TW201041914A - Branched conjugated diene-aromatic vinyl copolymer and method for producing same - Google Patents

Branched conjugated diene-aromatic vinyl copolymer and method for producing same Download PDF

Info

Publication number
TW201041914A
TW201041914A TW099110792A TW99110792A TW201041914A TW 201041914 A TW201041914 A TW 201041914A TW 099110792 A TW099110792 A TW 099110792A TW 99110792 A TW99110792 A TW 99110792A TW 201041914 A TW201041914 A TW 201041914A
Authority
TW
Taiwan
Prior art keywords
conjugated diene
ethylene copolymer
copolymer
aromatic
aromatic ethylene
Prior art date
Application number
TW099110792A
Other languages
Chinese (zh)
Other versions
TWI415866B (en
Inventor
Junichi Yoshida
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42936274&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201041914(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Publication of TW201041914A publication Critical patent/TW201041914A/en
Application granted granted Critical
Publication of TWI415866B publication Critical patent/TWI415866B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A branched conjugated diene-aromatic vinyl copolymer (C) being a random copolymer, wherein the aromatic vinyl bond content in the conjugated diene-aromatic vinyl copolymer (C) is from 30 to 38 mass%, the vinyl bond content in the total bond units of the conjugated diene is from 30 to 43 mol%, the weight average molecular weight (Mw-C) in terms of polystyrene obtained by gel permeation chromatography (GPC) of the conjugated diene-aromatic vinyl copolymer (C) is from 700,000 to 1,000,000, the ratio of the weight average molecular weight (Mw-C) to the number average molecular weight (Mn-C) ((Mw-C)/(Mn-C)) is from 1.7 to 3.0, and the Mooney viscosity (ML-C) and the Mooney relaxation ratio (MSR-C) measured at 120 DEG C satisfy the relationship represented by formula (1): {214-(ML-C)}/300 = (MSR-C) = {260-(ML-C)}/300 (wherein 100 = (ML-C) = 140).

Description

201041914 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種分枝狀共軛二烯烴-芳香族乙烯共聚 物、及其製造方法。 【先前技術】 就確保安全性之觀點而言,汽車用輪胎重要的是使用抗 濕滑性優異、具有實用上充分之耐磨耗性、破壞特性之材 料。另一方面,近年來,抑制二氧化碳排出量等對環境之 考慮成為社會性之要求,對於汽車之低耗油化要求亦提 高。就此現狀而言,作為汽車用輪胎、尤其是與地面接觸 之輪胎面之材料,需要開發一種滾動阻力較小之材料。 又,考慮到輪胎之生命週期之觀點,對於製造步驟中之 消耗能量之減少之關心亦提高,尤其是需要一種化合物混 練時之消耗能量較小之加工性良好之橡膠材料。進而,要 求於原料合成橡膠生產中生產性亦良好,降低能量消耗。 作為輪胎面之主要材料之一,已知有苯乙烯-丁二烯橡 膠(SBR)。作為SBR之聚合方法,有使懸浮於水中之單體 進行自由基聚合而成之乳化聚合SBR(E-SBR)、及使用有 機鹼金屬使烴溶劑中之單體進行陰離子聚合而成之溶液聚 合SBR(S-SBR)。該等之中,由於在聚合物結構設計之自 由度較高、尤其是使用二氧化矽作為填充劑之輪胎中,省 耗油性能與抗濕滑性之平衡優異,故溶液聚合SBR(S-SBR)之使用量增加。 作為溶液聚合SBR(S-SBR)之聚合製程,大致分為分批 147412.doc 201041914 聚合製程與連續聚合製程之2種。 Ο201041914 VI. Description of the Invention: [Technical Field] The present invention relates to a branched conjugated diene-aromatic ethylene copolymer and a process for producing the same. [Prior Art] From the viewpoint of ensuring safety, it is important for automobile tires to use materials which are excellent in wet skid resistance and have practically sufficient wear resistance and destructive properties. On the other hand, in recent years, environmental considerations such as suppression of carbon dioxide emissions have become social requirements, and the demand for low fuel consumption of automobiles has also increased. In this regard, as a material for automobile tires, particularly tire surfaces in contact with the ground, it is required to develop a material having a small rolling resistance. Further, in view of the life cycle of the tire, the concern for the reduction of the energy consumption in the manufacturing step is also improved, and in particular, a rubber material having a low workability and a low processing energy when the compound is mixed is required. Further, it is required to have good productivity in the production of raw synthetic rubber and to reduce energy consumption. As one of the main materials of the tire tread, styrene-butadiene rubber (SBR) is known. As a polymerization method of SBR, there are an emulsion polymerization SBR (E-SBR) obtained by radically polymerizing a monomer suspended in water, and a solution polymerization obtained by anion polymerization of a monomer in a hydrocarbon solvent using an organic alkali metal. SBR (S-SBR). Among these, the solution polymerization SBR (S-) is excellent in the balance between the fuel consumption performance and the wet skid resistance in the tire having a high degree of freedom in polymer structure design, especially using ruthenium dioxide as a filler. The use of SBR) has increased. As a polymerization process of solution polymerization SBR (S-SBR), it is roughly divided into two types: batch processing 147412.doc 201041914 polymerization process and continuous polymerization process. Ο

於分批聚合製程中,藉由使改性劑加成於聚合物之活性 末端’而能夠比較容易地導入官能基,可獲得製成輪胎面 用材料時滚動阻力較小之橡膠(例如,參照專利文獻1 )。另 一方面,由於分子量分布窄,進而因改性基與二氧化矽等 填充劑之結合而於混練時黏度上升,因此具有加工性差之 缺點,又由於在聚合時每批均需要升溫、降溫作業,因此 亦具有能量消耗量變多之缺點。 另 方面,於連續聚合製程中,藉由聚合之放熱反應中 所產生之熱亦可進行聚合起始或促進所需之加熱,因此單 位生產量之能量使用量少於分批聚合製程,進而因分子量 分布亦較宽’故亦具有加工性比較好之優點。然而,溶液 聚合SBR(S-SBR)與聚合中可形成大量分枝之乳化聚人 ^卿韻)相比,具有在製造組合物時之化合物混練 時,消耗能量較大,加工性較差之缺點。 作為其他技術,例如可列舉:利用四氯切等3官能以 上之石夕偶合劑使連續聚合製程中陰離子聚合而成之共耗二 烯烴-芳香族乙烯共聚物偶合 來观垧σ之方法(例如,參照專利 2);利用含鹵素之石夕化合物、ρ⑤ 1匕口物烷氧基矽烷化合物、烷氣美 硫驗化合物等進行偶人夕古土 土 例如’參照專利文In the batch polymerization process, a functional group can be introduced relatively easily by adding a modifier to the active terminal ' of the polymer, and a rubber having a small rolling resistance when the tire surface material is formed can be obtained (for example, Refer to Patent Document 1). On the other hand, since the molecular weight distribution is narrow, and the viscosity of the mixture is increased by the combination of the modified group and the filler such as cerium oxide, the viscosity is increased during the kneading, so that the processing property is poor, and the temperature rise and the cooling operation are required for each batch during the polymerization. Therefore, it also has the disadvantage of increasing energy consumption. On the other hand, in the continuous polymerization process, the heat generated by the exothermic reaction of the polymerization can also initiate the polymerization or promote the heating required, so the energy consumption per unit throughput is less than the batch polymerization process, and The molecular weight distribution is also wide, so it also has the advantage of better processability. However, solution-polymerized SBR (S-SBR) has a disadvantage of high energy consumption and poor processability when compounding a compound in the production of a composition, compared with an emulsion formed by a large amount of branches in the polymerization. . As another technique, for example, a method of coupling a co-consumed diene-aromatic ethylene copolymer obtained by anionic polymerization in a continuous polymerization process using a tri- or more functional tetracycline such as tetrachloropyr (for example) can be mentioned (for example, , refer to Patent 2); using halogen-containing Shishi compound, ρ5 1 mouthwash alkoxy decane compound, alkane gas sulfur test compound, etc.

用具有2個以上之環氧其夕仆八此“ J 氧基之化合物進行偶合之方法(例如, 參照專利文獻4)等。 [先前技術文獻] [專利文獻] I47432.doc 201041914 [專利文獻1]曰本專利特開2003-171418號公報 [專利文獻2]曰本專利特開昭61-255917號公報 [專利文獻3]曰本專利特開平11 _丨99712號公報 [專利文獻4]國際公開第01/23467號 【發明内容】 [發明所欲解決之問題] 然而,製成硫化橡膠時之加工性良好、製成硫化橡膠之 情形之低遲滯損耗性與抗濕滑性之平衡優異、進而兼具實 用上充分之耐磨耗性及破壞特性之共軛二烯烴芳香族乙 烯共聚物在製造時仍有改善之餘地。 又,專利文獻2〜4中所揭示之技術均為了獲得高偶合率 而必須於溫度比較低之條件下進行聚合,因此對於生產性 仍有改善之餘地。 本發明係鑒於上述情況開發而成者,其目的在於提供一 種分枝狀共軛二烯烴_芳香族乙烯共聚物、及其製造方 法\該分枝狀共軛二烯烴-芳香族乙稀共聚物在製成硫化 橡膠寺之加工性良好,於製成硫化橡膠之情形時,低遲滯 知耗性與抗濕滑性之平衡優異,亦滿足實用上充分之耐磨 耗性及破壞特性,進而生產性亦優異。 [解決問題之技術手段] 本發明者為解決上述問題進行銳意研究之結果發現,藉 製成如下之分枝狀共軛二烯烴芳香族乙烯共聚物而解 二V ]題,3亥分枝狀共輛二烯煙-芳香族乙烯共聚物之 方香族乙烯鍵結量、共軛二烯烴總鍵結單元中之乙烯鍵結 147412.doc 201041914 量、重量平均分子量(Mw-C)、及重量平均分子量(Mw_c)/ 數量平均分子量(Mn-C)為特定之數值範圍,並且於i2〇<t 測定之木尼黏度(ML-C)與木尼鬆驰率(MSR-C)滿足特定之 關係式;從而完成本發明。 即,本發明如下所述。 [1] 一種分枝狀共軛二烯烴-芳香族乙烯共聚物(c),其係無 規共聚物; 上述共軛二烯烴-芳香族乙烯共聚物(c)中之芳香族乙稀 鍵結量為30〜38質量°/〇, 共輛《 ·—稀經總鍵結早元中之乙稀鍵結量為3 〇〜4 3莫耳 %, 上述共辆一稀經-方香族乙細共聚物(C)之藉由凝膠渗透 層析法(GPC)所得之聚苯乙烯換算之重量平均分子量 (Mw-C)為 700,000〜1,000,000, 重量平均分子量(Mw-C)相對於數量平均分子量(Mn_c) 之比((Mw-C)/(Mn-C))為 1.7~3.0, 於120°C測定之木尼黏度(ML-C)與木尼鬆馳率(MSR_C) 滿足下述式(1)之關係, {214-(ML-C)}/300S (MSR-C)S {260-(ML-C)}/3〇〇...⑴ (於式(1)中,100S(ML-C)S140)。 [2] 如[1]之分枝狀共軛二烯烴-芳香族乙烯共聚物(c),其係 使用具有4個以上之官能基之多官能改性劑使如下共耗二 147412.doc 201041914 烯烴-芳香族乙烯共聚物(i)偶合而成者,該共軛二烯烴-芳 香族乙烯共聚物⑴之聚苯乙烯換算之重量平均分子量 (Mw-I)為 500,000~700,000,於 120°C 測定之木尼黏度(ML_ I)與木尼鬆驰率(MSR-I)滿足下述式(2)之關係, {260-(ΜΙ^-Ι)}/300$(Μ8ΙΙ-Ι)${310-(ΜΙ^Ι)}/300〜(2) (式(2)中,65$ (ML-I)S 100)。 [3] 一種分枝狀共軛二烯烴-芳香族乙烯共聚物組合物,其 含有如[1]或[2]之分枝狀共軛二烯烴-芳香族乙烯共聚物(c) 與無機填充劑。 [4] 一種分枝狀共軛二烯烴-芳香族乙烯共聚物(c)之製造方 法,其係如[1 ]或[2]之分枝狀共軛二烯烴-芳香族乙烯共聚 物(C)之製造方法;其包括如下步驟: 將包含共軛二烯烴化合物、芳香族乙烯化合物、及陰離 子聚合起始劑之溶液連續地供給至反應器並使其進行聚合 反應,而獲得具有活性末端之共軛二烯烴·芳香族乙烯共 聚物之溶液的步驟; 使用具有能夠與上述活性末端反應之4個以上之官能基 的多官能改性劑,使上述共輛二烯烴-芳香族乙烯共聚物 偶合之步驟。 [5] 一種分枝狀共軛二烯烴_芳香族乙烯共聚物(c)之製造方 法其係如[1 ]或[2]之分枝狀共扼二烯烴_芳香族乙稀共聚 147412.doc 201041914 物(c)之製造方法;其包括如下步驟: 向附有攪拌機之反應器中連續地供給包含共軛二烯烴化 合物、芳香族乙烯化合物、及陰離子聚合起始劑之溶液並 • 使其進行聚合反應之步驟; 自上述反應器之出口連續地獲得具有活性末端之共軛二 烯烴-芳香族乙埽共聚物之溶液的步驟; 使用具有能夠與上述活性末端反應之4個以上之官能基 ❾s &改劑’使上述共輛二稀烴.芳香族乙稀共聚物 偶合之步驟;並且 於上述聚合反應中,將反應器出口之内溫保持於 95〜11(rc ’以平均滞留時間15分鐘以上35分鐘以下連續地 進行聚合反應。 [6] 如⑷或[5]之分枝狀縣二烯烴_料族乙料聚物之製 造方法’其中以上述多官能改性劑之官能基之合計莫耳數 ❹相對於上述陰離子聚合起始劑之莫耳數達到gi〜M倍之方 式使用上述多官能改性劑。 [發明之效果] •㈣本發明,可提供-種製成硫化橡膠時之加工性優 硫化橡膠之低遲滯祕性與抗濕滑性之平 亦滿足實用上充分之耐磨耗性及破撩 、 生產性亦優異之分枝狀共軛二烯烴_ 取物之 其製造方法。 “族乙歸共聚物及 【實施方式】 147412.doc 201041914 以下,針對用以實施本發明之形態(以下,稱為「本實 施形態」)進行詳細說明。以下之本實施形態為用以說明 本發明之<列示’I發明並不限定⑤以下所示之形態。本發 明可於其主曰之範圍内適當地變形而實施。 [分枝狀共輕一稀烴-芳香族乙烯共聚物] 本實施形態之分枝狀共軛二烯烴-芳香族乙烯共聚物⑷) 係無規共聚物,並且 上述共軛二烯烴-芳香族乙烯共聚物(c)中之芳香族乙烯 鍵結量為30〜38質量%, 共輛二烯烴總鍵結單元中之乙烯鍵結量為3〇〜43莫耳 %, 、 上述共軛二烯烴-芳香族乙烯共聚物之藉由Gpc所得 之聚苯乙烯換算之重量平均分子量(Mw_c)為7〇〇,〇〇〇〜 1,000,000 > 重量平均分子量相對於數量平均分子量之比((Mw_c)/ (Mn-C))為 1.7〜3.0, 於120°C測定之木尼黏度(ML-C)與木尼鬆馳率(msr_c) 滿足下述式(1)之關係。 {214-(ML-C)}/300S (MSR-C)S {260-(ML-C)}/3 00...⑴ (於式(1)中,l〇〇S(ML-C)S140) 本實施形態之分枝狀共軛二烯烴-芳香族乙稀共聚物(c) 為無規共聚物。此處’所謂無規共聚物,係指芳香族乙稀 之鏈長為30以上之成分較少或沒有者。 本實施形態中之分枝狀共軛二烯烴-芳香族乙歸共聚物 147412.doc -10· 201041914 若為共輛一稀烴化合物與芳香族乙稀化合物之無規共聚 物,則其種類並無限定。作為共軛二烯烴化合物及芳香族 乙烯化合物’可適當使用後述化合物。作為共輛二稀烴_ 芳香族乙烯共聚物’較好的是苯乙烯-丁二烯共聚物、苯 乙烯-異戊二烯共聚物、苯乙烯·丁二烯異_戊二烯共聚物, 更好的是苯乙烯-丁二烯共聚物。 例如,於分枝狀共輛一沐經-芳香族乙稀共聚物(c)為丁 二烯-苯乙烯共聚物之情形時,若利用Kolthoff之方法(I. M. KOLTHOFF,et 1·,J· Polym. Sci. 1,429 (1946)中揭示之 方法)使分枝狀共辆二烯烴-芳香族乙稀共聚物(C)分解,分 析不溶於甲醇之聚苯乙烯量’則聚苯乙烯量相對於分枝狀 共輛二烯烴-芳香族乙稀共聚物(C)之總量較好的是5質量% 以下,更好的是3質量%以下。 又’若藉由利用臭氧分解之方法使分枝狀共軛二烯烴_ 芳香族乙烯共聚物(C)分解’並利用凝膠滲透層析法(GPC) 分析苯乙烯鏈分布,則較好的是單獨之苯乙烯(即苯乙烯 單元之鏈為1之苯乙烯)為總鍵結苯乙烯之40質量%以上, 更好的是長鏈嵌段苯乙烯(即苯乙烯單元之鍵為8以上之苯 乙烯)為總鍵結苯乙烯之5質量%以下。 本實施形態之分枝狀共軛二烯烴-芳香族乙烯共聚物(C) 中之芳香族乙烯鍵結量為30〜38質量%,較好的是32〜37質 量%。芳香族乙烯鍵結量可藉由測定分枝狀共軛二烯烴-芳 香族乙烯共聚物(C)之苯基之紫外吸光而求得。 又,共軛二烯烴總鍵結單元中之乙烯鍵結量為30〜43莫 1474l2.doc -11 - 201041914 耳%,較好的是32〜42莫耳%。例如,於分枝狀共扼二烯 烴-芳香族乙烯共聚物(C)為丁二烯-苯乙稀共聚物之情形 時,可藉由 Hampton 之方法(R. R. Hampton, Analytical Chemistry 21,923 (1949)中揭示之方法)求得丁二烯鍵結單 元中之乙烯鍵結量(1,2-鍵結量)。 共軛二烯烴-芳香族乙烯共聚物一般大多係與天然橡膠 或丁二烯橡膠等加以混合,進而製成硫化橡膠,於分枝狀 共輛二烯烴-芳香族乙烯共聚物(C)之各鍵結於上述範圍内 時,既無與該等橡膠過度相容之情況,亦無與該等橡膠過 度分離之情況,能夠以良好之平衡混合。藉此,可獲得低 遲滯損耗性與抗濕滑性之平衡優異之硫化橡膠。 本實施形態之分枝狀共軛二烯烴-芳香族乙烯共聚物(C) 之玻璃轉移溫度較好的是-40〜-15°C,更好的是-35〜-18°C。 藉由玻璃轉移溫度於此範圍内,可獲得低遲滯損耗性與抗 濕滑性之平衡優異之硫化橡膠。關於玻璃轉移溫度,係根 據IS022768 : 2006,於特定之溫度範圍内一邊升溫一邊記 錄DSC曲線,將DSC微分曲線之峰頂(Inflection point,拐 點)設為玻璃轉移溫度。 本實施形態之分枝狀共軛二烯烴-芳香族乙烯共聚物 (C),如上所述聚苯乙烯換算之重量平均分子量(Mw-C)為 700,000〜1,000,000,較好的是750,000~950,000。為獲得良 好之耐磨耗性及強度,為700,000以上,為保持良好之加 工性,而設為1,000,〇〇〇以下。又,重量平均分子量(Mw-C) 相對於數量平均分子量(Mn-C)之比((Mw-C)/(Mn-C))為 147412.doc 201041914 1·7〜3·〇,較好的是2·0〜2.8。為獲得良好之加工性,為i 7 以上,為獲得良好之機械特性,為3.0以下。分子量及分 子量分布係使用GPC測定層析圖,並根據使用標準聚苯乙 烯之校準曲線而求得。 本實施形態之分枝狀共軛二烯烴-芳香族乙烯共聚物(c) 之於120°C測定之木尼黏度(ML-C)與木尼鬆驰率(MSR c) 滿足下述式(1)之關係。 ◎ {214-(ML-C)}/300S(MSR-C)S {260-(ML-C)}/300...⑴ (此處,100$(ML-C)S140) 所謂木尼鬆馳率(MSR) ’係指利用IS0289-4 : 2003中規 定之方法測定木尼黏度後,使轉子停止,將其丨·6秒後至5 秒後為止之轉矩(Τ)與時間(t(秒))製成雙對數圖時之斜率之 絕對值。於木尼黏度相等之情形時,分枝越多,該值越 小,因此可用作分枝度之指標。具體而言,可藉由後述實 施例中揭示之方法求得。木尼黏度及木尼鬆馳率通常於 ◎ l〇0°C測定,但於本實施形態中採用於12〇。(:測定之木尼黏 度及木尼鬆馳率。 以於式(1)中達到上述上限值以下之方式具有充分之分 枝度之情形時,加工性優異,硫化橡膠之低遲滯損耗性與 &濕滑性之平衡優異’亦滿^實用上充分之耐磨耗性及破 壞特性。分枝度越高,MSR_C越低,則加工性越優異硫 化橡膠之低遲滯損耗性與抗濕滑性之平衡越優異,若設為 下限值以下’則必須提高偶合反應,因此生產性降低,於 實用上不佳。 147412.doc -13· 201041914 本1月者就共軛二烯烴_芳香族乙烯共聚物之行為加以 研究,結果發現於為同一微結構(芳香族乙稀鍵結量及共 軛二烯烴鍵結單元中 婦鍵結量)、為相同程度之分枝 狀態之共聚物之情形砗,政并“A method of coupling a compound having two or more epoxy groups, such as a compound of J oxy group (for example, refer to Patent Document 4), etc. [Prior Art Document] [Patent Document] I47432.doc 201041914 [Patent Document 1 [Patent Document 2] Japanese Patent Laid-Open Publication No. JP-A-61-255917 [Patent Document 3] Japanese Patent Laid-Open Publication No. Hei No. Hei No. Hei. [Invention No. 01/23467] [Problems to be Solved by the Invention] However, the vulcanized rubber is excellent in workability, and the balance between low hysteresis loss and wet skid resistance in the case of producing a vulcanized rubber is excellent. The conjugated diene aromatic ethylene copolymer having practically sufficient abrasion resistance and destructive properties has room for improvement in production. Further, the techniques disclosed in Patent Documents 2 to 4 are necessary to obtain a high coupling ratio. The polymerization is carried out under conditions of relatively low temperature, so there is still room for improvement in productivity. The present invention has been developed in view of the above circumstances, and its object is to provide a branched conjugated diene_aromatic B. Copolymer, and a method for producing the same\The branched conjugated diene-aromatic ethylene copolymer has good processability in forming a vulcanized rubber temple, and has low hysteresis and resistance to slipping when it is made into vulcanized rubber. The balance of the properties is excellent, and the wear resistance and the damage characteristics are also sufficient in practical use, and the productivity is also excellent. [Technical means for solving the problem] The inventors of the present invention have conducted intensive studies to solve the above problems and found that The branched conjugated diene aromatic ethylene copolymer and the solution of the two V], the 3 cc branching total diene-aromatic ethylene copolymer of the square aromatic ethylene bond amount, the total conjugated diene The ethylene bond 147412.doc 201041914 in the bonding unit, the weight average molecular weight (Mw-C), and the weight average molecular weight (Mw_c) / number average molecular weight (Mn-C) are specific numerical ranges, and are in i2〇< The woody viscosity (ML-C) and the woody relaxation rate (MSR-C) of the measured t satisfy the specific relationship; thus, the present invention has been completed. That is, the present invention is as follows. [1] A branched form Yoke diene-aromatic ethylene copolymer (c), a random copolymer; the amount of aromatic ethylene linkage in the conjugated diene-aromatic ethylene copolymer (c) is 30 to 38 mass% / 〇, a total of "--sparse total bond early element The amount of ethylene bond in the middle is 3 〇~4 3 mol%, and the polyphenylene obtained by gel permeation chromatography (GPC) of the above-mentioned common dilute-square aromatic copolymer (C) The weight average molecular weight (Mw-C) in terms of ethylene is 700,000 to 1,000,000, and the ratio of the weight average molecular weight (Mw-C) to the number average molecular weight (Mn_c) ((Mw-C) / (Mn-C)) is 1.7~3.0, the Mn-viscosity (ML-C) and the Mooney relaxation rate (MSR_C) measured at 120 °C satisfy the relationship of the following formula (1), {214-(ML-C)}/300S (MSR -C)S {260-(ML-C)}/3〇〇...(1) (In the formula (1), 100S (ML-C) S140). [2] The branched conjugated diene-aromatic ethylene copolymer (c) according to [1], which uses a polyfunctional modifier having four or more functional groups to make a total consumption of 147,412.doc 201041914 When the olefin-aromatic ethylene copolymer (i) is coupled, the conjugated diene-aromatic ethylene copolymer (1) has a polystyrene-equivalent weight average molecular weight (Mw-I) of 500,000 to 700,000 at 120 ° C. The measured Mui viscosity (ML_I) and the Munni relaxation rate (MSR-I) satisfy the relationship of the following formula (2), {260-(ΜΙ^-Ι)}/300$(Μ8ΙΙ-Ι)${ 310-(ΜΙ^Ι)}/300~(2) (in the formula (2), 65$ (ML-I)S 100). [3] A branched conjugated diene-aromatic ethylene copolymer composition containing a branched conjugated diene-aromatic ethylene copolymer (c) such as [1] or [2] and an inorganic filler Agent. [4] A process for producing a branched conjugated diene-aromatic ethylene copolymer (c) which is a branched conjugated diene-aromatic ethylene copolymer of [1] or [2] (C) a manufacturing method comprising the steps of: continuously supplying a solution containing a conjugated diene compound, an aromatic vinyl compound, and an anionic polymerization initiator to a reactor and subjecting it to polymerization to obtain an active terminal a step of conjugated a solution of a diene-aromatic ethylene copolymer; coupling the above-mentioned co-diene-aromatic ethylene copolymer with a polyfunctional modifier having four or more functional groups capable of reacting with the above reactive terminal The steps. [5] A method for producing a branched conjugated diene-aromatic ethylene copolymer (c) which is a branched conjugated diene of [1] or [2] _ aromatic ethylene copolymer 147412.doc 201041914 The method for producing (c); comprising the steps of: continuously supplying a solution containing a conjugated diene compound, an aromatic vinyl compound, and an anionic polymerization initiator to a reactor equipped with a stirrer; a step of a polymerization reaction; a step of continuously obtaining a solution of a conjugated diene-aromatic acetylene copolymer having an active terminal from an outlet of the above reactor; using a functional group having 4 or more functional groups capable of reacting with the above-mentioned active terminal & modifier's step of coupling the above-mentioned co-different hydrocarbon. Aromatic ethylene copolymer; and in the above polymerization, the internal temperature of the reactor outlet is maintained at 95 to 11 (rc ' with an average residence time of 15 The polymerization reaction is continuously carried out in a minute or more and 35 minutes or less. [6] A method for producing a branched-type diolefin-based ethylene-based polymer according to (4) or [5] wherein a functional group of the above polyfunctional modifier is used Total mole The above polyfunctional modifier is used in such a manner that the number of moles of the above anionic polymerization initiator is gi to M times. [Effect of the Invention] (4) The present invention can provide an excellent processability when the vulcanized rubber is produced. The low hysteresis and wet skid resistance of the vulcanized rubber also satisfies the method for producing a branched conjugated diene which is practically sufficient in abrasion resistance, breakage, and productivity. In the following, the embodiment for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail. The following embodiment is intended to explain the present invention. The invention is not limited to the form shown in the following paragraphs. The present invention can be suitably modified within the range of its main structure. [Branched co-light-dilute hydrocarbon-aromatic ethylene copolymer] This embodiment The branched conjugated diene-aromatic ethylene copolymer (4)) is a random copolymer, and the aromatic ethylene bond amount in the above conjugated diene-aromatic ethylene copolymer (c) is 30 to 38. Quality%, total vehicle two The amount of ethylene bond in the total hydrocarbon bonding unit is from 3 to 43 mol%, and the weight average molecular weight (Mw_c) of the conjugated diene-aromatic ethylene copolymer obtained by Gpc is 7〇〇,〇〇〇~1,000,000 > The ratio of the weight average molecular weight to the number average molecular weight ((Mw_c) / (Mn-C)) is 1.7 to 3.0, and the Mooney viscosity (ML-C) measured at 120 °C The relationship with the Mooney relaxation rate (msr_c) satisfies the following formula (1). {214-(ML-C)}/300S (MSR-C)S {260-(ML-C)}/3 00...(1) (in equation (1), l〇〇S(ML-C) S140) The branched conjugated diene-aromatic ethylene copolymer (c) of the present embodiment is a random copolymer. Here, the term "random copolymer" means that the chain length of the aromatic vinyl group is 30 or more, or less. Branched conjugated diene-aromatic ethyl condensate copolymer 147412.doc -10· 201041914 in the present embodiment, if it is a random copolymer of a common hydrocarbon compound and an aromatic ethylene compound, No limit. The compound described below can be suitably used as the conjugated diene compound and the aromatic vinyl compound. As the common dilute hydrocarbon-aromatic ethylene copolymer, a styrene-butadiene copolymer, a styrene-isoprene copolymer, a styrene-butadiene isoprene copolymer, More preferred is a styrene-butadiene copolymer. For example, in the case where the branched composite-muth-aromatic ethylene copolymer (c) is a butadiene-styrene copolymer, the method of Kolthoff (IM KOLTHOFF, et 1·, J· Polym) is utilized. Sci. 1,429 (1946) The method of decomposing a branched total diene-aromatic ethylene copolymer (C) and analyzing the amount of polystyrene insoluble in methanol' The total amount of the branched diolefin-aromatic ethylene copolymer (C) is preferably 5% by mass or less, more preferably 3% by mass or less. Further, if the branched conjugated diene_aromatic ethylene copolymer (C) is decomposed by the decomposition of ozone and the styrene chain distribution is analyzed by gel permeation chromatography (GPC), it is preferred. It is a single styrene (that is, a styrene unit chain of 1 styrene) is 40% by mass or more of the total bonded styrene, and more preferably a long-chain block styrene (that is, a styrene unit bond of 8 or more) The styrene) is 5% by mass or less of the total bonded styrene. The aromatic ethylene bond amount in the branched conjugated diene-aromatic ethylene copolymer (C) of the present embodiment is from 30 to 38% by mass, preferably from 32 to 37% by mass. The amount of the aromatic vinyl bond can be determined by measuring the ultraviolet absorption of the phenyl group of the branched conjugated diene-aromatic ethylene copolymer (C). Further, the ethylene bond amount in the total bonding unit of the conjugated diene is 30 to 43 mol 1474 l2.doc -11 - 201041914 ear%, preferably 32 to 42 mol%. For example, in the case where the branched conjugated diene-aromatic ethylene copolymer (C) is a butadiene-styrene copolymer, it can be by the method of Hampton (RR Hampton, Analytical Chemistry 21, 923 (1949) The method disclosed in the method) is to determine the amount of ethylene bond (1, 2 bond amount) in the butadiene bonding unit. The conjugated diene-aromatic ethylene copolymer is generally mostly mixed with natural rubber or butadiene rubber to form a vulcanized rubber, and the respective bonds of the branched diolefin-aromatic ethylene copolymer (C) are branched. When it is within the above range, it is neither excessively compatible with the rubber nor excessively separated from the rubber, and can be mixed in a good balance. Thereby, a vulcanized rubber excellent in balance between low hysteresis loss resistance and wet skid resistance can be obtained. The glass transition temperature of the branched conjugated diene-aromatic ethylene copolymer (C) of the present embodiment is preferably -40 to -15 ° C, more preferably -35 to -18 ° C. By the glass transition temperature in this range, a vulcanized rubber excellent in balance between low hysteresis loss resistance and wet skid resistance can be obtained. Regarding the glass transition temperature, according to IS022768: 2006, the DSC curve is recorded while raising temperature in a specific temperature range, and the peak of the DSC differential curve (Inflection point) is set as the glass transition temperature. The branched conjugated diene-aromatic ethylene copolymer (C) of the present embodiment has a weight average molecular weight (Mw-C) in terms of polystyrene as described above of 700,000 to 1,000,000, preferably 750,000 to 950,000. In order to obtain good wear resistance and strength, it is 700,000 or more, and it is set to 1,000 or less in order to maintain good workability. Further, the ratio of the weight average molecular weight (Mw-C) to the number average molecular weight (Mn-C) ((Mw-C) / (Mn-C)) is 147412.doc 201041914 1·7~3·〇, preferably It is 2·0~2.8. In order to obtain good workability, it is i 7 or more, and is 3.0 or less in order to obtain good mechanical properties. The molecular weight and molecular weight distributions were determined by GPC using a chromatogram and based on a calibration curve using standard polystyrene. The branched conjugated diene-aromatic ethylene copolymer (c) of the present embodiment has a Mooney viscosity (ML-C) and a Mooney relaxation rate (MSR c) measured at 120 ° C satisfying the following formula ( 1) The relationship. ◎ {214-(ML-C)}/300S(MSR-C)S {260-(ML-C)}/300...(1) (here, 100$(ML-C)S140) The rate (MSR) is the torque (Τ) and time (t) after the rotor is stopped by the method specified in IS0289-4: 2003, and the rotor is stopped after 6 seconds to 5 seconds. (seconds)) The absolute value of the slope when making a double logarithmic plot. In the case where the viscosity is equal, the more branches, the smaller the value, and thus can be used as an indicator of the degree of branching. Specifically, it can be obtained by the method disclosed in the examples described later. The Mooney viscosity and the Mooney relaxation rate are usually measured at 〇10 °C, but in the present embodiment, it is 12 Å. (: measured Moi viscosity and Mooney relaxation rate. When the formula (1) has a sufficient degree of branching in such a manner as to reach the above upper limit value, the workability is excellent, and the low hysteresis loss of the vulcanized rubber is &Excellent wet skid balance' is also full of practical wear resistance and damage characteristics. The higher the branching degree, the lower the MSR_C, the better the processability and the low hysteresis loss and wet skid resistance of vulcanized rubber. If the balance is excellent, if it is set to the lower limit or less, the coupling reaction must be increased, so that the productivity is lowered and it is not practical. 147412.doc -13· 201041914 This January is a conjugated diene_aromatic ethylene. The behavior of the copolymer was investigated and found to be a copolymer of the same microstructure (aromatic ethylene bonding amount and conjugated diene bond unit in the amount of female bond) and the same degree of branched state. , politics and "

