WO2010119929A1 - 電力変換装置の制御方法 - Google Patents

電力変換装置の制御方法 Download PDF

Info

Publication number
WO2010119929A1
WO2010119929A1 PCT/JP2010/056786 JP2010056786W WO2010119929A1 WO 2010119929 A1 WO2010119929 A1 WO 2010119929A1 JP 2010056786 W JP2010056786 W JP 2010056786W WO 2010119929 A1 WO2010119929 A1 WO 2010119929A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage command
command value
value
max
signal
Prior art date
Application number
PCT/JP2010/056786
Other languages
English (en)
French (fr)
Inventor
正和 宗島
康弘 山本
悠 佐々木
拓也 須貝
顕 紫垣
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to JP2011509352A priority Critical patent/JP5304891B2/ja
Priority to US13/264,592 priority patent/US8659918B2/en
Priority to CN201080016973.4A priority patent/CN102396142B/zh
Priority to EP10764511.1A priority patent/EP2413488A4/en
Priority to KR1020117025188A priority patent/KR101266278B1/ko
Priority to SG2011074465A priority patent/SG175197A1/en
Publication of WO2010119929A1 publication Critical patent/WO2010119929A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter

Definitions

  • the present invention relates to pulse width modulation (PWM) control for reducing loss in a power converter that performs AC-DC conversion or DC-AC conversion.
  • PWM pulse width modulation
  • switching loss occurs when the semiconductor switch element is turned on / off, that is, switched.
  • this switching loss is large, problems such as a reduction in efficiency of the power conversion device and an increase in size of the power conversion device due to the cooling device for cooling the generated heat occur.
  • the switching frequency is lowered to reduce the switching loss, the number of times of switching is reduced, so that the waveform control performance is lowered (that is, the ratio of harmonics to the fundamental wave is increased).
  • a two-arm modulation method that lowers the switching frequency while minimizing a decrease in waveform control performance is conventionally known. This is because the switching of one phase semiconductor switch element is performed by correcting the voltage command value of each phase so that the voltage command value of one phase among the voltage command values of three phases is equal to or greater than the amplitude value of the triangular wave carrier. This is a method of stopping for a certain period and lowering the average switching frequency in the three phases (Patent Document 1).
  • FIG. 13 is a time chart of a three-phase voltage command value and a triangular wave carrier in the two-arm modulation method
  • FIG. 14A is a time chart of a three-phase voltage command value in the three-arm modulation method
  • FIG. 14C shows a time chart of the voltage command value in the two-arm modulation method.
  • the modulation factor of the voltage command value of each phase is m.
  • the voltage command value V * U becomes the maximum value in the A section
  • the voltage command value V * W Becomes the minimum value in the B section.
  • the quantity ⁇ (the waveform in FIG. 14B) may be added to the three-phase voltage command values V * U , V * V , and V * W , respectively.
  • the voltage command value of any one phase is always the amplitude of the triangular wave carrier every 60 ° interval, as in the waveforms of V * U + ⁇ , V * V + ⁇ , V * W + ⁇ shown in FIG.
  • the semiconductor switch element stops switching.
  • W + ⁇ can be generated.
  • Patent Document 2 discloses a motor control device that switches between a 2-arm modulation system and a 3-arm modulation system.
  • JP 59-139871 A JP 2007-151344 (paragraphs [0056] to [0065], FIG. 2, FIG. 4, FIG. 5)
  • the two-arm modulation method is more efficient, but has the following problems.
  • the other two phases for example, the V phase and the W phase
  • the other two phases are switched during the period when the switching of the semiconductor switch element of one phase (for example, the U phase) is suspended. Since the amplitude of the voltage command value increases, the fine pulse width to the gate signal G U (i.e., on-duty 10% or less) period is observed.
  • a dead time is provided in the gate signal in order to avoid that the semiconductor switch elements of the upper and lower arms of the same phase are turned on at the same time, and the timing at which the semiconductor switch element is switched on and off is delayed.
  • the modulation factor m is further reduced, a period in which the pulse width (on duty) of the gate signal is further reduced occurs, so that the dead time is provided and the on / off operation cannot be performed. Voltage error may occur. For this reason, when the modulation factor m of the voltage command value is small, the voltage error is reduced by using the three-arm modulation method.
  • the voltage accuracy is higher because the influence of the voltage error due to the dead time is less when the 2-arm modulation method is used than when the 3-arm modulation method is used.
  • Efficiency is good because the average switching frequency is low.
  • noise is a problem because the 2-arm modulation method has a lower average switching frequency than the 3-arm modulation method.
  • Patent Document 2 switches the modulation method, it cannot solve the problem due to the difference in the modulation rate of the voltage command value as described above.
  • a method for controlling a power conversion device is obtained by a gate signal generation unit that PWM modulates a voltage command value for a semiconductor switch element provided in a power conversion device that performs AC-DC conversion or DC-AC conversion.
  • a method for controlling a power converter that outputs a received gate signal, wherein a voltage command value and a multiphase voltage that are maximum among the multiphase voltage command values in a correction term adder provided in the gate signal generation unit Compare the absolute value of the minimum voltage command value among the command values, and if the maximum voltage command value is larger, the signal obtained by subtracting the maximum voltage command value from the maximum value of the triangular wave carrier If the absolute value of the minimum voltage command value is larger, the signal corresponding to the signal generated by selecting the signal obtained by subtracting the minimum voltage command value from the minimum value of the triangular wave carrier is selected.
  • a correction amount is calculated, and a triangular wave signal synchronized with the first correction amount is obtained by multiplying the signal obtained by adding the maximum voltage command value and the minimum voltage command value among the multiphase voltage command values by gain. Generate and calculate the corrected voltage command value by adding the second correction value generated by selecting the smaller of the triangular wave signal and the first correction value to the multiphase voltage command value.
  • the gate signal obtained by PWM modulating the correction voltage command value is output to the semiconductor switch element.
  • one aspect of the method for controlling the power conversion device according to the present invention is characterized in that the gain is variable according to a modulation rate of a voltage command value.
  • the triangular wave signal synchronized with the first correction amount is a voltage command value that is the maximum and a voltage that is the minimum among the multiphase voltage command values.
  • a signal obtained by adding the command value is multiplied by the gain and the load factor of the power converter.
  • one aspect of the method for controlling the power conversion device according to the present invention is characterized in that the load factor is a signal in which a harmonic component is attenuated by a low-pass filter and a time change rate is suppressed by a soft start circuit. To do.
  • the three-arm modulation method is used when the modulation rate of the voltage command value is small, and the two-arm modulation is changed from the 3-arm modulation method as the modulation rate of the voltage command value increases. It is possible to change the modulation scheme continuously to the scheme.
  • the present invention can combine the two-arm modulation method and the three-arm modulation method, noise can be reduced as compared with the case of only the two-arm modulation method. Furthermore, compared with the case where the simple change is made to the 3-arm modulation method when the voltage command value modulation rate is small, and the 2-arm modulation method is switched to when the voltage command value modulation rate is large, the sudden change in generated noise is suppressed. It becomes possible.
  • the waveform is similar to that of the two-arm modulation method, so that a switching pause period can be generated and switching loss can be reduced.
  • FIG. 3 is a configuration diagram illustrating an example of a gate signal generation unit in the first and second embodiments.
  • FIG. 3 is a configuration diagram illustrating an example of a correction term adding unit 1 according to the first and second embodiments.
  • 4 is a time chart showing an example of a signal waveform of each part of the correction term adding unit 1;
  • 3 is a time chart showing an example of a voltage command value, k (max (V * ) + min (V * )), and correction amounts ⁇ and ⁇ in a three-arm modulation system.
  • 5 is a time chart showing an example of each signal waveform when the modulation factor m of the voltage command value in the first embodiment is increased.
  • FIG. 9 is a configuration diagram illustrating an example of a correction term addition unit 1 according to a third embodiment.
  • FIG. 10 is a time chart showing an example of each signal waveform when the load factor l in the third embodiment is increased.
  • FIG. 6 is a configuration diagram illustrating an example of a gain multiplier 10 and a load factor multiplier 13 according to a fourth embodiment.
  • the time chart which shows an example of the voltage command value of a three-phase in a 2 arm modulation system, and a triangular wave carrier.
  • the time chart which shows an example of the voltage command value in a 3 arm modulation system, the correction amount used for a 2 arm modulation system, and a 3 phase voltage command value.
  • a power converter for example, a three-phase inverter
  • Three-phase voltage command values V * U , V * V , and V * W are input to a gate signal generation unit that outputs signals.
  • a second correction amount hereinafter referred to as a correction amount ⁇ is applied to the three-phase voltage command values V * U , V * V , and V * W as shown in FIG.
  • a correction amount ⁇ a first correction amount for calculating the voltage command values V * U + ⁇ , V * V + ⁇ , and V * W + ⁇ of the two-arm modulation method.
  • the maximum value calculator max (x, y, z) inputs the voltage command value V * U, V * V, V * W, the voltage command value V * U, V * V, from among the V * W
  • the maximum value max (V * ) selected from the maximum voltage command value is output.
  • the minimum value calculator min (x, y, z) inputs voltage command values V * U , V * V , V * W , and the voltage command values V * U , V * V , V * W are inputted.
  • a minimum value min (V * ) is selected by selecting the minimum voltage command value from the inside.
  • the comparator 5 compares the maximum value max (V * ) with the absolute value
  • , s1 1, and if the absolute value
  • is larger than the maximum value max (V * ), a signal s1 that outputs s1 0 is output to the switch 6, 6 is used for determination.
  • the maximum value max (V * ) and the minimum value min (V * ) output from the maximum value calculator max (x, y, z) and the minimum value calculator min (x, y, z) are subtractors. 7 and 8, respectively, 1-max (V * ) and -1-min (V * ) are calculated in the subtracters 7 and 8, and the signals are output to the switch 6.
  • the waveform of the correction amount ⁇ output from the switch 6 corresponds to the waveform of the correction amount ⁇ used in the two-arm modulation method shown in FIG.
  • the calculation method of the correction amount ⁇ described here is an example, and the correction amount ⁇ may be calculated by other calculation methods.
  • the maximum value max (V * ) output from the maximum value calculator max (x, y, z) and the minimum value min (V * ) output from the minimum value calculator min (x, y, z). are added by the adder 9.
  • the added max (V * ) + min (V * ) signal is multiplied by the gain k in the gain multiplier 10 and output as a k (max (V * ) + min (V * )) signal.
  • is input to the comparator 11. Then, the comparator 11 compares the absolute value
  • the correction amount ⁇ output from the switch 6 and the k (max (V * ) + min (V * )) signal output from the gain multiplier 10 are input to the switch 12, and the switch 12 is output from the comparator 11.
