WO2010113685A1 - 支持基板、貼り合わせ基板、支持基板の製造方法、及び貼り合わせ基板の製造方法 - Google Patents
支持基板、貼り合わせ基板、支持基板の製造方法、及び貼り合わせ基板の製造方法 Download PDFInfo
- Publication number
- WO2010113685A1 WO2010113685A1 PCT/JP2010/054859 JP2010054859W WO2010113685A1 WO 2010113685 A1 WO2010113685 A1 WO 2010113685A1 JP 2010054859 W JP2010054859 W JP 2010054859W WO 2010113685 A1 WO2010113685 A1 WO 2010113685A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- single crystal
- silicon carbide
- crystal wafer
- support substrate
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 187
- 238000004519 manufacturing process Methods 0.000 title claims description 33
- 238000000034 method Methods 0.000 title claims description 31
- 239000013078 crystal Substances 0.000 claims abstract description 97
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 74
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 65
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 18
- 239000010703 silicon Substances 0.000 claims abstract description 18
- 239000010410 layer Substances 0.000 claims description 43
- 238000005498 polishing Methods 0.000 claims description 13
- 239000011247 coating layer Substances 0.000 claims description 10
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 9
- 238000005229 chemical vapour deposition Methods 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 6
- 238000005240 physical vapour deposition Methods 0.000 claims description 6
- 235000012431 wafers Nutrition 0.000 description 71
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- 238000007740 vapor deposition Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000010835 comparative analysis Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910017083 AlN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/06—Joining of crystals
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
Definitions
- the present invention relates to a single crystal wafer made of a single crystal and a bonded substrate including a support substrate bonded to the single crystal wafer, a support substrate constituting the bonded substrate, a method for manufacturing the support substrate, and a method for manufacturing the bonded substrate About.
- single crystals such as silicon, silicon carbide, gallium nitride, and aluminum nitride have not only excellent heat resistance and voltage resistance but also excellent high-frequency characteristics.
- wafers made of these single crystals are widely known (for example, Patent Document 1).
- Such a single crystal wafer has excellent characteristics, but has a complicated manufacturing method and a high price. For this reason, a so-called bonded substrate in which a supporting substrate for supporting a single crystal wafer and a thin film single crystal wafer are bonded together is widely known.
- Examples of a method for bonding a single crystal wafer and a support substrate without using an adhesive include, for example, a heat-pressure bonding method, a surface activated bonding method by irradiating an ion beam to a bonding surface, and hydrophilicity by a hydrophilic treatment.
- a bonding method via a group has been proposed.
- Such a bonded substrate functions as a material for manufacturing a semiconductor device by disposing a single crystal wafer on the side used as a semiconductor material. Moreover, such a bonded substrate ensures the required substrate thickness and strength in use by the support substrate.
- the conventional bonded substrate described above has the following problems. That is, when the support substrate is manufactured by sintering, pores are formed in the support substrate, so that irregularities are formed on the surface of the support substrate. For this reason, when a support substrate is bonded to a single crystal wafer, a gap is formed between the single crystal wafer and the support substrate, the bonding surfaces do not sufficiently approach each other, and the bonding strength cannot be obtained. was there.
- the present invention is a support substrate for bonding to a single crystal wafer, which can suppress a gap formed between the single crystal wafer and the support substrate, a bonded substrate, and a method for manufacturing the support substrate And it aims at provision of the manufacturing method of a bonded substrate.
- the first feature of the present invention is a support substrate (support substrate 30) bonded to a single crystal wafer (single crystal wafer 50) made of a single crystal, and is made of a silicon carbide polycrystal.
- a crystal substrate silicon carbide polycrystal substrate 10) and a coat layer (coat layer 20) deposited on the silicon carbide polycrystal substrate; the coat layer is made of silicon carbide or silicon and is in contact with the single crystal wafer;
- the gist is that the arithmetic average roughness of the surface of the coat layer in contact with the single crystal wafer is 1 nm or less.