馆化^將改變分子量之共聚物之ML-C 標於X軸上,將MSR_C標於γ軸上,(msr_c/ml_c)可近似 斜率-1/300。進而於頦,戈 右精由改變聚合溫度、或改變多 分枝改性㈣之調配量等而改變分枝狀態則上述緣成之 直線會上下移動(斜率維持]/3〇〇,且僅γ截距發生變動)。 由該等見解發現,藉由共概二烯煙·芳香族乙稀共聚物(c) 之MSR-C及ML-C滿足式⑴之條件,可規定較好之分枝狀 態’並且藉由將乙稀鍵結量、重量平均分子量(Mw_c)、重 量平均分子量相對於數量平均分子量之比((Mw_c)/(Mn_c)) 控制為特定範圍,可製成如下聚合物,該聚合物在製成硫 化橡躁時之加卫性良好,於製成硫化橡膠之情形時,低遲 滯損耗性與抗濕滑性之平衡優異,亦滿^實用上充分之对 磨耗性及破壞特性’進而生產性亦優異。 進而,ML-C與MSR-C之關係較好的是滿足下述式(la)之 關係。藉由滿足下述式⑽之關係,可使上述本實施形態 之效果更加顯著。 {220-(ML-C)}/300^ (MSR-C)^ {255-(ML-C)}/300·.· (1 a) (此處,106g(ML-C)S135) 本只施形態之分枝狀共轆—烯fe -芳香族乙稀共聚物(c) 較好的是使用具有4個以上之宫能基之多官能改性劑使共 輕二稀烴-芳香族乙烯共聚物偶合而成者。藉此,可有效 147412.doc -14· 201041914 地提高分枝度及分子量’可製成共聚物生產性、及在製成 硫化橡膠時之加工性良好、硫化橡膠性能之平衡優異之共 聚物。 進而’上述共軛二烯烴-芳香族乙烯共聚物(c)更好的是 聚苯乙烯換算之重量平均分子量(^1\^-1)為500,000〜700,000、 於120°C測定之木尼黏度(ML-I)與木尼鬆驰率(MSR_I)滿足 下述式(2)之關係之共軛二烯烴-芳香族乙烯共聚物(〗)。藉 此,可製成如下共聚物,該共聚物在製成硫化橡膠時之加 工性良好,於製成硫化橡膠之情形時,低遲滞損耗性與抗 濕滑性之平衡優異,亦滿足實用上充分之耐磨耗性及破壞 特性,進而生產性亦優異。 {260-(ML-I)}/3 00$ (MSR-I)g {310-(ML-I)}/3 00... (2) (此處’於式(2)中,65$(ML-I)S100) 進而,於120°C測定之木尼黏度(ml-I)與於i2(rc測定之 木尼鬆驰率(MSR-I)更好的是滿足下述式(2勾之關係。 {268-(ML-I)}/300^ (MSR-I)^ {3OO-(ML-I))/3 00-. (2a) (此處’於式(2a)中,66S(ML-I)S89) [刀枝狀共輛一稀煙-芳香族乙稀共聚物之製造方法] 作為本實施形態之分枝狀共軛二烯烴-芳香族乙烯共聚 物(C)之較好之製造方法,包括如下步驟: 將包含共軛二烯烴化合物、芳香族乙烯化合物、及陰離 子聚合起始劑之溶液連續地供給至反應器並使其進行聚入 反應,而獲得具有活性末端之共軛二烯烴-芳香族乙烯共 聚物之溶液的步驟; 八 147412.doc •15- 201041914 使用具有能夠與上述活性末端反應之4個以上之官能基 的多官能改性劑,使上述共軛二烯烴_芳香族乙烯共聚物 偶合之步驟。 作為本實施形態之分枝狀共軛二烯烴-芳香族乙烯共聚 物(C)之更好之製造方法’包括如下步驟: 向附有攪拌機之反應器中連續地供給包含共軛二烯烴化 合物、芳香族乙烯化合物、陰離子聚合起始劑之溶液並使 其進行聚合反應之步驟; 自上述反應器出口連續地獲得具有活性末端之共輛二烯 丈二-^香族乙烯共聚物之溶液之步驟;及 使用具有能夠與上述活性末端反應之4個以上之官能基 的多官能改性劑進行偶合之步驟。 根據上述製造方法,可高效率地製造在製成硫化橡膠時 之加工性良好、於製成硫化橡膠之情形時低遲滯損耗性與 抗濕滑性之平衡優異、亦可滿足實用上充分之耐磨耗性及 破壞特性之本實施形態之分枝狀共輛二烯烴_芳香族乙烯 共聚物(C)。例如,先前於進行含有上述SBR之化合物之混 練時係使用班布裏混合器等密閉混合器,與使用實驗室規 模中使用之小容量(例如,容量為數升以下)之混合器之情 形相比,在使用輪胎等橡膠製品之製造步驟中使用之大容 里(例如,谷ΐ為數百升以上)之混合器之情形時,混練加 工性大幅度下降。因此,加工性之問題變得更加顯著。其 結果,存在化合物之黏度上升、化合物之質地之表面或邊 緣粗糙之傾向。因本實施形態之製造方法即便於如此規模 147412.doc •16· 201041914 放大之情形時,亦可維持優異之加工性,故可在不弓丨起上 述問題之情況下高效率地製造分枝狀共軛二烯烴_芳香族 乙烯共聚物(c)。 、 (共軛二烯烴化合物) 作為用於本實施形態之分枝狀共軛二烯烴·芳香族乙烯 共聚物(C)之製造的共軛二稀烴化合物,並無特別限定, 例如可列舉1,3-丁二烯、異戊二烯、2,3_二曱基丁二 ❹烯、1,3-戊二烯、3-曱基-1,3-戊二烯、1>3_庚二烯、is·己 —烯等。該等既可單獨使用,亦可組合2種以上使用。哕 等之中,就獲得容易性或經濟性之觀點而言,較好的是 i,3-丁二稀、異戊二烯。 (方香族乙烯化合物) 作為用於本實施形態之分枝狀共軛二烯烴-芳香族乙稀 共聚物(C)之製造的芳香族乙烯化合物,例如可列舉笨乙 烯、對甲基苯乙烯、α-甲基苯乙烯、乙烯基乙基苯、乙烯 〇 基二甲苯、乙烯基萘、二苯乙烯等。該等既可單獨使用, 亦可組合2種以上使用。該等之中,較好的是苯乙烯。 於共輛二烯fe化合物及芳香族乙烯化合物中有可能作為 雜質而含有之丙二烯類及乙快類’會成為抑制聚合I應及 偶合反應之重要因素,因此較好的是使其於總單體中之濃 度為未滿200 ppm。 (聚合溶劑) 於本實施形態中’通常使共輛二烯烴化合物與芳香族乙 締化合物於溶劑中共聚合。作為溶劑,並無特別限定,、例 1474I2.doc •17- 201041914 如可使用飽和烴、芳香族煙等烴系溶劑。具體而言,可列 舉丁烷、戊烷、己烷、庚烷等直鏈狀及分枝狀之脂肪族 烴;環戊烷'環己烷、甲其塔上a 土裒戊烧、甲基環己烷等脂環族 煙;笨、甲苯、二甲装望父备t 4方香族烴及包含該等之混合物之 烴。 (單體濃度) 本實施形態中,進行聚合反應之聚合溶液中之共輛二稀 烴化合物及芳香族乙烯化合物之單體濃度並無特別限定, 就生產性之觀點而言,較好的是5〜5Qf量%,更好的是 10〜30質量%。 (陰離子聚合起始劑) 作為可用於本實施形態之聚合反應之陰離子聚合起始 劑’並無特別限定,例如可使用鹼金屬系起始劑、鹼土類 金屬系起始劑等。作為驗金屬系起始劑或驗土類金屬系起 始劑,可使用具有聚合起始之能力的所有驗金屬系起始劑 或驗土類金屬系起始劑。該等之中,較好的是包含有機驗 金屬化合物及有機鹼土類金屬化合物之至少一種之化合 物。 料有機驗金屬化合物’並無特別限定,就反應性等觀 占而。Μ好的是有機鐘化合物^作為有機鐘化合物,可 列舉低分子量之化合物、經可溶化之募聚物之有機經化合 物、1分子中含有單獨之鋰之化合物、】分子中含有複數之 鋰之化合物、於有機基該之鍵結方式巾具有碳鐘鍵之 化合物、具有氮_鐘鍵之化合物1有錫-链鍵之化合物 1474l2.doc -18· 201041914 等。 具體而§ :作為有機單鐘化合物,可列舉正丁基鐘、第 二H第三H正己隸、f基鐘、笨基鐘、甚 .基裡等。 作為多官能有機鐘化合物,可列舉^‘二鐘丁烷、第二 丁基鐘與二異丙稀基苯之反應物、1,3,5-三鐘苯、正丁基 鋰與1,3·丁二烯及二乙烯基苯之反應物、正丁基鐘與聚乙 快化合物之反應物等。 〇 ,可列舉二甲基醯胺鋰、二 '一正己基酿胺鐘、二異丙基 。比嘻咬鐘、派唆鐘、七亞甲 作為具有氮-鋰鍵之化合物 乙基酿胺裡、一丙基酿胺鐘、 醯胺鋰、六亞甲基醯亞胺鋰、 基酿亞胺鐘、嗎琳鐘等。 進而’亦可使用美國專利第5,708,092號說明書 '英國專 利第2,241,239號說明書、美國專利第5 527,753號說明書等 中揭示之有機鹼金屬化合物。特佳者為正丁基鋰、第二丁 〇 基鋰。上述有機鋰化合物既可單獨使用,亦可將2種以上 製成處合物而使用。 作為其他有機鹼金屬化合物,可列舉有機鈉化合物、有 機鉀化合物、有機純合物、有機鉋化合㈣。具體而 =,可列舉萘基鈉、萘基鉀,此外可使用鋰、鈉、鉀之烷 醇鹽、磺酸鹽、碳酸鹽、醯胺等。 有機鹼金屬化合物亦可與其他有機金屬化合物併用。 作為鹼土類金屬化合物,並無特別限定,例如可列舉有 機鎂化合物、有機鈣化合物、有機锶化合物等,具體而 147412.doc -19· 201041914 又, 言’可列舉二丁基鎂、乙基丁基鎂、丙基丁基鎂等。 亦可使用驗土類金屬之烧醇鹽、續酸鹽、碳酸鹽、醯胺等 化合物。該等有機鹼土類金屬化合物亦可與上述有機鹼金 屬系起始劑等有機金屬化合物併用。 (極性化合物) 於本實施形態之分枝狀共軛二烯烴_芳香族乙烯共 (c)之製造方法中,出於使芳香族乙烯化合物與共軛二烯 烴化合物無規地共聚合之目Μ、或用作控制共聚物之共輛 二稀煙部之微結構之乙烯化劑之目的、或改善聚合速度等 目的,較好的是少量添加路易斯鹼等極性化合物。 作為極性化合物,並無特別限定,例如可列舉四氫呋 喃、二乙醚、二料、乙二醇二甲鍵、乙二醇二丁鍵、二 乙二醇二甲謎、二乙二醇二丁喊、二甲氧基苯、2,2_雙(2· 四氫咬口南基)丙烧等醚類;四甲基乙二胺、二苯鍵二甲 酸:二甲基胺、三乙基胺、吡啶”昆啶等三級胺化合物; 第二戊酵卸、第三丁酸钟、繁二丁 弟—丁酸鈉、戊醇鈉等鹼金屬 烧醇鹽化合物;十二烧基苯績酸鉀、十二燒基苯續酸納等 有機續酸之金屬鹽;三苯基膦㈣化合㈣。料極性化 合物既可單獨使用,亦可組合2種以上使用。 極性化合物之使用量根據 益拉“ 佩I、效果之私度而選擇,並 …特別限疋,通常相對於陰離子聚合起 驗土類金屬原子!莫耳為〇·〇1〜1〇〇莫耳。 驗金屬或 上述極性化合物作為聚合物 劑,可根據所需乙烯鍵.量而、W田之微L構之調節 鍵。置而適置使用。藉此,可控制共 147412.doc -20· 201041914 梃二烯煙總鍵結單元中之乙烯鍵結量β多數極性化合物於 共輛*二烯烴化合物與芳香族乙烯化合物之共聚合中亦同時 具有有效之無規化效果,藉由使用極性化合物,可進行共 聚物中之芳香族乙烯化合物之分布之調整或芳香族乙烯化 合物之嵌段量(例如,苯乙烯嵌段量)之調整。 (聚合步驟) ΟThe ML-C of the copolymer of molecular weight change is marked on the X-axis, and MSR_C is marked on the γ-axis. (msr_c/ml_c) can be approximated to a slope of -1/300. Furthermore, in the 颏 颏 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈 戈The distance has changed). From these findings, it was found that by satisfying the conditions of formula (1), the MSR-C and ML-C of the co-diene-smoke-aromatic ethylene copolymer (c) can provide a better branching state' and The ethylene bond amount, the weight average molecular weight (Mw_c), the ratio of the weight average molecular weight to the number average molecular weight ((Mw_c) / (Mn_c)) are controlled to a specific range, and the following polymer can be produced, and the polymer is produced. When the vulcanized rubber is cured, it has a good adhesion. When it is made into a vulcanized rubber, it has a good balance between low hysteresis loss and wet skid resistance, and is also practically sufficient for wear and damage characteristics. . Further, the relationship between ML-C and MSR-C is preferably such that the relationship of the following formula (la) is satisfied. The effect of the above-described embodiment can be made more remarkable by satisfying the relationship of the following formula (10). {220-(ML-C)}/300^(MSR-C)^ {255-(ML-C)}/300·.· (1 a) (here, 106g(ML-C)S135) Branched conjugated-ene-fe-aromatic ethylene copolymer (c) It is preferred to use a polyfunctional modifier having more than 4 pentylene groups to make the co-light dilute-aromatic ethylene Copolymer coupling. Thereby, it is effective to improve the branching degree and the molecular weight of 147412.doc -14· 201041914, and it is possible to obtain a copolymer which is excellent in workability in the production of a vulcanized rubber and excellent in the balance of properties of a vulcanized rubber. Further, the above conjugated diene-aromatic ethylene copolymer (c) is more preferably a polystyrene-equivalent weight average molecular weight (^1\^-1) of 500,000 to 700,000, and a Mooney viscosity measured at 120 °C. (ML-I) A conjugated diene-aromatic ethylene copolymer (J) which satisfies the relationship of the following formula (2) with a kiln relaxation rate (MSR_I). Thereby, a copolymer can be obtained which is excellent in workability when it is made into a vulcanized rubber, and is excellent in balance between low hysteresis loss and wet skid resistance when it is made into a vulcanized rubber, and is also sufficient for practical use. It has excellent wear resistance and destructive properties, and is also excellent in productivity. {260-(ML-I)}/3 00$ (MSR-I)g {310-(ML-I)}/3 00... (2) (here 'in equation (2), 65$ (ML-I)S100) Further, the Mooney viscosity (ml-I) measured at 120 ° C is better than the ii (the RMS measurement of the Mooney relaxation rate (MSR-I) is satisfied by the following formula (2) Hook relationship. {268-(ML-I)}/300^ (MSR-I)^ {3OO-(ML-I))/3 00-. (2a) (here 'in equation (2a), 66S (ML-I) S89) [Method for producing a knife-like total-smoke-aromatic ethylene copolymer] As the branched conjugated diene-aromatic ethylene copolymer (C) of the present embodiment A preferred production method comprises the steps of: continuously supplying a solution containing a conjugated diene compound, an aromatic vinyl compound, and an anionic polymerization initiator to a reactor and subjecting it to a polymerization reaction to obtain an active terminal a step of a solution of a conjugated diene-aromatic ethylene copolymer; VIII 147412.doc • 15 - 201041914 using the polyfunctional modifier having four or more functional groups capable of reacting with the above reactive terminal to make the above conjugate a step of coupling a diene-aromatic ethylene copolymer. As a branch of the present embodiment A better manufacturing method of the conjugated diene-aromatic ethylene copolymer (C) includes the following steps: continuously supplying a conjugated diene compound, an aromatic vinyl compound, an anionic polymerization to a reactor equipped with a stirrer a step of conducting a solution of the initiator and subjecting it to a polymerization reaction; a step of continuously obtaining a solution of a total of a diene-di-aryl aromatic copolymer having an active terminal from the outlet of the reactor; and using the same activity as described above The step of coupling the polyfunctional modifier having four or more functional groups at the terminal reaction is carried out. According to the above production method, the processability in the case of producing a vulcanized rubber is good, and the hysteresis loss is high in the case of producing a vulcanized rubber. The branched total co-diene-aromatic ethylene copolymer (C) of the present embodiment which is excellent in balance between properties and wet skid resistance and which satisfies practically sufficient abrasion resistance and destructive properties. For example, previously When mixing a compound containing the above SBR, a closed mixer such as a Banbury mixer is used, and a small capacity used in a laboratory scale is used. For example, in the case of a mixer using a capacity of several liters or less, in the case of using a mixer which is used in a manufacturing step of a rubber product such as a tire (for example, a gluten is several hundred liters or more), kneading processing As a result, the problem of workability becomes more conspicuous. As a result, there is a tendency that the viscosity of the compound rises and the surface or edge of the texture of the compound is rough. The manufacturing method of the present embodiment is even such a scale 147412.doc •16· 201041914 When the case is enlarged, excellent workability can be maintained, so that the branched conjugated diene-aromatic ethylene copolymer (c) can be efficiently produced without ignoring the above problems. (Conjugated Diolefin Compound) The conjugated dilute hydrocarbon compound used for the production of the branched conjugated diene-aromatic ethylene copolymer (C) of the present embodiment is not particularly limited, and examples thereof include 1 , 3-butadiene, isoprene, 2,3-dimercaptobutane, 1,3-pentadiene, 3-mercapto-1,3-pentadiene, 1> 3_g Diene, is·hexene-ene, and the like. These may be used alone or in combination of two or more. Among them, i, 3-butadiene and isoprene are preferred from the viewpoint of availability or economy. (Fangxiangzu vinyl compound) The aromatic vinyl compound used for the production of the branched conjugated diene-aromatic ethylene copolymer (C) of the present embodiment may, for example, be stupid ethylene or p-methylstyrene. , α-methyl styrene, vinyl ethyl benzene, vinyl decyl xylene, vinyl naphthalene, stilbene, and the like. These may be used alone or in combination of two or more. Among these, styrene is preferred. In the total diene fe compound and the aromatic vinyl compound, the allenes and the B-type which may be contained as impurities may become an important factor for suppressing the polymerization I and the coupling reaction. Therefore, it is preferred to The concentration in the total monomer is less than 200 ppm. (Polymerization solvent) In the present embodiment, "a total of a diene compound and an aromatic ethylenic compound are usually copolymerized in a solvent. The solvent is not particularly limited, and examples 1474I2.doc • 17- 201041914 A hydrocarbon-based solvent such as a saturated hydrocarbon or an aromatic tobacco can be used. Specific examples thereof include linear and branched aliphatic hydrocarbons such as butane, pentane, hexane, and heptane; cyclopentane 'cyclohexane; An alicyclic cigarette such as cyclohexane; a stupid, toluene, dimethyl benzoate t4 aromatic hydrocarbon and a hydrocarbon containing the mixture. (Monomer concentration) In the present embodiment, the monomer concentration of the total diuretic compound and the aromatic vinyl compound in the polymerization solution to be subjected to the polymerization reaction is not particularly limited, and from the viewpoint of productivity, it is preferred. The amount of 5 to 5 Qf is more preferably 10 to 30% by mass. (Anionic polymerization initiator) The anion polymerization initiator which can be used in the polymerization reaction of the present embodiment is not particularly limited, and for example, an alkali metal initiator or an alkaline earth metal initiator can be used. As the metal-based initiator or the soil-based metal-based initiator, all of the metal-based initiators or the soil-based metal initiators having the ability to initiate polymerization can be used. Among these, a compound containing at least one of an organic metal test compound and an organic alkaline earth metal compound is preferred. The organic metal compound is not particularly limited, and is considered to be reactive. The organic clock compound is preferably used as an organic clock compound, and examples thereof include a low molecular weight compound, an organic compound of a solubilized polymer, a compound containing lithium alone in one molecule, and a lithium having a plurality of molecules in the molecule. The compound, the bonding method of the organic group, the compound having a carbon clock bond, the compound having a nitrogen-to-clock bond, and the compound having a tin-chain bond, 1474l2.doc -18·201041914, and the like. Specifically, §: As the organic single-ring compound, a n-butyl group, a second H, a third H-positive group, a f-base clock, a stupid base, and a kiln can be cited. As the polyfunctional organic clock compound, a reaction of 2's butane, a second butyl group and diisopropyl benzene, 1,3,5-trisylbenzene, n-butyllithium and 1,3 can be cited. - a reaction of butadiene and divinylbenzene, a reaction of a n-butyl clock with a polyethylidene compound, and the like. 〇 exemplified by lithium dimethyl guanamine, bis-n-hexyl amide amine, and diisopropyl. It is a compound with a nitrogen-lithium bond, ethyl amide, a propylamine amine, lithium amide, lithium hexamethylene sulfoxide, and kienimine. Bell, Lan Lin, etc. Further, the organic alkali metal compound disclosed in the specification of U.S. Patent No. 5,708,092, the specification of U.S. Patent No. 2,241,239, and the specification of U.S. Patent No. 5,527,753, and the like. Particularly preferred are n-butyl lithium and second butyl lithium. These organolithium compounds may be used singly or in combination of two or more kinds thereof. Examples of the other organic alkali metal compound include an organic sodium compound, an organic potassium compound, an organic pure compound, and an organic planing compound (IV). Specific examples thereof include naphthyl sodium and naphthyl potassium, and lithium, sodium or potassium alkoxides, sulfonates, carbonates, decylamines and the like can be used. The organic alkali metal compound can also be used in combination with other organometallic compounds. The alkaline earth metal compound is not particularly limited, and examples thereof include an organomagnesium compound, an organic calcium compound, and an organic ruthenium compound. Specifically, 147412.doc -19·201041914 Further, 'dibutylmagnesium and ethylidene are exemplified. Magnesium, propyl butyl magnesium, and the like. It is also possible to use a compound such as a burnt alkoxide, a caustic acid salt, a carbonate or a guanamine. These organic alkaline earth metal compounds may be used in combination with an organic metal compound such as the above organic alkali metal-based initiator. (Polar compound) In the method for producing the branched conjugated diene-aromatic ethylene (c) of the present embodiment, the purpose of randomly copolymerizing the aromatic vinyl compound and the conjugated diene compound is as follows. Or for the purpose of controlling the microstructure of the copolymer of the dihalide portion of the copolymer, or for improving the polymerization rate, it is preferred to add a small amount of a polar compound such as a Lewis base. The polar compound is not particularly limited, and examples thereof include tetrahydrofuran, diethyl ether, diethylene glycol, ethylene glycol dibutyl bond, ethylene glycol dibutyl bond, diethylene glycol diammine, and diethylene glycol dibutylate. Ethers such as dimethoxybenzene, 2,2_bis(2·tetrahydrobial south base), and the like; tetramethylethylenediamine, diphenyl bond dicarboxylic acid: dimethylamine, triethylamine, a tertiary amine compound such as pyridine "quinidine"; an alkali metal alkoxide compound such as a second acetonitrile, a third butyric acid clock, a dibutyric acid, a sodium butyrate or a sodium pentanate; a metal salt of an organic acid such as a decanoyl benzoate; a triphenylphosphine (tetra) compound (4). The polar compound may be used singly or in combination of two or more. The amount of the polar compound used is in accordance with Pei I, the choice of the privateness of the effect, and ... especially limited, usually compared to the anionic polymerization to test the soil metal atoms! Moer is 〇·〇1~1〇〇莫耳. The metal or the above-mentioned polar compound is used as a polymer agent, and the adjustment key of the micro-L structure of W field can be used according to the amount of the desired vinyl bond. It is suitable for use. Thereby, it is possible to control the ethylene bond amount in the total bonding unit of the decadiene cigarette, and the majority of the polar compound in the copolymerization of the co-density*diene compound and the aromatic vinyl compound also has a total of 147412.doc -20·201041914 The effective randomization effect can be adjusted by adjusting the distribution of the aromatic vinyl compound in the copolymer or the block amount of the aromatic vinyl compound (for example, the amount of the styrene block) by using a polar compound. (aggregation step) Ο