  • the signal output from the switch 12 is added to the three-phase voltage command values V * U , V * V , and V * W , respectively, as the correction amount ⁇ used in the modulation method of the first embodiment, and the correction voltage command
  • the values V * U + ⁇ , V * V + ⁇ , and V * W + ⁇ are calculated. The above is the principle of correcting the voltage command value in the first embodiment.
  • correction term addition unit 1 in FIG. 2 will be described based on a time chart showing an example of a signal waveform of each part of the correction term addition unit 1 in FIG.
  • FIG. 3A is a time chart showing an example of three-phase voltage command values V * U , V * V , and V * W when the modulation factor is m.
  • the voltage command values V * U , V * V , and V * W are obtained as shown in FIG. 3B by the maximum value calculator max (x, y, z) and the minimum value calculator min (x, y, z).
  • a maximum value max (V * ) and a minimum value min (V * ) as shown in the chart are calculated.
  • the comparator 5 compares the maximum value max (V * ) with the absolute value
  • the signal s1 output from the comparator 5 has a maximum period max (V * ) greater than the absolute value
  • is greater than the maximum value max (V * ), s1 0.
  • the max (V * ) + min (V * ) signal output from the adder 9 has a triangular waveform synchronized with the correction amount ⁇ as shown in FIG.
  • the k (max (V * ) + min (V * )) signal multiplied by the gain k in the gain multiplier 10 is also a signal having a waveform synchronized with the correction amount ⁇ .
  • the signal s2 output from the comparator 11 has an absolute value
  • . S2 0.
  • k (max (V * ) + min (V * )) and the correction amount ⁇ have waveforms shown in FIG.
  • a correction amount ⁇ is output.
  • the correction term adding unit 1 shown in FIG. 1 may be configured as shown in FIG. 2, and a gate signal may be generated by a triangular wave comparison to turn on and off the switch element.
  • a time chart of ⁇ is shown.
  • the U-phase voltage command value V * U in FIG. 4A is taken as an example, and at the point A that is the maximum value, k (max (V * ) + min ( V * )) signal also has a maximum value, and the value is obtained by the following equation (1).
  • the value of the correction amount ⁇ at the point A can be obtained by the following equation (2).
  • the correction amount ⁇ shown in FIG. 4C is output by selecting the smaller absolute value of k (max (V * ) + min (V * )) and the correction amount ⁇ in the switch 12.
  • FIG. 5A shows a time chart of the U-phase voltage command value V * U when the modulation factor m is increased from 0 to 1.15 with a constant slope
  • FIG. 5B shows the correction amounts ⁇ and k (max (V * ) + min (V * )) signal time chart
  • FIG. 5 (c) shows the correction amount ⁇ time chart
  • FIG. 5 (d) shows the U-phase correction voltage command value V * U + ⁇ of the first embodiment.
  • the correction amount ⁇ and the k (max (V * ) + min (V * )) signal are zero cross and k ( It becomes equal in the point which becomes the maximum value or the minimum value of max (V * ) + min (V * )). Therefore, when the smaller absolute value of the correction amount ⁇ and k (max (V * ) + min (V * )) is selected as the correction amount ⁇ , the correction amount ⁇ is k (max (V * ) + min (V * ) . )) Is selected.
  • the absolute value of the maximum value or the minimum value of the k (max (V * ) + min (V * )) signal is larger than the absolute value of the correction amount ⁇ . Therefore, if the smaller of the absolute values of the correction amount ⁇ and the k (max (V * ) + min (V * )) signal is selected, the correction amount ⁇ and k ( max (V * ) + min (V * )) signals are mixed.
  • the ratio of the correction amount ⁇ used in the two-arm modulation method increases as the correction amount ⁇ .
  • the correction amount ⁇ increases. All the selected signals have a correction amount ⁇ , and the modulation method is completely the two-arm modulation method.
  • FIG. 6 shows correction voltage command values V * U + ⁇ , V * V + ⁇ , V * W + ⁇ , and U-phase gate when the modulation method of the first embodiment is used when the modulation factor m of the voltage command value is 0.1.
  • the three-arm modulation method is used when the modulation factor m of the voltage command value is small, and the three-arm modulation is performed as the modulation factor m of the voltage command value increases. It is possible to continuously change the modulation method from the method to the two-arm modulation method.
  • the modulation system of the first embodiment combines the 2-arm modulation system and the 3-arm modulation system, it is possible to reduce noise compared to the case of only the 2-arm modulation system. Furthermore, when the modulation rate m of the voltage command value is small, the 3-arm modulation method is adopted, and when the modulation rate m of the voltage command value is large, the generated noise is smaller than when the 2-arm modulation method is adopted. It is possible to suppress sudden changes.
  • the gate signal has a waveform similar to that of the two-arm modulation method, and a switching pause period occurs, so that switching loss can be reduced.
  • phase voltage command values are converted into polar coordinates, phase and amplitude information is obtained, and a complicated calculation such as calculation of the modulation method is not used, and a simple analog circuit or a simple digital circuit such as an FPGA can be used. Corrections can be made directly from the phase voltage command values V * U , V * V , and V * W.
  • the correction amount ⁇ is added to the three-phase voltage command values V * U , V * V , and V * W , and corrected by changing the zero-phase voltage (that is, the ground voltage). Yes.
  • the gain k in the modulation scheme of the first embodiment is made variable according to the modulation factor m.
  • FIG. 8A shows a time chart of the U-phase voltage command value V * U when the modulation factor m is increased from 0 to 1.15 with a constant slope
  • FIG. 8B shows the correction amounts ⁇ and k (max (V * ) + min (V * )) signal time chart
  • FIG. 8C shows the gain k time chart
  • FIG. 8D shows the correction amount ⁇ time chart
  • FIG. 8E shows the second embodiment. 4 shows a time chart of the U-phase correction voltage command value V * U + ⁇ .
  • k is increased with a constant slope.
  • the gain k is assumed to be constant.
  • the amplitude value of the correction amount ⁇ can be suppressed more than in the first embodiment, and the leakage current can be reduced.
  • the ratio between the three-arm modulation method and the two-arm modulation method is changed depending on the magnitude of the modulation factor m.
  • the third embodiment not only the modulation factor m but also the modulation factor m and the load factor of the power converter.
  • the ratio between the three-arm modulation method and the two-arm modulation method is changed according to l.
  • FIG. 9 is an explanatory diagram of the switching loss. Furthermore, loss w SW per switching to the following equation (5) shows the switching loss W SW per unit time in the following equation (6).
  • the voltage v and the current i change linearly as shown in FIG.
  • the energy w SW of loss during switching losses T SW becomes equation (5). Further, as represented by the above equation (6), the switching loss W SW per unit time is proportional to the current i. Therefore, when the load factor l is low and the current i flowing through the semiconductor switch element is small, the switching loss W SW is not a problem.
  • the switching loss W SW when the load factor l is high and the current i flowing through the semiconductor switch element is large, the switching loss W SW also increases accordingly. Therefore, since the switching loss W SW does not become a problem during the period when the load factor l is low, noise and harmonic components are reduced as a three-arm modulation method, and the switching loss W SW as a two-arm modulation method when the load factor l is high.
  • FIG. 10 is a configuration diagram illustrating an example of the correction term adding unit 1 according to the third embodiment.
  • the corrected voltage command value V * U + ⁇ by adding the operation amount ⁇ considering the load factor l to the voltage command values V * U , V * V , V * W.
  • V * V + ⁇ and V * W + ⁇ are generated.
  • the load factor multiplier 13 multiplies the k (max (V * ) + min (V * )) signal output from the gain multiplier 10 by the load factor l of the power converter, and k1 ( A max (V * ) + min (V * )) signal is calculated.
  • the kl (max (V * ) + min (V * )) signal is a signal added to give a gradient to a steep change in voltage which is a problem in the two-arm modulation method.
  • kl (max (V * ) + min (V) is input to one input terminal of the comparator 11. * ))
  • the switch 12 receives the kl (max (V * ) + min (V * )) signal calculated by the load factor multiplier 13.
  • the correction amount ⁇ is generated by selecting the smaller of the correction amount ⁇ and the absolute value of the kl (max (V * ) + min (V * )) signal in the switch 12.
  • the switch 12 is switched by comparing the correction amount ⁇ with the absolute value of the kl (max (V * ) + min (V * )) signal, and
  • FIG. 11A shows a time chart of the voltage command values V * U , V * V , and V * W
  • FIG. 11B shows the time of the correction amount ⁇ and the kl (max (V * ) + min (V * )) signal
  • FIG. 11C is a time chart of the correction amount ⁇
  • FIG. 11D is a time chart of the load factor l
  • FIG. 11E is a correction voltage command value V * U + ⁇ , V * of the third embodiment .
  • the time chart of V + ⁇ and V * W + ⁇ is shown.
  • the correction amount ⁇ shown in FIG. 11C is a signal generated by selecting the smaller of the correction amount ⁇ and the absolute value of the kl (max (V * ) + min (V * )) signal. Therefore, when the correction amount ⁇ and the smaller absolute value of the kl (max (V * ) + min (V * )) signal are selected as the correction amount ⁇ , the period during which the load factor l is small is kl (max (V * ) + min. Only the (V * )) signal is selected.
  • the absolute value of the maximum value or the minimum value of the kl (max (V * ) + min (V * )) signal is larger than the absolute value of the correction amount ⁇ . Therefore, when the correction amount ⁇ and the smaller absolute value of the kl (max (V * ) + min (V * )) signal are selected as the correction amount ⁇ , the correction amounts ⁇ and kl (max (V * ) used in the two-arm modulation method are selected . ) + Min (V * )) signal.
  • the three-arm modulation method and the load factor l are It is possible to switch between the 3-arm modulation method and the 2-arm modulation method according to the load factor l as in the 2-arm modulation method during a large period.
  • the switching loss W SW is also small during the period when the load factor l is low, it is possible to reduce the noise and harmonic components by using three-arm modulation. Further, when the load factor 1 is large, the two-arm modulation is used, and the switching loss W SW can be reduced.
  • the third embodiment may be applied to a power conversion device such as a solar PCS in which the load factor l changes gradually.
  • a power conversion device such as a solar PCS in which the load factor l changes gradually.
  • the load factor l is simply multiplied by the k (max (V * ) + min (V * )) signal.
  • the load factor l increases rapidly when a power failure occurs.
  • the control method of the third embodiment is used for the power conversion device in which the load factor l changes abruptly, when the load factor l changes suddenly, the three-arm modulation method is suddenly switched. As a result, a strong stress is given to the apparatus.
  • the load factor 1 is output to the load factor multiplier 13 via the low-pass filter LPF and the soft start circuit 14, and k (max (V * ) + min (V * ) . )) Multiply the signal. Since other configurations are the same as those of the third embodiment, the description thereof is omitted.
  • the low-pass filter LPF attenuates the harmonic component contained in the load factor l and outputs only the fundamental wave component of the load factor l. Further, the soft start circuit 14 suppresses the time change rate of the output below a predetermined value and gradually increases the output.
  • the fourth embodiment may be applied to, for example, an uninterruptible power supply device or a voltage sag compensator with a sudden change in the load factor l.
  • the method of correcting the three-phase voltage command value has been described.
  • the voltage command value can be applied to a multi-phase of three or more phases.
  • V * U, V * V, V * W ... voltage command value G U, G V, G W , G X, G Y, G Z ... gate signal alpha, beta ... correction amount k ... Gain max (V * ): Maximum value of voltage command value min (V * ): Minimum value of voltage command value