- Such a support substrate includes a coat layer made of silicon carbide or silicon between a silicon carbide polycrystalline substrate and a single crystal wafer. Since the arithmetic average roughness of the surface of the coat layer in contact with the single crystal wafer is 1 nm or less, formation of voids between the coat layer and the single crystal wafer can be suppressed.
- the support substrate can suppress the formation of a gap between the single crystal wafer and the support substrate.
- the second feature of the present invention relates to the first feature of the present invention, and is summarized in that the coating layer is deposited on a silicon carbide polycrystalline substrate by a physical vapor deposition method or a chemical vapor deposition method.
- the third feature of the present invention is related to the first or second feature of the present invention and is summarized in that the thickness of the coat layer is 5 ⁇ m or more.
- a fourth feature of the present invention is a bonded substrate (bonded substrate 100) including a single crystal wafer (single crystal wafer 50) made of a single crystal and a support substrate (support substrate 30) bonded to the single crystal wafer.
- the support substrate includes a silicon carbide polycrystal substrate (silicon carbide polycrystal substrate 10) made of a silicon carbide polycrystal, and a coat layer (coat layer 20) deposited on the silicon carbide polycrystal substrate.
- the coating layer is made of silicon carbide or silicon, and is in contact with the single crystal wafer, and the arithmetic average roughness of the surface of the coat layer in contact with the single crystal wafer is 1 nm or less.
- a fifth feature of the present invention is a method for manufacturing a support substrate (support substrate 30) to be bonded to a single crystal wafer (single crystal wafer 50) made of a single crystal, which is made of a carbonized polycrystalline silicon carbide.
- a sixth feature of the present invention is the manufacture of a bonded substrate (bonded substrate 100) having a single crystal wafer (single crystal wafer 50) made of a single crystal and a bonding substrate bonded to the single crystal wafer.
- a method of depositing silicon carbide or silicon on a silicon carbide polycrystalline substrate (silicon carbide polycrystalline substrate 10) made of a silicon carbide polycrystal step S1, and vapor deposition in the silicon carbide polycrystalline substrate. Polishing the polished surface and setting the arithmetic average roughness of the evaporated surface to 1 nm or less (step S2), and bonding the polished surface and the single crystal wafer (step S3).
- the gist is to provide.
- a support substrate for bonding to a single crystal wafer which can suppress the formation of a gap between the single crystal wafer and the support substrate, the bonded substrate, and the support
- a method for manufacturing a substrate and a method for manufacturing a bonded substrate can be provided.
- FIG. 1 is a perspective view of a bonded substrate according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view of the support substrate according to the embodiment of the present invention.
- FIG. 3 is a flowchart showing a method for manufacturing a support substrate according to an embodiment of the present invention.
- FIG. 4 is a diagram showing a method for manufacturing a support substrate according to an embodiment of the present invention.
- FIG. 5 is a flowchart showing a method for manufacturing a bonded substrate according to an embodiment of the present invention.
- FIG. 1 is a perspective view of a bonded substrate 100 according to an embodiment of the present invention.
- the bonded substrate 100 includes a single crystal wafer 50 made of a single crystal and a support substrate 30 bonded to the single crystal wafer 50.
- the single crystal wafer 50 is made of a single crystal such as Si, GaN, SiC, or AlN.
- the bonded substrate 100 is used as a substrate for semiconductor devices such as next-generation LED devices, power devices, and high-frequency devices.
- the bonded substrate 100 ensures the required thickness and strength of the substrate by the support substrate 30 in use.
- FIG. 2 is a cross-sectional view of the support substrate 30 according to the embodiment of the present invention.
- support substrate 30 includes a silicon carbide polycrystalline substrate 10 made of a silicon carbide polycrystal, and a coat layer 20 deposited on silicon carbide polycrystalline substrate 10.
- the silicon carbide polycrystalline substrate 10 is made of a polycrystalline silicon carbide that can be manufactured at low cost by sintering such as hot pressing.
- the coat layer 20 is made of silicon carbide or silicon and includes a contact surface 22 that comes into contact with the single crystal wafer 50. Coat layer 20 is deposited on silicon carbide polycrystalline substrate 10 and then polished. Specifically, coat layer 20 is deposited on silicon carbide polycrystalline substrate 10 by physical vapor deposition, chemical vapor deposition, other vapor deposition, plating, or the like.