共軛二烯烴化合物與芳香族乙烯化合物之聚合反應可將 上述共輛二烯烴化合物、芳香族乙烯化合物、陰離子聚合 起始劑、聚合溶劑、視需要之少量極性化合物連續地供給 至附有特定攪拌機之反應器中而進行,可自反應器出口使 共軛二烯烴_芳香族乙烯共聚物之溶液連續地流出而進 行。又,亦可使單體及/或聚合溶劑在利用如日本專利特 開2002-2848 14號公報中揭示之方法供給至反應器之前一 階段與有機金屬化合物接觸,而使由微量雜質所致之聚合 抑制作用去活化。 單體溶液等之供給位置及共聚物溶液之流出位置並無特 別限定,可為反應器之底部、頂部、及其間之任意位置之 任:位置’但較好的是自靠近底部之位置供給單體溶液, 自靠近頂部之位置使共聚物溶液流出。—般,於陰離子共 聚D中共軛一烯烴化合物比芳香族乙烯化合物優先聚 合’因此亦可出於無規化之目的而將共輊二烯烴化合物之 一部分自反應器上部供給。 聚合反應較好的是將$痛 J疋將反應器出口之内溫保持 95〜11 〇°c,於平均滞留日车p弓 、 卞切留時間15分鐘以上35分鐘以内實施。 147412.doc •21 - 201041914 此處’所謂反應器出口之内溫,係指反應器出口之共聚物 溶液之溫度。為了提高反應速度、提高生產性、並且促進 由金屬化所致之熱分枝反應、於偶合反應前之階段亦形成 適度之分枝結構,較好的是使反應器出口之内溫為95〇C以 上。另一方面,為防止由過度之金屬化反應等所致之失活 而抑制偶合反應,較好的是設為以下。共聚物溶液 之溫度可藉由利用外部熱交換器或内部熱交換器等所進行 之熱交換、或控制所供給之單體溶液之溫度等而進行調 整。 進而,較好的是反應器下部之共聚物溶液之溫度比反應 器出口之内溫低3〜15°C。此處,所謂反應器下部之内溫, 具體而言,係指藉由設置於如下位置之溫度計所測定之溫 度.於反應器中充滿總容量之1/3之液時該液所浸潰之位 置’且不會直接受到供給至反應器之單體溶液之流動之影 響的位置。於反應器内處於完全混合之狀態之情形時 應器下部之内溫事實上與反應器出口之内溫為同一溫度。 相反’處於塞流狀態之情形時,反應器下部之内溫= 器出口之内溫之間會產生更大之溫度差。 二: 離、J;义;5雇51 丁 ar #帝】擅:拌'狀 下一之内溫與反應器出口之内溫之差處於 3〜15。(:之範圍内之方式進行 之差處於 丁I σ 可產生適度之滯留眛鬥 分布,使共聚物之熱分枝反應適度地進行。滞留時間 又,就獲得固定以上之單體之轉化率 熱分枝反應之觀點而言,平㈣進行 之觀點或抑制失活對偶合反應之影響之 147412.doc •22· 201041914 觀點而言,較好的是35分鐘以下。 反應器出口之單體之轉化率較好的是95%以上,進而較 好的是98%以上,更好的是99%以上。轉化率越高,單位 .產品生產費用越佳,另外對溶劑回收步驟之負荷越小,因 此生產性優異。此處,轉化率可藉由後述實施例中揭示之 方法求得。 偶合步驟之前一階段之聚合步驟中所獲得之共辆二烯 烴-芳香族乙烯共聚物(I)之藉由GPC所得之聚苯乙烯換算 Ο ^ 之重量平均分子量(Mw-I)並無特別限定,較好的是 5 00,000〜700,000。就獲得良好之耐磨耗性及強度之觀點而 已,較好的是500,000以上,就生產性之觀點及偶合後所 獲得之本實施形態之共軛二烯烴-芳香族乙烯共聚物之加 工性之觀點而言,較好的是700,000以下。 又,偶合步驟之前一階段之聚合步驟中所獲得之共扼二 烯烴-芳香族乙烯共聚物(I)之於120°c測定之木尼黏度(ML-q I)與木尼鬆驰率(MSR-I)較好的是滿足下述式(2)之關係。 {260-(ML-I)}/3 00^ (MSR-I)^ {3 10-(ML-I)}/3 00··* (2) (此處,65$ (ML-I)S 100) . 為使偶合後所獲得之分枝狀共輛二烯烴-芳香族乙烯共 聚物(C)具有充分之分枝度,於上述式(2)中,較好的是設 為上限值以下,於聚合反應之後所進行之偶合反應中,為 確保充分之活性末端,較好的是以達到下限值以上之方式 進行聚合反應。 如上所述,藉由使自反應器出口流出之具有活性末端之 147412.doc -23- 201041914 共耗二稀烴.芳㈣乙缚共聚物之溶液與具有能夠與活性 末:反應之4個以上之官能基的多官能改性劑接觸來進行 偶合反應,可獲得本實施形態之分枝狀共軛二烯烴-芳香 族乙烯共聚物。 反應器既可為與聚合器同樣之附有攪拌機之槽型反應 器^可為較聚合器小塑之附有授拌機之槽型反應器,亦 可為靜態混合機。較好的是充分地混合共軛二烯烴-芳香 族乙烯共聚物之溶液與多官能改性劑,於反應中獲得充分 之滯留時間,就此觀點而言,於使用附有攪拌機之槽型反 應器之情形時,反應器之容積較好的是於紊流條件為聚合 器之1/20〜1/5之容積。 滯留時間並無特別限定,就上述觀點而言,較好的是i 分鐘〜1小時,更好的是丨分鐘〜15分鐘。偶合反應之反應溫 度並热特別限定’就獲得充分之改性效率之觀點而言,較 好的是50〜ll〇°C ’更好的是70〜11〇。〇。 (具有4個以上之官能基之多官能改性劑) 作為本實施形態中所使用之具有能夠與具有活性末端之 共輛二浠fe -芳香族乙烯共聚物之活性末端反應的4個以上 之官能基之多官能改性劑,並無特別限定,例如可列舉具 有選自由環氧基、幾基、叛酸酯基、緩酸醯胺基、酸針 基、填酸酯基、亜碟酸酯基、環硫基、硫羰基、硫羧酸酯 基、二硫羧酸酯基、硫羧酸醯胺基、亞胺基、伸乙基亞胺 基、齒素基、烷氧基矽烷基、異氰酸酯基、硫異氰酸酯 基、共輛> 一稀fe基、及^•基乙稀基所組成之群中的1種以 147412.doc -24- 201041914 上之官能基之化合物。 再者,於計算官能基之莫耳數時,係鑒於與具有活性末 端之共軛二烯烴-芳香族乙烯共聚物之活性末端之反應 性’將環氧基、羰基、環硫基、硫羰基、亞胺基、伸乙基 亞胺基、_素基、共軛二烯烴基、芳基乙烯基、烷氧基矽 烧基之母1個之烧氧基作為1官能’將叛酸酯基、羧酸醯胺 基、酸酐基、硫羧酸酯基、二硫羧酸酯基、硫羧酸醯胺 〇 基、異氰酸酯基、硫異氰酸酯基作為2官能,將磷酸酯 基、亜磷酸酯基作為3官能而計算。本實施形態中使用之 多官能改性劑之1分子中之上述官能基之官能數之和為4以The polymerization reaction of the conjugated diene compound and the aromatic vinyl compound can continuously supply the above-mentioned common diene compound, aromatic vinyl compound, anionic polymerization initiator, polymerization solvent, and, if necessary, a small amount of a polar compound to a specific mixer. The reactor is carried out by continuously flowing a solution of the conjugated diene-aromatic ethylene copolymer from the outlet of the reactor. Further, the monomer and/or the polymerization solvent may be brought into contact with the organometallic compound at a stage before being supplied to the reactor by a method disclosed in Japanese Laid-Open Patent Publication No. 2002-284814, which is caused by a trace amount of impurities. Polymerization inhibition is deactivated. The supply position of the monomer solution or the like and the outflow position of the copolymer solution are not particularly limited, and may be any of the bottom, the top, and any position between the reactors: position 'but preferably from the position near the bottom The body solution, the copolymer solution flows out from the position near the top. Generally, the conjugated olefin compound is preferentially polymerized in the anionic copolymerization D than the aromatic vinyl compound. Therefore, a part of the conjugated diene compound may be supplied from the upper portion of the reactor for the purpose of randomization. The polymerization reaction is preferably carried out by keeping the internal temperature of the outlet of the reactor at 95 to 11 〇 ° C, and performing the average retention time of the vehicle p-bend and the sputum retention time of 15 minutes or more and 35 minutes or less. 147412.doc •21 - 201041914 Here, the internal temperature of the reactor outlet refers to the temperature of the copolymer solution at the outlet of the reactor. In order to increase the reaction rate, improve productivity, and promote the thermal branching reaction caused by metallization, and form a moderate branching structure at the stage before the coupling reaction, it is preferred to set the internal temperature of the reactor outlet to 95 〇. Above C. On the other hand, in order to prevent deactivation by excessive metallization reaction or the like and to suppress the coupling reaction, it is preferred to set the following. The temperature of the copolymer solution can be adjusted by heat exchange by an external heat exchanger, an internal heat exchanger, or the like, or by controlling the temperature of the supplied monomer solution or the like. Further, it is preferred that the temperature of the copolymer solution in the lower portion of the reactor is 3 to 15 ° C lower than the internal temperature of the outlet of the reactor. Here, the internal temperature of the lower portion of the reactor means, in particular, the temperature measured by a thermometer provided at a position where the liquid is impregnated when the reactor is filled with one third of the total capacity. The position 'and is not directly affected by the flow of the monomer solution supplied to the reactor. In the case where the reactor is in a state of complete mixing, the internal temperature of the lower portion of the reactor is actually the same temperature as the internal temperature of the outlet of the reactor. Conversely, in the case of a plug flow state, a greater temperature difference between the inner temperature of the lower portion of the reactor and the inner temperature of the outlet of the reactor. Two: From, J; Yi; 5 hire 51 Ding ar #帝] Good: mix 'like' The inner temperature difference between the inner temperature and the outlet of the reactor is 3~15. The difference between the methods in the range of (: is in the range of D I σ can produce a moderate retention of the bucket, so that the thermal branching reaction of the copolymer proceeds moderately. The residence time is longer, and the conversion heat of the monomer above is obtained. From the point of view of the branching reaction, the viewpoint of the (4) or the effect of inhibition of the inactivation on the coupling reaction is 147,412.doc •22· 201041914. The viewpoint is preferably 35 minutes or less. The rate is preferably 95% or more, and more preferably 98% or more, more preferably 99% or more. The higher the conversion rate, the better the production cost per unit of product, and the smaller the load on the solvent recovery step, The productivity is excellent. Here, the conversion rate can be obtained by the method disclosed in the examples described later. The co-diene-aromatic ethylene copolymer (I) obtained in the polymerization step of the previous stage before the coupling step is used. The weight average molecular weight (Mw-I) of the polystyrene-converted Ο ^ obtained by GPC is not particularly limited, and is preferably from 50,000,000 to 700,000. From the viewpoint of obtaining good abrasion resistance and strength, it is preferred that 500,000 to From the viewpoint of productivity and the processability of the conjugated diene-aromatic ethylene copolymer of the present embodiment obtained after coupling, it is preferably 700,000 or less. Further, polymerization at a stage before the coupling step The ruthenium diene-aromatic ethylene copolymer (I) obtained in the step has a woody viscosity (ML-q I) and a woody relaxation rate (MSR-I) which are preferably measured at 120 ° C. Relationship of the following formula (2): {260-(ML-I)}/3 00^ (MSR-I)^ {3 10-(ML-I)}/3 00··* (2) (here , 65$ (ML-I)S 100) . In order to obtain a branching total diene-aromatic ethylene copolymer (C) obtained after coupling, having sufficient branching degree, in the above formula (2), In the coupling reaction carried out after the polymerization reaction, it is preferred to carry out the polymerization reaction so as to ensure a sufficient active terminal, preferably to a lower limit or more. The solution of 146412.doc -23- 201041914 which consumes the active end from the outlet of the reactor and consumes the dilute hydrocarbon. The aromatic (tetra) ethylenic copolymer has more than 4 kinds of reactions capable of reacting with the active end: The branched conjugated diene-aromatic ethylene copolymer of the present embodiment can be obtained by contacting the energy-based polyfunctional modifier with a coupling reaction. The reactor can be the same tank type with a mixer as the polymerizer. The reactor may be a tank type reactor with a blender or a static mixer than a polymerizer. It is preferred to sufficiently mix the solution of the conjugated diene-aromatic ethylene copolymer with a large amount. The functional modifier obtains a sufficient residence time in the reaction. From this point of view, in the case of using a tank type reactor equipped with a stirrer, the volume of the reactor is preferably a turbulent flow condition of the polymerizer. /20~1/5 volume. The residence time is not particularly limited, and from the above viewpoint, it is preferably from 1 minute to 1 hour, more preferably from 1 minute to 15 minutes. The reaction temperature of the coupling reaction is particularly limited. From the viewpoint of obtaining sufficient modification efficiency, it is preferably 50 to 11 ° C ', more preferably 70 to 11 Å. Hey. (Polyfunctional modifier having four or more functional groups) As the active end reaction which can be reacted with the active terminal of a fluorene-aromatic ethylene copolymer having an active terminal, which is used in the present embodiment, The polyfunctional modifier of the functional group is not particularly limited, and examples thereof include those selected from the group consisting of epoxy groups, several groups, tickate groups, acid amide groups, acid groups, acid ester groups, and tartaric acid. Ester group, episulfide group, thiocarbonyl group, sulfur carboxylate group, dithiocarboxylate group, sulfonium carboxylic acid oxime group, imine group, ethylidene group, dentate group, alkoxyalkyl group a compound of the group of 147412.doc -24- 201041914, one of a group consisting of an isocyanate group, a thioisocyanate group, a common group, a hetero-based group, and a vinyl group. Further, in calculating the molar number of the functional group, in view of the reactivity with the active terminal of the conjugated diene-aromatic ethylene copolymer having an active terminal, the epoxy group, the carbonyl group, the epoxide group, and the thiocarbonyl group are used. An alkoxy group of an imino group, an ethylenimine group, an exo-ilylene group, a conjugated diolefin group, an arylvinyl group, or an alkoxy fluorenyl group, as a monofunctional 't-ester group a carboxylic acid amide group, an acid anhydride group, a thiocarboxylate group, a dithiocarboxylate group, a thiol amide amide group, an isocyanate group, a thioisocyanate group as a bifunctional group, a phosphate group, a bismuth phosphate group Calculated as a trifunctional. The sum of the functional numbers of the above functional groups in one molecule of the polyfunctional modifier used in the present embodiment is 4