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

【課題】スイッチング損失を抑制し、電圧精度を向上させるとともに、変調方式の切り替えにより騒音が急変することを抑制する。 【解決手段】補正項加算部1において、最大値max(V*)と最小値min(V*)の絶対値とを比較し、最大値max(V*)の方が大きい場合は1-max(V*)信号を選択し、最小値min(V*)の絶対値の方が大きい場合は-1-min(V*)信号を選択して生成した信号に相当する補正量αを演算する。また、最大値max(V*)と最小値min(V*)とを加算した信号max(V*)+min(V*)にゲインkを乗算し、補正量αと同期した三角波状のk(max(V*)+min(V*))信号を生成する。この三角波状のk(max(V*)+min(V*))信号と補正量αとのうち絶対値の小さい方を選択することで生成した補正量βを電圧指令値V* U,V* V,V* Wに加算する。

Description

電力変換装置の制御方法
 本発明は、交流‐直流変換または、直流‐交流変換を行う電力変換装置において、損失低減を行うパルス幅変調(PWM)制御に関する。
 電力変換装置(例えば、三相インバータ等)において、半導体スイッチ素子のオンオフ動作、つまりスイッチングを行うとスイッチング損失が発生する。このスイッチング損失が大きい場合、電力変換装置の効率低下や、発生した熱を冷却するための冷却装置により電力変換装置が大型化するなどの問題が生じる。逆に、スイッチング損失を低減させるためにスイッチング周波数を下げた場合、スイッチング回数が減少するため、波形制御性能が低下(すなわち、基本波に対する高調波の割合が増加)する。
 その解決策として、波形制御性能の低下を最小限に抑制しつつスイッチング周波数を下げる2アーム変調方式が従来から知られている。これは、三相の電圧指令値のうち一相の電圧指令値が三角波キャリアの振幅値以上になるように各相の電圧指令値を補正することにより、一つの相の半導体スイッチ素子のスイッチングを一定期間停止するようにし、3相における平均スイッチング周波数を低くする方法である(特許文献1)。
 図13に2アーム変調方式における三相の電圧指令値と三角波キャリアとのタイムチャート、図14(a)に3アーム変調方式における三相電圧指令値のタイムチャート、図14(b)に2アーム変調方式に用いる補正量αのタイムチャート、図14(c)に2アーム変調方式における電圧指令値のタイムチャートを示す。なお、ここでは各相の電圧指令値の変調率をmとする。
 図14(a)に示すように、三相電圧指令値V* U,V* V,V* Wにおいて、例えば、電圧指令値V* UはA区間に最大値となり、電圧指令値V* WはB区間に最小値となる。このA区間,B区間において1つの相の半導体スイッチ素子のスイッチングを休止させるためには、Aの区間では1-V* U,Bの区間では-1-V* Wとなるように算出した補正量α(図14(b)の波形)を三相の電圧指令値V* U,V* V,V* Wにそれぞれ加算すればよい。この結果、図14(c)に示すV* U+α,V* V+α,V* W+αの波形のように、60°区間毎に常に何れか1つの相の電圧指令値が三角波キャリアの振幅値以上となり、半導体スイッチ素子がスイッチングを休止することとなる。このように、三相電圧指令値V* U,V* V,V* Wに補正量αを加算することにより、2アーム変調方式の電圧指令値V* U+α,V* V+α,V* W+αを生成することができる。
 また、2アーム変調方式と3アーム変調方式との切り替えを行うモータ制御装置が特許文献2に開示されている。
特開昭59-139871号公報 特開2007-151344号公報(段落[0056]~[0065],第2図,第4図,第5図)
 3アーム変調方式と2アーム変調方式とを比較すると、同一周波数の三角波キャリアで変調した場合には、2アーム変調方式は3アーム変調方式よりもスイッチング損失が小さい。そのため、2アーム変調方式を用いた方が高効率であるが、以下に示す問題点がある。
 まず、三相の電圧指令値の変調率mが小さい時の3アーム変調方式と2アーム変調方式とのゲート信号(スイッチング動作)を比較する。図15に電圧指令値の変調率m=0.1の時に3アーム変調方式を用いた場合の電圧指令値V* U,V* V,V* WとU相ゲート信号GUとのタイムチャートを示し、図16に電圧指令値の変調率m=0.1の時に2アーム変調方式を用いた場合の電圧指令値V* U+α,V* V+α,V* W+αとU相ゲート信号GUとのタイムチャートを示す。
 図15に示す3アーム変調方式では、電圧指令値V* U,V* V,V* Wの振幅が小さいため、これを三角波比較して得られるゲート信号GUの波形は全てパルス幅が大きい(オンデューティが45~55%の)波形となる。
 一方、図16に示す2アーム変調方式では、1つの相(例えば、U相)の半導体スイッチ素子のスイッチングを休止している期間に、他の2つの相(例えば、V相,W相)の電圧指令値の振幅が大きくなるため、ゲート信号GUには細かいパルス幅(つまり、オンデューティが10%以下)の期間が見られる。
 一般的な電力変換装置は、同一相の上下アームの半導体スイッチ素子が同時にオンとなることを回避するためにゲート信号にデッドタイムを設け、半導体スイッチ素子がオンオフを切り替えるタイミングを遅らせている。しかしながら、2アーム変調方式を採用した場合、変調率mがさらに小さくなると、ゲート信号の波形もパルス幅(オンデューティ)がさらに小さくなる期間が生じるため、デッドタイムを設けてオンオフ動作ができなくなり、電圧誤差が生じる恐れがある。そのため、電圧指令値の変調率mが小さい時には、3アーム変調方式を用いた方が電圧誤差は少なくなる。
 次に、電圧指令値の変調率mが大きい時の3アーム変調方式と2アーム変調方式とのゲート信号(スイッチング動作)を比較する。図17に電圧指令値の変調率m=1の時に3アーム変調方式を用いた場合の電圧指令値V* U,V* V,V* WとU相ゲート信号GUとのタイムチャートを示し、図18に電圧指令値の変調率m=1の時に2アーム変調方式を用いた場合の電圧指令値V* U+α,V* V+α,V* W+αとU相ゲート信号GUとのタイムチャート示す。
 図17に示す3アーム変調方式では、U相の電圧指令値V* Uが小さい期間に、ゲート信号GUのパルス幅(オンデューティ)が極端に小さくなる。一方、図18に示す2アーム変調方式では、ゲート信号GUにスイッチングを休止する期間が存在するが、その他の期間はゲート信号GUの波形はある程度のパルス幅が存在し、図17に示す3アーム変調方式のゲート信号GUのようにパルス幅が小さくなる期間は見られない。
 したがって、電圧指令値の変調率mが大きい時には、3アーム変調方式よりも2アーム変調方式を用いた方がデッドタイムによる電圧誤差の影響が少ないため電圧精度が高く、さらに、2アーム変調方式は平均スイッチング周波数が低いため効率も良い。しかしながら、2アーム変調方式は3アーム変調方式よりも平均スイッチング周波数が低いため、騒音が問題となっている。
 そこで、電圧指令値の変調率mが小さい時には3アーム変調方式に、電圧指令値の変調率mが大きい時には2アーム変調方式に切替える方式が容易に考えられるが、単純に2つの変調方式を切り替えた場合、平均スイッチング周波数の急変に伴い騒音が急変するという問題が生じる。
 また、特許文献2は変調方式を切替えるものであるが、上記のような電圧指令値の変調率の違いによる問題を解決できるものではない。
 以上示したようなことから、電力変換装置においては、スイッチング損失を抑制し、電圧精度を向上させるとともに、変調方式の切り替えにより騒音が急変することを抑制することが課題となる。
 本発明に係る電力変換装置の制御方法は、交流‐直流変換あるいは直流‐交流変換を行う電力変換装置に備えられた半導体スイッチ素子に対して、電圧指令値をPWM変調するゲート信号生成部により得られたゲート信号を出力する電力変換装置の制御方法であって、ゲート信号生成部に備えられた補正項加算部において、多相の電圧指令値のうち最大となる電圧指令値と多相の電圧指令値のうち最小となる電圧指令値の絶対値とを比較し、前記最大となる電圧指令値の方が大きい場合は、三角波キャリアの最大値から前記最大となる電圧指令値を減算した信号を選択し、前記最小となる電圧指令値の絶対値の方が大きい場合は、三角波キャリアの最小値から前記最小となる電圧指令値を減算した信号を選択して生成した信号に相当する第一補正量を演算し、多相の電圧指令値のうち最大となる電圧指令値と最小となる電圧指令値を加算した信号にゲインを乗算して前記第一補正量と同期した三角波状の信号を生成し、この三角波状の信号と第一補正量とのうち絶対値の小さい方を選択することで生成した第二補正量を多相の電圧指令値にそれぞれ加算して補正電圧指令値を演算し、この補正電圧指令値をPWM変調して得られたゲート信号を前記半導体スイッチ素子に出力することを特徴とする。
