WO2010113547A1 - ハードコートフィルム、偏光板、ハードコートフィルムの製造方法及び液晶パネルの製造方法 - Google Patents

ハードコートフィルム、偏光板、ハードコートフィルムの製造方法及び液晶パネルの製造方法 Download PDF

Info

Publication number
WO2010113547A1
WO2010113547A1 PCT/JP2010/052051 JP2010052051W WO2010113547A1 WO 2010113547 A1 WO2010113547 A1 WO 2010113547A1 JP 2010052051 W JP2010052051 W JP 2010052051W WO 2010113547 A1 WO2010113547 A1 WO 2010113547A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
hard coat
film
polarizing plate
coat layer
Prior art date
Application number
PCT/JP2010/052051
Other languages
English (en)
French (fr)
Inventor
太田 智久
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to US13/259,104 priority Critical patent/US9250359B2/en
Priority to JP2011507054A priority patent/JP5532046B2/ja
Publication of WO2010113547A1 publication Critical patent/WO2010113547A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • Y10T156/1074Separate cutting of separate sheets or webs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick

Definitions

  • the present invention relates to a method for producing a hard coat film, a polarizing plate, a hard coat film, and a method for producing a liquid crystal panel.
  • the polarizing plate includes a polarizer and a protective film for protecting the polarizer, and a hard coat layer is further provided on the protective film. Is formed.
  • the hard coat layer is formed by applying a certain coating solution on the protective film (and then drying), and the protective film is applied to the polarizer by saponification (alkali treatment using 2N NaOH, etc.). It has been.
  • the thickness of the protective film is usually about 40 to 80 ⁇ m and the thickness of the hard coat layer is about 10 to 30 ⁇ m.
  • the protective film and the hard coat layer have such a thickness, after attaching the polarizing plate to the liquid crystal cell to form a liquid crystal panel, if the entire liquid crystal panel is cut, the protective film and the hard coat layer There is a possibility that cracks may occur at the interface (see Patent Document 1). To prevent this, simply thinning both the protective film and the hard coat layer will cause the polarizing plate to be held in a roll state. There is a disadvantage that wrinkles are likely to occur (see Patent Document 2).
  • JP 2008-191544 A Japanese Patent Laid-Open No. 2005-104148
  • the protective film is dried after film formation (after the production of the protective film) or wound under a dry state.
  • the protective film is made thin (30 ⁇ m or less).
  • the moisture content of the protective film itself becomes too low due to drying, and the permeability of the coating liquid for forming the hard coat layer into the protective film increases (see the arrow in FIG. 7).
  • the mixed region of the protective film and the hard coat layer is increased, and uneven saponification (striated appearance defect) occurs when the protective film is attached to the polarizer during the production of the polarizing plate.
  • the streak-like appearance defect means that stripe-like streaks appear in a reflected state parallel to the absorption axis direction of the polarizing plate.
  • a characteristic of the streaks is a groove-like shape carved in the record board at a pitch of 1 to 2 mm.
  • the solvent used at the time of manufacturing remains in the protective film, and the dimensional stability of the polarizing plate is impaired due to the residual solvent. There is a possibility that light leakage (decrease in contrast) may occur in the area.
  • the main object of the present invention is to prevent or suppress the occurrence of uneven saponification and blocking, and to provide a hard coat film, a polarizing plate, a method for producing a hard coat film, and a liquid crystal panel excellent in cutting property and dimensional stability. It is to provide a manufacturing method.
  • a protective film for protecting the polarizer A hard coat layer formed on the protective film; A hard coat film comprising: The sum of the thickness of the protective film and the thickness of the hard coat layer is less than 40 ⁇ m, and the mixed region of the protective film and the hard coat layer is 1 to 20% of the thickness of the hard coat layer.
  • a featured hard coat film is provided.
  • a polarizer A first protective film formed on one surface of the polarizer; A hard coat layer formed on the first protective film; A second protective film formed on the other surface of the polarizer; A polarizing plate comprising: The sum of the thickness of the first protective film and the thickness of the hard coat layer is less than 40 ⁇ m, and the mixed region of the first protective film and the hard coat layer is 1 to 1 of the thickness of the hard coat layer.
  • a polarizing plate characterized by being 20% is provided.
  • a method for producing a hard coat film in which a hard coat layer is formed on a protective film for protecting a polarizer Producing the protective film using a melt casting method; Humidifying the protective film; Forming a hard coat layer by applying a certain coating solution on the protective film; With In the step of humidifying the protective film, a method for producing a hard coat film is provided, wherein the moisture content of the protective film is 1.5 to 4%.
  • a method for producing a hard coat film in which a hard coat layer is formed on a protective film for protecting a polarizer Producing the protective film using a solution casting method; Heating the protective film; Humidifying the protective film; Forming a hard coat layer by applying a certain coating solution on the protective film; With In the step of heating the protective film, the amount of residual solvent remaining in the protective film is 0.01% or less, In the step of humidifying the protective film, a method for producing a hard coat film is provided, wherein the moisture content of the protective film is 1.5 to 4%.
  • the occurrence of uneven saponification and blocking can be prevented or suppressed, and the cutting property and dimensional stability can be improved.
  • the liquid crystal panel 100 includes a liquid crystal cell 102 and two polarizing plates 110 and 120, and the liquid crystal cell 102 is sandwiched between the polarizing plates 110 and 120.
  • the liquid crystal cell 102 is mainly composed of two glass substrates and liquid crystals (molecules), and is formed by bonding two glass substrates together and injecting liquid crystal molecules between the glass substrates to seal them.
  • the polarizing plate 110 has a polarizer 112 (polarizing film, polarizing film) and two protective films 114 and 116 for protecting the polarizer 112, and the polarizer 112 is sandwiched between the protective films 114 and 116. have.
  • the polarizer 112 is a polyvinyl alcohol polarizer.
  • Polyvinyl alcohol polarizers include those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye.
  • the polarizer 112 a polyvinyl alcohol aqueous solution is formed into a film and dyed by uniaxial stretching or dyed or uniaxially stretched and then subjected to a durability treatment with a boron compound.
  • the protective films 114 and 116 are films mainly composed of cellulose ester, and the protective film 114 is attached to the viewing side of the polarizer 112 and the protective film 116 is attached to the backlight side of the polarizer 112.
  • a cellulose ester film is subjected to alkali saponification treatment, and the treated film is immersed and stretched in an iodine solution.
  • a water-based adhesive mainly composed of the like.
  • Both the protective films 114 and 116 have a thickness of 30 ⁇ m or less.
  • the protective films 114 and 116 are mainly composed of a cellulose ester resin.
  • additives such as a plasticizer
  • a plasticizer may be added as a constituent material of the protective films 114 and 116.
  • cellulose ester resin As an example of the cellulose ester, cellulose acylate can be used.
  • cellulose As the cellulose acylate raw material, but there are cotton linters, wood pulp, kefna, and the like. Moreover, you may mix and use the raw material cellulose obtained from these in arbitrary ratios.
  • the cellulose acylate is preferably a cellulose acylate having an acetyl group or an acyl group having 3 to 22 carbon atoms.
  • the acyl group having 3 to 22 carbon atoms include propionyl (C 2 H 5 CO—), n-butyryl (C 3 H 7 CO—), isobutyryl, valeryl (C 4 H 9 CO—), isovaleryl, Includes sec-valeryl, tert-valeryl, octanoyl, dodecanoyl, octadecanoyl and oleoloyl. Propionyl and butyryl are preferred.
  • the acetyl group substitution degree is X and the sum of the propionyl group substitution degree and the butyryl group substitution degree is Y, all the conditions of the formulas (1) to (3) are satisfied. It is preferable to use a material that satisfies the conditions, and it is preferable to satisfy the conditions of the expressions (4) to (6).
  • the degree of polymerization (average viscosity) of cellulose acylate is preferably 200 to 700, and particularly preferably 250 to 550. These cellulose acylates are commercially available from Daicel Chemical Industries, Ltd., Courtles, Hoechst, and Eastman Kodak, and photographic grade cellulose acylate is preferably used.
  • the moisture content of cellulose acylate is preferably 2% by mass or less.
  • the ⁇ -1,4-bonded glucose unit constituting cellulose has free hydroxyl groups at the 2nd, 3rd and 6th positions.
  • Cellulose acylate is a polymer obtained by esterifying some or all of these hydroxyl groups with acetic acid or other acids.
  • the degree of acyl substitution means the proportion of cellulose esterified at each of the 2-position, 3-position and 6-position (100% esterification is 1.00).
  • the cellulose acylate used in the present invention has a total acyl substitution degree of 2-position and 3-position of 1.70 to 1.95, and the acyl substitution degree of 6-position is 0.88 or more, It is obtained by blending cellulose acylate having a total acyl substitution degree at the 2nd and 3rd positions of 1.70 to 1.95 and an acyl substitution degree at the 6th position of less than 0.88.
  • the total of the 2- and 3-position acyl substitutions is 1.70 or less, the film is likely to absorb moisture and is susceptible to hydrolysis, so the durability of the film is lowered. In addition, the dimensional change due to humidity or the like becomes large.
  • the total of the 2- and 3-position acyl substitutions is preferably 1.70 to 1.95, and more preferably 1.75 to 1.88.
  • the hydroxyl group at the 6-position is a primary hydroxyl group, unlike the hydroxyl groups at the 2- and 3-positions, it has been found that hydrogen bonding of the hydroxyl group is very likely to occur. Therefore, by setting the acyl substitution degree at the 6-position to 0.88 or more, the solubility in a solvent is remarkably improved, and it is possible to obtain a dope that is preferable in view of solution casting suitability.
  • the range of the degree of acyl substitution at the 6-position is preferably 0.88 to 0.99, and more preferably 0.89 to 0.98 in consideration of synthesis suitability and the like.
  • a film made of cellulose acylate having a total acyl substitution degree at the 2nd and 3rd positions of 1.70 to 1.95 and an acyl substitution degree at the 6th position of 0.88 or more An optical film in which a thin film is formed on a film made of cellulose acylate having a total acyl substitution degree of 1.70 to 1.95 and a acyl substitution degree of 6-position of less than 0.88 is in a roll state.
  • flatness such as wrinkles and dents is likely to occur during storage, and that the formed metal oxide layer is liable to crack and film thickness unevenness is likely to occur.
  • cellulose acylate having an acyl substitution degree at the 6-position of 0.88 or more desirably has a smaller number of carbon atoms in the acyl substituent from the viewpoint of film strength, and is preferably all acetyl groups.
  • the total of acetyl substituents at the 2nd, 3rd and 6th positions is 2.67 or more, and the total of the acetyl substituents at the 2nd and 3rd positions is 1.97 or less.
  • cellulose acetate is described, the range in which the sum of the 2nd and 3rd positions exceeds 1.90 is a preferred range from the optical suitability of the film, and the casting suitability is described in this specification. The range described is more preferable.
  • a typical synthesis method is a liquid phase acetylation method using an acetic anhydride-acetic acid-sulfuric acid catalyst. Specifically, a cellulose raw material such as wood pulp is pretreated with an appropriate amount of an organic acid, and then it is esterified by adding it to a pre-cooled acylated mixture to complete cellulose acylate (2nd, 3rd and 6th positions). The total degree of acyl substitution is approximately 3.00).
  • the acylated mixed solution generally contains an organic acid as a solvent, an anhydrous organic acid as an esterifying agent, and sulfuric acid as a catalyst.
  • the organic anhydride is usually used in a stoichiometric excess over the sum of the cellulose that reacts with it and the water present in the system.
  • a neutralizing agent for example, calcium, magnesium, iron, aluminum or zinc
  • carbonate acetate or oxide
  • the obtained complete cellulose acylate is saponified and aged by maintaining it at 50 to 90 ° C.
  • an acetylation reaction catalyst generally, remaining sulfuric acid
  • the cellulose acylate having a polymerization degree is changed.
  • the catalyst remaining in the system is completely neutralized with the neutralizing agent as described above, or water or dilute sulfuric acid without neutralization.
  • a cellulose acylate solution is introduced into the cellulose acylate solution (or water or dilute sulfuric acid is introduced into the cellulose acylate solution) to separate the cellulose acylate, and the cellulose acylate is obtained by washing and stabilizing treatment.
  • the acyl substitution degree at the 2nd or 3rd position is higher than the acyl substitution degree at the 6th position. Therefore, in order to make the total acyl substitution degree at the 2nd and 3rd positions 1.95 or less and the acyl substitution degree at the 6th position 0.88 or more, the above reaction conditions need to be specifically adjusted. .
  • specific reaction conditions it is preferable to reduce the amount of the sulfuric acid catalyst and lengthen the time of the acylation reaction. When the amount of the sulfuric acid catalyst is large, the acylation reaction proceeds faster, but a sulfuric ester is formed between the cellulose and the cellulose according to the amount of the catalyst, and is released at the end of the reaction to form a residual hydroxyl group.
  • Sulfate esters are more produced at the 6-position, which is highly reactive. Therefore, when there is much sulfuric acid catalyst, the acyl substitution degree of 6-position will become small. Therefore, in order to synthesize the cellulose acylate used in the present invention, it is necessary to extend the reaction time in order to reduce the amount of sulfuric acid catalyst as much as possible and compensate for the reduced reaction rate.
  • a cellulose acylate film will have an influence as an optical use when it colors, preferably yellowness (yellow index, YI) is 3.0 or less, More preferably, it is 1.0 or less. Yellowness can be measured based on JIS-K7103.
  • the plasticizer include an ester plasticizer composed of a polyhydric alcohol and a monovalent carboxylic acid, an ester plasticizer composed of a polyvalent carboxylic acid and a monovalent alcohol, and these ester plasticizers are cellulose. High affinity with esters is preferred.
  • An ethylene glycol ester plasticizer that is one of polyhydric alcohol esters: specifically, ethylene glycol alkyl ester plasticizers such as ethylene glycol diacetate and ethylene glycol dibutyrate, ethylene glycol dicyclopropylcarboxylate And ethylene glycol cycloalkyl ester plasticizers such as ethylene glycol dicyclohexylcarboxylate, and ethylene glycol aryl ester plasticizers such as ethylene glycol dibenzoate and ethylene glycol di4-methylbenzoate.
  • ethylene glycol alkyl ester plasticizers such as ethylene glycol diacetate and ethylene glycol dibutyrate
  • ethylene glycol dicyclopropylcarboxylate ethylene glycol cycloalkyl ester plasticizers
  • ethylene glycol dicyclohexylcarboxylate ethylene glycol dicyclohexylcarboxylate
  • ethylene glycol aryl ester plasticizers such as ethylene glycol dibenz
  • the ethylene glycol part may be substituted, and the ethylene glycol ester partial structure may be part of the polymer or regularly pendant, and may be an antioxidant, an acid scavenger, an ultraviolet absorber, etc. It may be introduced into a part of the molecular structure of the additive.
  • Glycerin ester plasticizer that is one of polyhydric alcohol esters: Specifically, glycerol alkyl esters such as triacetin, tributyrin, glycerol diacetate caprylate, glycerol oleate propionate, glycerol tricyclopropylcarboxylate, glycerol Glycerol cycloalkyl esters such as tricyclohexylcarboxylate, glycerol aryl esters such as glycerol tribenzoate and glycerol 4-methylbenzoate, diglycerol tetraacetylate, diglycerol tetrapropionate, diglycerol acetate tricaprylate, diglycerol tetralaur Diglycerin alkyl ester such as rate, diglycerin tetracyclobutylcarboxylate, diglycerin tetracycle Diglycerol cycloalkyl esters such as penty
  • alkylate groups, cycloalkylcarboxylate groups, and arylate groups may be the same or different, and may be further substituted. Further, it may be a mixture of alkylate group, cycloalkylcarboxylate group, and arylate group, and these substituents may be bonded by a covalent bond.
  • the glycerin and diglycerin part may be substituted, the partial structure of the glycerin ester and the diglycerin ester may be part of the polymer or regularly pendant, and the antioxidant, acid scavenger, You may introduce
  • polyhydric alcohol ester plasticizers include polyhydric alcohol ester plasticizers described in paragraphs 30 to 33 of JP-A No. 2003-12823.
  • alkylate groups, cycloalkylcarboxylate groups, and arylate groups may be the same or different, and may be further substituted. Further, it may be a mixture of alkylate group, cycloalkylcarboxylate group, and arylate group, and these substituents may be bonded by a covalent bond.
  • the polyhydric alcohol part may be substituted, and the partial structure of the polyhydric alcohol may be part of the polymer or regularly pendant, and may be an antioxidant, an acid scavenger, an ultraviolet absorber. May be introduced into a part of the molecular structure of the additive.
  • alkyl polyhydric alcohol aryl esters are preferred.
  • the above-mentioned ethylene glycol dibenzoate, glycerin tribenzoate, diglycerin tetrabenzoate, Examples thereof include the exemplified compound 16 described in paragraph 32 of Kaikai 2003-12823.
  • Dicarboxylic acid ester plasticizer that is one of polyvalent carboxylic acid esters: Specifically, alkyl dicarboxylic acid alkyl such as didodecyl malonate (C1), dioctyl adipate (C4), dibutyl sebacate (C8), etc.
  • Ester plasticizers alkyl dicarboxylic acid cycloalkyl ester plasticizers such as dicyclopentyl succinate and dicyclohexyl adipate, alkyl dicarboxylic acid aryl ester plasticizers such as diphenyl succinate and di4-methylphenyl glutarate, Cycloalkyl dicarboxylic acid alkyl ester plasticizers such as dihexyl-1,4-cyclohexanedicarboxylate and didecylbicyclo [2.2.1] heptane-2,3-dicarboxylate, dicyclohexyl-1,2-cyclobutane Zikal Cycloalkyldicarboxylic acid cycloalkyl ester plasticizers such as xylate, dicyclopropyl-1,2-cyclohexyldicarboxylate, diphenyl-1,1-cyclopropyldicarboxylate, di2-naphthyl-1,4-cycl
  • alkoxy groups and cycloalkoxy groups may be the same or different, may be mono-substituted, and these substituents may be further substituted.
  • the alkyl group and cycloalkyl group may be mixed, and these substituents may be bonded together by a covalent bond.
  • the aromatic ring of phthalic acid may be substituted, and a multimer such as a dimer, trimer or tetramer may be used.
  • the partial structure of phthalate ester may be part of the polymer or regularly pendant to the polymer, and it may be part of the molecular structure of additives such as antioxidants, acid scavengers, and UV absorbers. It may be introduced.
  • polycarboxylic acid ester plasticizers include alkyl polycarboxylic acid alkyl esters such as tridodecyl tricarbarate and tributyl-meso-butane-1,2,3,4-tetracarboxylate.
  • Plasticizers alkylpolycarboxylic acid cycloalkylester plasticizers such as tricyclohexyl tricarbarate, tricyclopropyl-2-hydroxy-1,2,3-propanetricarboxylate, triphenyl 2-hydroxy- Alkyl polyvalent carboxylic acid aryl ester plasticizers such as 1,2,3-propanetricarboxylate, tetra-3-methylphenyltetrahydrofuran-2,3,4,5-tetracarboxylate, tetrahexyl-1,2, 3,4-cyclobutanetetracarboxylate, tetra Cycloalkyl polycarboxylic acid alkyl ester plasticizers such as til-1,2,3,4-cyclopentanetetracarboxylate, tetracyclopropyl-1,2,3,4-cyclobutanetetracarboxylate, tricyclohexyl- Cycloalkyl polycarboxylic acid cycloalkyl este
  • Plasticizers such as triphenylbenzene-1,3,5-tetracartoxylate, hexa4-methylphenylbenzene-1,2,3,4,5,6-hexacarboxylate and the like of aryl polyvalent carboxylic acid aryl ester series A plasticizer is mentioned.
  • These alkoxy groups and cycloalkoxy groups may be the same or different, and may be mono-substituted, and these substituents may be further substituted.
  • the alkyl group and cycloalkyl group may be mixed, and these substituents may be bonded together by a covalent bond.
  • the aromatic ring of phthalic acid may be substituted, and a multimer such as a dimer, trimer or tetramer may be used.
  • the partial structure of phthalate ester may be part of the polymer or regularly pendant into the polymer, and introduced into part of the molecular structure of additives such as antioxidants, acid scavengers, UV absorbers, etc. May be.
  • dialkyl carboxylic acid alkyl esters are preferred, and specific examples include the dioctyl adipate and tridecyl tricarbalate.
  • phosphate ester plasticizers include carbohydrate ester plasticizers, and polymer plasticizers.
  • Phosphate ester plasticizers specifically, phosphoric acid alkyl esters such as triacetyl phosphate and tributyl phosphate, phosphoric acid cycloalkyl esters such as tricyclobenthyl phosphate and cyclohexyl phosphate, triphenyl phosphate, tricresyl phosphate And phosphoric acid aryl esters such as cresylphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, trinaphthyl phosphate, trixylyl phosphate, tris ortho-biphenyl phosphate.
  • phosphoric acid alkyl esters such as triacetyl phosphate and tributyl phosphate
  • phosphoric acid cycloalkyl esters such as tricyclobenthyl phosphate and
  • substituents may be the same or different, and may be further substituted. Moreover, the mix of an alkyl group, a cycloalkyl group, and an aryl group may be sufficient, and substituents may couple
  • alkylene bis (dialkyl phosphate) such as ethylene bis (dimethyl phosphate), butylene bis (diethyl phosphate), alkylene bis (diaryl phosphate) such as ethylene bis (diphenyl phosphate), propylene bis (dinaphthyl phosphate), phenylene bis (dibutyl phosphate) ), Arylene bis (dialkyl phosphate) such as biphenylene bis (dioctyl phosphate), phosphate esters such as arylene bis (diaryl phosphate) such as phenylene bis (diphenyl phosphate) and naphthylene bis (ditoluyl phosphate).
  • dialkyl phosphate such as ethylene bis (dimethyl phosphate), butylene bis (diethyl phosphate), alkylene bis (diaryl phosphate) such as ethylene bis (diphenyl phosphate), propylene bis (dinaph
  • substituents may be the same or different, and may be further substituted. Moreover, the mix of an alkyl group, a cycloalkyl group, and an aryl group may be sufficient, and substituents may couple
  • the partial structure of phosphate ester may be part of the polymer, or may be regularly pendant, and also introduced into part of the molecular structure of additives such as antioxidants, acid scavengers, UV absorbers, etc. May be.
  • additives such as antioxidants, acid scavengers, UV absorbers, etc. May be.
  • phosphoric acid aryl ester and arylene bis (diaryl phosphate) are preferable, and specifically, triphenyl phosphate and phenylene bis (diphenyl phosphate) are preferable.
  • the carbohydrate means a monosaccharide, disaccharide or trisaccharide in which the saccharide is present in the form of pyranose or furanose (6-membered ring or 5-membered ring).
  • Non-limiting examples of carbohydrates include glucose, saccharose, lactose, cellobiose, mannose, xylose, ribose, galactose, arabinose, fructose, sorbose, cellotriose and raffinose.
  • the carbohydrate ester refers to an ester compound formed by dehydration condensation of a carbohydrate hydroxyl group and a carboxylic acid, and specifically means an aliphatic carboxylic acid ester or an aromatic carboxylic acid ester of a carbohydrate.
  • the aliphatic carboxylic acid include acetic acid and propionic acid
  • examples of the aromatic carboxylic acid include benzoic acid, toluic acid, and anisic acid.
  • Carbohydrates have a number of hydroxyl groups depending on the type, but even if a part of the hydroxyl group reacts with the carboxylic acid to form an ester compound, the whole hydroxyl group reacts with the carboxylic acid to form an ester compound. Also good. In the present invention, it is preferable that all of the hydroxyl groups react with the carboxylic acid to form an ester compound.
  • carbohydrate ester plasticizer examples include glucose pentaacetate, glucose pentapropionate, glucose pentabtylate, saccharose octaacetate, saccharose octabenzoate, and of these, saccharose octaacetate is more preferred. preferable.
  • Polymer plasticizer Specifically, aliphatic hydrocarbon polymer, alicyclic hydrocarbon polymer, polyethyl acrylate, polymethyl methacrylate, copolymer of methyl methacrylate and 2-hydroxyethyl methacrylate (For example, an arbitrary ratio between copolymer ratios 1:99 to 99: 1), vinyl polymers such as polyvinyl isobutyl ether, poly N-vinyl pyrrolidone, polystyrene, poly 4-hydroxystyrene, etc.
  • polystyrene-based polymers examples thereof include styrene-based polymers, polybutylene succinates, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyethers such as polyethylene oxide and polypropylene oxide, polyamides, polyurethanes, and polyureas.
  • the number average molecular weight is preferably about 1,000 to 500,000, particularly preferably 5000 to 200,000. If it is 1000 or less, a problem arises in volatility, and if it exceeds 500000, the plasticizing ability is lowered, and the mechanical properties of the cellulose ester film are adversely affected.
  • These polymer plasticizers may be a homopolymer composed of one type of repeating unit or a copolymer having a plurality of repeating structures. Two or more of the above polymers may be used in combination.
  • An acrylic polymer having a weight average molecular weight of 500 to 10,000 may be further added to the protective films 114 and 116.
  • the weight average molecular weight is preferably 500 to 5,000.
  • the transparency of the cellulose derivative film after film formation is excellent, the moisture permeability is extremely low, and it exhibits excellent performance as a protective film for polarizing plates.
  • Examples of such a polymerization method include a method using a peroxide polymerization initiator such as cumene peroxide and t-butyl hydroperoxide, a method using a polymerization initiator in a larger amount than usual polymerization, and a mercapto compound in addition to the polymerization initiator. And a method using a chain transfer agent such as carbon tetrachloride, a method using a polymerization terminator such as benzoquinone and dinitrobenzene in addition to the polymerization initiator, and further disclosed in JP-A Nos. 2000-128911 and 2000-344823.
  • a peroxide polymerization initiator such as cumene peroxide and t-butyl hydroperoxide
  • a method using a polymerization initiator in a larger amount than usual polymerization and a mercapto compound in addition to the polymerization initiator.
  • a chain transfer agent such as carbon tetrachloride
  • the acrylic polymer preferably used in the present invention preferably contains 40% by mass or more of acrylic acid ester and methacrylic acid ester.
  • the monomer as a monomer unit which comprises this polymer is mentioned below, it is not limited to this.
  • acrylate ester examples include methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), butyl acrylate (n-, i-, s-, t-), pentyl acrylate (n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n-, i-), nonyl acrylate (n-, i-) , Myristyl acrylate (n-, i-), cyclohexyl acrylate, acrylic acid (2-ethylhexyl), benzyl acrylate, phenethyl acrylate, acrylic acid ( ⁇ -caprolactone), acrylic acid (2-hydroxyethyl), acrylic Acid (2-hydroxypropyl), acrylic acid (3-hydroxypropyl), acrylic acid (4-hydroxybutyl), acrylic acid (2-hydro
  • vinyl esters for example, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl valerate, vinyl pivalate, vinyl caproate, caprin Vinyl acetate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, vinyl octylate, vinyl methacrylate, vinyl crotrate, vinyl sorbate, vinyl benzoate, vinyl cinnamate, etc. be able to.
  • vinyl esters for example, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl valerate, vinyl pivalate, vinyl caproate, caprin Vinyl acetate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, vinyl octylate, vinyl methacrylate, vinyl crotrate, vinyl sorbate, vinyl benzoate, vinyl cinnamate, etc. be able to.
  • an acrylic acid or methacrylic acid ester monomer having a hydroxyl group it is not a homopolymer but a constituent unit of a copolymer.
  • the acrylic acid or methacrylic acid ester monomer unit having a hydroxyl group is preferably contained in the acrylic polymer in an amount of 2 to 20% by mass.
  • a polymer having a hydroxyl group in the side chain can also be preferably used.
  • the monomer unit having a hydroxyl group is the same as the monomer described above, but acrylic acid or methacrylic acid ester is preferable.
  • Examples thereof include those substituted with methacrylic acid, preferably 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate.
  • the acrylic acid ester or methacrylic acid ester monomer unit having a hydroxyl group in the polymer is preferably contained in the polymer in an amount of 2 to 20% by mass, more preferably 2 to 10% by mass.
  • a retardation film having excellent compatibility with cellulose derivatives, retention, dimensional stability, and low moisture permeability is possible.
  • this retardation film is used in a protective film for a polarizing plate, a protective film for a polarizing plate that is particularly excellent in adhesiveness with a polarizer and that improves the durability of the polarizing plate is provided.
  • a hydroxyl group at least at one terminal of the polymer main chain it is preferable to have a hydroxyl group at least at one terminal of the polymer main chain.
  • the method of having a hydroxyl group at the end of the main chain is not particularly limited as long as it has a hydroxyl group at the end of the main chain, but radical polymerization having a hydroxyl group such as azobis (2-hydroxyethylbutyrate) is possible.
  • the method described in the publication is particularly preferable.
  • the polymer produced by the method related to the description in this publication is commercially available as Act Flow Series manufactured by Soken Chemical Co., Ltd., and can be preferably used.
  • the polymer having a hydroxyl group at the terminal or the polymer having a hydroxyl group in a side chain has an effect of remarkably improving the compatibility and transparency of the polymer.
  • the plasticizer removes impurities such as residual acids, inorganic salts, organic low molecules, etc. that are carried over from the time of manufacture or generated during storage, and more preferably has a purity of 99% or more. is there.
  • Residual acid and water are preferably 0.01 to 100 ppm, and when melt-forming cellulose resin, thermal deterioration can be suppressed, and film-forming stability, optical physical properties and mechanical properties of the film are improved. .
  • an antioxidant is used as a stabilizer because cellulose ester is decomposed not only by heat but also by oxygen in a high temperature environment where melt film formation is performed. Is also preferable.
  • the antioxidant useful in the present invention can be used without limitation as long as it is a compound that suppresses deterioration of the melt-molded material due to oxygen, but among the useful antioxidants, phenolic compounds, hindered amine compounds, Examples thereof include phosphorus compounds, sulfur compounds, heat-resistant processing stabilizers, oxygen scavengers, etc. Among these, phenol compounds, hindered amine compounds, phosphorus compounds, and lactone compounds are particularly preferable.
  • HALS hindered amine compound
  • 2,2,6,6-tetraalkylpiperidine compounds, or their acid addition salts or complexes of them with metal compounds are preferred.
  • LA52 made by ADEKA
  • lactone compound compounds described in JP-A-7-233160 and JP-A-7-247278 are preferable.
  • stabilizers can be used singly or in combination of two or more, and the blending amount is appropriately selected within a range not impairing the object of the present invention, but is usually 0 with respect to 100 parts by mass of the cellulose ester. 0.001 to 10.0 parts by mass, preferably 0.01 to 5.0 parts by mass, and more preferably 0.1 to 3.0 parts by mass.
  • the addition amount of the antioxidant is usually 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the cellulose ester.
  • the acid scavenger is an agent that plays a role of trapping an acid (protonic acid) remaining in the cellulose ester brought in from the production. When the cellulose ester is melted, side chain hydrolysis is promoted by moisture and heat in the polymer, and acetic acid and propionic acid are generated in the case of CAP.
  • a compound having an epoxy structure, a tertiary amine, an ether structure, or the like may be used as long as it can be chemically bonded to an acid, but is not limited thereto.
  • an epoxy compound as an acid scavenger described in US Pat. No. 4,137,201.
  • Epoxy compounds as such acid scavengers are known in the art and are derived by condensation of diglycidyl ethers of various polyglycols, particularly about 8 to 40 moles of ethylene oxide per mole of polyglycol.
  • Metal glycol compounds such as polyglycols, diglycidyl ethers of glycerol (eg, those conventionally used in and together with vinyl chloride polymer compositions), epoxidized ether condensation products, bisphenol A Diglycidyl ethers (ie, 4,4'-dihydroxydiphenyldimethylmethane), epoxidized unsaturated fatty acid esters (especially esters of alkyls of about 2 to 2 carbon atoms of fatty acids of 2 to 22 carbon atoms (eg Butyl epoxy stearate ), And various epoxidized long chain fatty acid triglycerides and the like (e.g., epoxidized vegetable oils and other unsaturated natural oils, which may be represented and exemplified by compositions such as epoxidized soybean oil, sometimes epoxidized natural) These are referred to as glycerides or unsaturated fatty acids and these fatty acids generally contain 12 to 22 carbon atoms)).
  • UV absorber As an ultraviolet absorber, from the viewpoint of preventing deterioration of a polarizer or a display device with respect to ultraviolet rays, the ultraviolet absorber has an excellent ability to absorb ultraviolet rays having a wavelength of 370 nm or less, and from the viewpoint of liquid crystal display properties, absorption of visible light having a wavelength of 400 nm or more is absorbed. Less is preferred.
  • salicylic acid ultraviolet absorbers phenyl salicylate, p-tert-butyl salicylate, etc.
  • benzophenone ultraviolet absorbers (2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, etc.)
  • Benzotriazole UV absorber (2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 ', 5'-di) -Tert-butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-amylphenyl) benzotriazole, 2- (2'-hydroxy-3'-dodecyl- 5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3'-t rt-butyl-5 '-(2-octyloxycarbonylethy
  • a benzotriazole-based ultraviolet absorber or a triazine-based ultraviolet absorber that is highly transparent and excellent in preventing deterioration of a polarizing plate or a liquid crystal element is preferable, and a spectral absorption spectrum is more appropriate.
  • Benzotriazole ultraviolet absorbers are particularly preferred.
  • the conventionally known benzotriazole-based ultraviolet absorber particularly preferably used together with the ultraviolet absorber according to the present invention may be bisified, for example, 6,6′-methylenebis (2- (2H-benzo [d ] [1,2,3] triazol-2-yl))-4- (2,4,4-trimethylpentan-2-yl) phenol, 6,6'-methylenebis (2- (2H-benzo [d] And [1,2,3] triazol-2-yl))-4- (2-hydroxyethyl) phenol.
  • the conventionally known UV-absorbing polymer is not particularly limited, and examples thereof include a polymer obtained by homopolymerizing RUVA-93 (manufactured by Otsuka Chemical Co., Ltd.) and a polymer obtained by copolymerizing RUVA-93 and other monomers. It is done. Specifically, PUVA-30M obtained by copolymerizing RUVA-93 and methyl methacrylate in a ratio (mass ratio) of 3: 7, and PUVA-50M copolymerized in a ratio of 5: 5 (mass ratio). It is done. Furthermore, the polymer etc. which are described in Unexamined-Japanese-Patent No. 2003-113317 are mentioned.
  • TINUVIN 109 TINUVIN 171, TINUVIN 360, TINUVIN 900, TINUVIN 928 (all manufactured by Ciba Japan Co., Ltd.), LA-31. (Made by ADEKA), RUVA-100 (made by Otsuka Chemical Co., Ltd.) can also be used.
  • benzophenone compounds include 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, bis (2-methoxy-4-hydroxy-) 5-benzoylphenylmethane) and the like, but are not limited thereto.
  • the ultraviolet absorber is preferably added in an amount of 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, and further preferably 1 to 5% by mass. Two or more of these may be used in combination.
  • a hydrogen bonding solvent can be added for the purpose of reducing the melt viscosity.
  • the hydrogen bonding solvent is J.I. N.
  • the glass transition temperature of the cellulose resin used alone is higher than that.
  • the melting temperature of the cellulose resin composition can be lowered by the addition of a hydrogen bonding solvent, or the melt viscosity of the cellulose resin composition containing a hydrogen bonding solvent can be lowered at the same melting temperature as the cellulose resin. .
  • a matting agent in order to impart film slipperiness.
  • the matting agent used in this embodiment may be either an inorganic compound or an organic compound as long as it has heat resistance during melting without impairing the transparency of the resulting film.
  • talc talc, mica, zeolite, diatomaceous earth , Calcined siliceous clay, kaolin, sericite, bentonite, smectite, clay, silica, quartz powder, glass beads, glass powder, glass flake, milled fiber, wollastonite, boron nitride, boron carbide, titanium boride, magnesium carbonate , Heavy calcium carbonate, light calcium carbonate, calcium silicate, aluminum silicate, magnesium silicate, magnesium aluminosilicate, alumina, silica, zinc oxide, titanium dioxide, iron oxide, magnesium oxide, zirconium oxide, aluminum hydroxide, calcium hydroxide, Hydroxylated mug Siumu, calcium sulfate, barium sulfate, silicon carbide, aluminum carbide, titanium carbide, aluminum nitride, silicon nitride, titanium nitride, and white carbon.
  • matting agents can be used alone or in combination of two or more.
  • particles having different particle sizes and shapes for example, acicular and spherical
  • both transparency and slipperiness can be made highly compatible.
  • silicon dioxide is particularly preferably used since it has a refractive index close to that of cellulose ester and is excellent in transparency (haze).
  • silicon dioxide examples include Aerosil 200V, Aerosil R972V, Aerosil R972, R974, R812, 200, 300, R202, OX50, TT600, NAX50 (manufactured by Nippon Aerosil Co., Ltd.), Sea Hoster KEP-10, Sea Hoster KEP- 30, Seahoster KEP-50 (above, manufactured by Nippon Shokubai Co., Ltd.), Silo Hovic 100 (manufactured by Fuji Silysia), Nip Seal E220A (manufactured by Nippon Silica Kogyo), Admafine SO (manufactured by Admatechs), etc. Goods etc. can be preferably used.
  • the shape of the particles can be used without particular limitation, such as indefinite shape, needle shape, flat shape, spherical shape, etc.
  • the use of spherical particles is particularly preferable because the transparency of the resulting film can be improved.
  • the particle size is preferably smaller than the wavelength of visible light, and more preferably 1 ⁇ 2 or less of the wavelength of visible light. . If the size of the particles is too small, the slipperiness may not be improved, so the range of 80 nm to 180 nm is particularly preferable.
  • the particle size means the size of the aggregate when the particle is an aggregate of primary particles.
  • a particle when a particle is not spherical, it means the diameter of a circle corresponding to the projected area.
  • a hard coat layer As shown in FIG. 1, in the polarizing plate 110, a hard coat layer 118 is formed on the protective film 114. The hard coat layer 118 is formed by applying and drying a certain coating liquid (coating solvent) on the protective film 114.
  • the hard coat layer 118 has a thickness of 6 ⁇ m or less, and the mixed region of the protective film 114 and the hard coat layer 118 (the region where the coating solution penetrates into the protective film 114) is 1 to 20% of the thickness of the hard coat layer 118 It has become.
  • the “mixed area (%)” is a value obtained by photographing an SEM image and measuring the color with a colorimeter, and is a value calculated according to the following equation.
  • Mixing area (%) Mixed region thickness ( ⁇ m) / [hard coat layer 118 film thickness ( ⁇ m) excluding mixed region) + mixed region thickness ( ⁇ m) + protective film 114 film thickness ( ⁇ m)] ⁇ 100 [Polarizer]
  • the hard coat layer 118 formed on the protective film 114 is configured as the hard coat film 130, and the thickness of the hard coat film 130 (that is, the thickness of the protective film 114 and the hard coat layer 118 The total thickness) is less than 40 ⁇ m.
  • the polarizing plate 110 including the polarizer 112, the two protective films 114 and 116, and the hard coat layer 118 has a total thickness of less than 90 ⁇ m.
  • the polarizing plate 120 has the same configuration as that of the polarizing plate 110 except that a layer corresponding to the hard coat layer 118 is not formed in the polarizing plate 110. That is, the polarizing plate 120 includes a polarizer 122 and two protective films 124 and 126, and the polarizer 122 is sandwiched between the protective films 124 and 126.
  • the polarizing plates 110 and 120 having the above-described configurations are an MVA (Multi-domain Vertical Alignment) mode, a PVA (Patterned Vertical Alignment) mode, a CPA (Continuous Pinweal Alignment) mode, and an OCB (Optical Indirect) mode.
  • MVA Multi-domain Vertical Alignment
  • PVA Power Planned Vertical Alignment
  • CPA Continuous Pinweal Alignment
  • OCB Optical Indirect
  • a liquid crystal panel 100 as a liquid crystal display device is applied as a device for colorization and moving image display.
  • the display quality is improved by the present invention, and the contrast is improved and the resistance of the polarizing plate is improved. Display is possible.
  • the manufacturing method (The manufacturing method of a protective film, the manufacturing method of a hard coat film, and the manufacturing method of a polarizing plate is included.) Of the liquid crystal panel 100 is demonstrated.
  • the protective films 114, 116, 124, and 126 can be manufactured by either a melt casting method or a solution casting method.
  • the manufacturing method of the protective films 114, 116, 124, and 126 will be described by melt casting.
  • the melt casting film forming method is classified as a molding method that is heated and melted, and includes a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, and a stretch molding method. Among these, in order to obtain an optical film having excellent mechanical strength and surface accuracy, the melt extrusion method using a die is excellent.
  • the protective film manufacturing apparatus has an extruder 1, a filter 2, a static mixer 3, and a casting die 4 in accordance with the processing order of film constituent materials (from upstream to downstream).
  • Extruder 1 is an apparatus that extrudes film constituent materials in a heated and melted state.
  • the filter 2 is for removing foreign substances by filtering the film constituent material, and a metal nonwoven fabric filter having a plurality of filtration layers is used as the filter 2.
  • the filter 2 is a metal nonwoven fabric filter, and is composed of a plurality of layers (filtration layers 210, 220, 230) obtained by compressing and sintering a metal fiber nonwoven fabric.
  • the filter 2 has a housing 270, and an inlet 250 and an outlet 260 for the filtrate are formed in the housing 270.
  • Filter layers 210 and 220 are provided inside the housing 270.
  • the filtration layer 210 is provided on the outlet 260 side, and the filtration layer 220 is provided on the inlet 250 side.
  • the filter layers 210 and 220 are provided with a protective mesh 240 for protecting them.
  • the number of filtration layers may be one, or three may be provided by providing the filtration layer 230 as shown in FIG. 4B, or four or more layers.
  • the filter 2 preferably has a weight per unit area of 1500 to 2000 g / cm 2 , the average diameter of the metal fibers in the most downstream filter layer 210 is 2 to 6 ⁇ m, and the filter layers 220 and 230 on the upstream side of the filter layer 210.
  • the average diameter of the metal fibers is 4 to 12 ⁇ m.
  • the weight per unit area of the filter 2 represents the weight of the filter layer per unit area, and even when there are a plurality of layers, the weight of all layers from the inlet side layer to the outlet side layer of the filtrate is used. However, the weight of the protective mesh 240 is excluded.
  • the average diameter of the metal fibers in the filtration layer 210 on the most downstream side of the filter 2 is less than 2 ⁇ m, a strong shear stress is applied to the molten thermoplastic resin, and a die line is generated during film formation.
  • the average diameter of the metal fibers of the filtration layers 220 and 230 on the upstream side of the filtration layer 210 on the most downstream side is less than 4 ⁇ m, a strong shearing stress is applied to the molten thermoplastic resin, and a die line is generated during film formation.
  • the casting die 4 is formed with slits 32 with adjustable gaps (intervals).
  • the pair of lips forming the slit 32 of the casting die 4 one is a flexible lip 33 having low rigidity and easily deformed, and the other is a fixed lip 34.
  • the casting die 4 hard chromium, chromium carbide, chromium nitride, titanium carbide, titanium carbonitride, titanium nitride, super steel, ceramic (tungsten carbide, aluminum oxide, chromium oxide), etc. are sprayed or plated, and then the surface Processing includes buffing, lapping using a # 1000 or higher whetstone, flat cutting using a # 1000 or higher diamond whetstone (the cutting direction is perpendicular to the resin flow direction), electrolytic polishing, and electrolytic composite polishing. Used.
  • the preferable material of the lip portion (flexible lip 33, fixed lip 34) of the casting die 4 is the same as that of the casting die 4.
  • the surface accuracy of the lip portion is preferably 0.5S or less, and more preferably 0.2S or less.
  • a large number of heat bolts 35 are arranged at a constant pitch in the width direction of the casting die 4, that is, in the length direction of the slit 32.
  • the heat bolt 35 preferably has a length of 20 to 40 cm and a diameter of 7 to 14 mm, and a plurality of, for example, several tens of heat bolts 35 are preferably arranged at a pitch of 20 to 40 mm.
  • Each heat bolt 35 is provided with a block 36 having an embedded electric heater 37 and a cooling medium passage, and each heat bolt 35 penetrates each block 36 vertically.
  • the base of the heat bolt 35 is fixed to the die body 31, and the tip is in contact with the outer surface of the flexible lip 33.
  • the input of the embedded electric heater 37 is increased or decreased to raise or lower the temperature of the block 36, thereby causing the heat bolt 35 to thermally expand and contract, thereby displacing the flexible lip 33.
  • the thickness of the film can be adjusted.
  • a thickness meter is provided at a required location downstream of the casting die 4, the web thickness information detected thereby is fed back to the control device, and the thickness information is compared with the set thickness information by the control device.
  • the power or ON rate of the heating element of the heat bolt 35 may be controlled by a correction control amount signal coming from the apparatus.
  • a gap adjusting member mainly composed of a bolt for adjusting the gap of the slit 32 by manually moving back and forth in the axial direction may be provided.
  • the gap of the slit 32 adjusted by the gap adjusting member is usually 200 to 1000 ⁇ m, preferably 300 to 800 ⁇ m, more preferably 400 to 600 ⁇ m.
  • first to third cooling rolls 5, 7, and 8 are provided on the downstream side of the casting die 4 in the processing order of the film constituent materials.
  • the first to third cooling rolls 5, 7, and 8 are made of seamless steel pipes with a wall thickness of about 20 to 30 mm, and the surfaces are mirror finished.
  • piping for flowing the cooling liquid is arranged, and the cooling liquid flowing through the piping is configured to absorb heat from the film constituent material on the roll. Yes.
  • the touch roll 6 is in contact with the first cooling roll 5.
  • the touch roll 6 has an elastic surface, is deformed along the surface of the first cooling roll 5 by the pressing force to the first cooling roll 5, and forms a nip with the first roll 5. ing.
  • the touch roll 6 has a flexible metal sleeve 41 and an elastic roller 42, and the elastic roller 42 is arranged inside the metal sleeve 41.
  • the metal sleeve 41 is made of stainless steel having a thickness of 0.3 mm and has flexibility. If the metal sleeve 41 is too thin, the strength is insufficient, whereas if it is too thick, the elasticity is insufficient. For these reasons, the thickness of the metal sleeve 41 is preferably 0.1 to 1.5 mm.
  • the elastic roller 42 has a metal inner cylinder 43 and a rubber 44 which are rotatable via a bearing, and is provided with a rubber 44 on the surface of the inner cylinder 43 to form a roll.
  • the elastic roller 42 presses the metal sleeve 41 against the first cooling roll 5, and the metal sleep 41 and the elastic roller 42 correspond to the shape of the first cooling roll 5.
  • a nip is formed with the first cooling roll while being deformed into a deformed shape.
  • the cooling water 45 flows in a space formed between the elastic roller 42 and the metal sleeve 41.
  • the touch roll 6 is urged toward the first cooling roll 5 by an urging means (not shown).
  • the linear pressure value F / W is set to 10 to 150 N / cm, where F is the biasing force of the biasing means and W is the width of the film in the nip in the direction along the rotation axis of the first cooling roll 5. It is better.
  • the materials of the first to third cooling rolls 5, 7, and 8 are preferably carbon steel, stainless steel, resin, and the like.
  • the surface accuracy of the first to third cooling rolls 5, 7, and 8 is preferably increased, and the surface roughness is set to 0.3S or less, more preferably 0.01S or less.
  • a peeling roll 9, a dancer roll 10 (film tension adjusting roll), and a stretching machine 12 are provided downstream of the third cooling roll 8 in the processing order of the film constituent materials.
  • a slitter 13, an embossing ring 14, and a back roll 15 are provided on the downstream side of the stretching machine 12 in the processing order of the film constituent materials.
  • the embossing ring 14 and the back roll 15 are disposed to face each other, and a knurling apparatus is constituted by these two members.
  • a film constituent material is prepared by mixing a cellulose ester resin, an additive, and the like, and is extruded using the extruder 1 in a state where the film constituent material is heated and melted.
  • the film constituent material is filtered by the filter 2 to remove foreign matters.
  • the film constituent materials are mixed by the static mixer 3.
  • the film constituent material is extruded in a molten state from the casting die 4 onto the first cooling roll 5.
  • the film constituting material is circumscribed on the first cooling roll 5 and further circumscribed on the total of three cooling rolls of the second cooling roll 7 and the third cooling roll 8 in order and cooled and solidified.
  • a film precursor 10 is manufactured.
  • the touch roll 6 is pressed against the surface of the first cooling roll 5, and the melted film constituent material is nipped between the first cooling roll 5 and the touch roll 6 and corrected into a flat shape. .
  • the film precursor 10 is peeled off by the peeling roll 9, and the film precursor 10 after peeling is stretched in the width direction by holding both ends of the film by the stretching device 12.
  • the end of the stretched film is slit into the product width by the slitter 13 and cut off, and then the knurling device (embossing ring 14, back roll 15) is subjected to knurling (embossing processing) at both ends of the film. Apply.
  • first extrusion Step After the film constituent materials are mixed as described above, the mixture may be directly melted using the extruder 1, but once the film constituent materials are mixed, After pelletization, the pellet may be melted by the extruder 1.
  • the additives when additives such as a plasticizer are not mixed in advance, the additives may be kneaded during the operation of the extruder 1.
  • the thermoplastic resin is a cellulose acylate resin, and the filtration temperature when filtering with the metal nonwoven fabric filter 2 is preferably 230 to 260 ° C., more preferably 240 to 250 ° C.
  • the temperature of the melted thermoplastic resin is less than 230 ° C., the viscosity increases, and the filtration speed becomes slow. On the other hand, if the temperature exceeds 260 ° C., the viscosity is reduced, but the resin may be colored, which is not preferable.
  • the filtration pressure is 1 to 15 MPa, and filtration is performed using the metal nonwoven fabric filter 2 to remove foreign matters.
  • the filtration pressure is less than 1 MPa, the residence time of the cellulose acylate melt in the filtration device becomes long, causing thermal deterioration and yellowing. If the filtration pressure exceeds 10 MPa, the filter may be damaged.
  • a mixing device such as a static mixer 3 in order to add uniformly.
  • the cellulose resin and other additives such as a stabilizer added as necessary are mixed before melting.
  • the cellulose resin and the stabilizer are mixed first.
  • the mixing may be performed by a mixer or the like, or may be mixed in the cellulose resin preparation process as described above.
  • a general mixer such as a V-type mixer, a conical screw type mixer, a horizontal cylindrical type mixer, a Henschel mixer, or a ribbon mixer can be used.
  • a general mixer such as a V-type mixer, a conical screw type mixer, a horizontal cylindrical type mixer, a Henschel mixer, or a ribbon mixer can be used.
  • the casting die 4 is not particularly limited as long as it is used for producing a sheet or a film.
  • Cooling step In the cooling step, as shown in FIG. 3, the melted film-like cellulose ester resin is conveyed in close contact with the first cooling roll 5, the second cooling roll 7, and the third cooling roll 8. While cooling, it is solidified to obtain an unstretched cellulose ester resin film (film precursor 10).
  • Stretching process In the stretching process, the unstretched film precursor 10 after cooling and solidification peeled off from the third cooling roll 8 by the peeling roll 9 is guided to the stretching machine 12 through the dancer roll 11, where the transverse direction Stretched in the (width direction). By this stretching, the molecules in the film precursor 10 are oriented.
  • a known tenter or the like can be preferably used.
  • the stretching direction is set to the width direction because lamination with a polarizer can be performed in a roll form.
  • the slow axis of the cellulose acylate film made of a cellulose ester resin film becomes the width direction.
  • the transmission axis of the polarizer is also usually in the width direction.
  • the display contrast of the liquid crystal display device can be increased and good A viewing angle is obtained.
  • the glass transition temperature Tg of the film constituting material can be controlled by making the material type constituting the film and the ratio of the constituting material different.
  • Tg is preferably 120 ° C. or higher, preferably 135 ° C. or higher.
  • the temperature environment of the film changes due to the temperature rise of the device itself, for example, the temperature rise derived from the light source.
  • the Tg of the film is lower than the use environment temperature of the film, the retardation value derived from the orientation state of the molecules fixed inside the film by stretching and the dimensional shape as the film are greatly changed.
  • the Tg of the film is too high, the temperature is increased when the film constituent material is made into a film, so that the energy consumption for heating is increased, and the material itself may be decomposed when it is made into a film, resulting in coloring. Therefore, Tg is preferably 250 ° C. or lower.
  • the refractive index can be controlled by a stretching operation. Is a preferred method.
  • the required retardation is obtained by stretching the cellulose resin by 1.0 to 2.0 times in one direction and by 1.01 to 2.5 times in the direction perpendicular to the film plane.
  • Ro and Rt can be controlled.
  • Ro indicates in-plane retardation, which is obtained by multiplying the thickness difference between the refractive index in the longitudinal direction MD and the refractive index in the width direction TD by the thickness
  • Rt is in the thickness direction retardation. The difference between the in-plane refractive index (average in the longitudinal direction MD and the width direction TD) and the refractive index in the thickness direction is multiplied by the thickness.
  • Stretching can be performed sequentially or simultaneously with respect to, for example, the longitudinal direction of the film and the direction orthogonal to the longitudinal direction of the film, that is, the width direction. At this time, if the stretching ratio in at least one direction is too small, a sufficient phase difference cannot be obtained, and if it is too large, stretching becomes difficult and film breakage may occur.
  • Stretching in biaxial directions perpendicular to each other is an effective method for putting the refractive indexes nx, ny, and nz of the film within a predetermined range.
  • nx is the refractive index in the longitudinal MD direction
  • ny is the refractive index in the width TD direction
  • nz is the refractive index in the thickness direction.
  • the film when the film is stretched in the melt casting direction, if the shrinkage in the width direction is too large, the value of nz becomes too large. In this case, it can be improved by suppressing the width shrinkage of the film or stretching in the width direction.
  • the refractive index When stretching in the width direction, the refractive index may be distributed in the width direction. This distribution may appear when the tenter method is used.
  • a shrinkage force is generated at the center of the film, and the phenomenon is caused by the end being fixed. It is thought to be called the Boeing phenomenon. Even in this case, by stretching in the casting direction, the bowing phenomenon can be suppressed and the distribution of the phase difference in the width direction can be reduced.
  • the film thickness variation of the obtained film can be reduced by stretching in the biaxial directions perpendicular to each other.
  • the film thickness variation of the retardation film is too large, the retardation becomes uneven, and unevenness such as coloring may be a problem when used in a liquid crystal display.
  • the film thickness variation of the cellulose resin film is preferably in the range of ⁇ 3%, more preferably ⁇ 1%.
  • a method of stretching in the biaxial directions perpendicular to each other is effective, and the stretching ratio in the biaxial directions perpendicular to each other is finally 1.0 to 2.0 times in the casting direction.
  • the width direction is preferably 1.01 to 2.5 times, and the casting direction is 1.01 to 1.5 times and the width direction is 1.05 to 2.0 times. It is more preferable to obtain the required retardation value.
  • the transmission axis of the polarizer coincides with the width direction.
  • the retardation film is preferably stretched so as to obtain a slow axis in the width direction.
  • the slow axis of the retardation film can be imparted in the width direction by stretching in the width direction from the above-described configuration.
  • the slow axis of the retardation film is in the width direction.
  • Post-processing step the end portion of the stretched film precursor 10 is slit into a product width by the slitter 13 and cut off, and then a knurling device including the embossing ring 14 and the back roll 15 is used. Is applied to both ends of the film.
  • the knurling method can process a metal ring having an uneven pattern on its side surface by heating or pressing.
  • the protective films 114, 116, 124, and 126 are manufactured by the above processing.
  • the solution casting method is to produce a protective film by casting a solution in which cellulose ester (which may contain additives) is dissolved in a solvent to form a film, and evaporating and drying the solvent from the film. It is a film forming method, and a known method can be used as the solution casting method.
  • the solution casting method is, for example, U.S. Pat. Nos. 2,492,978, 2,739,070, 2,739,069, 2,492,977, and 2,336. 310, No. 2,367,603, No. 2,607,704, British Patent Nos. 64,071, 735,892, No. 45-9074, No. 49-4554, Reference can be made to the methods described in JP-A-49-5614, JP-A-60-27562, JP-A-61-39890, and JP-A-62-4208.
  • the solution casting method is roughly Dissolving a cellulose ester and an additive in a solvent to prepare a dope; Casting the dope onto an endless metal support that moves indefinitely; Drying the cast dope as a web; Peeling from the metal support; Stretching or holding the width; Furthermore, it is divided into the process of drying.
  • the concentration of cellulose ester in the dope is preferably higher because the drying load after casting on the metal support can be reduced. However, if the concentration of cellulose ester is too high, the load during filtration increases and the filtration accuracy is poor. Become.
  • the concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
  • the solvent used in the dope may be used alone or in combination of two or more, but it is preferable to use a mixture of a good solvent and a poor solvent of cellulose ester in terms of production efficiency, and there are many good solvents. This is preferable from the viewpoint of the solubility of the cellulose ester.
  • a preferable range of the mixing ratio of the good solvent and the poor solvent is 70 to 98% by mass for the good solvent and 2 to 30% by mass for the poor solvent.
  • a good solvent and a poor solvent are defined as a good solvent if it dissolves the cellulose ester used alone, and a poor solvent if it swells or does not dissolve alone. Therefore, depending on the average acetylation degree (acetyl group substitution degree) of the cellulose ester, the good solvent and the poor solvent change. For example, when acetone is used as the solvent, the cellulose ester acetate (acetyl group substitution degree 2.4), cellulose Acetate propionate is a good solvent, and cellulose acetate (acetyl group substitution degree 2.8) is a poor solvent.
  • the good solvent used in the present invention is not particularly limited, and examples thereof include organic halogen compounds such as methylene chloride, dioxolanes, acetone, methyl acetate, and methyl acetoacetate. Particularly preferred is methylene chloride or methyl acetate.
  • the poor solvent used in the present invention is not particularly limited, but for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone and the like are preferably used.
  • the dope preferably contains 0.01 to 2% by mass of water.
  • the solvent used for dissolving the cellulose ester is used by collecting the solvent removed from the film by drying in the film-forming process and reusing it.
  • the recovery solvent may contain trace amounts of additives added to the cellulose ester, such as plasticizers, UV absorbers, polymers, monomer components, etc., but even if these are included, they are preferably reused. Can be purified and reused if necessary.
  • a general method can be used. When heating and pressurization are combined, it is possible to heat above the boiling point at normal pressure. It is preferable to stir and dissolve while heating at a temperature that is equal to or higher than the boiling point of the solvent at normal pressure and does not boil under pressure, in order to prevent the formation of massive undissolved material called gel or mako.
  • a method in which a cellulose ester is mixed with a poor solvent and wetted or swollen, and then a good solvent is added and dissolved is also preferably used.
  • the pressurization may be performed by a method of injecting an inert gas such as nitrogen gas or a method of increasing the vapor pressure of the solvent by heating.
  • Heating is preferably performed from the outside.
  • a jacket type is preferable because temperature control is easy.
  • the heating temperature with the addition of a solvent is preferably higher from the viewpoint of the solubility of the cellulose ester, but if the heating temperature is too high, the required pressure increases and the productivity deteriorates.
  • a preferred heating temperature is 45 to 120 ° C, more preferably 60 to 110 ° C, and still more preferably 70 ° C to 105 ° C.
  • the pressure is adjusted so that the solvent does not boil at the set temperature.
  • a cooling dissolution method is also preferably used, whereby the cellulose ester can be dissolved in a solvent such as methyl acetate.
  • the cellulose ester solution is filtered using an appropriate filter medium such as filter paper.
  • an appropriate filter medium such as filter paper.
  • the filter medium it is preferable that the absolute filtration accuracy is small in order to remove insoluble matters and the like, but there is a problem that the filter medium is likely to be clogged if the absolute filtration accuracy is too small.
  • a filter medium with an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium with 0.001 to 0.008 mm is more preferable, and a filter medium with 0.003 to 0.006 mm is still more preferable.
  • the material of the filter medium there are no particular restrictions on the material of the filter medium, and ordinary filter media can be used.
  • plastic filter media such as polypropylene and Teflon (registered trademark), and metal filter media such as stainless steel do not drop off fibers. preferable. It is preferable to remove and reduce impurities, particularly bright spot foreign matter, contained in the raw material cellulose ester by filtration.
  • Bright spot foreign matter means that when two polarizing plates are placed in a crossed Nicol state, an optical film or the like is placed between them, light is applied from one polarizing plate side, and observation is performed from the other polarizing plate side. It is a point (foreign matter) where light from the opposite side appears to leak, and the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less. More preferably, it is 100 pieces / cm 2 or less, still more preferably 50 pieces / m 2 or less, still more preferably 0 to 10 pieces / cm 2 . Further, it is preferable that the number of bright spots of 0.01 mm or less is small.
  • the dope can be filtered by a normal method, but the method of filtering while heating at a temperature not lower than the boiling point of the solvent at normal pressure and in a range where the solvent does not boil under pressure is the filtration pressure before and after filtration.
  • the increase in the difference (referred to as differential pressure) is small and preferable.
  • a preferred temperature is 45 to 120 ° C., more preferably 45 to 70 ° C., and still more preferably 45 to 55 ° C.
  • a smaller filtration pressure is preferred.
  • the filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, and further preferably 1.0 MPa or less.
  • the metal support in the casting process is preferably a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the cast width can be 1 to 4 m.
  • the surface temperature of the metal support in the casting step is ⁇ 50 ° C. to less than the boiling point of the solvent, and a higher temperature is preferable because the web drying speed can be increased. May deteriorate.
  • the support temperature is preferably 0 to 55 ° C, more preferably 25 to 50 ° C.
  • it is also a preferable method that the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent.
  • the method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short. When warm air is used, wind at a temperature higher than the target temperature may be used.
  • the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130% by mass. Particularly preferred is 20 to 30% by mass or 70 to 120% by mass.
  • the amount of residual solvent is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100 M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
  • the web is peeled off from the metal support and further dried to make the residual solvent amount 0.01% by mass or less.
  • a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.
  • the cellulose ester film of the present invention it is particularly preferable to perform stretching in the width direction (lateral direction) by a tenter method in which both ends of the web are held with clips or the like. Peeling is preferably performed at a peeling tension of 300 N / m or less.
  • the means for drying the web is not particularly limited, and can be generally performed with hot air, infrared rays, a heating roll, microwave, or the like, but is preferably performed with hot air from the viewpoint of simplicity.
  • the drying temperature in the web drying process is preferably increased stepwise from 40 to 200 ° C.
  • the cellulose ester film of the present invention has a width of 1 to 4 m. Particularly, those having a width of 1.4 to 4 m are preferably used, and particularly preferably 1.6 to 3 m. If it exceeds 4 m, conveyance becomes difficult.
  • the clip gripping portions at both ends of the cut film may be pulverized and reused as a film raw material of the same kind or as a film raw material of a different kind.
  • the protective films 114, 116, 124, and 126 are manufactured by the above processing.
  • the method of adjusting the mixing region includes humidifying the protective film before the hard coat layer is applied, and the moisture content of the protective film is 1.5 to 4% by this humidifying step. It is necessary to.
  • the protective film 114 is humidified so that the moisture content of the protective film 114 is 1.5 to 4%, preferably 1.5 to 2.5%.
  • the protective film 114 is manufactured by the melt casting method, basically no solvent remains in the protective film 114. (A2) Thereafter, a certain coating solution is applied to the protective film 114 and dried to form a hard coat layer 118 on the protective film 114.
  • the amount of residual solvent during the drying step (B1) is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100
  • M is the mass of the protective film 114 after manufacture
  • N is the mass after heating M at 115 ° C. for 1 hour.
  • the hard coat layer 118 is formed without winding up the protective film 114.
  • the protective film 114 is wound up before the humidifying step (A1), and then the processing of the humidifying step (A1).
  • the protective film 114 may be wound up after the humidifying step (A1), and then the hard coat layer forming step (A2) may be performed.
  • [Production method of polarizing plate] An aqueous polyvinyl alcohol solution is formed and dyed by uniaxially stretching or dyeing or uniaxially stretching after dyeing, and then, preferably, a durability treatment is performed with a boron compound to manufacture polarizers 112 and 122.
  • the protective films 114 and 116 are subjected to alkali saponification treatment, and the treated film is subjected to a completely saponified polyvinyl alcohol aqueous solution (a water-based adhesive mainly composed of completely saponified polyvinyl alcohol) on the polarizer 112. And polarizing plate 110 is manufactured.
  • the protective films 124 and 126 are also subjected to alkali saponification treatment, and the treated films are applied to the polarizer 122 with a completely saponified polyvinyl alcohol aqueous solution (a water-based adhesive mainly composed of completely saponified polyvinyl alcohol or the like). )
  • a completely saponified polyvinyl alcohol aqueous solution a water-based adhesive mainly composed of completely saponified polyvinyl alcohol or the like.
  • An adhesive layer is formed on the polarizing plates 110 and 120 to make the polarizing plates 110 and 120 into rolls, and the polarizing plates 110 and 120 are divided into panel sizes while the rolls are sequentially fed out.
  • the liquid crystal cell 102 is also cut into a panel size.
  • the panel-size polarizing plates 110 and 120 are respectively aligned and pasted on the panel-size liquid crystal cell 102 to manufacture the liquid crystal panel 100.
  • the polarizing plates 110 and 120 are respectively attached to the liquid crystal cell 102 while the rolls are sequentially fed out.
  • the polarizing plates 110 and 120 and the liquid crystal cell 102 may be simultaneously cut into a panel size.
  • the thickness of the protective film 114 and the hard coat layer 118, the moisture content of the protective film 114, and the residual solvent amount are optimized (controlled) within a certain range.
  • the occurrence of saponification unevenness and blocking can be prevented or suppressed, and the polarizing properties of the polarizing plates 110 and 120 at the time of manufacturing the liquid crystal panel and the influence of the residual solvent when the solution casting method is used.
  • the dimensional stability of 120 can be improved (see the examples below).
  • This mixture was further dried with mixing at 80 ° C. and 133.3 Pa for 3 hours with a vacuum nauter mixer.
  • the obtained mixture was melt-kneaded at 235 ° C. using a twin-screw extruder and then pelletized.
  • an all screw type screw was used instead of a kneading disk in order to suppress heat generation due to shear during kneading.
  • evacuation was performed from the vent hole, and volatile components generated during kneading were removed by suction.
  • the moisture between the feeder, the hopper, and the extruder die supplied to the extruder and the cooling tank was set as a dry nitrogen gas atmosphere to prevent moisture from being absorbed into the resin.
  • the first cooling roll and the second cooling roll were made of stainless steel having a diameter of 40 cm, and the surface was subjected to hard chrome plating.
  • temperature adjusting oil (cooling fluid) was circulated inside to control the roll surface temperature.
  • the elastic touch roll had a diameter of 20 cm, the inner cylinder and the outer cylinder were made of stainless steel, and the surface of the outer cylinder was hard chrome plated.
  • the wall thickness of the outer cylinder was 2 mm, and oil for cooling (cooling fluid) was circulated in the space between the inner cylinder and the outer cylinder to control the surface temperature of the elastic touch roll.
  • the obtained pellets were extruded into a film form from a T die at a melting temperature of 250 ° C. using a single screw extruder, and cast onto a first cooling roll having a surface temperature of 100 ° C. to obtain a film having a draw ratio of 20 and a film thickness of 80 ⁇ m. Obtained.
  • a T die having a lip clearance of 1.5 mm and an average surface roughness Ra of 0.01 ⁇ m was used.
  • silica fine particles as a slip agent were added from the hopper opening in the middle of the extruder so as to be 0.1 part by mass.
  • the film was pressed on the first cooling roll with an elastic touch roll having a 2 mm thick metal surface at a linear pressure of 10 kg / cm.
  • the film temperature on the touch roll side during pressing was 180 ° C. ⁇ 1 ° C.
  • the film temperature on the touch roll side at the time of pressing here refers to the temperature of the film at the position where the touch roll on the first roll (cooling roll) is in contact with the non-contact thermometer by retreating the touch roll.
  • the average value of the film surface temperature measured 10 points in the width direction from a position 50 cm away without a roll.
  • the glass transition temperature Tg of this film was 136 ° C.
  • the glass transition temperature of the film extruded from the die was measured by DSC method (in nitrogen, temperature rising temperature 10 ° C./min) using DSC6200 manufactured by Seiko Corporation.)
  • the surface temperature of the elastic touch roll was 100 ° C.
  • the surface temperature of the second cooling roll was 30 ° C.
  • the surface temperature of each of the elastic touch roll, the first cooling roll, and the second cooling roll is the non-contact temperature of the roll surface at a position 90 ° before the rotation direction from the position where the film first contacts the roll.
  • the average value measured at 10 points in the width direction using a meter was taken as the surface temperature of each roll.
  • the obtained film is introduced into a tenter having a preheating zone, a stretching zone, a holding zone, and a cooling zone (there is also a neutral zone for ensuring thermal insulation between the zones), and 160 ° C. in the width direction. 1.9 times and then cooled to 70 ° C while relaxing 2% in the width direction, then released from the clip, clipped the clip gripping part, and knurled 10mm wide and 5 ⁇ m high on both ends of the film And a 30 ⁇ m cellulose ester film slit to a width of 1430 mm was obtained. At this time, the preheating temperature and the holding temperature were adjusted to prevent the bowing phenomenon due to stretching. Residual solvent was not detected from the obtained cellulose ester film.
  • the cellulose ester film was humidified by the method shown in Table 1, and then the hard coat layer composition 1 described below was applied to form a hard coat layer on the protective film to produce a hard coat film.
  • the film thickness of the hard coat layer is as shown in Table 1.
  • the film thickness of the hard coat layer is represented by a calculated value that is calculated from the coating amount and the solid concentration of the coating liquid and does not take the mixed region into consideration.
  • (1.1.2) Production of Polarizer A polyvinyl alcohol film having a thickness of 120 ⁇ m was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times).
  • the stretched film was immersed in an aqueous solution consisting of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water, and then immersed in an aqueous solution of 68 ° C. consisting of 6 g of potassium iodide, 7.5 g of boric acid and 100 g of water.
  • Step 1 The protective films on both sides were immersed in a 2 mol / l sodium hydroxide solution at 50 ° C. for 90 seconds, then washed with water and dried to carry out a saponification treatment.
  • Step 2 The polarizer was immersed in an aqueous polyvinyl alcohol solution having a solid content of 2% by mass for 1 to 2 seconds.
  • Step 3 The excess adhesive adhered to the polarizer in Step 2 is gently wiped off, and the protective film treated in Step 1 is placed on both sides and laminated.
  • Step 4 The laminate prepared in Step 3 was bonded at a pressure of 20 to 30 N / cm 2 and a conveyance speed of about 2 m / min.
  • Step 5 The bonded product prepared in Step 4 was dried in a dryer at 80 ° C. for 2 minutes, and then wound into a roll to obtain a polarizing plate roll.
  • Sample 1 The polarizing plate obtained by the above treatment was designated as “Sample 1”.
  • Sample 2 to 4 and 6 to 9 Table 1 shows the amount of additive (VB7102, UMM1001, PETB) added, the thickness of the protective film / hard coat layer, the humidification method, etc. Thus, “Samples 2 to 4, 6 to 9” were produced.
  • dope composition Cellulose triacetate (average degree of acetylation 61.0%) 100 parts by weight Triphenyl phosphate 8 parts by weight Ethylphthalyl ethyl glycolate 2 parts by weight Tinuvin 109 (manufactured by Ciba Japan Co., Ltd.) 1 part by weight Tinuvin 171 (Ciba Japan Co., Ltd.) 1 part by weight Methylene chloride 430 parts by weight Methanol 90 parts by weight
  • the dope composition is filtered, cooled and kept at 33 ° C., uniformly cast on a stainless steel band, and can be peeled off.
  • Hard coat layer composition 3 was applied on the cellulose ester film to form a hard coat layer, thereby producing a hard coat film.
  • Hard coat layer composition 3 500-28 (solid content concentration: 40% by mass, manufactured by ADEKA)
  • Samples 10 to 12 were prepared by changing the production conditions of the protective film and the hard coat layer as shown in Table 1.
  • Humidification method A passing through a humidified zone of 80% RH and winding, and then forming a hard coat layer (humidification ⁇ winding ⁇ hard coat layer formation)
  • Humidification method B Turn up the protective film, humidify with water vapor while drawing out the protective film, and then form a hard coat layer (winding ⁇ humidification ⁇ hard coat layer formation)
  • Humidification method C ... A hard coat layer is formed as it is after passing through a humidified zone of 80% RH (humidification ⁇ hard coat layer formation).
  • Mixing area (%) Mixed area thickness ( ⁇ m) / [Hard coat layer thickness excluding mixed area ( ⁇ m) + Mixed area thickness ( ⁇ m) + Protective film thickness ( ⁇ m)] ⁇ 100 (2.2) Saponification unevenness
  • the fluorescent lamp irradiation light was reflected on each polarizing plate, and visual evaluation was performed according to the following criteria.
  • the sum of the thickness of the protective film and the thickness of the hard coat layer is less than 40 ⁇ m, and the mixed area of the protective film and the hard coat layer is 1 to 20% to prevent and suppress saponification unevenness and roll blocking.
  • the residual solvent amount of the protective film is set to 0.01% or less and the water content is set to 1.5 to 4%. It turns out that it is useful in a manufacturing process.

Abstract

 本発明の目的は、ケン化ムラ,ブロッキングの発生を防止又は抑制するとともに、裁断性と寸法安定性とを向上させる。 ハードコートフィルム130は、偏光子112を保護するための保護フィルム114と、保護フィルム114上に形成されるハードコート層118と、を備える。保護フィルム114の厚みとハードコート層118の厚みとの総和が40μm未満で、かつ、保護フィルム114とハードコート層118との混合領域がハードコート層118の厚みの1~20%である。

Description

ハードコートフィルム、偏光板、ハードコートフィルムの製造方法及び液晶パネルの製造方法
 本発明はハードコートフィルム、偏光板、ハードコートフィルムの製造方法及び液晶パネルの製造方法に関する。
 近年、携帯電話やモバイルPCなどには表示装置として液晶パネルが装備されており、当該液晶パネルには偏光板が具備されている。通常の偏光板の構成を部分的に簡単に説明すると、図7に示す通り、偏光板は偏光子とそれを保護するための保護フィルムとを備えており、保護フィルム上にさらにハードコート層が形成されている。ハードコート層は保護フィルム上に一定の塗布液を塗布して(その後乾燥させて)形成されており、保護フィルムはケン化処理(2NのNaOHなどを用いたアルカリ処理)により偏光子に貼り付けられている。
 このような構成を具備する偏光板では、通常、保護フィルムの厚さが40~80μm程度で、ハードコート層の厚さが10~30μm程度となっている。保護フィルム,ハードコート層がこのような厚さを有している場合、偏光板を液晶セルに貼り付けて液晶パネルとした後、液晶パネルごとカットしようとすると、保護フィルムとハードコート層との界面で割れが発生してしまう可能性があり(特許文献1参照)、これを防止するために単に保護フィルム,ハードコート層の両者を薄くすると、偏光板をロール状態で保持しようとしたときに皺が発生し易いという不都合がある(特許文献2参照)。
特開2008-191544号公報 特開2005-104148号公報
 従来の保護フィルムでは、製膜後(保護フィルム製造後)にその保護フィルムを乾燥するか若しくは乾燥状態下で巻き取る方が好ましいとされているが、保護フィルムを薄膜化(30μm以下)とすると、乾燥により保護フィルム自体の含水率が低くなり過ぎ、ハードコート層を形成するための塗布液の保護フィルムへの浸透性が高まる(図7中矢印参照)。この場合、保護フィルムとハードコート層との混合領域が増大し、偏光板作製時において保護フィルムを偏光子に貼り付ける時にケン化ムラ(筋状の外観欠点)が発生する。筋状外観欠点とは、偏光板の吸収軸方向に対して、平行にストライプ状の筋が反射の状態で見えることをいう。筋の特徴としては、1~2mmピッチでレコード盤に刻まれている溝のような形状である。
 ケン化ムラが発生すると、光学特性の均一性が損なわれるばかりでなく、保護フィルムと偏光子との間で密着不良が起こったりして、偏光板を液晶セルに貼り付けてパネル単位で裁断することが難しくなる。
 これに対し、保護フィルム自体を加湿して含水率を上昇させケン化ムラの発生を防止又は抑制することが考えられるが、含水率が一定の値(範囲)を上回り高くなり過ぎると、保護フィルムを巻き取った後にブロッキング(保護フィルム同士が貼り付く現象)が発生したり、保護フィルムとハードコート層との間で密着不良が発生したりする。
 さらには、保護フィルムが溶液流延法で製造された場合において、製造時に使用された溶媒が保護フィルムに残留し、その残留溶媒の影響で偏光板の寸法安定性が損なわれ、液晶パネルの端部などで光漏れ(コントラストの低下)が発生する可能性がある。
 したがって、本発明の主な目的は、ケン化ムラ,ブロッキングの発生を防止又は抑制でき、裁断性と寸法安定性とに優れたハードコートフィルム、偏光板、ハードコートフィルムの製造方法及び液晶パネルの製造方法を提供することにある。
 本発明の一態様によれば、
 偏光子を保護するための保護フィルムと、
 前記保護フィルム上に形成されるハードコート層と、
 を備えるハードコートフィルムであって、
 前記保護フィルムの厚みと前記ハードコート層の厚みとの総和が40μm未満で、かつ、前記保護フィルムと前記ハードコート層との混合領域が前記ハードコート層の厚みの1~20%であることを特徴とするハードコートフィルムが提供される。
 本発明の他の態様によれば、
 偏光子と、
 前記偏光子の一方の面上に形成される第1の保護フィルムと、
 前記第1の保護フィルム上に形成されるハードコート層と、
 前記偏光子の他方の面上に形成される第2の保護フィルムと、
 を備える偏光板であって、
 前記第1の保護フィルムの厚みと前記ハードコート層の厚みとの総和が40μm未満で、かつ、前記第1の保護フィルムと前記ハードコート層との混合領域が前記ハードコート層の厚みの1~20%であることを特徴とする偏光板が提供される。
 本発明の他の態様によれば、
 偏光子を保護するための保護フィルムに対しハードコート層が形成されたハードコートフィルムの製造方法であって、
 溶融流延法を用いて前記保護フィルムを製造する工程と、
 前記保護フィルムを加湿する工程と、
 前記保護フィルム上に一定の塗布液を塗布して前記ハードコート層を形成する工程と、
 を備え、
 前記保護フィルムを加湿する工程では、前記保護フィルムの含水率を1.5~4%とすることを特徴とするハードコートフィルムの製造方法が提供される。
 本発明の他の態様によれば、
 偏光子を保護するための保護フィルムに対しハードコート層が形成されたハードコートフィルムの製造方法であって、
 溶液流延法を用いて前記保護フィルムを製造する工程と、
 前記保護フィルムを加熱する工程と、
 前記保護フィルムを加湿する工程と、
 前記保護フィルム上に一定の塗布液を塗布して前記ハードコート層を形成する工程と、
 を備え、
 前記保護フィルムを加熱する工程では、前記保護フィルムに残留する残留溶媒量を0.01%以下とし、
 前記保護フィルムを加湿する工程では、前記保護フィルムの含水率を1.5~4%とすることを特徴とするハードコートフィルムの製造方法が提供される。
 本発明の他の態様によれば、
 上記ハードコートフィルムの製造方法により製造されたハードコートフィルムと保護フィルムとをそれぞれ、偏光子に貼り付けて偏光板を製造する工程と、
 前記偏光板と液晶セルとを別々にパネルサイズに裁断する工程と、
 裁断後の前記偏光板と前記液晶セルとを貼り付ける工程と、
 を備えることを特徴とする液晶パネルの製造方法が提供される。
 本発明の他の態様によれば、
 上記ハードコートフィルムの製造方法により製造されたハードコートフィルムと保護フィルムとをそれぞれ、偏光子に貼り付けて偏光板を製造する工程と、
 前記偏光板を液晶セルに貼り付ける工程と、
 前記偏光板と前記液晶セルとを同時にパネルサイズに裁断する工程と、
 を備えることを特徴とする液晶パネルの製造方法が提供される。
 本発明によれば、ケン化ムラ,ブロッキングの発生を防止又は抑制できるとともに、裁断性と寸法安定性とを向上させることができる。
本発明の好ましい実施形態にかかる液晶パネルの概略構成を示す分解斜視図である。 本発明の好ましい実施形態にかかる保護フィルム製造装置の概略構成を示す図面である。 図2の流延ダイから冷却ロールに至る部分の概略構成を示す図面である。 図2のフィルターの概略構成を示す図面である。 図2の流延ダイの概略構成を示す図面である。 図2のタッチロールの概略構成を示す図面である。 従来の偏光板における問題点を説明するための図面である。
 以下、図面を参照しながら本発明の好ましい実施形態について説明する。
 図1に示す通り、液晶パネル100は液晶セル102と2枚の偏光板110,120とを有しており、液晶セル102が偏光板110,120で挟持されている。
 液晶セル102は主には2枚のガラス基板と液晶(分子)とから構成されており、2枚のガラス基板を貼り合わせてそれらガラス基板間に液晶分子を注入し封止したものである。
 偏光板110は偏光子112(偏光膜,偏光フィルム)とそれを保護するための2枚の保護フィルム114,116とを有しており、偏光子112が保護フィルム114,116に挟持された構造を有している。
[偏光子]
 偏光子112はポリビニルアルコール系偏光子である。
 ポリビニルアルコール系偏光子には、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。
 偏光子112は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。
[保護フィルム]
 保護フィルム114,116は主にセルロースエステルで構成されたフィルムであり、保護フィルム114が偏光子112の視認側に、保護フィルム116が偏光子112のバックライト側に貼り付けられている。
 保護フィルム114,116は、セルロースエステルフィルムがアルカリ鹸化処理され、その処理されたフィルムが、ヨウ素溶液中に浸漬延伸して作製した偏光子112に対し、完全鹸化型ポリビニルアルコール水溶液(完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤)を用いて貼り合わせられている。
 保護フィルム114,116はともに厚さが30μm以下である。
 保護フィルム114,116は主にセルロースエステル樹脂で構成されている。
 保護フィルム114,116の構成材料として、各種添加剤(可塑剤など)が添加されてもよい。
 下記において、セルロースエステル樹脂と添加剤とについて説明し、使用可能な材料を例示する。
[セルロースエステル樹脂]
 セルロースエステルの一例として、セルロースアシレートを用いることができる。
 セルロースアシレート原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプやケフナ等がある。またこれらから得られた原料セルロースを任意の割合で混合して使用してもよい。
 セルロースアシレートは、アセチル基または炭素原子数が3~22のアシル基を有するセルロースアシレートであることが好ましい。炭素原子数3~22のアシル基の例には、プロピオニル(CCO-)、n-ブチリル(CCO-)、イソブチリル、バレリル(CCO-)、イソバレリル、sec-バレリル、tert-バレリル、オクタノイル、ドデカノイル、オクタデカノイル及びオレオロイルが含まれる。プロピオニル及びブチリルが好ましい。
 本実施形態にかかるセルロースアシレートとしては、アセチル基置換度をXと、プロピオニル基置換度とブチリル基置換度との合計をYとしたとき、式(1)~式(3)の条件をすべて満たすものを用いるのがよく、好ましくは式(4)~式(6)の条件を満たすのがよい。
  2.0≦X+Y≦3.0 … (1)
  0.1≦X≦2.9   … (2)
  0.1≦Y≦2.9   … (3)
  2.5≦X+Y≦3.0 … (4)
  0.1≦X≦1.5   … (5)
  1.5≦Y≦2.9   … (6)
 セルロースアシレートの重合度(粘度平均)は、200~700であることが好ましく、250~550であることが特に好ましい。これらのセルロースアシレートは、ダイセル化学工業(株)、コートルズ社、ヘキスト社、イーストマンコダック社により市販されているが、写真用グレードのセルロースアシレートが好ましく用いられる。
 セルロースアシレートの含水率は、2質量%以下であることが好ましい。
 セルロースを構成するβ-1,4結合しているグルコース単位は、2位、3位及び6位に遊離の水酸基を有している。セルロースアシレートは、これらの水酸基の一部または全部を酢酸または他の酸によりエステル化したポリマーである。アシル置換度は、2位、3位及び6位のそれぞれについて、セルロースがエステル化している割合(100%のエステル化は、1.00)を意味する。
 本発明で用いるセルロースアシレートは、2位、3位のアシル置換度の合計が1.70~1.95であり、かつ6位のアシル置換度が0.88以上であるセルロースアシレートと、2位、3位のアシル置換度の合計が1.70~1.95であり、かつ6位のアシル置換度が0.88未満であるセルロースアシレートとをブレンドすることにより得られる。2位、3位のアシル置換度の合計が1.70以下の場合、フィルムが吸湿しやすくなり、加水分解を受けやすくなるためフィルムの耐久性が低下する。また、湿度等による寸法変化も大きくなる。逆に、1.95を越すとセルロースアシレートの有機性が上がるため溶媒との親和性が増大し、溶液流涎用のドープ粘度が上昇してしまう。従って、2位、3位のアシル置換度の合計は、1.70~1.95であることが好ましく、1.75~1.88であることがさらに好ましい。
 ところで6位の水酸基が2位、3位の水酸基と異なり一級水酸基であるため、水酸基の水素結合が極めて起こりやすいことが分かってきた。従って6位のアシル置換度を0.88以上とすることにより、溶剤への溶解性は著しく向上し、溶液流延適性上好ましいドープを得ることが可能となる。6位のアシル置換度の範囲は、合成適性等を考慮すると0.88~0.99が好ましく、0.89~0.98がさらに好ましい。しかしながら、6位のアシル置換度を向上させると膜強度が低下するという問題があり、その両立が困難であった。また、アシル置換度が0.88よりも小さくなると溶剤への溶解性が著しく低下するため好ましくない。
 さらに、2位、3位のアシル置換度の合計が1.70~1.95であり、かつ6位のアシル置換度が0.88以上であるセルロースアシレートからなるフィルム、または2位、3位のアシル置換度の合計が1.70~1.95であり、かつ6位のアシル置換度が0.88未満であるセルロースアシレートからなるフィルム上に薄膜を形成した光学フィルムはロール状態で保管中に皺や凹み等の平面性の劣化が起こりやすい、更には、形成した金属酸化物層にクラックが入りやすく、膜厚ムラが生じやすいという問題があった。
 これらの問題はセルロースアシレートをブレンドすることにより解決できることが判明した。また、6位のアシル置換度が0.88以上のセルロースアシレートは膜強度の観点からアシル置換基の炭素数は小さい方が望ましく、全てアセチル基であるほうが好ましい。
 なお、特開平11-5851号公報には2位、3位、6位のアセチル置換基の合計が2.67以上であり、2位、3位のアセチル置換基の合計が1.97以下のセルロースアセテートが記載されているが、このうち2位と3位の合計が1.90を超える範囲はフィルムの光学適性からは好ましい範囲を記載したものであり、流延適性からは本明細書に記載されている範囲の方がより好ましい。
 セルロースアシレートの合成方法の基本的な原理は、右田他、木材化学180~190頁(共立出版、1968年)に記載されている。代表的な合成方法は、無水酢酸-酢酸-硫酸触媒による液相酢化法である。具体的には、木材パルプ等のセルロース原料を適当量の有機酸で前処理した後、予め冷却したアシル化混液に投入してエステル化し、完全セルロースアシレート(2位、3位及び6位のアシル置換度の合計が、ほぼ3.00)を合成する。上記アシル化混液は、一般に、溶媒としての有機酸、エステル化剤としての無水有機酸及び触媒としての硫酸を含む。無水有機酸は、これと反応するセルロース及び系内に存在する水分の合計よりも、化学量論的に過剰量で使用することが普通である。アシル化反応終了後に、系内に残存している過剰の無水有機酸の加水分解及びエステル化触媒の一部の中和のために、中和剤(例えば、カルシウム、マグネシウム、鉄、アルミニウムまたは亜鉛の炭酸塩、酢酸塩または酸化物)の水溶液を添加する。次に、得られた完全セルロースアシレートを少量の酢化反応触媒(一般には、残存する硫酸)の存在下で、50~90℃に保つことにより、ケン化熟成し、所望のアシル置換度及び重合度を有するセルロースアシレートまで変化させる。所望のセルロースアシレートが得られた時点で、系内に残存している触媒を前記のような中和剤を用いて完全に中和するか、あるいは、中和することなく、水または希硫酸中にセルロースアシレート溶液を投入(あるいは、セルロースアシレート溶液中に、水または希硫酸を投入)してセルロースアシレートを分離し、洗浄及び安定化処理によりセルロースアシレートを得る。
 通常のセルロースアシレートの合成方法では、2位または3位のアシル置換度の方が、6位のアシル置換度よりも高い値になる。そのため、2位、3位のアシル置換度の合計が1.95以下とし、かつ6位のアシル置換度を0.88以上とするためには、前記の反応条件を特別に調節する必要がある。具体的な反応条件としては、硫酸触媒の量を減らし、アシル化反応の時間を長くすることが好ましい。硫酸触媒が多いと、アシル化反応の進行が速くなるが、触媒量に応じてセルロースとの間に硫酸エステルが生成し、反応終了時に遊離して残存水酸基を生じる。硫酸エステルは、反応性が高い6位により多く生成する。そのため、硫酸触媒が多いと6位のアシル置換度が小さくなる。従って、本発明に用いるセルロースアシレートを合成するためには、可能な限り硫酸触媒の量を削減し、それにより低下した反応速度を補うため、反応時間を延長する必要がある。
 なお、セルロースアシレートフィルムは、着色すると光学用途として影響を与えるため、好ましくは黄色度(イエローインデックス、YI)が3.0以下、より好ましくは1.0以下である。黄色度はJIS-K7103に基づいて測定することができる。
[添加剤(可塑剤)]
 可塑剤としては、例えば、多価アルコールと1価のカルボン酸からなるエステル系可塑剤や、多価カルボン酸と1価のアルコールからなるエステル系可塑剤などがあり、これらエステル系可塑剤はセルロースエステルと親和性が高く好ましい。
 多価アルコールエステル系の一つであるエチレングリコールエステル系の可塑剤:具体的には、エチレングリコールジアセテート、エチレングリコールジブチレート等のエチレングリコールアルキルエステル系の可塑剤、エチレングリコールジシクロプロピルカルボキシレート、エチレングリコールジシクロヘキルカルボキシレート等のエチレングリコールシクロアルキルエステル系の可塑剤、エチレングリコールジベンゾエート、エチレングリコールジ4-メチルベンゾエート等のエチレングリコールアリールエステル系の可塑剤が挙げられる。これらアルキレート基、シクロアルキレート基、アリレート基は、同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキレート基、シクロアルキレート基、アリレート基のミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。更にエチレングリコール部も置換されていてもよく、エチレングリコールエステルの部分構造が、ポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
 多価アルコールエステル系の一つであるグリセリンエステル系の可塑剤:具体的にはトリアセチン、トリブチリン、グリセリンジアセテートカプリレート、グリセリンオレートプロピオネート等のグリセリンアルキルエステル、グリセリントリシクロプロピルカルボキシレート、グリセリントリシクロヘキシルカルボキシレート等のグリセリンシクロアルキルエステル、グリセリントリベンゾエート、グリセリン4-メチルベンゾエート等のグリセリンアリールエステル、ジグリセリンテトラアセチレート、ジグリセリンテトラプロピオネート、ジグリセリンアセテートトリカプリレート、ジグリセリンテトララウレート、等のジグリセリンアルキルエステル、ジグリセリンテトラシクロブチルカルボキシレート、ジグリセリンテトラシクロペンチルカルボキシレート等のジグリセリンシクロアルキルエステル、ジグリセリンテトラベンゾエート、ジグリセリン3-メチルベンゾエート等のジグリセリンアリールエステル等が挙げられる。これらアルキレート基、シクロアルキルカルボキシレート基、アリレート基は同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキレート基、シクロアルキルカルボキシレート基、アリレート基のミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。更にグリセリン、ジグリセリン部も置換されていてもよく、グリセリンエステル、ジグリセリンエステルの部分構造がポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
 その他の多価アルコールエステル系の可塑剤としては、具体的には特開2003-12823号公報の段落30~33記載の多価アルコールエステル系可塑剤が挙げられる。
 これらアルキレート基、シクロアルキルカルボキシレート基、アリレート基は、同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキレート基、シクロアルキルカルボキシレート基、アリレート基のミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。更に多価アルコール部も置換されていてもよく、多価アルコールの部分構造が、ポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
 上記多価アルコールと1価のカルボン酸からなるエステル系可塑剤の中では、アルキル多価アルコールアリールエステルが好ましく、具体的には上記のエチレングリコールジベンゾエート、グリセリントリベンゾエート、ジグリセリンテトラベンゾエート、特開2003-12823号公報の段落32記載例示化合物16が挙げられる。
 多価カルボン酸エステル系の一つであるジカルボン酸エステル系の可塑剤:具体的には、ジドデシルマロネート(C1)、ジオクチルアジペート(C4)、ジブチルセバケート(C8)等のアルキルジカルボン酸アルキルエステル系の可塑剤、ジシクロペンチルサクシネート、ジシクロヘキシルアジーペート等のアルキルジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニルサクシネート、ジ4-メチルフェニルグルタレート等のアルキルジカルボン酸アリールエステル系の可塑剤、ジヘキシル-1,4-シクロヘキサンジカルボキシレート、ジデシルビシクロ[2.2.1]ヘプタン-2,3-ジカルボキシレート等のシクロアルキルジカルボン酸アルキルエステル系の可塑剤、ジシクロヘキシル-1,2-シクロブタンジカルボキシレート、ジシクロプロピル-1,2-シクロヘキシルジカルボキシレート等のシクロアルキルジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニル-1,1-シクロプロピルジカルボキシレート、ジ2-ナフチル-1,4-シクロヘキサンジカルボキシレート等のシクロアルキルジカルボン酸アリールエステル系の可塑剤、ジエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート等のアリールジカルボン酸アルキルエステル系の可塑剤、ジシクロプロピルフタレート、ジシクロヘキシルフタレート等のアリールジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニルフタレート、ジ4-メチルフェニルフタレート等のアリールジカルボン酸アリールエステル系の可塑剤が挙げられる。これらアルコキシ基、シクロアルコキシ基は、同一でもあっても異なっていてもよく、また一置換でもよく、これらの置換基は更に置換されていてもよい。アルキル基、シクロアルキル基はミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。更にフタル酸の芳香環も置換されていてよく、ダイマー、トリマー、テトラマー等の多量体でもよい。またフタル酸エステルの部分構造が、ポリマーの一部、或いは規則的にポリマーへペンダントされていてもよく、酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
 その他の多価カルボン酸エステル系の可塑剤としては、具体的にはトリドデシルトリカルバレート、トリブチル-meso-ブタン-1,2,3,4-テトラカルボキシレート等のアルキル多価カルボン酸アルキルエステル系の可塑剤、トリシクロヘキシルトリカルバレート、トリシクロプロピル-2-ヒドロキシ-1,2,3-プロパントリカルボキシレート等のアルキル多価カルボン酸シクロアルキルエステル系の可塑剤、トリフェニル2-ヒドロキシ-1,2,3-プロパントリカルボキシレート、テトラ3-メチルフェニルテトラヒドロフラン-2,3,4,5-テトラカルボキシレート等のアルキル多価カルボン酸アリールエステル系の可塑剤、テトラヘキシル-1,2,3,4-シクロブタンテトラカルボキシレート、テトラブチル-1,2,3,4-シクロペンタンテトラカルボキシレート等のシクロアルキル多価カルボン酸アルキルエステル系の可塑剤、テトラシクロプロピル-1,2,3,4-シクロブタンテトラカルボキシレート、トリシクロヘキシル-1,3,5-シクロヘキシルトリカルボキシレート等のシクロアルキル多価カルボン酸シクロアルキルエステル系の可塑剤、トリフェニル-1,3,5-シクロヘキシルトリカルボキシレート、ヘキサ4-メチルフェニル-1,2,3,4,5,6-シクロヘキシルヘキサカルボキシレート等のシクロアルキル多価カルボン酸アリールエステル系の可塑剤、トリドデシルベンゼン-1,2,4-トリカルボキシレート、テトラオクチルベンゼン-1,2,4,5-テトラカルボキシレート等のアリール多価カルボン酸アルキルエステル系の可塑剤、トリシクロペンチルベンゼン-1,3,5-トリカルボキシレート、テトラシクロヘキシルベンゼン-1,2,3,5-テトラカルボキシレート等のアリール多価カルボン酸シクロアルキルエステル系の可塑剤トリフェニルベンゼン-1,3,5-テトラカルトキシレート、ヘキサ4-メチルフェニルベンゼン-1,2,3,4,5,6-ヘキサカルボキシレート等のアリール多価カルボン酸アリールエステル系の可塑剤が挙げられる。これらアルコキシ基、シクロアルコキシ基は、同一でもあっても異なっていてもよく、また1置換でもよく、これらの置換基は更に置換されていてもよい。アルキル基、シクロアルキル基はミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。更にフタル酸の芳香環も置換されていてよく、ダイマー、トリマー、テトラマー等の多量体でもよい。またフタル酸エステルの部分構造がポリマーの一部、或いは規則的にポリマーへペンダントされていてもよく、酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
 上記多価カルボン酸と1価のアルコールからなるエステル系可塑剤の中では、ジアルキルカルボン酸アルキルエステルが好ましく、具体的には上記のジオクチルアジペート、トリデシルトリカルバレートが挙げられる。
 更にリン酸エステル系可塑剤、炭水化物エステル系可塑剤、ポリマー可塑剤等が挙げられる。
 リン酸エステル系の可塑剤:具体的には、トリアセチルホスフェート、トリブチルホスフェート等のリン酸アルキルエステル、トリシクロベンチルホスフェート、シクロヘキシルホスフェート等のリン酸シクロアルキルエステル、トリフェニルホスフェート、トリクレジルホスフェート、クレジルフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート、トリナフチルホスフェート、トリキシリルオスフェート、トリスオルト-ビフェニルホスフェート等のリン酸アリールエステルが挙げられる。これらの置換基は同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキル基、シクロアルキル基、アリール基のミックスでもよく、また置換基同志が共有結合で結合していてもよい。
 またエチレンビス(ジメチルホスフェート)、ブチレンビス(ジエチルホスフェート)等のアルキレンビス(ジアルキルホスフェート)、エチレンビス(ジフェニルホスフェート)、プロピレンビス(ジナフチルホスフェート)等のアルキレンビス(ジアリールホスフェート)、フェニレンビス(ジブチルホスフェート)、ビフェニレンビス(ジオクチルホスフェート)等のアリーレンビス(ジアルキルホスフェート)、フェニレンビス(ジフェニルホスフェート)、ナフチレンビス(ジトルイルホスフェート)等のアリーレンビス(ジアリールホスフェート)等のリン酸エステルが挙げられる。これらの置換基は同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキル基、シクロアルキル基、アリール基のミックスでもよく、また置換基同志が共有結合で結合していてもよい。
 更にリン酸エステルの部分構造が、ポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。上記化合物の中では、リン酸アリールエステル、アリーレンビス(ジアリールホスフェート)が好ましく、具体的にはトリフェニルホスフェート、フェニレンビス(ジフェニルホスフェート)が好ましい。
 次に、炭水化物エステル系可塑剤について説明する。炭水化物とは、糖類がピラノース又はフラノース(6員環又は5員環)の形態で存在する単糖類、二糖類又は三糖類を意味する。炭水化物の非限定的例としては、グルコース、サッカロース、ラクトース、セロビオース、マンノース、キシロース、リボース、ガラクトース、アラビノース、フルクトース、ソルボース、セロトリオース及びラフィノースなどが挙げられる。炭水化物エステルとは、炭水化物の水酸基とカルボン酸が脱水縮合してエステル化合物を形成したものを指し、詳しくは、炭水化物の脂肪族カルボン酸エステル、或いは芳香族カルボン酸エステルを意味する。脂肪族カルボン酸として、例えば酢酸、プロピオン酸等を挙げることができ、芳香族カルボン酸として、例えば安息香酸、トルイル酸、アニス酸等を挙げることができる。炭水化物は、その種類に応じた水酸基の数を有するが、水酸基の一部とカルボン酸が反応してエステル化合物を形成しても、水酸基の全部とカルボン酸が反応してエステル化合物を形成してもよい。本発明においては、水酸基の全部とカルボン酸が反応してエステル化合物を形成するのが好ましい。
 炭水化物エステル系可塑剤として、具体的には、グルコースペンタアセテート、グルコースペンタプロピオネート、グルコースペンタブチレート、サッカロースオクタアセテート、サッカロースオクタベンゾエート等を好ましく挙げることができ、この内、サッカロースオクタアセテートがより好ましい。
 ポリマー可塑剤:具体的には、脂肪族炭化水素系ポリマー、脂環式炭化水素系ポリマー、ポリアクリル酸エチル、ポリメタクリル酸メチル、メタクリル酸メチルとメタクリル酸-2-ヒドロキシエチルとの共重合体(例えば、共重合比1:99~99:1の間の任意の比率)等のアクリル系ポリマー、ポリビニルイソブチルエーテル、ポリN-ビニルピロリドン等のビニル系ポリマー、ポリスチレン、ポリ4-ヒドロキシスチレン等のスチレン系ポリマー、ポリブチレンサクシネート、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル、ポリアミド、ポリウレタン、ポリウレア等が挙げられる。数平均分子量は1,000~500,000程度が好ましく、特に好ましくは、5000~200000である。1000以下では揮発性に問題が生じ、500000を超えると可塑化能力が低下し、セルロースエステルフィルムの機械的性質に悪影響を及ぼす。これらポリマー可塑剤は1種の繰り返し単位からなる単独重合体でも、複数の繰り返し構造体を有する共重合体でもよい。また、上記ポリマーを2種以上併用して用いてもよい。
 保護フィルム114,116には、重量平均分子量500~10,000のアクリル系ポリマーをさらに添加してもよい。好ましくは、重量平均分子量500~5000である。製膜後のセルロース誘導体フィルムの透明性が優れ、透湿度も極めて低く、偏光板用保護フィルムとして優れた性能を示す。
 このようなポリマーを合成するには、以下の方法が好ましい。
 かかる重合方法としては、クメンペルオキシドやt-ブチルヒドロペルオキシドのような過酸化物重合開始剤を使用する方法、重合開始剤を通常の重合より多量に使用する方法、重合開始剤の他にメルカプト化合物や四塩化炭素等の連鎖移動剤を使用する方法、重合開始剤の他にベンゾキノンやジニトロベンゼンのような重合停止剤を使用する方法、更に特開2000-128911号または同2000-344823号公報にあるような一つのチオール基と2級の水酸基とを有する化合物、あるいは、該化合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等を挙げることが出来、何れも好ましく用いられるが、特に、該公報に記載の方法が好ましい。本発明で好ましく用いられるアクリル系ポリマーは、アクリル酸エステル、メタクリル酸エステルを40質量%以上含有することが好ましい。このポリマーを構成するモノマー単位としてのモノマーを下記に挙げるがこれに限定されない。
 アクリル酸エステルとして、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i-、n-)、アクリル酸ブチル(n-、i-、s-、t-)、アクリル酸ペンチル(n-、i-、s-)、アクリル酸ヘキシル(n-、i-)、アクリル酸ヘプチル(n-、i-)、アクリル酸オクチル(n-、i-)、アクリル酸ノニル(n-、i-)、アクリル酸ミリスチル(n-、i-)、アクリル酸シクロヘキシル、アクリル酸(2-エチルヘキシル)、アクリル酸ベンジル、アクリル酸フェネチル、アクリル酸(ε-カプロラクトン)、アクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)、アクリル酸(4-ヒドロキシブチル)、アクリル酸(2-ヒドロキシブチル)、アクリル酸-p-ヒドロキシメチルフェニル、アクリル酸-p-(2-ヒドロキシエチル)フェニル等;メタクリル酸エステルとして、上記アクリル酸エステルをメタクリル酸エステルに変えたもの;不飽和酸として、例えば、アクリル酸、メタクリル酸、無水マレイン酸、クロトン酸、イタコン酸等を挙げることが出来る。その他アクリル酸エステル、メタクリル酸エステルと共重合可能なエチレン性不飽和モノマーとしては:ビニルエステルとして、例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、吉草酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、シクロヘキサンカルボン酸ビニル、オクチル酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、安息香酸ビニル、桂皮酸ビニル等を挙げることができる。水酸基を有するアクリル酸またはメタクリル酸エステルモノマーの場合はホモポリマーではなく、コポリマーの構成単位である。この場合、好ましくは、水酸基を有するアクリル酸またはメタクリル酸エステルモノマー単位がアクリル系ポリマー中2~20質量%含有することが好ましい。
 また側鎖に水酸基を有するポリマーも好ましく用いることが出来る。水酸基を有するモノマー単位としては、前記したモノマーと同様であるが、アクリル酸またはメタクリル酸エステルが好ましく、例えば、アクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)、アクリル酸(4-ヒドロキシブチル)、アクリル酸(2-ヒドロキシブチル)、アクリル酸-p-ヒドロキシメチルフェニル、アクリル酸-p-(2-ヒドロキシエチル)フェニル、またはこれらアクリル酸をメタクリル酸に置き換えたものを挙げることが出来、好ましくは、アクリル酸-2-ヒドロキシエチル及びメタクリル酸-2-ヒドロキシエチルである。ポリマー中に水酸基を有するアクリル酸エステルまたはメタクリル酸エステルモノマー単位はポリマー中2~20質量%含有することが好ましく、より好ましくは2~10質量%である。前記のようなポリマーが上記の水酸基を有するモノマー単位を2~20質量%含有したものは、セルロース誘導体との相溶性、保留性、寸法安定性に優れ、透湿度が小さい位相差フィルムを可能にするばかりでなく、この位相差フィルムが偏光板用保護フィルムに使われた場合、偏光子との接着性に特に優れ、偏光板の耐久性が向上する偏光板用保護フィルムを提供する。またポリマーの主鎖の少なくとも一方の末端に水酸基を有することが好ましい。主鎖末端に水酸基を有するようにする方法は、特に主鎖の末端に水酸基を有するようにする方法であれば限定ないが、アゾビス(2-ヒドロキシエチルブチレート)のような水酸基を有するラジカル重合開始剤を使用する方法、2-メルカプトエタノールのような水酸基を有する連鎖移動剤を使用する方法、水酸基を有する重合停止剤を使用する方法、リビングイオン重合により水酸基を末端に有するようにする方法、特開2000-128911号または2000-344823号公報にあるような一つのチオール基と2級の水酸基とを有する化合物、あるいは、該化合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等により得ることが出来、特に該公報に記載の方法が好ましい。この公報記載に関連する方法で作られたポリマーは、綜研化学社製のアクトフロー・シリーズとして市販されており、好ましく用いることが出来る。上記の末端に水酸基を有するポリマーまたは側鎖に水酸基を有するポリマーはポリマーの相溶性、透明性を著しく向上する効果を有する。
 可塑剤は、前述のセルロースエステル同様に、製造時から持ち越される、或いは保存中に発生する残留酸、無機塩、有機低分子等の不純物を除去する事が好ましく、より好ましくは純度99%以上である。残留酸、及び水としては、0.01~100ppmであることが好ましく、セルロース樹脂を溶融製膜する上で、熱劣化を抑制でき、製膜安定性、フィルムの光学物性、機械物性が向上する。
[添加剤(酸化防止剤)]
 セルロースエステルは、溶融製膜が行われるような高温環境下では熱だけでなく酸素によっても分解が促進されるため、本発明のセルロースアシレートフィルムにおいては安定化剤として酸化防止剤を使用することも好ましい。
 本発明において有用な酸化防止剤としては、酸素による溶融成形材料の劣化を抑制する化合物であれば制限なく用いることができるが、中でも有用な酸化防止剤としては、フェノール系化合物、ヒンダードアミン系化合物、リン系化合物、イオウ系化合物、耐熱加工安定剤、酸素スカベンジャー等が挙げられ、これらの中でも、特にフェノール系化合物、ヒンダードアミン系化合物、リン系化合物、ラクトン系化合物が好ましい。
 ヒンダードアミン化合物(HALS)としては、例えば、米国特許第4,619,956号明細書の第5~11欄及び米国特許第4,839,405号明細書の第3~5欄に記載されているように、2,2,6,6-テトラアルキルピペリジン化合物、またはそれらの酸付加塩もしくはそれらと金属化合物との錯体が好ましい。市販品としては、LA52(ADEKA社製)を挙げることができる。
 ラクトン系化合物としては、特開平7-233160号、特開平7-247278号記載の化合物が好ましい。
 これらの安定剤は、それぞれ1種或いは2種以上組み合わせて用いることができ、その配合量は本発明の目的を損なわない範囲で適宜選択されるが、セルロースエステル100質量部に対して、通常0.001~10.0質量部、好ましくは0.01~5.0質量部、更に好ましくは、0.1~3.0質量部である。
 これらの化合物を配合することにより、透明性、耐熱性等を低下させることなく、溶融成型時の熱や熱酸化劣化等による成形体の着色や強度低下を防止できる。
 酸化防止剤の添加量は、セルロースエステル100質量部に対して、通常0.01~10質量部、好ましくは0.05~5質量部、更に好ましくは0.1~3質量部である。
[添加剤(酸掃去剤)]
 酸掃去剤とは製造時から持ち込まれるセルロースエステル中に残留する酸(プロトン酸)をトラップする役割を担う剤である。また、セルロースエステルを溶融するとポリマー中の水分と熱により側鎖の加水分解が促進し、CAPならば酢酸やプロピオン酸が生成する。酸と化学的に結合できればよく、エポキシ、3級アミン、エーテル構造等を有する化合物が挙げられるが、これに限定されるものでない。
 具体的には、米国特許第4,137,201号明細書に記載されている酸掃去剤としてのエポキシ化合物を含んでなるのが好ましい。このような酸掃去剤としてのエポキシ化合物は当該技術分野において既知であり、種々のポリグリコールのジグリシジルエーテル、特にポリグリコール1モル当たりに約8~40モルのエチレンオキシドなどの縮合によって誘導されるポリグリコール、グリセロールのジグリシジルエーテルなど、金属エポキシ化合物(例えば、塩化ビニルポリマー組成物において、及び塩化ビニルポリマー組成物と共に、従来から利用されているもの)、エポキシ化エーテル縮合生成物、ビスフェノールAのジグリシジルエーテル(即ち、4,4′-ジヒドロキシジフェニルジメチルメタン)、エポキシ化不飽和脂肪酸エステル(特に、2~22この炭素原子の脂肪酸の4~2個程度の炭素原子のアルキルのエステル(例えば、ブチルエポキシステアレート)など)、及び種々のエポキシ化長鎖脂肪酸トリグリセリドなど(例えば、エポキシ化大豆油などの組成物によって代表され、例示され得る、エポキシ化植物油及び他の不飽和天然油(これらは時としてエポキシ化天然グリセリドまたは不飽和脂肪酸と称され、これらの脂肪酸は一般に12~22個の炭素原子を含有している))が含まれる。
[添加剤(紫外線吸収剤)]
 紫外線吸収剤としては、偏光子や表示装置の紫外線に対する劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、且つ液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。
 例えば、サリチル酸系紫外線吸収剤(フェニルサリシレート、p-tert-ブチルサリシレート等)あるいはベンゾフェノン系紫外線吸収剤(2,4-ジヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4,4′-ジメトキシベンゾフェノン等)、ベンゾトリアゾール系紫外線吸収剤(2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-ドデシル-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-(2-オクチルオキシカルボニルエチル)-フェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′-(1-メチル-1-フェニルエチル)-5′-(1,1,3,3-テトラメチルブチル)-フェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-(1-メチル-1-フェニルエチル)-フェニル)ベンゾトリアゾール等)、シアノアクリレート系紫外線吸収剤(2′-エチルヘキシル-2-シアノ-3,3-ジフェニルアクリレート、エチル-2-シアノ-3-(3′,4′-メチレンジオキシフェニル)-アクリレート等)、トリアジン系紫外線吸収剤、あるいは特開昭58-185677号、同59-149350号記載の化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。
 本発明に係る紫外線吸収剤としては、透明性が高く、偏光板や液晶素子の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やトリアジン系紫外線吸収剤が好ましく、分光吸収スペクトルがより適切なベンゾトリアゾール系紫外線吸収剤が特に好ましい。
 本発明に係る紫外線吸収剤と共に特に好ましく用いられる従来公知のベンゾトリアゾール系紫外線吸収剤は、ビス化したものであってもよく、例えば、6,6′-メチレンビス(2-(2H-ベンゾ[d][1,2,3]トリアゾール-2-イル))-4-(2,4,4-トリメチルペンタン-2-イル)フェノール、6,6′-メチレンビス(2-(2H-ベンゾ[d][1,2,3]トリアゾール-2-イル))-4-(2-ヒドロキシエチル)フェノール等が挙げられる。
 また、本発明においては、従来公知の紫外線吸収性ポリマーと組み合わせて用いることもできる。従来公知の紫外線吸収性ポリマーとしては、特に限定されないが、例えば、RUVA-93(大塚化学社製)を単独重合させたポリマー及びRUVA-93と他のモノマーとを共重合させたポリマー等が挙げられる。具体的には、RUVA-93とメチルメタクリレートを3:7の比(質量比)で共重合させたPUVA-30M、5:5の比(質量比)で共重合させたPUVA-50M等が挙げられる。更に、特開2003-113317号公報に記載のポリマー等が挙げられる。
 また、市販品として、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)360、チヌビン(TINUVIN)900、チヌビン(TINUVIN)928(いずれもチバ・ジャパン(株)製)、LA-31(ADEKA社製)、RUVA-100(大塚化学社製)を用いることもできる。
 ベンゾフェノン系化合物の具体例として、2,4-ジヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニルメタン)等を挙げることができるが、これらに限定されるものではない。
 本発明においては、紫外線吸収剤は0.1~20質量%添加することが好ましく、更に0.5~10質量%添加することが好ましく、更に1~5質量%添加することが好ましい。これらは2種以上を併用してもよい。
[添加剤(粘度低下剤)]
 本発明において、溶融粘度を低減する目的として、水素結合性溶媒を添加する事ができる。水素結合性溶媒とは、J.N.イスラエルアチビリ著、「分子間力と表面力」(近藤保、大島広行訳、マグロウヒル出版、1991年)に記載されるように、電気的に陰性な原子(酸素、窒素、フッ素、塩素)と電気的に陰性な原子と共有結合した水素原子間に生ずる、水素原子媒介「結合」を生ずることができるような有機溶媒、すなわち、結合モーメントが大きく、かつ水素を含む結合、例えば、O-H(酸素水素結合)、N-H(窒素水素結合)、F-H(フッ素水素結合)を含むことで近接した分子同士が配列できるような有機溶媒をいう。これらは、セルロース樹脂の分子間水素結合よりもセルロースとの間で強い水素結合を形成する能力を有するもので、本発明で行う溶融流延法においては、用いるセルロース樹脂単独のガラス転移温度よりも、水素結合性溶媒の添加によりセルロース樹脂組成物の溶融温度を低下する事ができる、または同じ溶融温度においてセルロース樹脂よりも水素結合性溶媒を含むセルロース樹脂組成物の溶融粘度を低下する事ができる。
[添加剤(マット剤)]
 本実施形態では、フィルムの滑り性を付与するためにマット剤を添加することが好ましい。本実施形態で用いられるマット剤としては、得られるフィルムの透明性を損なうことがなく、溶融時の耐熱性があれば無機化合物または有機化合物どちらでもよく、例えば、タルク、マイカ、ゼオライト、ケイソウ土、焼成珪成土、カオリン、セリサイト、ベントナイト、スメクタイト、クレー、シリカ、石英粉末、ガラスビーズ、ガラス粉、ガラスフレーク、ミルドファイバー、ワラストナイト、窒化ホウ素、炭化ホウ素、ホウ化チタン、炭酸マグネシウム、重質炭酸カルシウム、軽質炭酸カルシウム、珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、アルミノ珪酸マグネシウム、アルミナ、シリカ、酸化亜鉛、二酸化チタン、酸化鉄、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、硫酸カルシウム、硫酸バリウム、炭化ケイ素、炭化アルミニウム、炭化チタン、窒化アルミニウム、窒化ケイ素、窒化チタン、ホワイトカーボンなどが挙げられる。これらのマット剤は、単独でも二種以上併用しても使用できる。粒径や形状(例えば針状と球状など)の異なる粒子を併用することで高度に透明性と滑り性を両立させることもできる。これらの中でも、セルロースエステルと屈折率が近いので透明性(ヘイズ)に優れる二酸化珪素が特に好ましく用いられる。二酸化珪素の具体例としては、アエロジル200V、アエロジルR972V、アエロジルR972、R974、R812、200、300、R202、OX50、TT600、NAX50(以上日本アエロジル(株)製)、シーホスターKEP-10、シーホスターKEP-30、シーホスターKEP-50(以上、株式会社日本触媒製)、サイロホービック100(富士シリシア製)、ニップシールE220A(日本シリカ工業製)、アドマファインSO(アドマテックス製)等の商品名を有する市販品などが好ましく使用できる。粒子の形状としては、不定形、針状、扁平、球状等特に制限なく使用できるが、特に球状の粒子を用いると得られるフィルムの透明性が良好にできるので好ましい。粒子の大きさは、可視光の波長に近いと光が散乱し、透明性が悪くなるので、可視光の波長より小さいことが好ましく、さらに可視光の波長の1/2以下であることが好ましい。粒子の大きさが小さすぎると滑り性が改善されない場合があるので、80nmから180nmの範囲であることが特に好ましい。なお、粒子の大きさとは、粒子が1次粒子の凝集体の場合は凝集体の大きさを意味する。また、粒子が球状でない場合は、その投影面積に相当する円の直径を意味する。
[ハードコート層]
 図1に示す通り、偏光板110においては、保護フィルム114上にハードコート層118が形成されている。ハードコート層118は一定の塗布液(塗布溶剤)が保護フィルム114上に塗布・乾燥されて形成されたものである。
 ハードコート層118は厚さが6μm以下であり、保護フィルム114とハードコート層118との混合領域(塗布液の保護フィルム114への浸透領域)がハードコート層118の厚さの1~20%となっている。
 なお、「混合領域(%)」は、SEM画像を撮影してその画像を測色計で測色することにより得られる値であって、下式に従い算出される値である。
  混合領域(%)
  =混合領域厚み(μm)/[混合領域を除くハードコート層118膜厚(μm)+混合領域厚み(μm)+保護フィルム114膜厚(μm)]×100
[偏光板]
 本実施形態では、保護フィルム114に対しハードコート層118が形成されたものがハードコートフィルム130として構成されており、ハードコートフィルム130の厚さ(すなわち保護フィルム114の厚さとハードコート層118の厚さとの総和)が40μm未満となっている。そして偏光子112、2枚の保護フィルム114,116及びハードコート層118を含む偏光板110は全体の厚さが90μm未満となっている。
 他方、偏光板120は、偏光板110においてハードコート層118に相当する層が形成されていないだけで、偏光板110と同様の構成を有している。すなわち、偏光板120は偏光子122と2枚の保護フィルム124,126とを有しており、偏光子122が保護フィルム124,126に挟持された構成を有している。
 以上の構成を具備する偏光板110,120は、MVA(Multi-domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、CPA(Continuous Pinwheel Alignment)モード、OCB(Optical Compensated Bend)モード、IPS(In-Plane Switching)モード等に用いることができる。
 液晶表示装置としての液晶パネル100はカラー化および動画表示用の装置として応用され、本発明により表示品質が改良され、コントラストの改善や偏光板の耐性が向上したことにより、疲れにくく忠実な動画像表示が可能となる。
[製造方法]
 続いて、液晶パネル100の製造方法(保護フィルムの製造方法、ハードコートフィルムの製造方法及び偏光板の製造方法を含む。)について説明する。
[保護フィルムの製造方法]
 保護フィルム114,116,124,126は溶融流延法と溶液流延法とのいずれかの方法で製造可能であり、以下では、保護フィルム114,116,124,126の製造方法を溶融流延法と溶液流延法とに分けてそれぞれ説明する。
[保護フィルムの製造方法(溶融流涎法)]
 溶融流延成膜法は、加熱溶融する成形法に分類され、溶融押出し成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などがある。これらの中で、機械的強度及び表面精度などに優れる光学フィルムを得るためには、ダイを用いた溶融押出し法が優れている。
 以下、溶融押出し法を例にとり、保護フィルム製造装置とそれを用いた保護フィルムの製造方法とについて説明する。
 図2に示す通り、保護フィルム製造装置は、フィルム構成材料の加工順序に従い(上流から下流にかけて)押出し機1,フィルター2,スタチックミキサー3,流延ダイ4を有している。
 押出し機1はフィルム構成材料を加熱溶融した状態で押し出す装置である。
 フィルター2はフィルム構成材料を濾過して異物の除去を行うもので、フィルター2としては複数の濾過層を有する金属不織布フィルターが用いられている。
 フィルター2は金属不織布フィルターであり、金属繊維の不織布を圧縮し焼結した複数の層(濾過層210,220,230)からなる。詳しくは、図4(a)に示す通り、フィルター2はハウジング270を有しており、ハウジング270には濾過液の流入口250と流出口260とが形成されている。ハウジング270の内部には濾過層210,220が設けられている。濾過層210は流出口260側に、濾過層220は流入口250側にそれぞれ設けられている。濾過層210,220にはこれらを保護するための保護メッシュ240が設けられている。
 なお、濾過層(210,220)の層数は1層でもよいし、図4(b)に示す通りに濾過層230を設けて3層としてもよいし、4層以上としてもよい。
 フィルター2は、好ましくは、目付量が1500~2000g/cmで最下流側の濾過層210の金属繊維の平均径が2~6μmで、濾過層210より上流側にある濾過層220、230の金属繊維の平均径が4~12μmである。
 これらの条件を満たすときに、ダイラインの発生が無くかつ偏光異物の少ない、黄変などの色変化のないフィルムを製造することができる。
 フィルター2の目付量は、単位面積当たりのフィルター層の重さを表し、複数層であっても濾過液の入り口側の層から出口側の層までのすべての層を合わせた重さを用いる。但し、保護メッシュ240の重さは除いている。
 フィルター2の最下流側の濾過層210の金属繊維の平均径が2μm未満になると、溶融した熱可塑性樹脂に強いせん断応力がかかり、フィルム製膜時にダイラインが発生する。
 最下流側の濾過層210の金属繊維の平均径が6μmを越えると、異物捕集能力が十分でなくなる。
 最下流側の濾過層210より上流側にある濾過層220、230の金属繊維の平均径が4μm未満になると、溶融した熱可塑性樹脂に強いせん断応力がかかり、フィルム製膜時にダイラインが発生する。
 最下流側の濾過層210より上流側にある濾過層220、230の金属繊維の平均径が12μmを越えると、上位層で捕集されるべき比較的大きな異物が最下層に通り抜けてしまうため、フィルターの目詰まりが早期に起こりフィルター交換のため、生産性が落ち、また、製造コストが増大する。
 図5に示す通り、流延ダイ4にはギャップ(間隔)が調整可能なスリット32が形成されている。流延ダイ4のスリット32を形成する一対のリップのうち、一方は剛性の低い変形しやすいフレキシブルリップ33であり、他方は固定リップ34である。
 流延ダイ4としては、ハードクロム、炭化クロム、窒化クロム、炭化チタン、炭窒化チタン、窒化チタン、超鋼、セラミック(タングステンカーバイド、酸化アルミ、酸化クロム)などを、溶射又はメッキし、その後表面加工としてバフ、#1000番手以降の砥石を用いるラッピング、#1000番手以上のダイヤモンド砥石を用いる平面切削(切削方向は樹脂の流れ方向に垂直な方向)、電解研磨、電解複合研磨などの加工を施したものなどが使用される。
 流延ダイ4のリップ部(フレキシブルリップ33,固定リップ34)の好ましい材質は、流延ダイ4と同様である。
 リップ部(フレキシブルリップ33,固定リップ34)の表面精度は0.5S以下が好ましく、0.2S以下がより好ましい。
 流延ダイ4の幅方向すなわちスリット32の長さ方向には、多数のヒートボルト35が一定ピッチで配列されている。ヒートボルト35は、好ましくは、長さが20~40cmで直径が7~14mmを有し、複数、例えば数十本のヒートボルト35が、好ましくはピッチ20~40mmで配列されている。
 各ヒートボルト35には、埋め込み電気ヒータ37と冷却媒体通路とを具えたブロック36が設けられており、各ヒートボルト35が各ブロック36を縦に貫通している。
 ヒートボルト35の基部はダイ本体31に固定され、先端部はフレキシブルリップ33の外面に当接している。
 流延ダイ4では、ブロック36を常時空冷しながら、埋め込み電気ヒータ37の入力を増減してブロック36の温度を上下させ、これによりヒートボルト35を熱伸縮させて、フレキシブルリップ33を変位させてフィルムの厚さを調整することができるようになっている。
 なお、流延ダイ4より下流の所要箇所に厚さ計を設け、これによって検出されたウェブ厚さ情報を制御装置にフィードバックし、この厚さ情報を制御装置で設定厚み情報と比較し、同装置から来る補正制御量の信号によってヒートボルト35の発熱体の電力又はオン率を制御するようにしてもよい。
 さらに、ヒートボルト35の代わりに、手動で軸方向に前後動させることによりスリット32のギャップを調節するボルトを主体とするギャップ調節部材を設けてもよい。
 当該ギャップ調節部材によって調節されるスリット32のギャップは、通常200~1000μmであり、好ましくは300~800μmであり、より好ましくは400~600μmである。
 図2に示す通り、フィルム構成材料の加工順序の流延ダイ4より下流側には第1~第3冷却ロール5,7,8が設けられている。
 第1~第3冷却ロール5,7,8は、肉厚が20~30mm程度のシームレスな鋼管製で、表面が鏡面に仕上げられている。
 第1~第3冷却ロール5,7,8の内部には、冷却液を流す配管が配置されており、配管を流れる冷却液によってロール上のフィルム構成材料から熱を吸収できるように構成されている。
 第1~第3冷却ロール5,7,8のうち、第1冷却ロール5にはタッチロール6が当接している。
 タッチロール6は、表面が弾性を有し、第1冷却ロール5への押圧力によって第1冷却ロール5の表面に沿って変形し、第1ロール5との間にニップを形成するようになっている。
 図6に示す通り、タッチロール6は可撓性の金属スリーブ41と弾性ローラ42とを有しており、金属スリーブ41の内部に弾性ローラ42が配された構成を有している。
 金属スリーブ41は厚さ0.3mmのステンレス製であり、可撓性を有している。金属スリーブ41が薄すぎると強度が不足し、逆に厚すぎると弾性が不足する。これらのことから、金属スリーブ41の厚さは0.1~1.5mmであるのが好ましい。
 弾性ローラ42は、軸受を介して回転自在な金属製の内筒43とゴム44とを有しており、内筒43の表面にゴム44を設けてロール状としたものである。
 タッチロール6が第1冷却ロール5に向けて押圧されると、弾性ローラ42が金属スリーブ41を第1冷却ロール5に押しつけ、金属スリープ41及び弾性ローラ42は第1冷却ロール5の形状に応じた形状に変形しながら、第1冷却ロールとの間にニップを形成する。
 金属スリーブ41の内部では、弾性ローラ42との間に形成される空間部において冷却水45が流される。
 タッチロール6は不図示の付勢手段により第1冷却ロール5に向けて付勢される。その付勢手段の付勢力をFと、ニップにおけるフィルムの、第1冷却ロール5の回転軸に沿った方向の幅をWとすると、線圧値F/Wは10~150N/cmに設定されるのがよい。
 第1~第3冷却ロール5,7,8の材質は好ましくは炭素鋼、ステンレス鋼、樹脂、などである。
 第1~第3冷却ロール5,7,8の表面精度は高くすることが好ましく、表面粗さとして0.3S以下、より好ましくは0.01S以下とする。
 図2に示す通り、フィルム構成材料の加工順序の第3冷却ロール8より下流側には、剥離ロール9,ダンサーロール10(フィルム張力調整ロール),延伸機12が設けられている。
 フィルム構成材料の加工順序の延伸機12より下流側には、スリッター13,エンボスリング14,バックロール15が設けられている。エンボスリング14とバックロール15とは対向配置されており、これら2つの部材でナール加工装置が構成されている。
 保護フィルムの製造方法をおおまかに説明すると、
(1)セルロースエステル樹脂,添加剤などを混合してフィルム構成材料を調製し、押出し機1を用いて、フィルム構成材料を加熱溶融した状態で押し出す。
(2)その後、フィルター2でフィルム構成材料を濾過して異物の除去を行う。
(3)その後、スタチックミキサー3により、フィルム構成材料を混合する。
(4)その後、フィルム構成材料を流延ダイ4から第1冷却ロール5上に溶融状態で押し出す。
(5)このとき、フィルム構成材料を、第1冷却ロール5に外接させるとともに、さらに、第2冷却ロール7、第3冷却ロール8の合計3本の冷却ロールに順に外接させ、冷却固化してフィルム前駆体10を製造する。
 なお、第1冷却ロール5の表面にはタッチロール6が押圧されており、溶融した状態のフィルム構成材料は第1冷却ロール5とタッチロール6との間でニップされ、平面状に矯正される。
(6)その後、剥離ロール9によってフィルム前駆体10を剥離し、剥離後のフィルム前駆体10を、延伸装置12によりフィルムの両端部を把持して幅方向に延伸する。
(7)その後、延伸後のフィルムの端部をスリッター13により製品幅にスリットして裁ち落とし、その後ナール加工装置(エンボスリング14,バックロール15)によりナール加工(エンボッシング加工)をフィルム両端部に施す。
 上記(1)~(7)の工程を詳しく説明すると、
(1)第1の押出し工程
 第1の押出し工程では、上記のようにフィルム構成材料を混合した後に、その混合物を押出し機1を用いて直接溶融してもよいが、一旦、フィルム構成材料をペレット化した後、該ペレットを押出し機1で溶融するようにしてもよい。
 第1の押出し工程では、可塑剤などの添加剤を予め混合しない場合は、押出し機1の作動中に添加剤を練り込んでもよい。
(2)濾過工程
 濾過工程では、熱可塑性樹脂がセルロースアシレート樹脂であって、金属不織布フィルター2で濾過するときの濾過温度が、230~260℃であることが好ましく、より好ましくは、240~250℃である。
 溶融した熱可塑性樹脂の温度が230℃未満になると、粘度が高くなるため濾過の速度が遅くなり、好ましくない。また温度が260℃を越えると、粘度が低減される反面、樹脂の着色が生じることがあり好ましくない。
 濾過圧力は、1~15MPaで、金属不織布フィルター2を用いて濾過し、異物を除去する。濾過圧力が1MPa未満であると、セルロースアシレートの溶融物の濾過装置内での滞留時間が長くなり熱劣化を起こして黄変することがある。濾過圧力が10MPaを越えるとフィルターを破損する場合がある。
(3)混合工程
 混合工程では、均一に添加するために、スタチックミキサー3などの混合装置を用いることが好ましい。
 本実施形態において、セルロース樹脂と、その他必要により添加される安定化剤等の添加剤は、溶融する前に混合しておくことが好ましい。
 セルロース樹脂と安定化剤を最初に混合することがさらに好ましい。
 混合は、混合機等により行ってもよく、また、前記したようにセルロース樹脂調製過程において混合してもよい。
 混合機を使用する場合は、V型混合機、円錐スクリュー型混合機、水平円筒型混合機等、ヘンシェルミキサー、リボンミキサー一般的な混合機を用いることができる。
(4)第2の押出し工程
 押出し工程では、金属不織布フィルター2で濾過されたフィルム構成材料が流延ダイ4に送られ、流延ダイ4のスリット32からフィルム状に押し出される。
 流延ダイ4はシートやフィルムを製造するために用いられるものであれば特に限定はされない。
(5)冷却工程
 冷却工程では、図3に示す通り、溶融状態のフィルム状のセルロースエステル樹脂を、第1冷却ロール5、第2冷却ロール7、及び第3冷却ロール8に順次密着させて搬送しながら冷却固化させ、未延伸のセルロースエステル系樹脂フィルム(フィルム前駆体10)を得る。
(6)延伸工程
 延伸工程では、第3冷却ロール8から剥離ロール9によって剥離された冷却固化後の未延伸のフィルム前駆体10が、ダンサーロール11を経て延伸機12に導かれ、そこで横方向(幅方向)に延伸される。この延伸により、フィルム前駆体10中の分子が配向される。
 フィルムを幅方向に延伸する方法は、公知のテンターなどを好ましく用いることができる。
 特に延伸方向を幅方向とすることで、偏光子との積層がロール形態で実施できるので好ましい。
 幅方向に延伸することで、セルロースエステル系樹脂フィルムからなるセルロースアシレートフィルムの遅相軸は幅方向になる。
 一方、偏光子の透過軸も、通常、幅方向である。
 偏光子の透過軸とセルロースアシレートフィルムの遅相軸とが平行になるように積層した偏光板を液晶表示装置に組み込むことで、液晶表示装置の表示コントラストを高くすることができるとともに、良好な視野角が得られるのである。
 フィルム構成材料のガラス転移温度Tgはフィルムを構成する材料種及び構成する材料の比率を異ならしめることにより制御できる。
 光学フィルムとして位相差フィルムを作製する場合、Tgは120℃以上、好ましくは135℃以上とすることが好ましい。
 液晶表示装置においては、画像の表示状態において、装置自身の温度上昇、例えば光源由来の温度上昇によってフィルムの温度環境が変化する。このときフィルムの使用環境温度よりもフィルムのTgが低いと、延伸によってフィルム内部に固定された分子の配向状態に由来するリタデーション値及びフィルムとしての寸法形状に大きな変化を与えることとなる。フィルムのTgが高過ぎると、フィルム構成材料をフィルム化するとき温度が高くなるために加熱するエネルギー消費が高くなり、またフィルム化するときの材料自身の分解、それによる着色が生じることがあり、従って、Tgは250℃以下が好ましい。
 光学フィルムとして位相差フィルムを製造し、さらに偏光板保護フィルムの機能を複合させる場合、屈折率制御をおこなう必要が生じるが、その屈折率制御は延伸操作により行うことが可能であり、また延伸操作が好ましい方法である。
 以下、その延伸方法について説明する。
 位相差フィルムの延伸工程において、セルロース樹脂の1方向に1.0~2.0倍及びフィルム面内にそれと直交する方向に1.01~2.5倍延伸することで、必要とされるリタデーションRo及びRtを制御することができる。
 ここで、「Ro」とは面内リタデーションを示し、面内の長手方向MDの屈折率と幅方向TDの屈折率との差に厚みを乗じたものであり、「Rt」とは厚み方向リタデーションを示し、面内の屈折率(長手方向MDと幅方向TDの平均)と厚み方向の屈折率との差に厚みを乗じたものである。
 延伸は、例えばフィルムの長手方向及びそれとフィルム面内で直交する方向、即ち幅方向に対して、逐次または同時に行うことができる。このとき少なくとも1方向に対しての延伸倍率が小さ過ぎると十分な位相差が得られず、大き過ぎると延伸が困難となりフィルム破断が発生してしまう場合がある。
 互いに直交する2軸方向に延伸することは、フィルムの屈折率nx、ny、nzを所定の範囲に入れるために有効な方法である。
 ここで、「nx」とは長手MD方向の屈折率、「ny」とは幅手TD方向の屈折率、「nz」とは厚み方向の屈折率である。
 例えば溶融流延方向に延伸した場合、幅方向の収縮が大き過ぎると、nzの値が大きくなり過ぎてしまう。この場合、フィルムの幅収縮を抑制、あるいは幅方向にも延伸することで改善できる。幅方向に延伸する場合、幅方向で屈折率に分布が生じることがある。この分布は、テンター法を用いた場合に現れることがあり、フィルムを幅方向に延伸したことで、フィルム中央部に収縮力が発生し、端部は固定されていることにより生じる現象で、いわゆるボーイング現象と呼ばれるものと考えられる。この場合でも、流延方向に延伸することで、ボーイング現象を抑制でき、幅方向の位相差の分布を少なくできる。
 互いに直行する2軸方向に延伸することにより、得られるフィルムの膜厚変動が減少できる。位相差フィルムの膜厚変動が大き過ぎると位相差のムラとなり、液晶ディスプレイに用いたとき着色等のムラが問題となることがある。
 セルロース樹脂フィルムの膜厚変動は、±3%、さらに±1%の範囲とすることが好ましい。以上のような目的において、互いに直交する2軸方向に延伸する方法は有効であり、互いに直交する2軸方向の延伸倍率は、それぞれ最終的には流延方向に1.0~2.0倍、幅方向に1.01~2.5倍の範囲とすることが好ましく、流延方向に1.01~1.5倍、幅方向に1.05~2.0倍に範囲で行うことが必要とされるリタデーション値を得るためにより好ましい。
 長手方向に偏光子の吸収軸が存在する場合、幅方向に偏光子の透過軸が一致することになる。長尺状の偏光板を得るためには、位相差フィルムは、幅方向に遅相軸を得るように延伸することが好ましい。
 応力に対して、正の複屈折を得るセルロース樹脂を用いる場合、上述の構成から、幅方向に延伸することで、位相差フィルムの遅相軸が幅方向に付与することができる。
 この場合、表示品質の向上のためには、位相差フィルムの遅相軸が、幅方向にあるほうが好ましく、目的とするリタデーション値を得るためには、式、(幅方向の延伸倍率)>(流延方向の延伸倍率)の条件を満たすことが必要である。
(7)後処理工程
 後処理工程では、延伸後のフィルム前駆体10の端部をスリッター13により製品となる幅にスリットして裁ち落とした後、エンボスリング14及びバックロール15よりなるナール加工装置によりナール加工(エンボッシング加工)をフィルム両端部に施す。
 このような処理により、セルロースアシレートフィルム(元巻き)中の貼り付きやすり傷の発生を防止することができる。
 ナール加工の方法は、凸凹のパターンを側面に有する金属リングを加熱や加圧により加工することができる。
 なお、フィルム両端部のクリップの把持部分は通常、変形しており、フィルム製品として使用できないので、切除されて、原料として再利用される。
 以上の処理により保護フィルム114,116,124,126が製造される。
[保護フィルムの製造方法(溶液流涎法)]
 溶液流延法とは、セルロースエステル(添加剤を含んでもよい。)を溶媒に溶解した溶液を、流延してフィルムを形成し、そのフィルムから溶媒を蒸発・乾燥させて保護フィルムを製造する成膜方法であり、溶液流延法としては公知の手法を用いることができる。
 溶液流延法は、例えば、米国特許第2,492,978号、同第2,739,070号、同第2,739,069号、同第2,492,977号、同第2,336,310号、同第2,367,603号、同第2,607,704号、英国特許第64,071号、同第735,892号、特公昭45-9074号、同49-4554号、同49-5614号、同60-27562号、同61-39890号、同62-4208号に記載の方法を参照することができる。
 溶液流延法は、おおまかには、
 セルロースエステルおよび添加剤を溶剤に溶解させてドープを調製する工程と、
 ドープを無限に移行する無端の金属支持体上に流延する工程と、
 流延したドープをウェブとして乾燥する工程と、
 金属支持体から剥離する工程と、
 延伸または幅保持する工程と、
 更に乾燥する工程と、に分けられる。
 ドープを調製する工程について述べる。
 ドープ中のセルロースエステルの濃度は、濃い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースエステルの濃度が濃過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、更に好ましくは、15~25質量%である。
 ドープで用いられる溶剤は、単独で用いても2種以上を併用してもよいが、セルロースエステルの良溶剤と貧溶剤を混合して使用することが生産効率の点で好ましく、良溶剤が多い方がセルロースエステルの溶解性の点で好ましい。
 良溶剤と貧溶剤の混合比率の好ましい範囲は、良溶剤が70~98質量%であり、貧溶剤が2~30質量%である。
 良溶剤、貧溶剤とは、使用するセルロースエステルを単独で溶解するものを良溶剤、単独で膨潤するかまたは溶解しないものを貧溶剤と定義している。そのため、セルロースエステルの平均酢化度(アセチル基置換度)によっては、良溶剤、貧溶剤が変わり、例えばアセトンを溶剤として用いる時には、セルロースエステルの酢酸エステル(アセチル基置換度2.4)、セルロースアセテートプロピオネートでは良溶剤になり、セルロースの酢酸エステル(アセチル基置換度2.8)では貧溶剤となる。
 本発明に用いられる良溶剤は特に限定されないが、メチレンクロライド等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられる。特に好ましくはメチレンクロライドまたは酢酸メチルが挙げられる。また、本発明に用いられる貧溶剤は特に限定されないが、例えば、メタノール、エタノール、n-ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。また、ドープ中には水が0.01~2質量%含有していることが好ましい。
 また、セルロースエステルの溶解に用いられる溶媒は、フィルム製膜工程で乾燥によりフィルムから除去された溶媒を回収し、これを再利用して用いられる。回収溶剤中に、セルロースエステルに添加されている添加剤、例えば可塑剤、紫外線吸収剤、ポリマー、モノマー成分などが微量含有されていることもあるが、これらが含まれていても好ましく再利用することができるし、必要であれば精製して再利用することもできる。
 上記記載のドープを調製する時の、セルロースエステルの溶解方法としては、一般的な方法を用いることができる。加熱と加圧を組み合わせると常圧における沸点以上に加熱できる。溶剤の常圧での沸点以上でかつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら攪拌溶解すると、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため好ましい。
 また、セルロースエステルを貧溶剤と混合して湿潤あるいは膨潤させた後、更に良溶剤を添加して溶解する方法も好ましく用いられる。加圧は窒素ガス等の不活性気体を圧入する方法や、加熱によって溶剤の蒸気圧を上昇させる方法によって行ってもよい。
 加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。溶剤を添加しての加熱温度は、高い方がセルロースエステルの溶解性の観点から好ましいが、加熱温度が高過ぎると必要とされる圧力が大きくなり生産性が悪くなる。好ましい加熱温度は45~120℃であり、60~110℃がより好ましく、70℃~105℃が更に好ましい。
 また、圧力は設定温度で溶剤が沸騰しないように調整される。もしくは冷却溶解法も好ましく用いられ、これによって酢酸メチルなどの溶媒にセルロースエステルを溶解させることができる。
 次に、このセルロースエステル溶液を濾紙等の適当な濾過材を用いて濾過する。濾過材としては、不溶物等を除去するために絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さ過ぎると濾過材の目詰まりが発生し易いという問題がある。
 このため絶対濾過精度0.008mm以下の濾材が好ましく、0.001~0.008mmの濾材がより好ましく、0.003~0.006mmの濾材が更に好ましい。
 濾材の材質は特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材や、ステンレススティール等の金属製の濾材が繊維の脱落等がなく好ましい。濾過により、原料のセルロースエステルに含まれていた不純物、特に輝点異物を除去、低減することが好ましい。
 輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間に光学フィルム等を置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm以下であることが好ましい。より好ましくは100個/cm以下であり、更に好ましくは50個/m以下であり、更に好ましくは0~10個/cm以下である。また、0.01mm以下の輝点も少ない方が好ましい。
 ドープの濾過は通常の方法で行うことができるが、溶剤の常圧での沸点以上で、かつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。好ましい温度は45~120℃であり、45~70℃がより好ましく、45~55℃であることが更に好ましい。濾圧は小さい方が好ましい。濾圧は1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることが更に好ましい。
 ここで、ドープの流延について説明する。
 流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルトもしくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は1~4mとすることができる。流延工程の金属支持体の表面温度は-50℃~溶剤の沸点未満の温度で、温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高過ぎるとウェブが発泡したり、平面性が劣化する場合がある。好ましい支持体温度は0~55℃であり、25~50℃が更に好ましい。あるいは、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は目的の温度よりも高い温度の風を使う場合がある。
 セルロースエステルフィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10~150質量%が好ましく、更に好ましくは20~40質量%または60~130質量%であり、特に好ましくは、20~30質量%または70~120質量%である。
 本発明においては、残留溶媒量は下記式で定義される。
  残留溶媒量(質量%)={(M-N)/N}×100
 尚、Mはウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
 また、セルロースエステルフィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を0.01質量%以下にすることが好ましい。
 フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
 本発明のセルロースエステルフィルムを作製するためには、ウェブの両端をクリップ等で把持するテンター方式で幅方向(横方向)に延伸を行うことが特に好ましい。剥離張力は300N/m以下で剥離することが好ましい。
 ウェブを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行うことができるが、簡便さの点から熱風で行うことが好ましい。ウェブの乾燥工程における乾燥温度は40~200℃で段階的に高くしていくことが好ましい。
 本発明のセルロースエステルフィルムは、幅1~4mのものが用いられる。特に幅1.4~4mのものが好ましく用いられ、特に好ましくは1.6~3mである。4mを超えると搬送が困難となる。
 製膜工程において、カットされたフィルム両端のクリップ把持部分は、粉砕処理された後、同じ品種のフィルム用原料として又は異なる品種のフィルム用原料として再利用してもよい。
 以上の処理により保護フィルム114,116,124,126が製造される。
[ハードコートフィルムの製造方法]
 本発明において、混合領域を調整する方法としては、ハードコート層を塗布する前の保護フィルムを加湿することが挙げられ、この加湿する工程により、保護フィルムの含水率を1.5~4%とすることが必要である。
 上記溶融流延法により保護フィルム114を製造した場合には、
(A1)保護フィルム114を加湿して保護フィルム114の含水率を1.5~4%、好ましくは1.5~2.5%とする。
 この場合、保護フィルム114は溶融流延法により製造されているから、保護フィルム114には基本的には溶媒は残留していない。
(A2)その後、保護フィルム114に対し一定の塗布液を塗布して乾燥させ、保護フィルム114上にハードコート層118を形成する。
 他方、上記溶液流延法により保護フィルム114を製造した場合には、
(B1)保護フィルム114を加熱して(乾燥させて)保護フィルム114に残留する残留溶媒量を0.01%以下とする。
 この場合において、溶液流延法による保護フィルム114の製造工程中に、保護フィルム114の残留溶媒量が0.01%以下である場合には、当該加熱処理は特にする必要はない。
(B2)その後は上記(A1),(A2)と同様の処理を行えばよい。
 上記(B1)の乾燥工程中の残留溶媒量は下記式で定義される。
  残留溶媒量(質量%)={(M-N)/N}×100
 上記式中、「M」は製造後の保護フィルム114の質量で、「N」はMを115℃で1時間加熱した後の質量である。
 なお、上記では、保護フィルム114を巻き取らずにハードコート層118を形成したが、上記(A1)の加湿工程の前に保護フィルム114を巻き取ってその後に上記(A1)の加湿工程の処理を行ってもよいし、上記(A1)の加湿工程の後に保護フィルム114を巻き取ってその後に上記(A2)のハードコート層形成工程の処理を行ってもよい。
[偏光板の製造方法]
 ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行い、偏光子112,122を製造する。
 その後、保護フィルム114,116をアルカリ鹸化処理し、その処理されたフィルムを、偏光子112に対し、完全鹸化型ポリビニルアルコール水溶液(完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤)を用いて貼り合わせ、偏光板110を製造する。
 これと同様に、保護フィルム124,126もアルカリ鹸化処理し、その処理されたフィルムを、偏光子122に対し、完全鹸化型ポリビニルアルコール水溶液(完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤)を用いて貼り合わせ、偏光板120を製造する。
[液晶パネルの製造方法]
 偏光板110,120に対し粘着層を形成して偏光板110,120をロール状とし、そのロールを順次繰り出しながら、偏光板110,120をパネルサイズに分断する。
 その一方で、偏光板110,120とは別に、液晶セル102もパネルサイズに裁断する。
 その後、パネルサイズの偏光板110,120をそれぞれ、パネルサイズの液晶セル102に位置合わせして貼り付け、液晶パネル100を製造する。
 この製造方法に代えて、偏光板110,120に対し粘着層を形成して偏光板110,120をロール状としたら、そのロールを順次繰り出しながら、偏光板110,120をそれぞれ液晶セル102に貼り付け、偏光板110,120と液晶セル102とを同時にパネルサイズに裁断してもよい。
 以上の本実施形態によれば、ハードコートフィルム130を製造する際に、保護フィルム114とハードコート層118との厚さや、保護フィルム114の含水率と残留溶媒量(溶液流延法による場合)を調整し、保護フィルム114,ハードコート層118の厚さの総和と保護フィルム114とハードコート層118との混合領域とを一定範囲に最適化(制御)している。
 そのため、ケン化ムラ,ブロッキングの発生を防止又は抑制できるとともに、液晶パネル製造時の偏光板110,120の裁断性や、溶液流延法を用いた場合に残留溶媒の影響を受ける偏光板110,120の寸法安定性を向上させることができる(下記実施例参照)。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(1)サンプルの作製
 各サンプルの作製にあたり、セルロースエステル,添加剤として、下記の材料を選択した。
[セルロースエステル]
 セルロースアセテートプロピオネート(アセチル基置換度1.63、プロピオニル基置換度1.21、総アシル基置換度2.84、数平均分子量90000)
 なお、アセチル基、プロピオニル基、ブチリル基等のアシル基の置換度の測定方法はASTM-D817-96の規定に準じて測定した。
[添加剤]
  VB7102(メタクリル酸メチル/アクリル酸メチル/
   2-ヒドロキシエチルメタクリレート=7/2/1(各々質量部)の
   共重合体,分子量6300,三菱レーヨン社製)    表1記載量
  UMM1001(綜研化学社製)            表1記載量
  PETB(ペンタエリスリトールテトラベンゾエート,
   アルドリッチ社製)                 表1記載量
  スミライザーGP(住友化学社製)         0.06質量部
  イルガノックス1010(チバ・ジャパン(株)製)  0.5質量部
  スミライザーGS(住友化学社製)          0.5質量部
  紫外線吸収剤Ti928(チバ・ジャパン(株)製)  1.5質量部
  マット剤シーホスターKEP-30(日本触媒社製)  0.1質量部
(1.1)サンプル1の作製
(1.1.1)ハードコートフィルムの作製
 前記セルロースエステルを70℃、3時間減圧下で乾燥を行い室温まで冷却した後、前記添加剤、紫外線吸収剤、マット剤(尚、セルロースエステルの添加量は上記各添加物を加えて100質量部となる量である。)を混合した。
 この混合物を真空ナウターミキサーで80℃、133.3Paで3時間混合しながら更に乾燥した。
 得られた混合物を、2軸式押し出し機を用いて235℃で溶融混練した後ペレット化した。この際、混練時のせん断による発熱を抑えるためニーディングディスクは用いずオールスクリュータイプのスクリューを用いた。また、ベント孔から真空引きを行い、混練中に発生する揮発成分を吸引除去した。
 なお、押出機に供給するフィーダーやホッパー、押出機ダイから冷却槽間は、乾燥窒素ガス雰囲気として、樹脂への水分の吸湿を防止した。
 第1冷却ロール及び第2冷却ロールは直径40cmのステンレス製とし、表面にハードクロムメッキを施した。又、内部には温度調整用のオイル(冷却用流体)を循環させて、ロール表面温度を制御した。弾性タッチロールは、直径20cmとし、内筒と外筒はステンレス製とし、外筒の表面にはハードクロムメッキを施した。外筒の肉厚は2mmとし、内筒と外筒との間の空間に温度調整用のオイル(冷却用流体)を循環させて弾性タッチロールの表面温度を制御した。
 得られたペレットを、単軸押出機を用いて溶融温度250℃でTダイからフィルム状に押し出し、表面温度100℃の第1冷却ロール上にキャストしてドロー比20、膜厚80μmのフィルムを得た。この際、Tダイのリップクリアランス1.5mm、リップ部平均表面粗さRa0.01μmのTダイを用いた。また押出機中間部のホッパー開口部から、滑り剤としてシリカ微粒子を、0.1質量部となるよう添加した。
 更に、第1冷却ロール上でフィルムを2mm厚の金属表面を有する弾性タッチロールにて線圧10kg/cmで押圧した。押圧時のタッチロール側のフィルム温度は、180℃±1℃であった。(ここでいう押圧時のタッチロール側のフィルム温度は、第1ロール(冷却ロール)上のタッチロールが接する位置のフィルムの温度を、非接触温度計を用いて、タッチロールを後退させてタッチロールがない状態で50cm離れた位置から幅方向に10点測定したフィルム表面温度の平均値を指す。)このフィルムのガラス転移温度Tgは136℃であった。(セイコー(株)製、DSC6200を用いてDSC法(窒素中、昇温温度10℃/分)によりダイスから押し出されたフィルムのガラス転移温度を測定した。)
 なお、弾性タッチロールの表面温度は100℃、第2冷却ロールの表面温度は30℃とした。弾性タッチロール、第1冷却ロール、第2冷却ロールの各ロールの表面温度は、ロールにフィルムが最初に接する位置から回転方向に対して90°手前の位置のロール表面の温度を、非接触温度計を用いて幅方向に10点測定した平均値を各ロールの表面温度とした。
 得られたフィルムを予熱ゾーン、延伸ゾーン、保持ゾーン、冷却ゾーン(各ゾーン間には各ゾーン間の断熱を確実にするためのニュートラルゾーンも有する)を有するテンターに導入し、幅方向に160℃で1.9倍延伸した後、幅方向に2%緩和しながら70℃まで冷却し、その後クリップから開放し、クリップ把持部を裁ち落として、フィルム両端に幅10mm、高さ5μmのナーリング加工を施し、幅1430mmにスリットした30μmのセルロースエステルフィルムを得た。この際、予熱温度、保持温度を調整し延伸によるボーイング現象を防止した。得られたセルロースエステルフィルムから残留溶媒は検出されなかった。
 このセルロースエステルフィルムを表1記載の方法で加湿処理を行った後、下記のハードコート層組成物1を塗設して保護フィルム上にハードコート層を形成し、ハードコートフィルムを作製した。
[ハードコート層組成物1]
 Z7537の溶剤変更品(i-プロピルアルコール/メチルエチルケトン=9/1(質量比),塗布液固形分濃度:50質量%,JSR社製)
 ハードコート層の膜厚は、表1記載のとおりである。なお、ハードコート層の膜厚は、塗布量、塗布液固形分濃度から計算した、混合領域を考慮しない計算上の値で示した。
(1.1.2)偏光子の作製
 厚さ、120μmのポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。
 延伸したフィルムをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。
 これを水洗、乾燥し偏光子を得た。
(1.1.3)偏光板の作製
 下記工程1~5に従って、前記ハードコートフィルムと、ハードコート層を塗設しない前記セルロースエステルフィルム(裏面用の保護フィルム)と、前記偏光子と、を用いて偏光板を作製した。
 工程1:両面の保護フィルムを50℃の2mol/lの水酸化ナトリウム溶液に90秒間浸漬した後水洗・乾燥し、ケン化処理を実施した。
 工程2:前記偏光子を固形分2質量%のポリビニルアルコール水溶液中に1~2秒浸漬した。
 工程3:工程2で偏光子に付着した過剰の接着剤を軽く拭き除き、工程1で処理した保護フィルムを両面に載せて積層する。
 工程4:工程3で作製した積層物を圧力20~30N/cm、搬送スピード約2m/分で貼合した。
 工程5:工程4で作製した貼合物を80℃の乾燥機中で2分間乾燥した後、ロール状に巻き取り、偏光板ロールとした。
 以上の処理により得られた偏光板を「サンプル1」とした。
(1.2)サンプル2~4,6~9の作製
 サンプル1の作製において、添加剤(VB7102、UMM1001、PETB)の添加量,保護フィルム・ハードコート層の膜厚,加湿方法などを表1のように変更して「サンプル2~4,6~9」を作製した。
 なお、ハードコート層組成物2として下記の材料を使用した。
[ハードコート層組成物2]
 500-28の溶剤変更品(i-プロピルアルコール/メチルエチルケトン=9/1(質量比),固形分濃度:40質量%,ADEKA社製)
(1.3)サンプル5の作製
 サンプル1の作製において、保護フィルムの作製方法などを下記のように変更して「サンプル5」を作製した。
 はじめに、下記組成物を密閉容器に投入し、加圧下で80℃に保温し撹伴しながら完全に溶解してドープ組成物を作製した。
[ドープ組成物]
  セルローストリアセテート(平均酢化度61.0%)  100質量部
  トリフェニルフォスフェート               8質量部
  エチルフタリルエチルグリコレート            2質量部
  チヌビン109(チバ・ジャパン(株)製)        1質量部
  チヌビン171(チバ・ジャパン(株)製)        1質量部
  メチレンクロライド                 430質量部
  メタノール                      90質量部
 次に、このドープ組成物を濾過し、冷却して33℃に保ちステンレスバンド上に均一に流延し、剥離が可能になるまで溶媒を蒸発させたところで、ステンレスバンドから剥離し、テンターで幅方向に1.1倍に延伸した後、多数のロールで搬送させながら残留溶媒量が表1記載の量になるまで乾燥させた後、80%RHの調湿ゾーンを通過させてから両端部に高さ10μmのナーリングを設けて巻き取った。
 このセルロースエステルフィルム上に下記のハードコート層組成物3を塗設してハードコート層を形成し、ハードコートフィルムを作製した。
[ハードコート層組成物3]
 500-28(固形分濃度:40質量%,ADEKA社製)
(1.4)サンプル10~12の作製
 サンプル5の作製において、保護フィルム、ハードコート層の作製条件などを表1のように変更して「サンプル10~12」を作製した。
Figure JPOXMLDOC01-appb-T000001
 表1中、加湿方法A~Cは下記の通りである。
  加湿方法A
  …80%RHの加湿ゾーンを通過させて巻き取り、その後ハードコート層を形成する(加湿→巻取り→ハードコート層形成)
  加湿方法B
  …保護フィルムをいったん巻き取り、その保護フィルムを繰り出しながら水蒸気で加湿し、その後ハードコート層を形成する(巻取り→加湿→ハードコート層形成)
  加湿方法C
  …80%RHの加湿ゾーンを通過させてそのままハードコート層を形成する(加湿→ハードコート層形成)
(2)偏光板の評価
 作製した偏光板を下記の方法で評価した。その評価結果を表2に示す。
(2.1)保護フィルムとハードコート層との混合領域の測定
 偏光板の一部にエポキシ樹脂を被覆してからハードコート層側からミクロトーム等で断面を削りだし、SEM画像(×3,000)を撮影した。このSEM画像(モノクロ)の各層をコニカミノルタ社製分光測色計CM-2500dで測色し、L*の差が2.00以上となるところをハードコート層と混合領域、混合領域と保護フィルムのそれぞれ界面として、下式によって保護フィルムとハードコート層との混合領域(%)を算出した。
  混合領域(%)
  =混合領域厚み(μm)/[混合領域を除くハードコート層膜厚(μm)+混合領域厚み(μm)+保護フィルム膜厚(μm)]×100
(2.2)ケン化ムラ
 各偏光板に蛍光灯照射光を反射させて以下の基準で目視評価を行なった。
  「○」…スジ状、点状欠陥およびムラなし
  「△」…一部分にスジ状、点状欠陥およびムラあり
  「×」…全面にスジ状、点状欠陥およびムラあり
(2.3)ロールでのブロッキング
 偏光板ロール作製の翌日に全量を巻き出し、巻き芯側から100m以内の位置に保護フィルムとハードコート層との界面でブロッキングが発生しているか否かを目視で確認した。
(2.4)断裁性
 偏光板ロールから必要量を巻き出し、粘着層を介して液晶セルに貼り付けてから型抜きした際の材料破壊及び剥離性の程度を目視観察して、以下の基準で断裁性を評価した。
  「○」…きれいに断裁できる
  「△」…一部材料(基材)破壊が起こるが、保護フィルムとハードコート層との界面で剥がれる面積が存在する
  「×」…保護フィルムとハードコート層との界面で剥がれる
(2.5)寸法安定性
 各偏光板のハードコート層側表面に10cm隔にMD(長手方向),TD(幅方向)それぞれ、剃刀の刃で十字のスジを入れ、光学顕微鏡で正確な距離を測定しておく。この試料を80℃,90%RHで50時間保存した後、再度距離を測定して保存前後の差(寸法変化率(%))を調べた。
Figure JPOXMLDOC01-appb-T000002
(3)まとめ
 表2に示す通り、サンプル1~5とサンプル6~12とを比較すると、サンプル1~5はケン化ムラ,ロールブロッキングが抑制され、裁断性,寸法安定性の面で優れている。
 以上から、保護フィルムの厚みとハードコート層の厚みとの総和が40μm未満でかつ保護フィルムとハードコート層との混合領域が1~20%であることはケン化ムラ,ロールブロッキングの防止,抑制や裁断性,寸法安定性の向上に有用であることがわかり、このような構成を実現するために保護フィルムの残留溶媒量を0.01%以下としかつ含水率を1.5~4%とすることが製造工程において有用であることがわかる。
 1 押出し機
 2 金属不織布フィルター
  210 最下流側にある濾過層
  220,230 上流側にある濾過層
  240 保護メッシュ
  250 流入口
  260 流出口
  270 外枠
 3 スタチックミキサー
 4 流延ダイ
 5 第1冷却ロール
 6 タッチロール
 7 第2冷却ロール
 8 第3冷却ロール
 9,11,13,14,15 搬送ロール
 10 フィルム前駆体
 31ダイ本体
 32スリット
 41 金属スリーブ
 42 弾性ローラ
 43 金属製の内筒
 44 ゴム
 45 冷却水
 100 液晶パネル
 102 液晶セル
 110,120 偏光板
 112,122 偏光子
 114,116,124,126 保護フィルム
 118 ハードコート層
 119 混合領域
 130 ハードコートフィルム
 A ハードコート層と混合領域の界面
 B 混合領域と保護フィルムの界面

