a pharmaceutical composition or antitumor agent containing the obligately anaerobic lactic acid bacterium of the present invention as an active ingredient.
- the dose of the antitumor substance precursor is determined by the growth rate of the obligate anaerobic lactic acid bacteria used in combination in the tumor tissue, the ability to produce an active protein that converts the antitumor substance precursor of the obligate anaerobic lactic acid bacteria into the antitumor substance, and It can select suitably according to the conversion efficiency from an antitumor substance precursor to an antitumor substance. Further, similar to the dose of obligate anaerobic lactic acid bacteria, it can be appropriately selected according to the administration route, the degree of disease, the patient's weight, age, and sex, and can be appropriately increased or decreased according to the degree of improvement. .
- the pharmaceutical composition or antitumor agent of the present invention when used in combination with the antitumor substance precursor, the pharmaceutical composition or antitumor agent administration method of the present invention and the medicament containing the antitumor substance precursor are used.
- the method of administration of the composition may be the same or different, and the administration may be simultaneous or at other times, but the administration of the pharmaceutical composition containing the antitumor substance precursor is After administration of the pharmaceutical composition or antitumor agent of the present invention, it is preferable to administer after allowing sufficient time for the obligate anaerobic lactic acid bacteria of the present invention to grow on tumor cells.
- “combined with X and Y” includes either X and Y in different forms, or X and Y in the same form (for example, forms containing X and Y). Including the case. In the case where X and Y are in different forms, the case where both X and Y further contain other components is also included.
- the dosage form of the pharmaceutical composition and antitumor agent of the present invention is not particularly limited, and examples thereof include a liquid agent or solid preparation containing the obligately anaerobic lactic acid bacterium of the present invention.
- the liquid preparation is produced by purifying the culture solution of the obligately anaerobic lactic acid bacterium of the present invention, and adding an appropriate physiological saline solution or a replacement solution or a pharmaceutical additive to the ampule or a vial bottle as necessary. be able to.
- a liquid agent it is stored refrigerated as it is, or it is frozen after adding a suitable cryoprotectant and then stored frozen.
- an appropriate protective agent is added to the liquid and filled into ampoules or vials, and then lyophilized or L-dried, or an appropriate protective agent is added to the liquid and lyophilized or L-dried.
- This can be manufactured by filling ampules or vials.
- parenteral administration is preferable. For example, subcutaneous injection, intravenous injection, local injection, intraventricular administration, and the like can be performed, and intravenous injection is most preferable.
- the pharmaceutical composition and antitumor agent of the present invention can be applied to tumors having an anaerobic environment, preferably various solid cancers.
- solid cancer include colon cancer, brain tumor, head and neck cancer, breast cancer, lung cancer, esophageal cancer, stomach cancer, liver cancer, gallbladder cancer, bile duct cancer, pancreatic cancer, islet cell cancer, choriocarcinoma, colon cancer, renal cell cancer, adrenal gland Cortical cancer, bladder cancer, testicular cancer, prostate cancer, testicular tumor, ovarian cancer, uterine cancer, thyroid cancer, malignant carcinoid tumor, skin cancer, malignant melanoma, osteosarcoma, soft tissue sarcoma, neuroblastoma, Wilms tumor, Examples include retinoblastoma, melanoma, and squamous cell carcinoma.
- Other diseases in an anaerobic environment include ischemic diseases such as myocardial infarction or obstructive arteriosclerosis and lower
- the washed bacterial solution was suspended in 50 ml of MRS medium containing 0.05% L-cysteine and cultured at 37 ° C. under anaerobic conditions for about 9 hours.
- the culture solution was inoculated into an MRS medium containing 0.05% L-cysteine so as to give about 300 colonies per plate, and cultured under anaerobic conditions.
- Each colony is transplanted into two plates, cultured under anaerobic and aerobic conditions, and colonies that grow only under anaerobic conditions are selected and mutated to obligate anaerobic Lactobacillus casei KK378 strain (deposit number: NITE BP-654) was obtained.
- Example 2 Transformation of Lactobacillus casei KK378 strain (1) (Preparation of plasmid vector pLPEmpty) As shown in FIG. 1, an ⁇ -amylase gene promoter region and a secretory signal sequence (Pamy-SSamy) and an arbitrary inserted gene expression sequence (BamHI-gene) are obtained from a plasmid pLP402 generally used for transformation of Lactobacillus bacteria by a conventional method. X-XhoI) was removed to produce the plasmid vector pLPEmpty.
- symbol in a plasmid vector pLPEmpty map figure is as follows. Amp r : Ampicillin resistance gene derived from E. coli Rep: Plasmid replication protein gene derived from Lactobacillus Em r : Erythromycin resistance gene derived from Lactobacillus
- Lactobacillus casei KJ686 strain obtained above was cultured in a medium supplemented with erythromycin. It was confirmed that it was transformed. From the results of Examples 1 and 2 above, from the facultative anaerobic condition, Lactobacillus casei KK378 has the function that it can be transformed with a plasmid generally used for transformation of Lactobacillus bacteria. It turns out that it was mutated to obligate anaerobic.
- Example 3 Construction of plasmid vector pLPD8s :: hIL-2
- an ⁇ -amylase gene promoter region and a secretory signal sequence (Pamy-SSamy) and an arbitrary inserted gene expression sequence from pLP402 by a conventional method (BamHI-gene X-XhoI) was removed, and instead, a promoter derived from Lactobacillus brevis and a secretory signal sequence derived from L. casei PrtP gene (PslpA-SSprtP) were inserted to prepare a plasmid vector pLPD8s.
- a plasmid containing cDNA encoding human IL-2 (hIL-2)
- the human IL-2 gene was amplified by PCR. This gene fragment is digested with restriction enzymes BamHI and XhoI to produce a human IL-2 gene expression sequence (BamHI-IL-2gene-XhoI), downstream of the secretion signal sequence (PslpA-SSprtP) of the plasmid vector pLPD8s.
- the plasmid vector pLPD8s :: hIL-2 was constructed.
- the entire base sequence of the plasmid vector pLPD8s :: hIL-2 is shown in SEQ ID NO: 1 in the sequence listing.
- the base sequence of the Lactobacillus-derived plasmid replication protein gene (Rep) in the pLPD8s :: hIL-2 is represented by SEQ ID NO: 2 in the sequence listing, a promoter derived from Lactobacillus brevis, and a secretion signal derived from the L. casei PrtP gene.
- the base sequence of the sequence (PslpA-SSprtP) is shown in SEQ ID NO: 3 of the sequence listing, and the base sequence of the human type IL-2 gene expression sequence (BamHI-IL-2gene-XhoI) is shown in SEQ ID NO: 4 of the sequence listing.
- Example 4 Transformation of Lactobacillus casei KK378 strain (2) The obligately anaerobic Lactobacillus casei KK378 strain obtained in Example 1 above was transformed by the conventional method using the plasmid vector pLPD8s :: hIL-2 obtained in Example 3 above, and human type IL-2 expression / secretion strain Lactobacillus casei KJ474 was obtained.
- Lactobacillus casei KJ686 bacterial obligatory anaerobic confirmation test Lactobacillus casei KJ686 obtained in Example 2 was applied to two MRS medium plates and one was subjected to anaerobic conditions at 37 ° C. The other one was cultured at 37 ° C. under aerobic conditions for 3 days. (result) As shown in FIG. 2, the bacteria grew on the plates cultured under anaerobic conditions, whereas the bacteria did not grow at all on the plates cultured under anaerobic conditions, and Lactobacillus casei KJ686 was unevenly distributed. It was confirmed to be a sex anaerobic bacterium.
- Lactobacillus casei-KJ686 bacteria obtained in tumor-specific accumulation property confirmation test Example 2 Lactobacillus casei, KJ686 bacteria cultured anaerobically in MRS medium, this culture (5 ⁇ 10 9/0 0.5 ml PBS) was intravenously administered to 4 B16F melanoma-bearing mice. Three of the four animals were sacrificed 96 hours (4 days) after bacterial administration, and the other one was sacrificed 168 hours (7 days) after bacterial administration, and tumor tissue and normal tissue (liver, lung, kidney, blood) Were extracted and homogenized, and each tissue extract was applied to an MRS plate and cultured at 37 ° C. under anaerobic conditions for 3 days.