 また、本発明に係る電力変換装置の制御方法の一態様は、前記ゲインは、電圧指令値の変調率に応じて可変とすることを特徴とする。
 また、本発明に係る電力変換装置の制御方法の一態様は、前記第一補正量と同期した三角波状の信号は、多相の電圧指令値のうち最大となる電圧指令値と最小となる電圧指令値を加算した信号に、ゲインと電力変換装置の負荷率を乗算した値とすることを特徴とする。
 また、本発明に係る電力変換装置の制御方法の一態様は、前記負荷率は、ローパスフィルタによって高調波成分が減衰され、ソフトスタート回路によって時間変化率が抑制された信号とすることを特徴とする。
 以上の説明で明らかなように、本発明によれば、電圧指令値の変調率が小さい時には3アーム変調方式を、電圧指令値の変調率が大きくなるに連れて3アーム変調方式から2アーム変調方式へ連続的に変調方式を変化させることが可能である。
 また、本発明は2アーム変調方式と3アーム変調方式とを組み合わせることができるため、2アーム変調方式のみの場合と比べて騒音を低減させることが可能となる。さらに、単純に電圧指令値の変調率が小さい時は3アーム変調方式に,電圧指令値の変調率が大きい時は2アーム変調方式に切り替えた場合と比べて、発生する騒音の急変を抑制することが可能となる。
 加えて、電圧指令値の変調率が大きい時には、2アーム変調方式と同様の波形となるため、スイッチング休止区間を生じさせることができ、スイッチング損失を低減させることが可能である。
実施形態1,2におけるゲート信号生成部の一例を示す構成図。 実施形態1,2における補正項加算部1の一例を示す構成図。 補正項加算部1の各部の信号波形の一例を示すタイムチャート。 3アーム変調方式の電圧指令値,k(max(V*)+min(V*)),補正量α,βの一例を示すタイムチャート。 実施形態1における電圧指令値の変調率mを増加させた時の各信号波形の一例を示すタイムチャート。 電圧指令値の変調率m=0.1の時に実施形態1の変調方式を用いた場合の補正電圧指令値V* U+βとU相ゲート信号GUの一例を示すタイムチャート。 電圧指令値の変調率m=1の時に実施形態1の変調方式を用いた場合の補正電圧指令値V* U+βとU相ゲート信号GUの一例を示すタイムチャート。 実施形態2における電圧指令値の変調率mを増加させた時の各信号波形の一例を示すタイムチャート。 スイッチング損失の説明図。 実施形態3における補正項加算部1の一例を示す構成図。 実施形態3における負荷率lを増加させた時の各信号波形の一例を示すタイムチャート。 実施形態4におけるゲイン乗算部10および負荷率乗算器13の一例を示す構成図。 2アーム変調方式における三相の電圧指令値と三角波キャリアの一例を示すタイムチャート。 3アーム変調方式における電圧指令値と、2アーム変調方式に用いる補正量と三相の電圧指令値の一例を示すタイムチャート。 電圧指令値の変調率m=0.1の時に3アーム変調方式を用いた場合の電圧指令値とゲート信号の一例を示すタイムチャート。 電圧指令値の変調率m=0.1の時に2アーム変調方式を用いた場合の電圧指令値とゲート信号の一例を示すタイムチャート。 電圧指令値の変調率m=1の時に3アーム変調方式を用いた場合の電圧指令値とゲート信号の一例を示すタイムチャート。 電圧指令値の変調率m=1の時に2アーム変調方式を用いた場合の電圧指令値とゲート信号の一例を示すタイムチャート。
 [実施形態1]
 図1に示すように、交流‐直流変換あるいは直流‐交流変換を行う電力変換装置(例えば、三相インバータ)に備えられた半導体スイッチ素子に対して、電圧指令値をPWM変調して得られるゲート信号を出力するゲート信号生成部には、三相の電圧指令値V* U,V* V,V* Wが入力される。そして、補正項加算部1において、図2に示すようにその三相の電圧指令値V* U,V* V,V* Wに対して、第2補正量(以下、補正量βと称する)をそれぞれ加算することにより、補正電圧指令値V* U+β,V* V+β,V* W+βを生成し、それぞれ比較器2に出力する。図1における比較器2以降のNOT回路3,デッドタイム発生回路4の動作については、周知技術であるため、詳細な説明は省略する。
 次に、図2を基に補正項加算部1の内部における動作を説明する。
 まず、2アーム変調方式の電圧指令値V* U+α,V* V+α,V* W+αを算出するための第1補正量(以下、補正量αと称する)の演算方法について説明する。
 最大値演算器max(x,y,z)は、電圧指令値V* U,V* V,V* Wを入力し、この電圧指令値V* U,V* V,V* Wの中から最大となる電圧指令値を選択した最大値max(V*)を出力する。同様に、最小値演算器min(x,y,z)は電圧指令値V* U,V* V,V* Wを入力し、この電圧指令値V* U,V* V,V* Wの中から最小となる電圧指令値を選択した最小値min(V*)を出力する。そして、比較器5は、前記最大値max(V*)と前記最小値min(V*)の絶対値|min(V*)|とを比較し、最大値max(V*)が絶対値|min(V*)|よりも大きければs1=1,絶対値|min(V*)|が最大値max(V*)よりも大きければs1=0となる信号s1をスイッチ6に出力し、スイッチ6の判定に用いる。
 ここで、最大値演算器max(x,y,z),最小値演算器min(x,y,z)から出力される最大値max(V*),最小値min(V*)は減算器7,8にもそれぞれ入力され、その減算器7,8において1-max(V*)と-1-min(V*)をそれぞれ演算し、その信号をスイッチ6に出力する。スイッチ6は比較器5から入力される信号s1がs1=1の期間は1-max(V*)を、s1=0の期間は-1-min(V*)を補正量αとして選択して出力する。このスイッチ6から出力される補正量αの波形は、図14(b)に示す2アーム変調方式の用いる補正量αの波形に相当する。
 ただし、ここで説明した補正量αの演算方法は一例であり、その他の演算方法により補正量αを演算してもよい。
 次に、本実施形態1の電圧指令値V* U+β,V* V+β,V* W+βを算出するための補正量βの演算方法について説明する。
 まず、前記最大値演算器max(x,y,z)から出力された最大値max(V*)と最小値演算器min(x,y,z)から出力された最小値min(V*)とが加算器9により加算される。この加算されたmax(V*)+min(V*)信号はゲイン乗算器10においてゲインkが乗算され、k(max(V*)+min(V*))信号として出力される。
 次に、スイッチ6から出力された補正量αの絶対値|α|と、ゲイン乗算器10から出力されたk(max(V*)+min(V*))信号の絶対値|k(max(V*)+min(V*))|と、が比較器11に入力される。そして、比較器11は絶対値|α|と絶対値|k(max(V*)+min(V*))|とを比較し、絶対値|k(max(V*)+min(V*))|の方が絶対値|α|よりも大きければs2=1,絶対値|α|の方が絶対値|k(max(V*)+min(V*))|よりも大きければs2=0となる信号s2をスイッチ12に出力し、スイッチ12の判定に用いる。
 ここで、スイッチ6から出力された補正量αとゲイン乗算器10から出力されたk(max(V*)+min(V*))信号はスイッチ12に入力され、スイッチ12は比較器11から出力される信号s2がs2=1の期間は補正量αを、s2=0の期間はk(max(V*)+min(V*))を選択する。このように構成することにより、補正量αとk(max(V*)+min(V*))信号のうち絶対値が小さい方を選択する動作が実現できる。
 最後に、スイッチ12から出力される信号を、本実施形態1の変調方式に用いる補正量βとして三相の電圧指令値V* U,V* V,V* Wにそれぞれ加算し、補正電圧指令値V* U+β,V* V+β,V* W+βを算出する。以上が本実施形態1における電圧指令値の補正の原理である。
 ここで、図2の補正項加算部1について、図3における補正項加算部1の各部の信号波形の一例を示すタイムチャートを基に説明する。
 図3(a)は、変調率をmとした場合の三相の電圧指令値V* U,V* V,V* Wの一例を示すタイムチャートである。この電圧指令値V* U,V* V,V* Wは最大値演算器max(x,y,z)および最小値演算器min(x,y,z)により、図3(b)のタイムチャートに示すような最大値max(V*)および最小値min(V*)が演算される。そして、比較器5において、図3(c)に示すように最大値max(V*)と最小値の絶対値|min(V*)|との比較が行われる。この時、比較器5から出力される信号s1は、図3(d)に示すように、最大値max(V*)の方が絶対値|min(V*)|よりも大きい期間はs1=1となり、絶対値|min(V*)|の方が最大値max(V*)よりも大きい期間はs1=0となる。