- the average thickness t1 of the coat layer 20, which is the thickness in the growth direction of the coat layer 20, is 5 ⁇ m or more and 10 ⁇ m or less.
- the surface of coat layer 20 in contact with single crystal wafer 50, that is, arithmetic average roughness Ra of contact surface 22 is 1 nm or less.
- the planar accuracy of the contact surface 22 is 30 ⁇ m or less.
- WARP representing the difference between the maximum value and the minimum value of the distance to the center plane of each is 30 ⁇ m or less.
- FIG. 3 is a flowchart showing the method for manufacturing the support substrate according to the present embodiment.
- FIG. 4 is a cross-sectional view of the support substrate for illustrating the support substrate manufacturing method according to the present embodiment.
- the manufacturing method of the support substrate 30 includes (3.1) a vapor deposition step and (3.2) a polishing step.
- Step S 1 silicon carbide or silicon is formed on the silicon carbide polycrystalline substrate 10 made of a polycrystalline silicon carbide.
- a coat layer 20 having a thickness t2 (10 ⁇ m) is formed on silicon carbide polycrystalline substrate 10 by physical vapor deposition, chemical vapor deposition, other vapor deposition, plating, or the like.
- polishing is performed on the vapor deposition surface 24 of the coating layer 20 which is the vapor deposited surface in the silicon carbide polycrystalline substrate 10. Apply. Specifically, mechanical polishing or chemical mechanical polishing is performed on the vapor deposition surface 24 of the coat layer 20.
- the contact surface 22 is formed by setting the arithmetic average roughness of the vapor deposition surface 24 to 1 nm or less by the above polishing.
- the thickness t1 of the coated layer 20 that has been polished is 5 ⁇ m or more and 10 ⁇ m or less.
- the support substrate 30 is manufactured by the process described above.
- FIG. 5 is a flowchart showing a method for manufacturing a bonded substrate according to the present embodiment.
- step S1 and step S2 since it is the same as that of the support substrate 30 mentioned above, description is abbreviate
- step S3 the surface polished in the polishing step of step S2, that is, the contact surface 22, and the single crystal wafer 50 are bonded.
- the bonded substrate 100 is manufactured by the process described above.
- Each support substrate has a different coating layer configuration. Specifically, the arithmetic average roughness of the surface of the coat layer constituting the support substrate according to the example is 1 nm or less.
- the support substrate according to Comparative Example 1 does not include a coat layer, and the surface of the coat layer constituting the support substrate according to Comparative Example 2 is not polished.
- support substrate according to the example is the same as the support substrate 30 according to the embodiment.
- the support substrate according to the example showed almost no pores as observed with the support substrates according to Comparative Examples 1 and 2, and the arithmetic average roughness Ra showed a small value.
- the support substrate 30 has the coating layer 20 made of silicon carbide or silicon between the silicon carbide polycrystalline substrate 10 and the single crystal wafer 50. Prepare. Since the arithmetic average roughness of the surface of the coat layer 20 in contact with the single crystal wafer 50 is 1 nm or less, the formation of voids between the coat layer 20 and the single crystal wafer 50 can be suppressed. Therefore, the support substrate 30 can suppress the formation of a gap between the single crystal wafer 50 and the support substrate 30.
- the arithmetic average roughness of the surface of the coat layer 20 in contact with the single crystal wafer 50 is larger than 1 nm, a gap is formed between the single crystal wafer 50 and the support substrate 30. For this reason, the bonding surfaces do not sufficiently approach each other, and the bonding strength cannot be obtained.
- the support substrate 30 can be manufactured at low cost.
- the coat layer 20 is deposited on the silicon carbide polycrystalline substrate 10 by physical vapor deposition or chemical vapor deposition. Therefore, coat layer 20 has heat resistance and is firmly bonded to silicon carbide polycrystalline substrate 10.
- the thickness t1 of the coat layer 20 is 5 ⁇ m or more. For this reason, contact surface 22 can be formed without being affected by irregularities on the surface of silicon carbide polycrystalline substrate 10 on which coat layer 20 is deposited.
- the thickness t1 of the coat layer 20 is 10 ⁇ m or less. If the thickness t1 of the coat layer 20 is greater than 10 ⁇ m, the manufacturing cost increases, which is not preferable.
- the gap between the single crystal wafer 50 and the support substrate 30 can be suppressed, and the bonded substrate 100 can be manufactured at a low cost by using the support substrate 30 having a small gap.
- the bonded substrate 100 ensures the required substrate thickness and strength by the support substrate 30 in use.
- silicon carbide polycrystalline substrate 10 constituting support substrate 30 can be manufactured by sintering, support substrate 30 having a large diameter can be easily manufactured. Accordingly, the bonded substrate 100 having a large diameter can be manufactured more easily than a single crystal wafer in which the entire substrate is made of a single crystal.
- the method of manufacturing support substrate 30 includes step S1 of depositing silicon carbide or silicon on silicon carbide polycrystalline substrate 10 made of a polycrystalline silicon carbide, and a surface deposited on silicon carbide polycrystalline substrate 10. Is provided with step S2 for reducing the arithmetic average roughness of the deposited surface to 1 nm or less.
- gap formed between the single crystal wafers 50 by a simple method can be suppressed. Moreover, it can further suppress that a space
- the coat layer 20 is made of silicon carbide or silicon. For this reason, the coat layer 20 has characteristics such as high thermal conductivity, temperature lowering easily from high temperature, and excellent heat resistance.
- the embodiment of the present invention can be modified as follows.
- the planar accuracy of the contact surface 22 in the above-described embodiment is 30 ⁇ m or less.
- BOW and WARP are each 30 ⁇ m or less.
- the WARP is the difference between the maximum value and the minimum value of the distance from the center plane reference plane (best fit reference plane) to the center plane of the single crystal wafer 50 in which the deformation component due to its own weight is corrected in a state where the contact plane 22 is not fixed by suction Represents.
- the planar accuracy of the contact surface 22 is not limited to this, and can be changed according to the outer diameter and thickness of the single crystal wafer 50.
- a single crystal wafer having the same outer diameter and a large thickness as the single crystal wafer 50 is not easily deformed. For this reason, when the thickness of the single crystal wafer 50 is increased, the contact surface 22 is required to have higher planar accuracy.
- a single crystal wafer having the same outer diameter and a small thickness as the single crystal wafer 50 is easily deformed. For this reason, when the thickness of the single crystal wafer 50 is reduced, the planar accuracy required for the contact surface 22 is reduced.
- the support substrate 30 in the above-described embodiment is a substrate that is bonded to the single crystal wafer 50.
- the present invention is not limited thereto, and the coat layer 20 is further grown by physical vapor deposition or chemical vapor deposition. There may be. According to this, it is not necessary to bond the support substrate 30 and the single crystal wafer 50, and it is possible to prevent impurities and the like from being mixed between the support substrate 30 and the single crystal wafer 50 in the bonding process.
- the coating layer 20 in the above-described embodiment is not limited to silicon carbide or silicon, and may be formed of a raw material that matches the configuration of the single crystal wafer 50.
- the silicon carbide polycrystalline substrate 10 in the above-described embodiment is not limited to a silicon carbide polycrystalline body, and may be formed of a raw material that matches the configuration of the coat layer 20 or the single crystal wafer 50.
- the gap between the wafer and the substrate can be reduced and the bonding strength can be increased.
- it can be applied to a bonded substrate in which a supporting substrate is bonded to a thin film single crystal wafer.