- Lactobacillus casei KJ686 bacteria antitumor activity test Lewis Lung Carcinoma (Lewis lung carcinoma, LLC) cells (1 ⁇ 10 6 / 50 ⁇ l) , were implanted subcutaneously in the right groin of 8-week-old C57BL / 6 mice LLC-bearing C57BL / 6 mice were prepared. Of 18 mice with a tumor diameter of about 5 mm, 8 randomly selected mice were obtained by culturing Lactobacillus casei KJ686 obtained in Example 2 in an MRS medium under anaerobic conditions. and culture the (5 ⁇ 10 8 / 100 ⁇ l) were administered intravenously (bacteria administration group). The remaining 10 animals were untreated (control group).
- the tumor size is measured from the test start date (bacterial administration date), and the end point is when the tumor size exceeds approximately 20 times the tumor size at the start of the test (bacterial administration). All groups were sacrificed on the same day and tumor size was measured. Further, tumor tissue and normal tissue (liver, lung) were removed and homogenized, and each tissue extract was applied to an MRS plate and cultured at 37 ° C. under anaerobic conditions for 3 days.
- the control group (no treatment) was The tumor increased to about 9 times in 7 days and to about 23 times in 12 days, whereas in the bacteria administration group, it was about 5 times on the 7th day after administration of the bacteria and about 11 times on the 12th day, It reached about 20 times on the 17th day, and an obvious tumor growth inhibitory effect by the administration of the bacteria was confirmed. Further, as shown in FIG. 4, it was confirmed that the bacteria were accumulated only in the tumor tissue at the 17th day after the administration of the bacteria, and were not accumulated at all in the normal tissues (lung and liver).
- Lactobacillus casei KJ474 was cultured at 37 ° C. for 24 hours in MRS liquid medium supplemented with 5 ⁇ g / ml erythromycin. 1 ml of the culture solution was transferred to a 1.5 ml microtube, centrifuged at 13,000 rpm for 2 minutes, and 0.5 ml of the supernatant was transferred to a new microtube.
- the actual production amount of human IL-2 is 80.3 ng / ml when the number of bacteria in the culture solution of Lactobacillus casei KJ474 is 4.8 ⁇ 10 8 cfu / ml and the dilution factor is 1000 times. Is calculated.
- the one to which 1.5 ng / ml of recombinant human IL-2 (Product No. 202-IL) was added proliferated about 1.32 times, and the culture supernatant of Lactobacillus casei KJ474 (concentrated 10 times) ) Grew about 1.52 times.
- the tumor size is measured from the test start date (bacterial administration date), and the end point is when the tumor size exceeds approximately 20 times the tumor size at the start of the test (bacterial administration). All groups were sacrificed on the same day and tumor size was measured. Further, tumor tissue and normal tissue (liver, lung) were removed and homogenized, and each tissue extract was applied to an MRS plate and cultured at 37 ° C. under anaerobic conditions for 3 days.
- the control group (no treatment) is The tumor increased about 9 times on the 7th day and about 23 times on the 12th day, whereas in the bacteria administration group, it was about 6 times on the 7th day after the administration of the bacteria and about 12 times on the 12th day. On the 17th day, it reached about 23 times, and a clear tumor growth inhibitory effect by the administration of the bacteria was confirmed.
- the obligate anaerobic lactic acid bacterium of the present invention is non-pathogenic and does not grow in an aerobic environment or has a very low growth rate. Furthermore, the disease is in an anaerobic environment. It can also have the property that it can be transformed by an expression vector such as a plasmid derived from an anaerobic bacterium into which an expression gene of a protein having an activity useful for the treatment of the above is introduced. Further, the expression vector of the present invention functions in an obligate anaerobic lactic acid bacterium or an obligate anaerobic lactic acid bacterium mutated from facultative anaerobic to obligate anaerobic bacterium, and is transformed by the vector of the present invention.