作為具有環氧基之多官能改性劑,例如可列舉:聚環氧 化液狀聚丁二烯等聚環氧化合物;四縮水甘油基間二曱苯 一胺四縮水甘油基胺基二苯基曱烷、四縮水甘油基_對 苯二胺、四縮水甘油基-1,3·雙胺基甲基環己烷等縮水甘油 基胺基化合物;3_縮水甘油氧基丙基三甲氧基矽烷、3_縮 水甘油氧基丙基三乙氧基矽烷、3_縮水甘油氧基丙基三丁 氧基石夕燒、環氧化大豆油、環氧化亞麻軒油油等具有環氧 基與其他官能基之化合物。 又,作為具有氧基石夕烧基之多官能改性劑,可列舉四甲 氧基石夕烧、㈤乙氧基耗、四丁氧基錢、雙(三乙氧基 夕烧基)f烧雙(二甲氧基石夕烧基)乙燒、Μ.雙(三甲氧基 矽烧基)己烧雙(二乙氧基矽烧基)辛貌、雙(三乙氧旯石夕 烷基)乙烯、雙(三甲氧基矽烷基甲基)乙烯、M_雙土(三 147412.doc •25- 201041914 乙氧基矽烷基)苯、雙(3-三甲氧基矽烷基丙基)-N-曱基胺 等烷氧基矽烷化合物;N-(l,3-二曱基亞丁基)-3-(三乙氧基 矽烷基)-1-丙胺、N-(l,3-二甲基亞丁基)_3-(三丁氧基矽烷 基)-1-丙胺、N-(l -曱基亞丙基)-3-(三乙氧基矽烧基)_1_丙 胺、N-亞乙基-3-(三乙氧基矽烷基)_ι_丙胺、n-(3-三乙氧 基石夕烧基丙基)-4,5-二氫咪唑等具有亞胺基與烷氧基矽烷 基之化合物。 進而’作為具有鹵素基之多官能改性劑,可列舉四氣化 矽、四溴化矽、四碘化矽、雙(三氯矽烷基)乙烷、 2,2,4,4,6,6-六氣-2,4,6-三矽庚烷、^,^…六口兴甲基二 氣矽烷基)乙基]苯等鹵素化矽烷化合物;一氣三曱氧基矽 烷、一溴三甲氧基矽烷、二氣二甲氧基矽烷、二溴二甲氧 基矽烷、二氣甲氧基矽烷、三溴曱氧基矽烷等烷氧基鹵素 化矽烷化合物等。 斤進而可列舉四氯化錫、四溴化錫、雙三氯錫烷基乙 :等鹵素化錫化合物;1氯膦、三溴膦等聚齒素化磷化合 上迷之中,作為更好之多 一 -&此队丨王w . q門举:具有 矽,親和性較大之官能基之化合物、偶合之分子 幵效果較大之4〜6官能之聚環氧化合物 能之環氧基與院氧基㈣之化合物。作為進有6 官能改性劑,可列舉分子中含有胺進而更好之 ^ ^ 3有胺基之鈿水甘油基化, 進而可列舉i分子中具有 之化合物。你丨、 难水甘油基胺; ’可列舉四縮水甘油基間二甲笨 I47412.doc -26- 201041914 縮水甘油基胺基二苯基甲烧、四縮水甘油基·對苯二胺 四縮水甘油基-1,3-雙胺基甲基環己烷等。 用’亦可併用2種以上。 相對於陰離子聚合起始劑 官能基之合計莫耳數較好 上述多官能改性劑既可單獨使 該等多官能改性劑之添加量, 之莫耳數,上述多官能改性劑之 的定U.1〜借 士 - -··σ 巧積田颸予分枝而 挺同加工性、或錯由增加分子晉 刀卞里而徒间強度,較好的是添 ΟExamples of the polyfunctional modifier having an epoxy group include polyepoxy compounds such as polyepoxidized liquid polybutadiene; tetraglycidyl m-diphenyleneamine tetraglycidylaminodiphenyl. a glycidylamino compound such as decane, tetraglycidyl-p-phenylenediamine, tetraglycidyl-1,3-diaminomethylcyclohexane; 3-glycidoxypropyltrimethoxydecane , 3_glycidoxypropyl triethoxy decane, 3_glycidoxypropyl tributoxide, epoxidized soybean oil, epoxidized linseed oil, etc. having epoxy groups and other functional groups Compound. Further, examples of the polyfunctional modifier having an oxo group include tetramethoxy zeshi, (5) ethoxy consumption, tetrabutoxy ketone, and bis(triethoxy oxonyl) f-fired double. (Dimethoxy oxanthene) Ethylene, bismuth (bismethoxy fluorenyl) hexanyl (diethoxy fluorenyl) octyl, bis(triethoxyphosphoryl) ethylene , bis(trimethoxydecylmethyl)ethylene, M_double earth (three 147412.doc •25-201041914 ethoxy decyl)benzene, bis(3-trimethoxydecylpropyl)-N-indole Alkoxydecane compound such as amine; N-(l,3-dimercaptobutylene)-3-(triethoxydecyl)-1-propylamine, N-(l,3-dimethylbutylene ) 3-((tributoxyalkyl)-1-propylamine, N-(l-decylpropylene)-3-(triethoxysulfonyl)-1-propylamine, N-ethylene-3 a compound having an imido group and an alkoxyalkyl group, such as (triethoxydecylalkyl)_ι-propylamine or n-(3-triethoxyindolyl)-4,5-dihydroimidazole. Further, 'as a polyfunctional modifier having a halogen group, examples thereof include ruthenium tetrahydride, ruthenium tetrabromide, ruthenium tetraiodide, bis(trichlorodecanealkyl)ethane, 2,2,4,4,6, Halogenated decane compounds such as 6-hexa-2,4,6-triheptane, ^,^...hexamethyl dimethyl sulfonyl)ethyl]benzene; mono-trimethoxy decane, monobromotrimethyl An alkoxyhalogenated decane compound such as oxydecane, dimethoxydimethoxydecane, dibromodimethoxydecane, dimethoxymethoxydecane or tribromodecyloxydecane. Further, the jin may include a tin halide compound such as tin tetrachloride, tin tetrabromide or ditrichlorostannyl group; and a polydentate phosphorous compound such as 1 chlorophosphine or tribromophosphine. A lot better - & this team 丨王 w. q door lift: a compound with a 矽, a more affinity functional group, a coupling molecule, a 4~6 functional polyepoxide ring A compound of an oxy group and an alkoxy group (IV). Examples of the hexafunctional modifier include hydrido glycerylation in which an amine is contained in the molecule, and more preferably, an amine group is contained. Further, a compound having an i molecule can be mentioned. You 丨, refractory glycerylamine; 'Can be cited tetraglycidyl dimethyl phenyl I47412.doc -26- 201041914 glycidylamino diphenyl carbaryl, tetraglycidyl · p-phenylenediamine tetraglycidyl Base-1,3-diaminomethylcyclohexane or the like. It is also possible to use two or more types. The total number of moles relative to the anionic polymerization initiator functional group is preferably such that the above polyfunctional modifier can be added alone to the amount of the polyfunctional modifier, the molar number, and the polyfunctional modifier.定U.1〜借士--··σ 巧 飔 飔 飔 而 而 而 而 而 而 而 而 巧 巧 巧 巧 巧 巧 巧 巧 巧 巧 巧 巧 巧 巧 巧 巧 巧 巧 巧 巧 巧 巧 巧 巧 巧 巧 巧

加0.1倍以上’就經濟性之觀點而+,如虹以β 恍點而3,較好的是添加0.5倍 以下。 如上所述’ ϋ由使具有活性末端之共軛二烯烴-芳香族 乙烯共聚物之溶液與具有能夠與活性末端反應之4個以上 之官能基的多官能改性劑接觸來進行偶合反應,可獲得本 實施形態之分枝狀共軛二烯烴-芳香族乙烯共聚物(c)。 如上所述,進行偶合反應後,亦可視需要於溶液中添加 特定之失活劑、中和劑等。作為失活劑,例如可列舉水、 甲醇、乙醇、異丙醇等醇類。作為中和劑,例如可列舉硬 脂酸、油酸、特十碳酸等羧酸類、無機酸之水溶液、碳酸 氣體等。 又,因本實施形態之分枝狀共軛二烯烴-芳香族乙稀共 聚物(C)亦存在其自身為咼黏度之情形’故就防止聚合後 之精加工步驟中之凝膠化之觀點、或加工時之穩定性提高 之觀點而言’較好的是視需要添加2,6-二-第三丁基_4_經 基甲苯(BHT)、正十八烷基-3-(4’-羥基_3,,5,_二·第三丁基苯 酚)丙酸酯、2_曱基_4,6-雙[(辛硫基)甲基]苯酚等公知之橡 147412.doc -27- 201041914 膠用穩定劑。 就進一步提高本實施形態之分枝狀共軛二烯烴-芳香族 乙浠共聚物(c)之加工性之觀點而言,較好的是添加增量 油。添加之方法並無特別限定,較好的是將增量油添加、 混合至聚合物溶液中,對製成充油共聚物溶液者進行脫溶 劑。作為增量油,並無特別限定,例如可使用芳香油、環 烷油、石蠟油等,較好的是依據IP346法之多環芳香族成 分為3質量%以下之芳香族油代替品。該等之中,係使用 多環芳香族成分為3質量%以下之芳香族油代替品,但就 環境安全上之觀點、或防止溢油、進而濕地抓地力特性等 觀點而言,作為更好之芳香族油代替品,可列舉 Kautschuk Gummi Kunststoffe 52 (12) 799 (1999)所示之 TDAE(Treated Distillate Aromatic Extracts)、MES(Mild Extraction Solvate)等、此外 RAE(Residual Aromatic Extracts)等。增量油之使用量並無特別限定,通常相對於 本實施形態之分枝狀共輊二浠烴-芳香族乙烯共聚物(C) 1 00 質量份,較好的是10〜60質量份,更好的是20〜37.5質量 份。 作為自聚合溶液中取得本實施形態之分枝狀共軛二烯 烴-芳香族乙烯共聚物(C)之方法,並無特別限定,可應用 先前公知之方法。例如可應用:利用蒸汽汽提等將溶劑分 離後,過濾分離聚合物,進而對其進行脫水及乾燥而取得 聚合物之方法;於沖洗槽中濃縮,進而利用排氣式擠出機 等進行脫揮發分之方法;利用桶式乾燥機等直接進行脫揮 147412.doc -28- 201041914 發分之方法等。 [分枝狀共輛二烯煙-芳香族乙稀共聚物組合物]Adding 0.1 times or more '+ from the viewpoint of economy, such as rainbow with β 恍 and 3, preferably 0.5 times or less. As described above, the coupling reaction is carried out by bringing a solution of a conjugated diene-aromatic ethylene copolymer having an active terminal into contact with a polyfunctional modifier having four or more functional groups capable of reacting with an active terminal. The branched conjugated diene-aromatic ethylene copolymer (c) of the present embodiment is obtained. As described above, after the coupling reaction, a specific deactivator, neutralizer or the like may be added to the solution as needed. Examples of the deactivator include alcohols such as water, methanol, ethanol, and isopropyl alcohol. Examples of the neutralizing agent include carboxylic acids such as stearic acid, oleic acid and tert-carbonic acid, aqueous solutions of inorganic acids, and carbonic acid gas. Further, since the branched conjugated diene-aromatic ethylene copolymer (C) of the present embodiment also has its own yttrium viscosity, the viewpoint of preventing gelation in the finishing step after polymerization is considered. Or, in view of improving stability during processing, it is preferred to add 2,6-di-t-butyl-4-yl-perylene (BHT) or n-octadecyl-3-(4) as needed. '-Hydroxy-3,5,2-di-t-butylphenol) propionate, 2_mercapto-4,6-bis[(octylthio)methyl]phenol, etc., known rubber 147412.doc - 27- 201041914 Stabilizer for glue. From the viewpoint of further improving the processability of the branched conjugated diene-aromatic acetonitrile copolymer (c) of the present embodiment, it is preferred to add an extender oil. The method of addition is not particularly limited, and it is preferred to add and mix the extender oil to the polymer solution, and to carry out the desolvent for the oil-storage copolymer solution. The extender oil is not particularly limited. For example, an aromatic oil, a naphthenic oil, a paraffin oil or the like can be used, and an aromatic oil substitute having a polycyclic aromatic component of 3% by mass or less according to the IP346 method is preferred. Among these, an aromatic oil having a polycyclic aromatic component of 3% by mass or less is used as a substitute, but from the viewpoints of environmental safety, oil spill prevention, and wet grip performance, etc. Examples of the preferred aromatic oil substitutes include TDAE (Treated Distillate Aromatic Extracts), MES (Mild Extraction Solvate), and the like, and RAE (Residual Aromatic Extracts) as shown by Kautschuk Gummi Kunststoffe 52 (12) 799 (1999). The amount of the extender oil to be used is not particularly limited, and is usually 10 to 60 parts by mass, preferably 10 to 60 parts by mass, based on the branched conjugated hydrocarbon-aromatic ethylene copolymer (C) of the present embodiment. More preferably, it is 20 to 37.5 parts by mass. The method of obtaining the branched conjugated diene-aromatic ethylene copolymer (C) of the present embodiment from the polymerization solution is not particularly limited, and a conventionally known method can be applied. For example, it can be applied to a method in which a solvent is separated by steam stripping, a polymer is separated by filtration, and then dehydrated and dried to obtain a polymer; it is concentrated in a rinse tank, and further removed by a vented extruder or the like. Volatile method; direct devolatilization using a barrel dryer or the like 147412.doc -28- 201041914 method of sending points, and the like. [Branched total diene-alcohol-aromatic ethylene copolymer composition]

GG

所謂分枝狀共軛二烯烴·芳香族乙烯共聚物組合物,係 指於上述本實施形態之分枝狀共麵二稀煙_芳香族乙婦共 聚物(c)t混合特定之材科而成者。作為該材料,例如可 列舉·分枝狀共輛二婦烴_芳香族乙稀共聚物以外之橡膠 狀聚合物、無機填充劑、石夕烷偶合劑、橡膠用軟化劑、硫 化劑、硫化加速劑•硫化助劑等。該等之巾,較好的是至 少包含無機填充劑者。gp,較好的是包含本實施形態之分 枝狀共輛二烯烴芳香族乙烯共聚物(c)與無機填充劑之分 枝狀共軛二烯烴-芳香族乙烯共聚物組合物。 作為上述刀枝狀共輛二烯烴·芳香族乙稀共聚物⑹以外 ,橡膠狀聚合物’例如可列舉:共軛二烯烴系聚合物或其 氫化物'共扼二烯烴系化合物與乙稀基芳香族化合物之無 規’、聚物或其氫化物、共軛二烯烴系化合物與乙烯基芳香 «物之共聚物或其氫化物;非二稀烴系聚合物、 天然橡膠等。 八而口彳列舉.丁二烯橡膠或其氫化物、異戊二稀 橡膠或其氫化物、I乙烯_ 丁二烯橡膠或其氫化物、苯乙 烯丁-稀嵌段共聚物或其氫化物、苯乙烯.異戊二稀嵌段 〇聚物或其氫化物等苯乙稀系彈性體丙烯腈丁二稀橡 膠或其氫化物等。 又,作為非二稀烴系聚合物,可列舉:乙烯-丙烯橡 膠、乙稀-丙婦-二烯煙橡膠、乙烯_丁烯-二稀烴橡膠、乙 I47412.doc •29· 201041914 烯-丁烯橡膠、乙烯-己烯橡膠、乙烯_辛烯橡膠等烯烴系彈 性體,丁基橡膠、溴化丁基橡膠、丙烯酸橡膠、氟橡膠、 聚矽氧橡膠、氯化聚乙烯橡膠、表氯醇橡膠、αβ_不飽和 腈-丙烯酸酯·共軛二烯烴共聚合橡膠、聚氨酯橡膠、多硫 化橡膠等。 · 上述橡膠狀聚合物亦可為具有官能基之改性橡膠狀聚合 · 物。其分子量較好的是2,000〜2 000 000,更好的是 5,000〜1,5GG,GGG。亦可使用低分子量之所謂液狀橡膠。 該等橡膠狀聚合物既可單獨使用,亦可組合2種以上使❹ 用。 於本實奴形m之分枝狀共軛二烯烴-芳香族乙烯共聚物 (c)中組合上述橡膠狀聚合物之情形時,該等之比率並無 特別限定,就獲得低遲滯損耗性與抗濕滑性之平衡優異、 亦滿足實用上充分之耐磨耗性及破壞特性之硫化橡膠之觀 而5 ,作為分枝狀共軛二烯烴_芳香族乙烯共聚物(c)/上 述橡膠狀聚合物,較好的是20/804 〇〇/〇,更好的是 30/70〜90/10 ’進而較好的是50/50〜80/20。 〇 作為上述無機填充劑,例如可列舉二氧化矽系無機填充 劑或碳黑等。 作為一氧化矽系無機填充劑,例如可列舉以Si02、或 Sl3Al為、结構單元之主成分之固體粒子。此處,所謂主成 、 刀,係指佔二氧化矽系無機填充劑之5〇質量%以上之成 刀作為一氧化矽系無機填充劑之具體例,可列舉:二氧 化矽、黏土、滑石、雲母 '石夕藻土、矽灰石蒙脫石、沸 147412.doc •30· 201041914 石、玻璃纖維等無機纖維狀物質等。又,亦可使用將表面 =化之二氧切系無機填充劑、或二氧化矽系無機填充 』與-乳化㈣以外之無機填充劑之混合物。該等之中, 較好的是二氧化石夕及玻璃纖維,更好的是二氧化石夕。作為 二氧切,可使用乾式二氧切、濕式二氧切、合成石夕 酸鹽一氧化石夕等。該等之中較好的是破壞特性之改良效果 以及抗濕滑性之兼具效果優異之濕式二氧化矽。 Ο ❹ =枝狀共輕二烯烴_芳香族乙料聚物組合物中,就 獲,貫用上良好之耐磨耗性及破壞特性之觀點而言,上述 二氧切系無機填充劑之制贿吸附法所求得之氮吸附 比表面積較好的是100〜300 m2/g,更好的是_0 m /g。 又’亦可視需要藉由將比表面積相對較小(例如比表面 積未滿扇m2/g)之二氧切系無機填充劑與比表面積相對 較大(例如為2 00 ni2/g以上-备儿 m /g以上)之一乳化矽系無機填充劑組合 使用、,而使良好之耐磨耗性或破壞特性與低遲滞損耗性高 度地平衡。 工 分枝狀共軛二烯烴·芳香族乙烯共聚物組合物中之二氧 化石夕系無機填充劑之調配量並無特別限定,相對於包含分 枝狀共耗二婦煙-芳香族乙烯共聚物(c)之橡膠成分⑽質量 份’較好的是0.5〜300質量份,更好的是5〜2〇〇質量份,進 而較好的是2〇〜1〇0質量份。就表現作為填充劑之添加效果 :觀點而言,較好的是添加〇‘5質量份以上,另一方面 就使一化㈣無機填充劑充分地分散、使組合物之加 147412.doc 31 201041914 性或機械強度為實用上充分者之觀點而言,較好的是設為 300質量份以下。 碳黑並無特別限定,可使用SRF(Semi-Reinforcing Furnace,半補強碳黑)、FEF(Fast Extruding Furnace,快 壓出石炭黑)、HAF(High Abrasion Furnace,高而才磨碳黑)、 ISAF(Intermediate Super Abrasion Furnace,中超而才磨碳 黑)、SAF(Super Abrasion Furnace,超财磨碳黑)等各種類 型之碳黑,較好的是氮吸附比表面積為50 m2/g以上、 DBP(Dibutyl phthalate,鄰苯二甲酸二丁酯)吸油量為80 mL/100 g以上之碳黑。 碳黑之調配量相對於包含分枝狀共軛二烯烴-芳香族乙 烯共聚物(C)之橡膠成分100質量份,較好的是0.5〜100質量 份,更好的是3〜1 00質量份,進而較好的是5~50質量份。 就表現乾地抓地力性能或導電性等輪胎等用途所要求之性 能之觀點而言,較好的是添加0.5質量份以上,就分散性 之觀點而言,較好的是設為100質量份以下。 再者,於分枝狀共軛二烯烴-芳香族乙烯共聚物組合物 中,除上述二氧化矽系無機填充劑或碳黑以外,亦可添加 金屬氧化物或金屬氫氧化物。此處’所謂金屬氧化物’係 指以化學式MxOy(M表示金屬原子,X、y分別表示1〜6之整 數)作為結構單元之主成分之固體粒子,例如可列舉氧化 鋁、氧化鈦、氧化鎂、氧化辞等。又,亦可使用包含金屬 氧化物與金屬氧化物以外之無機填充劑之混合物。作為金 屬氫氧化物,並無特別限定,例如可列舉氫氧化铭、氫氧 147412.doc -32- 201041914 化鎂、氫氧化錘等β ΟThe branched conjugated diene-aromatic ethylene copolymer composition refers to a branched co-planar dilute tobacco-aromatic copolymer (c) t mixed with a specific material in the above embodiment. Adult. Examples of the material include a rubbery polymer other than a branched bipotarohydrocarbon-aromatic ethylene copolymer, an inorganic filler, an anthracycline coupling agent, a rubber softener, a vulcanizing agent, and an accelerated vulcanization. Agents • Vulcanization aids, etc. Such towels are preferably those which contain at least an inorganic filler. Preferably, gp is a branched conjugated diene-aromatic ethylene copolymer composition comprising the branched total diene aromatic ethylene copolymer (c) of the present embodiment and an inorganic filler. Examples of the rubbery polymer other than the scalloped total diene/aromatic ethylene copolymer (6) include a conjugated diene polymer or a hydride conjugated quinone diene compound and a vinyl group. a random compound of an aromatic compound, a polymer or a hydride thereof, a copolymer of a conjugated diene compound and a vinyl aromatic compound or a hydrogenated product thereof; a non-dihydrocarbon polymer, a natural rubber or the like. Illustrated. Butadiene rubber or its hydride, isoprene rubber or its hydride, I ethylene - butadiene rubber or its hydride, styrene butadiene - dilute block copolymer or its hydride a styrene-isopentadiene block ruthenium polymer or a styrene-based elastomer such as a styrene-based elastomer acrylonitrile butadiene rubber or a hydride thereof. Further, examples of the non-diuretic polymer include ethylene-propylene rubber, ethylene-propylene-diene rubber, ethylene-butene-diuretic rubber, and I47412.doc •29·201041914 olefin- Olefin elastomer such as butene rubber, ethylene-hexene rubber, ethylene-octene rubber, butyl rubber, bromobutyl rubber, acrylic rubber, fluororubber, polyoxyethylene rubber, chlorinated polyethylene rubber, surface chlorine Alcohol rubber, αβ_unsaturated nitrile-acrylate-conjugated diene copolymerized rubber, urethane rubber, polysulfide rubber, and the like. The rubbery polymer may be a modified rubbery polymer having a functional group. The molecular weight is preferably 2,000 to 2,000,000, more preferably 5,000 to 1, 5 GG, GGG. A low molecular weight so-called liquid rubber can also be used. These rubbery polymers may be used singly or in combination of two or more. In the case where the rubbery polymer is combined in the branched conjugated diene-aromatic ethylene copolymer (c) of the present invention, the ratio is not particularly limited, and low hysteresis loss is obtained. It is excellent in the balance of wet skid resistance and also satisfies the vulcanized rubber which is practically sufficient in abrasion resistance and destructive properties. 5 As a branched conjugated diene_aromatic ethylene copolymer (c) / the above rubbery polymerization Preferably, it is 20/804 〇〇/〇, more preferably 30/70 to 90/10' and further preferably 50/50 to 80/20. 〇 The inorganic filler may, for example, be a cerium oxide-based inorganic filler or carbon black. Examples of the cerium oxide-based inorganic filler include solid particles in which SiO 2 or Sl 3 Al is a main component of a structural unit. Here, the main component and the knives refer to a cerium oxide-based inorganic filler which is cerium oxide-based inorganic filler, and examples thereof include cerium oxide, clay, and talc. , mica 'Shiyoshizao soil, ash stone montmorillonite, boiling 147412.doc • 30· 201041914 Stone, glass fiber and other inorganic fibrous substances. Further, a mixture of a surface-oxidized dioxo-based inorganic filler or a ceria-based inorganic filler and an inorganic filler other than the emulsified (four) may be used. Among these, sulfur dioxide and glass fiber are preferred, and silica dioxide is more preferred. As the dioxotomy, dry dioxotomy, wet dioxotomy, synthetic oxalate, or the like can be used. Among these, wet cerium oxide which is excellent in both the effect of improving the damage characteristics and the wet skid resistance is preferable. Ο ❹ = dendritic co-diene diene-aromatic ethylene polymer composition, obtained from the viewpoint of good wear resistance and destruction characteristics, the above-mentioned dioxic inorganic filler The nitrogen adsorption specific surface area obtained by the bribe adsorption method is preferably 100 to 300 m 2 /g, more preferably _0 m /g. In addition, it is also possible to use a dioxent inorganic filler having a relatively small specific surface area (for example, a specific surface area not exceeding the fan m2/g) and a relatively large specific surface area (for example, 200 ni 2 /g or more - for preparation) One of the m/g or more emulsified lanthanide inorganic fillers is used in combination, and the good abrasion resistance or fracture characteristics are highly balanced with low hysteresis loss. The amount of the cerium oxide-based inorganic filler in the branched conjugated diene-aromatic ethylene copolymer composition is not particularly limited, and is equivalent to the branched-type co-consumption dimethanol-aromatic ethylene copolymer. The rubber component (10) parts by mass of (c) is preferably from 0.5 to 300 parts by mass, more preferably from 5 to 2 parts by mass, even more preferably from 2 to 1 part by mass. In view of the effect of addition as a filler, it is preferred to add 〇'5 parts by mass or more, and on the other hand, the inorganic filler is sufficiently dispersed to add 147412.doc 31 201041914 The viewpoint of the physical or mechanical strength is preferably 300 parts by mass or less from the viewpoint of being practically sufficient. Carbon black is not particularly limited, and SRF (Semi-Reinforcing Furnace, semi-reinforcing carbon black), FEF (Fast Extruding Furnace), HAF (High Abrasion Furnace), ISAF can be used. (Intermediate Super Abrasion Furnace, Super Abrasion Furnace, SAF (Super Abrasion Furnace), various types of carbon black, preferably nitrogen adsorption specific surface area of 50 m2 / g or more, DBP ( Dibutyl phthalate, dibutyl phthalate) A carbon black with an oil absorption of 80 mL/100 g or more. The blending amount of the carbon black is preferably from 0.5 to 100 parts by mass, more preferably from 3 to 100% by mass, per 100 parts by mass of the rubber component containing the branched conjugated diene-aromatic ethylene copolymer (C). Further, it is preferably 5 to 50 parts by mass. From the viewpoint of exhibiting performance required for applications such as dry grip performance and electric conductivity, it is preferred to add 0.5 parts by mass or more, and from the viewpoint of dispersibility, it is preferably set to 100 parts by mass. the following. Further, in the branched conjugated diene-aromatic ethylene copolymer composition, a metal oxide or a metal hydroxide may be added in addition to the above-mentioned ceria-based inorganic filler or carbon black. Here, the term "metal oxide" refers to a solid particle having a chemical formula of MxOy (where M represents a metal atom and X and y represent an integer of 1 to 6, respectively) as a main component of a structural unit, and examples thereof include alumina, titania, and oxidation. Magnesium, oxidation, etc. Further, a mixture containing a metal oxide and an inorganic filler other than the metal oxide may also be used. The metal hydroxide is not particularly limited, and examples thereof include hydrazine hydroxide, hydrogen peroxide 147412.doc-32-201041914 magnesium oxide, and hydrazine hydroxide.