- SYMBOLS 10 Silicon carbide polycrystalline substrate, 20 ... Coat layer, 22 ... Contact surface, 24 ... Deposition surface, 30 ... Support substrate, 50 ... Single crystal wafer, 100 ... Substrate
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Ceramic Products (AREA)
Abstract
Description
図1は、本発明の実施形態に係る貼り合わせ基板100の斜視図である。図1に示すように、貼り合わせ基板100は、単結晶体からなる単結晶ウェハ50と、単結晶ウェハ50に貼り合わせられる支持基板30とを備える。具体的には、単結晶ウェハ50は、Si、GaN、SiC、AlN等の単結晶体からなる。
図2は、本発明の実施形態に係る支持基板30の断面図である。図2に示すように、支持基板30は、炭化珪素の多結晶体からなる炭化珪素多結晶基板10と、炭化珪素多結晶基板10に蒸着されるコート層20とを備える。
次に本実施形態に係る支持基板の製造方法について、図3、図4を用いて説明する。図3は、本実施形態に係る支持基板の製造方法を示すフローチャートである。図4は、本実施形態に係る支持基板の製造方法を示すための支持基板の断面図である。具体的には、支持基板30の製造方法は、(3.1)蒸着工程、(3.2)研磨工程を含む。
図3、図4(a)、(b)に示すように、ステップS1の蒸着工程では、炭化珪素の多結晶体からなる炭化珪素多結晶基板10に炭化珪素又は珪素を蒸着して、厚さt2(10μm)からなるコート層20を形成する。具体的には、物理気相成長法、化学気相成長法、その他蒸着方法、めっき処理等により5μm以上のコート層20を炭化珪素多結晶基板10上に形成する。
図3、図4(c)に示すように、ステップS2の研磨工程では、炭化珪素多結晶基板10において、蒸着をした面であるコート層20の蒸着面24に研磨を施す。具体的には、コート層20の蒸着面24に、機械研磨、又は化学機械研磨を施す。
次に本実施形態に係る、貼り合わせ基板の製造方法について、図5を用いて説明する。図5は、本実施形態に係る、貼り合わせ基板の製造方法を示すフローチャートである。
ステップS3の貼り合わせ工程では、ステップS2の研磨工程で研磨を施した面、すなわち接触面22と、単結晶ウェハ50とを貼り合わせる。上述した工程により、貼り合わせ基板100を製造する。
次に、本発明の効果を更に明確にするために、以下の比較例及び実施例に係る支持基板を用いて行った比較評価について説明する。具体的には、(5.1)評価方法、(5.2)評価結果について説明する。なお、本発明はこれらの例によって何ら限定されるものではない。
比較例及び実施例の支持基板を用いて、(5.1.1)支持基板の表面状態の観察、(5.1.2)表面粗さ評価を行った。比較評価に用いた比較例及び実施例に係る支持基板について、具体的に説明する。なお、支持基板を構成するウェハの直径サイズは、4インチである。
観察方法;光学顕微鏡にて、各支持基板の表面の凹凸を観察した。
評価方法;各支持基板の表面粗さを測定した。具体的には、算術平均粗さRaを特定した。
以上説明したように、本実施形態に係るこのような支持基板30は、炭化珪素多結晶基板10と単結晶ウェハ50との間に炭化珪素又は珪素からなるコート層20を備える。単結晶ウェハ50と接触するコート層20の表面の算術平均粗さは、1nm以下であるため、コート層20と、単結晶ウェハ50との間で空隙が形成されることを抑制できる。従って、支持基板30は、単結晶ウェハ50と、支持基板30との間で空隙が形成されることを抑制できる。
上述したように、本発明の実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
Claims (6)
- 単結晶体からなる単結晶ウェハに貼り合わせられる支持基板であって、
炭化珪素の多結晶体からなる炭化珪素多結晶基板と、
前記炭化珪素多結晶基板に蒸着されるコート層とを備え、
前記コート層は、炭化珪素又は珪素からなり、前記単結晶ウェハと接触し、
前記単結晶ウェハと接触する前記コート層の表面の算術平均粗さは、1nm以下である支持基板。 - 前記コート層は、物理気相成長法又は化学気相成長法により前記炭化珪素多結晶基板に蒸着される請求項1に記載の支持基板。
- 前記コート層の厚みは、5μm以上である請求項1または請求項2に記載の支持基板。
- 単結晶体からなる単結晶ウェハと、前記単結晶ウェハに貼り合わせられる支持基板とを備える貼り合わせ基板であって、
前記支持基板は、
炭化珪素の多結晶体からなる炭化珪素多結晶基板と、
前記炭化珪素多結晶基板に蒸着されるコート層とを備え、
前記コート層は、炭化珪素又は珪素からなり、前記単結晶ウェハと接触し、
前記単結晶ウェハと接触する前記コート層の表面の算術平均粗さは、1nm以下である貼り合わせ基板。 - 単結晶体からなる単結晶ウェハに貼り合わせられる支持基板の製造方法であって、
炭化珪素の多結晶体からなる炭化珪素多結晶基板に炭化珪素又は珪素を蒸着するステップと、
前記炭化珪素多結晶基板において、前記蒸着をした面に研磨を施し、前記蒸着をした面の算術平均粗さを、1nm以下にするステップと
を備える支持基板の製造方法。 - 単結晶体からなる単結晶ウェハと、前記単結晶ウェハに貼り合わせられる貼り合わせ用基板とを有する貼り合わせ基板の製造方法であって、
炭化珪素の多結晶体からなる炭化珪素多結晶基板に炭化珪素又は珪素を蒸着するステップと、
前記炭化珪素多結晶基板において、前記蒸着をした面に研磨を施し、前記蒸着をした面の算術平均粗さを、1nm以下にするステップと、
前記研磨を施した面と、前記単結晶ウェハとを貼り合わせるステップと
