WO2010116991A1 - 分岐状共役ジエン-芳香族ビニル共重合体、及びその製造方法 - Google Patents

分岐状共役ジエン-芳香族ビニル共重合体、及びその製造方法 Download PDF

Info

Publication number
WO2010116991A1
WO2010116991A1 PCT/JP2010/056226 JP2010056226W WO2010116991A1 WO 2010116991 A1 WO2010116991 A1 WO 2010116991A1 JP 2010056226 W JP2010056226 W JP 2010056226W WO 2010116991 A1 WO2010116991 A1 WO 2010116991A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
aromatic vinyl
vinyl copolymer
copolymer
compound
Prior art date
Application number
PCT/JP2010/056226
Other languages
English (en)
French (fr)
Inventor
吉田 淳一
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42936274&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010116991(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to BRPI1010241A priority Critical patent/BRPI1010241A2/pt
Priority to SG2011065174A priority patent/SG174321A1/en
Priority to KR1020137021674A priority patent/KR20130096333A/ko
Priority to KR1020117020861A priority patent/KR101321316B1/ko
Priority to CN201080013189.8A priority patent/CN102361885B/zh
Publication of WO2010116991A1 publication Critical patent/WO2010116991A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to a branched conjugated diene-aromatic vinyl copolymer and a method for producing the same.
  • Styrene-butadiene rubber is known as one of the main materials for tire treads.
  • the polymerization method of SBR includes emulsion polymerization SBR (E-SBR) in which a monomer suspended in water is radically polymerized, and solution polymerization SBR (S-BR) in which a monomer in a hydrocarbon solvent is anionically polymerized using an organic alkali metal.
  • E-SBR emulsion polymerization SBR
  • S-BR solution polymerization SBR
  • S-SBR solution polymerization SBR
  • the degree of freedom of polymer structure design is high, and the amount of solution polymerization SBR (S-SBR) used is particularly excellent in the balance between fuel saving performance and wet skid resistance in a tire using silica as a filler. Has increased.
  • S-SBR solution polymerization SBR
  • a functional group can be introduced relatively easily by adding a modifier to the active terminal of the polymer, and a rubber having a low rolling resistance when obtained as a tire tread material is obtained (for example, see Patent Document 1). .)
  • a filler such as silica
  • the viscosity increases during kneading, so the processability is poor. Has the disadvantage of increasing energy consumption.
  • the heat generated by the exothermic reaction of the polymerization can also perform the heating necessary for the initiation and promotion of the polymerization, so the amount of energy used per production amount is less than that of the batch polymerization process. Since the molecular weight distribution is also widened, there is an advantage that processability is relatively good.
  • solution-polymerized SBR (S-SBR) consumes a large amount of energy and is easy to process when compound kneading to produce a composition, compared to emulsion-polymerized SBR (E-SBR), which can branch a large amount during polymerization. Have the disadvantage of being inferior.
  • Other techniques include, for example, a method of coupling a conjugated diene-aromatic vinyl copolymer that has been anionically polymerized by a continuous polymerization process with a trifunctional or higher functional silicon coupling agent such as silicon tetrachloride (see, for example, Patent Document 2). ), A method of coupling with a halogen-containing silicon compound, an alkoxysilane compound, an alkoxysulfide compound, etc. (see, for example, Patent Document 3), a method of coupling with a compound having two or more epoxy groups (for example, Patent Document) 4).
  • JP 2003-171418 A Japanese Patent Laid-Open No. 61-255917 JP 11-199712 A International Publication No.01 / 23467
  • the present invention has been made in view of the above circumstances, and has good workability when used as a vulcanized product, and when used as a vulcanized product, the balance between low hysteresis loss and wet skid resistance is excellent. Therefore, it is an object of the present invention to provide a branched conjugated diene-aromatic vinyl copolymer that satisfies practically sufficient wear resistance and fracture characteristics and also has excellent productivity, and a method for producing the same.
  • the present inventor has found that the amount of aromatic vinyl bonds, the amount of vinyl bonds in all conjugated diene units, the weight average molecular weight (Mw-C), and the weight average molecular weight (Mw) -C) / number average molecular weight (Mn-C) is in a specific numerical range, and Mooney viscosity (ML-C) and Mooney relaxation rate (MSR-C) measured at 120 ° C. have a specific relational expression.
  • Mooney viscosity (ML-C) and Mooney relaxation rate (MSR-C) measured at 120 ° C. have a specific relational expression.
  • the present inventors have found that the above problems can be solved by using a branched conjugated diene-aromatic vinyl copolymer satisfying the present invention, and have completed the present invention.
  • the present invention is as follows.
  • a random copolymer, a conjugated diene-aromatic vinyl copolymer (C) The amount of aromatic vinyl bonds in the conjugated diene-aromatic vinyl copolymer (C) is 30 to 38% by mass, The vinyl bond content in the conjugated diene total bond unit is 30 to 43 mol%,
  • the polystyrene equivalent weight average molecular weight (Mw-C) obtained by gel permeation chromatography (GPC) of the conjugated diene-aromatic vinyl copolymer (C) is 700,000 to 1,000,000,
  • the ratio of the weight average molecular weight (Mw-C) to the number average molecular weight (Mn-C) ((Mw-C) / (Mn-C)) is 1.7 to 3.0
  • a process for producing a branched conjugated diene-aromatic vinyl copolymer (C) having [5] A method for producing the branched conjugated diene-aromatic vinyl copolymer (C) according to [1] or [2], A step of continuously supplying a solution containing a conjugated diene compound, an aromatic vinyl compound, and an anionic polymerization initiator to a reactor equipped with a stirrer to advance the polymerization reaction; Continuously obtaining a solution of a conjugated diene-aromatic vinyl copolymer having an active end from the outlet of the reactor; Coupling the conjugated diene-aromatic vinyl copolymer with a polyfunctional modifier having four or more functional groups capable of reacting with the active terminal; Have In the polymerization reaction, a branched conjugated diene-aromatic vinyl copolymer with a polyfunctional modifier having four or more functional groups capable of reacting with the active terminal; Have In the polymerization reaction, a branched conjugated
  • the polyfunctional modifier is used such that the total number of functional groups of the polyfunctional modifier is 0.1 to 0.5 times the number of moles of the anionic polymerization initiator [4] or [5] The method for producing a branched conjugated diene-aromatic vinyl copolymer according to [5].
  • the vulcanizate is excellent in workability, and the vulcanizate has an excellent balance between low hysteresis loss and wet skid resistance, and has practically sufficient wear resistance and fracture characteristics.
  • a branched conjugated diene-aromatic vinyl copolymer and a method for producing the same can be provided.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the following embodiment is an exemplification for explaining the present invention, and the present invention is not limited to the form shown below.
  • the present invention can be implemented with appropriate modifications within the scope of the gist thereof.
  • the branched conjugated diene-aromatic vinyl copolymer (C) of this embodiment is A random copolymer, a conjugated diene-aromatic vinyl copolymer (C), The amount of aromatic vinyl bonds in the conjugated diene-aromatic vinyl copolymer (C) is 30 to 38% by mass, The vinyl bond content in the conjugated diene total bond unit is 30 to 43 mol%,
  • the polystyrene-converted weight average molecular weight (Mw-C) obtained by GPC of the conjugated diene-aromatic vinyl copolymer (C) is 700,000 to 1,000,000, The ratio of the weight average molecular weight to the number average molecular weight ((Mw-C) / (Mn-C)) is 1.7 to 3.0, Branched conjugated diene-aromatic vinyl copolymer (C) in which Mooney viscosity (ML-C) measured at
  • Mooney relaxation rate (MSR-C) satisfy the relationship of the following formula (1) .
  • the branched conjugated diene-aromatic vinyl copolymer (C) of this embodiment is a random copolymer.
  • the random copolymer refers to those having little or no component having an aromatic vinyl chain length of 30 or more.
  • the branched conjugated diene-aromatic vinyl copolymer in the present embodiment is not limited as long as it is a random copolymer of a conjugated diene compound and an aromatic vinyl compound.
  • the conjugated diene compound and the aromatic vinyl compound compounds described later can be appropriately used.
  • the conjugated diene-aromatic vinyl copolymer a styrene-butadiene copolymer, a styrene-isoprene copolymer, and a styrene-butadiene isoprene copolymer are preferable, and a styrene-butadiene copolymer is more preferable.
  • the branched conjugated diene-aromatic vinyl copolymer (C) is a butadiene-styrene copolymer
  • Kolthoff's method IM KOLTHOFF, et al., J. Polym. Sci. 1, 429 ( 1946)
  • the branched conjugated diene-aromatic vinyl copolymer (C) is decomposed and analyzed for the amount of polystyrene insoluble in methanol.
  • the amount of polystyrene relative to the total amount of the coalesced (C) is preferably 5% by mass or less, and more preferably 3% by mass or less.
  • isolated styrene ie, It is preferable that styrene having a styrene unit chain of 1) is 40% by mass or more of the total bonded styrene, and long-chain block styrene (that is, styrene having 8 or more styrene unit chains) is 5% by mass or less of the total bonded styrene. It is more preferable that
  • the amount of aromatic vinyl bonds in the branched conjugated diene-aromatic vinyl copolymer (C) of this embodiment is 30 to 38% by mass, preferably 32 to 37% by mass.
  • the amount of aromatic vinyl bond can be determined by measuring the ultraviolet absorption of the phenyl group of the branched conjugated diene-aromatic vinyl copolymer (C).
  • the vinyl bond content in the conjugated diene total bond unit is 30 to 43 mol%, preferably 32 to 42 mol%.
  • the branched conjugated diene-aromatic vinyl copolymer (C) is a butadiene-styrene copolymer, it is described in the method of Hampton (RR Hampton, Analytical Chemistry 21, 923 (1949)). Method) can determine the vinyl bond content (1,2-bond content) in the butadiene bond unit.
  • Conjugated diene-aromatic vinyl copolymers are generally mixed with natural rubber, butadiene rubber or the like to be further vulcanized, but each of the branched conjugated diene-aromatic vinyl copolymers (C) When the bond is in the above range, the rubber can be mixed with a good balance without being too compatible with the rubber or separated. Thereby, the vulcanizate excellent in the balance of low hysteresis loss property and wet skid resistance is obtained.
  • the glass transition temperature of the branched conjugated diene-aromatic vinyl copolymer (C) of this embodiment is preferably ⁇ 40 to ⁇ 15 ° C., more preferably ⁇ 35 to ⁇ 18 ° C. When the glass transition temperature is within this range, a vulcanizate having an excellent balance between low hysteresis loss and wet skid resistance can be obtained.
  • the glass transition temperature in accordance with ISO 22768: 2006, the DSC curve is recorded while the temperature is raised in a predetermined temperature range, and the peak top (Inflection point) of the DSC differential curve is set as the glass transition temperature.
  • the branched conjugated diene-aromatic vinyl copolymer (C) of the present embodiment has a polystyrene-equivalent weight average molecular weight (Mw-C) of 700,000 to 1,000,000, preferably Is 750,000 to 950,000. In order to obtain good wear resistance and strength, it is 700,000 or more, and in order to maintain good workability, it is 1,000,000 or less.
  • the ratio of the weight average molecular weight (Mw-C) to the number average molecular weight (Mn-C) ((Mw-C) / (Mn-C)) is 1.7 to 3.0, preferably 2. 0 to 2.8.
  • the molecular weight and the molecular weight distribution are obtained by measuring a chromatogram using GPC and using a calibration curve using standard polystyrene.
  • Mooney viscosity (ML-C) and Mooney relaxation rate (MSR-C) measured at 120 ° C. of the branched conjugated diene-aromatic vinyl copolymer (C) of this embodiment are represented by the following formula (1): Meet. ⁇ 214- (ML-C) ⁇ / 300 ⁇ (MSR-C) ⁇ ⁇ 260- (ML-C) ⁇ / 300 (1) (Here, 100 ⁇ (ML-C) ⁇ 140)
  • the Mooney relaxation rate is the torque (T) and time (t (t ()) from 1.6 seconds to 5 seconds after the rotor is stopped after measuring the Mooney viscosity by the method specified in ISO 289-4: 2003. Second)) and the logarithmic plot of the absolute value of the slope.
  • MSR Mooney relaxation rate
  • the MSR-C and ML-C of the conjugated diene-aromatic vinyl copolymer (C) satisfy the condition of the formula (1), so that a suitable branched state can be defined, and the vinyl bond amount, weight Processing to obtain a vulcanizate by controlling the average molecular weight (Mw-C) and the ratio of the weight average molecular weight to the number average molecular weight ((Mw-C) / (Mn-C)) within a specific range.
  • the relationship between ML-C and MSR-C preferably satisfies the relationship of the following formula (1a).
  • the effect of the above-described embodiment becomes more remarkable. ⁇ 220- (ML-C) ⁇ / 300 ⁇ (MSR-C) ⁇ ⁇ 255- (ML-C) ⁇ / 300 (1a) (Here, 106 ⁇ (ML ⁇ C) ⁇ 135.)
  • the branched conjugated diene-aromatic vinyl copolymer (C) of this embodiment is obtained by coupling a conjugated diene-aromatic vinyl copolymer using a polyfunctional modifier having 4 or more functional groups. It is preferable that As a result, the degree of branching and molecular weight can be effectively increased, the copolymer productivity and the processability when making a vulcanized product are good, and the copolymer has an excellent balance of vulcanized product performance. can do.
  • the conjugated diene-aromatic vinyl copolymer (C) has a polystyrene equivalent weight average molecular weight (Mw-I) of 500,000 to 700,000 and a Mooney viscosity (measured at 120 ° C.) More preferred is a conjugated diene-aromatic vinyl copolymer (I) in which ML-I) and Mooney relaxation rate (MSR-I) satisfy the relationship of the following formula (2).
  • Mw-I polystyrene equivalent weight average molecular weight
  • MSR-I Mooney relaxation rate
  • the Mooney viscosity (ML-I) measured at 120 ° C. and the Mooney relaxation rate (MSR-I) measured at 120 ° C. more preferably satisfy the relationship of the following formula (2a). ⁇ 268- (ML-I) ⁇ / 300 ⁇ (MSR-I) ⁇ ⁇ 300- (ML-I) ⁇ / 300 (2a) (Here, in the formula (2a), 66 ⁇ (ML ⁇ I) ⁇ 89)
  • a solution containing a conjugated diene compound, an aromatic vinyl compound, and an anionic polymerization initiator is continuously supplied to the reactor to advance the polymerization reaction, thereby obtaining a solution of a conjugated diene-aromatic vinyl copolymer having an active end.
  • the processability when vulcanized is good, and when vulcanized, the balance between low hysteresis loss and wet skid resistance is excellent and practically sufficient. Therefore, the branched conjugated diene-aromatic vinyl copolymer (C) of the present embodiment that can satisfy satisfactory wear resistance and fracture characteristics can be efficiently produced.
  • an internal mixer such as a Banbury mixer has been used to knead the compound containing SBR described above, but a small-capacity mixer (for example, a capacity of several liters or less) used at the laboratory level is used.
  • the conjugated diene compound used in the production of the branched conjugated diene-aromatic vinyl copolymer (C) of the present embodiment is not particularly limited, and examples thereof include 1,3-butadiene, isoprene, 2,3-dimethyl- Examples include 1,3-butadiene, 1,3-pentadiene, 3-methyl-1,3-pentadiene, 1,3-heptadiene, 1,3-hexadiene, and the like. These may be used alone or in combination of two or more. Among these, 1,3-butadiene and isoprene are preferable from the viewpoint of availability and economy.
  • Aromaatic vinyl compound examples of the aromatic vinyl compound used in the production of the branched conjugated diene-aromatic vinyl copolymer (C) of the present embodiment include styrene, p-methylstyrene, ⁇ -methylstyrene, vinylethylbenzene, vinylxylene, Examples include vinyl naphthalene and diphenylethylene. These may be used alone or in combination of two or more. Among these, styrene is preferable.
  • Allenes and acetylenes which may be contained as impurities in the conjugated diene compound and aromatic vinyl compound, are an inhibiting factor in the polymerization reaction and coupling reaction, so the concentration in all monomers is less than 200 ppm. It is preferable.
  • the conjugated diene compound and the aromatic vinyl compound are usually copolymerized in a solvent.
  • the solvent is not particularly limited, and for example, a hydrocarbon solvent such as a saturated hydrocarbon or an aromatic hydrocarbon is used. Specifically, linear and branched aliphatic hydrocarbons such as butane, pentane, hexane and heptane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclopentane and methylcyclohexane; benzene, toluene and xylene And hydrocarbons composed of aromatic hydrocarbons and mixtures thereof.
  • the monomer concentrations of the conjugated diene compound and the aromatic vinyl compound in the polymerization solution for carrying out the polymerization reaction are not particularly limited, but are preferably 5 to 50% by mass from the viewpoint of productivity, and 10 to 30. The mass% is more preferable.
  • the anionic polymerization initiator that can be used in the polymerization reaction of the present embodiment is not particularly limited, and for example, an alkali metal initiator, an alkaline earth metal initiator, and the like can be used.
  • an alkali metal initiator or alkaline earth metal initiator any alkali metal initiator or alkaline earth metal initiator capable of initiating polymerization can be used.
  • the organic alkali metal compound is not particularly limited, but an organic lithium compound is preferable from the viewpoint of reactivity and the like.
  • an organic lithium compound a low molecular weight compound, a solubilized oligomeric organic lithium compound, a compound having a single lithium in a molecule, a compound having a plurality of lithiums in a molecule, and a bonding mode between an organic group and lithium Examples thereof include a compound having a carbon-lithium bond, a compound having a nitrogen-lithium bond, and a compound having a tin-lithium bond.
  • examples of the monoorganolithium compound include n-butyllithium, sec-butyllithium, tert-butyllithium, n-hexyllithium, benzyllithium, phenyllithium, and stilbenelithium.
  • Polyfunctional organolithium compounds include 1,4-dilithiobutane, the reaction product of sec-butyllithium and diisopropenylbenzene, 1,3,5-trilithiobenzene, n-butyllithium, 1,3-butadiene and divinylbenzene And a reaction product of n-butyllithium and a polyacetylene compound.
  • Examples of compounds having a nitrogen-lithium bond include lithium dimethylamide, lithium diethylamide, lithium dipropylamide, lithium di-n-hexylamide, lithium diisopropylamide, lithium hexamethyleneimide, lithium pyrrolidide, lithium piperidide, lithium heptamethylene. Examples thereof include imide and lithium morpholide.
  • organic alkali metal compounds disclosed in US Pat. No. 5,708,092, British Patent 2,241,239, US Pat. No. 5,527,753, etc. can also be used.
  • Particularly preferred are n-butyllithium and sec-butyllithium.
  • the above-described organolithium compounds may be used alone or in combination of two or more.
  • organic alkali metal compounds examples include organic sodium compounds, organic potassium compounds, organic rubidium compounds, and organic cesium compounds. Specific examples include sodium naphthalene and potassium naphthalene. In addition, lithium, sodium, potassium alkoxides, sulfonates, carbonates, amides, and the like are used. The organic alkali metal compound may be used in combination with other organic metal compounds.
  • the alkaline earth metal compound is not particularly limited, and examples thereof include organic magnesium compounds, organic calcium compounds, and organic strontium compounds. Specific examples include dibutyl magnesium, ethyl butyl magnesium, propyl butyl magnesium, and the like. Further, alkaline earth metal alkoxides, sulfonates, carbonates, amides and the like can also be used. These organic alkaline earth metal compounds may be used in combination with the above organic alkali metal initiators and other organic metal compounds.