:刀枝狀共輕一稀烴-芳香族乙烯共聚物組合物中,亦 可添加梦貌偶合劑。矽烷偶合劑具有使橡膠成分與二氧化 夕系無機i真充劑緊密地相1作用之功㉟,具冑分別針對橡 膠成刀及一氧化矽系無機填充劑之親和性或結合性之基, 奴係使用一分子中具有硫鍵結部分與烷氧基矽烷基、 气氧基。卩刀之化合物。就上述觀點而言石夕燒偶合劑 較好的疋與上述二氧化矽系無機填充劑併用。 作為矽烷偶合劑之具體例,可列舉雙_[3·(三乙氧基矽烷 基)_丙基l·四硫化物、雙♦(三乙氧切院基)胃丙基]_二硫 化物、雙-[2-(三乙氧基石夕縣)_乙基]_四硫化物等。 石夕院偶合劑之調配量相對於上述二氧切系無機填充劑 _質量份較好的是0.H0質量份,更好的是G5〜2〇質量 份’進而較好的是lM5f量份。就調配絲之觀點而言, 石夕院偶合劑之難量較好的是Qlf量份以上,就經濟性 之觀點而言’較好的是3〇質量份以下。 為謀求加工性之改良,分枝狀共軛二烯烴-芳香族乙烯 共聚物組合物中亦可調配橡膠用軟化劑。作為橡膠用軟化 劑,可列舉礦物油、或者液狀或低分子量之合成軟化劑。 為謀求橡膠之軟化、增容、加卫性之提高而使用之稱為加 工處理油或稀釋油之礦物油系橡踢用軟化劑為芳香族環、 環烷環及石蠟鏈之混合物,石蠟鏈之碳數佔總碳中之%% 以上者稱為石壤系,環烧環碳數為3Q〜45%者稱為環烧 糸’芳香族石炭數超過遍者稱為芳香族系。料與分枝狀 147412.doc •33- 201041914 ”軛烯炝芳g族乙埽共聚物(c) 一併使用之橡膠用軟化 劑’適度含有芳香族化合物者之適應性良好,故較佳。 橡膠用軟化劑之調配量相對於含有分枝狀共輛二烯烴-方香族乙烯#聚物(C)之橡膠成A 100質量份,較好的是 0〜100質量份’更好的是1〇〜9〇質量份,進而較好的是 30〜90質量份。橡膠用軟化劑之調配量相對於上述橡膠成 分100質量份’ 超過⑽f量份則容易產生渗出,有於組 合物表面產生黏著之虞,故不佳。 關於混合分枝狀共概二稀烴芳香族乙稀共聚物⑹與其 他橡膠狀聚口 4勿、二氧化矽系無機填充劑、碳黑或其他填 充劑、料偶合劑、橡膠用軟化劑等各種添加劑之方法, :無特別限定。例如’可列舉:使用開口滾筒、班布裏混 «器、捏合機、單螺旋擠出機、雙螺旋擠出機、多螺旋擠 出機等-般之混和機之溶融混練方法;溶解混合各成分 後,加熱除去溶劑之方法等。該等之中,就生產性及良混 練)生之觀點而吕,較好的是利用滾筒、班布裏混合器、捏 :機—或擠出;^等之溶融淚練法。—次性混練共輕二烯 芳香族乙稀共聚物與各種言周配劑之方&、分複數次混 合之方法之任一者均可。 上述分枝狀共耗二締烴-芳香力矣乙締共聚物組合物亦可 為藉由魏劑而實施硫化處理之硫化組合物。硫化劑並無 特別限定’例如’可使用有機過氧化物及偶氮化合物等自 由基產生劑,肟化合物、亞硝基化合物、聚胺化合物、 刀'瓜化口物。作為硫化合物,例如可列舉一氯化硫、二 147412.doc -34- 201041914 氣化硫、二硫化物化合物、高分子多硫化合物等。 硫化劑之使用量並無特別限定,通常相對於含有分枝狀 共軛二烯烴-芳香族乙烯共聚物(c)之橡膠成分1〇〇質量份, 較好的是0.01〜20質量份,更好的是〇1〜15質量份。 硫化方法並無特別限定,可應用先前公知之方法。硫化 溫度例如為120〜200°C,較好的是140〜18(TC。硫化時,亦 可視需要使用硫化加速劑或硫化助劑等^硫化加速劑並無A dream-like coupling agent may also be added to the scalloped light-dilute-aromatic ethylene copolymer composition. The decane coupling agent has a function of causing the rubber component to act in close phase with the oxidized cerium inorganic i-filling agent, and has a basis for affinity or binding of the rubber-forming knives and the cerium oxide-based inorganic fillers, respectively. The slave system uses a sulfur-bonded moiety in one molecule with an alkoxyalkyl group, an oxy group. The compound of the sickle. From the above viewpoints, a preferred cerium of the sulphur coupling agent is used in combination with the above-mentioned cerium oxide-based inorganic filler. Specific examples of the decane coupling agent include bis-[3·(triethoxydecyl)-propyl-1·tetrasulfide, and double ♦ (triethoxy oxo) gastric propyl]-disulfide. , bis-[2-(triethoxyshixixian)_ethyl]_tetrasulfide, and the like. The blending amount of the Shi Xiyuan coupling agent is preferably 0.H0 parts by mass, more preferably G5 2 parts by mass, and further preferably 1 part by mass, based on the above-mentioned dioxic inorganic filler. . From the viewpoint of blending the yarn, the difficulty of the Shi Xiyuan coupling agent is preferably more than the Qlf amount, and it is preferably 3 parts by mass or less from the viewpoint of economy. In order to improve the workability, a softener for rubber may be blended in the branched conjugated diene-aromatic ethylene copolymer composition. Examples of the rubber softener include mineral oil or a liquid or low molecular weight synthetic softener. A mineral oil-based rubber softener used as a processing oil or a dilute oil for the softening, compatibilizing and enhancing of rubber is a mixture of an aromatic ring, a naphthenic ring and a paraffin chain, and a paraffin chain. The carbon number accounts for %% of the total carbon. The above is called the rocky system, and the carbon number of the ring-burning ring is 3Q~45%. Material and Branching 147412.doc •33- 201041914 The conjugated olefin aryl g-ethane oxime copolymer (c) is a rubber softener used together. It is preferred because it has a good suitability for aromatic compounds. The amount of the rubber softener to be added is 100 parts by mass, preferably 0 to 100 parts by mass, based on the rubber containing the branched total diene-square aromatic ethylene #polymer (C). 1 to 9 parts by mass, and more preferably 30 to 90 parts by mass. The amount of the softener for rubber is more likely to cause bleed out than the amount of the above-mentioned rubber component of 100 parts by mass, more than (10)f, which is present on the surface of the composition. It is not good for the adhesion, and it is not good. For the mixing of branched and branched diaromatic aromatic ethylene copolymer (6) and other rubbery poly 4, cerium oxide inorganic filler, carbon black or other filler, A method of various additives such as a material coupling agent and a softener for rubber is not particularly limited. For example, 'opening roller, Bamburi mixer, kneader, single screw extruder, double screw extruder, Multi-screw extruder, etc. Method; a method of dissolving and mixing the components, heating and removing the solvent, etc. Among these, in terms of productivity and good mixing, it is preferable to use a roller, a Bambu mixer, a pinch-type machine- Or extrusion; ^ and other melt tear practice. - Sub-mixed light diene aromatic ethylene copolymer and a variety of prescriptions of the square &, the method of mixing several times. The above-mentioned branched co-conducting dihydrocarbene-aromatic ethyl bromide copolymer composition may also be a vulcanization composition which is subjected to a vulcanization treatment by a ferulic agent. The vulcanizing agent is not particularly limited, for example, an organic peroxide may be used. And a radical generating agent such as an azo compound, an anthracene compound, a nitroso compound, a polyamine compound, or a guillotine. As the sulfur compound, for example, sulfur monochloride, 147412.doc-34-201041914 gas can be cited. Sulfur, a disulfide compound, a polymer polysulfide compound, etc. The amount of the vulcanizing agent used is not particularly limited, and is usually 1 part with respect to the rubber component containing the branched conjugated diene-aromatic ethylene copolymer (c). 〇 mass part, preferably 0.01~2 0 parts by mass, more preferably 1 to 15 parts by mass. The vulcanization method is not particularly limited, and a conventionally known method can be applied. The vulcanization temperature is, for example, 120 to 200 ° C, preferably 140 to 18 (TC. vulcanization). When necessary, vulcanization accelerators or vulcanization aids may be used as needed.

特別限定,亦可使用先前公知之材料。例如,可列舉亞磺 酿胺系、胍系、秋蘭姆系、搭-胺系、酸-氨系、㈣系、 硫脲系、二硫胺基甲酸酯系等硫化加速劑。硫化助劑並盔 特別限^ ’亦可使Μ前公知之材料。例如可列舉辞白、 硬脂酸等。 硫化加速劑之使用量通常相對於含有分枝狀共輛二締 烴-芳香族乙烯共聚物(C)之橡膠成分1〇〇質量份,設為 〇.〇卜20質量份’較好的是〇1〜15質量份。硫化助劑之使用 量並無特別限定,相對於上述橡膠成分1〇〇質量份,較好 的是1〜10質量份。 於分枝狀共軛二烯烴_芳香族乙烯共聚物組合物申,亦 可於不損及本實施形態之目的之範圍内,使用上述以外之 軟化劑、填充劑、耐熱穩定劑、抗靜電劑、耐候穩定劑、 抗老化劑、著色劑、潤滑劑等各種添加劑。作為填充劑, 具體可列舉碳酸鈣、碳酸鎂、硫酸鋁、硫酸鋇等。作為耐 熱穩定劑、抗靜電劑、耐候穩定劑、抗老化劑、著色劑、 潤滑劑,可使用公知之材料。 147412.doc -35- 201041914 [實施例] 以下’利用實施例及比較例更具體地說明本發明。再 者’本發明並不限定於以下實施例。實施例及比較例中應 用之物性之測定方法、評價方法示於下文。 (1) 鍵結苯乙烯量 將測定用之試樣設為氣仿溶液,使用紫外可見分光光度 計(島津製作所製造’ UV-2450),藉由苯乙烯之苯基之 UV254 nm之吸收,而測定鍵結苯乙稀量(質量%)。 (2) 丁 一稀部分之微結構(乙稀鍵結量) 將測定用之試樣設為二硫化碳溶液,使用溶液池,利用 傅立葉轉換紅外分光光度計(日本分光製造,FT_IR23〇), 於600〜1000 之範圍内測定紅外線光譜,藉由特定之波 數下之吸光度’根據Hampton之方法之算式而求得丁二烯 部分之微結構(乙烯鍵結量)。 (3) 木尼黏度及木尼鬆驰率 使用木尼黏度計(上島製作所製造,VRU32),根據 IS0289-1及IS0289-4,將溫度設為12〇。〇,測定木尼黏度 及木尼鬆驰率。首先,將試樣於l2〇〇c預熱i分鐘後,以2 rpm使轉子旋轉,測定4分鐘後之轉矩,設為木尼黏度+ 。 其後’立刻使轉子之旋轉停止,以木尼單位記錄停止後 1.6〜5秒之每^丨秒之轉矩,求得將轉矩與時間(秒)製成雙 對數圖時之直線之斜率’將其絕對值設為木尼鬆驰率 (MSR)。 (4) 重量平均分子量及分子量分布 147412.doc -36 - 201041914 使用連接有3根以聚苯乙烯系凝膠作為填充劑之管柱的 GPC測定裝置,測定層析圖,基於使用標準聚苯乙烯之校 準曲線而求得重量平均分子量。進而,根據重量平均分子 量相對於數量平均分子量之比求得分子量分布(重量平均 分子量/數量平均分子量)。 溶離液係使用四氫呋喃(THF)。管柱係使用保護管柱: 東曹 TSKguardcolumn HHR-H,管柱:東曹 TSKgel G6000HHR, TSKgel G5000HHR,TSKgel G4000HHR。於烘箱溫度 40°C、THF流量1.0 mL/分鐘之條件下,使用RI檢測器(東 曹製HLC8020)。使10 mg測定用之試樣溶解於10 mL之THF 中而製成測定溶液,將測定溶液200 μΕ注入至GPC測定裝 置中進行測定。 (5) 玻璃轉移溫度(Tg) 根據IS022768 : 2006,使用MAC Science公司製造之 DSC3200S進行測定。於氦氣50 mL/分鐘之流通下,一邊 自-100°C起以20°C /分鐘升溫,一邊記錄DSC曲線,將DSC 微分曲線之峰頂(Inflection point)設為玻璃轉移溫度。 (6) 轉化率 向密封有作為内部標準之正丙基苯0.50 mL與約20 mL之 曱苯的100 mL之瓶中注入約20 mL自反應器出口獲得之聚 合物溶液,製作測定用之試樣。於安裝有承載有阿匹松密 封臘之填充管柱之玻璃管柱層析儀(GC)中測定所獲得之樣 品,根據事先獲得之1,3-丁二烯單體之校準曲線與苯乙烯 單體之校準曲線求得聚合物溶液中之殘留單體量,而求出 147412.doc -37- 201041914 1,3-丁二烯單體及苯乙烯單體之轉化率。 [實施例1 ] 將2座内容積為10 L、内部之高度(l)相對於直徑⑼之比 (L/D)為4、底部具有入口、頂部具有出口、具有攪拌機及 溫度調整用夾套之高壓蚤串聯連接,冑第i座設為聚合反 應器,將第2座設為偶合反應器。 將預先除去水分等雜質之U· 丁二稀、苯乙烯、正己烧 分別以23.8g/分鐘、U.9g/分鐘、187 5 g/分鐘之添加速度 加以混合而製成混合溶液。將雜質去活化處理用正丁基鐘 (處理正T基鐘)以Ο, mmGi/分鐘之速度添加至所獲得之 混合溶液中’並使用靜態混合機加以混合。將該混合溶液 連續地供給至第1座聚合反應器之底部,並且將作為極性 物質之2,2-雙(2-四氫呋喃基)丙烷以〇 〇14 g/分鐘之添加速 度、將作為聚合起始劑之正丁基鋰以〇 145 mm〇l/分鐘之添 加速度供給至第1座聚合反應器之底部,將聚合反應器之 出口之内溫(共聚物溶液之溫度)控制為100t而繼續聚合反 應。此時’反應器内之平均滯留時間為3 〇分鐘。 自第1座聚合反應器之頂部連續地取出聚合物溶液,供 給至第2座偶合反應器之底部。於第1座聚合反應器中之聚 合反應達到固定之狀態下,一邊特別注意不要與空氣接 觸’一邊自第2座偶合反應器之入口少量少量地排出聚合 物溶液,添加至甲醇約1 mL與環己烷約3 〇 mL之混合溶液 中。並且’以每聚合物100 g為0.2 g之方式將抗氧化劑 (BHT : 2,6-二-第三丁基-4-羥基甲苯)添加至混合溶液中 1474l2.doc -38- 201041914 後’利用桶式乾燥機除去溶劑,獲得測定分子量以及木尼 黏度及木尼鬆馳率之試樣(共轆二烯烴-芳香族乙烯共聚物 (I))。木尼黏度及木尼鬆驰率係於通過設定為l10〇c之6英 吋滚筒10次後進行測定。 试樣(共輊一烯烴-芳香族乙稀共聚物(I))之12〇°c之木尼Particularly limited, previously known materials can also be used. For example, a vulcanization accelerator such as a sulfinamide, an anthraquinone, a thiuram, a acenaphine, an acid-ammonia, a (iv), a thiourea or a dithiocarbamate may be mentioned. Vulcanization aids and helmets are specially limited to 'can also be known as materials. For example, white, stearic acid, etc. are mentioned. The amount of the vulcanization accelerator used is usually 1 part by mass based on the rubber component containing the branched biphenylene-aromatic ethylene copolymer (C), and is preferably 20 parts by mass. 〇 1 to 15 parts by mass. The amount of the vulcanization aid to be used is not particularly limited, and is preferably from 1 to 10 parts by mass based on 1 part by mass of the rubber component. In the case of the branched conjugated diene-aromatic ethylene copolymer composition, softeners, fillers, heat stabilizers, antistatic agents other than the above may be used within the range not detracting from the object of the embodiment. Various additives such as weathering stabilizers, anti-aging agents, colorants, and lubricants. Specific examples of the filler include calcium carbonate, magnesium carbonate, aluminum sulfate, barium sulfate, and the like. As the heat stabilizer, the antistatic agent, the weathering stabilizer, the anti-aging agent, the colorant, and the lubricant, a known material can be used. 147412.doc -35- 201041914 [Examples] Hereinafter, the present invention will be more specifically described by way of Examples and Comparative Examples. Further, the present invention is not limited to the following examples. The measurement methods and evaluation methods of the physical properties used in the examples and comparative examples are shown below. (1) The amount of bonded styrene is measured by using a UV-visible spectrophotometer (UV-2450 manufactured by Shimadzu Corporation) by UV-visible spectrophotometer (UV-2450 manufactured by Shimadzu Corporation). The amount of bonded styrene (mass%) was measured. (2) The microstructure of the dilute portion (the amount of the ethylene bond) The sample for the measurement is a carbon disulfide solution, and the solution pool is used, and the Fourier transform infrared spectrophotometer (manufactured by JASCO Corporation, FT_IR23〇) is used at 600. The infrared spectrum was measured within a range of ~1000, and the microstructure (ethylene bond amount) of the butadiene portion was determined by the equation of the method of Hampton by the absorbance at a specific wave number. (3) Mooney viscosity and Mooney relaxation rate The temperature was set to 12 根据 according to IS0289-1 and IS0289-4 using a Mooney viscometer (manufactured by Ueshima Seisakusho Co., Ltd., VRU32). Hey, the Mooney viscosity and the Mooney relaxation rate were measured. First, the sample was preheated at l2〇〇c for 1 minute, and then the rotor was rotated at 2 rpm, and the torque after 4 minutes was measured, and it was set to the Mooney viscosity + . Then, 'the rotation of the rotor is stopped immediately, and the torque per 1.6 seconds after the stop is recorded in the Muni unit, and the slope of the straight line when the torque and time (seconds) are made into the double logarithm map is obtained. 'Set its absolute value to the Mooney relaxation rate (MSR). (4) Weight average molecular weight and molecular weight distribution 147412.doc -36 - 201041914 A chromatogram was measured using a GPC measuring device connected with three columns of polystyrene gel as a filler, based on the use of standard polystyrene The calibration curve is used to determine the weight average molecular weight. Further, the molecular weight distribution (weight average molecular weight / number average molecular weight) is determined from the ratio of the weight average molecular weight to the number average molecular weight. For the dissolving liquid, tetrahydrofuran (THF) was used. The column is protected by a column: Tosoh TSKguardcolumn HHR-H, column: Tosoh TSKgel G6000HHR, TSKgel G5000HHR, TSKgel G4000HHR. An RI detector (HLC8020 manufactured by Tosoh Corp.) was used under the conditions of an oven temperature of 40 ° C and a THF flow rate of 1.0 mL/min. A 10 mg sample for measurement was dissolved in 10 mL of THF to prepare a measurement solution, and 200 μM of the measurement solution was injected into a GPC measuring device for measurement. (5) Glass transition temperature (Tg) Measured according to IS022768: 2006, using DSC3200S manufactured by MAC Science. The DSC curve was recorded while heating at 20 ° C /min from -100 ° C under a flow of 50 mL / min of helium, and the Inflection point of the DSC differential curve was set to the glass transition temperature. (6) Conversion rate A polymer solution obtained by injecting about 20 mL of the outlet from the reactor into a 100 mL bottle sealed with 0.50 mL of n-propylbenzene as an internal standard and about 20 mL of benzene was prepared for the measurement. kind. The obtained sample was measured in a glass column chromatography (GC) equipped with a packed column carrying an Apiesson seal wax, according to a calibration curve of 1,3-butadiene monomer obtained in advance with styrene. The calibration curve of the monomer was used to determine the amount of residual monomer in the polymer solution, and the conversion ratio of 147412.doc -37-201041914 1,3-butadiene monomer and styrene monomer was determined. [Example 1] The internal volume of two chambers was 10 L, the ratio of the height (l) to the diameter (9) of the interior was (4), the inlet was provided at the bottom, the outlet was provided at the top, and the jacket and the temperature adjustment jacket were provided. The high pressure crucibles are connected in series, and the first block is set as a polymerization reactor, and the second block is set as a coupling reactor. U·butylene dilute, styrene, and hexanone, which previously removed impurities such as moisture, were mixed at a rate of addition of 23.8 g/min, U.9 g/min, and 187 5 g/min to prepare a mixed solution. The deactivation treatment of the impurities was carried out using a n-butyl clock (treatment of a positive T-base clock) at a rate of mmGi/min to the obtained mixed solution, and mixed using a static mixer. The mixed solution was continuously supplied to the bottom of the first polymerization reactor, and 2,2-bis(2-tetrahydrofuryl)propane as a polar substance was added at a rate of 〇〇14 g/min. The n-butyllithium of the starting agent is supplied to the bottom of the first polymerization reactor at a rate of 〇145 mm〇l/min, and the internal temperature of the outlet of the polymerization reactor (temperature of the copolymer solution) is controlled to 100 t. Polymerization. At this time, the average residence time in the reactor was 3 〇 minutes. The polymer solution was continuously taken out from the top of the first polymerization reactor and supplied to the bottom of the second-site coupling reactor. When the polymerization reaction in the first polymerization reactor is fixed, pay special attention not to contact with air. While discharging a small amount of the polymer solution from the inlet of the second coupling reactor, add about 1 mL of methanol to A mixed solution of cyclohexane of about 3 〇mL. And 'the antioxidant (BHT: 2,6-di-t-butyl-4-hydroxytoluene) was added to the mixed solution in a manner of 0.2 g per 100 g of the polymer to 1474 l2.doc -38 - 201041914 The solvent was removed by a barrel dryer to obtain a sample (co-diene-aromatic ethylene copolymer (I)) having a measured molecular weight and a Mooney viscosity and a Mooney relaxation rate. The Mooney viscosity and the Mooney relaxation rate were measured after 10 times of a 6 inch roller set to 1010 °C. Sample (co-monoolefin-aromatic ethylene copolymer (I)) 12 〇 °c