- the lactic acid bacterium has characteristics that it can efficiently produce a protein having an activity useful for the treatment of a disease in an anaerobic environment, and can secrete the active protein to the outside of the cell.
- the obligate anaerobic lactic acid bacteria of the present invention and the obligate anaerobic lactic acid bacteria transformed with the expression vector of the present invention when intravenously administered to a cancer-bearing animal, specifically accumulate only in the tumor tissue, Does not accumulate or hardly accumulates, and shows a remarkable tumor growth inhibitory effect. Therefore, the obligate anaerobic lactic acid bacterium of the present invention can express a therapeutic agent for diseases such as solid tumors in an anaerobic environment and a protein having an activity useful for the treatment of diseases in an anaerobic environment. It is extremely useful as a parent of a gene transport carrier as a therapeutic agent for diseases under the environment. Furthermore, the expression vector of the present invention is extremely useful as an expression vector for producing the therapeutic agent and gene transport carrier. Is something.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Mycology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Epidemiology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
一方、細菌は、生育における酸素要求性によって、生育に酸素を必要とする好気性菌と酸素を必要としない嫌気性菌(anaerobe)に大きく分けられ、さらに嫌気性菌は、酸素があると生育できない偏性嫌気性菌(obligatory anaerobe)と、酸素があってもなくても生育できる通性嫌気性菌(facultative anaerobe)とに分けられる。
上記乳酸菌のうち、ビフィドバクテリウム属細菌は偏性嫌気性菌であり、ラクトバチルス属細菌、ラクトコッカス属細菌、ストレプトコッカス属細菌、エンテロコッカス属細菌などは通性嫌気性菌である。
また、医薬品分野における用途についても数多く報告されており、腫瘍治療に関しても、直接的な抗腫瘍剤としてのほか、免疫賦活剤、IgE産生抑制剤、液性免疫回復剤、インターロイキン12産生促進剤などとしての応用が報告されている。
その他にも、抗腫瘍剤、IgE産生抑制剤、液性免疫回復剤、インターロイキン12産生促進剤、免疫賦活剤などの腫瘍治療用剤として有用な各種の乳酸菌が報告されている(例えば、特許文献2~7参照)。
さらに、特にラクトバチルス属細菌について、腫瘍増殖抑制剤あるいは悪性腫瘍再発抑制剤として有用なラクトバチルス属細菌が報告されている(例えば、特許文献8~11参照)。
例えば、ビフィドバクテリウム属細菌のビフィドバクテリウム・ロンガム菌について、全身投与の静脈内投与においても、正常組織からは速やかに消失し、固形腫瘍部位において特異的に集積、生育することが確認され、固形腫瘍に対する治療への応用が期待されている(例えば、非特許文献1および2参照)。
微生物を悪性腫瘍などの嫌気的環境下にある疾患の疾患治療剤として用いる場合、嫌気的環境下にある腫瘍組織においてのみ抗腫瘍効果を発揮し、嫌気的環境ではない正常組織においては作用効果を発揮させないために、嫌気的環境下にある腫瘍組織に特異的に集積あるいは生着、増殖し、嫌気的環境ではない正常組織では生着、増殖しないような偏性嫌気性菌であることが望ましい。
したがって、ビフィドバクテリウム属細菌以外の通性嫌気性の乳酸菌を静脈内注射により全身投与した場合は、嫌気的環境下にある腫瘍組織だけでなく、正常組織においても生着、増殖し、正常組織に対する副作用発現の恐れが極めて高い。
このことから、抗腫瘍治療分野において、ビフィドバクテリウム属細菌以外の乳酸菌について、通性嫌気性から偏性嫌気性に変異化された乳酸菌の開発が望まれていた。
しかし、従来の発現ベクターは、ブドウ糖を糖源として含む培地においては、導入した活性蛋白質の発現遺伝子による組み替え蛋白質の発現が抑制されるという欠点があった。
さらに、従来の発現ベクターを用いて形質転換されたビフィドバクテリウム属の乳酸菌では、菌体内で産生した活性蛋白質が菌体外に分泌されないため、嫌気的環境下にある疾患の治療の目的や症例によっては、導入した活性蛋白質の発現遺伝子による組み替え蛋白質の効果を十分に発揮できるものではなかった。
このことから、抗腫瘍治療分野において、嫌気性菌において機能し、嫌気的環境下にある疾患の治療に有用な活性を有する蛋白質の発現遺伝子を導入して該活性蛋白質を効率よく産生でき、さらには産生した活性蛋白質を菌体外に分泌するように形質転換が可能な発現ベクターの開発が望まれていた。
本発明の課題はまた、上記の問題点を解消した、偏性嫌気性乳酸菌において機能し、嫌気的環境下にある疾患の治療に有用な活性を有する蛋白質の発現遺伝子を導入して該活性蛋白質を効率よく産生でき、さらには産生した活性蛋白質を菌体外に分泌するように形質転換が可能な発現ベクターを提供することにある。
本発明者らはまた、偏性嫌気性乳酸菌で機能する発現ベクターについても検討を重ね、ラクトバチルス由来のプラスミド複製蛋白質遺伝子(Rep)と、ラクトバチルス由来のs-layer遺伝子プロモーターおよびラクトバチルス由来のPrtP蛋白質分泌シグナルからなる分泌シグナル配列(PslpA-SSartP)と、1種または2種以上の選択マーカー遺伝子とを含む発現ベクターとすることにより、偏性嫌気性乳酸菌を効率よく形質転換して、良好な蛋白質発現と蛋白質分泌を促進できることを見出した。
そして、上記検討結果に基づきさらに研究を進めた結果、本発明を完成するに至った。
また本発明は、さらに、発現ベクターによる形質転換が可能である、前記偏性嫌気性乳酸菌に関する。
さらに本発明は、発現ベクターが、嫌気的環境下にある疾患の治療に有用な活性を有する蛋白質の発現遺伝子を導入した発現ベクターである、前記偏性嫌気性乳酸菌に関する。
また本発明は、乳酸菌が、ラクトバチルス属細菌、ストレプトコッカス属細菌、エンテロコッカス属細菌およびラクトコッカス属細菌からなる群より選ばれる1種である、前記偏性嫌気性乳酸菌に関する。
さらに本発明は、乳酸菌が、ラクトバチルス属細菌である、前記偏性嫌気性乳酸菌に関する。
また本発明は、ラクトバチルス・カゼイが、ラクトバチルス・カゼイ・KK378(寄託番号:NITE BP-654)またはその形質転換菌である、前記偏性嫌気性乳酸菌に関する。
さらに本発明は、ラクトバチルス・カゼイ・KK378の形質転換菌が、ラクトバチルス・カゼイ・KJ686(寄託番号:NITE BP-615)である、前記偏性嫌気性乳酸菌に関する。
また本発明は、ラクトバチルス・カゼイ・KK378の形質転換菌が、ラクトバチルス・カゼイ・KJ474である、前記偏性嫌気性乳酸菌に関する。
また本発明は、偏性嫌気性乳酸菌が、好気的環境下では生育しないかまたは生育率が極めて低く、嫌気的環境下で生育するように通性嫌気性から偏性嫌気性に変異化された偏性嫌気性乳酸菌である、前記発現ベクターに関する。
さらに本発明は、分泌シグナル配列(PslpA-SSartP)の下流に、さらに所望の蛋白質発現遺伝子を含む、前記発現ベクターに関する。
また本発明は、所望の蛋白質が、抗腫瘍活性を有する蛋白質(A)、および/または、抗腫瘍物質前駆体を抗腫瘍物質に変換する活性を有する蛋白質(B)である、前記発現ベクターに関する。
さらに本発明は、選択マーカー活性が、薬物耐性、栄養要求性および培地選択性からなる群より選ばれる1種または2種以上である、前記発現ベクターに関する。