を備える貼り合わせ基板の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020117025157A KR101356327B1 (ko) | 2009-03-31 | 2010-03-19 | 지지 기판, 접합 기판, 지지 기판의 제조 방법 및 접합 기판의 제조 방법 |
CN2010800149764A CN102378832A (zh) | 2009-03-31 | 2010-03-19 | 支承基板、贴合基板、支承基板的制造方法及贴合基板的制造方法 |
US13/262,153 US20120074404A1 (en) | 2009-03-31 | 2010-03-19 | Supporting substrate, bonded substrate, method for manufacturing supporting substrate, and method for manufacturing bonded substrate |
EP10758459.1A EP2415909B1 (en) | 2009-03-31 | 2010-03-19 | Bonded substrate, and method for manufacturing bonded substrate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009085294A JP5404135B2 (ja) | 2009-03-31 | 2009-03-31 | 支持基板、貼り合わせ基板、支持基板の製造方法、及び貼り合わせ基板の製造方法 |
JP2009-085294 | 2009-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010113685A1 true WO2010113685A1 (ja) | 2010-10-07 |
Family
ID=42827980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/054859 WO2010113685A1 (ja) | 2009-03-31 | 2010-03-19 | 支持基板、貼り合わせ基板、支持基板の製造方法、及び貼り合わせ基板の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20120074404A1 (ja) |
EP (1) | EP2415909B1 (ja) |
JP (1) | JP5404135B2 (ja) |
KR (1) | KR101356327B1 (ja) |
CN (1) | CN102378832A (ja) |
WO (1) | WO2010113685A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2627803B1 (en) * | 2010-10-13 | 2017-11-22 | The University Of Warwick | Heterogrowth |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102473088B1 (ko) * | 2017-03-02 | 2022-12-01 | 신에쓰 가가꾸 고교 가부시끼가이샤 | 탄화규소 기판의 제조 방법 및 탄화규소 기판 |
JP2019210162A (ja) * | 2018-05-31 | 2019-12-12 | ローム株式会社 | 半導体基板構造体及びパワー半導体装置 |
JP2019210161A (ja) * | 2018-05-31 | 2019-12-12 | ローム株式会社 | 半導体基板構造体及びパワー半導体装置 |
JP7292573B2 (ja) * | 2018-12-07 | 2023-06-19 | 住友金属鉱山株式会社 | 炭化珪素多結晶基板およびその製造方法 |
CN110957289A (zh) * | 2019-12-17 | 2020-04-03 | 母凤文 | 多层复合基板结构及其制备方法 |
FR3134231A1 (fr) * | 2022-04-04 | 2023-10-06 | Soitec | Substrat pour un dispositif électronique |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0977595A (ja) * | 1995-09-12 | 1997-03-25 | Denso Corp | 炭化珪素単結晶の製造方法 |
JPH11147795A (ja) * | 1997-11-17 | 1999-06-02 | Nippon Pillar Packing Co Ltd | 単結晶SiCおよびその製造方法 |
WO2001009412A1 (fr) * | 1999-07-30 | 2001-02-08 | Nippon Pillar Packing Co., Ltd. | Materiau de tirage de sic monocristallin et procede de preparation associe |
JP2002047100A (ja) * | 2000-07-31 | 2002-02-12 | Nippon Pillar Packing Co Ltd | 単結晶SiCの育成方法 |
JP2005008472A (ja) | 2003-06-18 | 2005-01-13 | Nippon Steel Corp | 高品質4h型炭化珪素単結晶、および単結晶ウェハ |
JP2009085294A (ja) | 2007-09-28 | 2009-04-23 | Aisin Chem Co Ltd | 流体制御部品用樹脂製ホルダー及びその製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4234508C2 (de) * | 1992-10-13 | 1994-12-22 | Cs Halbleiter Solartech | Verfahren zur Herstellung eines Wafers mit einer monokristallinen Siliciumcarbidschicht |