 また、減算器7,8から出力される信号1-max(V*),-1-min(V*)は、それぞれ図3(e)に示す波形となる。そして、スイッチ6において、信号s1がs1=0の期間は-1-min(V*),s1=1の期間は1-max(V*)が選択され、図3(f)に示すような補正量αが出力される。
 一方、加算器9から出力されたmax(V*)+min(V*)信号は、図3(g)に示すように、補正量αと同期した三角波状の波形となる。これに、ゲイン乗算器10においてゲインkが乗算されたk(max(V*)+min(V*))信号も補正量αと同期した波形の信号となる。
 そして、比較器11において、k(max(V*)+min(V*))信号の絶対値|k(max(V*)+min(V*))|と、補正量αの絶対値|α|との比較が、図3(h)に示すように行われる。この時、比較器11から出力される信号s2は、図3(i)に示すように、絶対値|k(max(V*)+min(V*))|の方が絶対値|α|よりも大きい期間はs2=1となり、絶対値|α|の方が絶対値|k(max(V*)+min(V*))|よりも大きい期間はs2=0となる。
 また、k(max(V*)+min(V*))と補正量αは、それぞれ図3(j)に示す波形となる。そして、スイッチ12において、信号s2がs2=1の期間は補正量α,s2=0の期間はk(max(V*)+min(V*))が選択され、図3(k)示すような補正量βが出力される。
 最後に、本実施形態1の変調方式に用いる補正量βを電圧指令値V* U,V* V,V* Wに加算すると、図3(l)に示すような補正電圧指令値V* U+β,V* V+β,V* W+βとなる。したがって、図1の補正項加算部1を図2に示すように構成し、三角波比較によってゲート信号を生成してスイッチ素子をオンオフさせればよい。
 次に、変調率m,ゲインkと電圧指令値V* U,V* V,V* W,補正量α,補正量βの関係を図4に基づいて説明する。
 図4(a)に変調率m=0.5の時の電圧指令値V* U,V* V,V* Wのタイムチャート,図4(b)にゲインk=2,変調率m=0.5の時の補正量αとk(max(V*)+min(V*))とのタイムチャート,図4(c)にゲインk=2,変調率m=0.5の時の補正量βのタイムチャートを示す。
 ゲインk=2,変調率m=0.5の場合、図4(a)のU相電圧指令値V* Uを例にすると、最大値となるA点ではk(max(V*)+min(V*))信号も最大値となり、その値は下記(1)式で求められる。
Figure JPOXMLDOC01-appb-M000001
 また、A点における補正量αの値は下記(2)式により求めることができる。
Figure JPOXMLDOC01-appb-M000002
 図4(c)に示す補正量βは、スイッチ12においてk(max(V*)+min(V*))と補正量αとのうち絶対値の小さい方を選択して出力している。ゲインk=2の時のA点におけるk(max(V*)+min(V*))と補正量αとの関係は下記(3)式あるいは下記(4)式となる。すなわち、変調率m≦0.5の時は下記(3)式の関係となり、補正量βにはk(max(V*)+min(V*))信号が選択される。
Figure JPOXMLDOC01-appb-M000003
 一方、変調率m>0.5の時は、下記(4)式に示すような関係となり、A点における補正量βには補正量αの最小振幅値が選択される。
Figure JPOXMLDOC01-appb-M000004
 また、B点においても符号が変わるだけであるため、(3)式,(4)式の関係となる。その他の相についても同様である。
 ところで、前述したとおり補正量βには、補正量αとk(max(V*)+min(V*))のうち絶対値の小さい方が選択される。ゲインk=2,変調率m>0.5の場合に、この演算を1周期について行うと、補正量βには図3(k)に示すように、ゼロクロス付近の期間はk(max(V*)+min(V*))が、それ以外の期間は補正量αが選択される。
 以上示したことから、ゲインkを変更すれば、k(max(V*)+min(V*))の頂点と補正量αの最小振幅値との関係を任意に変更できることがわかる。これにより、3アーム変調方式と2アーム変調方式の割合を制御することができる。
 次に、変調率mを0から1.15まで一定の傾きで増加させた時のU相補正電圧指令値V* U+βを説明する。図5(a)に変調率mを0から1.15まで一定の傾きで増加させた時のU相電圧指令値V* Uのタイムチャート,図5(b)に補正量αとk(max(V*)+min(V*))信号のタイムチャート,図5(c)に補正量βのタイムチャート,図5(d)に本実施形態1のU相補正電圧指令値V* U+βのタイムチャートを示す。なお、ゲインk=2とする。
 図5(a),図5(b)に示すように、電圧指令値V* Uの変調率mが大きくなるに連れて、2アーム変調方式の補正量αの振幅は小さくなり、一方、k(max(V*)+min(V*))信号の振幅は大きくなっていく。
 変調率m≦0.5の期間では、図4(b)および図5(b)に示すように、補正量αとk(max(V*)+min(V*))信号はゼロクロスおよびk(max(V*)+min(V*))の最大値または最小値となる点で等しくなる。そのため、補正量αとk(max(V*)+min(V*))との絶対値の小さい方を補正量βとして選択すると、補正量βにはk(max(V*)+min(V*))が選択される。
 変調率m>0.5からは、k(max(V*)+min(V*))信号の最大値または最小値の絶対値は補正量αの絶対値よりも大きくなる。そのため、補正量αとk(max(V*)+min(V*))信号の絶対値の小さい方を選択すると、補正量βの値には、2アーム変調方式に用いる補正量αとk(max(V*)+min(V*))信号とが混在することとなる。
 変調率mがさらに大きくなるに連れて、補正量βには2アーム変調方式に用いられる補正量αが選択される割合が増加していき、変調率mが1.15の時には補正量βに選択される信号は全て補正量αとなり、変調方式が完全に2アーム変調方式となる。
 このような補正量βをU相電圧指令値V* U,V* V,V* Wに加算することにより、変調率mが大きくなるに連れて3アーム変調方式から2アーム変調方式へと連続的に変調方式を変化させることが可能となる。
 次に、本実施形態1の変調方式を用いた場合におけるゲート信号GUのパルス波形を説明する。
 図6に電圧指令値の変調率m=0.1の時に本実施形態1の変調方式を用いた場合の補正電圧指令値V* U+β,V* V+β,V* W+βとU相ゲート信号GUのタイムチャート,図7に電圧指令値の変調率m=1の時に本実施形態1の変調方式を用いた場合の補正電圧指令値V* U+β,V* V+β,V* W+βとU相ゲート信号GUのタイムチャートを示す。なお、ゲインk=2とする。
 図6に示す変調率m=0.1の時における本実施形態1の変調方式では、図15に示す3アーム変調方式と同様に、U相ゲート信号GUにパルス幅(オンデューティ)が小さい波形は見られない。図7に示す変調率m=1の時における本実施形態1の変調方式では、図18に示す2アーム変調方式と同様に、U相ゲート信号GUにデッドタイムによりオンオフ動作ができなくなり電圧誤差が生じる程のパルス幅が小さい波形は見られない。また、スイッチング休止期間が生じるためスイッチング損失を低減させることができる。
 本実施形態1のように補正項加算部1を構成することにより、電圧指令値の変調率mが小さい時には3アーム変調方式を、電圧指令値の変調率mが大きくなるに連れて3アーム変調方式から2アーム変調方式へ連続的に変調方式を変化させることが可能である。
 また、本実施形態1の変調方式は、2アーム変調方式と3アーム変調方式とを組み合わせているため、2アーム変調方式のみの場合と比べて騒音を低減させることが可能となる。さらに、単純に電圧指令値の変調率mが小さい時は3アーム変調方式を採用し,電圧指令値の変調率mが大きい時は2アーム変調方式を採用した場合と比べて、発生する騒音の急変を抑制することが可能となる。
 さらに、電圧指令値の変調率mが大きい時は、ゲート信号が2アーム変調方式と同様の波形となりスイッチング休止区間が生じるため、スイッチング損失を低減させることが可能となる。
 加えて、三相電圧指令値を極座標変換し位相と振幅情報を得て変調方式の演算を行うなどの複雑な演算を用いずに、簡単なアナログ回路または、FPGA等の簡単なディジタル回路で三相の電圧指令値V* U,V* V,V* Wから直接補正を行うことが可能である。
 [実施形態2]