また本発明は、薬物耐性が、エリスロマイシン耐性、アンピシリン耐性、テトラサイクリン耐性、ネオマイシン耐性およびカナマイシン耐性からなる群より選ばれる1種または2種以上である、前記発現ベクターに関する。
さらに本発明は、選択マーカー遺伝子が、ラクトバチルス由来のエリスロマイシン耐性遺伝子および大腸菌由来のアンピシリン耐性遺伝子から選ばれる1種または2種である、前記発現ベクターに関する。
また本発明は、プラスミドpLPD8sまたはこれに任意の蛋白質発現遺伝子をさらに導入したものである、前記発現ベクターに関する。
また本発明は、前記いずれかの偏性嫌気性乳酸菌の1種または2種以上を有効成分として含有する、医薬組成物に関する。
さらに本発明は、前記偏性嫌気性乳酸菌を有効成分として含有する医薬組成物と、抗腫瘍物質前駆体を抗腫瘍物質に変換する活性を有する蛋白質(B)によって抗腫瘍物質に変換される抗腫瘍物質前駆体を有効成分として含有する医薬組成物とを、組み合わせてなる抗腫瘍剤に関する。
さらに本発明は、さらに、偏性嫌気性変異化菌を、1種または2種以上の選択マーカーを有する嫌気性菌由来の発現ベクターを用いて形質転換する工程(3)と、該形質転換菌を前記選択マーカーにより、前記発現ベクターによる形質転換がなされた形質転換菌を選別する工程(4)とを含む、前記偏性嫌気性乳酸菌の作製方法に関する。
さらに本発明は、変異原物質が、ニトロソグアニジン誘導体である、前記偏性嫌気性乳酸菌の作製方法に関する。
また本発明は、変異原物質が、N-メチル-N’-ニトロ-ニトロソグアニジン(MNNG)である、前記偏性嫌気性乳酸菌の作製方法に関する。
さらに本発明は、前記いずれかに記載の発現ベクターを用いる、前記偏性嫌気性乳酸菌の作製方法に関する。
また本発明は、通性嫌気性野生型乳酸菌が、ラクトバチルス属細菌、ストレプトコッカス属細菌、エンテロコッカス属細菌およびラクトコッカス属細菌からなる群より選ばれる1種である、前記偏性嫌気性乳酸菌の作製方法に関する。
さらに本発明は、通性嫌気性野生型乳酸菌が、ラクトバチルス属細菌である、前記偏性嫌気性乳酸菌の作製方法に関する。
さらに本発明は、ラクトバチルス属細菌が、ラクトバチルス・カゼイである、前記偏性嫌気性乳酸菌の作製方法に関する。
また本発明は、ラクトバチルス・カゼイが、ラクトバチルス・カゼイ・IGM393である、前記偏性嫌気性乳酸菌の作製方法に関する。
したがって、本発明の偏性嫌気性乳酸菌を有効成分として含有させることにより、静脈注射などの全身投与においても正常組織への副作用発現の恐れがなく、投与方法の制限のない、極めて安全で、且つ、使いやすい抗腫瘍剤を製造することができる。
すなわち、本発明の偏性嫌気性乳酸菌は、本来具有していた一般的な発現ベクターによって形質転換できるという機能を保持したまま、通性嫌気性から偏性嫌気性に変異化されたものであり、この点に特徴を有するものである。
また、本発明の発現ベクターは、偏性嫌気性乳酸菌および通性嫌気性から偏性嫌気性に変異化された偏性嫌気性乳酸菌において機能し、良好な蛋白質発現と蛋白質分泌を促進することが可能であるという特性を有するものである。
したがって、本発明の偏性嫌気性乳酸菌は、悪性腫瘍等の嫌気的環境下にある疾患の治療剤として、また、当該疾患の治療剤として有用な任意の遺伝子輸送担体の親菌として極めて有用なものであり、さらに本発明の発現ベクターは、当該治療剤および遺伝子輸送担体を作製するための発現ベクターとして、極めて有用なものである。
具体的には、乳酸菌-大腸菌シャトルベクターであるpLPD8s、およびこれに任意のタンパク発現遺伝子を導入したベクター、例えばヒトIL-2産生遺伝子を導入したベクターであるpLPD8s::hIL-2などを挙げることができる。
pLP402は、ラクトバチルス由来のプラスミド複製蛋白質遺伝子(Rep)と、ラクトバチルス由来のエリスロマイシン耐性遺伝子(Emr)と、大腸菌由来のアンピシリン耐性遺伝子(Ampr)と、α-アミラーゼ遺伝子プロモーター領域および分泌シグナル配列(Pamy-SSamy)、ならびに任意挿入遺伝子発現配列(BamHI-gene X-XhoI)を具有するベクターで、ラクトバチルス属細菌の形質転換によく用いられているベクターであるが、ブドウ糖を糖源として含む培地においては、組み替え蛋白の発現が抑制されるという欠点があった。
これらの乳酸菌の中で、通性嫌気性から偏性嫌気性に変異化されたラクトバチルス属細菌およびビフィドバクテリウム属細菌がより好ましい。ラクトバチルス属細菌の中では、ラクトバチルス・カゼイがとくに好ましく、具体的には、ラクトバチルス・カゼイ・KK378(寄託番号:NITE BP-654)などが挙げられる。ビフィドバクテリウム属細菌の中では、ビフィドバクテリウム・ロンガムがとくに好ましい。
また、エンドスタチン、アンジオスタチン、クリングル-1、2、3、4および5等の血管新生抑制物質が挙げられる。
なお、相乗効果が期待できる場合には、上記の抗腫瘍活性を有する蛋白質および/または抗腫瘍物質前駆体を抗腫瘍物質に変換する活性を有する蛋白質をコードする遺伝子を、2種以上組み合わせて導入してもよい。
また、本発明の発現ベクターは、これらの選択マーカーの中から選ばれる少なくとも1種を有していればよい。
すなわち、野生型乳酸菌を変異化する操作(1)と、
該変異化菌を、嫌気的条件下と好気性条件下で培養して嫌気性条件下でのみ生育する偏性嫌気性の変異化菌を選別する操作(2)とを行うことにより、
好気的環境下では生育しないかまたは生育率が極めて低く、嫌気的環境下で生育する偏性嫌気性乳酸菌を作製することができる。
さらに、前記偏性嫌気性変異化菌を、1種または2種以上の選択マーカーを有する発現ベクターを用いて形質転換する操作(3)と、
該形質転換菌を前記選択マーカーにより、前記発現ベクターによる形質転換がなされた形質転換菌を選別する操作(4)とを行うことにより、
嫌気的環境下にある疾患の治療に有用な活性を有する蛋白質の発現遺伝子を導入した嫌気性菌由来のプラスミドなどの発現ベクターによる形質転換が可能である、偏性嫌気性乳酸菌を作製することができる。
化学的変異化に用いる変異原物質としては、上記特性を具有させる変異原物質であれば特に限定されないが、ニトロソグアニジン誘導体が好ましく、具体的には、N-メチル-N’-ニトロ-ニトロソグアニジン(MNNG)などが挙げられる。
これらの菌は、いずれも市販されているか、または寄託機関から容易に入手することができる。
本発明の医薬組成物や抗腫瘍剤は、本発明の偏性嫌気性乳酸菌および形質転換偏性嫌気性乳酸菌の2種以上を含有していてもよい。
その投与量の範囲は、腫瘍部位において生育でき、且つ、菌自体が有効な抗腫瘍活性を示すのに十分な量、有効治療量の抗腫瘍活性を有する蛋白質を発現するのに十分な量、または、抗腫瘍物質前駆体を有効治療量の抗腫瘍物質に変換できる量の蛋白質を発現するのに十分な量である限り特に制限はされないが、経済上の観点および副作用の可能な限り回避する観点から、必要な抗腫瘍活性が得られる範囲においてできる限り少ない方が好ましい。
例えば、実際に治療に用いる際には、用いる偏性嫌気性乳酸菌の菌自体が示す抗腫瘍活性、用いる偏性嫌気性乳酸菌が産生する抗腫瘍活性を有する蛋白質の種類、抗腫瘍物質前駆体から変換される抗腫瘍物質の有効治療量、および用いる偏性嫌気性乳酸菌の当該活性蛋白質の産生量などによって、適宜設定する。
また、腫瘍組織へ直接投与する局所投与の場合は、腫瘍組織全体への菌体の投与が求められるため、高濃度の注射剤を、できるだけ腫瘍組織の複数個所に投与することが望ましい。例えば、成人の場合、本発明の偏性嫌気性乳酸菌の菌体を、体重1kg当たり106~1012cfuを1日1回、必要に応じ1~3日連続して投与する。より具体的には、本発明の偏性嫌気性乳酸菌の菌体を104~1010cfu/mL含有する製剤を、成人1人あたり1~1000mLを直接、好ましくは1日1回、必要に応じ1~3日連続して投与する。
治療期間中に腫瘍組織中の菌が消失していることが確認された場合は、一旦治療を中断して、同様に菌を投与する。
なお、本発明における「XとYと組み合わせてなる」には、XとYを別の形態としたもの、XとYを同一の形態(例えば、XとYを含有する形態)としたもののいずれの場合も含む。また、XとYを別の形態としたものの場合、XとYのいずれもが他の成分をさらに含有している場合も含まれる。
また、固形製剤は、液剤に適当な保護剤を添加してアンプルまたはバイアル瓶などに充填した後凍結乾燥またはL乾燥するか、液剤に適当な保護剤を添加して凍結乾燥またはL乾燥した後これをアンプルまたはバイアル瓶などに充填することにより製造することができる。
本発明の医薬組成物や抗腫瘍剤の投与方法としては、非経口投与が好ましく、例えば皮下注射、静脈注射、局所注入、脳室内投与等を行うことができるが、静脈注射が最も好ましい。
嫌気的環境下にある他の疾患としては、虚血性疾患、例えば、心筋梗塞または閉塞性動脈硬化症や、バージャー病などの下肢虚血疾患を挙げることができる。
偏性嫌気性変異化菌(ラクトバチルス・カゼイ・KK378菌株)の作製
ラクトバチルス・カゼイ・IGM393を、MRS培地に1:100の濃度になるように加え、37℃で嫌気的条件下に一夜培養し、600nmにおける濁度(OD600)が約0.1となった時点で培養を停止し、培養液10mlを回転数3000Gで10分間遠心分離にかけ培養細菌を採取した。