  • Examples of the polar compound include, but are not limited to, tetrahydrofuran, diethyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol dibutyl ether, dimethoxybenzene, 2,2-bis (2-oxolanyl) propane, and the like.
  • Ethers such as tetramethylethylenediamine, dipiperidinoethane, trimethylamine, triethylamine, pyridine, quinuclidine; potassium tert-amylate, potassium tertbutylate, sodium tertbutylate, sodium amylate
  • Alkali metal alkoxide compounds such as potassium dodecylbenzenesulfonate, sodium dodecylbenzenesulfonate, etc.
  • Metal salts of organic sulfonic acids; phosphine compounds such as triphenylphosphine and the like. These polar compounds may be used alone or in combination of two or more.
  • the amount of the polar compound used is selected according to the purpose and degree of effect, and is not particularly limited, but is usually 0.01 to 100 mol per 1 mol of an alkali metal or alkaline earth metal atom in the anionic polymerization initiator. It is.
  • the above-mentioned polar compound can be used in an appropriate amount depending on the desired vinyl bond amount as a modifier of the microstructure of the polymer diene moiety. Thereby, the vinyl bond amount in the conjugated diene total bond unit can be controlled. Many polar compounds also have an effective randomizing effect in the copolymerization of conjugated diene compounds and aromatic vinyl compounds. By using polar compounds, the distribution of aromatic vinyl compounds in the copolymer And the amount of block of the aromatic vinyl compound (for example, the amount of styrene block) can be adjusted.
  • the polymerization reaction of the conjugated diene compound and the aromatic vinyl compound is carried out by adding the above-described conjugated diene compound, aromatic vinyl compound, anionic polymerization initiator, polymerization solvent, and a small amount of polar compound as necessary to a reactor equipped with a predetermined stirrer. It can be carried out by continuously feeding, and the conjugated diene-aromatic vinyl copolymer solution can be continuously discharged from the outlet of the reactor.
  • the monomer and / or polymerization solvent is brought into contact with the organometallic compound at a stage before being supplied to the reactor by a method as disclosed in JP-A No. 2002-284814, so that the polymerization inhibitory action due to a small amount of impurities is prevented. It can also be activated.
  • the supply position of the monomer solution and the outflow position of the copolymer solution are not particularly limited and may be any position of the bottom of the reactor, the top, and any position in between. It is preferable to supply the monomer solution from a close position and to let the copolymer solution flow out from a position close to the top.
  • a conjugated diene compound is preferentially polymerized over an aromatic vinyl compound, and therefore a part of the conjugated diene compound can be supplied from the upper part of the reactor for the purpose of randomization.
  • the polymerization reaction is preferably carried out while maintaining the internal temperature at the reactor outlet at 95 to 110 ° C. and with an average residence time of 15 minutes to 35 minutes.
  • the internal temperature at the reactor outlet refers to the temperature of the copolymer solution at the reactor outlet.
  • the internal temperature at the outlet of the reactor is 95 ° C or higher in order to increase the reaction rate, improve productivity, and promote the thermal branching reaction by metallation to form an appropriate branched structure even before the coupling reaction. It is preferable that On the other hand, in order to prevent the coupling reaction from being inhibited by inactivation due to excessive metallation reaction or the like, the temperature is preferably set to 110 ° C. or lower.
  • the temperature of the copolymer solution can be adjusted by heat exchange using an external heat exchanger or an internal heat exchanger, temperature control of the monomer solution to be supplied, or the like.
  • the temperature of the copolymer solution at the lower part of the reactor is preferably 3 to 15 ° C. lower than the internal temperature at the outlet of the reactor.
  • the internal temperature at the lower part of the reactor is specifically the position where the reactor is immersed in this liquid when 1/3 of the total volume is filled, and the monomer supplied to the reactor. The temperature measured by a thermometer installed at a position not directly affected by the flow of the solution.
  • the internal temperature at the lower part of the reactor becomes substantially the same as the internal temperature at the outlet of the reactor.
  • a larger temperature difference occurs between the internal temperature at the lower part of the reactor and the internal temperature at the reactor outlet.
  • the average residence time is preferably set to 15 minutes or more. From the viewpoint of suppressing the influence on the reaction, it is preferably 35 minutes or less.
  • the monomer conversion rate at the outlet of the reactor is preferably 95% or more, more preferably 98% or more, and more preferably 99% or more.
  • the conversion rate can be obtained by the method described in Examples described later.
  • the polystyrene-reduced weight average molecular weight (Mw-I) obtained by GPC of the conjugated diene-aromatic vinyl copolymer (I) obtained in the polymerization step in the previous step of the coupling step is not particularly limited. , Preferably from 7,000 to 700,000. From the viewpoint of obtaining good wear resistance and strength, it is preferably 500,000 or more, and from the viewpoint of productivity and workability of the conjugated diene-aromatic vinyl copolymer of the present embodiment obtained after coupling. Therefore, it is preferably 700,000 or less.
  • the conjugated diene-aromatic vinyl copolymer (I) obtained in the polymerization step before the coupling step has a Mooney viscosity (ML-I) and Mooney relaxation rate (MSR-I) measured at 120 ° C. )
  • ML-I Mooney viscosity
  • MSR-I Mooney relaxation rate
  • the branched conjugated diene-aromatic vinyl copolymer (C) obtained after the coupling has a sufficient degree of branching, in the above formula (2), it is preferable to set the upper limit value or less. In order to secure a sufficient active terminal for the coupling reaction to be performed later, it is preferable to carry out the polymerization reaction so as to be not less than the above lower limit value.
  • a polyfunctional modifier having four or more functional groups capable of reacting with the active terminal is added to the solution of the conjugated diene-aromatic vinyl copolymer having the active terminal that has flowed out of the reactor outlet.
  • the branched conjugated diene-aromatic vinyl copolymer of the present embodiment can be obtained by bringing it into contact for a coupling reaction.
  • the reactor may be a tank reactor with a stirrer similar to the polymerization reactor, a tank reactor with a stirrer smaller than the polymerization reactor, or a static mixer. It is preferable that the solution of the conjugated diene-aromatic vinyl copolymer and the polyfunctional modifier are sufficiently mixed to obtain a sufficient residence time for the reaction. From this point of view, when a tank reactor with a stirrer is used In the present invention, the volume of the reactor is preferably 1/20 to 1/5 that of the polymerization vessel under turbulent flow conditions.
  • the residence time is not particularly limited, but from the above viewpoint, 1 minute to 1 hour is preferable, and 1 minute to 15 minutes is more preferable.
  • the reaction temperature of the coupling reaction is not particularly limited, but is preferably 50 to 110 ° C., more preferably 70 to 110 ° C. from the viewpoint of obtaining sufficient modification efficiency.
  • the polyfunctional modifier having 4 or more functional groups capable of reacting with the active end of the conjugated diene-aromatic vinyl copolymer having an active end used in the present embodiment is not particularly limited.
  • each alkoxy group is monofunctional as a carboxylic acid ester group, a carboxylic acid amide group, an acid anhydride group, and a thiocarboxylic acid ester group.
  • Dithiocarboxylic acid ester group, thiocarboxylic acid amide group, isocyanate group and thioisocyanate group are calculated as bifunctional, and phosphoric acid ester group and phosphite group are calculated as trifunctional.
  • the polyfunctional modifier used in the present embodiment has a sum of the functional numbers of the above functional groups in one molecule of 4 or more.
  • polyfunctional modifier having an epoxy group examples include polyepoxy compounds such as polyepoxidized liquid polybutadiene; tetraglycidylmetaxylenediamine, tetraglycidylaminodiphenylmethane, tetraglycidyl-p-phenylenediamine, tetraglycidyl-1,3- Glycidylamino compounds such as bisaminomethylcyclohexane; 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropyltributoxysilane, epoxidized soybean oil, epoxidized linseed oil, etc. And compounds having an epoxy group and other functional groups.
  • polyepoxy compounds such as polyepoxidized liquid polybutadiene
  • tetraglycidylmetaxylenediamine tetraglycidylaminodiphenylmethane
  • polyfunctional modifier having an alkoxysilyl group examples include tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, bis (triethoxysilyl) methane, bis (trimethoxysilyl) ethane, and 1,6-bis (trimethoxy).
  • the polyfunctional modifier having a halogen group silicon tetrachloride, silicon tetrabromide, silicon tetraiodide, bistrichlorosilylethane, 2,2,4,4,6,6-hexachloro-2,4, Halogenated silane compounds such as 6-trisilaheptane, 1,2,3,4,5,6-hexakis [2- (methyldichlorosilyl) ethyl] benzene; monochlorotrimethoxysilane, monobromotrimethoxysilane, dichlorodimethoxy Examples thereof include alkoxyhalogenated silane compounds such as silane, dibromodimethoxysilane, trichloromethoxysilane, and tribromomethoxysilane.
  • tin halide compounds such as tin tetrachloride, tin tetrabromide, and bistrichlorostannylethane; polyhalogenated phosphorus compounds such as trichlorophosphine and tribromophosphine, and the like can be mentioned.
  • more preferred polyfunctional modifiers include compounds having a functional group with a high affinity for silica, 4- to 6-functional polyepoxy compounds having a large molecular weight improvement effect by coupling, epoxy groups and alkoxysilyl groups. And compounds having a total of 4 to 6 functional groups. More preferable polyfunctional modifiers include glycidyl compounds having an amino group in the molecule, and compounds having two or three diglycidylamino groups in one molecule.
  • Examples thereof include tetraglycidyl metaxylene diamine, tetraglycidylaminodiphenylmethane, tetraglycidyl-p-phenylenediamine, tetraglycidyl-1,3-bisaminomethylcyclohexane, and the like.
  • the polyfunctional modifier mentioned above may be used independently and may use 2 or more types together.
  • the addition amount of these polyfunctional modifiers is preferably 0.1 to 0.5 times the total number of functional groups of the polyfunctional modifier with respect to the number of moles of the anionic polymerization initiator, more preferably. Is 0.2 to 0.4 times. In order to improve processability by imparting branching and to improve strength by increasing molecular weight, it is preferably added 0.1 times or more, and preferably 0.5 times or less from the viewpoint of economy.
  • a polyfunctional modifier having four or more functional groups capable of reacting with the active terminal is brought into contact with the solution of the conjugated diene-aromatic vinyl copolymer having the active terminal to cause a coupling reaction.
  • the branched conjugated diene-aromatic vinyl copolymer (C) of the present embodiment is obtained.
  • a predetermined deactivator, a neutralizing agent, and the like may be added to the solution as necessary after the coupling reaction.
  • the quenching agent include alcohols such as water, methanol, ethanol, and isopropanol.
  • the neutralizing agent include carboxylic acids such as stearic acid, oleic acid, and versatic acid, an aqueous solution of an inorganic acid, carbon dioxide gas, and the like.
  • the branched conjugated diene-aromatic vinyl copolymer (C) of this embodiment may itself have a high viscosity, the viewpoint of preventing gelation in the finishing step after polymerization, From the viewpoint of improving the stability at the time, 2,6-di-tert-butyl-4-hydroxytoluene (BHT), n-octadecyl-3- (4′-hydroxy-3 ′, 5′- It is preferable to add known rubber stabilizers such as di-tert-butylphenol) propinate and 2-methyl-4,6-bis [(octylthio) methyl] phenol.
  • BHT 2,6-di-tert-butyl-4-hydroxytoluene
  • n-octadecyl-3- (4′-hydroxy-3 ′, 5′-
  • known rubber stabilizers such as di-tert-butylphenol) propinate and 2-methyl-4,6-bis [(octylthio) methyl] phenol.
  • an extending oil is added.
  • the method of addition is not particularly limited, but it is preferable to remove the solvent obtained by adding the extension oil to the polymer solution and mixing it to obtain an oil-extended copolymer solution.
  • the extending oil is not particularly limited, and for example, aroma oil, naphthenic oil, paraffin oil and the like can be used, and an aroma substitute oil having a polycyclic aromatic component of 3% by mass or less by the IP346 method is preferable.
  • an aroma substitute oil having a polycyclic aromatic component of 3% by mass or less is more preferable as an aroma substitute oil from the viewpoint of environmental safety, prevention of oil bleeding, and wet grip characteristics.
  • TDAE Teated Distillate Aromatic Extracts
  • MES Middle Extraction Solvate
  • the amount of the extender oil used is not particularly limited, but usually it is preferably 10 to 60 parts by mass with respect to 100 parts by mass of the branched conjugated diene-aromatic vinyl copolymer (C) of the present embodiment. More preferably, it is 20 to 37.5 parts by mass.
  • the method for obtaining the branched conjugated diene-aromatic vinyl copolymer (C) of the present embodiment from the polymerization solution is not particularly limited, and conventionally known methods can be applied.
  • the polymer is separated by filtration, further dehydrated and dried to obtain the polymer, concentrated in a flushing tank, and further devolatilized by a vent extruder or the like.
  • a method, a method of directly devolatilizing with a drum dryer or the like can be applied.
  • the branched conjugated diene-aromatic vinyl copolymer composition refers to a mixture of a predetermined material with the above-described branched conjugated diene-aromatic vinyl copolymer (C) of this embodiment.
  • this material include rubbery polymers other than branched conjugated diene-aromatic vinyl copolymers, inorganic fillers, silane coupling agents, rubber softeners, vulcanizing agents, vulcanization accelerators and vulcanizations.
  • An auxiliary agent etc. are mentioned.
  • those containing at least an inorganic filler are preferable. That is, a branched conjugated diene-aromatic vinyl copolymer composition containing the branched conjugated diene-aromatic vinyl copolymer (C) of this embodiment and an inorganic filler is preferable.
  • Examples of the rubbery polymer other than the branched conjugated diene-aromatic vinyl copolymer (C) include, for example, a conjugated diene polymer or a hydrogenated product thereof, a random copolymer of a conjugated diene compound and a vinyl aromatic compound. Examples thereof include a polymer or a hydrogenated product thereof, a block copolymer of a conjugated diene compound and a vinyl aromatic compound, or a hydrogenated product thereof; a non-diene polymer, a natural rubber, and the like.
  • butadiene rubber or hydrogenated product thereof isoprene rubber or hydrogenated product thereof, styrene-butadiene rubber or hydrogenated product thereof, styrene-butadiene block copolymer or hydrogenated product thereof, styrene-isoprene block copolymerized
  • examples thereof include styrene-based elastomers such as coalescence or hydrogenated products thereof, acrylonitrile-butadiene rubber or hydrogenated products thereof.
  • Non-diene polymers include olefin elastomers such as ethylene-propylene rubber, ethylene-propylene-diene rubber, ethylene-butene-diene rubber, ethylene-butene rubber, ethylene-hexene rubber, ethylene-octene rubber, butyl rubber, brominated butyl rubber, Acrylic rubber, fluorine rubber, silicone rubber, chlorinated polyethylene rubber, epichlorohydrin rubber, ⁇ , ⁇ -unsaturated nitrile-acrylic ester-conjugated diene copolymer rubber, urethane rubber, polysulfide rubber and the like can be mentioned.
  • olefin elastomers such as ethylene-propylene rubber, ethylene-propylene-diene rubber, ethylene-butene-diene rubber, ethylene-butene rubber, ethylene-hexene rubber, ethylene-octene rubber, butyl rubber, brominated butyl rubber, Acrylic rubber, fluor
  • the rubbery polymer described above may be a modified rubbery polymer having a functional group.
  • the molecular weight is preferably 2,000 to 2,000,000, and more preferably 5,000 to 1,500,000.
  • a so-called liquid rubber having a low molecular weight can also be used.
  • These rubbery polymers may be used alone or in combination of two or more.
  • these ratios are not particularly limited, but low hysteresis loss and wet skid resistance
  • the branched conjugated diene-aromatic vinyl copolymer (C) / the rubbery polymer described above 20/80 to 100/0 is preferable, 30/70 to 90/10 is more preferable, and 50/50 to 80/20 is still more preferable.
  • examples of the inorganic filler include silica-based inorganic filler and carbon black.
  • the silica-based inorganic filler for example, SiO 2, or the solid particles, and the like as a main component constituent units Si 3 Al.
  • the main component refers to a component occupying 50% by mass or more of the silica-based inorganic filler.
  • the silica-based inorganic filler include inorganic fibrous materials such as silica, clay, talc, mica, diatomaceous earth, wollastonite, montmorillonite, zeolite, and glass fiber.
  • a silica-based inorganic filler having a hydrophobic surface or a mixture of a silica-based inorganic filler and a non-silica inorganic filler can also be used.
  • silica and glass fiber are preferable, and silica is more preferable.
  • silica dry silica, wet silica, synthetic silicate silica and the like can be used.
  • wet silica is preferable because it has excellent effects of improving the fracture characteristics and achieving both wet skid resistance.
  • the nitrogen adsorption specific surface area required by the BET adsorption method of the silica-based inorganic filler is as follows: It is preferably 100 to 300 m 2 / g, and more preferably 170 to 250 m 2 / g.
  • a silica-based inorganic filler having a relatively small specific surface area (for example, a specific surface area of less than 200 m 2 / g) and a silica-based material having a relatively large specific surface area (for example, 200 m 2 / g or more).
  • a silica-based inorganic filler having a relatively small specific surface area (for example, a specific surface area of less than 200 m 2 / g) and a silica-based material having a relatively large specific surface area (for example, 200 m 2 / g or more).
  • the blending amount of the silica-based inorganic filler in the branched conjugated diene-aromatic vinyl copolymer composition is not particularly limited, but 100 parts by mass of a rubber component containing the branched conjugated diene-aromatic vinyl copolymer (C) Is preferably 0.5 to 300 parts by mass, more preferably 5 to 200 parts by mass, and still more preferably 20 to 100 parts by mass. Addition of 0.5 parts by mass or more is preferable from the viewpoint of manifesting the effect of addition as a filler. On the other hand, the silica-based inorganic filler is sufficiently dispersed to make the workability and mechanical strength of the composition sufficiently practical. From the viewpoint, it is preferably 300 parts by mass or less.
  • the carbon black is not particularly limited, and carbon black of each class such as SRF, FEF, HAF, ISAF, SAF can be used, the nitrogen adsorption specific surface area is 50 m 2 / g or more, and the DBP oil absorption is 80 mL / 100 g or more. Carbon black is preferred.