 実施形態1の変調方式は、補正量βを三相の電圧指令値V* U,V* V,V* Wに加算し、ゼロ相電圧(すなわち、対地電圧)を変動させることで補正している。しかしながら、対地電圧の変動が増加すると漏れ電流が問題となる。そこで、本実施形態2では、実施形態1の変調方式におけるゲインkを変調率mに応じて可変とする。
 ここで、ゲインkを変調率mに応じて可変とした場合の具体例を説明する。図8(a)に変調率mを0から1.15まで一定の傾きで増加させた時のU相電圧指令値V* Uのタイムチャート,図8(b)に補正量αとk(max(V*)+min(V*))信号のタイムチャート,図8(c)にゲインkのタイムチャート,図8(d)に補正量βのタイムチャート,図8(e)に本実施形態2のU相補正電圧指令値V* U+βのタイムチャートを示す。
 図8(c)に示すように、3アーム変調方式が採用される期間(電圧指令値の変調率mが小さい期間)においては、ゲインk=0としておき、変調率m=0.5からゲインkを一定の傾きで増加させていく。ここでは、電圧指令値の変調率m=1(2アーム変調方式の領域)となった時点でゲインk=2となるようにゲインkを増加させ、それ以降は変調率mが増加してもゲインkは一定とする。
 このように、変調率mに応じてゲインkに重み付けをすることにより、変調率mが小さい期間には完全な3アーム変調とすることができる。また、本実施形態2は補正量βの振幅値を実施形態1よりも抑制することが可能となり、漏れ電流を低減できる。
 また、本実施形態2のような変調方式を適用することにより、実施形態1と同様の作用効果を奏する。
[実施形態3]
 実施形態2では、変調率mの大きさによって3アーム変調方式と2アーム変調方式の割合を変化させるが、本実施形態3では変調率mだけでなく、変調率mおよび電力変換装置の負荷率lに応じて3アーム変調方式と2アーム変調方式の割合を変化させる。
 電力変換装置の主な損失は、導通損失とスイッチング損失とに分類される。図9にスイッチング損失の説明図を示す。また、下記(5)式に1スイッチング当たりの損失wSWを、下記(6)式に単位時間当たりのスイッチング損失WSWを示す。ここでは、分かりやすくするために、電圧vと電流iは、図9に示すように直線的に変化するものとする。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 このような場合、スイッチング損失TSWの間に損失するエネルギーwSWは上記(5)式となる。また、上記(6)式で表されるように、単位時間当たりのスイッチング損失WSWは電流iの大きさに比例する。そのため、負荷率lが低く半導体スイッチ素子に流れる電流iが小さい場合、スイッチング損失WSWはあまり問題とならない。
 一方、負荷率lが高く半導体スイッチ素子に流れる電流iが大きい場合、スイッチング損失WSWもそれに従って増大する。そこで、負荷率lが低い期間は、スイッチング損失WSWが問題とならないため3アーム変調方式として騒音や高調波成分の低減を図り、負荷率lが高い期間では2アーム変調方式としてスイッチング損失WSWの低減を図る。
 図10は本実施形態3における補正項加算部1の一例を示す構成図である。本実施形態3における電力変換装置の制御方法は、負荷率lを考慮した操作量βを電圧指令値V* U,V* V,V* Wに加えることにより補正電圧指令値V* U+β,V* V+β,V* W+βを生成する。
 具体的には、ゲイン乗算器10から出力されたk(max(V*)+min(V*))信号に対して、負荷率乗算器13で電力変換装置の負荷率lが乗算され、kl(max(V*)+min(V*))信号が算出される。kl(max(V*)+min(V*))信号は2アーム変調方式で問題となる電圧の急峻な変化に傾きを持たせるために加えられる信号である。
 そして、比較器11の一方の入力端子には、負荷率乗算器13で算出されたkl(max(V*)+min(V*))信号の絶対値|kl(max(V*)+min(V*))|が入力される。また、スイッチ12には、負荷率乗算器13で算出されたkl(max(V*)+min(V*))信号が入力される。
 補正量βは、スイッチ12において、補正量αとkl(max(V*)+min(V*))信号の絶対値の小さい方を選択することで生成される。スイッチ12の切り替えは、補正量αとkl(max(V*)+min(V*))信号の絶対値を比較し、|α|<|kl(max(V*)+min(V*))|の期間はs2=1が選択され、|α|≧|kl(max(V*)+min(V*))|の期間はs2=0が選択される。この補正量βを電圧指令値V*に加えることで補正電圧指令値V*+βを生成する。その他は、実施形態1と同様である。
 ここで、本実施形態3の具体例を説明する。図11(a)に電圧指令値V* U,V* V,V* Wのタイムチャート,図11(b)に補正量αとkl(max(V*)+min(V*))信号のタイムチャート,図11(c)に補正量βのタイムチャート,図11(d)に負荷率lのタイムチャート,図11(e)に本実施形態3の補正電圧指令値V* U+β,V* V+β,V* W+βのタイムチャートを示す。ここでは例として、ゲインk=1.8,変調率m=0.85としている。
 図11(b),(d)に示すように、負荷率lが大きくなるにつれて、kl(max(V*)+min(V*))信号の振幅も大きくなる。図11(c)に示す補正量βは、補正量αとkl(max(V*)+min(V*))信号の絶対値の小さい方を選択することで生成される信号である。そのため、補正量αとkl(max(V*)+min(V*))信号の絶対値の小さい方を補正量βとして選択すると、負荷率lが小さい期間は、kl(max(V*)+min(V*))信号のみが選択される。
 また、負荷率lが大きい期間は、kl(max(V*)+min(V*))信号の最大値または最小値の絶対値は補正量αの絶対値よりも大きくなる。そのため、補正量αとkl(max(V*)+min(V*))信号の絶対値の小さい方を補正量βとして選択すると、2アーム変調方式に用いる補正量αとkl(max(V*)+min(V*))信号とが混在することとなる。
 本実施形態3の方法で算出された補正量βを電圧指令値V* U,V* V,V* Wに加算することにより、負荷率lが小さい期間は3アーム変調方式、負荷率lが大きい期間は2アーム変調方式というように、負荷率lによって、3アーム変調方式と2アーム変調方式とを切り替えることが可能となる。
 その結果、負荷率lが低い期間はスイッチング損失WSWも小さいため3アーム変調とし、騒音や高調波成分の低減を図ることが可能となる。また、負荷率lが大きい期間は2アーム変調とし、スイッチング損失WSWの低減を図ることができる。
 さらに、実施形態1,2と同様の作用効果を奏する。
 本実施形態3は、例えば、負荷率lの変化が緩やかな太陽光PCSなどの電力変換装置に適用することが考えられる。
 [実施形態4]
 実施形態3では、負荷率lをk(max(V*)+min(V*))信号に単純に乗算している。しかしながら、無停電電源装置や瞬低補償装置等は停電発生時等に急激に負荷率lが上昇する。このように、負荷率lが急激に変化する電力変換装置に、実施形態3の制御方法を用いた場合、負荷率lの急変時に、3アーム変調方式から2アーム変調方式に急激に切り替わる。その結果、装置に対して強いストレスを与えてしまうこととなる。
 そこで、本実施形態4では、図12に示すように、負荷率lをローパスフィルタLPFとソフトスタート回路14を介して負荷率乗算器13に出力し、k(max(V*)+min(V*))信号に乗算させる。その他の構成は実施形態3と同様であるため、説明を省略する。
 前記ローパスフィルタLPFは負荷率lに含まれる高調波成分を減衰し、負荷率lの基本波成分のみを出力する。また、前記ソフトスタート回路14は、出力の時間変化率を所定値以下に抑制し、出力を除々に大きくする。
 その結果、負荷率lが急変したとしても、負荷率乗算器13に入力される信号は、図11(d)に示す波形のように、その変化を緩やかにすることが可能となる。そのため、3アーム変調方式から2アーム変調方式に除々に移行させることができ、装置への負担を軽減することができる。
 また、本実施形態4によれば、実施形態1~3と同様の作用効果を奏する。
 なお、本実施形態4は、例えば、負荷率lの変化が急激な無停電電源装置や瞬低補償装置などに適用することが考えられる。
 以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。
 例えば、実施形態1~4では、三相の電圧指令値に対して補正を行う方法について説明したが、電圧指令値は三相以上の多相であれば適用可能である。
 1…補正項加算部
 V* U,V* V,V* W…電圧指令値
 GU,GV,GW,GX,GY,GZ…ゲート信号
 α,β…補正量
 k…ゲイン
 max(V*)…電圧指令値の最大値
 min(V*)…電圧指令値の最小値

Claims (4)

  1.  交流‐直流変換あるいは直流‐交流変換を行う電力変換装置に備えられた半導体スイッチ素子に対して、電圧指令値をPWM変調するゲート信号生成部により得られたゲート信号を出力する電力変換装置の制御方法であって、
     ゲート信号生成部に備えられた補正項加算部において、
     多相の電圧指令値のうち最大となる電圧指令値と多相の電圧指令値のうち最小となる電圧指令値の絶対値とを比較し、
    前記最大となる電圧指令値の方が大きい場合は、三角波キャリアの最大値から前記最大となる電圧指令値を減算した信号を選択し、
    前記最小となる電圧指令値の絶対値の方が大きい場合は、三角波キャリアの最小値から前記最小となる電圧指令値を減算した信号を選択して生成した信号に相当する第一補正量を演算し、
     多相の電圧指令値のうち最大となる電圧指令値と最小となる電圧指令値を加算した信号にゲインを乗算して前記第一補正量と同期した三角波状の信号を生成し、
     この三角波状の信号と第一補正量とのうち絶対値の小さい方を選択して生成した第二補正量を多相の電圧指令値にそれぞれ加算して補正電圧指令値を演算し、
     この補正電圧指令値をPWM変調して得られたゲート信号を前記半導体スイッチ素子に出力することを特徴とする電力変換装置の制御方法。
  2.  前記ゲインは、電圧指令値の変調率に応じて可変とすることを特徴とする請求項1記載の電力変換装置の制御方法。
  3.  前記第一補正量と同期した三角波状の信号は、
     多相の電圧指令値のうち最大となる電圧指令値と最小となる電圧指令値を加算した信号に、ゲインと電力変換装置の負荷率を乗算した値とすることを特徴とする請求項1または2記載の電力変換装置の制御方法。
  4.  前記負荷率は、
     ローパスフィルタによって高調波成分が減衰され、
     ソフトスタート回路によって時間変化率が抑制された信号とすることを特徴とする請求項3記載の電力変換装置の制御方法。
PCT/JP2010/056786 2009-04-16 2010-04-15 電力変換装置の制御方法 WO2010119929A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011509352A JP5304891B2 (ja) 2009-04-16 2010-04-15 電力変換装置の制御方法
US13/264,592 US8659918B2 (en) 2009-04-16 2010-04-15 Method of controlling power conversion device
CN201080016973.4A CN102396142B (zh) 2009-04-16 2010-04-15 控制电力变换设备的方法
EP10764511.1A EP2413488A4 (en) 2009-04-16 2010-04-15 Method of controlling power conversion device
KR1020117025188A KR101266278B1 (ko) 2009-04-16 2010-04-15 전력변환장치의 제어방법
SG2011074465A SG175197A1 (en) 2009-04-16 2010-04-15 Method of controlling power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-099491 2009-04-16
JP2009099491 2009-04-16

Publications (1)

Publication Number Publication Date
WO2010119929A1 true WO2010119929A1 (ja) 2010-10-21