Claims (13)

  1.  偏光子を保護するための保護フィルムと、前記保護フィルム上に形成されるハードコート層とを備えるハードコートフィルムであって、
     前記保護フィルムの厚みと前記ハードコート層の厚みとの総和が40μm未満で、かつ、前記保護フィルムと前記ハードコート層との混合領域が前記ハードコート層の厚みの1~20%であることを特徴とするハードコートフィルム。
  2.  請求項1に記載のハードコートフィルムにおいて、
     前記保護フィルムがセルロースエステル樹脂から構成され、前記セルロースエステル樹脂のアセチル基置換度をX、プロピオニル基置換度とブチリル基置換度の合計をYとしたとき、式(1)~式(3)の条件をすべて満たすことを特徴とするハードコートフィルム。
      2.0≦X+Y≦3.0 … (1)
      0.1≦X≦2.9   … (2)
      0.1≦Y≦2.9   … (3)
  3.  請求項2に記載のハードコートフィルムにおいて、式(4)~式(6)の条件をすべて満たすことを特徴とするハードコートフィルム。
      2.5≦X+Y≦3.0 … (4)
      0.1≦X≦1.5   … (5)
      1.5≦Y≦2.9   … (6)
  4.  偏光子と、前記偏光子の一方の面上に形成される第1の保護フィルムと、前記第1の保護フィルム上に形成されるハードコート層と、前記偏光子の他方の面上に形成される第2の保護フィルムとを備える偏光板であって、
     前記第1の保護フィルムの厚みと前記ハードコート層の厚みとの総和が40μm未満で、かつ、前記第1の保護フィルムと前記ハードコート層との混合領域が前記ハードコート層の厚みの1~20%であることを特徴とする偏光板。
  5.  請求項4に記載の偏光板において、
     前記第1の保護フィルムの厚みが30μm以下であり、
     前記ハードコート層の厚みが6μm以下であり、
     前記第2の保護フィルムの厚みが30μm以下であり、
     前記偏光子、前記第1の保護フィルム、前記ハードコート層及び前記第2の保護フィルムを含む全体の厚みが90μm未満であることを特徴とする偏光板。
  6.  請求項4又は5に記載の偏光板において、
     前記第1,第2の保護フィルムがともにセルロースエステル樹脂から構成され、前記セルロースエステル樹脂のアセチル基置換度をX、プロピオニル基置換度とブチリル基置換度の合計をYとしたとき、式(1)~(3)の条件をすべて満たすことを特徴とする偏光板。
      2.0≦X+Y≦3.0 … (1)
      0.1≦X≦2.9   … (2)
      0.1≦Y≦2.9   … (3)
  7.  請求項6に記載の偏光板において、
     式(4)~式(6)の条件をすべて満たすことを特徴とする偏光板。
      2.5≦X+Y≦3.0 … (4)
      0.1≦X≦1.5   … (5)
      1.5≦Y≦2.9   … (6)
  8.  偏光子を保護するための保護フィルムに対しハードコート層が形成されたハードコートフィルムの製造方法であって、
     溶融流延法を用いて前記保護フィルムを製造する工程と、
     前記保護フィルムを加湿する工程と、
     前記保護フィルム上に一定の塗布液を塗布して前記ハードコート層を形成する工程とを備え、
     前記保護フィルムを加湿する工程では、前記保護フィルムの含水率を1.5~4%とすることを特徴とするハードコートフィルムの製造方法。
  9.  偏光子を保護するための保護フィルムに対しハードコート層が形成されたハードコートフィルムの製造方法であって、
     溶液流延法を用いて前記保護フィルムを製造する工程と、
     前記保護フィルムを加熱する工程と、
     前記保護フィルムを加湿する工程と、
     前記保護フィルム上に一定の塗布液を塗布して前記ハードコート層を形成する工程とを備え、
     前記保護フィルムを加熱する工程では、前記保護フィルムに残留する残留溶媒量を0.01%以下とし、
     前記保護フィルムを加湿する工程では、前記保護フィルムの含水率を1.5~4%とすることを特徴とするハードコートフィルムの製造方法。
  10.  請求項8又は9に記載のハードコートフィルムの製造方法において、
     前記保護フィルムを加湿する工程では、前記保護フィルムの含水率を1.5~2.5%とすることを特徴とするハードコートフィルムの製造方法。
  11.  請求項8~10のいずれか一項に記載のハードコートフィルムの製造方法において、
     前記保護フィルムを加湿する工程の後に、加湿後の前記保護フィルムを巻き取る工程を備えることを特徴とするハードコートフィルムの製造方法。
  12.  請求項8~11のいずれか一項に記載された製造方法により製造されたハードコートフィルムと保護フィルムとをそれぞれ、偏光子に貼り付けて偏光板を製造する工程と、
     前記偏光板と液晶セルとを別々にパネルサイズに裁断する工程と、
     裁断後の前記偏光板と前記液晶セルとを貼り付ける工程とを備えることを特徴とする液晶パネルの製造方法。
  13.  請求項8~11のいずれか一項に記載された製造方法により製造されたハードコートフィルムと保護フィルムとをそれぞれ、偏光子に貼り付けて偏光板を製造する工程と、
     前記偏光板を液晶セルに貼り付ける工程と、
     前記偏光板と前記液晶セルとを同時にパネルサイズに裁断する工程とを備えることを特徴とする液晶パネルの製造方法。
PCT/JP2010/052051 2009-03-31 2010-02-12 ハードコートフィルム、偏光板、ハードコートフィルムの製造方法及び液晶パネルの製造方法 WO2010113547A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/259,104 US9250359B2 (en) 2009-03-31 2010-02-12 Hard coat film, polarizing plate, method for producing hard coat film, and method for producing liquid crystal panel
JP2011507054A JP5532046B2 (ja) 2009-03-31 2010-02-12 ハードコートフィルムの製造方法及び液晶パネルの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009086501 2009-03-31
JP2009-086501 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010113547A1 true WO2010113547A1 (ja) 2010-10-07

Family

ID=42827851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052051 WO2010113547A1 (ja) 2009-03-31 2010-02-12 ハードコートフィルム、偏光板、ハードコートフィルムの製造方法及び液晶パネルの製造方法

Country Status (3)

Country Link
US (1) US9250359B2 (ja)
JP (1) JP5532046B2 (ja)
WO (1) WO2010113547A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068802A1 (ja) * 2012-11-02 2014-05-08 コニカミノルタ株式会社 光学フィルムおよび光学フィルムの製造方法、偏光板および液晶表示装置
WO2015046225A1 (ja) * 2013-09-30 2015-04-02 富士フイルム株式会社 偏光板および画像表示装置
JP2016031533A (ja) * 2014-07-25 2016-03-07 住友化学株式会社 偏光板の製造方法
JP2016224423A (ja) * 2015-05-26 2016-12-28 住友化学株式会社 偏光板の製造方法
JP2017062503A (ja) * 2011-12-28 2017-03-30 東洋紡株式会社 液晶表示装置、偏光板及び偏光子保護フィルム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4888853B2 (ja) 2009-11-12 2012-02-29 学校法人慶應義塾 液晶表示装置の視認性改善方法、及びそれを用いた液晶表示装置
JP4962661B2 (ja) 2010-06-22 2012-06-27 東洋紡績株式会社 液晶表示装置、偏光板および偏光子保護フィルム
US10175494B2 (en) * 2011-05-18 2019-01-08 Toyobo Co., Ltd. Polarizing plate suitable for liquid crystal display device capable of displaying three-dimensional images, and liquid crystal display device
EP2711765B1 (en) 2011-05-18 2018-07-04 Toyobo Co., Ltd. Liquid crystal display device, use of polarizer, use of protective film
CN105359011A (zh) * 2013-07-01 2016-02-24 日本瑞翁株式会社 光学用膜及其制造方法
WO2018101204A1 (ja) * 2016-11-30 2018-06-07 日本ゼオン株式会社 偏光板、及び、偏光板の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325335A (ja) * 1996-06-03 1997-12-16 Sony Corp 液晶表示装置およびその製造方法
JP2002365615A (ja) * 2001-06-05 2002-12-18 Fuji Photo Film Co Ltd 液晶セルの製造方法
JP2004029660A (ja) * 2002-06-28 2004-01-29 Konica Minolta Holdings Inc 光学フィルムの製造方法、光学フィルム、光学フィルムを有する偏光板及び表示装置
JP2006123513A (ja) * 2004-09-29 2006-05-18 Konica Minolta Opto Inc セルロースエステルフィルムの製造方法、セルロースエステルフィルム、光学フィルム、偏光板及び液晶表示装置
JP2006297914A (ja) * 2005-03-25 2006-11-02 Fuji Photo Film Co Ltd ポリマーフィルム
JP2008145692A (ja) * 2006-12-08 2008-06-26 Nitto Denko Corp 偏光板用接着剤、偏光板、その製造方法、光学フィルムおよび画像表示装置
JP2008230036A (ja) * 2007-03-20 2008-10-02 Fujifilm Corp 保護フィルム、及びその製造方法、偏光板、並びに液晶表示装置
JP2010039418A (ja) * 2008-08-08 2010-02-18 Konica Minolta Opto Inc 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び画像表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040002796A (ko) * 2002-06-28 2004-01-07 후지 샤신 필름 가부시기가이샤 편광판 점착방법 및 그 장치
US20040160566A1 (en) * 2003-02-17 2004-08-19 Shinichi Kawabe Liquid crystal display panel with fluid control wall
JP2005104148A (ja) 2003-09-11 2005-04-21 Fuji Photo Film Co Ltd セルロースアシレートフィルム及び溶液製膜方法
US20060069192A1 (en) 2004-09-29 2006-03-30 Konica Minolta Opto, Inc. Method for manufacturing cellulose ester film, and cellulose ester film, optical film, polarizing plate and liquid crystal display device using the same
JP2007304559A (ja) 2006-04-14 2007-11-22 Konica Minolta Opto Inc 偏光散乱異方性を有する偏光板保護フィルム、それを用いた偏光板及び液晶表示装置
JP4935393B2 (ja) 2007-02-07 2012-05-23 コニカミノルタオプト株式会社 反射防止フィルム、及びそれを用いた偏光板、表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325335A (ja) * 1996-06-03 1997-12-16 Sony Corp 液晶表示装置およびその製造方法
JP2002365615A (ja) * 2001-06-05 2002-12-18 Fuji Photo Film Co Ltd 液晶セルの製造方法
JP2004029660A (ja) * 2002-06-28 2004-01-29 Konica Minolta Holdings Inc 光学フィルムの製造方法、光学フィルム、光学フィルムを有する偏光板及び表示装置
JP2006123513A (ja) * 2004-09-29 2006-05-18 Konica Minolta Opto Inc セルロースエステルフィルムの製造方法、セルロースエステルフィルム、光学フィルム、偏光板及び液晶表示装置
JP2006297914A (ja) * 2005-03-25 2006-11-02 Fuji Photo Film Co Ltd ポリマーフィルム
JP2008145692A (ja) * 2006-12-08 2008-06-26 Nitto Denko Corp 偏光板用接着剤、偏光板、その製造方法、光学フィルムおよび画像表示装置
JP2008230036A (ja) * 2007-03-20 2008-10-02 Fujifilm Corp 保護フィルム、及びその製造方法、偏光板、並びに液晶表示装置
JP2010039418A (ja) * 2008-08-08 2010-02-18 Konica Minolta Opto Inc 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び画像表示装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017062503A (ja) * 2011-12-28 2017-03-30 東洋紡株式会社 液晶表示装置、偏光板及び偏光子保護フィルム
WO2014068802A1 (ja) * 2012-11-02 2014-05-08 コニカミノルタ株式会社 光学フィルムおよび光学フィルムの製造方法、偏光板および液晶表示装置
CN104755972A (zh) * 2012-11-02 2015-07-01 柯尼卡美能达株式会社 光学膜及光学膜的制造方法、偏振片及液晶显示装置
JPWO2014068802A1 (ja) * 2012-11-02 2016-09-08 コニカミノルタ株式会社 光学フィルムおよび光学フィルムの製造方法、偏光板および液晶表示装置
CN104755972B (zh) * 2012-11-02 2018-01-23 柯尼卡美能达株式会社 光学膜及光学膜的制造方法、偏振片及液晶显示装置
WO2015046225A1 (ja) * 2013-09-30 2015-04-02 富士フイルム株式会社 偏光板および画像表示装置
JPWO2015046225A1 (ja) * 2013-09-30 2017-03-09 富士フイルム株式会社 偏光板および画像表示装置
US9989675B2 (en) 2013-09-30 2018-06-05 Fujifilm Corporation Polarizing plate and image display device
JP2016031533A (ja) * 2014-07-25 2016-03-07 住友化学株式会社 偏光板の製造方法
JP2021002052A (ja) * 2014-07-25 2021-01-07 住友化学株式会社 偏光板の製造方法
JP2016224423A (ja) * 2015-05-26 2016-12-28 住友化学株式会社 偏光板の製造方法

Also Published As

Publication number Publication date
JPWO2010113547A1 (ja) 2012-10-04
US9250359B2 (en) 2016-02-02
US20120015169A1 (en) 2012-01-19
JP5532046B2 (ja) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5532046B2 (ja) ハードコートフィルムの製造方法及び液晶パネルの製造方法
KR101814207B1 (ko) 수지 필름 및 그 제조 방법, 편광판 및 액정 표시 장치
JP5023837B2 (ja) セルロースエステルフィルム、セルロースエステルフィルムの製造方法、それを用いた偏光板、及び液晶表示装置
JP4827840B2 (ja) セルロース混合エステルフィルムおよびその製造方法
TW201347993A (zh) 偏光板及液晶顯示裝置
JP4972797B2 (ja) 光学フィルム、その製造方法、偏光板及び液晶表示装置
JP5348832B2 (ja) 光学フィルムおよびその製造方法、偏光板、光学補償フィルム、反射防止フィルム、並びに液晶表示装置
JP5401987B2 (ja) セルロースアシレートフィルムの製造方法、セルロースアシレートフィルム、偏光板及び液晶表示装置
JP5206554B2 (ja) 光学フィルムの製造方法、光学フィルム及び光学フィルムの製造装置
JP5093227B2 (ja) 光学フィルム、光学フィルムの製造方法、偏光板及び液晶表示装置
JP4747985B2 (ja) 光学フィルム、それを用いた偏光板及び液晶表示装置
KR101314030B1 (ko) 광학 필름, 및 이를 이용한 편광판 및 액정 표시 장치
JP5458527B2 (ja) 光学フィルムの製造方法
JP2007313754A (ja) セルロースエステルフィルムおよびその製造方法、並びに、偏光板、光学補償フィルム、反射防止フィルム、および、液晶表示装置
JP5018372B2 (ja) 樹脂フィルムの製造方法
JP2008080691A (ja) セルロースアシレートフィルムの製造方法、セルロースアシレートフィルム、偏光板及び液晶表示装置
JP2008087398A (ja) セルロースアシレートフィルムの製造方法、セルロースアシレートフィルム、偏光板及び液晶表示装置
JP2012215706A (ja) セルロースアシレートフィルム、偏光板及び液晶表示装置
JP2007056093A (ja) ディスプレー用光学セルロースエステルフィルムの製造方法、ディスプレー用光学セルロースエステルフィルム、偏光板及び液晶表示装置
JP2008238535A (ja) 樹脂フィルムの製造方法、セルロースアシレートフィルム、偏光板及び液晶表示装置
JP2008143873A (ja) ホスホナイト化合物、その精製方法、それを用いたセルロースエステルフィルム、偏光板及び液晶表示装置
JP5012497B2 (ja) 光学フィルム、光学フィルムの製造方法、それを用いた偏光板、及び液晶表示装置
JP2009258218A (ja) 偏光板、その製造方法および液晶表示装置
JP5381269B2 (ja) 光学フィルム、光学フィルムの製造方法、偏光板及び液晶表示装置
WO2012056665A1 (ja) 光学フィルムの製造方法、光学フィルム、光学フィルムを用いた偏光板、及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758324

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011507054

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13259104

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758324

Country of ref document: EP

Kind code of ref document: A1