  • the blending amount of carbon black is preferably 0.5 to 100 parts by mass, more preferably 3 to 100 parts by mass with respect to 100 parts by mass of the rubber component containing the branched conjugated diene-aromatic vinyl copolymer (C). 5 to 50 parts by mass is more preferable. It is preferable to add 0.5 parts by mass or more from the viewpoint of expressing the performance required for applications such as dry grip performance and electrical conductivity, and it is preferable to add 100 parts by mass or less from the viewpoint of dispersibility.
  • a metal oxide or a metal hydroxide may be added to the branched conjugated diene-aromatic vinyl copolymer composition.
  • the metal oxide refers to solid particles having the chemical formula M x O y (M is a metal atom, x and y are each an integer of 1 to 6) as a main component of a structural unit, for example, , Alumina, titanium oxide, magnesium oxide, zinc oxide and the like.
  • the mixture containing inorganic fillers other than a metal oxide and a metal oxide can also be used.
  • the metal hydroxide is not particularly limited, and examples thereof include aluminum hydroxide, magnesium hydroxide, and zirconium hydroxide.
  • a silane coupling agent may be added.
  • the silane coupling agent has a function to close the interaction between the rubber component and the silica-based inorganic filler, and has an affinity or binding group for each of the rubber component and the silica-based inorganic filler.
  • a compound having a sulfur bond portion, an alkoxysilyl group, and a silanol group portion in one molecule is used.
  • the silane coupling agent is preferably used in combination with the silica-based inorganic filler described above.
  • silane coupling agent examples include bis- [3- (triethoxysilyl) -propyl] -tetrasulfide, bis- [3- (triethoxysilyl) -propyl] -disulfide, bis- [2- (tri And ethoxysilyl) -ethyl] -tetrasulfide.
  • the blending amount of the silane coupling agent is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 20 parts by weight, and more preferably 1 to 15 parts by weight with respect to 100 parts by weight of the silica-based inorganic filler described above. Further preferred.
  • the blending amount of the silane coupling agent is preferably 0.1 parts by mass or more from the viewpoint of blending effects, and is preferably 30 parts by mass or less from the viewpoint of economy.
  • the branched conjugated diene-aromatic vinyl copolymer composition may be blended with a rubber softener in order to improve processability.
  • rubber softeners include mineral oil or liquid or low molecular weight synthetic softeners.
  • the mineral oil rubber softener called process oil or extender oil used for softening, increasing volume and improving processability of rubber is a mixture of aromatic ring, naphthene ring and paraffin chain. Paraffin chains with 50% or more carbon atoms in the total carbon are called paraffinic, naphthenic ring with 30 to 45% carbon atoms is naphthenic, and aromatic carbon with more than 30% aromatics is aromatic. It is called a system.
  • the rubber softener used together with the branched conjugated diene-aromatic vinyl copolymer (C) those suitably containing an aromatic compound are preferred and preferable.
  • the blending amount of the rubber softening agent is preferably 0 to 100 parts by mass, more preferably 10 to 90 parts by mass with respect to 100 parts by mass of the rubber component containing the branched conjugated diene-aromatic vinyl copolymer (C). 30 to 90 parts by mass are more preferable. If the blending amount of the rubber softener exceeds 100 parts by mass with respect to 100 parts by mass of the rubber component, bleeding out is likely to occur, and the composition surface may become sticky.
  • Various additives such as branched conjugated diene-aromatic vinyl copolymer (C) and other rubbery polymers, silica-based inorganic fillers, carbon black and other fillers, silane coupling agents, rubber softeners, etc.
  • the method of mixing is not particularly limited.
  • a melt kneading method using a general blender such as an open roll, a Banbury mixer, a kneader, a single screw extruder, a twin screw extruder, a multi-screw extruder, etc.
  • the method of removing by heating, etc. are mentioned.
  • a melt kneading method using a roll, a Banbury mixer, a kneader, an extruder, or the like is preferable.
  • a method of kneading the conjugated diene-aromatic vinyl copolymer and various compounding agents at a time or a method of mixing in multiple times may be used.
  • the branched conjugated diene-aromatic vinyl copolymer composition described above may be a vulcanized composition that has been vulcanized with a vulcanizing agent.
  • the vulcanizing agent is not particularly limited, and for example, radical generators such as organic peroxides and azo compounds, oxime compounds, nitroso compounds, polyamine compounds, sulfur and sulfur compounds can be used.
  • the sulfur compound include sulfur monochloride, sulfur dichloride, a disulfide compound, and a polymer polysulfur compound.
  • the amount of the vulcanizing agent to be used is not particularly limited, but is usually preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the rubber component containing the branched conjugated diene-aromatic vinyl copolymer (C). 0.1 to 15 parts by mass is more preferable.
  • the vulcanization method is not particularly limited, and a conventionally known method can be applied.
  • the vulcanization temperature is, for example, 120 to 200 ° C., preferably 140 to 180 ° C.
  • a vulcanization accelerator or a vulcanization aid may be used as necessary.
  • the vulcanization accelerator is not particularly limited, and conventionally known materials can also be used. Examples thereof include vulcanization accelerators such as sulfenamide, guanidine, thiuram, aldehyde-amine, aldehyde-ammonia, thiazole, thiourea, and dithiocarbamate.
  • the vulcanization aid is not particularly limited, and conventionally known materials can also be used. Examples thereof include zinc white and stearic acid.
  • the amount of the vulcanization accelerator used is usually 0.01 to 20 parts by mass with respect to 100 parts by mass of the rubber component containing the branched conjugated diene-aromatic vinyl copolymer (C). ⁇ 15 parts by weight are preferred.
  • the amount of the vulcanization aid used is not particularly limited, but is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the rubber component described above.
  • the branched conjugated diene-aromatic vinyl copolymer composition includes a softener, a filler, a heat stabilizer, an antistatic agent, a weather stabilizer, other than those described above, within a range not impairing the object of the present embodiment.
  • Specific examples of the filler include calcium carbonate, magnesium carbonate, aluminum sulfate, and barium sulfate.
  • Known materials can be applied as the heat resistance stabilizer, antistatic agent, weather resistance stabilizer, anti-aging agent, colorant, and lubricant.
  • Amount of bound styrene The sample for measurement was a chloroform solution, and the amount of bound styrene (mass%) was obtained by UV-254 nm absorption by the phenyl group of styrene using an ultraviolet-visible spectrophotometer (Shimadzu Corporation, UV-2450). was measured.
  • Mooney viscosity and Mooney relaxation rate were measured using a Mooney viscometer (manufactured by Ueshima Seisakusho, VR1132) at a temperature of 120 ° C in accordance with ISO 289-1 and ISO 289-4.
  • Mooney viscometer manufactured by Ueshima Seisakusho, VR1132
  • the torque after 4 minutes was measured, and the Mooney viscosity (ML 1 + 4 ) was obtained.
  • the rotation of the rotor is stopped immediately, the torque every 0.1 seconds from 1.6 to 5 seconds is recorded in Mooney units, and the slope of the straight line when torque and time (seconds) are log-logged. The absolute value thereof was taken as the Mooney relaxation rate (MSR).
  • Tetrahydrofuran was used as the eluent.
  • the column used was guard column: Tosoh TSKguardcolumn HHR-H, column: Tosoh TSKgel G6000HHR, TSKgel G5000HHR, TSKgel G4000HHR.
  • An RI detector (HLC8020 manufactured by Tosoh Corporation) was used under the conditions of an oven temperature of 40 ° C. and a THF flow rate of 1.0 mL / min. 10 mg of a sample for measurement was dissolved in 10 mL of THF to prepare a measurement solution, and 200 ⁇ L of the measurement solution was injected into a GPC measurement device and measured.
  • Glass transition temperature (Tg) In accordance with ISO 22768: 2006, measurement was performed using a DSC3200S manufactured by Mac Science. A DSC curve was recorded while increasing the temperature from ⁇ 100 ° C. to 20 ° C./min under a flow of helium at 50 mL / min, and the peak top (Infection point) of the DSC differential curve was taken as the glass transition temperature.
  • Example 1 Autoclave with internal volume 10L, ratio of internal height (L) to diameter (D) (L / D) of 4, inlet at bottom, outlet at top, stirrer and jacket for temperature adjustment Were connected in series, and the first group was used as a polymerization reactor and the second group as a coupling reactor.
  • N-Butyllithium (treated n-butyllithium) was mixed with the obtained mixed solution at a rate of addition of 0.100 mmol / min for impurity inactivation treatment using a static mixer. This mixed solution was continuously fed to the bottom of the first polymerization reactor, and 2,2-bis (2-oxolanyl) propane as a polar substance was added at a rate of 0.014 g / min as a polymerization initiator.
  • n-Butyllithium is supplied to the bottom of the first polymerization reactor at an addition rate of 0.145 mmol / min so that the internal temperature (temperature of the copolymer solution) at the outlet of the polymerization reactor becomes 100 ° C. And the polymerization reaction was continued. At this time, the average residence time in the reactor was 30 minutes.
  • the polymer solution was continuously taken out from the top of the first polymerization reactor and supplied to the bottom of the second coupling reactor. In a state where the polymerization reaction in the first polymerization reactor is steady, a small amount of the polymer solution is taken from the inlet of the second coupling reactor while being careful not to contact with air. Each was extracted and added to a mixed solution of about 1 mL of methanol and about 30 mL of cyclohexane.
  • the sample conjuggated diene-aromatic vinyl copolymer (I)
  • the weight average molecular weight (Mw-I) in terms of polystyrene was 674,000.
  • the polymerization conversion rate at the inlet of the second coupling reactor reached 98% for 1,3-butadiene and 96% for styrene.
  • Tetraglycidyl-1,3-bisaminomethylcyclohexane is a compound having four epoxy groups in one molecule, and the ratio (equivalent ratio) of the total number of moles of functional groups to the number of moles of n-butyllithium added. was 0.30.
  • the branched conjugated diene-aromatic vinyl copolymer (C) after this coupling had a Mooney viscosity (ML-C) at 120 ° C. of 134.2 and a Mooney relaxation rate (MSR-C) of 0.401.
  • Mooney viscosity MLR-C
  • Mw-C polystyrene-equivalent weight average molecular weight measured by GPC was 88.6 million
  • the ratio of the weight average molecular weight to the number average molecular weight ((Mw-C) / (Mn-C)) was 2. 32.
  • the amount of bound styrene was 33% by mass
  • the amount of vinyl bonds (1,2-bond amount) in the butadiene bond unit was 34 mol%
  • the glass transition temperature measured by DSC was ⁇ 31 ° C.
  • Example 2 and 3 Polymerization Initiation n-Butyllithium, 2,2-bis (2-oxolanyl) propane and tetraglycidyl-1,3-bisaminomethylcyclohexane were used under the conditions shown in Table 1. Other conditions were the same as in Example 1, and oil-extended copolymers (samples b and c) were obtained. Table 1 shows the properties of the obtained copolymer.
  • Example 4 As shown in Table 2, the amount of 1,3-butadiene and styrene was not changed from the method of Example 1, the amount of monomer was changed, the average residence time was 25 minutes, and the internal temperature at the reactor outlet was changed. The polymerization reaction and the coupling reaction were carried out at 105 ° C. while changing the supply amounts of other substances as shown in Table 1. Thereafter, oil addition and desolvation were performed in the same manner as in Example 1 to obtain an oil-extended copolymer (sample d). Table 2 shows the properties of the obtained copolymer.
  • Example 5 As shown in Table 2, an oil-extended copolymer (sample e) was obtained in the same manner as in Example 4 except that the addition amount of tetraglycidyl-1,3-bisaminomethylcyclohexane was changed. Table 2 shows the properties of the obtained copolymer.
  • Example 6 Table 2 shows the addition amounts of n-butyllithium, 2,2-bis (2-oxolanyl) propane, and tetraglycidyl-1,3-bisaminomethylcyclohexane. Other conditions were the same as in Example 4 to obtain an oil-extended copolymer (sample f). Table 2 shows the properties of the obtained copolymer.
  • Example 1 As shown in Table 3, from the method of Example 1, the monomer feed amount was changed without changing the amount ratio of 1,3-butadiene and styrene, the average residence time was 45 minutes, and the internal temperature at the reactor outlet was 90%.
  • the polymerization reaction and the coupling reaction were carried out by changing the supply amounts of other substances as shown in Table 1 at a temperature of ° C. Thereafter, addition of oil and desolvation were carried out in the same manner as in Example 1 to obtain an oil-extended copolymer (sample g).
  • Table 3 shows the properties of the obtained copolymer.
  • Example 7 As shown in Table 4, from the method of Example 1, the amount of 1,3-butadiene and styrene was changed to change the monomer supply amount, the average residence time was 25 minutes, and the internal temperature at the reactor outlet was 97. The temperature and the supply amount of other substances were changed, and the polymerization and the coupling reaction were performed. Then, the oil was added and the solvent was removed in the same manner as in Example 1 to obtain an oil-extended copolymer (sample i). Table 4 shows the properties of the obtained copolymer.
  • Example 4 shows the addition amounts of n-butyllithium, 2,2-bis (2-oxolanyl) propane, and tetraglycidyl-1,3-bisaminomethylcyclohexane. Other conditions were the same as in Example 7, and an oil-extended copolymer (samples j and k) was obtained. Table 4 shows the properties of the obtained copolymer.
  • Example 10 As shown in Table 5, from the method of Example 7, without changing the amount ratio of 1,3-butadiene and styrene, the monomer supply amount was changed, the average residence time was 22 minutes, and the internal temperature of the reactor outlet was changed. The polymerization and the coupling reaction were carried out at 102 ° C. while changing the supply amounts of other substances as shown in Table 1. Thereafter, oil addition and desolvation were performed in the same manner as in Example 1 to obtain an oil-extended copolymer (Sample 1). Table 5 shows the properties of the obtained copolymer.
  • Example 3 As shown in Table 5, the amount of tetraglycidyl-1,3-bisaminomethylcyclohexane added was reduced from the method of Example 7. Other conditions were the same as in Example 7, and an oil-extended copolymer (sample m) was obtained. Table 5 shows the properties of the obtained copolymer.
  • Oil-extended styrene-butadiene copolymer (samples a, b, d, e, g to i, l to n): 96.25 parts by mass Polybutadiene rubber having a high 1,4-cis content (hereinafter, high cis) Polybutadiene rubber) (Ube Industries, UBEPOL BR-150, cis bond amount 98%): 30.00 parts by mass, silica (Degussa, Ultrasil VN3): 75.00 parts by mass, carbon black (Tokai Carbon) N339): 5.00 parts by mass; Silane coupling agent (Degussa, Si75): 6.00 parts by mass; S-RAE oil (Japan Energy, JOMO process NC140): 15.75 parts by mass -Zinc flower: 2.50 parts by mass-Stearic acid: 2.00 parts by mass-Wax (manufactured by Ouchi Shinsei Chemical Co., Ltd., Sunn
  • the method for kneading the rubber composition is shown below.
  • a closed kneader with an internal volume of 0.3 L equipped with a temperature control device, as the first stage kneading, under the conditions of a filling rate of 72% and a rotor rotational speed of 50/57 rpm
  • the raw rubber samples a, b, d, e, g to i, l to n, high cis butadiene rubber
  • silica silica
  • organosilane coupling agent silica
  • process oil kneaded.
  • the temperature of the closed mixer was controlled, and the rubber composition was obtained at a discharge temperature (formulation) of 155 to 160 ° C.
  • the above-obtained blend was cooled to room temperature, and then carbon black, zinc white, stearic acid, wax, and an antioxidant were added and kneaded again. Also in this case, the discharge temperature (formulation) was adjusted to 155 to 160 ° C. by controlling the temperature of the mixer.
  • sulfur and a vulcanization accelerator were added and kneaded with an open roll set at 70 ° C. Then, it shape
  • the physical properties of the rubber composition were measured by the following methods.
  • (1) Bound rubber amount The compound (about 0.2 g) after completion of the second stage kneading step was cut into a square of about 1 mm, put into a Harris basket (manufactured by 100 mesh wire mesh), and the weight was measured. Then, after being immersed in toluene at 23 ° C. for 24 hours, a drying treatment was performed, and the weight of the toluene insoluble component was measured. Calculate the weight of the rubber (branched conjugated diene-aromatic vinyl copolymer + high cis butadiene rubber) bound to the filler from the weight of the undissolved component and bind the filler to the amount of rubber in the first formulation. The percentage of rubber was determined.
  • Viscoelastic parameters were measured in a torsion mode using a viscoelasticity tester (ARES) manufactured by Rheometrics Scientific. The measured values were indexed in Examples 11 to 14 and Comparative Example 5 with Comparative Example 6 as 100, and Examples 15, 16 and Comparative Example 8 were indexed with Comparative Example 7 as 100. Tan ⁇ (loss tangent) measured at a frequency of 10 Hz and a strain of 1% at 0 ° C. was used as an index of wet skid resistance. It shows that wet skid resistance is so favorable that a value is large.
  • tan ⁇ loss tangent measured at 50 ° C. with a frequency of 10 Hz and a strain of 3% was used as an index of fuel saving characteristics. It shows that low hysteresis loss property is so favorable that a value is small. Further, G ′ (storage modulus) measured under the same conditions was used as an indicator of steering stability. The larger the value and the higher the rigidity, the better the stability.
  • the copolymer h of Comparative Example 2 polymerized without performing the coupling reaction did not satisfy the requirement of the formula (1) because the branching was not sufficiently performed.
  • the compound Mooney viscosity is low, the processability is good, the balance between low hysteresis loss and wet skid resistance is excellent as seen from tan ⁇ at 50 ° C and 0 ° C, and the tensile strength and wear resistance are also good. Thus, it was found that practically sufficient wear resistance and fracture characteristics were satisfied.
  • the copolymer m of Comparative Example 3 had a small weight average molecular weight and a too low Mooney viscosity.
  • Examples 15 and 16 using the copolymers i and l of Examples 8 and 11 were compared with Comparative Example 7 using the copolymer m of Comparative Example 3, Examples 15 and 16 were more As seen from tan ⁇ at 50 ° C and 0 ° C, it has an excellent balance between low hysteresis loss and wet skid resistance, good tensile strength and wear resistance, and practically sufficient wear resistance and fracture characteristics. It was found that I was satisfied.
  • Comparative Example 8 using the copolymer n of Comparative Example 4 which was polymerized at a lower temperature to increase the coupling efficiency, as can be seen by comparing Examples 7 to 10 with Comparative Example 4, sufficient polymerization conversion was achieved. Long residence time in the reactor to obtain rate. Accordingly, the copolymer n of Comparative Example 4 is inferior in productivity of the copolymer as compared with Examples 7 to 10, and the rubber composition of Comparative Example 8 is high because the Mooney viscosity of the copolymer n is high. It was found that the Mooney viscosity of the product was high and inferior in workability as compared with Examples 15 and 16.
  • the conjugated diene-aromatic vinyl copolymer of the present invention has industrial applicability as a material for tire treads, footwear, industrial articles and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