Family

ID=42982586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056786 WO2010119929A1 (ja) 2009-04-16 2010-04-15 電力変換装置の制御方法

Country Status (7)

Country Link
US (1) US8659918B2 (ja)
EP (1) EP2413488A4 (ja)
JP (1) JP5304891B2 (ja)
KR (1) KR101266278B1 (ja)
CN (1) CN102396142B (ja)
SG (1) SG175197A1 (ja)
WO (1) WO2010119929A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2971649A1 (fr) * 2011-02-16 2012-08-17 Mitsubishi Electric Corp Onduleur de puissance et dispositif de commande de direction assistee electrique
WO2014141398A1 (ja) * 2013-03-13 2014-09-18 株式会社日立製作所 Pwm制御方法とそれを用いた電力変換装置
JP7202244B2 (ja) 2019-04-03 2023-01-11 オリエンタルモーター株式会社 電力変換装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112936B (zh) * 2014-12-08 2019-08-16 株式会社日立产机系统 电力转换装置和电力转换装置的控制方法
WO2017168522A1 (ja) * 2016-03-28 2017-10-05 三菱電機株式会社 電力変換装置
JP6361803B1 (ja) * 2017-07-27 2018-07-25 株式会社明電舎 マルチレベルインバータの制御装置および制御方法
US10541626B1 (en) 2019-01-15 2020-01-21 Rockwell Automation Technologies, Inc. Power conversion system with PWM carrier emulation
US10601343B1 (en) 2019-01-16 2020-03-24 Rockwell Automation Technologies, Inc. Power conversion system with PWM carrier transition smoothing and autotuning
CN110071680B (zh) * 2019-05-14 2021-05-14 深圳市正弦电气股份有限公司 一种减小变频器温升的pwm调制方法及系统
US11336206B2 (en) 2020-09-23 2022-05-17 Rockwell Automation Technoligies, Inc. Switching frequency and PWM control to extend power converter lifetime

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139871A (ja) 1983-01-26 1984-08-10 Sharp Corp ブリツジ形3相正弦波インバ−タのパルス幅変調方式
JPS63290170A (ja) * 1987-05-20 1988-11-28 Mitsubishi Electric Corp Pwmインバ−タ装置
JPH01274669A (ja) * 1988-04-27 1989-11-02 Fuji Electric Co Ltd 三相電圧形インバータのpwm制御方法
JPH05199796A (ja) * 1992-01-17 1993-08-06 Meidensha Corp 可変速駆動装置の電流制御方式
WO2001065675A1 (fr) * 2000-02-28 2001-09-07 Kabushiki Kaisha Yaskawa Denki Procede de commande d'impulsion de modulation de largeur d'impulsion (pwm)
JP2004048885A (ja) * 2002-07-10 2004-02-12 Mitsubishi Electric Corp 電力変換装置
JP2007151344A (ja) 2005-11-29 2007-06-14 Denso Corp 磁極位置推定方法、モータ速度推定方法及びモータ制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995002921A1 (fr) * 1992-01-17 1995-01-26 Kabushiki Kaisha Meidensha Appareil et procede de regulation du courant d'un entrainement a vitesse variable
US5610806A (en) * 1995-06-19 1997-03-11 Allen-Bradley Company, Inc. Pulse width modulation method for driving three phase power inverter/converter switches with balanced discontinuous phase commands
KR100240953B1 (ko) * 1996-10-02 2000-01-15 이종수 전력변환장치의 펄스폭 변조 방법
US6324085B2 (en) * 1999-12-27 2001-11-27 Denso Corporation Power converter apparatus and related method
JP4045105B2 (ja) * 2002-01-30 2008-02-13 株式会社日立産機システム パルス幅変調方法、電力変換装置、およびインバータ装置
JP4491434B2 (ja) * 2006-05-29 2010-06-30 トヨタ自動車株式会社 電力制御装置およびそれを備えた車両
DE102008054487A1 (de) * 2008-01-09 2009-07-16 DENSO CORPORARTION, Kariya-shi Steuersystem für eine mehrphasige elektrische Drehmaschine
JP4729054B2 (ja) * 2008-01-28 2011-07-20 株式会社東芝 通信用半導体集積回路
TWI410037B (zh) * 2008-12-08 2013-09-21 Ind Tech Res Inst 電源轉換裝置及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139871A (ja) 1983-01-26 1984-08-10 Sharp Corp ブリツジ形3相正弦波インバ−タのパルス幅変調方式
JPS63290170A (ja) * 1987-05-20 1988-11-28 Mitsubishi Electric Corp Pwmインバ−タ装置
JPH01274669A (ja) * 1988-04-27 1989-11-02 Fuji Electric Co Ltd 三相電圧形インバータのpwm制御方法
JPH05199796A (ja) * 1992-01-17 1993-08-06 Meidensha Corp 可変速駆動装置の電流制御方式
WO2001065675A1 (fr) * 2000-02-28 2001-09-07 Kabushiki Kaisha Yaskawa Denki Procede de commande d'impulsion de modulation de largeur d'impulsion (pwm)
JP2004048885A (ja) * 2002-07-10 2004-02-12 Mitsubishi Electric Corp 電力変換装置
JP2007151344A (ja) 2005-11-29 2007-06-14 Denso Corp 磁極位置推定方法、モータ速度推定方法及びモータ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2413488A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2971649A1 (fr) * 2011-02-16 2012-08-17 Mitsubishi Electric Corp Onduleur de puissance et dispositif de commande de direction assistee electrique
US8917050B2 (en) 2011-02-16 2014-12-23 Mitsubishi Electric Corporation Power inverter and electric power steering controller
WO2014141398A1 (ja) * 2013-03-13 2014-09-18 株式会社日立製作所 Pwm制御方法とそれを用いた電力変換装置
JP7202244B2 (ja) 2019-04-03 2023-01-11 オリエンタルモーター株式会社 電力変換装置

Also Published As

Publication number Publication date
KR20110137378A (ko) 2011-12-22
JP5304891B2 (ja) 2013-10-02
SG175197A1 (en) 2011-11-28
KR101266278B1 (ko) 2013-05-22
US20120033470A1 (en) 2012-02-09
EP2413488A4 (en) 2017-08-16
JPWO2010119929A1 (ja) 2012-10-22
CN102396142A (zh) 2012-03-28
EP2413488A1 (en) 2012-02-01
US8659918B2 (en) 2014-02-25
CN102396142B (zh) 2014-04-30

Similar Documents

Publication Publication Date Title
JP5304891B2 (ja) 電力変換装置の制御方法
US9882466B2 (en) Power conversion device including an AC/DC converter and a DC/DC converter
EP2798731B1 (en) A system, a method and a computer program product for controlling electric power supply
US8649195B2 (en) Hybrid space vector PWM schemes for interleaved three-phase converters
KR102009509B1 (ko) 3상 인버터의 옵셋 전압 생성 장치 및 방법
KR101621994B1 (ko) 회생형 고압 인버터의 제어장치
US20190222135A1 (en) Control device for direct power converter
KR102009512B1 (ko) 3상 인버터의 옵셋 전압 생성 장치 및 방법
US20130181654A1 (en) Motor drive system employing an active rectifier
US9350227B2 (en) Power converter control method
JP4929863B2 (ja) 電力変換装置
Jabbarnejad et al. Combined control of grid connected converters based on a flexible switching table for fast dynamic and reduced harmonics
Zeng et al. Improved current controller based on SVPWM for three-phase grid-connected voltage source inverters
KR102416374B1 (ko) 고압인버터 전력셀의 직류단 전압 제어장치
JP7367662B2 (ja) 電力変換装置および電力変換装置の制御方法
JPWO2019097835A1 (ja) 電力変換装置
Adzic et al. Space vector modulated three-phase current source converter for dc motor drive
JP7202244B2 (ja) 電力変換装置
JP5428744B2 (ja) 電力変換装置の制御方法
Nammalvar et al. A Novel Three Phase Hybrid Unidirectional Rectifier for High Power Factor Applications
JP2011172387A (ja) 電力変換制御装置、コンバータ制御回路、電力変換制御方法、電力変換制御用プログラム及び記録媒体
WO2023214462A1 (ja) 電力変換装置
KR101852015B1 (ko) 하이브리드 비례 적분 제어기 및 그 제어기를 갖는 인버터 시스템
JP2006020417A (ja) 電力変換装置の制御装置及び方法
Smith et al. Improved STATCOM Performance using Modulated Finite Control Set Model Predictive Control

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016973.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764511

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011509352

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13264592

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117025188

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010764511

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4573/KOLNP/2011

Country of ref document: IN