培養細菌を約15倍量の0.1Mカリウム・リン酸緩衝液(pH=7)で洗浄し、同量の同緩衝液に懸濁し、該懸濁液に、MNNG(N-メチル-N’-ニトロ-ニトロソグアニジン)170μg/mlを加え、37℃で20分間撹拌した後、直ちに、回転数3000Gで2分間遠心分離にかけ、適量の0.1Mカリウム・リン酸緩衝液(pH=7)で2回洗浄した。
該培養菌液を、0.05%のL-システインを含むMRS培地に、1プレートあたり約300コロニーになるように幡種し、嫌気的条件下に培養した。
各コロニーを各々2枚のプレートに移植し、嫌気的条件下と好気的条件下に分けて培養し、嫌気的条件下でのみ生育したコロニーを選別して、偏性嫌気性に変異化されたラクトバチルス・カゼイ・KK378菌株(寄託番号:NITE BP-654)を得た。
ラクトバチルス・カゼイ・KK378菌株の形質転換(1)
(プラスミドベクターpLPEmptyの作製)
図1に示すように、ラクトバチルス属細菌の形質転換に一般に用いられるプラスミドpLP402から、常法によりα-アミラーゼ遺伝子プロモーター領域および分泌シグナル配列(Pamy-SSamy)ならびに任意挿入遺伝子発現配列(BamHI-gene X-XhoI)を除去して、プラスミドベクターpLPEmptyを作製した。
なお、プラスミドベクターpLPEmptyマップ図中の符号の意味は下記のとおりである。
Ampr:大腸菌由来のアンピシリン耐性遺伝子
Rep:ラクトバチルス由来のプラスミド複製蛋白質遺伝子
Emr:ラクトバチルス由来のエリスロマイシン耐性遺伝子
上記実施例1で得た、偏性嫌気性のラクトバチルス・カゼイ・KK378菌株に、上記で得たプラスミドベクターpLPEmptyを用いて常法により形質転換を行い、偏性嫌気性菌ラクトバチルス・カゼイ・KJ686(寄託番号:NITE BP-615)を得た。
上記実施例1および2の結果より、ラクトバチルス・カゼイ・KK378菌が、ラクトバチルス属細菌の形質転換に一般に用いられるプラスミドにより形質転換が可能であるという機能を保持したまま、通性嫌気性から偏性嫌気性に変異化されたものであることが分かる。
プラスミドベクターpLPD8s::hIL-2の作製
実施例2と同様に、図1に示すように、pLP402から常法によりα-アミラーゼ遺伝子プロモーター領域および分泌シグナル配列(Pamy-SSamy)ならびに任意挿入遺伝子発現配列(BamHI-gene X-XhoI)を除去し、それに替えて、Lactobacillus brevis由来のプロモーターおよびL. casei PrtP遺伝子由来の分泌シグナル配列(PslpA-SSprtP)を挿入して、プラスミドベクターpLPD8sを作製した。
この遺伝子断片を制限酵素BamHIとXhoIで消化して、ヒト型IL-2遺伝子発現配列(BamHI-IL-2gene-XhoI)を作製し、上記プラスミドベクターpLPD8sの分泌シグナル配列(PslpA-SSprtP)の下流の制限酵素サイトに挿入して、プラスミドベクターpLPD8s::hIL-2を作製した。
ラクトバチルス・カゼイ・KK378菌株の形質転換(2)
上記実施例1で得た、偏性嫌気性のラクトバチルス・カゼイ・KK378菌株に、上記実施例3で得たプラスミドベクターpLPD8s::hIL-2を用いて常法により形質転換を行い、ヒト型IL-2発現・分泌株ラクトバチルス・カゼイ・KJ474を得た。
ラクトバチルス・カゼイ・KJ686菌の偏性嫌気性確認試験
実施例2で得られたラクトバチルス・カゼイ・KJ686菌を2枚のMRS培地プレートに塗布し、1枚を37℃で嫌気的条件下に、もう1枚を37℃で好気的条件下に、それぞれ3日間培養した。
(結果)
図2に示すとおり、嫌気的条件下で培養したプレートには菌が生育したのに対し、好気的条件下で培養したプレートには菌が全く生育せず、ラクトバチルス・カゼイ・KJ686が偏性嫌気性菌であることが確認された。
ラクトバチルス・カゼイ・KJ686菌の腫瘍特異集積性確認試験
実施例2で得られたラクトバチルス・カゼイ・KJ686菌をMRS培地で嫌気的条件下に培養し、この培養菌(5×109/0.5mlPBS)を、B16Fメラノーマ担癌マウス4匹に、静脈投与した。4匹中3匹を菌投与96時間後(4日後)に、残り1匹を菌投与168時間後(7日後)にそれぞれ犠牲死させ、腫瘍組織および正常組織(肝臓、肺、腎臓、血液)を摘出してホモジナイズし、各組織抽出液をMRSプレートに塗付し、37℃で、嫌気的条件下に3日間培養した。
菌投与96時間後(4日後)では、下記表1に示すとおり、3例中2例で腫瘍組織内に菌の生着が確認され、腫瘍内菌数は約7.4×105~1.6×106cfu/gであった。なお、3例中1例では正常組織でも菌の存在が確認された。
菌投与168時間後(7日後)では、下記表2に示すとおり、腫瘍組織のみ菌が確認され、腫瘍内菌数は5.2×106cfu/gであった。
ラクトバチルス・カゼイ・KJ686菌の抗腫瘍活性試験
ルイス肺カルシノーマ(Lewis lung carcinoma, LLC)細胞(1×106/50μl)を、8週齢のC57BL/6マウスの右鼠径部の皮下に移植してLLC担癌C57BL/6マウスを作製した。
腫瘍径が約5mmになったマウス18匹のうち、無作為に選んだ8匹に、実施例2で得られたラクトバチルス・カゼイ・KJ686菌をMRS培地で嫌気的条件下に培養して得た培養菌(5×108/100μl)を静脈投与した(菌投与群)。また、残り10匹を無処置(対照群)とした。
試験開始日(菌投与日)から毎日、腫瘍の大きさを計測し、腫瘍の大きさが試験開始時(菌投与時)の腫瘍の大きさの約20倍を超えるときを終点として、それぞれの群について同日に全て犠牲死させ、腫瘍の大きさを計測した。更に腫瘍組織および正常組織(肝臓、肺)を摘出してホモジナイズし、各組織抽出液をMRSプレートに塗付し、37℃で、嫌気的条件下に3日間培養した。
試験開始時(菌投与時)の腫瘍の大きさを1としたときの腫瘍の増大率(倍)を指標にしたグラフ(図3)に示すとおり、対照群(無処置)では、試験開始後7日で約9倍、12日で約23倍にまで腫瘍が増大したのに対し、菌投与群では、菌投与後7日目では約5倍、12日目では約11倍程度であり、17日目で約20倍に到達し、菌投与による明らかな腫瘍増殖抑制効果が確認された。
また、図4に示すとおり、菌投与後17日目の時点で菌は腫瘍組織にのみ集積しており、正常組織(肺および肝臓)には全く集積していないことが確認された。
ラクトバチルス・カゼイ・KJ474菌のヒト型IL-2産生能確認試験
実施例4で得られた、ラクトバチルス・カゼイ・KJ474菌のIL-2産生能を以下のようにして確認した。
ラクトバチルス・カゼイ・KJ474菌を5μg/mlエリスロマイシン添加MRS液体培地中、37℃で24時間培養した。培養液1mlを1.5mlマイクロチューブに移し、13,000rpmで2分間遠心分離し、上清0.5mlを新しいマイクロチューブに移した。
培養上清に冷アセトンを1ml加え、混合した後、13,000rpmで30分間遠心分離し、上清を完全に除去した。
沈殿物を50μ?のSDS-PAGEサンプルバッファーに溶解し(10倍濃縮サンプル)し、サンプル溶液を得た。
サンプル溶液10μ?をSDS-PAGE(ゲル濃度15%)に供し、電気泳動終了後、タンパク質をニトロセルロース膜へエレクトロブロッティングにより転写した。
このニトロセルロース膜上のタンパク質に対し、ビオチン化抗ヒトIL-2抗体を1次抗体とし、抗ヤギHRP2次抗体を結合させ、写真用フィルムを感光させた。
なお、ヒト型IL-2遺伝子を導入していないラクトバチルス・カゼイ・KJ686菌をネガティブコントロールとして、同時に試験した。
図5に示すとおり、ラクトバチルス・カゼイ・KJ474菌の培養上清の電気泳動により、ラクトバチルス・カゼイ・KJ474菌がヒトIL-2を産生していることが確認された。
なお、ラクトバチルス・カゼイ・KJ474菌の産生タンパク質と標品のヒトIL-2の分子量の差は、KJ474菌が発現するIL-2のN末端側にPrtP分泌シグナル配列由来のペプチドが付加されていることによる。
ラクトバチルス・カゼイ・KJ474菌のヒト型IL-2産生量の定量
-80℃で凍結保存したラクトバチルス・カゼイ・KJ474菌を37℃で暖め、その5μ?を4mlの5μg/mlエリスロマイシン添加MRS液体培地中、嫌気環境下で37℃、24時間培養を行った。
更にその5μ?を4mlの5μg/mlエリスロマイシン添加MRS液体培地に加えて嫌気環境下で37℃、24時間培養を行った後、培養液を12000rpm、3分間遠心をかけて培養上清を取り出して-80℃にて保存した。
この培養液を10万倍希釈して100μ?を5μg/mlエリスロマイシン添加MRS寒天培地に塗布し、嫌気環境下で37℃、3日間培養した後コロニー数をカウントした結果、4.8×108cfu/mlであった。
R&D Systems社 DuoSet ELISA development Human DY202 kitを用いてヒトIL-2の定量を行った。
培養上清を1000倍希釈してELISAを施行したところ、80.3pg/mlとの結果を得た。これより実際のヒトIL-2産生量は、ラクトバチルス・カゼイ・KJ474菌培養液中の菌数を4.8×108cfu/mlとして、希釈倍数を1000倍として換算すると80.3ng/mlと計算される。
ラクトバチルス・カゼイ・KJ474菌産生ヒト型IL-2の生物学的活性の評価
IL-2依存性マウスT細胞(CTLL-2)を用いてIL-2の生物学的活性の評価を行った。