ランダム共重合体である、共役ジエン-芳香族ビニル共重合体(C)であり、前記共役ジエン-芳香族ビニル共重合体(C)中の芳香族ビニル結合量が、30~38質量%であり、共役ジエン全結合単位中のビニル結合量が、30~43モル%であり、前記共役ジエン-芳香族ビニル共重合体(C)のゲル浸透クロマトグラフィー(GPC)によって得られたポリスチレン換算の重量平均分子量(Mw-C)が700,000~1,000,000であり、数平均分子量(Mn-C)に対する重量平均分子量(Mw-C)の比((Mw-C)/(Mn-C))が、1.7~3.0であり、120℃で測定されるムーニー粘度(ML-C)とムーニー緩和率(MSR-C)とが、下記式(1)の関係を満たす、分岐状共役ジエン-芳香族ビニル共重合体(C)。{214-(ML-C)}/300≦(MSR-C)≦{260-(ML-C)}/300・・・(1)(式(1)において、100≦(ML-C)≦140である。)

Description

分岐状共役ジエン-芳香族ビニル共重合体、及びその製造方法
 本発明は、分岐状共役ジエン-芳香族ビニル共重合体、及びその製造方法に関する。
 自動車用タイヤは、安全性を確保する観点から、ウェットスキッド抵抗に優れ、実用上十分な耐摩耗性、破壊特性を有する材料を使用することが重要である。一方、近年においては、二酸化炭素排出量の抑制等、環境に対する配慮が社会的要請となっており、自動車に対する低燃費化要求も高まってきている。このような現状から、自動車用タイヤ、特に地面と接するタイヤトレッドの材料としては、転がり抵抗の小さい材料の開発が求められている。
 また、タイヤのライフサイクルの観点からは、製造工程における消費エネルギーの低減化への関心も高まっており、特にコンパウンド混練時の消費エネルギーの小さい、加工性が良好なゴム材料が求められている。さらに、原料合成ゴム生産においても生産性が良好でエネルギー消費を低減することが要求されてきている。
 タイヤトレッドの主要な材料の一つとして、スチレン-ブタジエンゴム(SBR)が知られている。SBRの重合方法としては、水中に懸濁させたモノマーをラジカル重合する乳化重合SBR(E-SBR)と、炭化水素溶媒中のモノマーを、有機アルカリ金属を用いてアニオン重合する溶液重合SBR(S-SBR)とがある。これらのうち、ポリマー構造設計の自由度が高く、特にシリカを充填剤として用いたタイヤにおいて省燃費性能とウェットスキッド抵抗性とのバランスに優れることから、溶液重合SBR(S-SBR)の使用量が増加している。
 溶液重合SBR(S-SBR)の重合プロセスとしては、大きく分けてバッチ重合プロセスと、連続重合プロセスとの2種類がある。
 バッチ重合プロセスでは、ポリマーの活性末端に変性剤を付加させることで比較的容易に官能基を導入でき、タイヤトレッド用材料としたときに転がり抵抗の小さいゴムが得られる(例えば、特許文献1参照。)。その一方において、分子量分布が狭いこと、さらに変性基とシリカ等の充填剤との結合により、混練時に粘度が上昇することから加工性が悪く、また重合時においてはバッチごとの昇温・降温作業が必要なことからエネルギー消費量が多くなるという欠点も有している。
 一方、連続重合プロセスでは、重合の発熱反応で発生した熱によって重合開始や促進に必要な加熱も行うことができるため、生産量あたりのエネルギー使用量がバッチ重合プロセスに比べて少なくて済み、さらに分子量分布も広がることから、加工性が比較的よいといった利点もある。しかしながら、溶液重合SBR(S-SBR)は、重合中に多量の分岐ができる乳化重合SBR(E-SBR)に比較すると、組成物を製造するときのコンパウンド混練時に、消費エネルギーが大きく、加工性に劣るという欠点を有している。
 その他の技術としては、例えば、連続重合プロセスでアニオン重合した共役ジエン-芳香族ビニル共重合体を四塩化ケイ素等の3官能以上のケイ素カップリング剤でカップリングする方法(例えば、特許文献2参照。)、ハロゲン含有ケイ素化合物、アルコキシシラン化合物、アルコキシサルファイド化合物などでカップリングする方法(例えば、特許文献3参照。)、2個以上のエポキシ基を有する化合物でカップリングする方法(例えば、特許文献4参照。)等が挙げられる。
特開2003-171418号公報 特開昭61-255917号公報 特開平11-199712号公報 国際公開第01/23467号
 しかしながら、加硫物とするときの加工性が良好であり、加硫物とした場合の低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れ、さらには実用上十分な耐摩耗性及び破壊特性を兼ね備えた共役ジエン-芳香族ビニル共重合体とするには未だ改善の余地がある。
 また、特許文献2~4に開示されている技術は、いずれも高カップリング率を得るために、比較的低温条件下で重合を行う必要があるため、生産性について未だ改善の余地がある。
 本発明は上記事情に鑑みなされたものであり、加硫物とするときの加工性が良好で、加硫物とした場合には、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスが優れており、実用上十分な耐摩耗性や破壊特性をも満足し、さらには生産性にも優れる分岐状共役ジエン-芳香族ビニル共重合体、及びその製造方法を提供することを目的とする。
 本発明者は、上記課題を解決するべく鋭意研究を行った結果、芳香族ビニル結合量、共役ジエン全結合単位中のビニル結合量、重量平均分子量(Mw-C)、及び重量平均分子量(Mw-C)/数平均分子量(Mn-C)が特定の数値範囲であるとともに、120℃で測定されるムーニー粘度(ML-C)とムーニー緩和率(MSR-C)とが特定の関係式を満たす分岐状共役ジエン-芳香族ビニル共重合体とすることで上記課題を解決できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は以下の通りである。
〔1〕
 ランダム共重合体である、共役ジエン-芳香族ビニル共重合体(C)であり、
 前記共役ジエン-芳香族ビニル共重合体(C)中の芳香族ビニル結合量が、30~38質量%であり、
 共役ジエン全結合単位中のビニル結合量が、30~43モル%であり、
 前記共役ジエン-芳香族ビニル共重合体(C)のゲル浸透クロマトグラフィー(GPC)によって得られたポリスチレン換算の重量平均分子量(Mw-C)が700,000~1,000,000であり、
 数平均分子量(Mn-C)に対する重量平均分子量(Mw-C)の比((Mw-C)/(Mn-C))が、1.7~3.0であり、
 120℃で測定されるムーニー粘度(ML-C)とムーニー緩和率(MSR-C)とが、下記式(1)の関係を満たす、分岐状共役ジエン-芳香族ビニル共重合体(C)。
 
 
{214-(ML-C)}/300≦(MSR-C)≦{260-(ML-C)}/300・・・(1)
 (式(1)において、100≦(ML-C)≦140である。)
〔2〕
 ポリスチレン換算の重量平均分子量(Mw-I)が、500,000~700,000であり、120℃で測定されるムーニー粘度(ML-I)とムーニー緩和率(MSR-I)とが、下記式(2)の関係を満たす、共役ジエン-芳香族ビニル共重合体(I)を、4個以上の官能基を有する多官能変性剤を用いてカップリングしたものである、〔1〕に記載の分岐状共役ジエン-芳香族ビニル共重合体(C)。
 
{260-(ML-I)}/300≦(MSR-I)≦{310-(ML-I)}/300・・・(2)
 (式(2)において、65≦(ML-I)≦100である。)
〔3〕
 〔1〕又は〔2〕に記載の分岐状共役ジエン-芳香族ビニル共重合体(C)と、
 無機充填剤と、
を含む、分岐状共役ジエン-芳香族ビニル共重合体組成物。
〔4〕
 〔1〕又は〔2〕に記載の分岐状共役ジエン-芳香族ビニル共重合体(C)の製造方法であって、
 共役ジエン化合物、芳香族ビニル化合物、及びアニオン重合開始剤を含む溶液を連続的に反応器に供給して重合反応を進行させ、活性末端を有する共役ジエン-芳香族ビニル共重合体の溶液を得る工程と、
 前記活性末端と反応可能な4個以上の官能基を有する多官能変性剤を用いて、前記共役ジエン-芳香族ビニル共重合体をカップリングさせる工程と、
を有する、分岐状共役ジエン-芳香族ビニル共重合体(C)の製造方法。
〔5〕
 〔1〕又は〔2〕に記載の分岐状共役ジエン-芳香族ビニル共重合体(C)の製造方法であって、
 攪拌機付きの反応器に、共役ジエン化合物、芳香族ビニル化合物、及びアニオン重合開始剤を含む溶液を連続的に供給して重合反応を進行させる工程と、
 前記反応器の出口から、活性末端を有する共役ジエン-芳香族ビニル共重合体の溶液を連続的に得る工程と、
 前記活性末端と反応可能な4個以上の官能基を有する多官能変性剤を用いて、前記共役ジエン-芳香族ビニル共重合体をカップリングさせる工程と、
を有し、
 前記重合反応においては、反応器出口における内温を95~110℃に保ち、平均滞留時間15分以上35分以下で連続的に重合反応を進行させる、分岐状共役ジエン-芳香族ビニル共重合体(C)の製造方法。
〔6〕
 前記アニオン重合開始剤のモル数に対して、前記多官能変性剤の官能基の合計モル数が、0.1~0.5倍となるように前記多官能変性剤を用いる、〔4〕又は〔5〕に記載の分岐状共役ジエン-芳香族ビニル共重合体の製造方法。
 本発明によれば、加硫物とする際の加工性に優れ、当該加硫物は低ヒステリシスロス性とウェットスキッド抵抗性とのバランスが優れており、実用上十分な耐摩耗性や破壊特性も満足し、さらに共重合体の生産性にも優れる、分岐状共役ジエン-芳香族ビニル共重合体及びその製造方法を提供できる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明は以下に示す形態に限定されるものではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
〔分岐状共役ジエン-芳香族ビニル共重合体〕
 本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)は、
 ランダム共重合体である、共役ジエン-芳香族ビニル共重合体(C)であり、
 前記共役ジエン-芳香族ビニル共重合体(C)中の芳香族ビニル結合量が、30~38質量%であり、
 共役ジエン全結合単位中のビニル結合量が、30~43モル%であり、
 前記共役ジエン-芳香族ビニル共重合体(C)のGPCによって得られたポリスチレン換算の重量平均分子量(Mw-C)が700,000~1,000,000であり、
 数平均分子量に対する重量平均分子量の比((Mw-C)/(Mn-C))が、1.7~3.0であり、
 120℃で測定されるムーニー粘度(ML-C)と、ムーニー緩和率(MSR-C)とが、下記式(1)の関係を満たす、分岐状共役ジエン-芳香族ビニル共重合体(C)。
 