黏度(ML-I)為93.5,木尼鬆驰率(MSR-I)為〇·687,以GPC 測疋之I本乙稀換鼻之重量平均分子量(Mw-I)為67.4萬。 又,第2座偶合反應器之入口之聚合轉化率為13_丁二稀達 〇 到98%,苯乙烯達到96%。 將第2座偶合反應器之溫度保持於85。〇,以〇〇184mm〇1/ 分鐘之添加速度自第2座偶合反應器之底部添加四縮水甘 油基-1,3-雙胺基甲基環己烷,實施偶合反應。四縮水甘油 基-1,3-雙胺基甲基環己烷為丨分子中具有4個環氧基之化合 物’其官能基之合計莫耳數與所添加之正丁基經之莫耳數 之比(當量比)為0_30。向自第2座偶合反應器之頂部取出之 Q 聚合物溶液中,以每聚合物1〇〇 g為0.2 g之方式以〇_〇71 g/ 分鐘(正己烧溶液)之添加速度連續地添加抗氧化劑 (BHT),使偶合反應結束。其後’除去溶劑,獲得分枝狀 共輛二稀烴-芳香族乙稀共聚物(c)。 該偶合後之分枝狀共軛二烯烴_芳香族乙烯共聚物(c)之 120C之木尼黏度(ML-C)為134.2,木尼鬆驰率(MSR-C)為 0.401,以GPC測定之聚苯乙烯換算之重量平均分子量(Mw_ C)為88.6萬,重量平均分子量相對於數量平均分子量之比 ((Mw_C)/(Mn-C))為2.32。又,鍵結苯乙烯量為33質量。/〇, 1474I2.doc •39· 201041914 丁二烯鍵結單元中之乙烯鍵結量(丨,2_鍵結量)為34莫耳%, 以DSC測定之玻璃轉移溫度為_3rc。 進而,向該分枝狀共軛二烯烴-芳香族乙烯共聚物溶液 中,以每聚合物100質量份為37.5質量份之方式添加S_RAe 油〇/叩训幻;公司製造' NC_14〇)後,除去 /谷劑,獲得充油共聚物(試樣a)。將所獲得之共聚物之性狀 不於表1。 [實施例2、3] 以表1所示之條件使用聚合起始正丁基鋰、2,2雙(2_四 氫夫喃基)丙烷及四縮水甘油基_丨,3_雙胺基曱基環己烷。 使其他條件與實施例i相同,獲得充油共聚物(試樣b、C)。 將所獲得之共聚物之性狀示於表丄。 [實施例4] 士表2所示’並不自實施例1之方法改變1,3_ 丁二烯與苯 乙烯之量比,而改變單體之供給量,將平均滯留時間設為 25分鐘,反應器出口之内溫設為1〇5t,其他物質之供給 篁亦如表1所不而改變,進行聚合反應及偶合反應。其 後與實施例1同樣進行油之添加及脫溶劑,而獲得充油 八聚物(5式樣d) °將所獲得之共聚物之性狀示於表2。 [實施例5] 除如表2所*改變四縮纟甘油基-1,3-雙胺基甲基環己院 之添加量以外, 、 /、貫施例4相同之方式獲得充油共聚物 (試樣e)。將所獲得之共聚物之性狀示於表2。 [實施例6] 147412.doc •40· 201041914 使聚合起始正丁基鋰、2,2-雙(2-四氫呋喃基)丙烷及四 縮水甘油基-1,3-雙胺基甲基環己烷之添加量如表2所示。 使其他條件與實施例4相同,獲得充油共聚物(試樣f)。將 所獲得之共聚物之性狀示於表2。 [比較例1] 如表3所示’並不自實施例1之方法改變丨,3 —丁二烯與苯 乙烯之量比,而改變單體之供給量,將平均滯留時間設為 〇 45分鐘,反應器出口之内溫設為9〇〇c,其他物質之供給量 亦如表1所示而改變,進行聚合反應及偶合反應。其後, 與實施例1同樣進行油之添加及脫溶劑,獲得充油共聚物 (試樣g)。將所獲得之共聚物之性狀示於表3。 [比較例2] 如表3所示,改變聚合起始正丁基鋰及2,2_雙(2_四氫呋 喃基)丙烷之添加量,進而將四縮水甘油基—^-雙胺基曱 基裱己烷之添加設為〇。利用其他條件與比較例丨相同之方 o a而實施聚合反應,進行聚合反應。其後,與實施例i同 樣進行油之添加及脫溶劑,而獲得充油共聚物(試樣h)。 於實施例1〜4及比較例!中,利用!座反應器進行聚合反 應,相對於此,於比較例2中,利用2座反應器進行聚=反 應。聚合轉化率係利用自第2座反應器之頂部獲得之妓聚 物溶液來測定。將所獲得之共聚物之性狀示於表3。八 [實施例7] =表4所示,自實施例丨之方法改變L3-丁二烯與苯乙烯 之量比,並改變單體之供給量,將平均滯留時間設為25分 147412.doc -41 · 201041914 鐘,反應器出口之内溫設為97°C,亦改變其他物質之供給 量而進行聚合及偶合反應後,與實施例1同樣進行油之添 加及脫溶劑,獲得充油共聚物(試樣i)。將所獲得之共聚物 之性狀示於表4。 [實施例8、9] 使聚合起始正丁基鋰、2,2-雙(2-四氫呋喃基)丙烷及四 縮水甘油基-1,3-雙胺基甲基環己烷之添加量如表4所示。 使其他條件與實施例7相同,獲得充油共聚物(試樣j、k)。 將所獲得之共聚物之性狀示於表4。 [實施例10] 如表5所示,並不自實施例7之方法改變13_丁二稀與笨 乙烯之量比,而改變單體之供給量,將平均滯留時間設為 22分鐘’反應器出口之内溫設為1〇2它,其他物質之供給 量亦如表1所示而改變,進行聚合及偶合反應。其後,與 實施例1同樣進行油之添加及脫溶劑,獲得充油共聚物(試 樣1)。將所獲得之共聚物之性狀示於表5。 [比較例3] 如表5所不,自實施例7之方法減少四縮水甘油基— I,%雙 胺基曱基環己烷之添加量。使其他條件與實施例7相同, 獲得充油共聚物(試樣m)。將所獲得之共聚物之性狀示於 表5。 [比較例4] 如表5所示,並不自實施例7之方法改變丨,3-丁二烯與笨 乙烯之量比,而改變單體之供給量’將平均滯留時間設為 1474l2.d〇c -42· 201041914 45分鐘,反應器出口之内溫設為90°C,其他物質之供給量 亦如表5所示而改變,進行聚合及偶合反應。其後,與實 施例7同樣進行油之添加及脫溶劑,獲得充油共聚物(試樣 η)。將所獲得之共聚物之性狀示於表5。 [表1]The viscosity (ML-I) was 93.5, the Mooney relaxation rate (MSR-I) was 〇·687, and the weight average molecular weight (Mw-I) of the I-diethyl-exchanged nose measured by GPC was 674,000. Further, the polymerization conversion rate at the inlet of the second-stage coupling reactor was 13-butadiene 〇 to 98%, and styrene was 96%. The temperature of the second coupling reactor was maintained at 85. Further, a coupling reaction was carried out by adding tetraglycidyl-1,3-diaminomethylcyclohexane from the bottom of the second-stage coupling reactor at a rate of addition of 184 mm 〇 1 minute. Tetraglycidyl-1,3-diaminomethylcyclohexane is a compound having four epoxy groups in a fluorene molecule, and the total number of moles of the functional groups and the number of moles of n-butyl groups added thereto The ratio (equivalent ratio) is 0_30. The Q polymer solution taken out from the top of the second coupling reactor was continuously added at a rate of 〇_〇71 g/min (positive hexane solution) at a rate of 0.2 g per 1 g of the polymer. The antioxidant (BHT) ends the coupling reaction. Thereafter, the solvent was removed to obtain a branched total di-hydrocarbon-aromatic ethylene copolymer (c). The coupled conjugated diene-aromatic ethylene copolymer (c) had a 120% Muini viscosity (ML-C) of 134.2 and a Mooney relaxation rate (MSR-C) of 0.401, as determined by GPC. The weight average molecular weight (Mw_C) in terms of polystyrene was 886,000, and the ratio of the weight average molecular weight to the number average molecular weight ((Mw_C) / (Mn-C)) was 2.32. Further, the amount of bonded styrene was 33 mass. /〇, 1474I2.doc •39· 201041914 The amount of ethylene bond (丨, 2_bond amount) in the butadiene bond unit is 34 mol%, and the glass transition temperature measured by DSC is _3rc. Further, in the branched conjugated diene-aromatic ethylene copolymer solution, S_RAe oil 〇/叩 叩 ; is added in an amount of 37.5 parts by mass per 100 parts by mass of the polymer; after the company manufactures 'NC_14 〇, The oil-repellent copolymer (sample a) was obtained by removing/treat. The properties of the obtained copolymer were not shown in Table 1. [Examples 2 and 3] Polymerization starting n-butyllithium, 2,2 bis(2-tetrahydrofuranyl)propane, and tetraglycidyl hydrazine, 3-diamino group were used under the conditions shown in Table 1. Mercaptocyclohexane. The other conditions were the same as in Example i to obtain an oil-extended copolymer (samples b, C). The properties of the obtained copolymer are shown in Table 丄. [Example 4] As shown in Table 2, 'the method of Example 1 did not change the ratio of 1,3-butadiene to styrene, and the supply amount of the monomer was changed, and the average residence time was set to 25 minutes. The internal temperature of the outlet of the reactor was set to 1 〇 5 t, and the supply enthalpy of other materials was also changed as shown in Table 1, and polymerization and coupling reactions were carried out. Thereafter, oil addition and solvent removal were carried out in the same manner as in Example 1 to obtain an oil-filled octamer (5 pattern d). The properties of the obtained copolymer are shown in Table 2. [Example 5] An oil-extended copolymer was obtained in the same manner as in Example 4 except that the addition amount of tetrakis(glyceryl)-1,3-diaminomethylcyclohexan was changed as shown in Table 2; (Sample e). The properties of the obtained copolymer are shown in Table 2. [Example 6] 147412.doc •40· 201041914 The polymerization initiated n-butyllithium, 2,2-bis(2-tetrahydrofuryl)propane and tetraglycidyl-1,3-diaminomethylcyclohexane. The amount of the alkane added is shown in Table 2. The other conditions were the same as in Example 4, and an oil-extended copolymer (sample f) was obtained. The properties of the obtained copolymer are shown in Table 2. [Comparative Example 1] As shown in Table 3, 'the ratio of 3-butadiene to styrene was not changed from the method of Example 1, and the supply amount of the monomer was changed, and the average residence time was set to 〇45. In minutes, the internal temperature of the outlet of the reactor was set to 9 〇〇c, and the supply amount of other substances was also changed as shown in Table 1, and polymerization reaction and coupling reaction were carried out. Thereafter, oil addition and solvent removal were carried out in the same manner as in Example 1 to obtain an oil-extended copolymer (sample g). The properties of the obtained copolymer are shown in Table 3. [Comparative Example 2] As shown in Table 3, the addition amount of n-butyllithium and 2,2-bis(2-tetrahydrofuranyl)propane was changed, and tetraglycidyl-di-diamine fluorenyl group was further added. The addition of hexane was set to 〇. The polymerization reaction was carried out by using the same conditions as in the comparative example o, and the polymerization reaction was carried out. Thereafter, oil addition and solvent removal were carried out in the same manner as in Example i to obtain an oil-extended copolymer (sample h). In Examples 1 to 4 and Comparative Examples! In, use! In the reactor, a polymerization reaction was carried out. In contrast, in Comparative Example 2, a polymerization reaction was carried out using a two-stage reactor. The polymerization conversion ratio was measured using a ruthenium polymer solution obtained from the top of the second reactor. The properties of the obtained copolymer are shown in Table 3. Eight [Example 7] = Table 4 shows that the ratio of L3-butadiene to styrene was changed from the method of Example ,, and the supply amount of the monomer was changed, and the average residence time was set to 25 minutes 147412.doc -41 · 201041914, the internal temperature of the reactor outlet was set to 97 ° C, and the amount of other substances was changed to carry out polymerization and coupling reaction, and then oil addition and solvent removal were carried out in the same manner as in Example 1 to obtain oil-extended copolymerization. (sample i). The properties of the obtained copolymer are shown in Table 4. [Examples 8 and 9] The polymerization amount of n-butyllithium, 2,2-bis(2-tetrahydrofuryl)propane, and tetraglycidyl-1,3-diaminomethylcyclohexane was increased. Table 4 shows. The other conditions were the same as in Example 7 to obtain an oil-extended copolymer (samples j, k). The properties of the obtained copolymer are shown in Table 4. [Example 10] As shown in Table 5, the ratio of 13-butadiene to stupid ethylene was not changed from the method of Example 7, and the supply amount of the monomer was changed, and the average residence time was set to 22 minutes. The internal temperature of the outlet of the device was set to 1 〇 2, and the supply amount of other substances was also changed as shown in Table 1, and polymerization and coupling reactions were carried out. Thereafter, oil addition and solvent removal were carried out in the same manner as in Example 1 to obtain an oil-extended copolymer (Sample 1). The properties of the obtained copolymer are shown in Table 5. [Comparative Example 3] As shown in Table 5, the addition amount of tetraglycidyl-I, % bisaminodecylcyclohexane was reduced from the method of Example 7. The other conditions were the same as in Example 7 to obtain an oil-extended copolymer (sample m). The properties of the obtained copolymer are shown in Table 5. [Comparative Example 4] As shown in Table 5, the ratio of 3-butadiene to stupid ethylene was not changed from the method of Example 7, and the supply amount of the monomer was changed 'the average residence time was set to 1474l2. D〇c -42· 201041914 45 minutes, the internal temperature of the reactor outlet was set to 90 ° C, and the supply amount of other substances was also changed as shown in Table 5, and polymerization and coupling reaction were carried out. Thereafter, oil addition and solvent removal were carried out in the same manner as in Example 7 to obtain an oil-extended copolymer (sample η). The properties of the obtained copolymer are shown in Table 5. [Table 1]