US6110279A (en) * | 1996-03-29 | 2000-08-29 | Denso Corporation | Method of producing single-crystal silicon carbide |
US6984571B1 (en) * | 1999-10-01 | 2006-01-10 | Ziptronix, Inc. | Three dimensional device integration method and integrated device |
US6497763B2 (en) * | 2001-01-19 | 2002-12-24 | The United States Of America As Represented By The Secretary Of The Navy | Electronic device with composite substrate |
US7535100B2 (en) * | 2002-07-12 | 2009-05-19 | The United States Of America As Represented By The Secretary Of The Navy | Wafer bonding of thinned electronic materials and circuits to high performance substrates |
US20040134418A1 (en) * | 2002-11-08 | 2004-07-15 | Taisuke Hirooka | SiC substrate and method of manufacturing the same |
FR2855909B1 (fr) * | 2003-06-06 | 2005-08-26 | Soitec Silicon On Insulator | Procede d'obtention concomitante d'au moins une paire de structures comprenant au moins une couche utile reportee sur un substrat |
US7462552B2 (en) * | 2005-05-23 | 2008-12-09 | Ziptronix, Inc. | Method of detachable direct bonding at low temperatures |
US7405430B2 (en) * | 2005-06-10 | 2008-07-29 | Cree, Inc. | Highly uniform group III nitride epitaxial layers on 100 millimeter diameter silicon carbide substrates |
US20060284167A1 (en) * | 2005-06-17 | 2006-12-21 | Godfrey Augustine | Multilayered substrate obtained via wafer bonding for power applications |
EP1901345A1 (en) * | 2006-08-30 | 2008-03-19 | Siltronic AG | Multilayered semiconductor wafer and process for manufacturing the same |
EP2109883A1 (en) * | 2007-02-08 | 2009-10-21 | S.O.I.T.E.C. Silicon on Insulator Technologies | Method of fabrication of highly heat dissipative substrates |
-
2009
- 2009-03-31 JP JP2009085294A patent/JP5404135B2/ja not_active Expired - Fee Related
-
2010
- 2010-03-19 WO PCT/JP2010/054859 patent/WO2010113685A1/ja active Application Filing
- 2010-03-19 CN CN2010800149764A patent/CN102378832A/zh active Pending
- 2010-03-19 US US13/262,153 patent/US20120074404A1/en not_active Abandoned
- 2010-03-19 KR KR1020117025157A patent/KR101356327B1/ko active IP Right Grant
- 2010-03-19 EP EP10758459.1A patent/EP2415909B1/en not_active Not-in-force
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0977595A (ja) * | 1995-09-12 | 1997-03-25 | Denso Corp | 炭化珪素単結晶の製造方法 |
JPH11147795A (ja) * | 1997-11-17 | 1999-06-02 | Nippon Pillar Packing Co Ltd | 単結晶SiCおよびその製造方法 |
WO2001009412A1 (fr) * | 1999-07-30 | 2001-02-08 | Nippon Pillar Packing Co., Ltd. | Materiau de tirage de sic monocristallin et procede de preparation associe |