{214-(ML-C)}/300≦(MSR-C)≦{260-(ML-C)}/300・・・(1)
 (式(1)において、100≦(ML-C)≦140である。)
 本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)は、ランダム共重合体である。ここで、ランダム共重合体とは、芳香族ビニルの連鎖長が30以上の成分が少ないか又は無いものをいう。
 本実施形態における分岐状共役ジエン-芳香族ビニル共重合体は、共役ジエン化合物と、芳香族ビニル化合物とのランダム共重合体であればよく、その種類は限定されない。共役ジエン化合物及び芳香族ビニル化合物としては、後述する化合物を適宜に用いることができる。共役ジエン-芳香族ビニル共重合体としては、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、スチレン-ブタジエンイソプレン共重合体が好ましく、スチレン-ブタジエン共重合体がより好ましい。
 例えば、分岐状共役ジエン-芳香族ビニル共重合体(C)がブタジエン-スチレン共重合体の場合、Kolthoffの方法(I.M.KOLTHOFF,et al.,J.Polym.Sci.1,429(1946)に記載の方法)で、分岐状共役ジエン-芳香族ビニル共重合体(C)を分解し、メタノールに不溶なポリスチレン量を分析する方法によると、分岐状共役ジエン-芳香族ビニル共重合体(C)の全量に対するポリスチレン量が、5質量%以下であることが好ましく、3質量%以下であることがより好ましい。
 また、オゾン分解による方法で、分岐状共役ジエン-芳香族ビニル共重合体(C)を分解し、ゲルパーミエーションクロマトグラフィー(GPC)によりスチレン連鎖分布を分析する方法によると、単離スチレン(即ちスチレン単位の連鎖が1のスチレン)が、全結合スチレンの40質量%以上であることが好ましく、長鎖ブロックスチレン(即ちスチレン単位の連鎖が8以上のスチレン)が全結合スチレンの5質量%以下であることがより好ましい。
 本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)中の芳香族ビニル結合量は、30~38質量%であり、好ましくは32~37質量%である。芳香族ビニル結合量は、分岐状共役ジエン-芳香族ビニル共重合体(C)のフェニル基の紫外吸光を測定することによって求めることができる。
 また、共役ジエン全結合単位中のビニル結合量が30~43モル%であり、好ましくは32~42モル%である。例えば、分岐状共役ジエン-芳香族ビニル共重合体(C)がブタジエン-スチレン共重合体である場合には、ハンプトンの方法(R.R.Hampton,Analytical Chemistry 21,923(1949)に記載の方法)によりブタジエン結合単位中のビニル結合量(1,2-結合量)を求めることができる。
 共役ジエン-芳香族ビニル共重合体は、一般に天然ゴムやブタジエンゴム等と混合して、さらに加硫物とすることが多いが、分岐状共役ジエン-芳香族ビニル共重合体(C)の各結合が上記範囲にあるときに、これらのゴムと相容しすぎることも分離しすぎることもなく、良好なバランスで混合することができる。これにより、低ヒステリスロス性とウェットスキッド抵抗性のバランスに優れた加硫物が得られる。
 本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)のガラス転移温度は、-40~-15℃であることが好ましく、-35~-18℃であることがより好ましい。ガラス転移温度がこの範囲にあることで、低ヒステリシスロス性とウェットスキッド抵抗性のバランスに優れた加硫物が得られる。ガラス転移温度については、ISO22768:2006に準拠して、所定の温度範囲で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をガラス転移温度とする。
 本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)は、上記のように、ポリスチレン換算の重量平均分子量(Mw-C)が700,000~1,000,000であり、好ましくは750,000~950,000である。良好な耐摩耗性や強度を得るために700,000以上であり、良好な加工性を保持するために1,000,000以下とする。また、数平均分子量(Mn-C)に対する重量平均分子量(Mw-C)の比((Mw-C)/(Mn-C))は、1.7~3.0であり、好ましくは2.0~2.8である。良好な加工性を得るために1.7以上であり、良好な機械特性を得るために3.0以下である。分子量及び分子量分布は、GPCを使用してクロマトグラムを測定し、標準ポリスチレンを使用した検量線により求められる。
 本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)の120℃で測定されるムーニー粘度(ML-C)とムーニー緩和率(MSR-C)は、下記式(1)の関係を満たす。
 
{214-(ML-C)}/300≦(MSR-C)≦{260-(ML-C)}/300・・・(1)
(ここで、100≦(ML-C)≦140である。)
 ムーニー緩和率(MSR)とは、ISO289-4:2003に規定される方法でムーニー粘度測定後にローターを停止し、その1.6秒後から5秒後までのトルク(T)と時間(t(秒))とを両対数プロットしたときの傾きの絶対値である。ムーニー粘度が等しい場合、分岐が多いほどこの値が小さくなるため、分岐度の指標として用いることができる。具体的には、後述する実施例に記載の方法により求めることができる。ムーニー粘度及びムーニー緩和率は、通常100℃で測定されるが、本実施形態では、120℃で測定されたムーニー粘度及びムーニー緩和率を採用する。
 式(1)において上記上限値以下となるように十分な分岐度を有する場合には加工性に優れ、加硫物の低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れ、実用上十分な耐摩耗性や破壊特性も満足する。分岐度が高くMSR-Cが低いほど加工性に優れ、加硫物の低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れるが、上記下限値を下回るとカップリング反応を高度化する必要があるため、生産性が低くなり、実用上好ましくない。
 本発明者が共役ジエン-芳香族ビニル共重合体の挙動について検討したところ、同一ミクロ構造(芳香族ビニル結合量及び共役ジエン結合単位中のビニル結合量)であり、同程度の分岐状態である共重合体の場合、分子量を変化させた共重合体のML-CをX軸に、MSR―CをY軸にプロットしたところ、(MSR―C/ML-C)は傾き-1/300に近似できることを見出した。さらに、重合温度を変化させたり、多分岐変性剤等の配合量を変化させたりすること等によって分岐状態を変化させると、上記プロットされた直線は上下に移動する(傾きは-1/300を維持しつつ、Y切片のみが変動する)ことを見出した。これらの知見から、共役ジエン-芳香族ビニル共重合体(C)のMSR-C及びML-Cが式(1)という条件を満たすことで好適な分岐状態を規定できるとともに、ビニル結合量、重量平均分子量(Mw-C)、数平均分子量に対する重量平均分子量の比((Mw-C)/(Mn-C))が特定範囲となるように制御することで、加硫物とするときの加工性が良好であり、加硫物とした場合には、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスが優れており、実用上十分な耐摩耗性や破壊特性をも満足し、さらには生産性にも優れる共重合体となし得ることを見出した。
 さらに、ML-CとMSR-Cの関係は、下記式(1a)の関係を満たすことが好ましい。下記式(1a)の関係を満たすことで、上記した本実施形態の効果はより一層顕著なものになる。
 
{220-(ML-C)}/300≦(MSR-C)≦{255-(ML-C)}/300・・・(1a)
 (ここで、106≦(ML-C)≦135である。)
 本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)は、共役ジエン-芳香族ビニル共重合体を、4個以上の官能基を有する多官能変性剤を用いてカップリングしたものであることが好ましい。これにより、分岐度及び分子量を効果的に上げることができ、共重合体生産性、及び加硫物とするときの加工性が良好であり、加硫物性能のバランスに優れた共重合体とすることができる。
 さらに、上記の共役ジエン-芳香族ビニル共重合体(C)は、ポリスチレン換算の重量平均分子量(Mw-I)は、500,000~700,000であり、120℃で測定されるムーニー粘度(ML-I)とムーニー緩和率(MSR-I)とが下記式(2)の関係を満たす、共役ジエン-芳香族ビニル共重合体(I)であることがより好ましい。これにより、加硫物とするときの加工性が良好であり、加硫物とした場合には、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスが優れており、実用上十分な耐摩耗性や破壊特性をも満足し、さらには生産性にも優れる共重合体となし得ることができる。
 
{260-(ML-I)}/300≦(MSR-I)≦{310-(ML-I)}/300・・・(2)
 (ここで、式(2)において、65≦(ML-I)≦100である。)
 さらに、120℃で測定されるムーニー粘度(ML-I)と120℃で測定されるムーニー緩和率(MSR-I)は、下記式(2a)の関係を満たすことがより好ましい。
 
{268-(ML-I)}/300≦(MSR-I)≦{300-(ML-I)}/300・・・(2a)
 (ここで、式(2a)において、66≦(ML-I)≦89である。)
〔分岐状共役ジエン-芳香族ビニル共重合体の製造方法〕
 本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)の好ましい製造方法としては、
 共役ジエン化合物、芳香族ビニル化合物、及びアニオン重合開始剤を含む溶液を連続的に反応器に供給して重合反応を進行させ、活性末端を有する共役ジエン-芳香族ビニル共重合体の溶液を得る工程と、
 前記活性末端と反応可能な4個以上の官能基を有する多官能変性剤を用いて、前記共役ジエン-芳香族ビニル共重合体をカップリングさせる工程と、
を有する。
 本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)のより好ましい製造方法としては、
 攪拌機付きの反応器に、共役ジエン化合物、芳香族ビニル化合物、アニオン重合開始剤を含む溶液を連続的に供給して重合反応を進行させる工程と、
 前記反応器出口から、活性末端を有する共役ジエン-芳香族ビニル共重合体の溶液を連続的に得る工程と、
 前記活性末端と反応可能な、4個以上の官能基を有する多官能変性剤を用いてカップリングする工程とを有する。
 上述の製造方法によれば、加硫物としたときの加工性が良好であり、加硫物とした場合には低ヒステリシスロス性とウェットスキッド抵抗性とのバランスが優れており、実用上十分な耐摩耗性や破壊特性をも満足できる本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)を効率よく製造することができる。例えば、従来では、上記したSBRを含むコンパウンドの混練りにはバンバリーミキサー等のインターナルミキサーが使用されているが、実験室レベルで使用される小容量(例えば、容量数リットル以下)のミキサーを用いる場合に比べて、タイヤ等のゴム製品の製造工程で使用される大容量(例えば、容量数百リットル以上)のミキサーを用いる場合には混練り加工性が大きく低下してしまう。そのため、加工性の問題はより顕著となる。その結果、コンパウンドの粘度の上昇、コンパウンドの生地の肌やエッジの荒れが生じる傾向がある。本実施形態の製造方法は、このようにスケールアップされた場合であっても優れた加工性を維持できるので、上記した問題が起こることなく、分岐状共役ジエン-芳香族ビニル共重合体(C)を効率よく製造することができる。
(共役ジエン化合物)
 本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)の製造に用いられる共役ジエン化合物としては、特に限定されず、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、1,3-ヘプタジエン、1,3-ヘキサジエン等が挙げられる。これらは単独で用いてもよく2種以上を組み合わせて用いてもよい。これらの中でも、入手容易性や経済性の観点から、1,3-ブタジエン、イソプレンが好ましい。
(芳香族ビニル化合物)
 本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)の製造に用いられる芳香族ビニル化合物としては、例えば、スチレン、p-メチルスチレン、α-メチルスチレン、ビニルエチルベンゼン、ビニルキシレン、ビニルナフタレン、ジフェニルエチレン等が挙げられる。これらは単独で用いてもよく2種以上を組み合わせて用いてもよい。これらの中でも、スチレンが好ましい。
 共役ジエン化合物及び芳香族ビニル化合物中に不純物として含まれる可能性があるアレン類及びアセチレン類は、重合反応及びカップリング反応における阻害要因となるため、全単量体中の濃度を200ppm未満とすることが好ましい。
(重合溶媒)
 本実施形態において、通常、共役ジエン化合物と芳香族ビニル化合物は、溶媒中で共重合させる。溶媒としては、特に限定されず、例えば、飽和炭化水素、芳香族炭化水素等の炭化水素系溶媒が用いられる。具体的には、ブタン、ペンタン、ヘキサン、ヘプタン等の直鎖状及び分岐状の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素及びそれらの混合物からなる炭化水素が挙げられる。
(単量体濃度)
 本実施形態において、重合反応を行う重合溶液中の共役ジエン化合物及び芳香族ビニル化合物の単量体濃度は、特に限定されないが、生産性の観点から、5~50質量%が好ましく、10~30質量%がより好ましい。
(アニオン重合開始剤)
 本実施形態の重合反応に用いることができるアニオン重合開始剤としては、特に限定されず、例えば、アルカリ金属系開始剤、アルカリ土類金属系開始剤等が使用できる。アルカリ金属系開始剤又はアルカリ土類金属系開始剤としては、重合開始の能力がある全てのアルカリ金属系開始剤又はアルカリ土類金属系開始剤が使用可能である。それらの中でも、有機アルカリ金属化合物及び有機アルカリ土類金属化合物の少なくとも一種の化合物を含むことが好ましい。
 有機アルカリ金属化合物としては、特に限定されないが、反応性等の観点から、有機リチウム化合物が好ましい。有機リチウム化合物としては、低分子量の化合物、可溶化したオリゴマーの有機リチウム化合物、1分子中に単独のリチウムを有する化合物、1分子中に複数のリチウムを有する化合物、有機基とリチウムの結合様式において炭素-リチウム結合を有する化合物、窒素-リチウム結合を有する化合物、錫-リチウム結合を有する化合物等が挙げられる。
 具体的には、モノ有機リチウム化合物としては、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、n-ヘキシルリチウム、ベンジルリチウム、フェニルリチウム、スチルベンリチウム等が挙げられる。
 多官能有機リチウム化合物としては、1,4-ジリチオブタン、sec-ブチルリチウムとジイソプロペニルベンゼンの反応物、1,3,5-トリリチオベンゼン、n-ブチルリチウムと1,3-ブタジエン及びジビニルベンゼンとの反応物、n-ブチルリチウムとポリアセチレン化合物との反応物等が挙げられる。
 窒素-リチウム結合を有する化合物としては、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジプロピルアミド、リチウムジ-n-ヘキシルアミド、リチウムジイソプロピルアミド、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピペリジド、リチウムヘプタメチレンイミド、リチウムモルホリド等が挙げられる。
 さらに、米国特許第5,708,092号明細書、英国特許第2,241,239号明細書、米国特許第5,527,753号明細書等に開示されている有機アルカリ金属化合物も使用できる。特に好ましいものは、n-ブチルリチウム、sec-ブチルリチウムである。上述した有機リチウム化合物は、単独で用いてもよく、2種以上を混合物として用いてもよい。
 その他の有機アルカリ金属化合物としては、有機ナトリウム化合物、有機カリウム化合物、有機ルビジウム化合物、有機セシウム化合物等が挙げられる。具体的には、ナトリウムナフタレン、カリウムナフタレンが挙げられ、その他にリチウム、ナトリウム、カリウムのアルコキサイド、スルフォネート、カーボネート、アミド等が用いられる。
 有機アルカリ金属化合物は、他の有機金属化合物と併用して用いてもよい。
 アルカリ土類金属化合物としては、特に限定されず、例えば、有機マグネシウム化合物、有機カルシウム化合物、有機ストロンチウム化合物等が挙げられる。具体的には、ジブチルマグネシウム、エチルブチルマグネシウム、プロピルブチルマグネシウム等が挙げられる。また、アルカリ土類金属のアルコキサイド、スルフォネート、カーボネート、アミド等の化合物も用いることができる。これらの有機アルカリ土類金属化合物は、上記した有機アルカリ金属系開始剤その他有機金属化合物と併用して用いてもよい。
(極性化合物)
 本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)の製造方法においては、芳香族ビニル化合物を共役ジエン化合物とランダムに共重合させる目的や、共重合体の共役ジエン部のミクロ構造を制御するためのビニル化剤として用いる目的や、重合速度の改善等の目的から、ルイス塩基等の極性化合物を少量添加することが好ましい。
 極性化合物としては、特に限定されないが、例えば、テトラヒドロフラン、ジエチルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、ジメトキシベンゼン、2,2-ビス(2-オキソラニル)プロパン等のエーテル類;テトラメチルエチレンジアミン、ジピペリジノエタン、トリメチルアミン、トリエチルアミン、ピリジン、キヌクリジン等の第三級アミン化合物;カリウム-t-アミラート、カリウム-t-ブチラート、ナトリウム-t-ブチラート、ナトリウムアミラート等のアルカリ金属アルコキシド化合物;ドデシルベンゼンスルホン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム等の有機スルホン酸の金属塩;トリフェニルホスフィン等のホスフィン化合物等が挙げられる。これらの極性化合物は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 極性化合物の使用量は、目的と効果の程度に応じて選択され、特に限定されないが、通常、アニオン重合開始剤中のアルカリ金属あるいはアルカリ土類金属原子1モルに対して0.01~100モルである。
 上記極性化合物は、重合体ジエン部分のミクロ構造の調節剤として、所望するビニル結合量に応じて適量使用できる。これにより、共役ジエン全結合単位中の、ビニル結合量を制御できる。多くの極性化合物は、共役ジエン化合物と芳香族ビニル化合物との共重合において有効なランダム化効果も同時に有しており、極性化合物を使用することにより、共重合体中における芳香族ビニル化合物の分布の調整や芳香族ビニル化合物のブロック量(例えば、スチレンブロック量)の調整を行うことができる。
(重合工程)
 共役ジエン化合物と芳香族ビニル化合物の重合反応は、上述した共役ジエン化合物、芳香族ビニル化合物、アニオン重合開始剤、重合溶媒、必要に応じて少量の極性化合物を、所定の攪拌機付きの反応器に連続的に供給して行い、反応器出口から、共役ジエン-芳香族ビニル共重合体の溶液を連続的に流出させて行うことができる。また、単量体及び/又は重合溶媒を、特開2002-284814号公報に開示されるような方法で反応器に供給する前段階で有機金属化合物と接触させ、微量不純物による重合阻害作用を不活性化させることもできる。
 単量体溶液等の供給位置及び共重合体溶液の流出位置は、特に限定されず、反応器の底部、頂部、及びその間の任意の位置の、いずれの位置であってもよいが、底部に近い位置から単量体溶液を供給し、頂部に近い位置から共重合体溶液を流出させることが好ましい。一般に、アニオン共重合では芳香族ビニル化合物よりも共役ジエン化合物の方が優先的に重合するため、ランダム化の目的で共役ジエン化合物の一部を反応器上部から供給することもできる。
 重合反応は、反応器出口における内温を95~110℃に保ち、平均滞留時間15分以上35分以内で実施することが好ましい。ここで、反応器出口における内温とは、反応器出口における共重合体溶液の温度をいう。反応速度を高め、生産性を向上させるとともに、メタレーションによる熱分岐反応を促進させてカップリング反応前の段階においても適度な分岐構造を形成させるために、反応器出口における内温を95℃以上とすることが好ましい。一方、過度なメタレーション反応等による失活でカップリング反応が阻害されることを防ぐために、110℃以下とすることが好ましい。共重合体溶液の温度は、外部熱交換器や内部熱交換器等による熱交換や、供給する単量体溶液の温度制御等によって調整できる。
 さらに、反応器下部における共重合体溶液の温度が反応器出口における内温よりも3~15℃低いことが好ましい。ここで、反応器下部における内温とは、具体的には、反応器に全容量の1/3の液を張った際にこの液に浸る位置であり、かつ反応器に供給する単量体溶液の流れの影響を直接受けない位置に設置された温度計により測定される温度とする。反応器内が完全混合の状態にある場合、反応器下部における内温は反応器出口における内温と事実上同一の温度となる。逆に、プラグフロー状態にある場合、反応器下部における内温と反応器出口における内温の間にはより大きな温度差が生じる。攪拌状態を制御して、反応器下部における内温と反応器出口における内温の差が3~15℃の範囲内にあるように重合を行うことによって、適度な滞留時間分布が生じ、共重合体の熱分岐反応を適度に進行させることができる。
 また、一定以上の単量体の転化率を得て、さらに十分に熱分岐反応を進行させる観点から、平均滞留時間は15分以上とすることが好ましく、生産性の観点や失活によるカップリング反応への影響を抑制する観点から、35分以下であることが好ましい。
 反応器出口における単量体の転化率は、好ましくは95%以上、さらに好ましくは98%以上、より好ましくは99%以上である。転化率が高いほど原単位がよく、また溶媒回収工程への負荷が小さいために生産性に優れる。ここで、転化率は、後述する実施例に記載の方法によって求めることができる。
 カップリング工程の前段階における重合工程で得られた共役ジエン-芳香族ビニル共重合体(I)のGPCによって得られたポリスチレン換算の重量平均分子量(Mw-I)は、特に限定されないが、500,000~700,000であることが好ましい。良好な耐摩耗性や強度を得る観点から、500,000以上であることが好ましく、生産性の観点やカップリング後に得られる本実施形態の共役ジエン-芳香族ビニル共重合体の加工性の観点から、700,000以下であることが好ましい。
 また、カップリング工程の前段階における重合工程で得られた共役ジエン-芳香族ビニル共重合体(I)は、120℃で測定されるムーニー粘度(ML-I)とムーニー緩和率(MSR-I)とが、下記式(2)の関係を満たすことが好ましい。
 
{260-(ML-I)}/300≦(MSR-I)≦{310-(ML-I)}/300・・・(2)
 (ここで、65≦(ML-I)≦100である。)
 カップリング後に得られる分岐状共役ジエン-芳香族ビニル共重合体(C)が、十分な分岐度を有するために、上記式(2)において、上記上限値以下とすることが好ましく、重合反応の後に行うカップリング反応に十分な活性末端を確保するために上記下限値以上となるように重合反応を行うことが好ましい。
 上記のように、反応器出口から流出させた、活性末端を有する共役ジエン-芳香族ビニル共重合体の溶液に、活性末端と反応可能な、4個以上の官能基を有する多官能変性剤を接触させてカップリング反応させることにより、本実施形態の分岐状共役ジエン-芳香族ビニル共重合体が得られる。
 反応器は、重合器と同様な攪拌機付き槽型反応器であっても、重合器より小型の攪拌機付き槽型反応器であってもよいし、スタティックミキサーであってもよい。共役ジエン-芳香族ビニル共重合体の溶液と多官能変性剤とが十分に混合され、反応に十分な滞留時間が得られることが好ましく、かかる観点から、攪拌機付き槽型反応器を用いた場合においては、反応器の容積は、乱流条件で重合器の1/20~1/5の容積であることが好ましい。
 滞留時間は、特に限定されないが、上記観点から、1分間~1時間が好ましく、1分間~15分間がより好ましい。カップリング反応の反応温度は、特に限定されないが、十分な変性効率を得る観点から、50~110℃が好ましく、70~110℃がより好ましい。
(4個以上の官能基を有する多官能変性剤)
 本実施形態で用いられる、活性末端を有する共役ジエン-芳香族ビニル共重合体の活性末端と反応可能な、4個以上の官能基を有する多官能変性剤としては、特に限定されず、例えば、エポキシ基、カルボニル基、カルボン酸エステル基、カルボン酸アミド基、酸無水物基、リン酸エステル基、亜リン酸エステル基、エピチオ基、チオカルボニル基、チオカルボン酸エステル基、ジチオカルボン酸エステル基、チオカルボン酸アミド基、イミノ基、エチレンイミノ基、ハロゲン基、アルコキシシリル基、イソシアネート基、チオイソシアネート基、共役ジエン基、及びアリールビニル基からなる群より選択される1種以上の官能基を有する化合物が挙げられる。
 なお、官能基のモル数の計算においては、活性末端を有する共役ジエン-芳香族ビニル共重合体の活性末端との反応性に鑑み、エポキシ基、カルボニル基、エピチオ基、チオカルボニル基、イミノ基、エチレンイミノ基、ハロゲン基、共役ジエン基、アリールビニル基、アルコキシシリル基の1個当たりのアルコキシ基は1官能として、カルボン酸エステル基、カルボン酸アミド基、酸無水物基、チオカルボン酸エステル基、ジチオカルボン酸エステル基、チオカルボン酸アミド基、イソシアネート基、チオイソシアネート基は2官能として、リン酸エステル基、亜リン酸エステル基は3官能として計算される。本実施形態において用いる多官能変性剤は、1分子中の上記の官能基の官能数の和が4以上のものである。
 エポキシ基を有する多官能変性剤としては、例えば、ポリエポキシ化液状ポリブタジエン等のポリエポキシ化合物;テトラグリシジルメタキシレンジアミン、テトラグリシジルアミノジフェニルメタン、テトラグリシジル-p-フェニレンジアミン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン等のグリシジルアミノ化合物;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリブトキシシラン、エポキシ化大豆油、エポキシ化亜麻仁油等のエポキシ基と他の官能基を有する化合物が挙げられる。
 また、アルコキシシリル基を有する多官能変性剤としては、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、ビス(トリエトキシシリル)メタン、ビス(トリメトキシシリル)エタン、1,6-ビス(トリメトキシシリル)ヘキサン、ビス(トリエトキシシリル)オクタン、ビス(トリエトキシシリル)エチレン、1,1-ビス(トリメトキシシリルメチル)エチレン、1,4-ビス(トリエトキシシリル)ベンゼン、ビス(3-トリメトキシシリルプロピル)-N-メチルアミンなどのアルコキシシラン化合物;N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(1,3-ジメチルブチリデン)-3-(トリブトキシシリル)-1-プロパンアミン、N-(1-メチルプロピリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-エチリデン-3-(トリエトキシシリル)-1-プロパンアミン、N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾール等のイミノ基とアルコキシシリル基とを有する化合物が挙げられる。
 さらに、ハロゲン基を有する多官能変性剤としては、四塩化ケイ素、四臭化ケイ素、四ヨウ化ケイ素、ビストリクロロシリルエタン、2,2,4,4,6,6-ヘキサクロロ-2,4,6-トリシラヘプタン、1,2,3,4,5,6-ヘキサキス[2-(メチルジクロロシリル)エチル]ベンゼン等のハロゲン化シラン化合物;モノクロロトリメトキシシラン、モノブロモトリメトキシシラン、ジクロロジメトキシシラン、ジブロモジメトキシシラン、トリクロロメトキシシラン、トリブロモメトキシシラン等のアルコキシハロゲン化シラン化合物等が挙げられる。
 またさらに、四塩化錫、四臭化錫、ビストリクロロスタニルエタン等のハロゲン化錫化合物;トリクロルフォスフィン、トリブロモフォスフィン等のポリハロゲン化リン化合物等が挙げられる。
 上記の中でも、さらに好ましい多官能変性剤としては、シリカとの親和性の大きい官能基を有する化合物、カップリングによる分子量の向上効果の大きい4~6官能のポリエポキシ化合物、エポキシ基とアルコキシシリル基とを合計で4~6官能有する化合物が挙げられる。よりさらに好ましい多官能変性剤としては、分子中にアミノ基を含むグリシジル化合物、更には1分子中にジグリシジルアミノ基を2個又は3個有する化合物が挙げられる。例えば、テトラグリシジルメタキシレンジアミン、テトラグリシジルアミノジフェニルメタン、テトラグリシジル-p-フェニレンジアミン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン等が挙げられる。
 上述した多官能変性剤は、単独で用いてもよく、2種以上を併用してもよい。
 これらの多官能変性剤の添加量は、アニオン重合開始剤のモル数に対して、前記多官能変性剤の官能基の合計モル数が好ましくは0.1~0.5倍であり、より好ましくは0.2~0.4倍である。分岐の付与による加工性の向上や分子量増加による強度の向上のために、0.1倍以上添加することが好ましく、経済性の観点から0.5倍以下で添加することが好ましい。
 上述したように、活性末端を有する共役ジエン-芳香族ビニル共重合体の溶液に、活性末端と反応可能な、4個以上の官能基を有する多官能変性剤を接触させてカップリング反応させることにより、本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)が得られる。
 上述のように、カップリング反応を行った後、必要に応じて溶液に、所定の失活剤、中和剤等を添加してもよい。失活剤としては、例えば、水、メタノール、エタノール、イソプロパノール等のアルコール類が挙げられる。中和剤としては、例えば、ステアリン酸、オレイン酸、バーサチック酸等のカルボン酸類、無機酸の水溶液、炭酸ガス等が挙げられる。
 また、本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)は、それ自体が高粘度である場合もあるため、重合後の仕上げ工程でのゲル化を防止する観点や、加工時の安定性向上の観点から、必要に応じて、2,6-ジ-tert-ブチル-4-ヒドロキシトルエン(BHT)、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェノール)プロピネート、2-メチル-4,6-ビス[(オクチルチオ)メチル]フェノール等の公知のゴム用安定剤を添加することが好ましい。
 本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)の加工性をより一層優れたものとする観点から、伸展油を添加することが好ましい。添加の方法は特に限定されないが、伸展油を重合体溶液に加え、混合して、油展共重合体溶液としたものを脱溶媒することが好ましい。伸展油としては、特に限定されず、例えば、アロマ油、ナフテン油、パラフィン油等を用いることができ、IP346法による多環芳香族成分が3質量%以下であるアロマ代替油が好ましい。これらの中でも、多環芳香族成分が3質量%以下であるアロマ代替油を用いることが、環境安全上の観点や、オイルブリード防止、さらにウェットグリップ特性といった観点から、より好ましいアロマ代替油としては、Kautschuk Gummi Kunststoffe 52(12)799(1999)に示されるTDAE(Treated Distillate Aromatic Extracts)、MES(Mild Extraction Solvate)等の他、RAE(Residual Aromatic Extracts)等が挙げられる。伸展油の使用量は、特に限定されないが、通常は、本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)100質量部に対し、10~60質量部であることが好ましく、20~37.5質量部であることがより好ましい。
 本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)を、重合溶液から取得する方法としては、特に限定されず、従来公知の方法を適用できる。例えば、スチームストリッピング等で溶媒を分離した後、重合体を濾別し、さらにそれを脱水及び乾燥して重合体を取得する方法、フラッシングタンクで濃縮し、さらにベント押し出し機等で脱揮する方法、ドラムドライヤー等で直接脱揮する方法等が適用できる。
〔分岐状共役ジエン-芳香族ビニル共重合体組成物〕
 分岐状共役ジエン-芳香族ビニル共重合体組成物とは、上述した本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)に所定の材料を混合したものをいう。この材料としては、例えば、分岐状共役ジエン-芳香族ビニル共重合体以外のゴム状重合体、無機充填剤、シランカップリング剤、ゴム用軟化剤、加硫剤、加硫促進剤・加硫助剤等が挙げられる。これらの中でも、無機充填剤を少なくとも含むものが好ましい。すなわち、本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)と、無機充填剤と、を含む分岐状共役ジエン-芳香族ビニル共重合体組成物が好ましい。
 上記分岐状共役ジエン-芳香族ビニル共重合体(C)以外のゴム状重合体としては、例えば、共役ジエン系重合体又はその水添物、共役ジエン系化合物とビニル芳香族化合物のランダム共重合体又はその水添物、共役ジエン系化合物とビニル芳香族化合物とのブロック共重合体又はその水添物;非ジエン系重合体、天然ゴム等が挙げられる。
 具体的には、ブタジエンゴム又はその水素添加物、イソプレンゴム又はその水素添加物、スチレン-ブタジエンゴム又はその水素添加物、スチレン-ブタジエンブロック共重合体又はその水素添加物、スチレン-イソプレンブロック共重合体又はその水素添加物等のスチレン系エラストマー、アクリロニトリル-ブタジエンゴム又はその水素添加物等が挙げられる。
 また、非ジエン系重合体としては、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム、エチレン-ブテン-ジエンゴム、エチレン-ブテンゴム、エチレン-ヘキセンゴム、エチレン-オクテンゴム等のオレフィン系エラストマー、ブチルゴム、臭素化ブチルゴム、アクリルゴム、フッ素ゴム、シリコーンゴム、塩素化ポリエチレンゴム、エピクロルヒドリンゴム、α、β-不飽和ニトリル-アクリル酸エステル-共役ジエン共重合ゴム、ウレタンゴム、多硫化ゴム等が挙げられる。
 上述したゴム状重合体は、官能基を有する変性ゴム状重合体であってもよい。その分子量は2,000~2,000,000であることが好ましく、5,000~1,500,000であることがさらに好ましい。低分子量のいわゆる液状ゴムを用いることもできる。
 これらのゴム状重合体は、単独で用いてもよく2種以上を組み合わせて用いてもよい。
 本実施形態の分岐状共役ジエン-芳香族ビニル共重合体(C)に、上述したゴム状重合体を組み合わせる場合、これらの比率は、特に限定されないが、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れ、実用上十分な耐摩耗性や破壊特性をも満足する加硫物を得る観点から、分岐状共役ジエン-芳香族ビニル共重合体(C)/上述したゴム状重合体として、20/80~100/0が好ましく、30/70~90/10がより好ましく、50/50~80/20がさらに好ましい。
 上記無機充填剤としては、例えば、シリカ系無機充填剤やカーボンブラック等が挙げられる。
 シリカ系無機充填剤としては、例えば、SiO、又はSiAlを構成単位の主成分とする固体粒子が挙げられる。ここで主成分とは、シリカ系無機充填剤の50質量%以上を占める成分をいう。シリカ系無機充填剤の具体例としては、シリカ、クレイ、タルク、マイカ、珪藻土、ウォラストナイト、モンモリロナイト、ゼオライト、ガラス繊維等の無機繊維状物質等が挙げられる。また、表面を疎水化したシリカ系無機充填剤や、シリカ系無機充填剤とシリカ系以外の無機充填剤との混合物も使用できる。これらの中でも、シリカ及びガラス繊維が好ましく、シリカがより好ましい。シリカとしては、乾式シリカ、湿式シリカ、合成ケイ酸塩シリカ等が使用できる。これらの中でも破壊特性の改良効果並びにウェットスキッド抵抗性の両立効果に優れる湿式シリカが好ましい。
 分岐状共役ジエン-芳香族ビニル共重合体組成物において、実用上良好な耐摩耗性や破壊特性を得る観点から、上述したシリカ系無機充填剤のBET吸着法で求められる窒素吸着比表面積は、100~300m/gであることが好ましく、170~250m/gであることがより好ましい。
 また必要に応じて、比較的比表面積が小さい(例えば、比表面積が200m/g未満)のシリカ系無機充填剤と、比較的比表面積の大きい(例えば、200m/g以上)のシリカ系無機充填剤とを組み合わせて用いることにより、良好な耐摩耗性や破壊特性と低ヒステリシスロス性を高度にバランスさせることもできる。
 分岐状共役ジエン-芳香族ビニル共重合体組成物におけるシリカ系無機充填剤の配合量は、特に限定されないが、分岐状共役ジエン-芳香族ビニル共重合体(C)を含むゴム成分100質量部に対し、0.5~300質量部が好ましく、5~200質量部がより好ましく、20~100質量部がさらに好ましい。充填剤としての添加効果が発現する観点から0.5質量部以上の添加が好ましく、一方においてシリカ系無機充填剤を十分に分散させ、組成物の加工性や機械強度を実用十分なものとする観点から300質量部以下とすることが好ましい。
 カーボンブラックとしては、特に限定されず、SRF、FEF、HAF、ISAF、SAF等の各クラスのカーボンブラックが使用でき、窒素吸着比表面積が50m/g以上、DBP吸油量が80mL/100g以上のカーボンブラックが好ましい。
 カーボンブラックの配合量は、分岐状共役ジエン-芳香族ビニル共重合体(C)を含むゴム成分100質量部に対し、0.5~100質量部が好ましく、3~100質量部がより好ましく、5~50質量部がさらに好ましい。ドライグリップ性能や導電性等のタイヤ等の用途に求められる性能を発現する観点から0.5質量部以上添加することが好ましく、分散性の観点から100質量部以下とすることが好ましい。
 なお、分岐状共役ジエン-芳香族ビニル共重合体組成物には、上述したシリカ系無機充填剤やカーボンブラック以外に、金属酸化物や金属水酸化物を添加してもよい。ここで、金属酸化物とは、化学式M(Mは金属原子、x、yは各々1~6の整数を表す。)を構成単位の主成分とする固体粒子のことをいい、例えば、アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛等が挙げられる。また、金属酸化物と金属酸化物以外の無機充填剤を含む混合物も使用できる。金属水酸化物としては、特に限定されず、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウム等が挙げられる。
 分岐状共役ジエン-芳香族ビニル共重合体組成物においては、シランカップリング剤を添加してもよい。シランカップリング剤は、ゴム成分とシリカ系無機充填剤との相互作用を緊密にする機能を有しており、ゴム成分及びシリカ系無機充填剤のそれぞれに対する親和性又は結合性の基を有しており、一般的には硫黄結合部分とアルコキシシリル基、シラノール基部分を一分子中に有する化合物が用いられる。上記観点から、シランカップリング剤は、上述したシリカ系無機充填剤と併用することが好ましい。
 シランカップリング剤の具体例としては、ビス-[3-(トリエトキシシリル)-プロピル]-テトラスルフィド、ビス-[3-(トリエトキシシリル)-プロピル]-ジスルフィド、ビス-[2-(トリエトキシシリル)-エチル]-テトラスルフィド等が挙げられる。
 シランカップリング剤の配合量は、上述したシリカ系無機充填剤100質量部に対して、0.1~30質量部が好ましく、0.5~20質量部がより好ましく、1~15質量部がさらに好ましい。シランカップリング剤の配合量は、配合効果の観点から0.1質量部以上が好ましく、経済性の観点から30質量部以下が好ましい。
 分岐状共役ジエン-芳香族ビニル共重合体組成物には、加工性の改良を図るために、ゴム用軟化剤を配合してもよい。ゴム用軟化剤としては、鉱物油、又は液状若しくは低分子量の合成軟化剤が挙げられる。ゴムの軟化、増容、加工性の向上を図るために使用されているプロセスオイル又はエクステンダーオイルと呼ばれる鉱物油系ゴム用軟化剤は、芳香族環、ナフテン環、及びパラフィン鎖の混合物であり、パラフィン鎖の炭素数が全炭素中50%以上を占めるものがパラフィン系と呼ばれ、ナフテン環炭素数が30~45%のものがナフテン系、芳香族炭素数が30%を超えるものが芳香族系と呼ばれている。分岐状共役ジエン-芳香族ビニル共重合体(C)とともに用いるゴム用軟化剤としては、芳香族化合物を適度に含有するものがなじみがよく、好ましい。
 ゴム用軟化剤の配合量は、分岐状共役ジエン-芳香族ビニル共重合体(C)を含有するゴム成分100質量部に対して、0~100質量部が好ましく、10~90質量部がより好ましく、30~90質量部がさらに好ましい。ゴム用軟化剤の配合量が前記ゴム成分100質量部に対して100質量部を超えるとブリードアウトを生じやすく、組成物表面にベタツキを生ずるおそれがあるため好ましくない。
 分岐状共役ジエン-芳香族ビニル共重合体(C)とその他のゴム状重合体、シリカ系無機充填剤、カーボンブラックやその他の充填剤、シランカップリング剤、ゴム用軟化剤等の各種添加剤を混合する方法については、特に限定されるものではない。例えば、オープンロール、バンバリーミキサー、ニーダー、単軸スクリュー押出機、2軸スクリュー押出機、多軸スクリュー押出機等の一般的な混和機を用いた溶融混練方法、各成分を溶解混合後、溶剤を加熱除去する方法等が挙げられる。これらのうち、生産性及び良混練性の観点から、ロール、バンバリーミキサー、ニーダー、又は押出機等による溶融混練法が好ましい。共役ジエン-芳香族ビニル共重合体と各種配合剤とを一度に混練する方法、複数の回数に分けて混合する方法のいずれであってもよい。
 上述した分岐状共役ジエン-芳香族ビニル共重合体組成物は、加硫剤により加硫処理を施した加硫組成物としてもよい。加硫剤としては、特に限定されず、例えば、有機過酸化物及びアゾ化合物等のラジカル発生剤、オキシム化合物、ニトロソ化合物、ポリアミン化合物、硫黄、硫黄化合物が使用できる。硫黄化合物としては、例えば、一塩化硫黄、二塩化硫黄、ジスルフィド化合物、高分子多硫化合物等が挙げられる。
 加硫剤の使用量は、特に限定されないが、通常は、分岐状共役ジエン-芳香族ビニル共重合体(C)を含むゴム成分100質量部に対して0.01~20質量部が好ましく、0.1~15質量部がより好ましい。
 加硫方法としては、特に限定されず、従来公知の方法を適用できる。加硫温度は、例えば、120~200℃であり、好ましくは140~180℃である。加硫に際しては、必要に応じて加硫促進剤や加硫助剤等を用いてもよい。加硫促進剤としては、特に限定されず、従来公知の材料を用いることもできる。例えば、スルフェンアミド系、グアニジン系、チウラム系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、チオ尿素系、ジチオカルバメート系等の加硫促進剤が挙げられる。加硫助剤としては、特に限定されず、従来公知の材料を用いることもできる。例えば、亜鉛華、ステアリン酸等が挙げられる。
 加硫促進剤の使用量は、通常、分岐状共役ジエン-芳香族ビニル共重合体(C)を含有するゴム成分100質量部に対し0.01~20質量部であるものとし、0.1~15質量部が好ましい。加硫助剤の使用量は、特に限定されないが、上述したゴム成分100質量部に対し、1~10質量部が好ましい。
 分岐状共役ジエン-芳香族ビニル共重合体組成物には、本実施形態の目的を損なわない範囲内で、上述した以外の軟化剤、充填剤、耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、滑剤等の各種添加剤を用いてもよい。充填剤としては、具体的には炭酸カルシウム、炭酸マグネシウム、硫酸アルミニウム、硫酸バリウム等が挙げられる。耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、潤滑剤としては、公知の材料を適用できる。
 以下、実施例及び比較例を用いて本発明を更に具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。実施例及び比較例に適用した、物性の測定方法、評価方法について下記に示す。
(1)結合スチレン量
 測定用の試料をクロロホルム溶液とし、紫外可視分光光度計(島津製作所製、UV-2450)を用いて、スチレンのフェニル基によるUV254nmの吸収により、結合スチレン量(質量%)を測定した。
(2)ブタジエン部分のミクロ構造(ビニル結合量)
 測定用の試料を二硫化炭素溶液とし、溶液セルを用いて、フーリエ変換赤外分光光度計(日本分光製、FT-IR230)を用いて、赤外線スペクトルを600~1000cm-1の範囲で測定して、所定の波数における吸光度により、ハンプトンの方法の計算式に従い、ブタジエン部分のミクロ構造(ビニル結合量)を求めた。
(3)ムーニー粘度及びムーニー緩和率
 ムーニー粘度計(上島製作所製、VR1132)を用い、ISO289-1及びISO289-4に準拠し、温度を120℃として、ムーニー粘度及びムーニー緩和率を測定した。まず、試料を120℃で1分間余熱した後、2rpmでローターを回転させ、4分後のトルクを測定してムーニー粘度(ML1+4)とした。その後、即座にローターの回転を停止させ、停止後1.6~5秒間の0.1秒ごとのトルクをムーニー単位で記録し、トルクと時間(秒)を両対数プロットした際の直線の傾きを求め、その絶対値をムーニー緩和率(MSR)とした。
(4)重量平均分子量及び分子量分布
 ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置を使用して、クロマトグラムを測定し、標準ポリスチレンを使用した検量線に基づいて重量平均分子量を求めた。さらに、数平均分子量に対する重量平均分子量の比から分子量分布(重量平均分子量/数平均分子量)を求めた。
 溶離液はテトラヒドロフラン(THF)を使用した。カラムは、ガードカラム:東ソー TSKguardcolumn HHR-H、カラム:東ソー TSKgel G6000HHR、TSKgel G5000HHR、TSKgel G4000HHRを使用した。オーブン温度40℃、THF流量1.0mL/分の条件で、RI検出器(東ソー製 HLC8020)を用いた。測定用の試料を10mLのTHFに対して10mgを溶解させて測定溶液とし、測定溶液200μLをGPC測定装置に注入して測定した。
(5)ガラス転移温度(Tg)
 ISO22768:2006に準拠し、マックサイエンス社製、DSC3200Sを用いて測定した。ヘリウム50mL/分の流通下、-100℃から20℃/分で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をガラス転移温度とした。
(6)転化率
 内部標準としてn-プロピルベンゼン0.50mLと、約20mLのトルエンを密封した100mLのボトルに、反応器出口から得られるポリマー溶液を約20mL注入して、測定用の試料を作製した。得られたサンプルを、アピエゾングリースを担持させたパックドカラムを装着したガスクロマトグラフィー(GC)に測定し、事前に得ていた1,3-ブタジエンモノマーの検量線とスチレンモノマーの検量線からポリマー溶液中の残留モノマー量を求め、1,3-ブタジエンモノマー及びスチレンモノマーの転化率を求めた。
〔実施例1〕
 内容積10Lで、直径(D)に対する内部の高さ(L)の比(L/D)が4であり、底部に入り口、頂部に出口を有し、攪拌機及び温度調整用のジャケットを有するオートクレーブを2基直列に連結し、1基目を重合反応器として、2基目をカップリング反応器として用いた。
 予め、水分等の不純物を除去した、1,3-ブタジエンを23.8g/分、スチレンを11.9g/分、n-ヘキサンを187.5g/分の添加速度で混合して混合溶液とした。得られた混合溶液に対して、不純物不活性化処理用としてn-ブチルリチウム(処理n-ブチルリチウム)を0.100mmol/分の添加速度でスタティックミキサーを用いて混合した。この混合溶液を1基目の重合反応器の底部に連続的に供給するとともに、極性物質として2,2-ビス(2-オキソラニル)プロパンを0.014g/分の添加速度で、重合開始剤としてn-ブチルリチウムを0.145mmol/分の添加速度で、1基目の重合反応器の底部に供給し、重合反応器の出口の内温(共重合体溶液の温度)が100℃となるように制御して重合反応を継続させた。このとき、反応器内の平均滞留時間は30分であった。
 1基目の重合反応器の頂部より重合体溶液を連続的に取り出して、2基目のカップリング反応器の底部に供給した。1基目の重合反応器における重合反応が定常的になった状態で、2基目のカップリング反応器の入口から、空気との接触が起こらないように十分に注意しながら、ポリマー溶液を少量ずつ抜き出し、メタノール約1mLとシクロヘキサン約30mLの混合溶液中に加えた。そして、酸化防止剤(BHT:2,6-ジ-t-ブチル-4-ヒドロキシトルエン)をポリマー100gあたり0.2gとなるように混合溶液に添加した後、ドラムドライヤーで溶媒を除去して、分子量並びにムーニー粘度及びムーニー緩和率を測定する試料(共役ジエン-芳香族ビニル共重合体(I))を得た。ムーニー粘度及びムーニー緩和率は、110℃に設定した6インチロールに10回通した後に測定した。
 試料(共役ジエン-芳香族ビニル共重合体(I))の120℃のムーニー粘度(ML-I)は93.5、ムーニー緩和率(MSR-I)は0.687であり、GPCで測定したポリスチレン換算の重量平均分子量(Mw-I)は67.4万であった。また2基目のカップリング反応器の入口での重合転化率は1,3-ブタジエンが98%、スチレンが96%に達していた。
 2基目のカップリング反応器の温度を85℃に保ち、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサンを0.0184mmol/分の添加速度で2基目のカップリング反応器の底部から添加し、カップリング反応を実施した。テトラグリシジル-1,3-ビスアミノメチルシクロヘキサンは1分子中にエポキシ基を4個有する化合物であり、その官能基の合計モル数と添加したn-ブチルリチウムのモル数との比(当量比)は0.30であった。2器目のカップリング反応器の頂部から取り出した重合体溶液に、酸化防止剤(BHT)をポリマー100gあたり0.2gとなるように0.071g/分(n-ヘキサン溶液)の添加速度で連続的に添加して、カップリング反応を終了させた。その後、溶媒を除去し、分岐状共役ジエン-芳香族ビニル共重合体(C)を得た。
 このカップリング後の分岐状共役ジエン-芳香族ビニル共重合体(C)の120℃のムーニー粘度(ML-C)は134.2であり、ムーニー緩和率(MSR-C)は0.401であり、GPCで測定したポリスチレン換算の重量平均分子量(Mw-C)は88.6万であり、数平均分子量に対する重量平均分子量の比((Mw-C)/(Mn-C))は2.32であった。また、結合スチレン量は33質量%、ブタジエン結合単位中のビニル結合量(1,2-結合量)は34モル%であり、DSCで測定したガラス転移温度は-31℃であった。
 更にこの分岐状共役ジエン-芳香族ビニル共重合体溶液に、S-RAEオイル(ジャパンエナジー社製、NC-140)を重合体100質量部あたり37.5質量部添加した後に溶媒を除去し、油展共重合体(試料a)を得た。得られた共重合体の性状を表1に示す。
〔実施例2、3〕
 重合開始n-ブチルリチウム、2,2-ビス(2-オキソラニル)プロパン及びテトラグリシジル-1,3-ビスアミノメチルシクロヘキサンを表1に示す条件で用いた。その他の条件は、実施例1と同様として、油展共重合体(試料b、c)を得た。得られた共重合体の性状を表1に示す。
〔実施例4〕
 表2に示すように、実施例1の方法から1,3-ブタジエンとスチレンとの量比は変えずに、モノマーの供給量を変え、平均滞留時間を25分、反応器出口の内温を105℃とし、その他の物質の供給量も、表1に示すように変えて重合反応及びカップリング反応を行った。その後、実施例1と同様にオイルの添加及び脱溶媒を行って油展共重合体(試料d)を得た。得られた共重合体の性状を表2に示す。
〔実施例5〕
 表2に示すように、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサンの添加量を変えた以外は、実施例4と同様として、油展共重合体(試料e)を得た。得られた共重合体の性状を表2に示す。
〔実施例6〕
 重合開始n-ブチルリチウム、2,2-ビス(2-オキソラニル)プロパン及びテトラグリシジル-1,3-ビスアミノメチルシクロヘキサンの添加量を、表2に示すようにした。その他の条件は、実施例4と同様として、油展共重合体(試料f)を得た。得られた共重合体の性状を表2に示す。
〔比較例1〕
 表3に示すように、実施例1の方法から、1,3-ブタジエンとスチレンの量比は変えずにモノマーの供給量を変え、平均滞留時間を45分、反応器出口の内温を90℃とし、その他の物質の供給量も表1に示すように変えて重合反応及びカップリング反応を行った。その後、実施例1と同様にオイルの添加及び脱溶媒を行って油展共重合体(試料g)を得た。得られた共重合体の性状を表3に示す。
〔比較例2〕
 表3に示すように、重合開始n-ブチルリチウム及び2,2-ビス(2-オキソラニル)プロパンの添加量を変え、さらにテトラグリシジル-1,3-ビスアミノメチルシクロヘキサンの添加をゼロにした。その他の条件は比較例1と同様な方法で重合反応を実施して重合反応を行った。その後、実施例1と同様にオイルの添加及び脱溶媒を行って油展共重合体(試料h)を得た。
 実施例1~4及び比較例1においては、1器の反応器で重合反応を行ったのに対して、比較例2においては、2器の反応器で重合反応を行った。重合転化率は2器目の反応器の頂部から得た共重合体溶液で測定した。得られた共重合体の性状を表3に示す。
〔実施例7〕
 表4に示すように、実施例1の方法から、1,3-ブタジエンとスチレンの量比を変更してモノマーの供給量を変え、平均滞留時間を25分、反応器出口の内温を97℃とし、その他の物質の供給量も変えて重合及びカップリング反応を行った後、実施例1と同様にオイルの添加及び脱溶媒を行って油展共重合体(試料i)を得た。得られた共重合体の性状を表4に示す。
〔実施例8、9〕
 重合開始n-ブチルリチウム、2,2-ビス(2-オキソラニル)プロパン及びテトラグリシジル-1,3-ビスアミノメチルシクロヘキサンの添加量を、表4に示すようにした。その他の条件は、実施例7と同様として、油展共重合体(試料j、k)を得た。得られた共重合体の性状を表4に示す。
〔実施例10〕
 表5に示すように、実施例7の方法から、1,3-ブタジエンとスチレンの量比は変えずに、モノマーの供給量を変え、平均滞留時間を22分、反応器出口の内温を102℃とし、その他の物質の供給量も表1に示すように変えて重合及びカップリング反応を行った。その後、実施例1と同様にオイルの添加及び脱溶媒を行って油展共重合体(試料l)を得た。得られた共重合体の性状を表5に示す。
〔比較例3〕
 表5に示すように、実施例7の方法から、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサンの添加量を減じた。その他の条件は実施例7と同様として油展共重合体(試料m)を得た。得られた共重合体の性状を表5に示す。
〔比較例4〕
 表5に示すように、実施例7の方法から、1,3-ブタジエンとスチレンの量比は変えずにモノマーの供給量を変え、平均滞留時間を45分、反応器出口の内温を90℃とし、その他の物質の供給量も表5に示すように変えて重合及びカップリング反応を行った。その後、実施例7と同様にオイルの添加及び脱溶媒を行って油展共重合体(試料n)を得た。得られた共重合体の性状を表5に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
〔実施例11~16〕、〔比較例5~8〕
 上記表1~5に示す試料(試料a、b、d、e、g~i、l~n)を原料ゴムとして、下記に示す配合に従い、原料ゴムを含有するゴム組成物を得た。
・油展スチレン-ブタジエン共重合体(試料a、b、d、e、g~i、l~n):96.25質量部
・1,4-シス含有量の高いポリブタジエンゴム(以下、ハイシスポリブタジエンゴムという。)(宇部興産社製、UBEPOL BR-150、シス結合量98%):30.00質量部
・シリカ(デグサ社製、Ultrasil VN3):75.00質量部
・カーボンブラック(東海カーボン社製、N339):5.00質量部
・シランカップリング剤(デグサ社製、Si75):6.00質量部
・S-RAEオイル(ジャパンエナジー社製、JOMOプロセスNC140):15.75質量部
・亜鉛華:2.50質量部
・ステアリン酸:2.00質量部
・ワックス(大内新興化学社製、サンノックN):1.50質量部
・老化防止剤(N-イソプロピル-N’-フェニル-p-フェニレンジアミン):2.00質量部
・硫黄:2.20質量部
・加硫促進剤(N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド):1.70質量部
・加硫促進剤(ジフェニルグアニジン):2.00質量部
合計:241.90質量部
 ゴム組成物の混練方法を下記に示す。
 温度制御装置を具備する密閉混練機(内容量0.3L)を使用し、第一段の混練として、充填率72%、ローター回転数50/57rpmの条件で、原料ゴム(試料a、b、d、e、g~i、l~n、ハイシスブタジエンゴム)、シリカ、有機シランカップリング剤、プロセスオイルを混練した。このとき、密閉混合機の温度を制御し、排出温度(配合物)は155~160℃でゴム組成物を得た。
 次に、第二段の混練として、上記で得た配合物を室温まで冷却後、カーボンブラック、亜鉛華、ステアリン酸、ワックス、老化防止剤を加え、再度混練した。この場合も、混合機の温度制御により排出温度(配合物)を155~160℃に調整した。冷却後、第三段の混練として、70℃に設定したオープンロールにて、硫黄、加硫促進剤を加えて混練した。その後、成型し、160℃で20分間、加硫プレスにて加硫した。加硫後、ゴム組成物の物性を測定した。物性測定結果を下記表6、7に示した。
 ゴム組成物の物性は、下記の方法により測定した。
(1)バウンドラバー量
 第2段混練工程の終了後の配合物(約0.2g)を約1mm角状に裁断し、ハリスかご(100メッシュ金網製)へ入れ、重量を測定した。その後、トルエン中に23℃で24時間浸漬後、乾燥処理を施し、トルエン非溶解成分の重量を測定した。非溶解成分の重量から充填剤に結合したゴム(分岐状共役ジエン-芳香族ビニル共重合体+ハイシスブタジエンゴム)の重量を計算し、最初の配合物中のゴム量に対する充填剤と結合したゴムの割合を求めた。
(2)配合物ムーニー粘度
 ムーニー粘度計を使用し、JIS K6300-1に準拠し、130℃で1分間の予熱を行った後に、ローターを毎分2回転(2rpm)で回転させ、4分後の粘度を測定した。ムーニー粘度が小さい値であるほど、混練時に消費エネルギーが小さく加工性が良好であることを示す。
(3)引張強さ
 JIS K6251の引張試験法に準拠して測定した。実施例11~14及び比較例5は、比較例6を100として指数化し、実施例15、16及び比較例8は、比較例7を100として指数化した。
(4)粘弾性パラメータ
 レオメトリックス・サイエンティフィック社製の粘弾性試験機(ARES)を使用し、ねじりモードで粘弾性パラメータを測定した。各々の測定値は、実施例11~14及び比較例5は、比較例6を100として指数化し、実施例15、16及び比較例8は、比較例7を100として指数化した。0℃において周波数10Hz、ひずみ1%で測定したtanδ(損失正接)をウェットスキッド抵抗性の指標とした。値が大きいほどウェットスキッド抵抗性が良好であることを示す。
 また50℃において周波数10Hz、ひずみ3%で測定したtanδ(損失正接)を省燃費特性の指標とした。値が小さいほど低ヒステリシスロス性が良好であることを示す。さらに同条件で測定したG’(貯蔵弾性率)を操縦安定性の指標とした。値が大きく剛性の高いほど安定性が良好であることを示す。
(5)耐摩耗性
 アクロン摩耗試験機(安田精機製作所製)を使用し、JIS-K6264-2に準拠して、荷重44.1N、1000回転の摩耗量を測定した。実施例11~14及び比較例5は、比較例6を100として指数化し、実施例15、16及び比較例8は、比較例7を100として指数化した。指数が大きいほど耐摩耗性が優れることを示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 ミクロ構造(結合スチレン量及びビニル結合量)が同等である油展スチレン-ブタジエン共重合体を用いた実施例と比較例とを比較し、考察する。
 低温で重合した比較例1の共重合体gは分岐が十分に行われなかったことから、前記式(1)の要件を満たさないものとなった。表1~3の実施例1~6と比較例1とを比較すると明らかなように、実施例1~6の共重合体a~fでは十分な重合転化率を得るための反応器内の滞留時間が比較例1の共重合体gよりも短時間でよく、生産性に優れることが分かった。また、実施例11~14のゴム組成物は比較例5に比較すると、引張強さ、耐摩耗性、低ヒステリシスロス性とウェットスキッド抵抗性といった性能と加工性のバランスに優れることが分かった。
 カップリング反応を行わずに重合した比較例2の共重合体hは、分岐が十分に行われなかったことから、式(1)の要件を満たさないものとなった。実施例1、2、4、5の共重合体a、b、d、eを用いた実施例11~14においては、比較例2の共重合体hを用いた比較例6に比して、配合物ムーニー粘度が低く、加工性が良好であり、50℃と0℃のtanδから見られるように低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れ、引張強さ、耐摩耗性も良好で実用上十分な耐摩耗性や破壊特性をも満足することが分かった。
 比較例3の共重合体mは、重量平均分子量が小さくムーニー粘度が低過ぎるものであった。実施例8、11の共重合体i、lを用いた実施例15,16と、比較例3の共重合体mを用いた比較例7とを比較すると、実施例15、16の方が、50℃と0℃のtanδから見られるように低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れており、引張強さ、耐摩耗性も良好で、実用上十分な耐摩耗性や破壊特性をも満足することが分かった。
 より低温で重合してカップリング効率を高めた比較例4の共重合体nを用いた比較例8においては、実施例7~10と比較例4とを比較するとわかるように、十分な重合転化率を得るための反応器内の滞留時間が長い。このことから、比較例4の共重合体nは実施例7~10と比較して共重合体の生産性に劣り、また、共重合体nのムーニー粘度が高いために比較例8のゴム組成物の配合物ムーニー粘度が高く、実施例15、16と比較して加工性に劣ることが分かった。
 本出願は、2009年4月7日に日本国特許庁へ出願された日本特許出願(特願2009-93252)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の共役ジエン-芳香族ビニル共重合体は、タイヤトレッド用材料、履物、工業用品等として、産業上の利用可能性がある。
 