實施例1 實施例2 實施例3 試樣No. a b c 1,3-丁二烯 (g/分鐘) 23.8 23.8 23.8 苯乙烯 (g/分鐘) 11.9 11.9 11.9 正己烷 (g/分鐘) 187.5 187.5 187.5 聚合溫度 (°C) 100 100 100 聚 處理正丁基鋰 (mmol/分鐘) 0.100 0.100 0.100 合 條 聚合起始正丁基鏗 (mmol/分鐘) 0.145 0.158 0.182 件 極性物質”添加量 (g/分鐘) 0.014 0.015 0.017 TGAMH*2 添加量 (mmol/分鐘) 0.0184 0.0192 0.0211 鋰當量比 0.30 0.30 0.30 平均滞留時間(第1座反應器) (分鐘) 30 30 30 單體濃度 (質量%) 16 16 16 聚合轉化率 1,3-丁二烯 (%) 98 99 99 笨乙烯 (%) 96 98 99 鍵結苯乙烯量 (質量%) 33 33 33 乙烯鍵結量(1,2-鍵結量) (mol%) 34 34 34 玻璃轉移溫度 (°C) -31 •31 -31 重量平均分子量(Mw-I)(104 g/mol) 67.4 62.5 57.3 分 偶合前聚合物 分析值 120°C木尼黏度(ML-I) {260-(ML-I)}/300 93.5 0.555 82.4 0.592 70.8 0.631 值 {310-(ML-I)}/300 0.722 0.759 0.797 120 °c木尼鬆馳率(MSR-I) 0.687 0.724 0.772 重量平均分子量(Mw-C)(104 g/mol) 88.6 79.0 71.3 (Mw-C)/(Mn-C) 2.33 2.37 2.zs 偶合後(最終)聚 120°C木尼黏度(ML-C) 134.2 120.4 108.9 合物分析值 [214-(ML-C)}/300 0.266 0.312 0.350 [260-(ML-C)}/300 0.419 0.465 0.504 120 °c木尼鬆驰率(MSR-C) 0.401 0.448 0.478 *12,2-雙(2-四氫呋喃基)丙烷 *2四縮水甘油基-1,3-雙胺基甲基環己烷 -43- 147412.doc 201041914 [表2] 實施例4 實施例5 實施例6 試樣is 0. d e f 1,3-丁二烯 (g/分鐘) 28.6 28.6 28.6 苯乙烯 (g/分鐘) 14.3 14.3 14.3 正己烷 (g/分鐘) 225.1 225.1 225.1 聚合溫度 (°C) 105 105 105 聚 處理正丁基鋰 (mmol/分鐘) 0.120 0.120 0.120 合 條 聚合起始正丁基鋰 (mmol/分鐘) 0.185 0.185 0.200 件 極性物質41添加量 (g/分鐘) 0.025 0.025 0.027 TGAMH*2 添加量 (mmol/分鐘) 0.0133 0.0236 0.0248 鐘當量比 0.17 0.31 0.31 平均滞留時間(第1座反應器) (分鐘) 25 25 25 單體濃度 (質量%) 16 16 16 聚合轉化率 1,3-丁二烯 (%) 98 98 99 苯乙烯 (%) 97 97 98 鍵結苯乙烯量 (質量%) 33 33 33 乙烯鍵結量(1,2-鍵結量) (mol%) 34 34 34 玻璃轉移溫度 Cc) -31 -31 -31 重量平均分子量(Mw-I)(104 g/mol) 67.9 67.9 62.7 分 偶合前聚合物分 120°C木尼黏度(ML-I) 86.2 86.2 73.4 析值 {260-(ML-I)}/300 0.579 0.579 0.622 值 {310-(ML-I)}/300 0.764 0.764 0.789 120°C木尼鬆馳率(MSR-I) 0.667 0.667 0.715 重量平均分子量(Mw-C)(104 g/mol) 79.6 87.3 75.9 (Mw-C)/(Mn_C) 2.48 2.42 2.35 偶合後(最終)聚合 120°C木尼黏度(ML-C) 119.5 128.2 115.4 视刀不T值 [214-(ML-C)}/300 0.315 0.286 0.329 [260-(ML-C)}/300 0.468 0.439 0.482 *10 120°C木尼鬆馳率(MSR-C) 0.422 0.372 0.409 ” 2,2_雙(2-¾¾¾ *2四縮水甘油基-i,3-雙胺基曱基環己烷 •44- 147412.doc 201041914 [表3] 比較例1 比較例2 試樣No· h g 1,3-丁二烯 (g/分鐘) 16.0 16.0 苯乙烯 (g/分鐘) 8.0 8.0 正己烷 (g/分鐘) 125.6 125.6 聚合溫度 (°C) 90 90 聚 處理正丁基鋰 (mmol/分鐘) 0.067 0.067 合 條 聚合起始正丁基鋰 (mmo丨/分鐘) 0.100 0.090 件 極性物質”添加量 (g/分鐘) 0.0070 0.0065 TGAMH*2 添加量 (mmol/分鐘) 0.0125 - 鋰當量比 0.30 - 平均滯留時間(第1座反應器) (分鐘) 45 45 單體濃度 (質量%) 16 16 聚合轉化率 1,3-丁二烯 (%) 98 99 苯乙烯 (%) 95 99 鍵結苯乙烯量 (質量%) 33 33 乙烯鍵結量(1,2-鍵結量) (mol%) 34 34 玻璃轉移溫度(°C) -31 -31 重量平均分子量(Mw-ΐχΐΟ4 g/mol) 63.4 - yV 120°C木尼黏度(ML-I) 85.4 - 77 ί斤 偶合前聚合物分析值 {260-(ML-I)}/300 0.582 - 值 {310-(ML-I)}/300 0.749 - 120°C木尼鬆驰率(MSR-I) 0.785 重量平均分子量(Mw-C)(104 g/mol) 82.3 71.2 (Mw-C)/(Mn-C) 2.30, 2.12 偶合後(最終)聚合物分析 120°C木尼黏度(ML-C) 124.3 115.3 值 [214-(ML-C)}/300 0.299 0.329 [260-(ML-C)}/300 0.452 0.482 120°C木尼鬆驰率(MSR-C) 0.498 0.712 *1 2,2-雙(2-四氫呋喃基)丙烷 *2四縮水甘油基-1,3-雙胺基甲基環己烷Example 1 Example 2 Example 3 Sample No. abc 1,3-butadiene (g/min) 23.8 23.8 23.8 Styrene (g/min) 11.9 11.9 11.9 n-hexane (g/min) 187.5 187.5 187.5 Polymerization Temperature (°C) 100 100 100 Poly-n-butyllithium (mmol/min) 0.100 0.100 0.100 Polymerization starting n-butyl hydrazine (mmol/min) 0.145 0.158 0.182 pieces of polar substance “addition amount (g/min) 0.014 0.015 0.017 TGAMH*2 Addition amount (mmol/min) 0.0184 0.0192 0.0211 Lithium equivalent ratio 0.30 0.30 0.30 Average residence time (1st reactor) (minutes) 30 30 30 Monomer concentration (% by mass) 16 16 16 Polymerization conversion Rate 1,3-butadiene (%) 98 99 99 Stupid ethylene (%) 96 98 99 Bonded styrene amount (% by mass) 33 33 33 Ethylene bond amount (1, 2-bond amount) (mol% 34 34 34 Glass Transfer Temperature (°C) -31 •31 -31 Weight average molecular weight (Mw-I) (104 g/mol) 67.4 62.5 57.3 Pre-coupling polymer analysis value 120°C Mooney viscosity (ML- I) {260-(ML-I)}/300 93.5 0.555 82.4 0.592 70.8 0.631 Value {310-(ML-I)}/300 0.722 0.759 0.7 97 120 °c Mooney relaxation rate (MSR-I) 0.687 0.724 0.772 Weight average molecular weight (Mw-C) (104 g/mol) 88.6 79.0 71.3 (Mw-C)/(Mn-C) 2.33 2.37 2.zs After coupling (final) poly 120 ° C Mooney viscosity (ML-C) 134.2 120.4 108.9 Analysis value [214-(ML-C)}/300 0.266 0.312 0.350 [260-(ML-C)}/300 0.419 0.465 0.504 120 °c Mooney relaxation rate (MSR-C) 0.401 0.448 0.478 *12,2-bis(2-tetrahydrofuryl)propane*2 tetraglycidyl-1,3-diaminomethylcyclohexane -43-147412.doc 201041914 [Table 2] Example 4 Example 5 Example 6 Sample is 0. def 1,3-butadiene (g/min) 28.6 28.6 28.6 Styrene (g/min) 14.3 14.3 14.3 Hexane (g/min) 225.1 225.1 225.1 Polymerization temperature (°C) 105 105 105 Polybutyl n-butyllithium (mmol/min) 0.120 0.120 0.120 Polymerization starting n-butyllithium (mmol/min) 0.185 0.185 0.200 pieces of polar substance 41 added amount (g/min) 0.025 0.025 0.027 TGAMH*2 Addition amount (mmol/min) 0.0133 0.0236 0.0248 Clock equivalent ratio 0.17 0.31 0.31 Average residence time (1st reaction (min) 25 25 25 Monomer concentration (% by mass) 16 16 16 Polymerization conversion 1,3-butadiene (%) 98 98 99 Styrene (%) 97 97 98 Bonded styrene amount (% by mass 33 33 33 Ethylene bond amount (1,2-bond amount) (mol%) 34 34 34 Glass transition temperature Cc) -31 -31 -31 Weight average molecular weight (Mw-I) (104 g/mol) 67.9 67.9 62.7 Pre-coupling polymer 120 °C Mooney viscosity (ML-I) 86.2 86.2 73.4 Analysis value {260-(ML-I)}/300 0.579 0.579 0.622 Value {310-(ML-I)}/300 0.764 0.764 0.789 120°C Mooney relaxation rate (MSR-I) 0.667 0.667 0.715 Weight average molecular weight (Mw-C) (104 g/mol) 79.6 87.3 75.9 (Mw-C)/(Mn_C) 2.48 2.42 2.35 After coupling (Final) Polymerization 120 °C Mooney Viscosity (ML-C) 119.5 128.2 115.4 Mirror not T value [214-(ML-C)}/300 0.315 0.286 0.329 [260-(ML-C)}/300 0.468 0.439 0.482 *10 120 °C Mooney relaxation rate (MSR-C) 0.422 0.372 0.409 ” 2,2_double (2-3⁄43⁄43⁄4 *2 tetraglycidyl-i,3-diaminodecylcyclohexane •44 - 147412.doc 201041914 [Table 3] Comparative Example 1 Comparative Example 2 Sample No. hg 1,3-butadiene (g/min) 16.0 16.0 Styrene (g/min) 8.0 8.0 Hexane (g/min) 125.6 125.6 Polymerization temperature (°C) 90 90 Polybutyl n-butyllithium (mmol/min) 0.067 0.067 Initial n-butyl lithium (mmo丨 / min) 0.100 0.090 pieces of polar substance "addition amount (g / min) 0.0070 0.0065 TGAMH * 2 addition amount (mmol / min) 0.0125 - lithium equivalent ratio 0.30 - average residence time (1st block Reactor) (minutes) 45 45 Monomer concentration (% by mass) 16 16 Polymerization conversion 1,3-butadiene (%) 98 99 Styrene (%) 95 99 Bonded styrene amount (% by mass) 33 33 Ethylene bond amount (1,2-bond amount) (mol%) 34 34 Glass transition temperature (°C) -31 -31 Weight average molecular weight (Mw-ΐχΐΟ4 g/mol) 63.4 - yV 120°C Mooney viscosity (ML-I) 85.4 - 77 LY before coupling polymer analysis value {260-(ML-I)}/300 0.582 - value {310-(ML-I)}/300 0.749 - 120°C Rate (MSR-I) 0.785 Weight average molecular weight (Mw-C) (104 g/mol) 82.3 71.2 (Mw-C)/(Mn-C) 2.30, 2.12 After coupling (final) Polymer analysis 120 °C Muni sticky (ML-C) 124.3 115.3 Value [214-(ML-C)}/300 0.299 0.329 [260-(ML-C)}/300 0.452 0.482 120°C Mooney relaxation rate (MSR-C) 0.498 0.712 * 1 2,2-bis(2-tetrahydrofuryl)propane*2 tetraglycidyl-1,3-diaminomethylcyclohexane

•45· 147412.doc 201041914 [表4] 實施例7 實施例8 實施例9 試樣No. i j k 1,3-丁二烯 ~~~ (g/分鐘) 31.2 31.2 31.2 苯乙烯 & (g/分鐘) 17.1 17.1 17.1 正己烷 ~~~ (g/分鐘) 220.1 220.1 220.1 聚合溫度 ~~~~ (°C) 97 97 97 處理正丁基链 聚 ------ (mmol/分鐘) 0.136 0.136 0,136 條 杜 聚合起始正丁基鋰 (mmol/分鐘) 0.218 0.200 0.185 ΊΤ 極性物質”添加量 ------__^ (g/分鐘) 0.043 0Ό40 0.038 TGAMH*2 添加量 (mmol/分鐘) 0.0292 0.0277 0.0265 ---— 鋰當量比 0.33 0.33 0.33 平均滞留時間(第1座反應器) (分鐘) 25 25 25 單體濃度 (質量%) 18 18 18 聚合轉化率 1,3-丁二烯 (%) 99 99 99 笨乙烯 (%) 98 98 98 鍵結苯乙烯量 (質量%) 35 35 35 乙烯鍵結量(1,2-鍵結量) (mol%) 40 40 40 玻璃轉移溫度 CC) -21 -21 -21 重量平均分子量(Mw-I)(104 g/mol) 59,0 63.8 68.2 yV 120°C木尼黏度(ML-I) 66.6 77.2 83.2 77 k 偶合前聚合物分析值 {260-(ML-I)}/300 0.645 0.609 0.589 值 {310-(ML-I)}/300 0.811 0.776 0.756 120°C木尼鬆驰率(MSR-I) 0.692 0.671 0.636 重量平均分子量(Mw-C)(l04 g/mol) 78.5 82.4 86.1 (Mw-C)/(Mn-C) 2.35 2.32 2.28 偶合後(最終)聚合物分 120°C木尼黏度(ML-C) 106.6 116.0 122.6 析值 [214-(ML-C)}/300 0.358 0.327 0.305 [260-(ML-C)}/300 0.511 0.480 0.458 120°C木尼鬆馳率(MSR-C) 0.401 0.362 0.348 *1 2,2-雙(2-四氫呋喃基)丙烷 *2四縮水甘油基-1,3-雙胺基甲基環己烷 147412.doc -46- 201041914 [表5] 實施 例10 比較 例3 比較 例4 試樣 No. 1 m η 1,3-丁二烯 (g/分鐘) 35.4 31.2 17.3 苯乙烯 (g/分鐘) 19.4 17.1 9.5 正己烧 (g/分鐘) 250.2 220.1 122.0 聚合溫度 (°C) 102 97 90 聚 處理正丁基鋰 (mmol/分鐘) 0.154 0.136 0.075 合 條 聚合起始正丁基兹 (mmol/分鐘) 0.240 0.218 0.122 件 極性物質”添加量 (g/分鐘) 0.049 0.043 0.021 TGAMH*2 添加量 (mmol/分鐘) 0.0345 0.0053 0.0492 鋰當量比 0.35 0.06 1.00 平均滯留時間(第1座反應器) (分鐘) 22 25 45 單體濃度 (質量%) 18 18 18 聚合轉化率 1,3-丁二烯 (%) 99 99 99 苯己烯 (%) 99 98 97 鍵結笨乙烯量 (質量%) 35 35 35 乙烯鍵結量(1,2-鍵結量) (mol%) 40 40 40 玻璃轉移溫度 (°c) 21 -21 -21 重量平均分子量(Mw-I)(l 04 g/mol) 59.7 59.0 65.2 合 120°C木尼黏度(ML-I) 72.4 66.6 78.2 偶合前聚合物分析值 {260-(ML-I)}/300 0.625 0.645 0.606 值 {310-(ML-I)}/300 0.792 0.811 0.773 120°C木尼鬆驰率(MSR-I) 0.655 0.692 0.698 重量平均分子量(Mw-C)(104 g/mol) 81.0 68.2 91.2 (Mw-C)/(Mn-C) 2.42 2.38 2.15 偶合後(最終)聚合物分 120°C木尼黏度(ML-C) 119.6 89.2 145.3 析值 [214-(ML-C)}/300 0.315 0.416 0.229 [260-(ML-C)}/300 0.468 0.569 0.382 120°C木尼鬆驰率(MSR-C) 0.335 0.508 0.261 *1 2,2-雙(2-四氫呋喃基)丙烷 *2四縮水甘油基-1,3-雙胺基甲基環己烷• 45· 147412.doc 201041914 [Table 4] Example 7 Example 8 Example 9 Sample No. ijk 1,3-butadiene ~~~ (g/min) 31.2 31.2 31.2 Styrene & (g/ Minutes) 17.1 17.1 17.1 n-hexane ~~~ (g/min) 220.1 220.1 220.1 Polymerization temperature ~~~~ (°C) 97 97 97 Treatment of n-butyl chain polymerization ------ (mmol/min) 0.136 0.136 0,136 Poly-polymerization of n-butyllithium (mmol/min) 0.218 0.200 0.185 ΊΤ Polar substance “addition amount ------__^ (g/min) 0.043 0Ό40 0.038 TGAMH*2 Addition amount (mmol/min) 0.0292 0.0277 0.0265 ---— Lithium equivalent ratio 0.33 0.33 0.33 Average residence time (1st reactor) (minutes) 25 25 25 Monomer concentration (% by mass) 18 18 18 Polymerization conversion ratio 1,3-butadiene (%) 99 99 99 Stupid ethylene (%) 98 98 98 Bonded styrene amount (% by mass) 35 35 35 Ethylene bond amount (1,2-bond amount) (mol%) 40 40 40 Glass transition temperature CC) -21 -21 -21 Weight average molecular weight (Mw-I) (104 g/mol) 59,0 63.8 68.2 yV 120 °C Mooney viscosity (ML-I) 66.6 77.2 83.2 77 k Coupling Polymer analysis value {260-(ML-I)}/300 0.645 0.609 0.589 Value {310-(ML-I)}/300 0.811 0.776 0.756 120°C Mooney relaxation rate (MSR-I) 0.692 0.671 0.636 Weight Average molecular weight (Mw-C) (10 g/mol) 78.5 82.4 86.1 (Mw-C)/(Mn-C) 2.35 2.32 2.28 After coupling (final) polymer 120 °C Mooney viscosity (ML-C) 106.6 116.0 122.6 Analysis [214-(ML-C)}/300 0.358 0.327 0.305 [260-(ML-C)}/300 0.511 0.480 0.458 120°C Mooney relaxation rate (MSR-C) 0.401 0.362 0.348 *1 2,2-bis(2-tetrahydrofuryl)propane*2 tetraglycidyl-1,3-diaminomethylcyclohexane 147412.doc -46- 201041914 [Table 5] Example 10 Comparative Example 3 Comparative Example 4 Sample No. 1 m η 1,3-butadiene (g/min) 35.4 31.2 17.3 Styrene (g/min) 19.4 17.1 9.5 Normally calcined (g/min) 250.2 220.1 122.0 Polymerization temperature (°C) 102 97 90 Poly-n-butyllithium (mmol/min) 0.154 0.136 0.075 Polymerization starting n-butylzyl (mmol/min) 0.240 0.218 0.122 piece of polar substance "addition amount (g/min) 0.049 0.043 0.021 TGAMH*2 Addition amount (mmol/min ) 0.0345 0.0053 0.0492 Lithium equivalent ratio 0.35 0.06 1.00 Average residence time (1st reactor) (minutes) 22 25 45 Monomer concentration (% by mass) 18 18 18 Polymerization conversion ratio 1,3-butadiene (%) 99 99 99 Benzene (%) 99 98 97 Bonding amount of ethylene (% by mass) 35 35 35 Ethylene bond amount (1,2-bond amount) (mol%) 40 40 40 Glass transition temperature (°c) 21 -21 -21 Weight average molecular weight (Mw-I) (l 04 g/mol) 59.7 59.0 65.2 and 120 °C Mooney viscosity (ML-I) 72.4 66.6 78.2 Analysis value of polymer before coupling {260-(ML- I)}/300 0.625 0.645 0.606 Value {310-(ML-I)}/300 0.792 0.811 0.773 120°C Mooney relaxation rate (MSR-I) 0.655 0.692 0.698 Weight average molecular weight (Mw-C) (104 g /mol) 81.0 68.2 91.2 (Mw-C) / (Mn-C) 2.42 2.38 2.15 After coupling (final) polymer 120 ° C Mooney viscosity (ML-C) 119.6 89.2 145.3 Analysis value [214-(ML- C)}/300 0.315 0.416 0.229 [260-(ML-C)}/300 0.468 0.569 0.382 120°C Mooney relaxation rate (MSR-C) 0.335 0.508 0.261 *1 2,2-bis(2-tetrahydrofuranyl) Propane*2 tetraglycidyl-1,3-diaminomethyl ring Alkyl

-47- 147412.doc 201041914 [實施例11〜16][比較例5〜8] 將上述表1〜5所示之試樣(試樣a、b、d、e、g〜丨、Ηη)設 為原料橡膠,根據下文所示之調配,獲得含有原料橡膠之 橡膠組合物。 .充油苯乙烯-丁二烯共聚物(試樣a、b、d、e、g〜i、 1〜n) : 96.25質量份 • 1,4-順式含量較高之聚丁二烯橡膠(以下,稱為高順聚丁 二烯橡膠)(宇部興產公司製造、UBEPOL BR-150、順式鍵 結量98%) ·· 30.00質量份 •二氧化矽(Degussa公司製造Ultrasil VN3) : 75,00質量份 •碳黑(Tokai Carbon公司製造N339) : 5.00質量份 •矽烷偶合劑(Degussa公司製造Si75) : 6.00質量份 • S-RAE 油(Japan Energy Corporation 公司製造 J〇M〇 Process NC140) : 15.75質量份 .鋅白:2.50質量份 •硬脂酸:2.00質量份 .蠟(大内新興化學公司製造之選擇性特異壞Ν) : 15〇質量份 •抗老化劑(Ν-異丙基-Ν1-苯基-對苯二胺):2.〇〇質量份 •硫:2.20質量份 •硫化加速劑(Ν-環己基,2-苯并噻唑基磺醯胺):17〇質量份 •硫化加速劑(二苯基胍):2.00質量份 合計:241.90質量份 將橡膠組合物之混練方法示於下文。 使用具備溫度控制裝置之密閉混練機(内容量〇 3 L),作 147412.doc • 48· 201041914 為第一階段之混練,係於填充率72%、轉子轉速則7 — 之條件下,混練原料橡膠(試樣a、b、d、e、g〜i、m 順丁二稀橡膠)、二氧化石夕、有機石夕烧偶合劑、加工處理 /由此打,控制密閉混合器之溫度,排出溫度(調配物)為 155〜160°C而獲得橡膠組合物。 ,其次,作為第二階段之混練,係將上述獲得之調配物冷 "P至/JD·後,添加石炭黑、辞白、硬脂酸、蠟、抗老化劑進 ❹ π再人w練。此時亦藉由混合器之溫度控制而將排出溫度 (調配物)調整為155〜16代。冷卻後,作為第三階段之混 練係利用S又疋為70 C之開口滾筒添加硫、石荒化加速劑進 打混練。其後,加以成型,於16(TC利用硫化加壓機硫化 20刀鐘。硫化後,測定橡膠組合物之物性。將物性測定結 果示於下述表6、7。 藉由下述方法測定橡膠組合物之物性。 (1) 結合橡膠量 Q 將第2階段混練步驟之結束後之調配物(約〇.2 g)裁成約i mm見方之形狀,放入哈瑞斯籃(Harris,ι〇〇目金屬 絲網製)中,測定重量。其後,於甲苯中於23。〇浸潰24小 .時後,實施乾燥處理,測定曱苯非溶解成分之重量。根據 非溶解成分之重量來計算結合於填充劑之橡膠(分枝狀共 軛二烯烴·芳香族乙烯共聚物+高順丁二烯橡膠)之重量, 求得與填充劑結合之橡膠相對於最初之調配物中之橡膠量 的比例。 (2) 調配物木尼黏度 147412.doc •49· 201041914 使用木尼黏度計,根據JIS K6300-1,於130°C進行1分鐘 之預熱後,以每分鐘2轉(2 rpm)使轉子旋轉,測定4分鐘後 之黏度。木尼黏度之值越小,表示混練時消耗能量越小, 加工性越良好。 (3) 拉伸強度 根據JIS K625 1之拉伸試驗法進行測定。實施例11〜14及 比較例5係將比較例6設為1 〇〇而指數化,實施例15、16及 比較例8係將比較例7設為1 〇〇而指數化。 (4) 黏彈性參數 使用Rheometrics Scientific公司製造之黏彈性試驗機 (ARES),以扭轉模式測定黏彈性參數。關於各測定值,實 施例Π〜14及比較例5係將比較例6設為1〇〇而指數化,實施 例15、16及比較例8係將比較例7設為1〇〇而指數化。將於 〇°C以頻率10 Hz、應變1%所測定之tan5(損耗正切)作為抗 濕滑性之指標。值越大,表示抗濕滑性越良好。 又,將於50°C以頻率1〇 Hz、應變3。/。所測定之仏以(損耗 正切)作為省耗油特性之指標。值越小,表示低遲滯損耗 性越良好。進而將於相同條件下測定之G,(儲存彈性模旬 設為操縱穩定性之指標。值越大,剛性越高,表示穩定性 (5)耐磨耗性 使用阿克隆磨耗試驗機(安田精機製作所 :測定荷重…、_轉之磨耗量。實施丄: t 乂例5係將比較例6設為100而指數化’實施例15、16 I47412.doc -50- 201041914 及比較例8係將比較例7設為100而指數化。指數越大,表 示财磨耗性越優異。 [表6] 實施例 11 實施例 12 實施例 13 實施例 14 比較例 5 比較例 6 充油苯乙烯-丁二烯共聚物 a b d e g h 調配物木尼黏度 55 52 53 54 54 61 結合橡膠量 (%) 46 44 43 45 42 39 硫 化 橡 膠 物 性 拉伸強度 指數 108 103 102 107 104 700 耐磨耗性 指數 108 104 103 107 102 100 0°C tan8 指數 (應變1%) 100 102 99 100 100 100 50°C tan8 指數 (應變3%) 95 97 97 95 98 100 50°C G' 指數 (應變3%) 97 98 98 97 98 100-47-147412.doc 201041914 [Examples 11 to 16] [Comparative Examples 5 to 8] The samples (samples a, b, d, e, g 丨, Ηη) shown in the above Tables 1 to 5 were set. As the raw material rubber, a rubber composition containing the raw material rubber was obtained according to the formulation shown below. Oil-filled styrene-butadiene copolymer (samples a, b, d, e, g~i, 1~n): 96.25 parts by mass • Polybutadiene rubber with a high 1,4-cis content (hereinafter, it is called high-poly butadiene rubber) (manufactured by Ube Industries, UBEPOL BR-150, 98% cis bond) ··········································· 00 parts by mass • Carbon black (N339 manufactured by Tokai Carbon): 5.00 parts by mass • decane coupling agent (Si75 manufactured by Degussa): 6.00 parts by mass • S-RAE oil (J〇M〇Process NC140 manufactured by Japan Energy Corporation): 15.75 parts by mass. Zinc white: 2.50 parts by mass • Stearic acid: 2.00 parts by mass. Wax (selective specific gangrene manufactured by Okinawa Chemical Co., Ltd.): 15 parts by mass • Anti-aging agent (Ν-isopropyl- Ν1-Phenyl-p-phenylenediamine): 2. 〇〇 parts by mass • Sulfur: 2.20 parts by mass • Vulcanization accelerator (Ν-cyclohexyl, 2-benzothiazolylsulfonamide): 17 parts by mass • Vulcanized Accelerator (diphenyl hydrazine): 2.00 parts by mass in total: 241.90 parts by mass The method of kneading the rubber composition is shown below. Using a closed kneading machine with a temperature control device (content amount 〇3 L), 147412.doc • 48· 201041914 is the first stage of mixing, under the condition of 72% filling rate and 7-degree rotor speed, mixing raw materials Rubber (samples a, b, d, e, g~i, m cis-butadiene rubber), silica dioxide, organic stone sinter coupling agent, processing/playing, controlling the temperature of the closed mixer, The discharge temperature (mixture) was 155 to 160 ° C to obtain a rubber composition. Secondly, as the second stage of the kneading, after the above-obtained formulation is cold "P to /JD·, add carbon black, white, stearic acid, wax, anti-aging agent into ❹ π . At this time, the discharge temperature (preparation) was also adjusted to 155 to 16 generations by temperature control of the mixer. After cooling, as a mixing stage of the third stage, sulfur and stone desiccant accelerators were added to the open drum of S C. Thereafter, it was molded and cured at 16 (TC) by a vulcanization press for 20 knives. After vulcanization, the physical properties of the rubber composition were measured. The physical property measurement results are shown in the following Tables 6 and 7. The rubber was measured by the following method. Physical properties of the composition (1) Binding rubber amount Q The formulation after the end of the second stage mixing step (about 2.2 g) is cut into a shape of about i mm square and placed in a Harris basket (Harris, ι〇) The weight was measured in a wire mesh system. Thereafter, it was dried in toluene at 23. After immersing for 24 hours, the drying treatment was carried out to measure the weight of the non-dissolved component of the benzene. Calculating the weight of the rubber (branched conjugated diene-aromatic ethylene copolymer + high-cis-butadiene rubber) bonded to the filler, and determining the ratio of the rubber combined with the filler to the amount of rubber in the initial formulation (2) Formulation Muney viscosity 147412.doc •49· 201041914 Using a Mooney viscometer, according to JIS K6300-1, after preheating at 130 ° C for 1 minute, 2 revolutions per minute (2 rpm) The rotor was rotated and the viscosity after 4 minutes was measured. The value of the Mooney viscosity The smaller the amount, the smaller the energy consumption during kneading, and the better the workability. (3) The tensile strength was measured according to the tensile test method of JIS K625 1. In Examples 11 to 14 and Comparative Example 5, Comparative Example 6 was set. 1 and indexed, Examples 15, 16 and Comparative Example 8 were indexed by setting Comparative Example 7 to 1 。. (4) The viscoelastic parameters were measured using a viscoelasticity tester (ARES) manufactured by Rheometrics Scientific. The viscoelastic parameters were measured in a torsion mode. For each of the measured values, Examples Π to 14 and Comparative Example 5 were indexed by comparing Comparative Example 6 to 1 ,, and Examples 15 and 16 and Comparative Example 8 were Comparative Example 7. It is set to 1 〇〇 and is indexed. Tan5 (loss tangent) measured at a frequency of 10 Hz and a strain of 1% is used as an index of wet skid resistance. The larger the value, the better the wet skid resistance. In addition, the frequency is 1 〇 Hz at 50 ° C, and the strain is 3. The measured enthalpy is (loss tangent) as an indicator of fuel economy characteristics. The smaller the value, the better the low hysteresis loss. G measured under the same conditions, (storage elastic modulus is set as an indicator of steering stability. The larger the value The higher the rigidity, the higher the stability (5) The wear resistance is measured by the Akron abrasion tester (Yaoda Seiki Co., Ltd.: the load is measured..., the amount of wear is changed.) 丄: t 乂 Example 5 sets Comparative Example 6 to 100 On the other hand, the indexing of Examples 15, 16 I47412.doc-50-201041914 and Comparative Example 8 was indexed by setting Comparative Example 7 to 100. The larger the index, the more excellent the sharpness is. [Table 6] Example 11 Example 12 Example 13 Example 14 Comparative Example 5 Comparative Example 6 Oil-filled styrene-butadiene copolymer abdegh Formulation Muney viscosity 55 52 53 54 54 61 Bonding rubber amount (%) 46 44 43 45 42 39 Vulcanized rubber Physical Property Tensile Strength Index 108 103 102 107 104 700 Abrasion Resistance Index 108 104 103 107 102 100 0°C tan8 Index (strain 1%) 100 102 99 100 100 100 50°C tan8 Index (strain 3%) 95 97 97 95 98 100 50°CG' index (strain 3%) 97 98 98 97 98 100