96ウェルのプレートにCTLL-2 1×104/100μ?取り、PBS(-)と0.1%BSAを加えて全量を112.5μ?とした。ここにR&D SYSTEMS社からの遺伝子組換えヒトIL-2(製品番号202-IL)を1.5ng/mlで加え、このIL-2の代わりにラクトバチルス・カゼイ・KJ474菌(2.9×109cfu)培養上清(10倍濃縮)を加えたものとでCTLL-2の増殖率を比較した。なお、CTLL-2の細胞数は色素MK400を用いてWST-1にて測定した。
増殖率、菌数および濃縮率より、ラクトバチルス・カゼイ・KJ474菌が産生するヒトIL-2の生物学的活性を元にヒトIL-2としての力価を換算すると、以下のように計算される。
KJ474菌産生 hIL-2 1ng = rhIL-2 3.6×10-4ng
KJ474菌 1×109c.f.u. = rhIL-2 6.0×10-4ng
ラクトバチルス・カゼイ・KJ474菌の抗腫瘍活性試験
試験例3と同様に、ルイス肺カルシノーマ(Lewis lung carcinoma,LLC)細胞(1×106/50μl)を、8週齢のC57BL/6マウスの右鼠径部の皮下に移植してLLC担癌C57BL/6マウスを作製した。
腫瘍径が約5mmになったマウス18匹のうち、無作為に選んだ8匹に、実施例2で得られたラクトバチルス・カゼイ・KJ474菌をMRS培地で嫌気的条件下に培養して得た培養菌(5×108/100μl)を静脈投与した(菌投与群)。また、残り10匹を無処置(対照群)とした。
試験開始日(菌投与日)から毎日、腫瘍の大きさを計測し、腫瘍の大きさが試験開始時(菌投与時)の腫瘍の大きさの約20倍を超えるときを終点として、それぞれの群について同日に全て犠牲死させ、腫瘍の大きさを計測した。更に腫瘍組織および正常組織(肝臓、肺)を摘出してホモジナイズし、各組織抽出液をMRSプレートに塗付し、37℃で、嫌気的条件下に3日間培養した。
試験開始時(菌投与時)の腫瘍の大きさを1としたときの腫瘍の増大率(倍)を指標にしたグラフ(図6)に示すとおり、対照群(無処置)では、試験開始後7日目で約9倍、12日で約23倍に腫瘍が増大したのに対し、菌投与群では、菌投与後7日目では約6倍、12日目では約12倍程度であり、17日目で漸く約23倍に到達し、菌投与による明らかな腫瘍増殖抑制効果が確認された。
なお、前述のラクトバチルス・カゼイ・KJ686菌の抗腫瘍活性試験の結果と、上記ラクトバチルス・カゼイ・KJ474菌の抗腫瘍活性試験の結果とを比較すると、その効果に明確な差が認められなかった。これは、ヒト型IL-2の発現遺伝子を導入して形質転換したラクトバチルス・カゼイ・KJ474菌をマウスに投与して試験を行ったため、産生されたヒト型IL-2がマウスの細胞性免疫系などに対して十分に機能することができず、免疫系の活性化などによる抗腫瘍効果が得られなかったためと考えられる。したがって、ヒト型IL-2の発現遺伝子を導入して形質転換したラクトバチルス・カゼイ・KJ474菌をヒトに投与することにより、より明確で高い抗腫瘍効果が期待できるものと考えられる。
また、本発明の発現ベクターは、偏性嫌気性乳酸菌または通性嫌気性から偏性嫌気性に変異化された偏性嫌気性乳酸菌において機能し、本発明のベクターで形質転換された偏性嫌気性乳酸菌は、嫌気的環境下にある疾患の治療に有用な活性を有する蛋白質を効率よく産生し、さらには該活性蛋白質を菌体外へ分泌することができるという特性を有するものである。
したがって、本発明の偏性嫌気性乳酸菌は、嫌気的環境下にある固形腫瘍等の疾患の治療剤、および嫌気的環境下にある疾患の治療に有用な活性を有する蛋白質を発現できる、嫌気的環境下にある疾患の治療薬としての遺伝子輸送担体の親菌として極めて有用なものであり、さらに、本発明の発現ベクターは、当該治療剤および遺伝子輸送担体を作製するための発現ベクターとして極めて有用なものである。
Claims (34)
- 好気的環境下では生育しないかまたは生育率が極めて低く、嫌気的環境下で生育するように通性嫌気性から偏性嫌気性に変異化された、偏性嫌気性乳酸菌。
- さらに、発現ベクターによる形質転換が可能である、請求項1に記載の偏性嫌気性乳酸菌。
- 発現ベクターが、嫌気的環境下にある疾患の治療に有用な活性を有する蛋白質の発現遺伝子を導入した発現ベクターである、請求項2に記載の偏性嫌気性乳酸菌。
- 乳酸菌が、ラクトバチルス属細菌、ストレプトコッカス属細菌、エンテロコッカス属細菌およびラクトコッカス属細菌からなる群より選ばれる1種である、請求項1~3のいずれか一項に記載の偏性嫌気性乳酸菌。
- 乳酸菌が、ラクトバチルス属細菌である、請求項4に記載の偏性嫌気性乳酸菌。
- ラクトバチルス属細菌が、ラクトバチルス・アシドフィルス(Lactobacillus acidophilus)、ラクトバチルス・ガセリ(Lactobacillus gasseri)、ラクトバチルス・ジョンソニ(Lactobacillus johnsonii)、ラクトバチルス・ヘルベチカス(Lactobacillus helveticus)、ラクトバチルス・サリバリウス(Lactobacillus salivarius)、ラクトバチルス・デルブレッキ(Lactobacillus delbrueckii)、ラクトバチルス・プランタラム(Lactobacillus plantarum)、ラクトバチルス・カゼイ(Lactobacillus casei)、ラクトバチルス・ラムノサス(Lactobacillus rhamnosus)、ラクトバチルス・ロイテリ(Lactobacillus reuteri)およびラクトバチルス・パラカゼイ(Lactobacillus paracasei)からなる群より選ばれる1種である、請求項5に記載の偏性嫌気性乳酸菌。
- ラクトバチルス属細菌が、ラクトバチルス・カゼイである、請求項6に記載の偏性嫌気性乳酸菌。
- ラクトバチルス・カゼイが、ラクトバチルス・カゼイ・KK378(寄託番号:NITE BP-654)またはその形質転換菌である、請求項7に記載の偏性嫌気性乳酸菌。
- ラクトバチルス・カゼイ・KK378の形質転換菌が、ラクトバチルス・カゼイ・KJ686(寄託番号:NITE BP-615)である、請求項8に記載の偏性嫌気性乳酸菌。
- ラクトバチルス・カゼイ・KK378の形質転換菌が、ラクトバチルス・カゼイ・KJ474である、請求項8に記載の偏性嫌気性乳酸菌。
- 偏性嫌気性乳酸菌で機能する発現ベクターであって、ラクトバチルス由来のプラスミド複製蛋白質遺伝子(Rep)と、ラクトバチルス由来のs-layer遺伝子プロモーターおよびラクトバチルス由来のPrtP蛋白質分泌シグナルを含む分泌シグナル配列(PslpA-SSartP)と、1種または2種以上の選択マーカー遺伝子とを含む、発現ベクター。
- 偏性嫌気性乳酸菌が、好気的環境下では生育しないかまたは生育率が極めて低く、嫌気的環境下で生育するように通性嫌気性から偏性嫌気性に変異化された偏性嫌気性乳酸菌である、請求項11に記載の発現ベクター。
- 分泌シグナル配列(PslpA-SSartP)の下流に、さらに所望の蛋白質発現遺伝子を含む、請求項11または12に記載の発現ベクター。
- 所望の蛋白質が、抗腫瘍活性を有する蛋白質(A)、および/または、抗腫瘍物質前駆体を抗腫瘍物質に変換する活性を有する蛋白質(B)である、請求項13に記載の発現ベクター。
- 抗腫瘍活性を有する蛋白質(A)が、インターフェロン(IFN)-α、βおよびγ、顆粒球マクロファージコロニー刺激因子(GM-CSF)、インターロイキン(IL)-1α、1β、2、3、4、6、7、10、12、13、15および18、腫瘍壊死因子(TNF)-α、リンホトキシン(LT)-β、顆粒球コロニー刺激因子(G-CSF)、マクロファージコロニー刺激因子(M-CSF)、マクロファージ遊走阻止因子(MIF)、白血病阻止因子(LIF)、T細胞活性化共刺激因子B7(CD80)およびB7-2(CD86)、キット・リガンドならびにオンコスタチンMからなる群より選ばれる1種のサイトカイン、および/または、エンドスタチン、アンジオスタチン、クリングル-1、2、3、4および5からなる群より選ばれる1種の血管新生抑制物質である、請求項14に記載の発現ベクター。
- 抗腫瘍物質前駆体を抗腫瘍物質に変換する活性を有する蛋白質(B)が、シトシンデアミナーゼ、β-グルクロニダーゼおよびニトロリダクターゼからなる群より選ばれる1種である、請求項14または15に記載の発現ベクター。
- 選択マーカー活性が、薬物耐性、栄養要求性および培地選択性からなる群より選ばれる1種または2種以上である、請求項11~16のいずれか一項に記載の発現ベクター。
- 薬物耐性が、エリスロマイシン耐性、アンピシリン耐性、テトラサイクリン耐性、ネオマイシン耐性およびカナマイシン耐性からなる群より選ばれる1種または2種以上である、請求項17に記載の発現ベクター。
- 選択マーカー遺伝子が、ラクトバチルス由来のエリスロマイシン耐性遺伝子および大腸菌由来のアンピシリン耐性遺伝子から選ばれる1種または2種である、請求項18に記載の発現ベクター。
- プラスミドpLPD8sまたはこれに任意の蛋白質発現遺伝子をさらに導入したものである、請求項19に記載の発現ベクター。
- 請求項11~20のいずれか一項に記載の発現ベクターを用いて形質転換された、請求項2~8のいずれか一項に記載の偏性嫌気性乳酸菌。
- 請求項1~10および21のいずれか一項に記載の偏性嫌気性乳酸菌の1種または2種以上を有効成分として含有する、医薬組成物。