 

Claims (6)

  1.  ランダム共重合体である、共役ジエン-芳香族ビニル共重合体(C)であり、
     前記共役ジエン-芳香族ビニル共重合体(C)中の芳香族ビニル結合量が、30~38質量%であり、
     共役ジエン全結合単位中のビニル結合量が、30~43モル%であり、
     前記共役ジエン-芳香族ビニル共重合体(C)のゲル浸透クロマトグラフィー(GPC)によって得られたポリスチレン換算の重量平均分子量(Mw-C)が700,000~1,000,000であり、
     数平均分子量(Mn-C)に対する重量平均分子量(Mw-C)の比((Mw-C)/(Mn-C))が、1.7~3.0であり、
     120℃で測定されるムーニー粘度(ML-C)とムーニー緩和率(MSR-C)とが、下記式(1)の関係を満たす、分岐状共役ジエン-芳香族ビニル共重合体(C)。
     
    {214-(ML-C)}/300≦(MSR-C)≦{260-(ML-C)}/300・・・(1)
     (式(1)において、100≦(ML-C)≦140である。)
  2.  ポリスチレン換算の重量平均分子量(Mw-I)が、500,000~700,000であり、120℃で測定されるムーニー粘度(ML-I)とムーニー緩和率(MSR-I)とが、下記式(2)の関係を満たす、共役ジエン-芳香族ビニル共重合体(I)を、4個以上の官能基を有する多官能変性剤を用いてカップリングしたものである、請求項1に記載の分岐状共役ジエン-芳香族ビニル共重合体(C)。
     
    {260-(ML-I)}/300≦(MSR-I)≦{310-(ML-I)}/300・・・(2)
     (式(2)において、65≦(ML-I)≦100である。)
  3.  請求項1又は2に記載の分岐状共役ジエン-芳香族ビニル共重合体(C)と、
     無機充填剤と、
    を含む、分岐状共役ジエン-芳香族ビニル共重合体組成物。
  4.  請求項1又は2に記載の分岐状共役ジエン-芳香族ビニル共重合体(C)の製造方法であって、
     共役ジエン化合物、芳香族ビニル化合物、及びアニオン重合開始剤を含む溶液を連続的に反応器に供給して重合反応を進行させ、活性末端を有する共役ジエン-芳香族ビニル共重合体の溶液を得る工程と、
     前記活性末端と反応可能な4個以上の官能基を有する多官能変性剤を用いて、前記共役ジエン-芳香族ビニル共重合体をカップリングさせる工程と、
    を有する、分岐状共役ジエン-芳香族ビニル共重合体(C)の製造方法。
  5.  請求項1又は2に記載の分岐状共役ジエン-芳香族ビニル共重合体(C)の製造方法であって、
     攪拌機付きの反応器に、共役ジエン化合物、芳香族ビニル化合物、及びアニオン重合開始剤を含む溶液を連続的に供給して重合反応を進行させる工程と、
     前記反応器の出口から、活性末端を有する共役ジエン-芳香族ビニル共重合体の溶液を連続的に得る工程と、
     前記活性末端と反応可能な4個以上の官能基を有する多官能変性剤を用いて、前記共役ジエン-芳香族ビニル共重合体をカップリングさせる工程と、
    を有し、
     前記重合反応においては、反応器出口における内温を95~110℃に保ち、平均滞留時間15分以上35分以下で連続的に重合反応を進行させる、分岐状共役ジエン-芳香族ビニル共重合体(C)の製造方法。
  6.  前記アニオン重合開始剤のモル数に対して、前記多官能変性剤の官能基の合計モル数が、0.1~0.5倍となるように前記多官能変性剤を用いる、請求項4又は5に記載の分岐状共役ジエン-芳香族ビニル共重合体の製造方法。
PCT/JP2010/056226 2009-04-07 2010-04-06 分岐状共役ジエン-芳香族ビニル共重合体、及びその製造方法 WO2010116991A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI1010241A BRPI1010241A2 (pt) 2009-04-07 2010-04-06 copolímero de dieno conjugado-vinila aromática ramificado, composição, e, método para produzir o mesmo
SG2011065174A SG174321A1 (en) 2009-04-07 2010-04-06 Branched conjugated diene-aromatic vinyl copolymer and production method for the same
KR1020137021674A KR20130096333A (ko) 2009-04-07 2010-04-06 분지상 공액 디엔-방향족 비닐 공중합체, 및 그의 제조 방법
KR1020117020861A KR101321316B1 (ko) 2009-04-07 2010-04-06 분지상 공액 디엔-방향족 비닐 공중합체, 및 그의 제조 방법
CN201080013189.8A CN102361885B (zh) 2009-04-07 2010-04-06 支链状共轭二烯-芳香族乙烯基共聚物及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009093252 2009-04-07
JP2009-093252 2009-04-07

Publications (1)

Publication Number Publication Date
WO2010116991A1 true WO2010116991A1 (ja) 2010-10-14

Family

ID=42936274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056226 WO2010116991A1 (ja) 2009-04-07 2010-04-06 分岐状共役ジエン-芳香族ビニル共重合体、及びその製造方法

Country Status (6)

Country Link
KR (2) KR101321316B1 (ja)
CN (1) CN102361885B (ja)
BR (1) BRPI1010241A2 (ja)
SG (2) SG10201400530XA (ja)
TW (1) TWI415866B (ja)
WO (1) WO2010116991A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6557326B2 (ja) 2014-05-16 2019-08-07 クレイトン・ポリマーズ・ユー・エス・エル・エル・シー 分岐した広いmwdの共役ジエンポリマー
KR102035177B1 (ko) * 2018-07-11 2019-11-08 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
TW202022035A (zh) * 2018-10-25 2020-06-16 日商Jsr股份有限公司 聚合物組成物、交聯聚合物及輪胎
CN113260638B (zh) * 2019-10-30 2024-03-19 株式会社Lg化学 改性共轭二烯类聚合物和包含该改性共轭二烯类聚合物的橡胶组合物
CN113493542B (zh) * 2020-04-03 2023-09-22 旭化成株式会社 共轭二烯系聚合物及其制造方法、共轭二烯系聚合物组合物以及橡胶组合物
KR102640782B1 (ko) * 2020-07-16 2024-02-27 아사히 가세이 가부시키가이샤 랜덤 공중합체, 크럼의 제조 방법, 및 공기 타이어

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136993A (ja) * 1986-03-13 1997-05-27 Asahi Chem Ind Co Ltd ジエン系重合体ゴム組成物
JP2008285558A (ja) * 2007-05-16 2008-11-27 Asahi Kasei Chemicals Corp 油展共役ジエン系重合体組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101906223B (zh) * 2005-03-29 2012-08-29 旭化成化学株式会社 制备改性的丁二烯类聚合物组合物的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136993A (ja) * 1986-03-13 1997-05-27 Asahi Chem Ind Co Ltd ジエン系重合体ゴム組成物
JP2008285558A (ja) * 2007-05-16 2008-11-27 Asahi Kasei Chemicals Corp 油展共役ジエン系重合体組成物

Also Published As

Publication number Publication date
CN102361885B (zh) 2014-03-19
CN102361885A (zh) 2012-02-22
SG174321A1 (en) 2011-10-28
BRPI1010241A2 (pt) 2016-03-22
KR101321316B1 (ko) 2013-10-23
KR20110124287A (ko) 2011-11-16
TWI415866B (zh) 2013-11-21
SG10201400530XA (en) 2014-05-29
TW201041914A (en) 2010-12-01
KR20130096333A (ko) 2013-08-29

Similar Documents

Publication Publication Date Title
JP6501847B2 (ja) 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ
JP5911524B2 (ja) 変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
JP5705120B2 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
JP5898212B2 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、変性共役ジエン系重合体組成物、ゴム組成物、及びタイヤ
WO2016199779A1 (ja) 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ
JP6032880B2 (ja) 変性共役ジエン系重合体組成物、トレッド用組成物、サイドウォール用組成物及びタイヤ
WO2018034194A1 (ja) 変性共役ジエン系重合体、ゴム組成物、及びタイヤ
JP6651021B2 (ja) 変性共役ジエン系重合体及びそのゴム組成物、並びにタイヤ
JP6105336B2 (ja) 変性共役ジエン系重合体組成物、トレッド、サイドウォール及びタイヤ
JP2016079217A (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
JP2018028018A (ja) 変性共役ジエン系重合体組成物、トレッド用ゴム組成物、及びタイヤ
JP2009227858A (ja) 変性共役ジエン系重合体及びその製造方法、並びに重合体組成物
JP2018028047A (ja) 変性共役ジエン系重合体及びそのゴム組成物、並びにタイヤ
JP7381725B2 (ja) 水添共役ジエン系重合体、水添共役ジエン系重合体組成物、及びゴム組成物並びに水添共役ジエン系重合体の製造方法
JP2018002986A (ja) 変性共役ジエン系重合体組成物、サイドウォール用ゴム組成物、及びタイヤ
JP2013129693A (ja) 変性共役ジエン重合体の製造方法及び変性共役ジエン重合体の組成物
JP2013082794A (ja) 変性共役ジエン系重合体組成物
JP2020041136A (ja) ゴム組成物
WO2010116991A1 (ja) 分岐状共役ジエン-芳香族ビニル共重合体、及びその製造方法
JP6487220B2 (ja) 変性共役ジエン系重合体、変性共役ジエン系重合体の製造方法及びその組成物
JP2020037676A (ja) 変性共役ジエン系重合体組成物
WO2018199267A1 (ja) 変性共役ジエン系重合体、重合体組成物、及びゴム組成物
JP2019131723A (ja) 変性共役ジエン系重合体組成物及び製造方法、並びにタイヤ
JP7344709B2 (ja) 変性共役ジエン系重合体組成物、ゴム組成物及びゴム組成物の製造方法
JP5325155B2 (ja) 分岐状共役ジエン−芳香族ビニル共重合体、及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013189.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761690

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20117020861

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3762/KOLNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1010241

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1010241

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110929