JP2002047100A (ja) * | 2000-07-31 | 2002-02-12 | Nippon Pillar Packing Co Ltd | 単結晶SiCの育成方法 |
JP2005008472A (ja) | 2003-06-18 | 2005-01-13 | Nippon Steel Corp | 高品質4h型炭化珪素単結晶、および単結晶ウェハ |
JP2009085294A (ja) | 2007-09-28 | 2009-04-23 | Aisin Chem Co Ltd | 流体制御部品用樹脂製ホルダー及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2415909A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2627803B1 (en) * | 2010-10-13 | 2017-11-22 | The University Of Warwick | Heterogrowth |
Also Published As
Publication number | Publication date |
---|---|
EP2415909A4 (en) | 2013-10-16 |
KR101356327B1 (ko) | 2014-01-28 |
JP5404135B2 (ja) | 2014-01-29 |
US20120074404A1 (en) | 2012-03-29 |
JP2010235392A (ja) | 2010-10-21 |
CN102378832A (zh) | 2012-03-14 |
EP2415909B1 (en) | 2016-05-11 |
EP2415909A1 (en) | 2012-02-08 |
KR20120001783A (ko) | 2012-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010113685A1 (ja) | 支持基板、貼り合わせ基板、支持基板の製造方法、及び貼り合わせ基板の製造方法 | |
TWI719051B (zh) | SiC複合基板及其製造方法 | |
JP6772711B2 (ja) | 半導体積層構造体および半導体デバイス | |
JP5468528B2 (ja) | 単結晶ダイヤモンド成長用基材及びその製造方法並びに単結晶ダイヤモンド基板の製造方法 | |
JP5756888B2 (ja) | 半導体用複合基板のハンドル基板 | |
CN112585305B (zh) | GaN层叠基板的制造方法 | |
KR20160120719A (ko) | 반도체용 복합 기판의 핸들 기판 및 반도체용 복합 기판 | |
KR20160041840A (ko) | 단결정 재료 사용의 개선된 효율을 갖는 유사 기판 | |
US20110229719A1 (en) | Manufacturing method for crystal, manufacturing apparatus for crystal, and stacked film | |
JP6327519B2 (ja) | 炭化珪素単結晶基板の加工方法、及び治具付き炭化珪素単結晶基板 | |
JP5989559B2 (ja) | 複合基板 | |
KR101101983B1 (ko) | 종자정 어셈블리 및 그 제조 방법 | |
WO2020195196A1 (ja) | SiC複合基板及び半導体デバイス用複合基板 | |
US20190214260A1 (en) | Bonding of diamond wafers to carrier substrates | |
JP7081453B2 (ja) | 黒鉛基材、炭化珪素の成膜方法および炭化珪素基板の製造方法 | |
JP6317056B2 (ja) | アルミニウム膜被着方法 | |
JP2012004228A (ja) | 炭化珪素単結晶の製造方法および炭化珪素基板 | |
WO2020195197A1 (ja) | SiC複合基板及び半導体デバイス用複合基板 | |
WO2020235074A1 (ja) | 半導体基板の製造方法および半導体装置の製造方法 | |
US20240258195A1 (en) | Bonded body comprising mosaic diamond wafer and semiconductor of different type, method for producing same, and mosaic diamond wafer for use in bonded body with semiconductor of different type | |
JP5024996B2 (ja) | ガラス製静電チャックの製造方法 | |
US20240332011A1 (en) | Polycrystalline silicon carbide substrate and method of manufacturing the same | |
JP2010073722A (ja) | 静電チャック | |
KR20240023994A (ko) | 표면 형상을 갖는 세라믹 웨이퍼 및 이의 제조 | |
CN118727148A (zh) | 多晶碳化硅基板及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080014976.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10758459 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010758459 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117025157 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13262153 Country of ref document: US |