- 請求項22に記載の偏性嫌気性乳酸菌を有効成分として含有する医薬組成物と、抗腫瘍物質前駆体を抗腫瘍物質に変換する活性を有する蛋白質(B)によって抗腫瘍物質に変換される抗腫瘍物質前駆体を有効成分として含有する医薬組成物とを、組み合わせてなる抗腫瘍剤。
- 好気的環境下では生育しないかまたは生育率が極めて低く、嫌気的環境下で生育するように通性嫌気性から偏性嫌気性に変異化された偏性嫌気性乳酸菌の作製方法であって、通性嫌気性野生型乳酸菌を変異化する工程(1)と、該変異化菌を、嫌気的条件下と好気性条件下で培養して嫌気性条件下でのみ生育する偏性嫌気性の変異化菌を選別する工程(2)とを含む、前記偏性嫌気性乳酸菌の作製方法。
- さらに、偏性嫌気性変異化菌を、1種または2種以上の選択マーカーを有する嫌気性菌由来の発現ベクターを用いて形質転換する工程(3)と、該形質転換菌を前記選択マーカーにより、前記発現ベクターによる形質転換がなされた形質転換菌を選別する工程(4)とを含む、請求項24に記載の偏性嫌気性乳酸菌の作製方法。
- 変異化が、変異原物質による化学的変異化である、請求項24または25に記載の偏性嫌気性乳酸菌の作製方法。
- 変異原物質が、ニトロソグアニジン誘導体である、請求項26に記載の偏性嫌気性乳酸菌の作製方法。
- 変異原物質が、N-メチル-N’-ニトロ-ニトロソグアニジン(MNNG)である、請求項27に記載の偏性嫌気性乳酸菌の作製方法。
- 請求項11~20のいずれか一項に記載の発現ベクターを用いる、請求項25~28のいずれか一項に記載の偏性嫌気性乳酸菌の作製方法。
- 通性嫌気性野生型乳酸菌が、ラクトバチルス属細菌、ストレプトコッカス属細菌、エンテロコッカス属細菌およびラクトコッカス属細菌からなる群より選ばれる1種である、請求項24~29のいずれか一項に記載の偏性嫌気性乳酸菌の作製方法。
- 通性嫌気性野生型乳酸菌が、ラクトバチルス属細菌である、請求項30に記載の偏性嫌気性乳酸菌の作製方法。
- ラクトバチルス属細菌が、ラクトバチルス・アシドフィルス(Lactobacillus acidophilus)、ラクトバチルス・ガセリ(Lactobacillus gasseri)、ラクトバチルス・ジョンソニ(Lactobacillus johnsonii)、ラクトバチルス・ヘルベチカス(Lactobacillus helveticus)、ラクトバチルス・サリバリウス(Lactobacillus salivarius)、ラクトバチルス・デルブレッキ(Lactobacillus delbrueckii)、ラクトバチルス・プランタラム(Lactobacillus plantarum)、ラクトバチルス・カゼイ(Lactobacillus casei)、ラクトバチルス・ラムノサス(Lactobacillus rhamnosus)、ラクトバチルス・ロイテリ(Lactobacillus reuteri)およびラクトバチルス・パラカゼイ(Lactobacillus paracasei)からなる群より選ばれる1種である、請求項31に記載の偏性嫌気性乳酸菌の作製方法。
- ラクトバチルス属細菌が、ラクトバチルス・カゼイである、請求項32に記載の偏性嫌気性乳酸菌の作製方法。
- ラクトバチルス・カゼイが、ラクトバチルス・カゼイIGM393である、請求項33に記載の偏性嫌気性乳酸菌の作製方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011509356A JP5871617B2 (ja) | 2009-04-17 | 2010-04-16 | 偏性嫌気性に変異化された乳酸菌およびその作製方法ならびに偏性嫌気性乳酸菌で機能する発現ベクター |
EP10764518.6A EP2420562B1 (en) | 2009-04-17 | 2010-04-16 | Lactic acid bacterium mutated into obligatory anaerobe, method for constructing same, and expression vector functioning in obligatory anaerobic lactic acid bacterium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/426,152 | 2009-04-17 | ||
US12/426,152 US8338162B2 (en) | 2009-04-17 | 2009-04-17 | Obligately anaerobic mutant lactic acid bacterium and preparation method therefor, and expression vector functioning in obligately anaerobic lactic acid bacterium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010119936A1 true WO2010119936A1 (ja) | 2010-10-21 |
Family
ID=42981130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/056806 WO2010119936A1 (ja) | 2009-04-17 | 2010-04-16 | 偏性嫌気性に変異化された乳酸菌およびその作製方法ならびに偏性嫌気性乳酸菌で機能する発現ベクター |
Country Status (4)
Country | Link |
---|---|
US (1) | US8338162B2 (ja) |
EP (1) | EP2420562B1 (ja) |
JP (1) | JP5871617B2 (ja) |
WO (1) | WO2010119936A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112014024159A2 (pt) | 2012-03-29 | 2017-06-20 | Therabiome Llc | Formulações de vacina oral específicas do local gastrintestinal , ativas no íleo e apêndice. |
US9127284B2 (en) * | 2012-05-04 | 2015-09-08 | The University Of Hong Kong | Modified bacteria and their uses thereof for the treatment of cancer or tumor |
US9907755B2 (en) | 2013-03-14 | 2018-03-06 | Therabiome, Llc | Targeted gastrointestinal tract delivery of probiotic organisms and/or therapeutic agents |
KR101980525B1 (ko) * | 2018-04-12 | 2019-05-21 | 주식회사 지놈앤컴퍼니 | 락토코커스 락티스 gen3013 균주, 및 이를 포함하는 암의 예방 또는 치료용 조성물 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0314148B2 (ja) | 1983-03-29 | 1991-02-26 | Seiko Epson Corp | |
JPH0680575A (ja) | 1991-03-05 | 1994-03-22 | Meiji Milk Prod Co Ltd | 経口免疫賦活剤 |
JPH07228536A (ja) | 1994-02-16 | 1995-08-29 | Meiji Milk Prod Co Ltd | 乳酸菌を用いた免疫賦活剤 |
JPH092959A (ja) | 1995-06-16 | 1997-01-07 | Yakult Honsha Co Ltd | IgE抗体産生抑制剤および抗アレルギー剤 |
JPH0930981A (ja) | 1995-07-17 | 1997-02-04 | Meiji Milk Prod Co Ltd | 免疫賦活組成物 |
JPH09249574A (ja) | 1996-03-18 | 1997-09-22 | Natl Fedelation Of Agricult Coop Assoc | 抗腫瘍剤 |
JPH09301878A (ja) | 1996-05-13 | 1997-11-25 | Youshindou:Kk | 腫瘍増殖抑制剤 |
JPH1029946A (ja) | 1996-07-15 | 1998-02-03 | Nichinichi Seiyaku Kk | 液性免疫回復剤 |
JPH10139674A (ja) | 1996-11-11 | 1998-05-26 | Yakult Honsha Co Ltd | インターロイキン12産生促進剤 |
JPH11199494A (ja) | 1998-01-10 | 1999-07-27 | Nichinichi Seiyaku Kk | 腸溶性カプセルを用いた免疫賦活剤 |
JP2002097144A (ja) | 2000-09-21 | 2002-04-02 | Jun Amano | 嫌気性菌を用いた遺伝子治療用医薬 |
WO2006109619A1 (ja) * | 2005-04-08 | 2006-10-19 | Anaeropharma Science Inc. | 5-フルオロウラシル耐性菌およびその作製方法 |
WO2007052356A1 (ja) * | 2005-11-04 | 2007-05-10 | Ahc Co., Ltd | 抗菌活性物質dm0507およびその利用 |
WO2007136107A1 (ja) * | 2006-05-24 | 2007-11-29 | Anaeropharma Science Inc. | 遺伝子輸送担体作製方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3014148B2 (ja) | 1991-01-17 | 2000-02-28 | 株式会社ヤクルト本社 | 悪性腫瘍再発抑制剤 |
CN102046791B (zh) * | 2008-04-17 | 2013-09-18 | 阿内罗药物科学株式会社 | 表达载体 |
-
2009
- 2009-04-17 US US12/426,152 patent/US8338162B2/en active Active
-
2010
- 2010-04-16 JP JP2011509356A patent/JP5871617B2/ja active Active
- 2010-04-16 EP EP10764518.6A patent/EP2420562B1/en not_active Ceased
- 2010-04-16 WO PCT/JP2010/056806 patent/WO2010119936A1/ja active Application Filing
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0314148B2 (ja) | 1983-03-29 | 1991-02-26 | Seiko Epson Corp | |
JPH0680575A (ja) | 1991-03-05 | 1994-03-22 | Meiji Milk Prod Co Ltd | 経口免疫賦活剤 |
JPH07228536A (ja) | 1994-02-16 | 1995-08-29 | Meiji Milk Prod Co Ltd | 乳酸菌を用いた免疫賦活剤 |
JPH092959A (ja) | 1995-06-16 | 1997-01-07 | Yakult Honsha Co Ltd | IgE抗体産生抑制剤および抗アレルギー剤 |
JPH0930981A (ja) | 1995-07-17 | 1997-02-04 | Meiji Milk Prod Co Ltd | 免疫賦活組成物 |
JPH09249574A (ja) | 1996-03-18 | 1997-09-22 | Natl Fedelation Of Agricult Coop Assoc | 抗腫瘍剤 |
JPH09301878A (ja) | 1996-05-13 | 1997-11-25 | Youshindou:Kk | 腫瘍増殖抑制剤 |
JPH1029946A (ja) | 1996-07-15 | 1998-02-03 | Nichinichi Seiyaku Kk | 液性免疫回復剤 |
JPH10139674A (ja) | 1996-11-11 | 1998-05-26 | Yakult Honsha Co Ltd | インターロイキン12産生促進剤 |
JPH11199494A (ja) | 1998-01-10 | 1999-07-27 | Nichinichi Seiyaku Kk | 腸溶性カプセルを用いた免疫賦活剤 |
JP2002097144A (ja) | 2000-09-21 | 2002-04-02 | Jun Amano | 嫌気性菌を用いた遺伝子治療用医薬 |
WO2006109619A1 (ja) * | 2005-04-08 | 2006-10-19 | Anaeropharma Science Inc. | 5-フルオロウラシル耐性菌およびその作製方法 |
WO2007052356A1 (ja) * | 2005-11-04 | 2007-05-10 | Ahc Co., Ltd | 抗菌活性物質dm0507およびその利用 |
WO2007136107A1 (ja) * | 2006-05-24 | 2007-11-29 | Anaeropharma Science Inc. | 遺伝子輸送担体作製方法 |
Non-Patent Citations (8)
Title |
---|
FUJIMORI ET AL., CURR. OPIN. DRUG DISCOV. DEVEL., vol. 5, 2002, pages 200 - 203 |
HIROYO MATSUMURA ET AL.: "Nyusankin-yo Bunpitsu Hatsugen Vector no Kochiku (4th report)", DAI 24 KAI THE PHARMACEUTICAL SOCIETY OF JAPAN KYUSHU SHIBU TAIKAI KOEN YOSHISHU, 15 November 2007 (2007-11-15), pages 175, XP008150969 * |
MINORU FUJIMORI: "Anaerobic Bacteria as a gene delivery system for breast cancer therapy", JAPANESE JOURNAL OF CLINICAL MEDICINE, vol. 66, no. 6, June 2008 (2008-06-01), pages 1211 - 1218, XP008150878 * |
NAKAMURA ET AL., BIOSCI. BIOTECHNOL. BIOCHEM., vol. 66, 2002, pages 2362 - 2366 |
See also references of EP2420562A4 |
SHIZUNOBU IGIMI: "S-1 Idenshi Kumikae Gijutsu ni yoru Nyusankin no Atarashii Kino no Kaihatsu", NIPPON BISEIBUTSU SHIGEN GAKKAI SHI, vol. 24, no. 1, 1 June 2008 (2008-06-01), pages 43, XP008150876 * |
YAZAWA ET AL., BREPAST CANCER REPS. TREAT., vol. 66, 2001, pages 165 - 170 |
YAZAWA ET AL., CANCER GENE THER., vol. 7, 2000, pages 269 - 274 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010119936A1 (ja) | 2012-10-22 |
US8338162B2 (en) | 2012-12-25 |
EP2420562B1 (en) | 2016-11-16 |
JP5871617B2 (ja) | 2016-03-01 |
EP2420562A1 (en) | 2012-02-22 |
EP2420562A4 (en) | 2013-01-30 |
US20100266545A1 (en) | 2010-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5514735B2 (ja) | 嫌気的疾患用治療薬 | |
JP5836129B2 (ja) | 形質転換用プラスミド | |
US8236940B2 (en) | Constitutive strong promoter and use thereof | |
KR101302088B1 (ko) | 5-플루오로우라실 내성균 및 그 제조방법 | |
JP3642755B2 (ja) | 嫌気性菌を用いた遺伝子治療用医薬 | |
CN107325979B (zh) | 减少炎性反应的具有减少的脂磷壁酸的重组乳杆菌 | |
JP5871617B2 (ja) | 偏性嫌気性に変異化された乳酸菌およびその作製方法ならびに偏性嫌気性乳酸菌で機能する発現ベクター | |
WO2007136107A1 (ja) | 遺伝子輸送担体作製方法 | |
EP3845632A1 (en) | Composition for promoting the growth of lactic acid bacteria comprising growth factors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10764518 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011509356 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2010764518 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010764518 Country of ref document: EP |