[表7] 實施例15 實施例16 比較例7 比較例8 充油苯乙烯-丁二烯共聚物 i 1 m η 調配物木尼黏度 46 49 45 58 結合橡膠量 (%) 42 45 37 54 硫 化 橡 膠 性 拉伸強度 指數 105 107 100 110 耐磨耗性 指數 105 108 100 115 0°C tan5 指數 (應變1%) 103 103 100 101 50°C tan6 指數 (應變3%) 98 96 100 92 50°C G’ 指數 (應變3%) 99 98 100 94 -51 - 147412.doc 201041914 將使用微、.、。構(鍵結苯乙稀量及乙稀鍵結量)為同等之充 油本烯丁一歸共聚物之實施例與比較例加以比較並考 因低溫下聚合而成之比較例1之共聚物g並不充分地進行 分枝’故不滿足上述式⑴之主要條件。由比較表卜3之實 施例1〜6與比較例1可知,實施例1〜6之共聚物a〜f,其用以 獲仔充分之聚合轉化率之反應器内之滯留時間短於比較例 1之共承物g,生產性優異。又可知,實施例丄1〜14之橡膠 組合物與比較例5相比,拉伸強度、耐磨耗性、低遲滞損 耗性及抗濕滑性等性能與加工性之平衡優異。 因不進行偶合反應而聚合之比較例2之共聚物不充分 也進行刀枝故不滿足式(1)之主要條件。關於使用實施例 1 2 4、5之共聚物a、b、d、e之實施例J i〜i 4,與使用 比較例2之共聚物h之比較例6相比,調配物木尼黏度較 低,加工性良好,由5〇。〇與〇。〇之可知,低遲滯損耗 性與杬濕滑性之平衡優異,拉伸強度、耐磨耗性亦良好, 亦滿足實用上充分之耐磨耗性及破壞特性。 比較例3之共聚物„!之重量平均分子量較小,木尼黏度 過低。將使用實施例8、11之共聚物丨、1之實施例15、16與 使用比較例3之共聚物ηι之比較例7加以比較,由5 〇與〇 °C 之tanS可知,實施例15、16之低遲滯損耗性與抗濕滑性之 平衡優異,拉伸強度、耐磨耗性亦良好,亦滿足實用上充 分之耐磨耗性及破壞特性。 於使用於更低溫度下聚合而提高偶合效率之比較例4之 147412.doc -52- 201041914 共聚物η的比較例8中,比較實施例7〜10與比較例4,可知 用以獲#充分之聚合轉化率之反應器内之滯留時間較長。 由此可知,與實施例7〜10相比,比較例4之共聚物n之生產 性差,又,共聚木尼黏度較高,因此比較例8之橡膠 組合物之調配物木尼黏度較高,與實施例15、16相比加工 性差。 本申喷案係基於2009年4月7曰向曰本專利廳申請之曰本 %利中4案(日本專利特願2__93252)者,其内容作為參 U 照而併入本說明書中。 [產業上之可利用性] 本發明之共1¾二稀烴_芳香族乙烯共聚物作為輪胎面用 材料、鞋子、工業用品等而具有產業上之可利用性。 〇 147412.doc •53-[Table 7] Example 15 Example 16 Comparative Example 7 Comparative Example 8 Oil-filled styrene-butadiene copolymer i 1 m η Formulation Muney viscosity 46 49 45 58 Binding rubber amount (%) 42 45 37 54 Vulcanized rubber Tensile strength index 105 107 100 110 Abrasion resistance index 105 108 100 115 0°C tan5 index (strain 1%) 103 103 100 101 50°C tan6 index (strain 3%) 98 96 100 92 50°C G ' Index (strain 3%) 99 98 100 94 -51 - 147412.doc 201041914 will use micro, .,. The structure (bonded styrene amount and ethylene bond amount) is an equivalent of the oil-filled exemplified copolymer and the comparative example is compared with the comparative example and the copolymer of Comparative Example 1 which is polymerized at a low temperature is considered. g does not sufficiently branch, so the main condition of the above formula (1) is not satisfied. From Examples 1 to 6 of Comparative Table 3 and Comparative Example 1, it is understood that the copolymers a to f of Examples 1 to 6 have a shorter retention time in the reactor for obtaining a sufficient polymerization conversion ratio than the comparative example. The co-construction g of 1 is excellent in productivity. Further, the rubber compositions of Examples 1 to 14 were superior to Comparative Example 5 in the balance between properties such as tensile strength, abrasion resistance, low hysteresis loss resistance, and wet skid resistance, and workability. The copolymer of Comparative Example 2 which was polymerized without being subjected to the coupling reaction was insufficient, and the main conditions of the formula (1) were not satisfied. Regarding the use of Examples J i to i 4 of the copolymers a, b, d, and e of Examples 1 2 and 4, compared with Comparative Example 6 using the copolymer h of Comparative Example 2, the viscosity of the formulation was better than that of Comparative Example 6 Low, good processability, by 5 〇. 〇 and 〇. It is known that the balance between low hysteresis loss and wet skid property is excellent, tensile strength and abrasion resistance are also good, and practically sufficient wear resistance and damage characteristics are also satisfied. The copolymer of Comparative Example 3 had a smaller weight average molecular weight and a lower Mooney viscosity. The copolymers of Examples 8, 11 and Examples 15, 16 of Example 1 and the copolymer of Comparative Example 3 were used. In Comparative Example 7, it was found that the tans of 5 〇 and 〇 °C showed that the balances of the low hysteresis loss and the wet skid resistance of Examples 15 and 16 were excellent, and the tensile strength and the abrasion resistance were also good, and the utility model was also satisfactory. Full wear resistance and damage characteristics. Comparative Example 4 of Comparative Example 4 used for polymerization at a lower temperature to improve coupling efficiency 147412.doc -52 - 201041914 Comparative Example 8 of Comparative Copolymer η, Comparative Examples 7 to 10 In comparison with Comparative Example 4, it was found that the residence time in the reactor for obtaining a sufficient polymerization conversion ratio was long. Thus, it was found that the copolymer n of Comparative Example 4 was inferior in productivity compared with Examples 7 to 10, The copolymerization of the rubber composition of Comparative Example 8 was high, and the workability of the rubber composition was higher than that of Examples 15 and 16. The application was based on April 7, 2009. The application of this patent office in the case of the 利本中利中4 (Japanese Patent Special Purpose 2__93252), The contents thereof are incorporated in the present specification as a reference. [Industrial Applicability] The total of 1⁄4 di-hydrocarbon-aromatic ethylene copolymer of the present invention has industrial properties as a material for tire surfaces, shoes, industrial articles, and the like. Availability. 〇147412.doc •53-

Claims (1)

201041914 七、申請專利範圍: 1. 一種分枝狀共軛二烯烴-芳香族乙烯共聚物(c),其係無 規共聚物; 上述共軛二烯烴·芳香族乙烯共聚物中之芳香族乙 烯鍵結量為30〜38質量%, 共軛二烯烴總鍵結單元中之乙烯鍵結量為3〇〜43莫耳 %, 上述共軛二烯烴-芳香族乙烯共聚物(C)之藉由凝膠滲 〇 透層析法(GPC)所得之聚苯乙烯換算之重量平均分子量 (Mw-C)為 700,000〜1,000,000, 重量平均分子量(Mw-C)相對於數量平均分子量(Mn-C) 之比((Mw-C)/(Mn_C))為 1.7〜3.0, 於120°C測定之木尼黏度(ML-C)與木尼鬆馳率(MSR-C) 滿足下述式(1)之關係, {214-(ML-C)}/300$ (MSR-C)S {260-(ML-C)}/300…(1) (於式(1)中,100S(ML-C)S140)。 〇 2. 如請求項1之分枝狀共軛二烯烴-芳香族乙烯共聚物(〇, 其係使用具有4個以上之官能基之多官能改性劑使如下 共軛二烯烴·芳香族乙烯共聚物(I)偶合而成者,該共軛 瓤 二烯烴-芳香族乙烯共聚物(I)之聚苯乙烯換算之重量平 均分子量(^^评-1)為500,000〜700,000,於120°(:測定之木 尼黏度(ML-I)與木尼鬆驰率(MSR-I)滿足下述式(2)之關 係, {260-(ML-I)}/3 00^ (MSR-I) ^ {3 10-(ML-I)}/3 00··· (2) 147412.doc 201041914 (式(2)中,65$ (ML-I)g 100)。 3· 一種分枝狀共輛二稀烴-芳香族乙烯共聚物組合物,其含 有如請求項1或2之分枝狀共軛二烯烴-芳香族乙烯共聚物 (C)與無機填充劑。 4. 一種分枝狀共軛二烯烴-芳香族乙烯共聚物(〇之製造方 法’其係如請求項1或2之分枝狀共軛二烯烴-芳香族乙烯 共聚物(C)之製造方法;其包括如下步驟: 將包含共軛二烯烴化合物、芳香族乙烯化合物、及陰 離子聚合起始劑之溶液連續地供給至反應器並使其進行 聚合反應,而獲得具有活性末端之共軛二烯烴_芳香族乙 烯共聚物之溶液的步驟; 使用具有能夠與上述活性末端反應之4個以上之官能 基的多官能改性劑,使上述共軛二烯烴_芳香族乙烯共聚 物偶合之步驟。 5·種为枝狀共軛二烯烴-芳香族乙浠共聚物(〇之製造方 法,其係如請求項1或2之分枝狀共軛二烯烴_芳香族乙烯 共聚物(C)之製造方法;其包括如下步驟: 向附有搜拌機之反應器中連續地供給包含共耗二稀煙 化合物、芳香族乙稀化合物、及陰離子聚合起始劑之溶 液並使其進行聚合反應之步驟; 自上述反應益之出口連續地籍媒乱古 貝地獲侍具有活性末端之共軛 二烯烴-芳香族乙烯共聚物之溶液的步驟·, 使用具有能夠與上述活性末端反應之4個以上之官能 基的多官能改性劑,使上述共拖二稀烴-芳香族乙烯共聚 I47412.doc 201041914 . 物偶合之步驟;並且 於上述聚合反應中’將反應器出口之内溫保持於 95—11 〇°n ’以平均滯留時間ί5分鐘以上35分鐘以下連續 地進行聚合反應。 6.如:求項4或5之分枝狀共輛二職_芳香族乙烯共聚物之 製k方法其中以上述多官能改性劑之官能基之合計莫 耳數相對於上述陰離子聚合起始劑之莫耳數㈣〇 ^ 5 倍之方式使用上述多官能改性劑。 〇 147412.doc .201041914 四、指定代表圖: (一) 本案指定代表圖為:(無) (二) 本代表圖之元件符號簡單說明: 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無)201041914 VII. Patent application scope: 1. A branched conjugated diene-aromatic ethylene copolymer (c) which is a random copolymer; aromatic ethylene in the above conjugated diene/aromatic ethylene copolymer The amount of bonding is 30 to 38% by mass, and the amount of ethylene bonded in the total bonding unit of the conjugated diene is from 3 to 43 mol%, and the conjugated diene-aromatic ethylene copolymer (C) is used. The polystyrene-equivalent weight average molecular weight (Mw-C) obtained by gel permeation chromatography (GPC) is 700,000 to 1,000,000, and the weight average molecular weight (Mw-C) is relative to the number average molecular weight (Mn-C). The ratio ((Mw-C) / (Mn_C)) is 1.7 to 3.0, and the Moi viscosity (ML-C) and the Mooney relaxation rate (MSR-C) measured at 120 ° C satisfy the following formula (1) Relationship, {214-(ML-C)}/300$ (MSR-C)S {260-(ML-C)}/300...(1) (in equation (1), 100S (ML-C) ) S140). 〇2. The branched conjugated diene-aromatic ethylene copolymer of claim 1, which is a polyfunctional modifier having four or more functional groups, such as the following conjugated diene-aromatic ethylene When the copolymer (I) is coupled, the conjugated fluorene diene-aromatic ethylene copolymer (I) has a polystyrene-equivalent weight average molecular weight (^^ rating -1) of 500,000 to 700,000 at 120 ° ( : The measured Mui viscosity (ML-I) and the Munni relaxation rate (MSR-I) satisfy the relationship of the following formula (2), {260-(ML-I)}/3 00^ (MSR-I) ^ {3 10-(ML-I)}/3 00··· (2) 147412.doc 201041914 (in the formula (2), 65$ (ML-I)g 100). 3. A branch-like vehicle A dilute hydrocarbon-aromatic ethylene copolymer composition comprising the branched conjugated diene-aromatic ethylene copolymer (C) according to claim 1 or 2 and an inorganic filler. 4. A branched conjugate A method for producing a branched conjugated diene-aromatic ethylene copolymer (C) according to claim 1 or 2, which comprises the following steps: Conjugated diolefin compound, aromatic a step of continuously supplying a solution of a group of a vinyl compound and an anionic polymerization initiator to a reactor and subjecting it to a polymerization reaction to obtain a solution of a conjugated diene-aromatic ethylene copolymer having an active terminal; The polyfunctional modifier having four or more functional groups reactive with the above-mentioned active terminal reacts the above-mentioned conjugated diene-aromatic ethylene copolymer. 5. The branched conjugated diene-aromatic acetylene copolymer A method for producing a branched conjugated diene-aromatic ethylene copolymer (C) according to claim 1 or 2, which comprises the steps of: a reactor equipped with a mixer a step of continuously supplying a solution containing a total consumption of a dilute smoke compound, an aromatic ethylene compound, and an anionic polymerization initiator, and subjecting it to a polymerization reaction; and exporting from the above-mentioned reaction benefits continuously to the media Step of having a solution of a conjugated diene-aromatic ethylene copolymer having an active terminal, using a plurality of members having four or more functional groups capable of reacting with the above-mentioned active terminal The modifier can be used to copolymerize the above-mentioned co-dop hydrocarbon-aromatic ethylene copolymer I47412.doc 201041914. In the above polymerization reaction, the internal temperature of the reactor outlet is maintained at 95-11 〇°n. The polymerization reaction is continuously carried out with an average residence time ί of 5 minutes or more and 35 minutes or less. 6. For example, the k-process of the branched-type co-worker-aromatic ethylene copolymer of the claim 4 or 5, wherein the above polyfunctional modification is carried out The above polyfunctional modifier is used in such a manner that the total number of moles of the functional groups of the agent is 5 times the molar number of the above anionic polymerization initiator. 〇147412.doc .201041914 IV. Designated representative map: (1) The representative representative of the case is: (none) (2) The symbol of the symbol of the representative figure is simple: 5. If there is a chemical formula in this case, please reveal the best display invention. Chemical formula of the feature: (none) 147412.doc147412.doc
TW099110792A 2009-04-07 2010-04-07 A branched conjugated diene-aromatic vinyl copolymer, and a method for producing the same TWI415866B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009093252 2009-04-07

Publications (2)

Publication Number Publication Date
TW201041914A true TW201041914A (en) 2010-12-01
TWI415866B TWI415866B (en) 2013-11-21

Family

ID=42936274

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099110792A TWI415866B (en) 2009-04-07 2010-04-07 A branched conjugated diene-aromatic vinyl copolymer, and a method for producing the same

Country Status (6)

Country Link
KR (2) KR20130096333A (en)
CN (1) CN102361885B (en)
BR (1) BRPI1010241A2 (en)
SG (2) SG10201400530XA (en)
TW (1) TWI415866B (en)
WO (1) WO2010116991A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY172657A (en) * 2014-05-16 2019-12-09 Kraton Polymers Us Llc Branched broad mwd conjugated diene polymer
KR102035177B1 (en) 2018-07-11 2019-11-08 주식회사 엘지화학 Modified conjugated diene polymer and rubber composition comprising the same
TW202022035A (en) * 2018-10-25 2020-06-16 日商Jsr股份有限公司 Polymer composition, crosslinked polymer, and tire
WO2021085829A1 (en) * 2019-10-30 2021-05-06 주식회사 엘지화학 Modified conjugated diene-based polymer and rubber composition comprising same
CN113493542B (en) * 2020-04-03 2023-09-22 旭化成株式会社 Conjugated diene polymer, process for producing the same, conjugated diene polymer composition, and rubber composition
KR102640782B1 (en) * 2020-07-16 2024-02-27 아사히 가세이 가부시키가이샤 Random copolymer, method for producing crumb, and pneumatic tire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501806A (en) 1985-01-22 1987-07-16 デイジタル イクイプメント コ−ポレ−シヨン perpendicular magnetic recording construct
US9493629B2 (en) * 2005-03-29 2016-11-15 Asahi Kasei Chemicals Corporation Modified butadiene-based polymer composition
JP2008285558A (en) * 2007-05-16 2008-11-27 Asahi Kasei Chemicals Corp Oil extended conjugated diene-based polymer composition

Also Published As

Publication number Publication date
CN102361885A (en) 2012-02-22
SG10201400530XA (en) 2014-05-29
KR101321316B1 (en) 2013-10-23
TWI415866B (en) 2013-11-21
BRPI1010241A2 (en) 2016-03-22
KR20130096333A (en) 2013-08-29
WO2010116991A1 (en) 2010-10-14
KR20110124287A (en) 2011-11-16
CN102361885B (en) 2014-03-19
SG174321A1 (en) 2011-10-28

Similar Documents

Publication Publication Date Title
TWI585114B (en) Modified conjugated diene-based polymers, methods for producing the same, rubber compositions, and tires
TWI655218B (en) Modified conjugated diene polymer, production method thereof, rubber composition, tire
TWI593712B (en) Modified conjugated diene-based polymer, process for producing the same, rubber composition, and tire
TWI648294B (en) Modified conjugated diene polymer, rubber composition, and tire
JP5898212B2 (en) Method for producing modified conjugated diene polymer, modified conjugated diene polymer, modified conjugated diene polymer composition, rubber composition, and tire
JP5705120B2 (en) Method for producing modified conjugated diene polymer, modified conjugated diene polymer, and modified conjugated diene polymer composition
TWI553019B (en) Modified conjugated diene-based polymer, modified conjugated diene-based polymer, and modified conjugated diene-based polymer composition
JP6769780B2 (en) Modified conjugated diene polymer, rubber composition thereof, and tire
JP6777454B2 (en) Modified conjugated diene polymer composition, rubber composition for tread, and tire
TWI648293B (en) Modified conjugated diene polymer, rubber composition thereof, and tire
TWI791126B (en) Conjugated diene polymer, branching agent, method for producing conjugated diene polymer, stretched conjugated diene polymer, rubber composition, and tire
JP2016079217A (en) Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer and modified conjugated diene-based polymer composition
CN108164645A (en) Modified conjugated diene polymer, modified conjugated diene polymer composition and tire
JP2018002986A (en) Modified conjugated diene polymer composition, rubber composition for side wall, and tire
JP7381725B2 (en) Hydrogenated conjugated diene polymer, hydrogenated conjugated diene polymer composition, rubber composition, and method for producing hydrogenated conjugated diene polymer
TW201041914A (en) Branched conjugated diene-aromatic vinyl copolymer and method for producing same
JP6487220B2 (en) Modified conjugated diene polymer, method for producing modified conjugated diene polymer, and composition thereof
JP2018533663A (en) Azasilane-based modifier and method for producing modified conjugated diene-based polymer using the same
JP5283397B2 (en) Oil-extended modified conjugated diene polymer composition
JP5325155B2 (en) Branched conjugated diene-aromatic vinyl copolymer and method for producing the same
JP2023147257A (en) Polymer composition, production method of the same, compound, cross-linked product, and tire

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees