WO2010113439A1 - 車両 - Google Patents
車両 Download PDFInfo
- Publication number
- WO2010113439A1 WO2010113439A1 PCT/JP2010/002140 JP2010002140W WO2010113439A1 WO 2010113439 A1 WO2010113439 A1 WO 2010113439A1 JP 2010002140 W JP2010002140 W JP 2010002140W WO 2010113439 A1 WO2010113439 A1 WO 2010113439A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- acceleration
- target value
- value
- control device
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62K—CYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
- B62K11/00—Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
- B62K11/007—Automatic balancing machines with single main ground engaging wheel or coaxial wheels supporting a rider
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/16—Single-axle vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/20—Drive modes; Transition between modes
- B60L2260/34—Stabilising upright position of vehicles, e.g. of single axle vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to a vehicle.
- the vehicle is driven while maintaining the inverted state of the vehicle body by controlling the operation of the vehicle body and driving wheels according to the operation input amount of the steering device by the driver.
- the driver commands the traveling target in the front-rear direction using the steering device, but the steering device is complicated and cannot be operated intuitively, and the traveling target is easily set. It can be difficult.
- the operation amount of the control device and the front-rear travel command value that enable intuitive and simple operation without requiring technology or experience. It is desirable that the relationship is set appropriately. In order to allow the driver to perform simple and intuitive maneuvering and to simplify the vehicle system, it is desirable that the number of maneuvering devices is small and simple. For example, if the vehicle has a means by which the driver can quantitatively instruct the traveling target such as the traveling direction and speed of the vehicle and the acceleration and deceleration during acceleration and braking with one control device. The driver can steer the vehicle by a simple and intuitive operation.
- the operation amount of the control device when the operation amount of the control device is made to correspond to the “speed” of the vehicle, it is difficult to adjust the acceleration corresponding to the rate of change of the operation amount, and the driver may not be able to achieve the acceleration state or feeling of acceleration desired by the driver. is there. Further, since the operation for stopping the vehicle corresponds to setting the input value to zero, that is, not inputting, the driver may feel uncomfortable performing “do nothing” as a braking operation. is there. In particular, in the case of an inverted type vehicle, it is necessary to adjust the vehicle body posture according to the acceleration. Therefore, if the target value of acceleration is unstable, the vehicle body posture may be disturbed, resulting in poor ride comfort.
- the operation of stopping the vehicle corresponds to the operation of setting the integral value of acceleration to zero, so that the driver stops the vehicle.
- the driver may feel uncomfortable performing “do nothing” while driving.
- the vehicle speed is limited by a predetermined value, it is necessary to switch the acceleration to zero at the time of limitation, and the driver may feel uncomfortable at that time.
- the running performance greatly changes depending on the slope of the road surface and the unevenness, and the weight of the occupant and the load, Maneuverability and usability deteriorate.
- this effect is significant in the case of a single-seater ultra-compact car.
- the present invention solves the problems of the conventional vehicle, and accelerates and brakes the vehicle with the vehicle acceleration determined according to the operation amount of the control device and corrected according to the time history of the operation amount. Accordingly, it is an object to provide a vehicle that can realize an appropriate front-rear traveling state according to the amount of operation of the operator and can be easily and intuitively operated with a simple control device.
- the driving wheel attached to the vehicle body rotatably, the steering device operated by the operator, and the driving torque applied to the driving wheel are controlled to control the posture of the vehicle body.
- a vehicle control device that controls travel according to the operation amount of the control device the vehicle control device determines vehicle acceleration according to the operation amount, and determines the determined vehicle acceleration to the operation amount.
- the value corrected according to the time history is set as the target value of vehicle acceleration.
- the vehicle control device further determines a vehicle acceleration according to an operation direction and an operation amount of the steering device and a vehicle running state.
- the vehicle control device further includes an acceleration corresponding to an operation amount when the vehicle stops or moves forward when the operation direction of the control device is a predetermined direction.
- the deceleration corresponding to the amount of operation is set as the vehicle acceleration target value, and when the operating direction of the control device is opposite to the predetermined direction, The acceleration according to the operation amount is set as the target value of the vehicle acceleration, and the deceleration according to the operation amount is set as the target value of the vehicle acceleration when the vehicle moves forward.
- the vehicle control device further determines a travel mode as one of forward, reverse, or stop mode according to the time history of the operation amount, and the vehicle according to the determined travel mode. Limit acceleration.
- the vehicle control device further restricts backward acceleration when the traveling mode is the forward mode, and forwards when the traveling mode is the reverse mode.
- the travel mode is switched from forward to reverse and from reverse to forward only when no external force or external torque is applied to the control device and the vehicle speed is a predetermined value or less. Allow.
- the vehicle control device further corrects the vehicle acceleration according to the vehicle speed.
- the vehicle control device further corrects the vehicle acceleration by an amount proportional to the square of the vehicle speed.
- the vehicle control device further reduces the vehicle deceleration by an upper limit value of the vehicle deceleration proportional to the vehicle speed when the vehicle speed is equal to or less than a predetermined threshold (threshold value). Restrict.
- the vehicle control device determines a predetermined vehicle deceleration when no external force or external torque is applied to the control device.
- control device can be translated in a direction perpendicular to the rotation axis of the drive wheel, or can be rotated around a straight line parallel to the rotation axis of the drive wheel.
- the vehicle control device determines vehicle acceleration according to the position or rotation angle of the input means.
- the vehicle control device further applies a drive torque corresponding to the target value of the vehicle acceleration to the drive wheels.
- the vehicle control device further responds to a difference between a value obtained by multiplying a target value of the vehicle acceleration by a time integral with a predetermined constant and a rotational angular velocity of the drive wheel. Apply drive torque to the drive wheels.
- Still another vehicle of the present invention further includes an active weight portion movably attached to the vehicle body, and the vehicle control device controls the position of the active weight portion so that the vehicle The relative position of the center of gravity of the vehicle body with respect to the ground point of the driving wheel is moved by an amount corresponding to the target value of acceleration.
- the vehicle acceleration can be commanded by an intuitive maneuvering method, and the operator can easily operate.
- the vehicle deceleration can be easily adjusted during braking.
- the driver can be given a natural control feeling, and the vehicle can be surely stopped even when the driver reaches a state where input is impossible, thereby improving safety. Can do.
- the configuration of the control device can be simplified and the vehicle can be controlled intuitively.
- an appropriate driving torque can be applied to the driving wheels.
- FIG. 1 is a schematic diagram showing a configuration of a vehicle in a first embodiment of the present invention. It is a block diagram which shows the structure of the vehicle system in the 1st Embodiment of this invention. It is the schematic which shows the structure of the other example of the vehicle in the 1st Embodiment of this invention. It is a block diagram which shows the structure of the other example of the vehicle system in the 1st Embodiment of this invention. It is a flowchart which shows operation
- FIG. 1 is a schematic diagram showing the configuration of a vehicle in the first embodiment of the present invention
- FIG. 2 is a block diagram showing the configuration of the vehicle system in the first embodiment of the present invention.
- (a) is a side view of the vehicle
- (b) is a side view of the joystick
- (c) is a top view of the joystick.
- reference numeral 10 denotes a vehicle according to the present embodiment, which includes a body portion 11, a drive wheel 12, a support portion 13, and a riding portion 14 on which an occupant 15 rides. Can be tilted. Then, the posture of the vehicle body is controlled similarly to the posture control of the inverted pendulum. In the example shown in FIG. 1A, the vehicle 10 can move forward in the right direction and move backward in the left direction.
- the drive wheel 12 is rotatably supported with respect to the support portion 13 which is a part of the vehicle body, and is driven by a drive motor 52 as a drive actuator.
- the rotation axis of the drive wheel 12 exists in a direction perpendicular to the plane shown in FIG. 1A, and the drive wheel 12 rotates around the rotation axis.
- the drive wheel 12 may be singular or plural, but in the case of plural, the drive wheels 12 are arranged on the same axis in parallel. In the present embodiment, description will be made assuming that there are two drive wheels 12. In this case, each drive wheel 12 is independently driven by an individual drive motor 52.
- the drive actuator for example, a hydraulic motor, an internal combustion engine, or the like can be used, but here, the description will be made assuming that the drive motor 52 that is an electric motor is used.
- the main body 11 which is a part of the vehicle body is supported from below by the support 13 and is positioned above the drive wheel 12. And, in the main body part 11, the riding part 14 functioning as an active weight part can be translated relative to the main body part 11 in the longitudinal direction of the vehicle 10, in other words, the tangential direction of the vehicle body rotation circle It is attached so that it can move relatively.
- the active weight portion has a certain amount of mass and translates with respect to the main body portion 11, that is, by moving it back and forth, thereby actively correcting the position of the center of gravity of the vehicle 10.
- the active weight portion does not necessarily have to be the riding portion 14.
- the active weight portion may be a device in which a heavy peripheral device such as a battery is attached to the main body portion 11 so as to be translatable. (Weight), a device in which a dedicated weight member such as a balancer is attached to the main body 11 so as to be translatable may be used.
- the riding part 14 on which the occupant 15 rides functions as an active weight part.
- the occupant 15 does not necessarily have to be on the riding part 14.
- the occupant 15 may not be on the riding section 14, or cargo may be loaded instead of the occupant 15.
- the boarding part 14 is the same as a seat used for automobiles such as passenger cars and buses, and includes a footrest part, a seat surface part, a backrest part, and a headrest, and is attached to the main body part 11 via a moving mechanism (not shown). It has been.
- the moving mechanism includes a low-resistance linear moving mechanism such as a linear guide device, and an active weight motor 82 as an active weight actuator, and the active weight motor 82 drives the riding section 14 to It is made to move back and forth in the direction of travel with respect to the part 11.
- a low-resistance linear moving mechanism such as a linear guide device
- an active weight motor 82 as an active weight actuator
- the active weight motor 82 drives the riding section 14 to It is made to move back and forth in the direction of travel with respect to the part 11.
- the active weight actuator for example, a hydraulic motor, a linear motor, or the like can be used.
- the active weight motor 82 that is a rotary electric motor is used.
- the linear guide device includes, for example, a guide rail attached to the main body 11, a carriage attached to the riding part 14 and sliding along the guide rail, a ball, a roller, and the like interposed between the guide rail and the carriage.
- Rolling elements In the guide rail, two track grooves are formed linearly along the longitudinal direction on the left and right side surfaces thereof.
- the cross section of the carriage is formed in a U-shape, and two track grooves are formed on the inner sides of the two opposing side surfaces so as to face the track grooves of the guide rail.
- the rolling elements are incorporated between the raceway grooves, and roll in the raceway grooves with the relative linear motion of the guide rail and the carriage.
- the carriage is formed with a return passage that connects both ends of the raceway groove, and the rolling elements circulate through the raceway groove and the return passage.
- the linear guide device includes a brake or a clutch that fastens the movement of the linear guide device.
- a brake or a clutch that fastens the movement of the linear guide device.
- An input device 30 including a joystick 31 as a target travel state acquisition device is disposed beside the boarding unit 14.
- the occupant 15 controls the vehicle 10 by operating a joystick 31 as a control device, that is, inputs a travel command such as acceleration, deceleration, turning, in-situ rotation, stop, and braking of the vehicle 10. ing.
- a travel command such as acceleration, deceleration, turning, in-situ rotation, stop, and braking of the vehicle 10. ing.
- the travel command is acceleration, deceleration, stop, and braking of the vehicle 10 will be described.
- the joystick 31 includes a base 31a and a lever 31b as input means attached to the base 31a so as to be tiltable. Then, the occupant 15 as a pilot inputs a travel command by tilting the lever 31b back and forth as indicated by arrows in FIGS. 1 (b) and 1 (c). Then, the joystick 31 measures a state amount corresponding to the amount of inclination before and after the lever 31b, and evaluates the measured value as an operation amount.
- the lever 31b is urged by a spring member for returning to a neutral state (not shown), and automatically releases the neutral state corresponding to zero input when the operator releases the hand (FIGS. 1B and 1C). To the base 31a as shown in FIG.
- the lever 31b is not tiltable with respect to the base 31a but may be translatable. In other words, the travel command may be input by moving back and forth without tilting back and forth.
- the joystick 31 is disposed on a remote controller (not shown), and the amount of operation of the lever 31b is disposed on the vehicle 10 by wire or wireless from the remote controller. It is transmitted to the receiving device.
- the operator of the joystick 31 may be a person other than the occupant 15.
- the vehicle system has a control ECU (Electronic Control Unit) 20 as a vehicle control device, and the control ECU 20 includes a main control ECU 21, a drive wheel control ECU 22, and an active weight control ECU 23.
- the control ECU 20, main control ECU 21, drive wheel control ECU 22 and active weight control ECU 23 include calculation means such as a CPU and MPU, storage means such as a magnetic disk and a semiconductor memory, input / output interfaces, and the like.
- the computer system controls the operation.
- the computer system is disposed in the main body 11, but may be disposed in the support portion 13 or the riding portion 14.
- the main control ECU 21, the drive wheel control ECU 22, and the active weight control ECU 23 may be configured separately or may be configured integrally.
- the main control ECU 21 functions as a part of the drive wheel control system 50 that controls the operation of the drive wheel 12 together with the drive wheel control ECU 22, the drive wheel sensor 51, and the drive motor 52.
- the drive wheel sensor 51 includes a resolver, an encoder, and the like, functions as a drive wheel rotation state measuring device, detects a drive wheel rotation angle and / or rotation angular velocity indicating a rotation state of the drive wheel 12, and transmits it to the main control ECU 21. To do.
- the main control ECU 21 transmits a drive torque command value to the drive wheel control ECU 22, and the drive wheel control ECU 22 supplies an input voltage corresponding to the received drive torque command value to the drive motor 52.
- the drive motor 52 applies drive torque to the drive wheels 12 in accordance with the input voltage, thereby functioning as a drive actuator.
- the main control ECU 21 functions as a part of the active weight part control system 80 that controls the operation of the riding part 14 that is the active weight part together with the active weight part control ECU 23, the active weight part sensor 81, and the active weight part motor 82.
- the active weight part sensor 81 is composed of an encoder or the like, functions as an active weight part movement state measuring device, detects the active weight part position and / or movement speed indicating the movement state of the riding part 14, and transmits it to the main control ECU 21. To do. Then, the main control ECU 21 transmits the active weight part thrust command value to the active weight part control ECU 23, and the active weight part control ECU 23 sends the input voltage corresponding to the received active weight part thrust command value to the active weight part motor. 82.
- the active weight motor 82 applies a thrust force that translates the riding section 14 to the riding section 14 according to the input voltage, thereby functioning as an active weight actuator.
- the main control ECU 21 functions as a part of the vehicle body control system 40 that controls the posture of the vehicle body together with the drive wheel control ECU 22, the active weight unit control ECU 23, the vehicle body inclination sensor 41, the drive motor 52, and the active weight unit motor 82.
- the vehicle body tilt sensor 41 includes an acceleration sensor, a gyro sensor, and the like, and functions as a vehicle body tilt state measuring device.
- the vehicle body tilt sensor 41 detects a vehicle body tilt angle and / or tilt angular velocity indicating the tilt state of the vehicle body, and transmits the detected vehicle body tilt angle to the main control ECU 21.
- the main control ECU 21 transmits a drive torque command value to the drive wheel control ECU 22 and transmits an active weight portion thrust command value to the active weight portion control ECU 23.
- each sensor may acquire a plurality of state quantities.
- an acceleration sensor and a gyro sensor may be used together as the vehicle body tilt sensor 41, and the vehicle body tilt angle and the vehicle body tilt angular velocity may be determined from the measured values of both.
- the operation amount of the lever 31b is input to the main control ECU 21 as a travel command from the joystick 31 of the input device 30. Then, the main control ECU 21 transmits a drive torque command value to the drive wheel control ECU 22 and transmits an active weight portion thrust command value to the active weight portion control ECU 23.
- the main control ECU 21 treats the input rate obtained by normalizing the input amount with the maximum input amount as the input amount. Then, the forward tilt or movement of the lever 31b, that is, the forward input is represented by a positive value, and the backward tilt or movement of the lever 31b, that is, the backward input is represented by a negative value.
- the maximum forward input amount is represented as 1, and the backward maximum input amount is represented as -1.
- the uniaxial joystick 31 is used in order to realize intuitive control of the operator by a simple device, but other control devices may be used.
- a throttle lever for inputting by grasping the lever may be provided, and the target value of the vehicle acceleration may be determined according to the rotation direction and the rotation amount.
- the vehicle system determines the vehicle acceleration according to the operation amount of the joystick 31, and sets a value obtained by correcting the determined vehicle acceleration according to the time history of the operation amount as a target value of the vehicle acceleration.
- FIG. 3 is a schematic diagram showing the configuration of another example of the vehicle according to the first embodiment of the present invention
- FIG. 4 is a block diagram showing the configuration of another example of the vehicle system according to the first embodiment of the present invention. It is. 3A is a rear view, and FIG. 3B is a side view.
- the vehicle 10 in the present embodiment may have three or more wheels. That is, the vehicle 10 includes, for example, a three-wheeled vehicle having one front wheel and two rear wheels, a three-wheeled vehicle having two front wheels and one rear wheel, and two front wheels and rear wheels. However, it may be of any kind as long as it has three or more wheels.
- the vehicle 10 is disposed in front of the vehicle body and has one wheel 12 ⁇ / b> F that functions as a steering wheel, and the rear of the vehicle body. Only an example of a three-wheeled vehicle having two left and right rear wheels 12L and 12R that are disposed and function as drive wheels 12 will be described.
- the vehicle 10 changes the camber angles of the left and right wheels 12L and 12R by the link mechanism 60 and tilts the vehicle body including the riding portion 14 and the main body portion 11 toward the turning inner wheel side. That is, by tilting the vehicle body in the lateral direction (left-right direction), it is possible to improve the turning performance and ensure the comfort of the occupant 15, but the vehicle body is not necessarily tilted in the lateral direction. It need not be something that can be done.
- posture control such as posture control of an inverted pendulum is not performed. That is, the posture control in the front-rear direction is not performed.
- the wheels 12F are connected to the main body 11 via a front wheel fork 17 which is a part of a suspension device (suspension device).
- the suspension device is a device similar to a suspension device for a front wheel used in, for example, general motorcycles, bicycles, etc.
- the front wheel fork 17 is, for example, a telescopic type fork with a built-in spring.
- the wheel 12F as a steered wheel changes the rudder angle, and thereby the traveling direction of the vehicle 10 changes.
- a steering portion 77 is disposed above the front end of the main body 11, and the rotation shaft of the front wheel fork 17 is rotatably supported by the steering portion 77.
- the steering section 77 includes a steering actuator 71 as a steering actuator and a steering angle sensor 72 as a steering amount detector.
- the steering actuator 71 rotates the rotation shaft of the front wheel fork 17 in response to a travel command from the joystick 31, and the wheel 12F as the steering wheel changes the steering angle. That is, the steering of the vehicle 10 is performed by so-called by-wire.
- the steering angle sensor 72 can detect the steering angle of the wheel 12F, that is, the steering amount of the steering device, by detecting the angle change of the rotation shaft of the front wheel fork 17.
- the vehicle 10 in the example shown in FIG. 3 has a vehicle system as shown in FIG.
- the control ECU 20 since the control ECU 20 does not perform the posture control in the front-rear direction, the control ECU 20 does not include the active weight unit control ECU 23 but instead includes the steering control ECU 24.
- the main control ECU 21 transmits a steering command value from the joystick 31 to the steering control ECU 24 in accordance with the travel command, and the steering control ECU 24 supplies an input voltage corresponding to the received steering command value to the steering actuator 71.
- the active weight sensor 81 is also omitted. Then, the steering angle detected by the steering angle sensor 72 is transmitted to the main control ECU 21.
- the vehicle body control system 40 includes a lateral acceleration sensor 42.
- the lateral acceleration sensor 42 is a sensor composed of a general acceleration sensor, a gyro sensor, or the like, and detects the lateral acceleration of the vehicle 10.
- FIG. 5 is a flowchart showing the operation of the running and posture control process in the first embodiment of the present invention.
- state quantities and parameters are represented by the following symbols.
- ⁇ W Drive wheel rotation angle [rad]
- ⁇ 1 Body tilt angle (vertical axis reference) [rad]
- ⁇ S riding part position (active weight part position) [m]
- g Gravity acceleration [m / s 2 ]
- R W Driving wheel contact radius [m]
- m 1 Body mass [kg]
- m S Mass of riding part (mass of active weight part: including load) [kg]
- l 1 Body center-of-gravity distance (from axle) [m]
- ⁇ Vehicle acceleration [m / s 2 ]
- V Vehicle speed [m / s]
- the main control ECU 21 acquires the steering operation amount of the occupant 15 (step S3).
- the occupant 15 acquires the operation amount of the joystick 31 that is operated to input a travel command such as acceleration, deceleration, stop, and braking of the vehicle 10.
- the main control ECU 21 executes a vehicle acceleration target value determination process (step S4), and determines a vehicle acceleration target value ⁇ * based on the obtained operation amount of the joystick 31 and the like. Specifically, a value proportional to the amount of operation of the lever 31b in the front-rear direction is set as a target value for the front-rear vehicle acceleration.
- the main control ECU 21 calculates the target value of the drive wheel rotational angular velocity from the target value of the vehicle acceleration (step S5).
- a target value of vehicle acceleration is integrated over time, and a value obtained by dividing by a predetermined driving wheel grounding radius is set as a target value of driving wheel rotation angular velocity.
- the main control ECU 21 determines a target value for the vehicle body inclination angle and the riding section position (step S6). Specifically, the target value of the riding section position is determined from the target value of the vehicle acceleration by the following formula.
- ⁇ S, Max, f and ⁇ S, Max, r are the riding section movable limit positions, respectively, the distance from the reference position of the riding section 14 to the movable range leading edge, and the movable range trailing edge Shows the distance.
- the target value of the vehicle body tilt angle is determined from the target value of the vehicle acceleration by the following formula.
- ⁇ S, Max, f and ⁇ S, Max, r are the vehicle body inclination angle converted values of the riding section movable limit positions ⁇ S, Max, f and ⁇ S, Max, r , respectively, and are expressed by the following equations.
- the target values of the vehicle body inclination angle and the riding section position are determined in consideration of the inertial force acting on the vehicle body along with the vehicle acceleration and the drive motor reaction torque. Then, the center of gravity of the vehicle body is moved so that these vehicle body inclination torques are canceled by the action of gravity. Specifically, when the vehicle 10 accelerates, the riding section 14 is moved forward and / or the vehicle body is tilted forward. On the other hand, when the vehicle 10 decelerates, the riding section 14 is moved backward and / or the vehicle body is tilted backward. Also, when the riding section movement reaches the limit, the body starts to tilt.
- the low-acceleration and / or low-speed traveling is handled only by the riding section movement, but part or all of the vehicle body tilt torque may be handled by the vehicle body tilt.
- the longitudinal force acting on the occupant 15 can be reduced.
- the main control ECU 21 calculates the remaining target value (step S7). That is, the target values of the drive wheel rotation angle, the vehicle body inclination angular velocity, and the riding section movement velocity are calculated by time differentiation or time integration of each target value.
- the main control ECU 21 determines the feedforward output of each actuator (step S8). Specifically, the feedforward output of the drive motor 52 is determined by the following equation.
- the feedforward output of the active weight motor 82 is determined by the following equation.
- the main control ECU 21 determines the feedback output of each actuator (step S9). Specifically, the feedback output of the drive motor 52 is determined by the following equation.
- the feedback output of the active weight motor 82 is determined by the following equation.
- each feedback gain K ** for example, a value of an optimum regulator is set in advance. Further, nonlinear feedback control such as sliding mode control may be introduced. Furthermore, as a simpler control, some of the gains excluding K W2 , K W3 and K S5 may be set to zero. Further, an integral gain may be introduced in order to eliminate the steady deviation.
- the main control ECU 21 gives a command value to each element control system (step S10), and ends the running and posture control processing. Specifically, the main control ECU 21 gives the sum of the feedforward output and the feedback output as command values to the drive wheel control ECU 22 and the active weight control ECU 23, respectively. Note that the running and posture control processing is repeatedly executed at predetermined time intervals (for example, every 100 [ ⁇ s]).
- FIG. 6 is a diagram showing state transitions in the travel mode in the first embodiment of the present invention
- FIG. 7 is a graph showing the vehicle acceleration target value and the joystick input rate in the forward mode in the first embodiment of the present invention
- FIG. 8 is a diagram showing the relationship
- FIG. 8 is a diagram showing the relationship between the vehicle acceleration target value in the reverse mode and the input rate of the joystick in the first embodiment of the present invention
- FIG. 9 is the first embodiment of the present invention.
- FIG. 10 is a flowchart showing the operation of the vehicle acceleration target value determination process in the first embodiment of the present invention.
- the main control ECU 21 first determines a vehicle speed target value (step S4-1). Specifically, the vehicle acceleration target value V * is determined by time integration of the vehicle acceleration target value. In this case, the value determined in the previous control step is used as the target value of vehicle acceleration.
- the main control ECU 21 determines a travel mode (step S4-2).
- a travel mode As shown in FIG. 6, there are three traveling modes of the vehicle 10, the forward mode, the stop mode, and the reverse mode, and the input rate U of the steering device (joystick 31) as the operation amount of the lever 31 b It is determined by the target value V * of the vehicle speed.
- the input rate U of the control device is positive when the lever 31b is tilted or moved forward, and negative when the lever 31b is tilted or moved backward.
- the lever 31b is moved forward in the stop mode.
- the vehicle 10 moves forward and the vehicle 10 moves forward.
- the lever 31b is tilted or moved backward in the stop mode, the vehicle 10 moves backward and moves backward (reverses).
- the input rate U is zero, and the target value V * of the vehicle speed is zero, the mode is changed to the stop mode. Note that there is no direct transition between the forward mode and the reverse mode.
- the main control ECU 21 determines which travel mode the occupant 15 desires between the stop, forward and reverse modes according to the history of the operation amount of the lever 31b. In this way, since the occupant 15 does not need to command the travel mode by another device, the operability for the occupant 15 is improved, and an extra input device is not required, reducing the cost and the design freedom of the riding section 14. Securement becomes easy.
- the travel mode is automatically determined.
- the travel mode may be displayed by providing a display unit so that the occupant 15 can check the current travel mode. Thereby, the misrecognition of the passenger
- a mode setting method selection unit may be provided so that it is possible to select whether to automatically switch the traveling mode between the forward mode and the reverse mode or to switch by the operation of the occupant 15 by another input device.
- the main control ECU 21 determines a vehicle acceleration target value (step S4-3), and ends the vehicle acceleration target value determination process.
- the target value ⁇ * of the vehicle acceleration is determined by the following equations (1) and (2) from the input rate U of the control device as the operation amount of the lever 31b and the travel mode.
- equation (1) is expressed as follows.
- ⁇ Max, Af is the maximum acceleration
- ⁇ Max, Df is the maximum deceleration
- V Max, f is the maximum speed. These values are all predetermined values.
- the subscript “f” represents the forward mode. The maximum acceleration, maximum deceleration, and maximum speed are set to be larger values in the forward mode than in the reverse mode.
- ⁇ EB is a deceleration at zero input
- ⁇ EB ⁇ EB ⁇ EB, 0 .
- ⁇ EB is a running resistance gain (predetermined value).
- ⁇ EB, 0 is a running resistance deceleration estimated value
- ⁇ EB, 0 ⁇ 0 + ⁇ 1
- ⁇ 0 is a rolling resistance coefficient
- ⁇ 1 is a viscous resistance coefficient.
- ⁇ Max, Ab is the maximum acceleration
- ⁇ Max, Db is the maximum deceleration
- V Max, b is the maximum velocity.
- the vehicle acceleration is determined by the input rate of the control device. Specifically, an acceleration having a magnitude proportional to the input amount in the same direction as the input direction of the input device 30 is set as a target value of the vehicle acceleration. That is, in the forward mode, the vehicle is accelerated by the front input of the input device 30 and decelerated by the rear input. Moreover, at the time of reverse drive mode, it accelerates by the back input of the input device 30, and decelerates by the front input. In this way, the occupant 15 can be easily operated by using an intuitive control method of the acceleration command.
- the vehicle acceleration is determined according to the driving mode. Specifically, for the same input amount, the target values of the speed and acceleration in the reverse mode are made smaller than the values in the forward mode. As a result, the output acceleration and speed are automatically suppressed during reverse travel, which is expected to be used at a lower speed than during forward travel, so that the vehicle 10 that facilitates reverse travel and can be handled safely can be provided.
- the vehicle acceleration is corrected according to the vehicle speed. Specifically, the target value of vehicle acceleration is reduced based on the target value of vehicle speed.
- the vehicle acceleration is reduced by a value proportional to the square of the vehicle speed.
- the reduction amount of the target value of the vehicle acceleration at the maximum speed is set to a value equal to the maximum vehicle acceleration. Thereby, speed limitation in the acceleration command can be executed easily and smoothly. Further, at the time of deceleration, reduction of the target value of vehicle acceleration is prohibited. Thereby, the controllability can be improved without deteriorating the braking performance of the vehicle 10 and the responsiveness of the occupant 15 to the braking command.
- a predetermined deceleration is given as a target value for vehicle acceleration.
- the deceleration due to running resistance is estimated from a dynamic model, and the deceleration is given according to the estimated value.
- Equation (2) is expressed as follows.
- ISA f is a deceleration at zero input
- V sh f
- f is a speed threshold value
- these values are all predetermined values set in advance.
- the subscript “f” represents the forward mode.
- ⁇ b is a deceleration at zero input
- V sh is a speed threshold value
- b is a speed threshold value
- these values are all predetermined values set in advance.
- the subscript “b” represents the reverse mode.
- the vehicle deceleration is limited according to the vehicle speed.
- the vehicle acceleration target value that accelerates in the reverse direction after braking is limited according to the travel mode. That is, in the forward mode, if the vehicle speed is less than or equal to zero, the vehicle acceleration is limited to be greater than or equal to zero. In the reverse mode, when the vehicle speed is zero or more, the vehicle acceleration is limited to zero or less. In this way, the occupant 15 can easily prevent the vehicle 10 from accelerating in the opposite direction when the occupant 15 operates the input device 30 to the braking side continuously even after braking is stopped. Can be stationary.
- the vehicle deceleration is limited according to the vehicle speed within a range where the vehicle speed is lower than a predetermined threshold. Specifically, the deceleration threshold value of the vehicle 10 is gradually decreased as the vehicle speed target value decreases. Thus, the comfort of the occupant 15 can be ensured by eliminating the phenomenon in which the deceleration changes discontinuously when the vehicle stops.
- the target value is used as the vehicle speed to be referred to.
- the vehicle acceleration target value may be determined based on the actual vehicle speed instead.
- the vehicle stop may be determined based on the actual vehicle speed.
- it may be determined that the vehicle is stopped when one of the target value and the actual value becomes zero.
- the traveling mode can be set stably.
- each value may be determined based on the actual vehicle speed.
- FIG. 11 is a diagram showing an example of the operation of the vehicle in the first embodiment of the present invention.
- the vehicle 10 is accelerated and braked at the vehicle acceleration determined according to the operation amount (input amount) of the control device and corrected according to the time history of the operation amount.
- the vehicle acceleration is determined according to the input direction (inclination direction) and the operation amount (input amount) of the control device (lever 31b) and the traveling state of the vehicle 10 (forward, reverse and stop states).
- the input direction of the control device is a predetermined direction and the vehicle 10 is stopped and moving forward, an acceleration corresponding to the input amount is given, and when the vehicle 10 is moving backward, the input amount is changed. Give deceleration.
- acceleration according to the input amount is given and the vehicle 10 is moving forward Is given a deceleration according to the input amount.
- the vehicle acceleration is limited by the travel mode determined according to the operation amount time history. Specifically, the acceleration that accelerates in the reverse direction after braking of the vehicle 10 is limited.
- the forward mode for restricting the backward movement of the vehicle 10 and the reverse mode for restricting the forward movement of the vehicle 10 only when a specific operation is performed, that is, when a specific operation input is given, between both modes. Allow transitions.
- the specific operation input is to input a specific operation input amount.
- the specific operation input amount is an operation input amount when no external force or external torque is applied to the control device.
- the vehicle acceleration is corrected according to the vehicle speed. Specifically, during vehicle acceleration, the vehicle acceleration is decreased as the vehicle speed increases. When traveling at maximum speed, the vehicle acceleration is decreased by an amount equal to the maximum vehicle acceleration. The vehicle acceleration is reduced by an amount proportional to the square of the vehicle speed. Further, during vehicle braking, the vehicle deceleration is limited when the vehicle speed is less than a predetermined threshold. The vehicle deceleration upper limit value is decreased as the vehicle speed decreases.
- the vehicle is decelerated at a predetermined vehicle deceleration.
- the running resistance of the vehicle 10 is estimated, and the deceleration is determined according to the estimated value.
- the joystick 31 as the control device includes a lever 31b as input means that can translate in a direction perpendicular to the rotation axis of the drive wheel 12 or can rotate around a straight line parallel to the rotation axis of the drive wheel 12.
- the vehicle acceleration is determined in accordance with the position or rotation angle of the lever 31b.
- the predetermined direction is the driving wheel rotation direction when the vehicle 10 is in front or forward.
- a target value of vehicle acceleration is determined according to the operation input amount, and a torque corresponding to the target value is applied to the drive wheels 12. Specifically, a value obtained by multiplying a target value of the vehicle acceleration by a predetermined constant is set as a target value of the driving wheel rotational angular velocity, and a torque having a magnitude proportional to the difference between the target value and the measured value is obtained.
- the driving wheel 12 is given.
- the relative position of the center of gravity of the vehicle body with respect to the contact point of the drive wheel 12 is moved by an amount corresponding to the vehicle acceleration.
- a riding part 14 that functions as an active weight part is provided, and the riding part 14 is relatively moved by an amount corresponding to the vehicle acceleration.
- the relationship between the operation amount of the control device and the travel command value that enables intuitive and simple control without requiring technology or experience is appropriate. It is desirable to be set to. In order to enable the driver to perform simple and intuitive maneuvering and to simplify the vehicle system, it is desirable that the number of maneuvering devices is small and simple.
- a joystick can be adopted as one of the control devices that may satisfy such requirements.
- the tilt amount of the joystick in the direction perpendicular to the rotation axis of the drive wheel is used as the front-rear operation amount
- the tilt amount of the joystick in the direction parallel to the rotation axis of the drive wheel is acquired as the left-right operation amount.
- the value proportional to the acquired front / rear operation amount is set as the front / rear travel target value
- the value proportional to the acquired left / right operation amount is determined as the turning target value
- each drive wheel is set to achieve the determined travel target value. Appropriate driving torque is added.
- the second to seventh embodiments of the present invention solve the above-mentioned problems of the conventional vehicle, include a joystick as an input device, and in a vehicle input by a driver, By acquiring the joystick tilt amount in the parallel direction as the front and rear and left and right input amounts, setting the front and rear and turning traveling state, correcting the set traveling state according to the time history, the structure of the human body,
- An object of the present invention is to provide a vehicle with high maneuverability that can realize maneuvering characteristics adapted to operating characteristics, sensory characteristics, etc., and that anyone can maneuver easily and comfortably.
- FIG. 12 is a schematic diagram showing the configuration of the vehicle according to the second embodiment of the present invention
- FIG. 13 is a block diagram showing the configuration of the vehicle system according to the second embodiment of the present invention.
- (a) is a front view of the vehicle
- (b) is a side view of the vehicle
- (c) is a side view of the joystick
- (d) is a top view of the joystick.
- the vehicle 10 has a link mechanism 60 as a vehicle body left-right tilt mechanism that tilts the vehicle body to the left and right.
- a link mechanism 60 as a vehicle body left-right tilt mechanism that tilts the vehicle body to the left and right.
- the angle that is, the camber angle
- tilting the vehicle body including the riding portion 14 and the main body portion 11 toward the turning inner wheel the turning performance can be improved and the comfort of the occupant 15 can be ensured. It has become. That is, the vehicle 10 can tilt the vehicle body in the lateral direction (left and right direction).
- the riding section 14 does not function as an active weight section and cannot translate relative to the main body section 11.
- the link mechanism 60 connects the left and right vertical link units 65 that also function as motor support members that support the drive motor 52 that applies drive force to the left and right drive wheels 12 and the upper ends of the left and right vertical link units 65.
- a lower horizontal link unit 64 that connects lower ends of the left and right vertical link units 65 to each other.
- the left and right vertical link units 65, the upper horizontal link unit 63, and the lower horizontal link unit 64 are rotatably connected.
- a support portion 13 extending in the vertical direction is rotatably connected to the center of the upper side link unit 63 and the center of the lower side link unit 64.
- Reference numeral 61 denotes a link motor as a tilting actuator, which includes a cylindrical body as a stator and a rotating shaft as a rotor rotatably attached to the body. Is fixed to the upper lateral link unit 63, and the rotating shaft is fixed to the support portion 13. The body may be fixed to the support portion 13 and the rotation shaft may be fixed to the upper lateral link unit 63.
- the link motor 61 is driven to rotate the rotating shaft with respect to the body, the support portion 13 rotates with respect to the upper lateral link unit 63, and the link mechanism 60 bends and stretches.
- the rotational axis of the link motor 61 is coaxial with the rotational axis of the connecting portion between the support portion 13 and the upper lateral link unit 63. As a result, the link mechanism 60 can be bent and extended to incline the main body 11.
- the occupant 15 controls the vehicle 10 by operating a joystick 31 as a control device, that is, inputs a travel command such as acceleration, deceleration, turning, in-situ rotation, stop, and braking of the vehicle 10. It has become.
- the occupant 15 as a pilot inputs a travel command by tilting the lever 31b back and forth and left and right as indicated by arrows in FIGS. 12 (c) and 12 (d). Then, the joystick 31 is in front of and behind the lever 31b, that is, in a direction perpendicular to the rotation axis of the drive wheel 12 (x-axis direction) and left and right, that is, in a direction parallel to the rotation axis of the drive wheel 12 (y-axis direction). A state amount corresponding to the amount of inclination is measured, and the measured value is transmitted to the main control ECU 21 shown in FIG. 13 as a front / rear input amount (front / rear operation amount) and a left / right input amount (left / right operation amount) input by the operator. To do.
- the lever 31b is biased by a spring member for returning to a neutral state (not shown), and when the operator releases it and releases it, the lever 31b automatically returns to a neutral state corresponding to zero input. As a result, even when the piloting operation cannot be continued due to an unexpected situation of the driver, the vehicle 10 can be appropriately controlled.
- the x-axis is perpendicular to the rotation axis of the drive wheels 12, the y-axis is parallel, and the z is vertically upward. It is based on the coordinate system that takes the axis.
- the vehicle body tilt sensor 41 includes an acceleration sensor, a gyro sensor, and the like, and functions as a vehicle body tilt state measuring device.
- the vehicle body tilt sensor 41 detects a vehicle body tilt angle and / or tilt angular velocity indicating the tilt state of the vehicle body, and transmits the detected vehicle body tilt angle to the main control ECU 21. Then, the main control ECU 21 transmits a drive torque command value to the drive wheel control ECU 22.
- the main control ECU 21 transmits a link torque command value to the link control ECU 25, and the link control ECU 25 supplies an input voltage corresponding to the received link torque command value to the link motor 61.
- the link motor 61 applies a driving torque to the link mechanism 60 according to the input voltage, thereby functioning as an actuator for tilting.
- the operation amount of the lever 31b is input to the main control ECU 21 as a travel command from the joystick 31 of the input device 30.
- the main control ECU 21 transmits a drive torque command value to the drive wheel control ECU 22 and transmits a link torque command value to the link control ECU 25.
- the main control ECU 21 treats the input rate obtained by normalizing the operation amount with the maximum operation amount as the input amount.
- the forward inclination or movement of the lever 31b that is, the forward input is represented by a positive value
- the backward inclination or movement of the lever 31b that is, the backward input is negative. Represented by the value of.
- the maximum forward input amount is represented as 1, and the backward maximum input amount is represented as -1.
- the lever 31b is tilted or moved to the left, that is, the input to the left is represented by a positive value, and to the right of the lever 31b. Inclination or movement, i.e., input to the right is represented by a negative value.
- the maximum input amount to the left is represented as 1, and the maximum input amount to the right is represented as -1.
- FIG. 14 is a flowchart showing the operation of the running and posture control processing in the second embodiment of the present invention.
- state quantities, parameters, and the like are represented by the following symbols.
- ⁇ WR Right drive wheel rotation angle [rad]
- ⁇ WL Left drive wheel rotation angle [rad]
- ⁇ W average driving wheel rotation angle [rad]
- ⁇ W ( ⁇ WR + ⁇ WL ) / 2
- ⁇ W Driving wheel rotation angle left / right difference [rad]
- ⁇ 1 Body tilt roll angle (vertical axis reference) [rad]
- ⁇ L Link torque [Nm]
- ⁇ WR Right drive torque [Nm]
- ⁇ WL Left drive torque [Nm]
- ⁇ W Total driving torque [Nm]
- ⁇ W ⁇ WR ⁇ WL g: Gravity acceleration [m / s 2
- the left and right drive wheel rotation angles or rotation angular velocities are acquired from the drive wheel sensor 51, and the vehicle body tilt pitch angle or pitch angular velocity and the vehicle body tilt roll angle or roll angular velocity are acquired from the vehicle body tilt sensor 41.
- the main control ECU 21 calculates the remaining state quantity (step S12).
- the remaining state quantity is calculated by time differentiation or time integration of the obtained state quantity.
- the acquired state quantities are the drive wheel rotation angle, the vehicle body tilt pitch angle, and the vehicle body tilt roll angle
- the rotational angular velocity, the pitch angular velocity, and the roll angular velocity can be obtained by time differentiation.
- the acquired state quantities are the rotational angular velocity, the pitch angular velocity, and the roll angular velocity
- the driving wheel rotational angle, the vehicle body tilt pitch angle, and the vehicle body tilt roll angle can be obtained by time integration of these. .
- the main control ECU 21 acquires the pilot operation amount (step S13).
- the operator acquires the operation amount of the joystick 31 that is operated to input a travel command such as acceleration, deceleration, turning, on-site rotation, stop, and braking of the vehicle 10.
- the main control ECU 21 executes a vehicle acceleration target value determination process (step S14), and determines a vehicle acceleration target value of the vehicle 10 based on the obtained operation amount of the joystick 31 and the like.
- the main control ECU 21 calculates the target value of the drive wheel rotational angular velocity from the vehicle acceleration target value (step S15). Specifically, the target value of the average driving wheel rotation angular velocity is determined by the following equation.
- ⁇ t is a control processing cycle (data acquisition interval), which is a predetermined value.
- the superscript * represents the target value
- the superscript (n) represents the nth data in the time series
- one dot on the symbol is 1
- the value obtained by differentiating the floor time, that is, the speed, and the two dots on the symbol represent the value obtained by differentiating the second floor time, that is, the acceleration.
- the subscript X represents front and rear (x-axis direction)
- the subscript Y represents left and right (y-axis direction)
- the subscript d represents a steering command value. .
- the target value of the left and right difference of the rotational angular speed of the drive wheel is determined by the following formula.
- the target value of the drive wheel rotational angular velocity corresponding to the vehicle acceleration target value is determined. That is, the average driving wheel rotational angular velocity target value, which is the target of the average rotational angular velocity of the left and right driving wheels, is determined by time integration of the vehicle longitudinal acceleration target value. Further, a driving wheel rotational angular velocity left / right difference target value, which is a target of the difference between the rotational angular speeds of the left and right driving wheels, is determined from the vehicle lateral acceleration target value and the average driving wheel rotational angular velocity target value.
- the operation amount of the joystick 31 that is a control device is associated with the longitudinal and lateral acceleration, but may be associated with the vehicle speed, the yaw rate, or the like. Further, feedback control may be executed using the vehicle speed or the yaw rate itself as a state quantity. Furthermore, in the present embodiment, the vehicle speed and yaw rate are converted into the rotational angular speed of the drive wheels 12 under the assumption that there is no slip between the drive wheel ground contact point and the road surface. Then, the target value of the drive wheel rotation angular velocity may be determined.
- the main control ECU 21 determines a target value of the vehicle body inclination angle (step S16). Specifically, the target value of the vehicle body tilt pitch angle is determined from the vehicle acceleration target value by the following formula.
- the target value of the vehicle body tilt roll angle is determined by the following formula.
- the target value of the vehicle body inclination angle is determined according to the vehicle acceleration target value. That is, for the vehicle body tilt pitch angle, the vehicle body posture that can achieve the travel target given by the longitudinal acceleration is given as the target value in consideration of the mechanical structure of the inverted pendulum with respect to the vehicle body posture before and after and the traveling state. Further, with respect to the vehicle body tilt roll angle, the target posture can be set freely within a range where the center of the grounding load exists in a stable region between the grounding points of the two drive wheels 12, but in this embodiment, the load of the passenger 15 The position with the least number is given as the target value.
- the target vehicle body tilt roll angle may be set to zero, and the upright posture may be maintained for a small lateral acceleration.
- the main control ECU 21 calculates the remaining target value (step S17). That is, the target values of the drive wheel rotation angle and the vehicle body inclination angular velocity are calculated by time differentiation or time integration of each target value.
- the main control ECU 21 determines the feedforward output of each actuator (step S18). Specifically, according to the following formula, as feedforward output, the feedforward amount ⁇ W, FF of the total drive torque, the feedforward amount ⁇ W, FF of the left-right difference of the drive torque , and the feedforward amount ⁇ L, FF of the link torque To decide.
- the actuator output necessary to realize the target traveling state and vehicle body posture is predicted from the dynamic model, and the amount is fed-forwardly added, so that the traveling and posture control of the vehicle 10 can be performed with high accuracy.
- the feedforward amount of the total drive torque is determined so that the travel target in the front-rear direction can be achieved. Specifically, by estimating the inertial force generated according to the vehicle longitudinal acceleration and the running resistance generated according to the average driving wheel rotational angular velocity corresponding to the vehicle speed, and giving the total driving torque that cancels it The target front-rear running state is realized.
- the target is obtained by predicting the torque of gravity generated according to the vehicle body tilt roll angle and the torque of centrifugal force generated according to the vehicle lateral acceleration, and giving a link torque that cancels the torque. Realizes left and right body tilt.
- the feedforward amount may be determined by a simple model.
- elements not considered in the present embodiment may be newly taken into consideration. For example, rolling resistance of the driving wheel 12 and dry friction at the link mechanism 60 may be taken into consideration.
- the necessary output is given as the feedforward amount according to the target value of the running state and the vehicle body posture, but it may be given as a quasi feedback amount based on the measured value. Therefore, even when there is a large gap between the target value and the actual value, it is possible to appropriately control.
- the main control ECU 21 determines the feedback output of each actuator from the deviation between each target value and the state quantity (step S19). Specifically, the feedback amount ⁇ W, FB of the total drive torque, the feedback amount ⁇ W, FB of the left / right difference of the drive torque , and the feedback amount ⁇ L, FB of the link torque are determined as feedback outputs by the following equations.
- each feedback gain K ** is set in advance, for example, as determined by the pole placement method or the like. Further, nonlinear feedback control such as sliding mode control may be introduced. Furthermore, as a simpler control, some of the gains excluding K W2 , K W3 , K d2 and K L3 may be set to zero. Further, an integral gain may be introduced in order to eliminate the steady deviation.
- the vehicle is given a total driving torque proportional to the difference between the measured value and the target value.
- the vehicle is stably maintained in a state where the front-rear running state of 10 and the inverted posture of the vehicle body are targeted.
- a driving torque left / right difference proportional to the difference between the measured value and the target value is given, so that the turning traveling state of the vehicle 10 is stably maintained in the target state.
- the left-right tilt state of the vehicle body is stably maintained in the target state.
- the drive wheel rotation angular velocity left-right difference is used as a state quantity corresponding to the turning traveling state. In this way, by controlling the rotational state of the drive wheel 12, the possibility that the drive wheel 12 will be locked or idling can be reduced.
- the main control ECU 21 gives a command value to each element control system (step S20), and ends the running and posture control processing.
- the main control ECU 21 sends to the drive wheel control ECU 22 and the link control ECU 25 command values determined by the following formulas as a right drive torque command value ⁇ WR , a left drive torque command value ⁇ WL , a total drive torque command value ⁇ W , A drive torque left / right difference command value ⁇ W and a link torque command value ⁇ L are given.
- ⁇ is the ground load transfer rate
- each feedforward output and each feedback output is given as a command value.
- command values for the right drive torque and the left drive torque are given so that the total drive torque and the left-right difference between the drive torques are required values.
- running and posture control processing is repeatedly executed at predetermined time intervals (for example, every 100 [ ⁇ s]).
- FIG. 15 is a diagram for explaining the first correction in the vehicle acceleration target value determination process in the second embodiment of the present invention
- FIG. 16 is the vehicle acceleration target value determination process in the second embodiment of the present invention.
- FIG. 17 is the figure which shows the result of the 4th correction
- FIG. 18 is 2nd Embodiment of this invention.
- FIG. 19 is a flowchart which shows the operation
- FIGS. 16 and 17 are diagrams showing coordinate axes shown, in which FIGS. 16 and 17 show a vehicle longitudinal acceleration target value, and FIG. 16B shows a vehicle lateral acceleration target value.
- the main control ECU 21 first determines a reference vehicle acceleration target value (step S14-1). Specifically, the vehicle longitudinal acceleration target value is determined by the following equation.
- U X is the joystick longitudinal input amount
- ⁇ X, Max is the vehicle longitudinal acceleration
- the vehicle lateral acceleration target value is determined by the following formula.
- U Y is the joystick left / right input amount
- ⁇ Y, Max is the vehicle left / right maximum acceleration.
- the vehicle acceleration target value is determined in accordance with the joystick input amount.
- a value proportional to the front / rear input amount of the joystick 31 is defined as the vehicle longitudinal acceleration.
- the input to the front is the acceleration command
- the input to the rear is the deceleration command.
- a value proportional to the left / right input amount of the joystick 31 is defined as the vehicle lateral acceleration. In this case, a turn in the input direction is commanded.
- the maximum acceleration and the maximum deceleration are set to the same value for the vehicle longitudinal acceleration, but different values may be set.
- a value obtained by multiplying the maximum acceleration by the input rate at the time of forward input of the joystick 31 may be used as the acceleration target value
- a value obtained by multiplying the maximum deceleration by the input rate at the time of the rear input of the joystick 31 may be used as the acceleration target value.
- the forward input of the joystick 31 corresponds to acceleration and the backward input corresponds to deceleration, but this may be reversed. That is, the rear input may be accelerated and the front input may be decelerated.
- the intuitive operational feeling of the control system is slightly reduced, but the stability against inertial force acting on the pilot is improved.
- various corrections are performed after the input amount of the joystick 31 is converted into the vehicle acceleration target value.
- the input amount may be converted into the vehicle acceleration target value after the input amount is corrected. .
- the main control ECU 21 determines a first corrected vehicle acceleration target value (step S14-2). Specifically, the vehicle longitudinal acceleration target value after the first correction is determined by the following equation.
- the vehicle right / left acceleration target value after the first correction is determined by the following formula.
- ⁇ is a coordinate axis rotation angle sine value
- ⁇ s ⁇ 0 .
- ⁇ 0 is the absolute value of the coordinate axis rotation angle sine value.
- s is a joystick attachment position coefficient, which is 1 when the joystick 31 is disposed on the right side of the riding section 14 and -1 when disposed on the left side.
- a value obtained by multiplying the longitudinal acceleration by the predetermined coordinate axis rotation angle sine value is added to the lateral acceleration.
- the vehicle longitudinal acceleration target value is positive, that is, when the vehicle 10 is accelerated by inputting the joystick 31 forward, the direction from the attachment position of the joystick 31 toward the inside of the vehicle 10 (FIG. 15C The vehicle lateral acceleration target value in the upward direction) is added.
- the vehicle longitudinal acceleration target value is negative, that is, when the vehicle 10 is decelerated by inputting the joystick 31 rearward, the vehicle 10 is moved downward from the attachment position of the joystick 31 in the direction toward the outside of the vehicle 10 (FIG. 15C).
- vehicle lateral acceleration target value is positive, that is, when the vehicle 10 is accelerated by inputting the joystick 31 forward, the direction from the attachment position of the joystick 31 toward the inside of the vehicle 10 (FIG. 15C The vehicle lateral acceleration target value in the upward direction.
- the vehicle longitudinal acceleration target value is negative, that is, when the vehicle 10 is decelerated by
- the input amount is evaluated based on the linear coordinate axis obtained by rotating the coordinate axis in the front-rear direction of the joystick 31.
- Coordinate axes may be used.
- the main control ECU 21 determines a second corrected vehicle acceleration target value (step S14-3). Specifically, the vehicle longitudinal acceleration target value after the second correction is determined by the following equation.
- ⁇ X is a filter coefficient
- ⁇ X ⁇ t / T X
- T X is a low-pass filter time constant
- the vehicle corrected lateral acceleration target value after the second correction is determined by the following formula.
- ⁇ Y is a filter coefficient
- ⁇ Y ⁇ t / T Y
- T Y is a low-pass filter time constant.
- the low-pass filter time constant is set as follows.
- the vehicle acceleration target value is corrected by the low-pass filter. That is, the high frequency component of the vehicle longitudinal acceleration target value is removed by the low pass filter.
- the inverted vehicle 10 it is necessary to change the vehicle body posture in accordance with the longitudinal acceleration, so that unnecessary high frequency components are removed together with noise so that vibrations and disturbances are not generated in the vehicle body posture. Thereby, the more comfortable inverted vehicle 10 can be provided.
- a moderate time delay is given to the response of the lateral acceleration to the joystick input by the low pass filter.
- the responsiveness of the turning traveling is too high compared to the responsiveness of the forward / rearward traveling, and therefore the characteristic time related to the vehicle body posture change of the vehicle 10 is given as an intentional time delay. This reduces the uncomfortable feeling of the occupant 15 as a driver for the sensitive response of turning, and facilitates the operation.
- the time constant is set based on the dynamic characteristic time of the inverted vehicle 10, but the time constant may be determined based on another characteristic time.
- the characteristic time related to the longitudinal acceleration / deceleration motion of the vehicle 10 may be a time constant.
- the time constant of the low-pass filter for the vehicle longitudinal acceleration target value is set based on the characteristic time. You may set large.
- the main control ECU 21 determines a third corrected vehicle acceleration target value (step S14-4). Specifically, the vehicle longitudinal acceleration target value after the third correction is determined by the following equation.
- the vehicle right / left acceleration target value after the third correction is determined by the following formula.
- ⁇ Y, IS, 0 is a left and right dead zone threshold
- C IS, V is a dead zone expansion speed coefficient (predetermined value)
- C IS, D is a dead zone extended deceleration coefficient (predetermined value).
- the front-rear dead zone threshold and the left-right dead zone threshold are set such that ⁇ Y, IS, 0 > ⁇ X, IS, 0 .
- the vehicle acceleration target value is corrected by the dead zone.
- the vehicle longitudinal acceleration target value is set to zero. . This is to prevent a minute driving torque from being added when the vehicle is stopped due to noise or offset of an electrical signal corresponding to the operation amount of the joystick 31 or a minute input of the joystick 31 due to a disturbance. Thereby, the vehicle 10 with higher comfort and maneuverability can be provided.
- the vehicle left-right acceleration target value is set to zero.
- the left and right dead zone thresholds are increased as the driving wheel rotation angular speed increases as the vehicle speed.
- the left and right dead zone thresholds are increased as the vehicle deceleration increases. In this way, higher maneuverability and safety can be realized by reliably preventing the traveling direction of the vehicle 10 from shifting from side to side during sudden braking.
- a predetermined correction coefficient is multiplied so that the maximum value of the vehicle acceleration target value does not change.
- the main control ECU 21 determines a fourth corrected vehicle acceleration target value (step S14-5). Specifically, the vehicle longitudinal acceleration target value after the fourth correction is determined by the following equation.
- P X is a front / rear input index
- P X p X + q X
- p X is an integer part of the front and rear input index
- q X is a decimal part (0 ⁇ q X ⁇ 1) of the front and rear input index.
- the vehicle right / left acceleration target value after the fourth correction is determined by the following formula.
- P Y, In is a left / right inner input index
- P Y, Out is a left / right outer input index.
- P Y, In > P Y, Out is set.
- the vehicle acceleration target value is corrected by a non-linear function. Specifically, as shown in FIGS. 17A and 17B, the rate of change when the value is large is the rate of change when the value is small, as shown in FIGS.
- the vehicle longitudinal acceleration target value and the vehicle lateral acceleration target value are corrected so as to be larger. In this way, by adapting the sensation characteristic of the vehicle 10 to the non-linear sensation characteristic of the operation amount that a person has, the occupant 15, who is the driver, can comfortably maneuver without feeling uncomfortable. As a result, the vehicle 10 with higher comfort and maneuverability can be provided.
- the left / right input index for the vehicle left / right acceleration target value in the direction toward the inside of the vehicle 10 from the attachment position of the joystick 31 is set to the vehicle left / right acceleration target value in the direction toward the outside of the vehicle 10. Make it larger than the left / right input index.
- the sensitivity characteristics of the vehicle 10 to the difference between the left and right due to the asymmetric structure of the human body and the asymmetric sensitivity characteristics of the operation amount, the occupant 15 as the driver can comfortably maneuver without feeling uncomfortable. be able to. As a result, the vehicle 10 with higher comfort and maneuverability can be provided.
- the function value is obtained by simply approximating the exponent with an integer function. May be. For example, it may be calculated by approximating with a Taylor series.
- the main control ECU 21 determines a fifth corrected vehicle acceleration target value (step S14-6). Specifically, the vehicle longitudinal acceleration target value after the fifth correction is determined by the following equation.
- the vehicle right / left acceleration target value after the fifth correction is determined by the following formula.
- the vehicle lateral acceleration target value is corrected so that the output characteristic is asymmetric in the lateral direction.
- the vehicle left-right acceleration target value in the direction from the attachment position of the joystick 31 toward the outside of the vehicle 10 is multiplied by an asymmetric coefficient that is a predetermined value of 1 or more.
- the value is limited by multiplying the asymmetry coefficient so that the vehicle lateral acceleration target value does not exceed a predetermined maximum value.
- the main control ECU 21 determines a vehicle acceleration target value (step S14-7), and ends the vehicle acceleration target value determination process. As described above, the vehicle acceleration target value corrected by the first to fifth corrections is determined as the final vehicle acceleration target value.
- the input device 30 includes the joystick 31 operated by the operator, and the amount of inclination of the joystick 31 in the direction perpendicular to the rotation axis of the drive wheel 12 is set as the front-rear input amount.
- the amount of tilt of the joystick 31 in the direction parallel to the rotation axis is acquired as the left and right input amount
- the value proportional to the corrected front and rear input amount is set as the front and rear running state
- the value proportional to the corrected left and right input amount is turned
- Driving torque that is set as a running state, corrects the set longitudinal traveling state and turning traveling state according to the time history of the longitudinal traveling state and / or turning traveling state, and achieves the set longitudinal traveling state and turning traveling state Is applied to each drive wheel 12.
- the longitudinal traveling state is defined as vehicle longitudinal acceleration
- the turning traveling state is defined as vehicle lateral acceleration. Then, the vehicle body is tilted back and forth according to the vehicle longitudinal acceleration, and the vehicle body is tilted left and right according to the vehicle lateral acceleration.
- a low pass filter is applied to the vehicle longitudinal acceleration and vehicle lateral acceleration.
- a low-pass filter having a time constant larger than the time constant of the low-pass filter for vehicle longitudinal acceleration is used as a low-pass filter for vehicle lateral acceleration.
- the time delay in the longitudinal posture control of the vehicle body is set as the time constant of the low-pass filter for vehicle lateral acceleration.
- a value obtained by multiplying the longitudinal acceleration by a predetermined coordinate axis rotation angle sine value is added to the lateral acceleration. Specifically, when the longitudinal acceleration is positive, the lateral acceleration in the direction toward the inside of the vehicle from the position of the joystick 31 as the control device is added, and when the longitudinal acceleration is negative, the lateral acceleration in the direction toward the outside is applied. Add acceleration.
- the vehicle longitudinal acceleration is set to zero, and when the absolute value of the vehicle lateral acceleration is smaller than the predetermined lateral dead zone threshold, the vehicle lateral acceleration is Is zero.
- the left and right dead zone threshold values are set larger than the front and rear dead zone threshold values. Then, the left and right dead zone thresholds are increased as the vehicle speed increases. Further, when the longitudinal acceleration is negative, the left and right dead zone thresholds are increased as the absolute value thereof increases.
- a value proportional to a value obtained by multiplying the vehicle longitudinal acceleration value by a predetermined longitudinal input index is defined as a vehicle longitudinal acceleration
- a value proportional to a value obtained by multiplying the vehicle lateral acceleration value by a predetermined lateral input index is defined as a vehicle lateral acceleration.
- a left / right input index that varies depending on whether the vehicle left / right acceleration is positive or negative is used, and a left / right input index used for vehicle left / right acceleration in the direction toward the inside of the vehicle 10 from the position of the joystick 31 It is larger than the left / right input index used for the left / right acceleration.
- the vehicle lateral acceleration in the direction from the position of the joystick 31 toward the outside of the vehicle 10 is multiplied by a predetermined asymmetry coefficient.
- FIG. 20 is a block diagram showing a configuration of a vehicle system according to the third embodiment of the present invention.
- the correction of the vehicle acceleration target value is executed by a predetermined parameter assuming an “average” driver.
- a predetermined parameter assuming an “average” driver.
- the correction parameter is corrected according to the vehicle acceleration time history.
- it includes a read / write unit that acquires and rewrites the correction parameter stored in the external storage device, acquires the correction parameter stored when the vehicle starts, sets the acquired value as the initial value of the correction parameter, and sets the correction parameter when the vehicle stops Are stored in the external storage device.
- the input device 30 transmits and receives a control switch 32 that outputs an operation command of the vehicle system and an ID card 34 as an external storage device in addition to the joystick 31.
- An ID card interface 33 is provided as read / write means for reading and writing data stored in the ID card 34.
- control switch 32 When the driver 15 who is a driver operates the control switch 32, the control switch 32 outputs an operation command, and the main control ECU 21 that has received the operation command starts control of the vehicle system.
- the occupant 15 has an ID card 34 for identifying itself.
- the ID card 34 includes data storage means such as a magnetic stripe and a semiconductor memory, and stores correction parameters dedicated to the occupant 15 as data. Then, when the occupant 15 connects the ID card 34 owned by the occupant 15 to the ID card interface 33 so as to communicate with the ID card interface 33, the main control ECU 21 reads the correction parameters stored in the ID card 34 into the ID card interface 33. The correction parameter is received from the ID card interface 33 and set as an initial value of the correction parameter used for correcting the vehicle acceleration target value. When the control of the vehicle system is finished, the main control ECU 21 transmits the corrected correction parameter to the ID card interface 33 and stores it in the ID card 34.
- FIG. 21 is a flowchart showing the operation of the system control process in the third embodiment of the present invention.
- the main control ECU 21 determines whether or not the control is started (step S21). Specifically, the process waits until an operation command is received from the control switch 32. When the operation command is received, it is determined that the control is started.
- the main control ECU 21 determines whether or not the data of the ID card 34 can be read (step S22). In this case, it is determined that the data stored in the ID card 34 can be read by the ID card interface 33 and can be read when the data is a correction parameter.
- the main control ECU 21 acquires a correction parameter (step S23). Specifically, the correction parameter stored in the ID card 34 read by the ID card interface 33 is received from the ID card interface 33 and set as the initial value of the correction parameter used for correcting the vehicle acceleration target value.
- the main control ECU 21 sets a correction parameter (step S24).
- a predetermined value is set as an initial value of a correction parameter used for correcting the vehicle acceleration target value.
- the main control ECU 21 executes travel and attitude control processing (step S25).
- the running and posture control process similar to that of the second embodiment is executed while correcting the correction parameter set as the initial value.
- step S26 it is determined whether or not the control is finished. Specifically, when the operation command from the control switch 32 cannot be received, it is determined that the control is finished. When an operation command from the control switch 32 can be received, it is determined that the control is not finished, and the running and posture control processing is repeatedly executed.
- the main control ECU 21 stores the correction parameter (step S27) and terminates the system control process. Specifically, the main control ECU 21 transmits the final value of the corrected correction parameter to the ID card interface 33, and the ID card interface 33 writes and stores the final value of the correction parameter in the ID card 34.
- the correction parameters adapted to each pilot are stored in the external storage device possessed by each pilot. That is, at the end of the control, the final value of the corrected correction parameter is stored in the ID card 34. At the start of control, the correction parameters stored in the ID card 34 are acquired and set as initial values before correction. In addition, when acquisition is impossible, the predetermined value equivalent to an average steering characteristic is set as an initial value. As described above, the correction parameter is stored as one piece of information in the ID card 34 corresponding to each pilot, so that the time required to correct the correction parameter can be saved and a single vehicle 10 can be used by a plurality of people. By adapting to the characteristics of each operator easily and instantaneously in the environment, the vehicle 10 with higher comfort and convenience can be provided.
- the ID card 34 is used as an external storage device for correction parameters adapted to each individual, but may be used in combination with other functions.
- the ID card 34 stores an ID number
- the vehicle 10 stores a use permission ID number string
- the ID card 34 that can be removed from the vehicle 10 is used as an external storage device, but a storage device provided in the vehicle 10 may be used.
- information such as a password is entered, or an individual pilot is identified by selecting himself / herself from a plurality of user lists.
- the value of the correction parameter stored in the storage device provided is acquired.
- FIG. 22 is a diagram for explaining the estimation of the coordinate axis rotation angle sine value in the third embodiment of the present invention
- FIG. 23 is a flowchart showing the operation of the vehicle acceleration target value determination process in the third embodiment of the present invention. is there.
- the main control ECU 21 first determines a reference vehicle acceleration target value (step S14-11).
- the operation for determining the reference vehicle acceleration target value is the same as the operation in step S14-1 shown in FIG. 19 in the second embodiment, and a description thereof will be omitted.
- the main control ECU 21 determines a correction parameter (step S14-12).
- a correction parameter the coordinate axis rotation angle sine value ⁇ , the left / right dead zone threshold value ⁇ Y, IS, 0 , the left / right outer input index P Y, Out and the asymmetry coefficient ⁇ Y, As are determined by the following equations.
- N TR is the initial value fixed data number
- N TR T TR / ⁇ t
- T TR is the initial value fixed time (predetermined value)
- ⁇ is the filter coefficient
- ⁇ ⁇ t / T LP
- T LP Filter time constant (initial value).
- the longitudinal acceleration square sum S XX the lateral acceleration square sum S YY and the acceleration synergistic sum S XY are determined by the following equations.
- N is the number of reference data
- N T ref / ⁇ t
- T ref is a reference time (predetermined value).
- the selection acceleration is determined by the following formula.
- the selection judgment value is determined by the following formula.
- T sh is a maximum input transition time selection threshold (predetermined value).
- the variance value is determined by the following formula.
- ⁇ a dispersion difference
- ⁇ ⁇ In ⁇ Out
- the inner dispersion value is determined by the following equation.
- the inner left / right acceleration square sum S YY, In and the inner acceleration synergistic sum S XY, In are determined by the following equations.
- N In is the number of inner acceleration data, and is the number of times corresponding to the first row in the inner acceleration formula.
- the outer dispersion value is determined by the following formula.
- outer left / right acceleration square sum S YY, Out and the outer acceleration synergistic sum S XY, Out are determined by the following equations.
- N Out is the number of outer acceleration data, and is the number of times corresponding to the first row in the outer acceleration equation.
- the correction parameters are corrected based on the vehicle acceleration time history.
- the inclination of the reference axis is corrected according to the average value of the ratio between the vehicle lateral acceleration target value and the vehicle longitudinal acceleration target value.
- a proportional relationship corresponding to a straight line is assumed, and the proportionality constant is represented by the least square method.
- a straight line indicating a time-average proportional relationship is used as a reference axis, and the proportional constant is set as a coordinate axis rotation angle sine value ⁇ .
- the time average of the maneuvering operation is used as the sensuous reference axis of the driver, and the inclination of the reference axis is the coordinate axis rotation angle sine.
- the width of the left and right dead zone is corrected according to the variation in the vehicle left and right acceleration target value with respect to the reference axis.
- a value obtained by multiplying the vehicle longitudinal acceleration target value by the average value of the ratio is set as a reference vehicle lateral acceleration, and a square average of deviations of the vehicle lateral acceleration target value with respect to the reference vehicle lateral acceleration is obtained as a variance value.
- a value proportional to a standard deviation value that is a positive square root of the variance value is set as a left and right dead zone threshold.
- the frequency of the turning operation is much less than that of the straight-ahead operation, and the straight-ahead operation is performed based on the assumption that the majority of the left-right steering operations with respect to the reference axis are unintended deviations in the straight-ahead operation of the pilot.
- the degree of left-right asymmetry is corrected according to the degree of asymmetry of the variation in the vehicle left-right acceleration target value with respect to the reference axis.
- the difference between the variance value of the vehicle lateral acceleration when the vehicle lateral acceleration target value is larger than the reference vehicle acceleration and the variance value of the vehicle lateral acceleration when the vehicle lateral acceleration target value is smaller than the reference vehicle acceleration is calculated as the vehicle lateral acceleration. Obtained as the target value asymmetry.
- the left and right outer input indices and the asymmetry coefficient are corrected by an amount proportional to the degree of asymmetry.
- the data is excluded from the time history and is not considered.
- the vehicle acceleration target value is ignored when the absolute value of the product of the vehicle translational acceleration target value, which is the vector sum of the vehicle longitudinal acceleration and the vehicle lateral acceleration, and its rate of time change is equal to or less than a predetermined threshold.
- each correction parameter is determined. In this way, it is possible to more appropriately correct by selectively extracting the operation history at the time of large operation or quick operation where the individual difference by the pilot is more remarkable, and ignoring the small operation corresponding to the subsequent correction operation You can modify the parameters.
- correction of correction parameters is prohibited for a predetermined time from the start of control.
- the value of the correction parameter stored in the ID card 34 is used until a predetermined time has elapsed from the start of control. In this way, by using past data, the time required to adapt the correction parameters from the second use is omitted, and the maneuverability and comfort are immediately guaranteed by the characteristics suitable for the driver immediately after the start of driving. it can.
- the adaptation of the steering characteristics is executed without directly acquiring the driver's wishes regarding the steering characteristics, but the driver's wishes regarding the steering characteristics are acquired and taken into consideration.
- the steering characteristics may be adapted. For example, it is possible for the crew member 15 who is a pilot to input a selection of discrete steering characteristics and a desired qualitative correction direction of the steering characteristics using the input device 30 provided in the riding section 14. Correction of correction parameters that violate 15 wishes may be prohibited.
- an adjuster for manually adjusting the maneuvering characteristics by the operator and a switch for switching between manual adaptation and automatic adaptation are arranged in the riding section 14, and the switch is in a state instructing manual adaptation. In some cases, the correction parameter is corrected in accordance with the input amount of the adjuster, and when the switch is in a state of instructing automatic adaptation, the automatic adaptation control in the present embodiment may be executed.
- the correction intention is corrected based on a large assumption and averaging without detecting or estimating the pilot's steering intention.
- the pilot's pilot intention is detected or estimated, and the correction parameter is corrected.
- the correction parameter may be corrected in consideration of the above.
- a car navigation system is provided with map data and a vehicle position detection sensor, which determines whether the driving path is slightly bent or is bent by an unintentional operation of the driver.
- the vehicle acceleration target value at that time may be excluded from the time history.
- the pilot's intention of steering may be estimated and taken into account according to the amount of operation of other elements operated by the pilot, such as a direction indicator.
- step S14-13 determines a first corrected vehicle acceleration target value.
- the subsequent operations that is, the operations of steps S14-13 to S14-18 are the same as the operations of steps S14-2 to S14-7 shown in FIG. 19 in the second embodiment. Is omitted.
- the correction parameter is corrected according to the time history of vehicle acceleration. Specifically, at least one of a coordinate axis rotation angle sine value, a left / right dead zone threshold value, a left / right input index, or an asymmetric coefficient is corrected as a correction parameter.
- the correction parameter is corrected according to the average value of the ratio between the vehicle lateral acceleration and the vehicle longitudinal acceleration.
- the average value of the ratio is determined by the least square method.
- the average value of the ratio is set as the coordinate axis rotation angle sine value.
- the left and right dead zone threshold values are corrected according to a variance value that is the average of the squares of deviations of the vehicle lateral acceleration with respect to the reference vehicle lateral acceleration, which is a value obtained by multiplying the vehicle longitudinal acceleration by the average value of the ratio.
- the left / right input index and / or the asymmetry coefficient are corrected according to the difference between the variance value of the vehicle lateral acceleration equal to or greater than the reference vehicle lateral acceleration and the variance value of the vehicle lateral acceleration equal to or less than the reference vehicle lateral acceleration.
- the vehicle acceleration when the vehicle acceleration and / or the time change rate of the vehicle acceleration is smaller than a predetermined threshold is excluded from the time history. Specifically, it is excluded when the absolute value of the product of the vehicle acceleration and the rate of change with the same time is equal to or less than a predetermined threshold value.
- an ID card interface 33 is provided to acquire correction parameters stored at the time of starting the vehicle and correct the acquired values. The initial value of the parameter is used, and the final value of the correction parameter is stored in the ID card 34 when the vehicle is stopped.
- FIG. 24 is a schematic diagram showing the configuration of the vehicle in the fourth embodiment of the present invention
- FIG. 25 is a block diagram showing the configuration of the vehicle system in the fourth embodiment of the present invention.
- (a) is a diagram showing the operation of the attachment switch when the steering device is attached to the right side
- (b) is a front view of the vehicle when the steering device is attached to the right side
- (c) is a diagram.
- (d) is a diagram showing the operation of the attachment portion switch when the control device is attached to the left side
- (e) is the diagram showing the internal structure of the attachment portion switch. is there.
- the joystick 31 when the joystick 31 is disposed on the side of the riding section 14 and the occupant 15 as a driver operates it with one hand, the dominant arm side and the joystick 31 are arranged. If it is different from the installation side, it is very difficult to control. Of course, as a means for solving the problem, it is conceivable to dispose the joysticks 31 on both the left and right sides of the riding section 14, but in that case, it may hinder the realization of an inexpensive, light and simple vehicle 10.
- the steering device mounting portions are arranged on both the left and right sides of the riding portion 14, and the joystick 31 as the steering device can be connected to one of them.
- the joystick 31 in the present embodiment has a mounting portion switch 35 disposed in the base portion 31a.
- the mounting portion switch 35 is connected to and separated from the right mounting switch 35R and the left mounting switch 35L which are swingably mounted on the left and right sides of the base portion 31a, the switch ECU 35a, and the right mounting switch 35R and the left mounting switch 35L.
- a pair of switch contacts 35b functioning as an attachment side recognition device.
- the joystick 31 is detachably attached to a steering device right side mounting portion 18R or a steering device left side mounting portion 18L as a steering device mounting portion disposed on the right side and the left side of the riding portion 14.
- an urging member 38 made of a coil spring or the like is disposed around the swing shaft connected to the bases of the right mounting switch 35R and the left mounting switch 35L.
- the right mounting switch 35R and the left mounting switch 35L are biased by the biasing member 38 so that the tips thereof are separated from the switch contact 35b.
- the right mounting switch 35R and the left mounting switch 35L are urged by the urging member 38 so that the tips thereof move vertically downward. Therefore, in a state where the joystick 31 is not attached to the steering device right side mounting portion 18R or the steering device left side mounting portion 18L, the right mounting switch 35R, the left mounting switch 35L, and the switch contact 35b are maintained in the open state.
- a pair of left and right through holes 36 are formed in the bottom plate of the base portion 31a. Then, when the joystick 31 is attached to the steering device right side mounting portion 18R, as shown in FIG. 24A, the right convex portion 19R that protrudes upward from the upper surface of the steering device right side mounting portion 18R is formed on the right side. It enters the base 31a from the through hole 36 and pushes up the right mounting switch 35R. As a result, the tip of the right mounting switch 35R is displaced vertically upward and contacts the switch contact 35b.
- the switch ECU 35a senses a change in the potential difference, and indicates to the main control ECU 21 that the connection state of the right attachment switch 35R, that is, that the joystick 31 is attached to the right side attachment portion 18R of the control device is used as a right connection signal. Send.
- the left convex portion 19L that protrudes upward from the upper surface of the left side mounting portion 18L of the control device has a left side. It enters the base 31a from the through hole 36 and pushes up the left mounting switch 35L. Thereby, the tip of the left mounting switch 35L is displaced vertically upward and contacts the switch contact 35b. Then, the switch ECU 35a senses a change in the potential difference, and indicates to the main control ECU 21 as a left connection signal that the left mounting switch 35L is connected, that is, the joystick 31 is attached to the left side mounting portion 18L of the steering device. Send.
- the present embodiment it is possible to reliably determine whether or not the joystick 31 is attached or whether it is attached on the left or right side with a simple system. All signals transmitted from the input device 30 to the main control ECU 21 are radio signals. Therefore, the left and right of the joystick 31 can be changed regardless of the electrical wiring, and the vehicle 10 with higher convenience and comfort can be provided.
- connection state of the joystick 31 is determined by a mechanical structure, but the connection state may be recognized by other electromagnetic or electronic information.
- the connection state may be recognized by other electromagnetic or electronic information.
- the vehicle 10 that acquires an electric signal corresponding to the operation amount of the joystick by wire
- the left and right electric connectors are provided and a signal is received from one of them
- the joystick 31 is connected to that side. You may judge. Further, it may be input via the input device 30 to which the operator is connected.
- FIG. 26 is a diagram for explaining the first correction in the vehicle acceleration target value determination process in the fourth embodiment of the present invention
- FIG. 27 is the vehicle acceleration target value determination process in the fourth embodiment of the present invention.
- FIG. 28 is the figure which shows the result of 5th correction
- FIG. 29 is 4th Embodiment of this invention.
- It is a flowchart which shows the operation
- the main control ECU 21 determines whether or not the control is started (step S31). Specifically, the process waits until an operation command is received from the control switch 32. When the operation command is received, it is determined that the control is started.
- the main control ECU 21 determines whether or not it is right-side mounting (step S32). In this case, when only the right side connection signal is received from the attachment portion switch 35, it is determined that the attachment is on the right side, that is, the joystick 31 is attached to the steering device right side attachment portion 18R.
- the main control ECU 21 determines whether the mounting is on the left side (step S34). In this case, when only the left side connection signal is received from the attachment part switch 35, it is determined that the attachment is left side, that is, the joystick 31 is attached to the left side attachment part 18L of the control device.
- the main control ECU 21 ends the system control process as it is.
- the attachment state of the joystick 31 is surely recognized, and the joystick attachment position coefficient is switched in accordance with the attachment state, so that the vehicle acceleration target value suitable for the attachment state is corrected, regardless of the attachment state. High maneuverability and comfort can be achieved.
- both the right side connection signal and the left side connection signal are received, or if both are not received, it is determined that the attachment state of the joystick 31 is abnormal, and the system control process is terminated. In this way, the operation in the abnormal state is prohibited to ensure sufficient safety, and the maneuvering without fixing the joystick 31 is prohibited to promote the maneuvering in the safe state with the joystick 31 fixed. .
- step S36 the main control ECU 21 executes travel and attitude control processing.
- the same running and posture control processing as in the second embodiment is executed.
- the first correction in the vehicle acceleration target value determination process in the travel and attitude control process Is performed as shown in FIG.
- step S37 it is determined whether or not the control is finished. Specifically, if the operation command from the control switch 32 cannot be received, it is determined that the control is terminated, and the system control process is terminated. When an operation command from the control switch 32 can be received, it is determined that the control is not finished, and the running and posture control processing is repeatedly executed.
- the right side mounting portion 18R and the left side mounting portion 18L of the steering device can be disposed on both the left and right sides of the riding portion 14, and the joystick 31 can be attached to one of them.
- two attachment side recognition switches disposed on the base 31a of the joystick 31, that is, a right attachment switch 35R and a left attachment switch 35L are provided, and the right attachment switch 35R or the left attachment switch 35L with the joystick 31 fixed.
- a right attachment switch 35R and a left attachment switch 35L are provided, and the right attachment switch 35R or the left attachment switch 35L with the joystick 31 fixed.
- the sensibility characteristics of the joystick 31 with respect to the left and right inputs are reversed in accordance with the right connection signal and the left connection signal transmitted by the attachment switch 35.
- the coordinate axis rotation angle sine value, the left / right input index, and the asymmetry coefficient are switched. Also, the value of the joystick attachment position coefficient is changed. Furthermore, when both the right connection signal and the left connection signal cannot be acquired, the vehicle 10 is prohibited from starting. Further, the operation amount of the joystick 31 is transmitted by a radio signal from the input device 30 to the main control ECU 21.
- FIG. 30 is a block diagram showing a configuration of a vehicle system according to the fifth embodiment of the present invention.
- the vehicle 10 includes, for example, a three-wheeled vehicle having one front wheel and two rear wheels, a three-wheeled vehicle having two front wheels and one rear wheel, and two front wheels and rear wheels. However, it may be of any kind as long as it has three or more wheels.
- FIG. 3 it is a front wheel that is disposed in front of the vehicle body and functions as a steering wheel, like the vehicle 10 shown in FIG. 3 described as another example in the first embodiment.
- Only an example of a three-wheeled vehicle having a certain wheel 12F and wheels 12L and 12R which are two rear wheels arranged on the rear side of the vehicle body and functioning as drive wheels 12 will be described.
- the vehicle 10 changes the camber angles of the left and right wheels 12L and 12R by the same link mechanism 60 as in the first to fourth embodiments, and turns the vehicle body including the riding portion 14 and the main body portion 11.
- the vehicle body can be tilted in the lateral direction (left-right direction).
- posture control such as posture control of an inverted pendulum is not performed. That is, the posture control of the vehicle body in the front-rear direction is not performed.
- the wheel 12F is connected to the main body 11 through a front wheel fork 17 which is a part of the suspension device.
- a steering portion 77 is disposed above the front end of the main body 11, and the rotating shaft of the front wheel fork 17 is rotatably supported by the steering portion 77.
- the steering section 77 includes a steering actuator 71 as a steering actuator and a steering angle sensor 72 as a steering amount detector.
- the steering actuator 71 rotates the rotating shaft of the front wheel fork 17 in response to a travel command from the input device 30, and the wheel 12F as the steering wheel changes the steering angle. That is, the steering of the vehicle 10 is performed by so-called by-wire. Further, the steering angle sensor 72 can detect the steering angle of the wheel 12F, that is, the steering amount of the steering device, by detecting the angle change of the rotation shaft of the front wheel fork 17.
- the vehicle 10 in this Embodiment has a vehicle system as shown in FIG.
- the input device 30 includes a steering angle sensor 72, a throttle grip 73, and a brake lever 74 as a steering device.
- the throttle grip 73 is a device that detects the amount of operation of the joystick 31 in the front-rear direction during acceleration operation and inputs a travel command for accelerating the vehicle 10 according to the amount of operation.
- the brake lever 74 is a device that detects an operation amount of the joystick 31 in the front-rear direction during a deceleration operation, and inputs a travel command for decelerating the vehicle 10 according to the operation amount.
- the control ECU 20 has a steering control ECU 24.
- the main control ECU 21 transmits a steering command value from the joystick 31 to the steering control ECU 24 in accordance with the travel command, and the steering control ECU 24 supplies an input voltage corresponding to the received steering command value to the steering actuator 71. Then, the steering angle detected by the steering angle sensor 72 is transmitted to the main control ECU 21.
- the vehicle system includes a lateral acceleration sensor 42 and a link sensor 43.
- the lateral acceleration sensor 42 is a sensor including a general acceleration sensor, a gyro sensor, and the like, and detects the lateral acceleration of the vehicle 10.
- the link sensor 43 is a sensor composed of a rotary encoder or the like, and detects the link rotation angle and / or the rotation angular velocity by detecting a change in the rotation angle between the link members of the link mechanism 60.
- the main control ECU 21 first acquires each state quantity from the sensor.
- the posture control in the front-rear direction is not performed, the vehicle body tilt pitch angle or the pitch angular velocity is not acquired because it is unnecessary.
- the main control ECU 21 calculates the remaining state quantity, but does not calculate the pitch angular velocity or the vehicle body tilt pitch angle because they are unnecessary.
- the main control ECU 21 calculates the target value of the drive wheel rotational angular velocity from the target value of the vehicle acceleration.
- the operation for determining the target value of the average driving wheel rotation angular velocity is the same as that of the second embodiment, the description thereof will be omitted.
- the main control ECU 21 determines the target value of the left / right difference of the drive wheel rotation angular velocity by the following equation.
- the drive wheel rotation angular velocity left / right difference target value which is the target of the difference between the rotation angular velocities of the left and right drive wheels 12, is determined from the steering angle and the average drive wheel rotation angular velocity target value.
- the main control ECU 21 determines a target value of the vehicle body inclination angle.
- the posture control in the front-rear direction is not performed, so the main control ECU 21 does not calculate the target value of the vehicle body tilt pitch angle when determining the target value of the vehicle body tilt angle, but instead calculates the target value of the vehicle body tilt pitch angle. Only the roll angle target value is determined. Since the determination of the target value of the vehicle body tilt roll angle is performed in the same manner as in the second embodiment, description thereof is omitted.
- the target posture can be freely set within the range where the ground load center exists in the stable region between the ground points of the two drive wheels 12, but in this embodiment, the load on the occupant 15 is the most. Give a few postures as target values.
- vehicle acceleration target value determination process is the same as that in the second embodiment, and thus the description thereof is omitted.
- the input device 30 includes the joystick 31 operated by the operator, the amount of inclination of the joystick 31 in the direction perpendicular to the rotation axis of the drive wheel 12 is set as the front-rear input amount, and the rotation axis of the drive wheel 12
- the amount of tilt of the joystick 31 in the direction parallel to is acquired as the left and right input amount
- a value proportional to the corrected front and rear input amount is set as the front and rear traveling state
- the value proportional to the corrected left and right input amount is set as the turning traveling state.
- the longitudinal traveling state is defined as vehicle longitudinal acceleration
- the turning traveling state is defined as vehicle lateral acceleration. Then, the vehicle body is tilted left and right according to the vehicle lateral acceleration.
- FIG. 31 is a block diagram showing a configuration of a vehicle system according to the sixth embodiment of the present invention.
- the correction of the vehicle acceleration target value is executed by a predetermined parameter assuming an “average” driver.
- a predetermined parameter assuming an “average” driver.
- the correction parameter is corrected according to the vehicle acceleration time history.
- it includes a read / write unit that acquires and rewrites the correction parameter stored in the external storage device, acquires the correction parameter stored when the vehicle starts, sets the acquired value as the initial value of the correction parameter, and sets the correction parameter when the vehicle stops Are stored in the external storage device.
- the input device 30 performs transmission / reception with the ID card 34 as an external storage device in addition to the steering angle sensor 72, the throttle grip 73, and the brake lever 74.
- An ID card interface 33 is provided as read / write means for reading and writing data stored in the ID card 34.
- the ID card 34 includes data storage means such as a magnetic stripe and a semiconductor memory, and stores correction parameters dedicated to the occupant 15 as data. Then, when the occupant 15 connects the ID card 34 owned by the occupant 15 to the ID card interface 33 so as to communicate with the ID card interface 33, the main control ECU 21 reads the correction parameters stored in the ID card 34 into the ID card interface 33. The correction parameter is received from the ID card interface 33 and set as an initial value of the correction parameter used for correcting the vehicle acceleration target value. When the control of the vehicle system is finished, the main control ECU 21 transmits the corrected correction parameter to the ID card interface 33 and stores it in the ID card 34.
- data storage means such as a magnetic stripe and a semiconductor memory
- the operation of the vehicle 10 in the present embodiment is also the same as that in the third and fifth embodiments, and thus the description thereof is omitted.
- FIG. 32 is a schematic diagram showing the configuration of the vehicle in the seventh embodiment of the present invention
- FIG. 33 is a block diagram showing the configuration of the vehicle system in the seventh embodiment of the present invention.
- 32A is a rear view of the vehicle when the control device is attached to the left side
- FIG. 32B is a rear view of the vehicle when the control device is attached to the right side.
- the joystick 31 when the joystick 31 is disposed on the side of the riding section 14 and the occupant 15 as a driver operates it with one hand, the dominant arm side and the joystick 31 are arranged. If it is different from the installation side, it is very difficult to control. Of course, as a means for solving the problem, it is conceivable to dispose the joysticks 31 on both the left and right sides of the riding section 14, but in that case, it may hinder the realization of an inexpensive, light and simple vehicle 10.
- the steering device mounting portions are arranged on both the left and right sides of the riding portion 14, and the joystick 31 as the steering device can be connected to one of them.
- the input device 30 in the present embodiment has an attachment switch 35.
- the attachment portion switch 35 functions as an attachment side recognition device.
- the joystick 31 is detachably attached to the steering device attachment portions disposed on the right side and the left side of the riding portion 14.
- the operation of the vehicle 10 in the present embodiment is also the same as that in the fourth and fifth embodiments, and the description thereof is omitted.
- a vehicle control device that controls travel according to the input amount of the joystick the vehicle control device acquires the input amount of the joystick in a direction perpendicular to the rotation axis of the drive wheel as a front-rear input amount
- the input amount of the joystick in the direction parallel to the rotation axis of the drive wheel is acquired as a left / right input amount
- a value proportional to the acquired front / rear input amount is set as a front / rear traveling state that is an amount representing a traveling state in the front / rear direction.
- a value proportional to the acquired left / right input amount is set as a turning traveling state which is an amount representing a turning traveling state, and the set front / rear traveling state and turning traveling state are set as the setting.
- Vehicle is corrected according to the time history of the longitudinal running state and / or the turning traveling state, to impart driving torque so as to achieve the corrected longitudinal running state and the turning traveling state to each of the driving wheels were.
- the front-rear traveling state is vehicle longitudinal acceleration
- the turning state is vehicle lateral acceleration
- the vehicle control device further tilts the vehicle body forward and backward according to the corrected vehicle longitudinal acceleration, and tilts the vehicle body left and right according to the corrected vehicle lateral acceleration.
- the vehicle control device applies a low-pass filter having a predetermined first temporary constant to the set front and rear running state, and is larger than the first temporary constant to the set turning driving state. Apply a low pass filter with a second time constant.
- the second time constant is the delay time in the posture control in the longitudinal direction of the vehicle body.
- the vehicle control device further adds a value obtained by multiplying the set forward / backward travel state by a predetermined coordinate axis rotation angle sine value to the set turning travel state.
- the vehicle control device further sets a value in a direction toward the inside of the vehicle body from the position of the control device when the set front and rear traveling state is a value toward the front of the vehicle.
- the set back and forth state is a value toward the rear of the vehicle
- a value in a direction from the position of the control device toward the outside of the vehicle body is added to the set turning state.
- the driver can comfortably operate the vehicle without having a sense of incongruity by adapting the reception characteristics on the vehicle side to the input characteristics as a trap when operating the joystick placed diagonally forward. can do.
- the vehicle control device further sets the set front / rear running state to zero when the absolute value of the set front / rear running state is smaller than a predetermined front / rear dead zone threshold, and sets the turning When the absolute value of the traveling state is smaller than a predetermined left and right dead zone threshold, the set turning traveling state is set to zero.
- a minute driving torque is added when the vehicle stops due to noise or offset of an electrical signal corresponding to the amount of operation of the joystick, or a minute input of the joystick due to a disturbance, etc. It can be surely prevented.
- the left and right dead zone threshold is larger than the front and rear dead zone threshold.
- the unintentional left / right direction input during the straight-ahead operation can be ignored, and the straight running performance of the vehicle can be ensured.
- the left and right dead zone thresholds increase as the vehicle speed increases.
- the left and right dead zone thresholds increase when the set absolute value of the front / rear driving state increases when the set front / rear driving state is opposite to the traveling direction of the vehicle.
- the vehicle at the time of an emergency braking command where it is difficult to make fine adjustments to the steering operation, such as during emergency braking, the vehicle can be prevented from turning unintentionally to the left and right, thereby providing higher maneuverability and safety. realizable.
- the vehicle control device further sets the value of the set front / rear running state to a value obtained by multiplying a value obtained by multiplying a predetermined front / rear input index by the corrected front / rear running state, and sets the turning A value proportional to a value obtained by multiplying the value of the traveling state by a predetermined left / right input index is set as the corrected turning traveling state.
- the pilot can comfortably drive without any sense of incongruity by adapting the vehicle-side sensitivity characteristics to the nonlinear sensitivity characteristics of the operation amount of the person.
- the left / right input index used for the set turning state in the direction from the position of the control device toward the inside of the vehicle body is a direction from the position of the control device toward the outside of the vehicle body. Is greater than the left / right input index used in the set turning state.
- the vehicle control device multiplies the set turning state in the direction from the position of the control device toward the outside of the vehicle body by an asymmetry coefficient that is a predetermined value of 1 or more.
- the driver can operate the vehicle more easily and comfortably by adapting the vehicle's sensitivity characteristics to the left and right differences due to the asymmetric structure of the human body and the asymmetric sensitivity characteristics of the operation amount. be able to.
- the vehicle control device further includes a parameter for correcting the set front / rear traveling state and the turning traveling state according to the set front / rear traveling state and / or the time history of the turning traveling state.
- the correction parameter is corrected.
- This configuration makes it possible to provide a vehicle that can be easily and comfortably operated by anyone by adapting the sensitivity characteristics on the vehicle side to the driver's skill, experience, habit, etc. to some extent.
- the correction parameter is at least one of the coordinate axis rotation angle sine value, the left / right dead zone threshold, the left / right input index, and the asymmetric coefficient.
- the vehicle control device further corrects the correction parameter according to an average of a ratio between the set front and rear traveling state and the set turning traveling state.
- the vehicle control device obtains the average of the ratios by the least square method.
- This configuration makes it possible to estimate each person's handling characteristics with a simpler calculation method.
- the vehicle control device further sets the average of the ratios to the coordinate axis rotation angle sine value.
- the vehicle control device further includes an average of squares of deviations of the set turning traveling state with respect to a reference turning traveling state that is a value obtained by multiplying the set front and rear traveling state by the average of the ratio.
- the left and right dead zone threshold values are corrected according to the variance value.
- the vehicle control device further includes the variance value relating to the set turning state not less than the reference turning state and the variance relating to the set turning state not more than the reference turning state.
- the left / right input index and / or the asymmetry coefficient are corrected according to a difference from the value.
- any vehicle can be operated easily and comfortably by adapting the vehicle's sensitivity characteristics to individual differences regarding the asymmetric structure of the human body and the asymmetric sensitivity characteristics of the operation amount.
- the vehicle control device further includes the acquired front-rear driving state in which the absolute value of the acquired front-rear traveling state and the turning traveling state and / or the time change rate of the absolute value is smaller than a predetermined threshold.
- the state and the turning traveling state are excluded from the time history.
- the vehicle control device further acquires the acquired front-rear travel in which a product of the acquired absolute value of the front-rear traveling state and the turning traveling state and a time change rate of the absolute value is smaller than a predetermined threshold.
- the state and the turning traveling state are excluded from the time history.
- Still another vehicle further includes a read / write means for reading and writing correction parameters stored in the external storage device, and the vehicle control device stores the read / write means in the external storage device when the vehicle is started.
- the obtained correction parameter is acquired as an initial value, and the final value of the correction parameter corrected when the vehicle is stopped is stored in the external storage device from the read / write unit.
- the other vehicle further includes a steering device mounting portion disposed on both the left and right sides of the riding portion on which the pilot rides, and the steering device can be attached to either the left or right steering device mounting portion. is there.
- control device further includes an attachment side recognition device that recognizes whether the control device is attached to the left or right control device attachment portion, and the vehicle control device receives a signal received from the attachment side recognition device. Accordingly, the set front / rear traveling state and / or turning traveling state is corrected.
- both right-handed and left-handed people can operate easily and comfortably.
- the amount of operation of the control device and the turning command value that enables intuitive and simple control without requiring technology or experience are required. It is desirable that the relationship is set appropriately. In order to allow the driver to perform simple and intuitive maneuvering and to simplify the vehicle system, it is desirable that the number of maneuvering devices is small and simple.
- the driver when the operation amount of the control device is made to correspond to the “yaw rate” of the vehicle, the driver appropriately feels the degree of the turning traveling state at the time of low speed traveling with respect to the turning traveling state as a response to the predetermined operation amount. In some cases, the degree of turning during high-speed traveling may be felt to be excessively large. In addition, when using a steering device that is input by translationally moving in a specific direction, such as a lever, the driver may feel when turning in the reverse direction when moving forward and backward, even if inputting in the same direction.
- the driver when the operation amount of the control device is made to correspond to the “lateral acceleration” of the vehicle, the driver appropriately sets the degree of the turning traveling state at the time of high speed traveling with respect to the turning traveling state as a response to the predetermined operation amount. On the other hand, it may be felt that the degree of the turning state during low-speed driving is excessively large.
- the driver when a steering device that is input by rotating in a specific direction such as a steering wheel is used, the driver may feel that the vehicle turns in the reverse direction when moving forward and backward, even if input is performed in the same direction.
- the first problem regarding the difference in how to feel the turning state depending on the traveling speed is that the human senses the turning state visually (change in surrounding scenery) and force sense (change in centrifugal force) and feels stronger. This is caused by recognizing as a turning state.
- the second problem related to the uncomfortable feeling of the turning direction due to the traveling direction is caused by the difference between the turning operation that makes the translation direction (lateral acceleration) equal and the turning operation that makes the rotation direction (yaw rate) the same when moving forward and backward. To do.
- the eighth and ninth embodiments of the present invention solve the problems of the conventional vehicle, determine the yaw rate and the left / right acceleration according to the input amount of the input means, and the yaw rate or the left / right according to the vehicle speed.
- By correcting at least one of the accelerations and turning at the corrected yaw rate and / or left / right acceleration an appropriate turning state can be realized according to the input amount of the operator, and it is easy with a simple control device.
- An object is to provide a vehicle that can be intuitively operated.
- FIG. 34 is a schematic diagram showing the configuration of the vehicle in the eighth embodiment of the present invention.
- (a) is a front view of the vehicle
- (b) is a side view of the vehicle
- (c) is a side view of the joystick
- (d) is a top view of the joystick.
- the joystick 31 in the present embodiment is a base 31a, is attached to the base 31a so as to be tiltable, and is a means for inputting by tilting back and forth and left and right.
- the lever 31b as the first input means, and the rotating portion as the second input means that can be freely rotated within a predetermined angle range around the reference axis of the lever 31b and are input by rotating. 31c.
- the crew member 15 as a driver inputs a run command by inclining the lever 31b back and forth and right and left as indicated by arrows in FIGS. 34 (c) and 34 (d). Then, the joystick 31 measures the amount of state corresponding to the amount of inclination of the lever 31b in the front-rear direction (x-axis direction) and the left-right direction (y-axis direction), and the front-rear operation amount and the left-right operation amount input by the operator. Is transmitted to the main control ECU 21.
- the x-axis is perpendicular to the rotation axis of the drive wheels 12, the y-axis is parallel, and the z is vertically upward. It is based on the coordinate system that takes the axis.
- the occupant 15 inputs a travel command by rotating the rotating portion 31c around the reference axis of the lever 31b as shown by arrows in FIGS. 34 (c) and 34 (d). Then, the joystick 31 measures a state amount corresponding to the rotation angle of the rotating portion 31c (around the reference axis of the lever 31b), and transmits the measured value to the main control ECU 21 as a rotation operation amount input by the operator.
- the lever 31b is not tiltable with respect to the base 31a but may be translatable. In other words, the travel command may be input by moving back and forth without tilting back and forth.
- the rotating portion 31c is attached to the upper end of the lever 31b so as to be rotatable with respect to the lever 31b, but covers the entire periphery of the lever 31b. It may be rotatably attached to the lever 31b, may be rotatably attached to the base 31a separately from the lever 31b, or the rotating portion 31c by rotating the lever 31b itself around the reference axis.
- the joystick 31 is disposed on a remote controller (not shown), and the operation amount of the lever 31b and the rotating unit 31c is transmitted from the remote controller to the vehicle 10 by wire or wirelessly. It is transmitted to the receiving device provided.
- the operator of the joystick 31 is a person other than the occupant 15.
- the lever 31b and the rotating part 31c are each urged by a neutral state return spring member (not shown), and when the operator releases and releases the hand, the lever 31b and the rotary part 31c automatically return to the neutral state corresponding to zero input. As a result, even when the piloting operation cannot be continued due to an unexpected situation of the driver, the vehicle 10 can be appropriately controlled.
- the configuration of the vehicle system including the main control ECU 21, the drive wheel control ECU 22, and the link control ECU 25 is the same as that of the second embodiment, and thus the description thereof is omitted.
- the main control ECU 21 treats the input rate obtained by normalizing the operation amount with the maximum operation amount as the input amount.
- the forward inclination or movement of the lever 31b that is, the forward input is represented by a positive value
- the backward inclination or movement of the lever 31b that is, the backward input is negative. Represented by the value of.
- the maximum forward input amount is represented as 1, and the backward maximum input amount is represented as -1.
- the lever 31b is tilted or moved to the left, that is, the input to the left is represented by a positive value, and to the right of the lever 31b. Inclination or movement, i.e., input to the right is represented by a negative value.
- the maximum input amount to the left is represented as 1, and the maximum input amount to the right is represented as -1.
- the rotation of the rotating unit 31c in the counterclockwise direction that is, the input in the counterclockwise direction
- the rotation of 31c in the clockwise direction that is, the input in the clockwise direction
- the maximum input amount in the counterclockwise direction is represented as 1, and the maximum input amount in the clockwise direction is represented as -1.
- the joystick 31 including the rotating unit 31c is used in order to realize the intuitive operation of the operator with a simple device.
- other control devices may be used.
- an accelerator pedal, a brake pedal, a handle, and the like may be provided, and the degree of forward / backward acceleration / deceleration and turning may be determined with each operation amount as a driver's intention to operate.
- the vehicle system determines the yaw rate and the lateral acceleration according to the input amount of the lever 31b, corrects at least one of the yaw rate and the lateral acceleration according to the vehicle speed, and turns at the corrected yaw rate and lateral acceleration.
- FIG. 35 is a schematic diagram illustrating the configuration of another example of the vehicle according to the eighth embodiment of the present invention
- FIG. 36 is a block diagram illustrating the configuration of another example of the vehicle system according to the eighth embodiment of the present invention. It is. 35A is a rear view, FIG. 35B is a side view, and FIG. 35C is a rear view in a state where the vehicle body is inclined.
- the vehicle 10 in the present embodiment may have three or more wheels. That is, the vehicle 10 includes, for example, a three-wheeled vehicle having one front wheel and two rear wheels, a three-wheeled vehicle having two front wheels and one rear wheel, and two front wheels and rear wheels. However, it may be of any kind as long as it has three or more wheels.
- the vehicle 10 is disposed in front of the vehicle body, and is disposed in the rear of the vehicle body, with the wheel 12F being one front wheel functioning as a steering wheel.
- the wheel 12F being one front wheel functioning as a steering wheel.
- the vehicle 10 of the example shown in FIG. 35 changes the camber angles of the left and right wheels 12L and 12R by the link mechanism 60 and includes the riding portion 14 and the main body 11 as shown in FIG.
- By inclining the vehicle toward the turning inner wheel that is, by inclining the vehicle body in the lateral direction (left-right direction), it is possible to improve the turning performance and ensure the comfort of the occupant 15.
- the link mechanism 60 has the same configuration as that of the vehicle 10 shown in FIG. 34, the description thereof is omitted.
- posture control such as posture control of an inverted pendulum is not performed. That is, the posture control in the front-rear direction is not performed.
- the wheel 12F is connected to the main body 11 via a front wheel fork 17 which is a part of the suspension device. And like the case of a general motorcycle, a bicycle, etc., the wheel 12F as a steered wheel changes the rudder angle, and thereby the traveling direction of the vehicle 10 changes.
- a steering portion 77 is disposed above the front end of the main body 11, and the rotating shaft of the front wheel fork 17 is rotatably supported by the steering portion 77.
- the steering section 77 includes a steering actuator 71 as a steering actuator and a steering angle sensor 72 as a steering amount detector.
- the steering actuator 71 rotates the rotation shaft of the front wheel fork 17 in response to a travel command from the joystick 31, and the wheel 12F as the steering wheel changes the steering angle. That is, the steering of the vehicle 10 is performed by so-called by-wire.
- the steering angle sensor 72 can detect the steering angle of the wheel 12F, that is, the steering amount of the steering device, by detecting the angle change of the rotation shaft of the front wheel fork 17.
- the vehicle 10 in the example shown in FIG. 35 has a vehicle system as shown in FIG.
- the control ECU 20 further includes a steering control ECU 24.
- the main control ECU 21 transmits a steering command value from the joystick 31 to the steering control ECU 24 in accordance with the travel command, and the steering control ECU 24 supplies an input voltage corresponding to the received steering command value to the steering actuator 71. Then, the steering angle detected by the steering angle sensor 72 is transmitted to the main control ECU 21.
- the vehicle body control system 40 includes a lateral acceleration sensor 42.
- the lateral acceleration sensor 42 is a sensor composed of a general acceleration sensor, a gyro sensor, or the like, and detects the lateral acceleration of the vehicle 10.
- FIG. 37 is a flowchart showing the operation of the running and posture control process in the eighth embodiment of the present invention.
- ⁇ is the vehicle body yaw angle [rad]
- ⁇ is the vehicle acceleration [m / s 2 ].
- the main control ECU 21 first acquires each state quantity from the sensor (step S41). Specifically, the left and right drive wheel rotation angles or rotation angular velocities are acquired from the drive wheel sensor 51, and the vehicle body tilt pitch angle or pitch angular velocity and the vehicle body tilt roll angle or roll angular velocity are acquired from the vehicle body tilt sensor 41.
- the main control ECU 21 calculates the remaining state quantity (step S42).
- the remaining state quantity is calculated by time differentiation or time integration of the obtained state quantity.
- the acquired state quantities are the drive wheel rotation angle, the vehicle body tilt pitch angle, and the vehicle body tilt roll angle
- the rotational angular velocity, the pitch angular velocity, and the roll angular velocity can be obtained by time differentiation.
- the acquired state quantities are the rotational angular velocity, the pitch angular velocity, and the roll angular velocity
- the driving wheel rotational angle, the vehicle body tilt pitch angle, and the vehicle body tilt roll angle can be obtained by time integration of these. .
- the main control ECU 21 acquires the pilot operation amount (step S43).
- the operator acquires the operation amount of the joystick 31 that is operated to input a travel command such as acceleration, deceleration, turning, on-site rotation, stop, and braking of the vehicle 10.
- the main control ECU 21 executes a driving state target value determination process (step S44), and based on the obtained operation amount of the joystick 31, etc., the driving state target value of the vehicle 10, for example, vehicle speed, longitudinal acceleration, Target values such as lateral acceleration and yaw rate (yaw angular velocity) are determined.
- the main control ECU 21 calculates the target value of the drive wheel rotational angular velocity from the travel state target value (step S45). Specifically, the target value of the average driving wheel rotation angular velocity is determined by the following equation.
- the superscript * indicates a target value
- one dot on the symbol indicates a first-order time differentiated value, that is, a speed
- two dots on the symbol Represents a value obtained by second-order time differentiation, that is, acceleration.
- the target value of the left and right difference of the rotational angular speed of the drive wheel is determined by the following formula.
- the target value of the driving wheel rotational angular velocity corresponding to the traveling state target value is determined. That is, the target value of the average driving wheel rotation angular velocity is determined from the target value of the vehicle speed, and the target value of the difference between the left and right driving wheel rotation angular velocities is determined from the target value of the yaw rate.
- the vehicle speed and yaw rate are converted into the rotational angular speed of the drive wheel 12 under the assumption that no slip exists between the drive wheel ground contact point and the road surface. Then, the target value of the drive wheel rotation angular velocity may be determined. Further, the vehicle speed and the yaw rate itself may be fed back and controlled.
- the main control ECU 21 determines a target value of the vehicle body inclination angle (step S46). Specifically, the target value of the vehicle body tilt pitch angle is determined from the target value of the vehicle acceleration and the vehicle body parameter by the following formula.
- the target value of a vehicle body tilt pitch angle is determined by the following formula.
- the subscript X indicates front and rear (x-axis direction), and the subscript Y indicates left and right (y-axis direction).
- the target value of the vehicle body inclination angle is determined according to the target value of the vehicle acceleration. That is, for the vehicle body tilt pitch angle, the vehicle body posture that can achieve the travel target given by the longitudinal acceleration is given as the target value in consideration of the mechanical structure of the inverted pendulum with respect to the vehicle body posture before and after and the traveling state. Further, with respect to the vehicle body tilt roll angle, the target posture can be set freely within a range where the center of the grounding load exists in a stable region between the grounding points of the two drive wheels 12, but in this embodiment, the load of the passenger 15 The position with the least number is given as the target value.
- the target vehicle body tilt roll angle may be set to zero, and the upright posture may be maintained for a small lateral acceleration.
- the main control ECU 21 calculates the remaining target value (step S47). That is, the target values of the drive wheel rotation angle and the vehicle body inclination angular velocity are calculated by time differentiation or time integration of each target value.
- the main control ECU 21 determines the feedforward output of each actuator (step S48). Specifically, according to the following formula, as feedforward output, the feedforward amount ⁇ W, FF of the total drive torque, the feedforward amount ⁇ W, FF of the left-right difference of the drive torque , and the feedforward amount ⁇ L, FF of the link torque To decide.
- the actuator output necessary to realize the target traveling state and vehicle body posture is predicted from the dynamic model, and the amount is fed-forwardly added, so that the traveling and posture control of the vehicle 10 can be performed with high accuracy.
- the drive torque according to the vehicle longitudinal acceleration / deceleration target value is added so that the travel target in the longitudinal direction can be achieved.
- a drive torque according to the vehicle body tilt roll angle target value is added so that the vehicle body posture target in the left-right direction can be achieved. Note that the influence of centrifugal force (lateral acceleration) acting on the vehicle body is taken into account.
- the main control ECU 21 determines the feedback output of each actuator (step S49). Specifically, the feedback amount ⁇ W, FB of the total driving torque, the feedback amount ⁇ W, FB of the left / right difference of the driving torque , and the feedback amount ⁇ L, FB of the link torque are determined as feedback outputs by the following equations.
- each feedback gain K ** for example, a value of an optimum regulator is set in advance. Further, nonlinear feedback control such as sliding mode control may be introduced. Further, as a simpler control, some of the gains excluding K W2 , K W3 , K d2 and K L1 may be set to zero. Further, an integral gain may be introduced in order to eliminate the steady deviation.
- the main control ECU 21 gives a command value to each element control system (step S50), and ends the running and posture control processing. Specifically, the main control ECU 21 instructs the drive wheel control ECU 22 and the link control ECU 25 as right drive torque command value ⁇ WR , left drive torque command value ⁇ WL , total drive torque as command values determined by the following formulas.
- a command value ⁇ W , a drive torque left / right difference command value ⁇ W and a link torque command value ⁇ L are given.
- the sum of the feedforward output and the feedback output is given as a command value.
- command values for the right drive torque and the left drive torque are given so that the average drive torque and the left-right difference between the drive torques are required values.
- the term of the feedback amount ⁇ W, FB of the total driving torque and the feedback amount ⁇ W, FB of the driving torque left-right difference This item is unnecessary and will be deleted.
- the running and posture control processing is repeatedly executed at predetermined time intervals (for example, every 100 [ ⁇ s]).
- FIG. 38 is a diagram showing the relationship between the first turning target value and the vehicle speed target value in the eighth embodiment of the present invention
- FIG. 39 is the second turning target in the eighth embodiment of the present invention.
- FIG. 40 is a diagram showing the relationship between the value and the vehicle speed target value
- FIG. 40 is a diagram showing the relationship between the longitudinal acceleration target value correction amount and the vehicle speed target value in the eighth embodiment of the present invention
- FIG. It is a flowchart which shows operation
- 38A shows the relationship between the first lateral acceleration target value and the vehicle speed target value
- FIG. 38B shows the relationship between the first yaw rate target value and the vehicle speed target value.
- 39 (a) shows the relationship between the second lateral acceleration target value and the vehicle speed target value, and (b) shows the relationship between the second yaw rate target value and the vehicle speed target value.
- the main control ECU 21 first determines a vehicle speed target value (step S44-1). Specifically, the vehicle acceleration target value V * is determined by time integration of the vehicle acceleration target value. In this case, the value determined in the previous control step is used as the target value of vehicle acceleration.
- the main control ECU 21 determines the first turning target value (step S44-2).
- the first lateral acceleration target value is obtained from the following expression from the lateral operation amount of the joystick 31 as the control device, that is, the lateral input amount of the lever 31b as the first input means and the target value of the vehicle speed. decide.
- the relationship between the first lateral acceleration target value and the vehicle speed target value is as shown in FIG.
- the graph of FIG. 38A shows a case where the left and right input amount of the lever 31b is a positive value.
- the graph of FIG. This graph is obtained by symmetrically moving with respect to the horizontal axis (V * axis).
- the first yaw rate target value is determined by the following formula from the left / right input amount of the lever 31b and the target value of the vehicle speed.
- the graph of FIG. 38B shows a case where the left and right input amount of the lever 31b is a positive value, as in the graph of FIG. 38A, and the left and right input amount of the lever 31b is a negative value.
- the graph shown in FIG. 38B is moved symmetrically with respect to the horizontal axis.
- the graphs of FIGS. 38A and 38B show a case where a predetermined input amount is given.
- the target value for turning is determined based on the left / right input amount of the control device and the target value of the vehicle speed.
- the left / right input rate of the control device is made to correspond to either the left / right acceleration or the yaw rate according to the target value of the vehicle speed.
- a value proportional to the left / right input rate of the control device is set as the left / right acceleration target value.
- the target value is a yaw rate value corresponding to the target values of the vehicle speed and the lateral acceleration. If the target value of the vehicle speed is less than the threshold, a value proportional to the left / right input rate of the control device is set as the target value of the yaw rate, and the value of the lateral acceleration corresponding to the target value of the vehicle speed and the yaw rate is set as the target value.
- the right and left acceleration for high speed driving and the yaw rate for low speed driving are used to improve maneuverability and feeling by using the one suitable for human characteristics, which has a strong tendency to recognize the degree of turning. .
- the left and right acceleration and yaw rate target values determined according to the left and right input rates of the control device are used as reference values, and the left and right acceleration reference values and the yaw rate reference value are converted into left and right accelerations by the vehicle speed target value.
- the smaller value is the left / right acceleration target value, and the yaw rate reference value is compared to the left / right acceleration reference value converted to the yaw rate by the vehicle speed target value. Is the target value of the yaw rate.
- the joystick 31 as the control device includes a lever 31b as a first input means, and determines the target value so that the left and right input direction of the lever 31b matches the left and right acceleration direction. Then, with respect to the input direction of the same lever 31b, the sign of the target yaw rate is reversed between when the vehicle 10 moves forward and when it moves backward. In this way, by making the translation direction of the lever 31b correspond to the translation direction of the vehicle 10, more intuitive steering is possible.
- the turning target value is limited according to the vehicle speed.
- the target value of the vehicle speed is zero, the turning target value is limited according to the vehicle speed so that both are zero.
- the second speed threshold value for determining whether the input amount of the control device corresponds to either the lateral acceleration or the yaw rate is set based on the maximum value of the lateral acceleration target value and the yaw rate target value.
- other maximum values may be set according to the setting value of the second speed threshold.
- the threshold suitable for human sensitivity characteristics is set as the second speed threshold
- the maximum value of the left / right acceleration target value is determined according to the stability limit of the vehicle body posture
- the maximum value of the yaw rate target value is determined from both determined values. It may be set. Thereby, the vehicle 10 with better maneuverability and maneuverability can be realized.
- the main control ECU 21 determines a second turning target value (step S44-3). Specifically, from the rotational operation amount of the joystick 31 as the control device, that is, the rotational input amount of the rotating unit 31c as the second input means and the target value of the vehicle speed, the second lateral acceleration target value is obtained by the following equation. To decide.
- FIG. 39A The relationship between the second lateral acceleration target value and the vehicle speed target value is as shown in FIG. Note that the graph of FIG. 39A represents a case where the rotation input amount of the rotation unit 31c is a positive value, and when the rotation input amount of the rotation unit 31c is a negative value, FIG. This is a graph obtained by symmetrically moving the graph of a) with respect to the horizontal axis (V * axis).
- the second yaw rate target value is determined by the following equation from the rotational input amount of the rotating unit 31c and the target value of the vehicle speed.
- the relationship between the second yaw rate target value and the vehicle speed target value is as shown in FIG.
- the graph of FIG. 39B represents the case where the rotation input amount of the rotation unit 31c is a positive value, as in the graph of FIG. 39A, and the rotation input amount of the rotation unit 31c is negative.
- the graph of FIG. 39 (b) is moved symmetrically with respect to the horizontal axis.
- the graphs of FIGS. 39A and 39B show a case where a predetermined input amount is given.
- the target value for turning is determined based on the rotation input amount of the control device and the target value of the vehicle speed.
- the rotational input rate of the control device is made to correspond to the yaw rate.
- the yaw rate target value at the time of low-speed traveling is limited with respect to the turning travel command by the lever 31b as the first input means, while the low-speed traveling is performed with respect to the turning travel command by the rotating unit 31c as the second input means. Allow hourly yaw rate target value.
- a value proportional to the rotational input rate is set as the target value of the yaw rate, and the value of the lateral acceleration corresponding to the target value of the vehicle speed and the yaw rate is set as the target value.
- a rotation unit 31c as a second input means is provided, and the target value is determined so that the rotation input direction of the rotation unit 31c matches the yaw rate direction. Then, with respect to the input direction of the same rotating unit 31c, the sign of the target lateral acceleration is reversed between when the vehicle 10 moves forward and when it moves backward.
- the rotation direction of the rotating portion 31c is avoided. Is made to correspond to the rotation direction of the vehicle 10, thereby enabling more intuitive maneuvering.
- the turning target value is limited according to the vehicle speed.
- the target value of the vehicle speed is equal to or higher than a predetermined threshold value (fourth speed threshold value in the example shown in FIG. 39)
- the turning target value is limited according to the vehicle speed so as to become zero.
- the turning traveling command input by the second input means that is a steering method that delays the emergency vehicle braking command from the time of high speed traveling is prohibited, A vehicle 10 that can be used more safely and comfortably is realized.
- the main control ECU 21 determines a turning target value (step S44-4). Specifically, it is determined from the first turning travel target value and the second turning travel target value. First, from the first lateral acceleration target value determined according to the left / right input amount of the control device and the second lateral acceleration target value determined according to the rotational input amount of the control device, the lateral acceleration target value is calculated by the following equation. To decide.
- the yaw rate target value is determined by the following equation from the first yaw rate target value determined according to the left / right input amount of the control device and the second yaw rate target value determined according to the rotation input amount of the control device. .
- the target value in actual control is determined based on the turning target value determined according to the input amount of the control device. Specifically, the first left / right acceleration target value determined by the left / right input amount of the lever 31b as the first input means and the vehicle speed target value, the rotation input amount and the vehicle speed of the rotating unit 31c as the second input means. The sum of the second lateral acceleration target value determined by the target value is set as the lateral acceleration target value. Further, it is determined by the first yaw rate target value determined by the left / right input amount of the lever 31b as the first input means and the vehicle speed target value, and the rotation input amount and the vehicle speed target value of the rotating unit 31c as the second input means.
- the sum of the obtained second yaw rate target value is set as the yaw rate target value.
- target values for the lateral acceleration and the yaw rate are set.
- only one of the target values may be set as the turning target value.
- the target value of the yaw rate may be determined as the turning target.
- the lateral acceleration may be obtained from the yaw rate target value and the vehicle speed target value.
- the turning target value may be set by other state quantities such as a turning radius and a curvature. These state quantities are easily determined from the lateral acceleration and yaw rate according to a predetermined relational expression.
- the main control ECU 21 determines a target value for forward and backward travel (step S44-5), and ends the travel state target value determination process.
- the longitudinal acceleration target value is determined by the following formula from the longitudinal input amount and the rotational input amount of the control device.
- the target value of the longitudinal acceleration is corrected by the rotation input amount of the control device and the target value of the vehicle speed.
- the target value of the longitudinal acceleration is corrected so as to reduce the traveling speed of the vehicle 10 according to the rotational input rate of the control device.
- the deceleration proportional to the rotation input rate is used as the correction amount of the longitudinal acceleration target value, and the longitudinal input amount of the control device The longitudinal acceleration steering command value determined in accordance with is corrected.
- the longitudinal acceleration target value correction amount is limited. In this way, by smoothing the positive / negative switching of the longitudinal acceleration correction amount associated with the forward / backward switching of the vehicle 10, the vibration of the running state and the vehicle body posture is prevented and the comfort is improved.
- the third speed threshold value and the fourth speed threshold value used in the equation for determining the second turning travel target value in step S44-3, and the target values for front and rear travel in step S44-5 may be set.
- the same value is set for the third speed threshold and the fourth speed threshold used in the equation for determining the value
- different values may be set. For example, by setting the third speed threshold and the fourth speed threshold used in the equation for determining the target value for the front and rear travel in step S44-5 to be larger values, the turning travel command based on the rotational input amount is prohibited. Even when the rotational input amount is given at the vehicle speed, the vehicle can be shifted to the vehicle body direction changing operation after the vehicle speed is automatically lowered.
- the longitudinal acceleration target value correction amount is a value proportional to the rotational input amount, but other determination methods may be used. For example, a predetermined deceleration may be given only when the rotational input amount is larger than a predetermined threshold.
- the vehicle acceleration in the front-rear direction is corrected, but the vehicle speed may be corrected.
- the target value of the vehicle body speed is set to zero, it is possible to prompt a quicker transition to the super turning state.
- the yaw rate and the lateral acceleration are determined according to the input amount of the first input means, and at least one of the yaw rate or the lateral acceleration is corrected according to the vehicle speed, and the corrected yaw rate and / or Or turn with lateral acceleration.
- either the yaw rate or the lateral acceleration which is the state quantity is selected according to the vehicle speed, and the value obtained by converting the value of the one state quantity according to the vehicle speed is set as the corrected other state quantity.
- the lateral acceleration is selected when the vehicle speed is equal to or higher than a predetermined threshold
- the yaw rate is selected when the vehicle speed is lower than the predetermined threshold. If the absolute value of the value of one state quantity is smaller than the absolute value of the converted value, which is a value obtained by converting the value of the other state quantity into one state quantity by the vehicle speed, select one state quantity. If the value is equal to or larger than the absolute value of the converted value, the other state quantity is selected.
- the first input means is a lever 31b, and the lever 31b is input by being tilted or moved in a direction parallel to the rotation axis of the drive wheel 12.
- the absolute value of the corrected yaw rate is reduced when the vehicle speed is below a predetermined threshold.
- the second input means is further provided, and the yaw rate and the lateral acceleration determined according to the input amount of the first input means and the yaw rate determined according to the input amount of the second input means And turn at a yaw rate and a lateral acceleration which are the sum of the lateral acceleration and the lateral acceleration.
- the value obtained by converting the yaw rate determined according to the input amount of the second input means into the lateral acceleration according to the vehicle speed is replaced with the lateral acceleration determined according to the second input means.
- the second input means is a rotating unit 31c, and inputs the rotating unit 31c by rotating a straight line perpendicular to the rotating shaft of the drive wheel 12 as a rotating shaft.
- the values of the yaw rate and the lateral acceleration determined according to the second input means are set to zero.
- the longitudinal acceleration of the vehicle 10 is corrected according to the input amount of the second input means. Specifically, when the vehicle speed is equal to or lower than a predetermined threshold, the longitudinal acceleration of the vehicle 10 is corrected. Further, the longitudinal acceleration is corrected so that the vehicle 10 decelerates.
- target values for the yaw rate and the lateral acceleration are determined, and a drive torque corresponding to the target values is applied to the left and right drive wheels 12.
- the value obtained by converting the target value of the yaw rate into the drive wheel rotational angular speed difference is set as the target value of the drive wheel rotational angular speed difference, and a differential torque having a magnitude proportional to the difference between the target value and the measured value is driven.
- a link mechanism 60 is provided as a vehicle body left / right tilt mechanism, and the vehicle body is tilted by an amount corresponding to the vehicle acceleration.
- FIG. 42 is a diagram showing the relationship between the first turning target value and the vehicle speed target value in the ninth embodiment of the present invention
- FIG. 43 is the second turning target in the ninth embodiment of the present invention. It is a figure which shows the relationship between a value and the target value of vehicle speed. 42, (a) shows the relationship between the first lateral acceleration target value and the vehicle speed target value, and (b) shows the relationship between the first yaw rate target value and the vehicle speed target value. 43, (a) shows the relationship between the second lateral acceleration target value and the vehicle speed target value, and (b) shows the relationship between the second yaw rate target value and the vehicle speed target value.
- the equation for determining the first turning target value used in step S44-2 and the equation for determining the second turning target value used in step S44-3 are: Since the rate of change includes a discontinuous point, there is a possibility that the driver feels uncomfortable when the speed is changed during turning. In addition, since the expression is complicated, there are many calculation processing contents necessary for control, and there is a possibility that expensive calculation means are required. Furthermore, since an arbitrary constant is included, it takes time to set an appropriate parameter value. That is, it is desirable that the above formula is simple, does not include an arbitrary constant, and the rate of change is continuous.
- the formula for determining the first turning travel target value and the formula for determining the second turning travel target value are simple, do not include an arbitrary constant, and have a change rate. Use an expression that is continuous. As a result, it is possible to provide an inexpensive inverted vehicle 10 with higher maneuverability and good operational feeling.
- the first lateral acceleration target value is determined by the following equation.
- the relationship between the first lateral acceleration target value and the vehicle speed target value in the present embodiment is as shown in FIG.
- the graph of FIG. 42 (a) represents a case where the left / right input amount of the lever 31b is a positive value, and when the left / right input amount of the lever 31b is a negative value, FIG. This graph is obtained by symmetrically moving with respect to the horizontal axis (V * axis).
- the first yaw rate target value is determined by the following formula.
- the relationship between the first yaw rate target value and the vehicle speed target value in the present embodiment is as shown in FIG.
- the graph of FIG. 42B shows a case where the left and right input amount of the lever 31b is a positive value, as in the graph of FIG. 42A, and the left and right input amount of the lever 31b is a negative value.
- the graph of FIG. 42B is a graph obtained by moving the graph symmetrically with respect to the horizontal axis.
- the second lateral acceleration target value is determined by the following equation.
- FIG. 43A represents a case where the rotation input amount of the rotation unit 31c is a positive value.
- FIG. 43A This is a graph obtained by symmetrically moving the graph of a) with respect to the horizontal axis (V * axis).
- the second yaw rate target value is determined by the following formula.
- the relationship between the second yaw rate target value and the vehicle speed target value in the present embodiment is as shown in FIG.
- the graph of FIG. 43B represents the case where the rotation input amount of the rotation unit 31c is a positive value, as in the graph of FIG. 43A, and the rotation input amount of the rotation unit 31c is negative.
- the graph of FIG. 43B is a graph obtained by symmetrically moving the graph with respect to the horizontal axis.
- the first turning travel target value and the second turning travel target value are determined using an expression that is simple, does not include an arbitrary constant, and has a continuous rate of change. Therefore, it is possible to provide an inexpensive vehicle 10 with higher maneuverability and good operational feeling.
- Controlling the posture of the vehicle body by controlling left and right drive wheels rotatably attached to the vehicle body, first input means operated by the operator, and drive torque applied to each of the drive wheels, A vehicle control device that controls traveling according to an input amount of one input means, the vehicle control device determines a yaw rate and a lateral acceleration according to an input amount of the first input means, A vehicle that corrects at least one of the lateral acceleration in accordance with the vehicle speed and controls turning based on the corrected yaw rate and / or lateral acceleration.
- the vehicle control device further selects one of the yaw rate and the left / right acceleration according to the vehicle speed, and sets a value obtained by converting the one value according to the vehicle speed as the other correction value.
- the vehicle control device further selects a lateral acceleration when the vehicle speed is equal to or higher than a predetermined threshold, and selects a yaw rate when the vehicle speed is lower than the threshold.
- the vehicle control device further determines the one when the absolute value of one value of the yaw rate or the lateral acceleration is smaller than the absolute value of the value obtained by converting the other value according to the vehicle speed. Select, otherwise select the other.
- the vehicle control device further reverses the sign of the yaw rate with respect to the input amount of the first input means in the transition state between the forward travel state and the reverse travel state.
- This configuration does not give the operator a sense of incongruity about the difference between the turning direction when moving forward and the turning direction when moving backward with respect to the turning operation of the driver by the first input means.
- the vehicle control device further reduces the absolute value of the corrected yaw rate when the vehicle speed is equal to or lower than a predetermined threshold value.
- the vehicle control device further includes second input means operated by a driver, wherein the vehicle control device includes the yaw rate and the lateral acceleration determined according to the input amount of the first input means, and the second Turning is controlled based on the yaw rate and left / right acceleration, which is the sum of the yaw rate and left / right acceleration determined according to the input amount of the input means.
- the vehicle control device further converts a value obtained by converting a yaw rate determined according to an input amount of the second input unit into a lateral acceleration according to a vehicle speed as an input amount of the second input unit. Replace with the lateral acceleration value determined accordingly.
- the vehicle control device further reverses the sign of the lateral acceleration with respect to the input amount of the second input means in the transition state between the forward travel state and the reverse travel state.
- This configuration does not give the driver a sense of incongruity about the difference between the turning direction when moving forward and the turning direction when moving backward with respect to the turning operation of the driver by the second input means.
- the vehicle control device further sets the yaw rate and the lateral acceleration determined according to the input amount of the second input means to zero when the vehicle speed is equal to or higher than a predetermined threshold.
- the vehicle control device further corrects the longitudinal acceleration according to the input amount of the second input means.
- the present invention can be applied to vehicles.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Motorcycle And Bicycle Frame (AREA)
Abstract
操縦装置の操作量に応じて決定され、該操作量の時間履歴に応じて補正された車両加速度で、車両を加速及び制動させることによって、操縦者の操作量に応じて、適切な前後方向走行状態を実現することができ、簡素な操縦装置で、容易かつ直感的に操縦可能なようにする。そのため、回転可能に車体に取り付けられた駆動輪12と、操縦者が操作する操縦装置と、前記駆動輪12に付与する駆動トルクを制御して前記車体の姿勢を制御するとともに、前記操縦装置の操作量に応じて走行を制御する車両制御装置とを有し、該車両制御装置は、前記操作量に応じて車両加速度を決定し、決定した車両加速度を前記操作量の時間履歴に応じて補正した値を車両加速度の目標値とする。
Description
本発明は、車両に関するものである。
従来、倒立振り子の姿勢制御を利用した車両に関する技術が提案されている。例えば、同軸上に配設された2つの駆動輪を有し、運転者の重心移動による車体の姿勢変化を感知して駆動する車両、球体状の単一の駆動輪に取り付けられた車体の姿勢を制御しながら移動する車両等の技術が提案されている(例えば、特許文献1参照。)。
この場合、運転者による操縦装置の操作入力量に応じて、車体や駆動輪の動作を制御して車体の倒立状態を保ちながら走行するようになっている。
しかしながら、前記従来の車両においては、運転者が操縦装置によって前後方向の走行目標を指令するようになっているが、操縦装置が複雑で直感的な操作ができず、走行目標を容易に設定することが困難な場合がある。
そもそも、運転者が操縦装置によって前後方向の走行目標を指令する車両においては、技術や経験を必要とせず、直感的で簡易な操縦を可能とするような操縦装置の操作量と前後走行指令値の関係が適切に設定されることが望ましい。そして、運転者の簡易で直感的な操縦を可能とするため、及び、車両のシステムを簡素化するためには、操縦装置はその数が少なく、かつ簡素であることが望ましい。例えば、車両の走行方向及び速度、並びに、加速時及び制動時の加速度及び減速度のような走行目標について、運転者が1つの操縦装置によって定量的に指令できる手段を車両が具備していれば、運転者は簡易で直感的な操作によって車両を操縦することができる。
しかし、1つの操縦装置の操作量を1つの走行状態量の目標値と対応させるような従来の方法では、以下のような問題が発生する可能性がある。
例えば、操縦装置の操作量を車両の「速度」に対応させた場合、操作量の変化率に相当する加速度の調整が困難であり、運転者が望む加速状態や加速感を実現できない可能性がある。また、車両を停止させる操作が、入力値を零とすること、すなわち、入力しないことに対応するので、運転者は制動操作として、「何もしないこと」を行うことに違和感を抱く可能性がある。特に倒立型の車両の場合、加速度に応じて車体姿勢を調整する必要があるため、加速度の目標値が不安定であると、車体姿勢が乱れる場合があり、乗り心地が悪くなる。
また、例えば、操縦装置の操作量を車両の「加速度」に対応させた場合、車両を停止させる操作が加速度の積分値を零にする操作に相当するため、運転者は車両を停止させることに苦労を強いられる可能性がある。また、車両を一定速度で走行させる操作が、入力値を零とすること、すなわち、入力しないことに対応するので、運転者は走行中に「何もしないこと」を行うことに違和感を抱く可能性がある。さらに、車両速度を所定値で制限する場合、制限時に加速度を零に切り替える必要があり、その際に運転者が違和感を抱く可能性がある。
さらに、例えば、操縦装置の操作量を車両の「駆動トルク」に対応させた場合、路面の勾(こう)配及び凹凸、並びに、乗員及び搭載物の重量によって、走行性能が大きく変化するため、操縦性や使い勝手が悪くなる。特に、1人乗りの超小型車の場合には、この影響が顕著である。
いずれの場合も複数の課題があり、運転者の要求を十分に満足することはできない。
本発明は、前記従来の車両の問題点を解決して、操縦装置の操作量に応じて決定され、該操作量の時間履歴に応じて補正された車両加速度で、車両を加速及び制動させることによって、操縦者の操作量に応じて、適切な前後方向走行状態を実現することができ、簡素な操縦装置で、容易かつ直感的に操縦可能な車両を提供することを目的とする。
そのために、本発明の車両においては、回転可能に車体に取り付けられた駆動輪と、操縦者が操作する操縦装置と、前記駆動輪に付与する駆動トルクを制御して前記車体の姿勢を制御するとともに、前記操縦装置の操作量に応じて走行を制御する車両制御装置とを有し、該車両制御装置は、前記操作量に応じて車両加速度を決定し、決定した車両加速度を前記操作量の時間履歴に応じて補正した値を車両加速度の目標値とする。
本発明の他の車両においては、さらに、前記車両制御装置は、前記操縦装置の操作方向及び操作量並びに車両走行状態に応じて車両加速度を決定する。
本発明の更に他の車両においては、さらに、前記車両制御装置は、前記操縦装置の操作方向が所定の方向である場合に、車両の停止時又は前進時には操作量に応じた加速度を前記車両加速度の目標値とし、車両の後進時には操作量に応じた減速度を前記車両加速度の目標値とし、前記操縦装置の操作方向が前記所定の方向と逆である場合に、車両の停止時又は後進時には操作量に応じた加速度を前記車両加速度の目標値とし、車両の前進時には操作量に応じた減速度を前記車両加速度の目標値とする。
本発明の更に他の車両においては、さらに、前記車両制御装置は、前記操作量の時間履歴に応じて走行モードを前進、後進又は停止モードのいずれかに決定し、決定した走行モードによって前記車両加速度を制限する。
本発明の更に他の車両においては、さらに、前記車両制御装置は、前記走行モードが前進モードである場合には後方への加速を制限し、前記走行モードが後進モードである場合には前方への加速を制限し、前記操縦装置に外力又は外トルクが付与されず、かつ、車両速度が所定値以下であるときに限り、前記走行モードの前進から後進への切替及び後進から前進への切替を許可する。
本発明の更に他の車両においては、さらに、前記車両制御装置は、車両速度に応じて前記車両加速度を補正する。
本発明の更に他の車両においては、さらに、前記車両制御装置は、車両速度の2乗に比例した量だけ前記車両加速度を小さく補正する。
本発明の更に他の車両においては、さらに、前記車両制御装置は、車両速度が所定の閾(しきい)値以下であるとき、車両速度に比例した車両減速度の上限値により車両減速度を制限する。
本発明の更に他の車両においては、さらに、前記車両制御装置は、前記操縦装置に外力又は外トルクが付与されない場合、所定の車両減速度を決定する。
本発明の更に他の車両においては、さらに、前記操縦装置は、前記駆動輪の回転軸に垂直な方向に並進可能、又は、前記駆動輪の回転軸に平行な直線周りに回転可能な入力手段を備え、前記車両制御装置は、前記入力手段の位置又は回転角に応じて車両加速度を決定する。
本発明の更に他の車両においては、さらに、前記車両制御装置は、前記車両加速度の目標値に応じた駆動トルクを駆動輪に付与する。
本発明の更に他の車両においては、さらに、前記車両制御装置は、前記車両加速度の目標値を時間積分した値に所定の定数を乗じた値と前記駆動輪の回転角速度との差に応じた駆動トルクを駆動輪に付与する。
本発明の更に他の車両においては、さらに、前記車体に対して移動可能に取り付けられた能動重量部を更に有し、前記車両制御装置は、前記能動重量部の位置を制御して、前記車両加速度の目標値に応じた量だけ、前記駆動輪の接地点に対する前記車体の重心の相対位置を移動させる。
請求項1の構成によれば、操縦装置の操作量に応じて、適切な前後方向走行状態を実現することができ、簡素な操縦装置で、容易かつ直感的に操縦することができる。
請求項2及び3の構成によれば、直感的な操縦方法で車両加速度を指令することができ、操縦者の容易な操作が可能となる。
請求項4及び5の構成によれば、走行を容易にし、安全に扱える車両を提供することができる。
請求項6及び7の構成によれば、実用に適した走行状態を容易に実現可能であるとともに、操縦者に自然な操縦感覚を提供することができる。
請求項8の構成によれば、制動時における車両減速度の調整を容易に実行できる。
請求項9の構成によれば、操縦者に自然な操縦感覚を与えるとともに、操縦者が入力不可能な状態に至った場合でも、車両を確実に停止することができ、安全性を向上させることができる。
請求項10の構成によれば、操縦装置の構成を簡素化することができ、かつ、車両の操縦を直感的に行うことができる。
請求項11及び12の構成によれば、適切な駆動トルクを駆動輪に付与することができる。
請求項13の構成によれば、車体を大きく傾斜させることなく、車体の重心位置を適切に制御することができる。
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。
図1は本発明の第1の実施の形態における車両の構成を示す概略図、図2は本発明の第1の実施の形態における車両システムの構成を示すブロック図である。なお、図1において、(a)は車両の側面図、(b)はジョイスティックの側面図、(c)はジョイスティックの上面図である。
図1において、10は、本実施の形態における車両であり、車体の本体部11、駆動輪12、支持部13及び乗員15が搭乗する搭乗部14を有し、前記車両10は、車体を前後に傾斜させることができるようになっている。そして、倒立振り子の姿勢制御と同様に車体の姿勢を制御する。図1(a)に示される例において、車両10は右方向に前進し、左方向に後退することができる。
前記駆動輪12は、車体の一部である支持部13に対して回転可能に支持され、駆動アクチュエータとしての駆動モータ52によって駆動される。なお、駆動輪12の回転軸は図1(a)に示す平面に垂直な方向に存在し、駆動輪12はその回転軸を中心に回転する。また、前記駆動輪12は、単数であっても複数であってもよいが、複数である場合、同軸上に並列に配設される。本実施の形態においては、駆動輪12が2つであるものとして説明する。この場合、各駆動輪12は個別の駆動モータ52によって独立して駆動される。なお、駆動アクチュエータとしては、例えば、油圧モータ、内燃機関等を使用することもできるが、ここでは、電気モータである駆動モータ52を使用するものとして説明する。
また、車体の一部である本体部11は、支持部13によって下方から支持され、駆動輪12の上方に位置する。そして、本体部11には、能動重量部として機能する搭乗部14が、車両10の前後方向に本体部11に対して相対的に並進可能となるように、換言すると、車体回転円の接線方向に相対的に移動可能となるように、取り付けられている。
ここで、能動重量部は、ある程度の質量を備え、本体部11に対して並進する、すなわち、前後に移動させることによって、車両10の重心位置を能動的に補正するものである。そして、能動重量部は、必ずしも搭乗部14である必要はなく、例えば、バッテリ等の重量のある周辺機器を並進可能に本体部11に対して取り付けた装置であってもよいし、ウェイト、錘(おもり)、バランサ等の専用の重量部材を並進可能に本体部11に対して取り付けた装置であってもよい。また、搭乗部14、重量のある周辺機器、専用の重量部材等を併用するものであってもよい。
本実施の形態においては、説明の都合上、乗員15が搭乗する搭乗部14が能動重量部として機能する例について説明するが、搭乗部14には必ずしも乗員15が搭乗している必要はなく、例えば、車両10がリモートコントロールによって操縦される場合には、搭乗部14に乗員15が搭乗していなくてもよいし、乗員15に代えて、貨物が積載されていてもよい。前記搭乗部14は、乗用車、バス等の自動車に使用されるシートと同様のものであり、足置き部、座面部、背もたれ部及びヘッドレストを備え、図示されない移動機構を介して本体部11に取り付けられている。
また、前記移動機構は、リニアガイド装置等の低抵抗の直線移動機構、及び、能動重量部アクチュエータとしての能動重量部モータ82を備え、該能動重量部モータ82によって搭乗部14を駆動し、本体部11に対して進行方向に前後させるようになっている。なお、能動重量部アクチュエータとしては、例えば、油圧モータ、リニアモータ等を使用することもできるが、ここでは、回転式の電気モータである能動重量部モータ82を使用するものとして説明する。
リニアガイド装置は、例えば、本体部11に取り付けられている案内レールと、搭乗部14に取り付けられ、案内レールに沿ってスライドするキャリッジと、案内レールとキャリッジとの間に介在するボール、コロ等の転動体とを備える。そして、案内レールには、その左右側面部に2本の軌道溝が長手方向に沿って直線状に形成されている。また、キャリッジの断面はコ字状に形成され、その対向する2つの側面部内側には、2本の軌道溝が、案内レールの軌道溝と各々対向するように形成されている。転動体は、軌道溝の間に組み込まれており、案内レールとキャリッジとの相対的直線運動に伴って軌道溝内を転動するようになっている。なお、キャリッジには、軌道溝の両端をつなぐ戻し通路が形成されており、転動体は軌道溝及び戻し通路を循環するようになっている。
また、リニアガイド装置は、該リニアガイド装置の動きを締結するブレーキ又はクラッチを備える。車両10が停車しているときのように搭乗部14の動作が不要であるときには、ブレーキによって案内レールにキャリッジを固定することで、本体部11と搭乗部14との相対的位置関係を保持する。そして、動作が必要であるときには、このブレーキを解除し、本体部11側の基準位置と搭乗部14側の基準位置との距離が所定値となるように制御される。
前記搭乗部14の脇(わき)には、目標走行状態取得装置としてのジョイスティック31を備える入力装置30が配設されている。乗員15は、操縦装置であるジョイスティック31を操作することによって、車両10を操縦する、すなわち、車両10の加速、減速、旋回、その場回転、停止、制動等の走行指令を入力するようになっている。なお、本実施の形態においては、説明の都合上、走行指令が車両10の加速、減速、停止及び制動である場合について説明する。
図1に示されるように、ジョイスティック31は、基部31a、及び、該基部31aに傾動可能に取り付けられた入力手段としてのレバー31bを備える。そして、操縦者としの乗員15は、レバー31bを、図1(b)及び(c)において矢印で示されるように、前後に傾斜させることで走行指令を入力する。すると、ジョイスティック31は、レバー31bの前後の傾斜量に相当する状態量を計測し、その計測値を操作量として評価する。また、レバー31bは、図示されない中立状態復帰用のばね部材によって付勢され、操縦者が手を放して解放すると、自動的に零入力に相当する中立状態(図1(b)及び(c)に示されるような基部31aに対して直立した状態)に復帰する。
なお、前記レバー31bは、基部31aに対して傾動可能なものでなく、並進可能なものであってもよい。すなわち、前後に傾斜させず、前後に移動させることで走行指令を入力するものであってもよい。また、車両10がリモートコントロールによって操縦される場合には、前記ジョイスティック31が図示されないリモートコントローラに配設され、レバー31bの操作量は、リモートコントローラから、有線又は無線によって車両10に配設される受信装置に送信される。この場合、ジョイスティック31の操縦者は乗員15以外の者であってもよい。
また、車両システムは、図2に示されるように、車両制御装置としての制御ECU(Electronic Control Unit)20を有し、該制御ECU20は、主制御ECU21、駆動輪制御ECU22及び能動重量部制御ECU23を備える。前記制御ECU20並びに主制御ECU21、駆動輪制御ECU22及び能動重量部制御ECU23は、CPU、MPU等の演算手段、磁気ディスク、半導体メモリ等の記憶手段、入出力インターフェイス等を備え、車両10の各部の動作を制御するコンピュータシステムであり、例えば、本体部11に配設されるが、支持部13や搭乗部14に配設されていてもよい。また、前記主制御ECU21、駆動輪制御ECU22及び能動重量部制御ECU23は、それぞれ、別個に構成されていてもよいし、一体に構成されていてもよい。
そして、主制御ECU21は、駆動輪制御ECU22、駆動輪センサ51及び駆動モータ52とともに、駆動輪12の動作を制御する駆動輪制御システム50の一部として機能する。前記駆動輪センサ51は、レゾルバ、エンコーダ等から成り、駆動輪回転状態計測装置として機能し、駆動輪12の回転状態を示す駆動輪回転角及び/又は回転角速度を検出し、主制御ECU21に送信する。また、該主制御ECU21は、駆動トルク指令値を駆動輪制御ECU22に送信し、該駆動輪制御ECU22は、受信した駆動トルク指令値に相当する入力電圧を駆動モータ52に供給する。そして、該駆動モータ52は、入力電圧に従って駆動輪12に駆動トルクを付与し、これにより、駆動アクチュエータとして機能する。
また、主制御ECU21は、能動重量部制御ECU23、能動重量部センサ81及び能動重量部モータ82とともに、能動重量部である搭乗部14の動作を制御する能動重量部制御システム80の一部として機能する。前記能動重量部センサ81は、エンコーダ等から成り、能動重量部移動状態計測装置として機能し、搭乗部14の移動状態を示す能動重量部位置及び/又は移動速度を検出し、主制御ECU21に送信する。すると、該主制御ECU21は、能動重量部推力指令値を能動重量部制御ECU23に送信し、該能動重量部制御ECU23は、受信した能動重量部推力指令値に相当する入力電圧を能動重量部モータ82に供給する。そして、該能動重量部モータ82は、入力電圧に従って搭乗部14を並進移動させる推力を搭乗部14に付与し、これにより、能動重量部アクチュエータとして機能する。
さらに、主制御ECU21は、駆動輪制御ECU22、能動重量部制御ECU23、車体傾斜センサ41、駆動モータ52及び能動重量部モータ82とともに、車体の姿勢を制御する車体制御システム40の一部として機能する。前記車体傾斜センサ41は、加速度センサ、ジャイロセンサ等から成り、車体傾斜状態計測装置として機能し、車体の傾斜状態を示す車体傾斜角及び/又は傾斜角速度を検出し、主制御ECU21に送信する。そして、該主制御ECU21は、駆動トルク指令値を駆動輪制御ECU22に送信し、能動重量部推力指令値を能動重量部制御ECU23に送信する。
なお、各センサは、複数の状態量を取得するものであってもよい。例えば、車体傾斜センサ41として加速度センサとジャイロセンサとを併用し、両者の計測値から車体傾斜角と車体傾斜角速度とを決定してもよい。
また、主制御ECU21には、入力装置30のジョイスティック31から走行指令として、レバー31bの操作量が入力される。そして、前記主制御ECU21は、駆動トルク指令値を駆動輪制御ECU22に送信し、能動重量部推力指令値を能動重量部制御ECU23に送信する。主制御ECU21は、入力量を最大入力量で正規化した入力率を入力量として扱う。そして、レバー31bの前方への傾斜又は移動、すなわち、前方への入力を正の値で表し、レバー31bの後方への傾斜又は移動、すなわち、後方への入力を負の値で表す。また、前方への最大入力量を1、後方への最大入力量を-1として表す。
なお、本実施の形態においては、操縦者の直感的な操縦を簡易な装置で実現するために、1軸のジョイスティック31を用いているが、他の操縦装置を用いてもよい。例えば、レバーを握ることで入力するスロットルレバーを備え、回転方向と回転量に応じて、車両加速度の目標値を決定してもよい。
そして、車両システムは、前記ジョイスティック31の操作量に応じて車両加速度を決定し、決定した車両加速度を前記操作量の時間履歴に応じて補正した値を車両加速度の目標値とする。
次に、本実施の形態における車両10の他の例について説明する。
図3は本発明の第1の実施の形態における車両の他の例の構成を示す概略図、図4は本発明の第1の実施の形態における車両システムの他の例の構成を示すブロック図である。なお、図3において、(a)は背面図、(b)は側面図である。
本実施の形態における車両10は、3輪以上の車輪を有するものであってもよい。つまり、前記車両10は、例えば、前輪が1輪であり後輪が2輪である3輪車、前輪が2輪であり後輪が1輪である3輪車、前輪及び後輪が2輪である4輪車等であるが、3輪以上の車輪を有するものであれば、いかなる種類のものであってもよい。
ここでは、説明の都合上、図3に示されるように、前記車両10が、車体の前方に配設され、操舵(だ)輪として機能する1つの前輪である車輪12Fと、車体の後方に配設され、駆動輪12として機能する左右2つの後輪である車輪12L及び12Rとを有する3輪車である例についてのみ説明する。
図3に示される例において、車両10は、リンク機構60によって左右の車輪12L及び12Rのキャンバー角を変化させるとともに、搭乗部14及び本体部11を含む車体を旋回内輪側へ傾斜させることによって、つまり、車体を横方向(左右方向)に傾斜させることによって、旋回性能の向上と乗員15の快適性の確保とを図ることができるようになっているが、必ずしも、車体を横方向に傾斜させることができるものである必要はない。なお、倒立振り子の姿勢制御のような姿勢制御は行わないものとする。すなわち、前後方向の姿勢制御は行わないものとする。
また、図3に示される例の車両10において、車輪12Fは、サスペンション装置(懸架装置)の一部である前輪フォーク17を介して本体部11に接続されている。前記サスペンション装置は、例えば、一般的なオートバイ、自転車等において使用されている前輪用のサスペンション装置と同様の装置であり、前記前輪フォーク17は、例えば、スプリングを内蔵したテレスコピックタイプのフォークである。そして、一般的なオートバイ、自転車等の場合と同様に、操舵輪としての車輪12Fは舵角を変化させ、これにより、車両10の進行方向が変化する。
具体的には、図3に示されるように、本体部11の前端上方に操舵部77が配設され、該操舵部77によって前輪フォーク17の回転軸が回転可能に支持されている。また、前記操舵部77は、操舵用アクチュエータとしてのステアリングアクチュエータ71と、操舵量検出器としての操舵角センサ72とを備える。前記ステアリングアクチュエータ71は、ジョイスティック31から走行指令に応じて前記前輪フォーク17の回転軸を回転させ、操舵輪としての車輪12Fは舵角を変化させる。つまり、車両10の操舵は、いわゆるバイワイヤによって行われる。また、操舵角センサ72は、前記前輪フォーク17の回転軸の角度変化を検出することによって車輪12Fの舵角、すなわち、操舵装置の操舵量を検出することができる。
なお、図3に示される例の車両10は、図4に示されるような車両システムを有する。ここで、制御ECU20は、前後方向の姿勢制御を行わないので、能動重量部制御ECU23を備えておらず、代わりに、操舵制御ECU24を有する。そして、主制御ECU21は、ジョイスティック31から走行指令に応じて操舵指令値を操舵制御ECU24に送信し、該操舵制御ECU24は、受信した操舵指令値に相当する入力電圧をステアリングアクチュエータ71に供給する。なお、能動重量部センサ81も省略されている。そして、操舵角センサ72の検出した舵角は、主制御ECU21に送信される。
また、車体制御システム40は、横加速度センサ42を備える。該横加速度センサ42は、一般的な加速度センサ、ジャイロセンサ等から成るセンサであって、車両10の横加速度を検出する。
なお、図3に示される例の車両10におけるその他の点の構成については、図1に示される例の車両10と同様であるので、その説明を省略する。
次に、前記構成の車両10の動作について詳細に説明する。まず、走行及び姿勢制御処理について説明する。
図5は本発明の第1の実施の形態における走行及び姿勢制御処理の動作を示すフローチャートである。
本実施の形態においては、状態量やパラメータを次のような記号によって表す。
θW :駆動輪回転角〔rad〕
θ1 :車体傾斜角(鉛直軸基準)〔rad〕
λS :搭乗部位置(能動重量部位置)〔m〕
g:重力加速度〔m/s2 〕
RW :駆動輪接地半径〔m〕
m1 :車体質量〔kg〕
mS :搭乗部質量(能動重量部質量:搭載物を含む)〔kg〕
l1 :車体重心距離(車軸から)〔m〕
α:車両加速度〔m/s2 〕
V:車両速度〔m/s〕
θW :駆動輪回転角〔rad〕
θ1 :車体傾斜角(鉛直軸基準)〔rad〕
λS :搭乗部位置(能動重量部位置)〔m〕
g:重力加速度〔m/s2 〕
RW :駆動輪接地半径〔m〕
m1 :車体質量〔kg〕
mS :搭乗部質量(能動重量部質量:搭載物を含む)〔kg〕
l1 :車体重心距離(車軸から)〔m〕
α:車両加速度〔m/s2 〕
V:車両速度〔m/s〕
続いて、主制御ECU21は、乗員15の操縦操作量を取得する(ステップS3)。この場合、乗員15が、車両10の加速、減速、停止、制動等の走行指令を入力するために操作したジョイスティック31の操作量を取得する。
続いて、主制御ECU21は、車両加速度目標値決定処理を実行し(ステップS4)、取得したジョイスティック31の操作量等に基づいて、車両加速度の目標値α* を決定する。具体的には、レバー31bの前後方向への操作量に比例した値を前後車両加速度の目標値とする。
続いて、主制御ECU21は、車両加速度の目標値から、駆動輪回転角速度の目標値を算出する(ステップS5)。例えば、車両加速度の目標値を時間積分し、所定の駆動輪接地半径で除した値を駆動輪回転角速度の目標値とする。
続いて、主制御ECU21は、車体傾斜角と搭乗部位置の目標値を決定する(ステップS6)。具体的には、車両加速度の目標値から、下記の式によって搭乗部位置の目標値を決定する。
さらに、λS,Max,f 及びλS,Max,r は、搭乗部可動限界位置であり、各々、搭乗部14の基準位置から可動域前縁までの距離、及び、可動域後縁までの距離を示している。
また、車両加速度の目標値から、下記の式によって車体傾斜角の目標値を決定する。
θS,Max,f 及びθS,Max,r は、各々、搭乗部可動限界位置λS,Max,f 及びλS,Max,r の車体傾斜角換算値であり、下記の式によって表される。
このように、車両加速度に伴って車体に作用する慣性力と駆動モータ反トルクを考慮して、車体傾斜角と搭乗部位置の目標値を決定する。そして、これらの車体傾斜トルクを、重力の作用によって打ち消すように、車体の重心を動かす。具体的には、車両10が加速するときには、搭乗部14を前方へ動かす及び/又は車体を前方に傾ける。一方、車両10が減速するときには、搭乗部14を後方へ動かす及び/又は車体を後方に傾ける。また、搭乗部移動が限界に達したら、車体を傾け始める。
これにより、細かい加減速に対する前後の車体傾斜がなくなり、乗員15にとって乗り心地が向上する。また、ある程度の高速走行時でも直立状態を保つため、乗員15にとって視界の変化が小さくなる。
なお、本実施の形態においては、低加速度時及び/又は低速走行時に、搭乗部移動のみで対応させているが、その車体傾斜トルクの一部又は全部を車体傾斜で対応させてもよい。車体を傾けることによって、乗員15に作用する前後方向の力を軽減させることができる。
続いて、主制御ECU21は、残りの目標値を算出する(ステップS7)。すなわち、各目標値を時間微分又は時間積分することによって、駆動輪回転角、車体傾斜角速度及び搭乗部移動速度の目標値をそれぞれ算出する。
続いて、主制御ECU21は、各アクチュエータのフィードフォワード出力を決定する(ステップS8)。具体的には、下記の式によって駆動モータ52のフィードフォワード出力を決定する。
このように、力学モデルによって推定された慣性力を打ち消すように駆動トルクを付加することで、制御の精度を高めることができる。
また、下記の式によって能動重量部モータ82のフィードフォワード出力を決定する。
このように、力学モデルによって推定された重力や慣性力を打ち消すように推力を付加することで、制御の精度を高めることができる。
なお、本実施の形態においては、理論的にフィードフォワード出力を与えることによって、より高精度な制御を実現しているが、上記のフィードフォワード出力は与えなくてもよい。その場合には、フィードバック制御によって、定常偏差を伴いつつ、フィードフォワード出力に近い値が間接的に与えられる。また、その定常偏差は、積分ゲインを適用することで、低減させることもできる。
続いて、主制御ECU21は、各アクチュエータのフィードバック出力を決定する(ステップS9)。具体的には、下記の式によって駆動モータ52のフィードバック出力を決定する。
また、下記の式によって能動重量部モータ82のフィードバック出力を決定する。
なお、各フィードバックゲインK**の値は、例えば、最適レギュレータの値を予め設定しておく。また、スライディングモード制御等の非線形のフィードバック制御を導入してもよい。さらに、より簡単な制御として、KW2、KW3及びKS5を除くゲインのいくつかを零にしてもよい。さらに、定常偏差をなくすために、積分ゲインを導入してもよい。
また、図3に示される例の車両10においては、車体の前後方向の姿勢制御を行わないので、「数6」及び「数7」に示される式は使用しない。
最後に、主制御ECU21は、各要素制御システムに指令値を与えて(ステップS10)、走行及び姿勢制御処理を終了する。具体的には、主制御ECU21は、駆動輪制御ECU22及び能動重量部制御ECU23にフィードフォワード出力とフィードバック出力の和を指令値として、それぞれ、与える。なお、走行及び姿勢制御処理は、所定の時間間隔(例えば、100〔μs〕毎)で繰り返し実行される。
また、図3に示される例の車両10においては、前後方向の姿勢制御を行わないので、前記ステップS5~S10の動作は省略される。
次に、車両加速度目標値決定処理について説明する。
図6は本発明の第1の実施の形態における走行モードの状態遷移を示す図、図7は本発明の第1の実施の形態における前進モードでの車両加速度目標値とジョイスティックの入力率との関係を示す図、図8は本発明の第1の実施の形態における後進モードでの車両加速度目標値とジョイスティックの入力率との関係を示す図、図9は本発明の第1の実施の形態における車両減速度の制限を示す図、図10は本発明の第1の実施の形態における車両加速度目標値決定処理の動作を示すフローチャートである。
車両加速度目標値決定処理において、主制御ECU21は、まず、車両速度目標値を決定する(ステップS4-1)。具体的には、車両加速度の目標値を時間積分して車両速度の目標値V* を決定する。この場合、車両加速度の目標値には、1つ前の制御ステップにおいて決定された値を用いる。
続いて、主制御ECU21は、走行モードを決定する(ステップS4-2)。ここで、車両10の走行モードは、図6に示されるように、前進モード、停止モード及び後進モードの3つであり、レバー31bの操作量としての操縦装置(ジョイスティック31)の入力率Uと車両速度の目標値V* とによって決定される。
操縦装置の入力率Uは、レバー31bを前方に傾斜又は移動させると正、レバー31bを後方に傾斜又は移動させると負であるから、図6に示されるように、停止モードでレバー31bを前方に傾斜又は移動させると前進モードに遷移して車両10が前進し、停止モードでレバー31bを後方に傾斜又は移動させると後進モードに遷移して車両10が後進(後退)する。また、前進モード及び後進モードでレバー31bを中立状態として入力率Uを零とし、かつ、車両速度の目標値V* が零となると、停止モードに遷移する。なお、前進モードと後進モードとの間では直接に遷移しない。
この場合、主制御ECU21は、レバー31bの操作量の履歴に応じて、乗員15が停止、前進及び後進モードのうちのどの走行モードを希望しているかを判断する。このように、乗員15は別の装置によって走行モードを指令する必要がないので、乗員15にとって操作性が向上するとともに、余分な入力装置が不要となり、コストの低減や搭乗部14のデザイン自由度確保が容易になる。
また、前進モードと後進モードの直接的な遷移を禁止する。つまり、乗員15の操作及び車両速度が停止の条件を満足しなければ、前進モード及び後進モード間の遷移を認めない。このように、前進から後進又は後進から前進への移行時に乗員15に特定の操作を強いることで、操作の誤りによる逆方向への走行の可能性を低減し、車両10の安全性を向上させる。
さらに、前進モード又は後進モードにおいて、操作量が零(U=0)以外の場合には他モードへの遷移を禁止する。つまり、乗員15が一度レバー31bを中立状態に戻すと、逆方向への走行が許可される。このように、逆方向への走行を許可する特定操作を同じ操縦装置を用いた簡単な手法とすることで、操縦が容易な車両10を提供できる。
なお、本実施の形態においては、走行モードが自動的に決定されるが、表示手段を備えて走行モードを表示することで、乗員15が現在の走行モードを確認できるようにしてもよい。これにより、乗員15の誤認識やそれによる誤操作を防止できる。また、モード設定方法選択手段を備え、前進モード及び後進モード間の走行モード切替を自動的にするか、別の入力装置によって乗員15自身の操作で切り替えるかを選択できるようにしてもよい。
最後に、主制御ECU21は、車両加速度の目標値を決定して(ステップS4-3)、車両加速度目標値決定処理を終了する。具体的には、レバー31bの操作量としての操縦装置の入力率Uと走行モードとから、以下の式(1)及び(2)によって車両加速度の目標値α* を決定する。
まず、前進モードの場合、式(1)は下記のように表される。
また、αMax,Afは最大加速度、αMax,Dfは最大減速度、VMax,f は最高速度であり、これらの値はすべてあらかじめ設定された所定値である。なお、下付き添字fは前進モードであることを表す。最大加速度、最大減速度及び最高速度は、前進モードの場合の方が後進モードの場合よりも大きい値となるように設定される。
また、αEBは零入力時減速度であり、αEB=γEBαEB,0である。なお、γEBは走行抵抗増幅率(所定値)である。
さらに、αEB,0は走行抵抗減速度推定値であり、αEB,0=μ0 +μ1 |V* |である。なお、μ0 は転がり抵抗係数、μ1 は粘性抵抗係数である。
そして、前進モードの場合、車両加速度目標値とジョイスティック31の入力率との関係は、図7に示されるようになる。なお、図7は、μ1 =0の場合を示している。
一方、後進モードの場合、式(1)は下記のように表される。
また、αMax,Abは最大加速度、αMax,Dbは最大減速度、VMax,b は最高速度であり、これらの値はすべてあらかじめ設定された所定値である。なお、下付き添字bは後進モードであることを表す。最大加速度、最大減速度及び最高速度は、後進モードの場合の方が前進モードの場合よりも小さな値となるように設定される。
そして、後進モードの場合、車両加速度目標値とジョイスティック31の入力率との関係は、図8に示されるようになる。なお、図8は、μ1 =0の場合を示している。
このように、本実施の形態においては、操縦装置の入力率によって、車両加速度を決定する。具体的には、入力装置30の入力方向と同方向で、入力量に比例した大きさの加速度を車両加速度の目標値とする。つまり、前進モード時には、入力装置30の前方入力により加速し、後方入力により減速する。また、後進モード時には、入力装置30の後方入力により加速し、前方入力により減速する。このように、加速度指令の直感的な操縦方法とすることで、乗員15の容易な操作を可能とする。
また、走行モードに応じて、車両加速度を決定する。具体的には、同じ入力量に対して、後進モード時の速度及び加速度の目標値を前進モード時の値に比べて小さくする。これにより、前進走行時よりも低速での利用が想定される後進走行時において、出力される加速度や速度が自動的に抑えられるので、後進走行を容易にし、安全に扱える車両10を提供できる。
さらに、車両速度によって、車両加速度を補正する。具体的には、車両速度の目標値に基づいて、車両加速度の目標値を低減する。車両速度の2乗に比例する値だけ車両加速度を低減する。これにより、例えば、一定の入力量を与え続けると、入力量に応じて速度が増加し、速度の増加により加速度が低減されるので、最終的に入力量に応じた速度での定速走行に至る。したがって、実用に適した走行状態を容易に実現可能であるとともに、乗員15に自然な操縦感覚を提供できる。また、最高速度での車両加速度の目標値の低減量を最大車両加速度と等しい値とする。これにより、加速度指令における速度の制限を容易に、かつ、滑らかに実行できる。さらに、減速時には、車両加速度の目標値の低減を禁止する。これにより、車両10の制動性能、及び、乗員15の制動指令に対する応答性を低下させることなく、操縦性を向上できる。
さらに、零入力に対して、車両加速度の目標値として所定の減速度を与える。具体的には、走行抵抗による減速度を力学モデルより推定し、その推定値に応じて減速度を与える。これにより、乗員15に自然な操縦感覚を与えるとともに、乗員15が入力不可能な状態に至った場合でも、車両10を確実に停止することができ、安全性を向上させることができる。
次に、前進モードの場合、式(2)は下記のように表される。
また、кf は零入力時減速度、Vsh,fは速度閾値であり、これらの値はすべてあらかじめ設定された所定値である。なお、下付き添字fは前進モードであることを表す。
一方、後進モードの場合、式(2)は下記のように表される。
また、кb は零入力時減速度、Vsh,bは速度閾値であり、これらの値はすべてあらかじめ設定された所定値である。なお、下付き添字bは後進モードであることを表す。
そして、車両減速度は図9に示されるように制限される。
このように、本実施の形態においては、車両速度に応じて、車両減速度を制限する。具体的には、走行モードに応じて、制動後に逆方向へ加速するような車両加速度目標値を制限する。つまり、前進モード時において、車両速度が零以下の場合には、車両加速度を零以上に制限する。また、後進モード時において、車両速度が零以上の場合には、車両加速度を零以下に制限する。このように、制動停止後も継続して乗員15が制動側に入力装置30を操作するときに車両10が逆方向に加速することを自動的に防ぐことにより、乗員15は容易に車両10を静止させることができる。
また、車両速度が所定の閾値よりも低い範囲内で、車両減速度を車両速度に応じて制限する。具体的には、車両速度目標値の低下に従って、車両10の減速度閾値を徐々に小さくする。このように、車両停止時に減速度が不連続に変化する現象を解消することで、乗員15の快適性を保障できる。
以上説明したような車両加速度目標値決定処理においては、参照する車両速度としてその目標値を用いているが、代わりに実際の車両速度に基づいて車両加速度目標値を決定してもよい。例えば、走行モードの判定において、実際の車両速度に基づいて車両停止の判定を行ってもよい。また、目標値と実値のうちの一方が零になった場合に、車両停止と判定してもよい。これにより、例えば、状態フィードバック制御の誤差として、目標値と実値に差が生じた場合でも、安定して走行モードを設定できる。同様に、車両加速度目標値の決定においても、実際の車両速度に基づいて各値を決定してもよい。
次に、前述の制御を採用した場合に予想される車両10の動作例について説明する。
図11は本発明の第1の実施の形態における車両の動作例を示す図である。
ここでは、時間tの経過とともに変化するレバー31bの操作量としての操縦装置の入力率U、車両速度V及び走行モードの関係について説明する。
t=t1 の時:操縦装置の入力率U(U<1)に応じて、加速度α(α<αMax,Af)で加速前進を開始する。同時に走行モードが「前進」に切り替わる。
t1 <t<t2 の時:車両速度Vの増加に伴い加速度αは減少し、車両速度V<VMax,f で飽和して定速走行状態に至る。
t2 ≦t<t3 の時:操縦装置の入力率U(U=0)に応じて、所定の減速度α(α=-αEB)で緩やかに減速する。
t=t3 の時:操縦装置の入力率U(U=-1)に応じて、減速度α=最大減速度(-αMax,Df)で制動を開始する。
t3 <t<t4 の時:車両速度V=Vsh,fに到達するまで最大減速度で減速した後、減速度の制限下で緩やかに停止する。なお、停止後の入力率U(U=-1)には反応せず、走行モードは「前進」の状態が維持される。
t=t4 の時:特定の入力率U(U=0)によって、走行モードが「停止」に切り替わる。
t=t5 の時:操縦装置の入力率U(U=-1)に応じて、後進時の最大加速度α(α=αMax,Ab)で後進加速を開始する。同時に、走行モードが「後進」に切り替わる。
t5 <t<t6 の時:車両速度Vの増加に伴い加速度αは減少し、車両速度V=後進最高速度VMax,b で飽和して定速走行状態に至る。
t=t6 の時:操縦装置の入力率U(U=1)に応じて、減速度α=最大減速度(αMax,Db)で制動を開始する。
t6 <t<t7 の時:車両速度V=-Vsh,bに到達するまで最大減速度で減速した後、減速度の制限下で緩やかに停止する。なお、停止後の入力率U(U=1)には反応せず、走行モードは「後進」の状態が維持される。
t=t7 の時:特定の入力率U(U=0)によって、走行モードが「停止」に切り替わる。
t=t1 の時:操縦装置の入力率U(U<1)に応じて、加速度α(α<αMax,Af)で加速前進を開始する。同時に走行モードが「前進」に切り替わる。
t1 <t<t2 の時:車両速度Vの増加に伴い加速度αは減少し、車両速度V<VMax,f で飽和して定速走行状態に至る。
t2 ≦t<t3 の時:操縦装置の入力率U(U=0)に応じて、所定の減速度α(α=-αEB)で緩やかに減速する。
t=t3 の時:操縦装置の入力率U(U=-1)に応じて、減速度α=最大減速度(-αMax,Df)で制動を開始する。
t3 <t<t4 の時:車両速度V=Vsh,fに到達するまで最大減速度で減速した後、減速度の制限下で緩やかに停止する。なお、停止後の入力率U(U=-1)には反応せず、走行モードは「前進」の状態が維持される。
t=t4 の時:特定の入力率U(U=0)によって、走行モードが「停止」に切り替わる。
t=t5 の時:操縦装置の入力率U(U=-1)に応じて、後進時の最大加速度α(α=αMax,Ab)で後進加速を開始する。同時に、走行モードが「後進」に切り替わる。
t5 <t<t6 の時:車両速度Vの増加に伴い加速度αは減少し、車両速度V=後進最高速度VMax,b で飽和して定速走行状態に至る。
t=t6 の時:操縦装置の入力率U(U=1)に応じて、減速度α=最大減速度(αMax,Db)で制動を開始する。
t6 <t<t7 の時:車両速度V=-Vsh,bに到達するまで最大減速度で減速した後、減速度の制限下で緩やかに停止する。なお、停止後の入力率U(U=1)には反応せず、走行モードは「後進」の状態が維持される。
t=t7 の時:特定の入力率U(U=0)によって、走行モードが「停止」に切り替わる。
このように、本実施の形態においては、操縦装置の操作量(入力量)に応じて決定され、該操作量の時間履歴に応じて補正された車両加速度で、車両10を加速及び制動させる。具体的には、操縦装置(レバー31b)の入力方向(傾斜方向)と操作量(入力量)、及び、車両10の走行状態(前進、後進及び停止の状態)に応じて、車両加速度を決定する。操縦装置の入力方向が所定の方向であり、かつ、車両10が停止及び前進している場合には入力量に応じた加速度を与え、車両10が後進している場合には入力量に応じた減速度を与える。一方、操縦装置の入力方向が前記所定の方向と逆方向であり、かつ、車両10が停止及び後進している場合には、入力量に応じた加速度を与え、車両10が前進している場合には入力量に応じた減速度を与える。
また、操作量の時間履歴に応じて決定される走行モードによって、車両加速度を制限する。具体的には、車両10の制動後に逆方向に加速するような加速度を制限する。また、車両10の後進を制限する前進モードと車両10の前進を制限する後進モードについて、特定の操作が行われた場合、すなわち、特定の操作入力が与えられた場合に限って、両モード間の遷移を許可する。なお、特定の操作入力は、特定の操作入力量を入力することである。また、特定の操作入力量は、操縦装置に外力及び外トルクを与えないときの操作入力量である。
さらに、車両速度に応じて、車両加速度を補正する。具体的には、車両加速時において、車両速度の増加と共に車両加速度を減少させる。最高速度での走行時には、最大車両加速度に等しい量だけ車両加速度を減少させる。なお、車両速度の2乗に比例した量だけ車両加速度を減少させる。また、車両制動時において、車両速度が所定の閾値未満であるときに車両減速度を制限する。車両速度の低下と共に車両減速度上限値を小さくする。
さらに、操縦装置に外力及び外トルクが付与されない場合、所定の車両減速度で減速させる。この場合、車両10の走行抵抗を推定し、その推定値に応じて減速度を決定する。
さらに、操縦装置としてのジョイスティック31は、駆動輪12の回転軸に垂直な方向に並進可能、又は、駆動輪12の回転軸に平行な直線周りに回転可能な入力手段としてのレバー31bを備え、該レバー31bの位置又は回転角に応じて車両加速度を決定する。なお、前記所定の方向は、車両10の前方又は前進時の駆動輪回転方向である。
さらに、操作入力量に応じて車両加速度の目標値を決定し、それに応じたトルクを駆動輪12に与える。具体的には、車両加速度の目標値を時間積分した値に所定の定数を乗じた値を駆動輪回転角速度の目標値とし、該目標値と計測値との差に比例した大きさのトルクを駆動輪12に与える。
さらに、車両加速度に応じた量だけ、駆動輪12の接地点に対する車体重心の相対位置を移動させる。具体的には、能動重量部として機能する搭乗部14を備え、車両加速度に応じた量だけ搭乗部14を相対移動させる。
これにより、本実施の形態においては、乗員15の操作入力量に応じて、適切な前後方向走行状態を実現することができる。そして、簡素な操縦装置で、容易に、かつ、直感的に操縦可能な車両10を提供できる。
次に、本発明の第2~第7の実施の形態について説明する。
「背景技術」の項で説明したような従来の車両の場合、運転者が操縦装置によって走行目標を指令するようになっているが、操縦装置が複雑で直感的な操作ができず、走行目標を容易に設定することが困難な場合がある。
そもそも、運転者が操縦装置によって走行目標を指令する車両においては、技術や経験を必要とせず、直感的で簡易な操縦を可能とするような操縦装置の操作量と走行指令値の関係が適切に設定されることが望ましい。そして、運転者の簡易で直感的な操縦を可能とするため、及び、車両のシステムを簡素化するためには、操縦装置はその数が少なく、かつ、簡素であることが望ましい。
このような要求を満足する可能性のある操縦装置の1つとして、ジョイスティックを採用することができる。この場合、駆動輪の回転軸に垂直な方向へのジョイスティックの傾斜量を前後操作量とし、駆動輪の回転軸に平行な方向へのジョイスティックの傾斜量を左右操作量として取得する。そして、取得した前後操作量に比例した値を前後走行目標値とし、取得した左右操作量に比例した値を旋回走行目標値として決定し、決定した走行目標値を達成するように各駆動輪に適切な駆動トルクを付加する。
しかし、このような制御では、運転者の意図した車両走行動作と実際の車両走行動作に定量的な差異が生じる場合がある。そもそも、複雑な人の体の構造、動作特性、感受特性等は複雑に適合させる必要があるが、簡単な構造のジョイスティックでそれを実現することは、従来は困難であった。そのため、運転者にとって操縦性が悪く、運転者が車両の安全性や快適性に不安や不満を抱く可能性がある。
本発明の第2~第7の実施の形態は、前記従来の車両の問題点を解決して、入力装置としてジョイスティックを具備し、操縦者が入力する車両において、駆動輪の回転軸に垂直及び平行な方向へのジョイスティックの傾斜量を前後及び左右入力量として取得して前後及び旋回走行状態を設定し、設定した走行状態をその時間履歴に応じて補正することにより、人の体の構造、動作特性、感受特性等に適応した操縦特性を実現することができ、誰でも容易かつ快適に操縦することができる操縦性の高い車両を提供することを目的とする。
まず、第2の実施の形態について説明する。なお、第1の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。
図12は本発明の第2の実施の形態における車両の構成を示す概略図、図13は本発明の第2の実施の形態における車両システムの構成を示すブロック図である。なお、図12において、(a)は車両の正面図、(b)は車両の側面図、(c)はジョイスティックの側面図、(d)はジョイスティックの上面図である。
本実施の形態における車両10は、車体を左右に傾斜させる車体左右傾斜機構としてのリンク機構60を有し、旋回時には、図12(a)に示されるように、左右の駆動輪12の路面に対する角度、すなわち、キャンバー角を変化させるとともに、搭乗部14及び本体部11を含む車体を旋回内輪側へ傾斜させることによって、旋回性能の向上と乗員15の快適性の確保とを図ることができるようになっている。すなわち、前記車両10は車体を横方向(左右方向)にも傾斜させることができる。
なお、本実施の形態において、搭乗部14は、能動重量部として機能するものではなく、本体部11に対して並進不能となっている。
前記リンク機構60は、左右の駆動輪12に駆動力を付与する駆動モータ52を支持するモータ支持部材としても機能する左右の縦リンクユニット65と、該左右の縦リンクユニット65の上端同士を連結する上側横リンクユニット63と、左右の縦リンクユニット65の下端同士を連結する下側横リンクユニット64とを有する。また、左右の縦リンクユニット65と上側横リンクユニット63及び下側横リンクユニット64とは回転可能に連結されている。さらに、上側横リンクユニット63の中央及び下側横リンクユニット64の中央には、上下方向に延在する支持部13が回転可能に連結されている。
そして、61は、傾斜用のアクチュエータとしてのリンクモータであって、固定子としての円筒状のボディと、該ボディに回転可能に取り付けられた回転子としての回転軸とを備えるものであり、ボディが上側横リンクユニット63に固定され、回転軸が支持部13に固定されている。なお、前記ボディが支持部13に固定され、回転軸が上側横リンクユニット63に固定されていてもよい。そして、リンクモータ61を駆動して回転軸をボディに対して回転させると、上側横リンクユニット63に対して支持部13が回転し、リンク機構60が屈伸する。なお、前記リンクモータ61の回転軸は、支持部13と上側横リンクユニット63との連結部分の回転軸と同軸になっている。これにより、リンク機構60を屈伸させて本体部11を傾斜させることが可能となる。
また、乗員15は、操縦装置であるジョイスティック31を操作することによって、車両10を操縦する、すなわち、車両10の加速、減速、旋回、その場回転、停止、制動等の走行指令を入力するようになっている。
操縦者としての乗員15は、レバー31bを、図12(c)及び(d)において矢印で示されるように、前後及び左右に傾斜させることで走行指令を入力する。すると、ジョイスティック31は、レバー31bの前後、すなわち、駆動輪12の回転軸に垂直な方向(x軸方向)、及び、左右、すなわち、駆動輪12の回転軸に平行な方向(y軸方向)の傾斜量に相当する状態量を計測し、その計測値を操縦者の入力した前後入力量(前後操作量)及び左右入力量(左右操作量)として、図13に示される主制御ECU21に送信する。
このように、ジョイスティック31が備える1つの入力手段で可能な2つの情報を活用することにより、操縦装置を追加することなく、操縦者の多様な操縦意図の入力を可能とし、より直感的に自由に操ることができる車両10を実現できる。
また、レバー31bは、図示されない中立状態復帰用のばね部材によって付勢され、操縦者が手を放して解放すると、自動的に零入力に相当する中立状態に復帰する。これにより、操縦者の不測の事態等により、操縦操作の継続が不可能になった場合でも、車両10の適切な制御が可能となる。
なお、本実施の形態における以降の説明は、搭乗部14の座面が水平であるときに、駆動輪12の回転軸に垂直な方向にx軸、平行な方向にy軸、鉛直上向きにz軸を採る座標系に基づくものとする。
主制御ECU21は、駆動輪制御ECU22、車体傾斜センサ41、駆動モータ52及びリンクモータ61とともに、車体の姿勢を制御する車体制御システム40の一部として機能する。前記車体傾斜センサ41は、加速度センサ、ジャイロセンサ等から成り、車体傾斜状態計測装置として機能し、車体の傾斜状態を示す車体傾斜角及び/又は傾斜角速度を検出し、主制御ECU21に送信する。そして、該主制御ECU21は、駆動トルク指令値を駆動輪制御ECU22に送信する。また、前記主制御ECU21は、リンクトルク指令値をリンク制御ECU25に送信し、該リンク制御ECU25は、受信したリンクトルク指令値に相当する入力電圧をリンクモータ61に供給する。そして、該リンクモータ61は、入力電圧に従ってリンク機構60に駆動トルクを付与し、これにより、傾斜用のアクチュエータとして機能する。
また、主制御ECU21には、入力装置30のジョイスティック31から走行指令として、レバー31bの操作量が入力される。そして、前記主制御ECU21は、駆動トルク指令値を駆動輪制御ECU22に送信し、リンクトルク指令値をリンク制御ECU25に送信する。
主制御ECU21は、操作量を最大操作量で正規化した入力率を入力量として扱う。レバー31bの前後入力量については、レバー31bの前方への傾斜又は移動、すなわち、前方への入力を正の値で表し、レバー31bの後方への傾斜又は移動、すなわち、後方への入力を負の値で表す。そして、前方への最大入力量を1、後方への最大入力量を-1として表す。
また、レバー31bの左右入力量については、車両10の後方から見て、レバー31bの左方への傾斜又は移動、すなわち、左方への入力を正の値で表し、レバー31bの右方への傾斜又は移動、すなわち、右方への入力を負の値で表す。そして、左方への最大入力量を1、右方への最大入力量を-1として表す。
次に、本実施の形態における車両10の動作について詳細に説明する。まず、走行及び姿勢制御処理について説明する。
図14は本発明の第2の実施の形態における走行及び姿勢制御処理の動作を示すフローチャートである。
本実施の形態においては、状態量、パラメータ等を次のような記号によって表す。
θWR:右駆動輪回転角〔rad〕
θWL:左駆動輪回転角〔rad〕
θW :平均駆動輪回転角〔rad〕;θW =(θWR+θWL)/2
ΔθW :駆動輪回転角左右差〔rad〕;ΔθW =θWR-θWL
θ1 :車体傾斜ピッチ角(鉛直軸基準)〔rad〕
φ1 :車体傾斜ロール角(鉛直軸基準)〔rad〕
τL :リンクトルク〔Nm〕
τWR:右駆動トルク〔Nm〕
τWL:左駆動トルク〔Nm〕
τW :総駆動トルク〔Nm〕;τW =τWR+τWL
ΔτW :駆動トルク左右差〔Nm〕;ΔτW =τWR-τWL
g:重力加速度〔m/s2 〕
RW :駆動輪接地半径〔m〕
D:2輪間距離〔m〕
m1 :車体質量(搭乗部を含む)〔kg〕
mW :駆動輪質量(2輪合計)〔kg〕
l1 :車体重心距離(車軸から)〔m〕
I1 :車体慣性モーメント(重心周り)〔kgm2 〕
IW :駆動輪慣性モーメント(2輪合計)〔kgm2 〕
αX :車両前後加速度〔m/s2 〕
αY :車両左右加速度〔m/s2 〕
V:車両速度〔m/s〕
走行及び姿勢制御処理において、主制御ECU21は、まず、センサから各状態量を取得する(ステップS11)。具体的には、駆動輪センサ51から左右の駆動輪回転角又は回転角速度を取得し、車体傾斜センサ41から車体傾斜ピッチ角又はピッチ角速度及び車体傾斜ロール角又はロール角速度を取得する。
θWR:右駆動輪回転角〔rad〕
θWL:左駆動輪回転角〔rad〕
θW :平均駆動輪回転角〔rad〕;θW =(θWR+θWL)/2
ΔθW :駆動輪回転角左右差〔rad〕;ΔθW =θWR-θWL
θ1 :車体傾斜ピッチ角(鉛直軸基準)〔rad〕
φ1 :車体傾斜ロール角(鉛直軸基準)〔rad〕
τL :リンクトルク〔Nm〕
τWR:右駆動トルク〔Nm〕
τWL:左駆動トルク〔Nm〕
τW :総駆動トルク〔Nm〕;τW =τWR+τWL
ΔτW :駆動トルク左右差〔Nm〕;ΔτW =τWR-τWL
g:重力加速度〔m/s2 〕
RW :駆動輪接地半径〔m〕
D:2輪間距離〔m〕
m1 :車体質量(搭乗部を含む)〔kg〕
mW :駆動輪質量(2輪合計)〔kg〕
l1 :車体重心距離(車軸から)〔m〕
I1 :車体慣性モーメント(重心周り)〔kgm2 〕
IW :駆動輪慣性モーメント(2輪合計)〔kgm2 〕
αX :車両前後加速度〔m/s2 〕
αY :車両左右加速度〔m/s2 〕
V:車両速度〔m/s〕
走行及び姿勢制御処理において、主制御ECU21は、まず、センサから各状態量を取得する(ステップS11)。具体的には、駆動輪センサ51から左右の駆動輪回転角又は回転角速度を取得し、車体傾斜センサ41から車体傾斜ピッチ角又はピッチ角速度及び車体傾斜ロール角又はロール角速度を取得する。
続いて、主制御ECU21は、残りの状態量を算出する(ステップS12)。この場合、取得した状態量を時間微分又は時間積分することによって、残りの状態量を算出する。例えば、取得した状態量が駆動輪回転角、車体傾斜ピッチ角及び車体傾斜ロール角である場合には、これらを時間微分することによって、回転角速度、ピッチ角速度及びロール角速度を得ることができる。また、例えば、取得した状態量が回転角速度、ピッチ角速度及びロール角速度である場合には、これらを時間積分することによって、駆動輪回転角、車体傾斜ピッチ角及び車体傾斜ロール角を得ることができる。
続いて、主制御ECU21は、操縦者の操縦操作量を取得する(ステップS13)。この場合、操縦者が、車両10の加速、減速、旋回、その場回転、停止、制動等の走行指令を入力するために操作したジョイスティック31の操作量を取得する。
続いて、主制御ECU21は、車両加速度目標値決定処理を実行し(ステップS14)、取得したジョイスティック31の操作量等に基づいて、車両10の車両加速度目標値を決定する。
続いて、主制御ECU21は、車両加速度目標値から、駆動輪回転角速度の目標値を算出する(ステップS15)。具体的には、下記の式によって平均駆動輪回転角速度の目標値を決定する。
なお、Δtは制御処理周期(データ取得間隔)であり、所定値である。また、本実施の形態における説明において、上付き添字*は目標値であることを表し、上付き添字(n)は時系列のn番目のデータであることを表し、記号上の1ドットは1階時間微分した値、すなわち、速度であることを表し、記号上の2ドットは2階時間微分した値、すなわち、加速度であることを表すものとする。下付き添字Xは前後(x軸方向)であることを表し、下付き添字Yは左右(y軸方向)であることを表し、下付き添字dは操縦指令値であることを表すものとする。
また、下記の式によって駆動輪回転角速度左右差の目標値を決定する。
このように、車両加速度目標値に相当する駆動輪回転角速度の目標値を決定する。つまり、車両前後加速度目標値を時間積分することにより、左右駆動輪の回転角速度の平均値の目標である平均駆動輪回転角速度目標値を決定する。また、車両左右加速度目標値と平均駆動輪回転角速度目標値から左右駆動輪の回転角速度の差の目標である駆動輪回転角速度左右差目標値を決定する。
なお、本実施の形態においては、操縦装置であるジョイスティック31の操作量を前後及び左右の加速度と対応させているが、車両速度やヨーレートなどに対応させてもよい。また、車両速度やヨーレート自体を状態量として、フィードバック制御を実行してもよい。さらに、本実施の形態においては、駆動輪接地点と路面との間に滑りが存在しないという仮定の下で、車両速度やヨーレートを駆動輪12の回転角速度に換算しているが、滑りを考慮して駆動輪回転角速度の目標値を決定してもよい。
続いて、主制御ECU21は、車体傾斜角の目標値を決定する(ステップS16)。具体的には、車両加速度目標値から、下記の式によって車体傾斜ピッチ角の目標値を決定する。
また、下記の式によって車体傾斜ロール角の目標値を決定する。
このように、車両加速度目標値に応じて車体傾斜角の目標値を決定する。つまり、車体傾斜ピッチ角については、前後の車体姿勢と走行状態に関する倒立振り子の力学的構造を考慮して、前後加速度で与えられる走行目標を達成できる車体姿勢を目標値として与える。また、車体傾斜ロール角については、接地荷重中心が2つの駆動輪12の接地点間である安定領域に存在する範囲で、自由に目標姿勢を設定できるが、本実施の形態では乗員15の負荷が最も少ない姿勢を目標値として与える。
なお、車体傾斜ロール角の目標値として他の値を与えてもよい。例えば、目標左右加速度の絶対値が所定の閾値よりも小さい場合には目標車体傾斜ロール角を零として、小さな左右加速度に対しては直立姿勢を維持させてもよい。
続いて、主制御ECU21は、残りの目標値を算出する(ステップS17)。すなわち、各目標値を時間微分又は時間積分することによって、駆動輪回転角及び車体傾斜角速度の目標値をそれぞれ算出する。
続いて、主制御ECU21は、各アクチュエータのフィードフォワード出力を決定する(ステップS18)。具体的には、下記の式によって、フィードフォワード出力として、総駆動トルクのフィードフォワード量τW,FF、駆動トルク左右差のフィードフォワード量ΔτW,FF及びリンクトルクのフィードフォワード量τL,FFを決定する。
このように、目標とする走行状態や車体姿勢を実現するのに必要なアクチュエータ出力を力学モデルより予測し、その分をフィードフォワード的に付加することで、車両10の走行及び姿勢制御を高精度に実行する。つまり、前後方向の走行目標を達成できるように、総駆動トルクのフィードフォワード量を決定する。具体的には、車両前後加速度に応じて発生する慣性力と、車両速度に相当する平均駆動輪回転角速度に応じて発生する走行抵抗を予測し、それを打ち消すような総駆動トルクを与えることで、目標とする前後走行状態を実現する。
また、左右車体傾斜の目標を実現できるように、リンクトルクのフィードフォワード量を決定する。具体的には、車体傾斜ロール角に応じて発生する重力のトルクと、車両左右加速度に応じて発生する遠心力のトルクを予測し、それを打ち消すようなリンクトルクを与えることで、目標とする左右車体傾斜状態を実現する。
なお、本実施の形態においては、力学モデルにおける主な要素をすべて考慮して、必要な出力をフィードフォワード量として与えているが、これらの要素の中で影響が小さいものを無視し、より簡素なモデルによってフィードフォワード量を決定してもよい。また、本実施の形態では考慮していない要素をあらたに考慮してもよい。例えば、駆動輪12の転がり抵抗やリンク機構60での乾性摩擦等を考慮してもよい。
さらに、本実施の形態においては、走行状態や車体姿勢の目標値に応じて必要な出力をフィードフォワード量として与えているが、計測値に基づく準フィードバック量として与えてもよい。これにより、目標値と実値に大きな隔たりがある場合でも、適切に制御を行うことができる。
続いて、主制御ECU21は、各目標値と状態量との偏差から各アクチュエータのフィードバック出力を決定する(ステップS19)。具体的には、下記の式によってフィードバック出力として、総駆動トルクのフィードバック量τW,FB、駆動トルク左右差のフィードバック量ΔτW,FB及びリンクトルクのフィードバック量τL,FBを決定する。
なお、各フィードバックゲインK**の値は、例えば、極配置法等により決定される値をあらかじめ設定しておく。また、スライディングモード制御等の非線形のフィードバック制御を導入してもよい。さらに、より簡単な制御として、KW2、KW3、Kd2及びKL3を除くゲインのいくつかを零にしてもよい。さらに、定常偏差をなくすために、積分ゲインを導入してもよい。
このように、状態フィードバック制御により、実際の状態を目標とする状態に近付けるようにフィードバック出力を与える。具体的には、前後走行状態に相当する平均駆動輪回転状態と、車体の倒立状態に相当する車体傾斜ピッチ角について、計測値と目標値の差に比例する総駆動トルクを与えることで、車両10の前後走行状態と車体の倒立姿勢を目標とする状態で安定に維持する。
また、旋回走行状態に相当する駆動輪回転状態左右差について、計測値と目標値の差に比例する駆動トルク左右差を与えることで、車両10の旋回走行状態を目標とする状態で安定に維持する。
さらに、左右傾斜状態に相当する車体傾斜ロール角について、計測値と目標値の差に比例するリンクトルクを与えることで、車体の左右傾斜状態を目標とする状態で安定に維持する。
さらに、旋回走行状態に相当する状態量として、駆動輪回転角速度左右差を用いる。このように、駆動輪12の回転状態を制御することで、駆動輪12がロックや空転の状態に至る可能性を低減できる。
最後に、主制御ECU21は、各要素制御システムに指令値を与えて(ステップS20)、走行及び姿勢制御処理を終了する。主制御ECU21は、駆動輪制御ECU22及びリンク制御ECU25に、下記の式によって決定される指令値として、右駆動トルク指令値τWR、左駆動トルク指令値τWL、総駆動トルク指令値τW 、駆動トルク左右差指令値ΔτW 及びリンクトルク指令値τL を与える。
なお、ξは接地荷重移動率である。
このように、各フィードフォワード出力と各フィードバック出力の和を指令値として与える。また、総駆動トルクと駆動トルク左右差が要求する値になるように、右駆動トルクと左駆動トルクの指令値を与える。
なお、走行及び姿勢制御処理は、所定の時間間隔(例えば、100〔μs〕毎)で繰り返し実行される。
次に、車両加速度目標値決定処理について説明する。
図15は本発明の第2の実施の形態における車両加速度目標値決定処理での第1補正を説明する図、図16は本発明の第2の実施の形態における車両加速度目標値決定処理での第3補正の結果を示す図、図17は本発明の第2の実施の形態における車両加速度目標値決定処理での第4補正の結果を示す図、図18は本発明の第2の実施の形態における車両加速度目標値決定処理での第5補正の結果を示す図、図19は本発明の第2の実施の形態における車両加速度目標値決定処理の動作を示すフローチャートである。なお、図15において、(a)は車両の側面図、(b)はジョイスティックの側面図、(c)はジョイスティックの上面図、(d)はジョイスティックの入力量に対応する目標値との関係を示す座標軸を示す図であり、図16及び17において、(a)は車両前後加速度目標値を示し、(b)は車両左右加速度目標値を示す。
車両加速度目標値決定処理において、主制御ECU21は、まず、基準車両加速度目標値を決定する(ステップS14-1)。具体的には、下記の式によって車両前後加速度目標値を決定する。
なお、UX はジョイスティック前後入力量、αX,Max は車両前後最大加速度である。
また、下記の式によって車両左右加速度目標値を決定する。
なお、UY はジョイスティック左右入力量、αY,Max は車両左右最大加速度である。
このように、ジョイスティック入力量に応じて、車両加速度目標値を決定する。具体的には、ジョイスティック31の前後入力量に比例した値を車両前後加速度とする。この場合、前方への入力を加速指令とし、後方への入力を減速指令とする。また、ジョイスティック31の左右入力量に比例した値を車両左右加速度とする。この場合、入力した方向への旋回を指令する。
なお、本実施の形態においては、車両前後加速度について、最大加速度と最大減速度が同じ値に設定されているが、異なる値を設定してもよい。その場合、ジョイスティック31の前方入力時には最大加速度に入力率を乗じた値を加速度目標値とし、ジョイスティック31の後方入力時には最大減速度に入力率を乗じた値を加速度目標値としてもよい。
また、本実施の形態においては、車両前後加速度について、ジョイスティック31の前方入力を加速、後方入力を減速に対応させているが、これを逆の対応にしてもよい。すなわち、後方入力を加速、前方入力を減速としてもよい。これにより、操縦系の直感的操作感はやや低減するが、操縦者に作用する慣性力に対する安定性が向上する。
さらに、本実施の形態においては、ジョイスティック31の入力量を車両加速度目標値に変換した後に種々の補正を実行するが、入力量を補正した後に入力量を車両加速度目標値に変換してもよい。
続いて、主制御ECU21は、第1補正車両加速度目標値を決定する(ステップS14-2)。具体的には、下記の式によって第1補正後の車両前後加速度目標値を決定する。
また、下記の式によって第1補正後の車両左右加速度目標値を決定する。
なお、βは座標軸回転角正弦値であり、β=sβ0 である。また、β0 は座標軸回転角正弦値の絶対値である。さらに、sはジョイスティック取付位置係数であり、ジョイスティック31が搭乗部14の右側に配設される場合には1とし、左側に配設される場合には-1とする。
このように、前後加速度に所定の座標軸回転角正弦値を乗じた値を、左右加速度に加える。具体的には、車両前後加速度目標値が正の場合、すなわち、ジョイスティック31を前方に入力して車両10を加速させるときには、ジョイスティック31の取付位置から車両10の内側へ向かう方向(図15(c)における上方向)の車両左右加速度目標値を加える。一方、車両前後加速度目標値が負の場合、すなわち、ジョイスティック31を後方に入力して車両10を減速させるときには、ジョイスティック31の取付位置から車両10の外側へ向かう方向(図15(c)における下方向)の車両左右加速度目標値を加える。
これは、車両左右加速度目標値設定の基準となる駆動輪12の回転軸に垂直なジョイスティック31の座標軸を、図15(d)に示されるように、車両10の前方から車両10の外側へ所定の角度βだけ回転させることに相当する。なお、駆動輪12の回転軸に平行なジョイステック31の座標軸は回転させない。
このように、人が斜め前方のジョイスティック31を操作する際の癖である入力特性に対して、非直交座標系によって車両10の受信特性を適合させることで、操縦者である乗員15は違和感なく快適に操縦することができる。
なお、本実施の形態においては、ジョイスティック31の前後方向の座標軸を回転させた直線状の座標軸に基づいて、入力量を評価しているが、前方と後方で回転角が異なるような折れ線状の座標軸を用いてもよい。また、その折点部を滑らかにした曲線状の座標軸を用いてもよい。
続いて、主制御ECU21は、第2補正車両加速度目標値を決定する(ステップS14-3)。具体的には、下記の式によって第2補正後の車両前後加速度目標値を決定する。
なお、ζX はフィルタ係数であり、ζX =Δt/TX である。また、TX はローパスフィルタ時定数である。
また、下記の式によって第2補正後の車両左右加速度目標値を決定する。
なお、ζY はフィルタ係数であり、ζY =Δt/TY である。また、TY はローパスフィルタ時定数である。そして、本実施の形態において、ローパスフィルタ時定数は次のように設定される。
このように、ローパスフィルタによって、車両加速度目標値を補正する。つまり、ローパスフィルタによって、車両前後加速度目標値の高周波成分を除去する。倒立型の車両10においては、前後加速度に応じて車体姿勢を変化させる必要があるため、不要な高周波成分をノイズと共に除去することで、車体姿勢に振動や乱れが発生しないようにする。これにより、より快適な倒立型の車両10を提供できる。
また、ローパスフィルタによって、ジョイスティック入力に対する左右加速度の応答に、適度な時間遅れを与える。同軸2輪倒立型の車両10においては、前後走行の応答性と比べて、旋回走行の応答性が高すぎるため、車両10の車体姿勢変化に関する特性時間を、意図的な時間遅れとして与える。これにより、旋回走行の過敏な応答に対する操縦者である乗員15の違和感を低減すると共に、操縦を容易にする。
なお、本実施の形態においては、倒立型の車両10の力学的な特性時間に基づいて時定数を設定しているが、他の特性時間に基づいて時定数を決定してもよい。例えば、車両10の前後加減速運動に関する特性時間を時定数としてもよい。また、車両10の前後加減速運動に関する特性時間よりも、車両10の旋回に関する特性時間の方が長い場合には、その特性時間に基づいて、車両前後加速度目標値に対するローパスフィルタの時定数をより大きく設定してもよい。
続いて、主制御ECU21は、第3補正車両加速度目標値を決定する(ステップS14-4)。具体的には、下記の式によって第3補正後の車両前後加速度目標値を決定する。
また、下記の式によって第3補正後の車両左右加速度目標値を決定する。
さらに、αY,IS,0は左右不感帯閾値、CIS,Vは不感帯拡張速度係数(所定値)、CIS,Dは不感帯拡張減速度係数(所定値)である。また、本実施の形態において、前後不感帯閾値及び左右不感帯閾値は、αY,IS,0>αX,IS,0となるように設定される。
このように、不感帯によって、車両加速度目標値を補正する。具体的には、図16(a)に示されるように、車両前後加速度目標値の絶対値が所定の前後不感帯閾値αX,IS,0以下であるとき、車両前後加速度目標値を零とする。これは、ジョイスティック31の操作量に対応する電気信号のノイズ若しくはオフセット、又は、外乱によるジョイスティック31の微小入力等によって、車両停止時に微小な駆動トルクが付加されることを防ぐためである。これにより、快適性や操縦性のより高い車両10を提供できる。
また、図16(b)に示されるように、車両左右加速度目標値の絶対値が所定の左右不感帯閾値αY,IS,0以下であるとき、車両左右加速度目標値を零とする。これは、操縦者の直進を意図するジョイスティック31の操作時における左右方向へのずれを考慮し、左右不感帯閾値によって直進操作時の不本意な左右方向入力と旋回を希望する意図的な左右方向入力とを識別して、直進操作時の不本意な左右方向入力を無視することで、車両10の直進走行性を補償するためである。これにより、操縦性や快適性のより高い車両10を提供できる。
さらに、車両速度としての駆動輪回転角速度の増加と共に、左右不感帯閾値を大きくする。このように、車両速度に応じて左右不感帯幅を拡張することで、高速走行時により重要となる直進性を、操縦者の技量に依らず、確実に保障することができる。また、減速時においては、車両減速度の増加と共に、左右不感帯閾値を大きくする。このように、急制動時に車両10の進行方向が左右にぶれることを確実に防ぐことで、より高い操縦性や安全性を実現できる。
さらに、車両加速度目標値の最大値が変化しないように、所定の補正係数を乗ずる。
続いて、主制御ECU21は、第4補正車両加速度目標値を決定する(ステップS14-5)。具体的には、下記の式によって第4補正後の車両前後加速度目標値を決定する。
さらに、PX は前後入力指数であり、PX =pX +qX である。なお、pX は前後入力指数の整数部分、qX は前後入力指数の小数部分(0≦qX <1)である。
また、下記の式によって第4補正後の車両左右加速度目標値を決定する。
なお、pY は左右入力指数の整数部分、qY は左右入力指数の小数部分(0≦qY <1)である。また、PY,Inは左右内側入力指数、PY,Out は左右外側入力指数である。そして、本実施の形態においては、PY,In>PY,Out となるように設定される。
このように、非線形関数によって、車両加速度目標値を補正する。具体的には、前後入力指数及び左右入力指数を指数とする指数関数によって、図17(a)及び(b)に示されるように、値が大きいときの変化率が値が小さいときの変化率よりも大きくなるように、車両前後加速度目標値及び車両左右加速度目標値を補正する。このように、人が有する操作量の非線形な感受特性に対して車両10の感受特性を適合させることで、操縦者である乗員15は違和感なく快適に操縦することができる。その結果、快適性や操縦性のより高い車両10を提供できる。
また、操縦者の左右入力方向に応じて、異なる左右入力指数を用いる。図17(b)に示されるように、ジョイスティック31の取付位置から車両10の内側へ向かう方向の車両左右加速度目標値に対する左右入力指数を、車両10の外側へ向かう方向の車両左右加速度目標値に対する左右入力指数よりも大きくする。このように、人の体の非対称な構造及び操作量の非対称な感受特性による左右の違いに対して車両10の感受特性を適合させることで、操縦者である乗員15は違和感なく快適に操縦することができる。その結果、更に快適性や操縦性の高い車両10を提供できる。
なお、本実施の形態においては、入力指数による指数関数について、入力指数が整数でない場合には、指数が整数の関数で簡単に近似して関数値を取得しているが、より厳密に計算してもよい。例えば、テイラー級数で近似して計算してもよい。
続いて、主制御ECU21は、第5補正車両加速度目標値を決定する(ステップS14-6)。具体的には、下記の式によって第5補正後の車両前後加速度目標値を決定する。
また、下記の式によって第5補正後の車両左右加速度目標値を決定する。
第5補正においては、図18に示されるように、出力特性が左右方向について非対称になるように車両左右加速度目標値を補正する。具体的には、ジョイスティック31の取付位置から車両10の外側へ向かう方向の車両左右加速度目標値について、所定の1以上の値である非対称係数を乗ずる。このように、人の体の非対称な構造及び操作量の非対称な感受特性による左右の違いに対して車両10の感受特性を適合させることで、操縦者である乗員15は違和感なく快適に操縦することができる。その結果、更に操縦性や快適性の高い車両10を提供できる。
なお、非対称係数を乗ずることで、車両左右加速度目標値が所定の最大値を超えないように、値を制限する。
最後に、主制御ECU21は、車両加速度目標値を決定して(ステップS14-7)、車両加速度目標値決定処理を終了する。以上のように、第1~第5補正によって補正された車両加速度目標値を最終的な車両加速度目標値として決定する。
このように、本実施の形態において、入力装置30は操縦者が操作するジョイスティック31を備え、駆動輪12の回転軸に垂直な方向へのジョイスティック31の傾斜量を前後入力量とし、駆動輪12の回転軸に平行な方向へのジョイスティック31の傾斜量を左右入力量として取得し、補正した前後入力量に比例した値を前後走行状態として設定し、補正した左右入力量に比例した値を旋回走行状態として設定し、設定した前後走行状態及び旋回走行状態を前後走行状態及び/又は旋回走行状態の時間履歴に応じて補正し、設定した前後走行状態と旋回走行状態を達成するような駆動トルクを各駆動輪12に付与する。
また、前後走行状態を車両前後加速度とし、旋回走行状態を車両左右加速度とする。そして、車両前後加速度に応じて車体を前後に傾斜させ、車両左右加速度に応じて車体を左右に傾斜させる。
さらに、車両前後加速度と車両左右加速度にローパスフィルタをかける。具体的には、車両前後加速度のローパスフィルタの時定数よりも大きい時定数のローパスフィルタを、車両左右加速度のローパスフィルタとする。また、車体の前後姿勢制御における時間遅れを、車両左右加速度のローパスフィルタの時定数とする。
さらに、前後加速度に所定の座標軸回転角正弦値を乗じた値を、左右加速度に加える。具体的には、前後加速度が正の場合には、操縦装置であるジョイスティック31の位置から車両の内側へ向かう方向の左右加速度を加え、前後加速度が負の場合には、外側へ向かう方向の左右加速度を加える。
さらに、車両前後加速度の絶対値が所定の前後不感帯閾値よりも小さい場合には、車両前後加速度を零とし、車両左右加速度の絶対値が所定の左右不感帯閾値よりも小さい場合には、車両左右加速度を零とする。この場合、前後不感帯閾値よりも左右不感帯閾値を大きく設定する。そして、車両速度の増加と共に、左右不感帯閾値を大きくする。また、前後加速度が負であるときには、その絶対値の増加と共に左右不感帯閾値を大きくする。
さらに、車両前後加速度の値に所定の前後入力指数を乗じた値に比例した値を車両前後加速度とし、車両左右加速度の値に所定の左右入力指数を乗じた値に比例した値を車両左右加速度とする。この場合、車両左右加速度の正負に応じて異なる左右入力指数を用い、ジョイスティック31の位置から車両10の内側へ向かう方向の車両左右加速度に用いる左右入力指数を、車両10の外側へ向かう方向の車両左右加速度に用いる左右入力指数よりも大きくする。
さらに、ジョイスティック31の位置から車両10の外側へ向かう方向の車両左右加速度に所定の非対称係数を乗ずる。
これにより、人の体の構造や動作特性、感受特性等に適応した操縦特性を実現することができ、誰でも容易かつ気軽に操縦することができる操縦性の高い車両10を提供することができる。
次に、本発明の第3の実施の形態について説明する。なお、第1及び第2の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1及び第2の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。
図20は本発明の第3の実施の形態における車両システムの構成を示すブロック図である。
前記第2の実施の形態において、車両加速度目標値の補正は、「平均的な」操縦者を想定した所定のパラメータによって実行される。しかし、人の体の構造や動作特性、感受特性等は各個人で異なるため、操縦者によっては、操縦性が悪く、自身の操縦意図と実際の車両走行動作が一致しないと感じる可能性がある。
そこで、本実施の形態においては、車両加速度の時間履歴に応じて、補正パラメータを修正する。また、外部記憶装置に記憶された補正パラメータの取得及び書換を行う読み書き手段を備え、車両起動時に記憶された補正パラメータを取得し、取得した値を補正パラメータの初期値とし、車両停止時に補正パラメータの最終値を外部記憶装置に記憶させる。これにより、操縦者の技量、経験、癖等に適応した操縦特性を即時に実現することができ、誰でも容易に操縦できる車両10を提供できる。
図20に示されるように、本実施の形態において、入力装置30は、ジョイスティック31に加えて、車両システムの動作指令を出力する制御スイッチ32と、外部記憶装置としてのIDカード34との送受信を行うことによって該IDカード34が記憶するデータの読込及び書込を行う読み書き手段としてのIDカードインターフェイス33とを備える。
そして、操縦者である乗員15が前記制御スイッチ32を操作すると、該制御スイッチ32が動作指令を出力し、該動作指令を受信した主制御ECU21は、車両システムの制御を開始する。
また、乗員15は、自身を識別するIDカード34を所持する。該IDカード34は、磁気ストライプ、半導体メモリ等のデータ記憶手段を備え、前記乗員15専用の補正パラメータをデータとして記憶する。そして、乗員15が自分の所持するIDカード34をIDカードインターフェイス33と通信可能に接続することによって前記IDカード34の記憶する補正パラメータをIDカードインターフェイス33に読み込ませると、主制御ECU21は、前記補正パラメータをIDカードインターフェイス33から受信し、車両加速度目標値の補正に用いる補正パラメータの初期値として設定する。また、車両システムの制御を終了すると、主制御ECU21は、修正した補正パラメータをIDカードインターフェイス33に送信し、前記IDカード34に記憶させる。
なお、その他の点の構成については、前記第2の実施の形態と同様であるので、説明を省略する。
次に、本実施の形態における車両10の動作について説明する。まず、車両システムの動作を制御するシステム制御処理について説明する。
図21は本発明の第3の実施の形態におけるシステム制御処理の動作を示すフローチャートである。
システム制御処理において、主制御ECU21は、制御開始であるか否かを判断する(ステップS21)。具体的には、制御スイッチ32からの動作指令を受信するまで待機し、該動作指令を受信すると、制御開始であると判断する。
そして、制御開始であると判断すると、主制御ECU21は、IDカード34のデータが読込可能であるか否かを判断する(ステップS22)。この場合、IDカードインターフェイス33によるIDカード34が記憶するデータの読込が可能であり、かつ、該データが補正パラメータであるときに読込可能であると判断する。
読込可能であると判断すると、主制御ECU21は、補正パラメータを取得する(ステップS23)。具体的には、IDカードインターフェイス33が読み込んだIDカード34が記憶する補正パラメータを、IDカードインターフェイス33から受信し、車両加速度目標値の補正に用いる補正パラメータの初期値として設定する。
また、読込可能でないと判断すると、主制御ECU21は、補正パラメータを設定する(ステップS24)。この場合、所定の値を車両加速度目標値の補正に用いる補正パラメータの初期値として設定する。
続いて、主制御ECU21は、走行及び姿勢制御処理を実行する(ステップS25)。この場合、初期値として設定した補正パラメータを修正しながら、前記第2の実施の形態と同様の走行及び姿勢制御処理を実行する。
続いて、制御終了であるか否かを判断する(ステップS26)。具体的には、制御スイッチ32からの動作指令を受信できないと、制御終了であると判断する。なお、制御スイッチ32からの動作指令を受信できるときは、制御終了でないと判断し、走行及び姿勢制御処理を繰り返し実行する。
そして、制御終了であると判断すると、主制御ECU21は、補正パラメータを記憶して(ステップS27)、システム制御処理を終了する。具体的には、主制御ECU21が修正された補正パラメータの最終値をIDカードインターフェイス33に送信し、該IDカードインターフェイス33が前記補正パラメータの最終値をIDカード34に書き込んで記憶させる。
このように、各操縦者に適応された補正パラメータを、各操縦者が所持する外部記憶装置に記憶させる。つまり、制御終了時に、修正された補正パラメータの最終値をIDカード34に記憶させる。また、制御開始時に、IDカード34に記憶された補正パラメータを取得し、修正前の初期値とする。なお、取得が不可能である場合には、平均的な操縦特性に相当する所定値を初期値として設定する。このように、各操縦者に対応したIDカード34に情報の1つとして補正パラメータを記憶させることで、補正パラメータの修正に要する時間を省くと共に、1台の車両10を複数人が利用する使用環境において、簡単かつ瞬間的に各操縦者の特性に適合させることで、快適性や利便性のより高い車両10を提供できる。
なお、本実施の形態においては、IDカード34を各個人に適応された補正パラメータの外部記憶装置として用いているが、他の機能と併用してもよい。例えば、IDカード34はID番号を記憶し、また、車両10は使用許可ID番号列を記憶し、使用許可ID番号列のデータの1つがID番号と合致した場合に制御開始を許可する認証手段を兼ねてもよい。
また、本実施の形態においては、外部記憶装置として車両10からの取り外しが可能なIDカード34を用いているが、車両10に備え付けた記憶装置を用いてもよい。この場合、制御開始前に、パスワード等の個人を特定できる情報を入力するか、又は、複数の使用者リストから自身を選択することで操縦者個人を特定し、前回の車両利用時に車両10に備え付けられた記憶装置に記憶された補正パラメータの値を取得する。
次に、本実施の形態における車両加速度目標値決定処理について説明する。
図22は本発明の第3の実施の形態における座標軸回転角正弦値の推定を説明する図、図23は本発明の第3の実施の形態における車両加速度目標値決定処理の動作を示すフローチャートである。
車両加速度目標値決定処理において、主制御ECU21は、まず、基準車両加速度目標値を決定する(ステップS14-11)。なお、基準車両加速度目標値を決定する動作は、前記第2の実施の形態における図19に示されるステップS14-1の動作と同様であるので、説明を省略する。
続いて、主制御ECU21は、補正パラメータを決定する(ステップS14-12)。この場合、下記の式によって座標軸回転角正弦値β、左右不感帯閾値αY,IS,0、左右外側入力指数PY,Out 及び非対称係数γY,Asを決定する。
ここで、βInitは座標軸回転角正弦値初期値、αY,IS,0,Init は左右不感帯閾値初期値、PY,Out,Initは左右外側入力指数初期値、γY,As,Init は非対称係数初期値である。また、NTRは初期値固定データ数であり、NTR=TTR/Δt、TTRは初期値固定時間(所定値)、ξはフィルタ係数であり、ξ=Δt/TLP、TLPはフィルタ時定数(初期値)である。
また、下記の式によって座標軸回転角正弦値βの推定値、左右不感帯閾値αY,IS,0の推定値、左右外側入力指数PY,Out の推定値及び非対称係数γY,Asの推定値を決定する。
さらに、下記の式によって前後加速度2乗和SXX、左右加速度2乗和SYY及び加速度相乗和SXYが決定される。
なお、Nは参照データ数であり、N=Tref /Δt、Tref は参照時間(所定値)である。
さらに、下記の式によって選抜加速度が決定される。
さらに、下記の式によって選抜判定値が決定される。
また、Tshは最大入力移行時間選抜閾値(所定値)である。
さらに、下記の式によって分散値が決定される。
なお、Δσは分散差であり、Δσ=σIn-σOut である。また、下記の式によって内側分散値が決定される。
また、下記の式によって内側左右加速度2乗和SYY,In 及び内側加速度相乗和SXY,In が決定される。
ここで、NInは内側加速度データ数であり、上記内側加速度の式における第1行に該当する回数である。
また、下記の式によって外側分散値が決定される。
また、下記の式によって外側左右加速度2乗和SYY,Out及び外側加速度相乗和SXY,Outが決定される。
ここで、NOut は外側加速度データ数であり、上記外側加速度の式における第1行に該当する回数である。
このように、車両加速度の時間履歴によって、補正パラメータを修正する。まず、車両左右加速度目標値と車両前後加速度目標値との比の平均値に応じて、基準軸の傾きを修正する。この場合、図22に示されるように、車両左右加速度目標値と車両前後加速度目標値との間の時間平均的な関係として、直線に相当する比例関係を仮定し、その比例定数を最小2乗法によって推定する。そして、時間平均的な比例関係を示す直線を基準軸として、その比例定数を座標軸回転角正弦値βとする。このように、右折操作と左折操作を同程度の頻度及び程度で実行するという仮定に基づき、操縦操作の時間平均を操縦者の感覚的な基準軸として、該基準軸の傾きを座標軸回転角正弦値βとすることで、人が斜め前方のジョイスティック31を操作する際の癖である入力特性についての個人差が車両10側の修正によって補償され、操縦者である乗員15は違和感なく快適に操縦することができる。
また、基準軸に対する車両左右加速度目標値のばらつきに応じて、左右不感帯の幅を修正する。まず、車両前後加速度目標値に比の平均値を乗じた値を基準車両左右加速度とし、それに対する車両左右加速度目標値の偏差の2乗平均を分散値として取得する。そして、分散値の正の平方根である標準偏差値に比例した値を左右不感帯閾値とする。このように、直進操作に比べて旋回操作の頻度がはるかに少なく、基準軸に対する左右への操縦操作の大多数が操縦者の直進操作における意図しない操作量のずれであるという仮定に基づき、直進操作時の不本意な左右方向入力と旋回を希望する意図的な左右方向入力を識別する閾値を適切に修正することで、操縦技術の個人差を補償し、操縦者の技量や癖に依らず、車両10の直進走行性を保障できる。
さらに、基準軸に対する車両左右加速度目標値のばらつきの非対称度に応じて、左右非対称化の程度を修正する。まず、車両左右加速度目標値が基準車両加速度より大きい場合の車両左右加速度の分散値と、車両左右加速度目標値が基準車両加速度より小さい場合の車両左右加速度の分散値との差を、車両左右加速度目標値の非対称度として取得する。そして、非対称度に比例した量だけ、左右外側入力指数及び非対称係数を修正する。このように、右折操作と左折操作が同程度の頻度及び程度で実行され、操縦操作の非対称性は操縦者の意図しない結果であるという仮定に基づき、基準軸に対する車両10の内側へのばらつきと車両10の外側へのばらつきとの差を軽減させるように左右非対称化の程度を適切に修正することで、操縦者の癖である操縦特性の個人差が補償され、操縦者である乗員15は違和感なく快適に操縦することができる。
さらに、車両加速度目標値の瞬時値とその時間変化率が小さい場合、そのデータを時間履歴から除いて、考慮しない。具体的には、車両前後加速度と車両左右加速度のベクトル和である車両並進加速度の目標値とその時間変化率との積の絶対値が所定の閾値以下であるときの車両加速度目標値を無視して、各補正パラメータを決定する。このように、操縦者による個人差がより顕著である大きい操作時や素早い操作時の操作履歴を選択的に抽出し、その後の修正操作に相当する小さい操作を無視することで、より適切に補正パラメータを修正できる。
さらに、制御開始から所定時間、補正パラメータの修正を禁止する。そして、制御開始から所定時間を経過するまで、IDカード34に記憶された補正パラメータの値を使用する。このように、過去のデータを活用することで、2度目の使用時から補正パラメータの適合に要する時間を省略し、走行開始直後から操縦者に適合した特性によって操縦性や快適性を即時に保障できる。
さらに、所定時間経過後の補正パラメータ値にローパスフィルタ処理を施す。このように、必要なデータ量が少ないIIR型のローパスフィルタを併用することで、最小2乗法の参照時間を短くしても、すなわち、膨大な車両加速度目標値のデータ量を低減させても、安定的に補正パラメータの修正を実行できる。
なお、本実施の形態においては、操縦特性に関する操縦者の希望を直接的に取得することなく、操縦特性の適合を実行しているが、操縦特性に関する操縦者の希望を取得し、それを考慮して操縦特性を適合してもよい。例えば、離散的な操縦特性の選択や操縦特性の定性的な修正方向希望を、搭乗部14に具備された入力装置30を用いて操縦者である乗員15が入力することを可能とし、該乗員15の希望に反するような補正パラメータの修正を禁止させてもよい。また、操縦特性を操縦者自身が手動で調整するための調整器と、手動による適合と自動的な適合を切り替えるスイッチとを搭乗部14に配設し、スイッチが手動適合を指示する状態にあるときは、調整器の入力量に応じて補正パラメータを修正し、スイッチが自動適合を指示する状態にあるときは、本実施の形態における自動適合制御を実行するようにしてもよい。
また、本実施の形態においては、操縦者の操縦意図を検出又は推定せず、大きな仮定と平均化に基づいて補正パラメータを修正しているが、操縦者の操縦意図を検出又は推定し、それを考慮して補正パラメータを修正してもよい。例えば、カーナビゲーションシステムとして地図データ及び自車位置検出センサを備え、それらによって、走行路が若干曲がっているのか又は操縦者の不本意な操作によって曲がっているのかを判断し、操縦者の意図的な操作であると判断される場合には、その時間での車両加速度目標値を時間履歴から除いてもよい。また、方向指示器等、操縦者の操作する他の要素の操作量に応じて操縦者の操縦意図を推定して考慮してもよい。
続いて、主制御ECU21は、第1補正車両加速度目標値を決定する(ステップS14-13)。なお、以降の動作、すなわち、ステップS14-13~S14-18の動作は、前記第2の実施の形態における図19に示されるステップS14-2~S14-7の動作と同様であるので、説明を省略する。
このように、本実施の形態においては、車両加速度の時間履歴に応じて、補正パラメータを修正する。具体的には、補正パラメータとして、座標軸回転角正弦値、左右不感帯閾値、左右入力指数又は非対称係数の少なくとも1つ以上を修正する。
そして、車両左右加速度と車両前後加速度との比の平均値に応じて、補正パラメータを修正する。この場合、最小2乗法によって、比の平均値を決定する。そして、比の平均値を座標軸回転角正弦値とする。また、車両前後加速度に比の平均値を乗じた値である基準車両左右加速度に対する車両左右加速度の偏差の2乗の平均である分散値に応じて、左右不感帯閾値を修正する。さらに、基準車両左右加速度以上の車両左右加速度の分散値と、基準車両左右加速度以下の車両左右加速度の分散値との差に応じて、左右入力指数及び/又は非対称係数を修正する。
また、車両加速度及び/又は車両加速度の時間変化率が所定の閾値よりも小さいときの車両加速度を時間履歴から除外する。具体的には、車両加速度と同時間変化率との積の絶対値が所定の閾値以下である場合に除外する。
さらに、外部記憶装置としてのIDカード34に記憶された補正パラメータの取得及び書換を行う読み書き手段として、IDカードインターフェイス33を備え、車両起動時に記憶された補正パラメータを取得し、取得した値を補正パラメータの初期値とし、車両停止時に補正パラメータの最終値をIDカード34に記憶させる。
これにより、操縦者の技量、経験、癖等に適応した操縦特性を即時に実現することができ、誰でも容易に操縦できる車両10を提供できる。
次に、本発明の第4の実施の形態について説明する。なお、第1~第3の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1~第3の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。
図24は本発明の第4の実施の形態における車両の構成を示す概略図、図25は本発明の第4の実施の形態における車両システムの構成を示すブロック図である。なお、図24において、(a)は操縦装置を右側に取り付けた場合の取付部スイッチの動作を示す図、(b)は操縦装置を右側に取り付けた場合の車両の正面図、(c)は操縦装置を左側に取り付けた場合の車両の正面図、(d)は操縦装置を左側に取り付けた場合の取付部スイッチの動作を示す図、(e)は取付部スイッチの内部構造を示す図である。
前記第1~第3の実施の形態においては、搭乗部14の側方にジョイスティック31が配設され、それを操縦者である乗員15が片手で操作する場合、利き腕の側とジョイスティック31の配設側とが異なると、操縦が非常に困難である。もっとも、その解決手段として、搭乗部14の左右両側にジョイスティック31を配設することも考えられるが、その場合、安価で軽量で簡素な車両10を実現する妨げとなることがある。
そこで、本実施の形態においては、操縦装置取付部を搭乗部14の左右両側に配設し、操縦装置としてのジョイスティック31をその一方に接続可能な構造とする。これにより、利き腕が左右のどちらであるかに依らず、誰でも快適に操縦でき、操縦性や快適性が高く、かつ、安価な車両10を提供できる。
図24に示されるように、本実施の形態におけるジョイスティック31は、基部31a内に配設された取付部スイッチ35を有する。該取付部スイッチ35は、基部31a内の左右に各々揺動可能に取り付けられた右取付スイッチ35R及び左取付スイッチ35Lと、スイッチ用ECU35aと、前記右取付スイッチ35R及び左取付スイッチ35Lと接離する一対のスイッチ接点35bとを含み、取付側認識装置として機能する。そして、前記ジョイスティック31は、搭乗部14の右脇及び左脇に配設された操縦装置取付部としての操縦装置右側取付部18R又は操縦装置左側取付部18Lに着脱可能に取り付けられる。
また、図24(e)に示されるように、右取付スイッチ35R及び左取付スイッチ35Lの基部に接続された揺動軸の周囲にはコイルばね等から成る付勢部材38が配設され、該付勢部材38によって、右取付スイッチ35R及び左取付スイッチ35Lは、その先端がスイッチ接点35bから離間するように付勢されている。つまり、付勢部材38によって、右取付スイッチ35R及び左取付スイッチ35Lは、その先端が鉛直下方に移動するように付勢されている。そのため、ジョイスティック31が操縦装置右側取付部18R又は操縦装置左側取付部18Lに取り付けられていない状態では、右取付スイッチ35R及び左取付スイッチ35Lとスイッチ接点35bとは開状態に維持されている。
さらに、前記基部31aの底板には左右一対の貫通孔(こう)36が形成されている。そして、ジョイスティック31が操縦装置右側取付部18Rに取り付けられると、図24(a)に示されるように、操縦装置右側取付部18Rの上面から上方に向けて突出する右凸部19Rが、右側の貫通孔36から基部31a内に進入し、右取付スイッチ35Rを押し上げる。これにより、右取付スイッチ35Rの先端が鉛直上方に変位してスイッチ接点35bに接触する。すると、スイッチ用ECU35aは、電位差の変化を感知し、右取付スイッチ35Rの接続状態、すなわち、操縦装置右側取付部18Rにジョイスティック31が取り付けられていることを、右側接続信号として、主制御ECU21に送信する。
また、ジョイスティック31が操縦装置左側取付部18Lに取り付けられると、図24(d)に示されるように、操縦装置左側取付部18Lの上面から上方に向けて突出する左凸部19Lが、左側の貫通孔36から基部31a内に進入し、左取付スイッチ35Lを押し上げる。これにより、左取付スイッチ35Lの先端が鉛直上方に変位してスイッチ接点35bに接触する。すると、スイッチ用ECU35aは、電位差の変化を感知し、左取付スイッチ35Lの接続状態、すなわち、操縦装置左側取付部18Lにジョイスティック31が取り付けられていることを、左側接続信号として、主制御ECU21に送信する。
このように、本実施の形態においては、ジョイスティック31が取り付けられているか否か、左右どちら側に取り付けられているかを簡易なシステムで確実に判断できる。なお、入力装置30から主制御ECU21に送信される信号は、すべて無線信号である。そのため、電気配線に関係なくジョイスティック31の左右付け替えが可能であり、利便性と快適性のより高い車両10を提供できる。
なお、本実施の形態においては、機械的な構造によってジョイスティック31の接続状態を判断しているが、他の電磁気的又は電子的な情報によって、接続状態を認識してもよい。例えば、ジョイスティック操作量に相当する電気信号を有線で取得する車両10の場合、左右各々に電気コネクタを備え、その一方からの信号を受信した場合に、その側にジョイスティック31が接続されていると判断してもよい。また、操縦者自身がどちらに接続されているかを入力装置30を介して入力してもよい。
また、車両システムのその他の点の構成については、前記第2の実施の形態と同様であるので、説明を省略する。
次に、本実施の形態における車両10の動作について説明する。ここでは、車両システムの動作を制御するシステム制御処理のみについて説明する。
図26は本発明の第4の実施の形態における車両加速度目標値決定処理での第1補正を説明する図、図27は本発明の第4の実施の形態における車両加速度目標値決定処理での第4補正の結果を示す図、図28は本発明の第4の実施の形態における車両加速度目標値決定処理での第5補正の結果を示す図、図29は本発明の第4の実施の形態におけるシステム制御処理の動作を示すフローチャートである。なお、図26~28において、(a)は操縦装置を右側に取り付けた場合を示し、(b)は操縦装置を左側に取り付けた場合を示す。
システム制御処理において、主制御ECU21は、制御開始であるか否かを判断する(ステップS31)。具体的には、制御スイッチ32からの動作指令を受信するまで待機し、該動作指令を受信すると、制御開始であると判断する。
そして、制御開始であると判断すると、主制御ECU21は、右側取付であるか否かを判断する(ステップS32)。この場合、取付部スイッチ35から右側接続信号のみを受信したときには、右側取付である、すなわち、ジョイスティック31が操縦装置右側取付部18Rに取り付けられている、と判断する。
右側取付であると判断すると、主制御ECU21は、s=1とする(ステップS33)。すなわち、ジョイスティック取付位置係数sの値を、ジョイスティック31が操縦装置右側取付部18Rに取り付けられている状態に相当する1に設定する。
また、右側取付でないと判断すると、主制御ECU21は、左側取付であるか否かを判断する(ステップS34)。この場合、取付部スイッチ35から左側接続信号のみを受信したときには、左側取付である、すなわち、ジョイスティック31が操縦装置左側取付部18Lに取り付けられている、と判断する。
左側取付であると判断すると、主制御ECU21は、s=-1とする(ステップS35)。すなわち、ジョイスティック取付位置係数sの値を、ジョイスティック31が操縦装置左側取付部18Lに取り付けられている状態に相当する-1に設定する。
なお、左側取付でないと判断すると、主制御ECU21は、そのまま、システム制御処理を終了する。
このように、接続信号に基づいて、ジョイスティック31の取付状態を判断する。つまり、右側接続信号を受信し、かつ、左側接続信号を受信しない場合は、ジョイスティック31が搭乗部14の右側に取り付けられていると判断し、右側取付状態に相当するジョイスティック取付位置係数s=1を設定した後、走行及び姿勢制御処理を開始する。また、左側接続信号を受信し、かつ、右側接続信号を受信しない場合は、ジョイスティック31が搭乗部14の左側に取り付けられていると判断し、左側取付状態に相当するジョイスティック取付位置係数s=-1を設定した後、走行及び姿勢制御処理を開始する。
このように、ジョイスティック31の取付状態を確実に認識し、その取付状態に応じてジョイスティック取付位置係数を切り替えることで、取付状態に適した車両加速度目標値の補正を実行し、取付状態に依らず、高い操縦性や快適性を実現できる。
なお、右側接続信号と左側接続信号を共に受信する場合、又は、共に受信しない場合は、ジョイスティック31の取付状態が異常であると判断し、システム制御処理を終了する。このように、異常状態での動作を禁止して十分な安全性を確保するとともに、ジョイスティック31を固定せずに操縦することを禁止して、ジョイスティック31を固定した安全な状態での操縦を促す。
続いて、主制御ECU21は、走行及び姿勢制御処理を実行する(ステップS36)。この場合、設定されたジョイスティック取付位置係数sに応じて、前記第2の実施の形態と同様の走行及び姿勢制御処理を実行する。
なお、本実施の形態においては、ジョイスティック31の取付状態に応じて、ジョイスティック取付位置係数sが1又は-1に設定されるので、走行及び姿勢制御処理の車両加速度目標値決定処理における第1補正は、図26のように行われる。なお、図26(a)は、右側取付状態、すなわち、ジョイスティック取付位置係数s=1の場合を示し、図26(b)は、左側取付状態、すなわち、ジョイスティック取付位置係数s=-1の場合を示している。
また、第4補正及び第5補正は、図27及び28のように行われる。なお、図27及び28において、(a)は、右側取付状態、すなわち、ジョイスティック取付位置係数s=1の場合を示し、(b)は、左側取付状態、すなわち、ジョイスティック取付位置係数s=-1の場合を示している。
最後に、制御終了であるか否かを判断する(ステップS37)。具体的には、制御スイッチ32からの動作指令を受信できないと、制御終了であると判断し、システム制御処理を終了する。なお、制御スイッチ32からの動作指令を受信できるときは、制御終了でないと判断し、走行及び姿勢制御処理を繰り返し実行する。
このように、本実施の形態においては、搭乗部14の左右両側に操縦装置右側取付部18R及び操縦装置左側取付部18Lを配設し、ジョイスティック31をその一方に取り付けることができる。そして、ジョイスティック31の基部31aに配設された2つの取付側認識スイッチ、すなわち、右取付スイッチ35R及び左取付スイッチ35Lを備え、ジョイスティック31が固定された状態で右取付スイッチ35R又は左取付スイッチ35Lの一方が自動的に押圧される。また、取付部スイッチ35が送信する右側接続信号及び左側接続信号に応じて、ジョイスティック31の左右入力に対する感受特性を反転させる。具体的には、座標軸回転角正弦値、左右入力指数及び非対称係数を切り替える。また、ジョイスティック取付位置係数の値を変更する。さらに、右側接続信号と左側接続信号を共に取得できない場合には、車両10の起動を禁止する。さらに、入力装置30から主制御ECU21への無線信号により、ジョイスティック31の操作量を送信する。
これにより、利き腕が左右のどちらであるかに依らず、誰でも快適に操縦でき、操縦性や快適性が高く、かつ、安価な車両10を提供できる。
次に、本発明の第5の実施の形態について説明する。なお、第1~第4の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1~第4の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。
図30は本発明の第5の実施の形態における車両システムの構成を示すブロック図である。
本実施の形態においては、車両10が3輪以上の車輪を有するものである場合について説明する。つまり、前記車両10は、例えば、前輪が1輪であり後輪が2輪である3輪車、前輪が2輪であり後輪が1輪である3輪車、前輪及び後輪が2輪である4輪車等であるが、3輪以上の車輪を有するものであれば、いかなる種類のものであってもよい。
ここでは、説明の都合上、前記第1の実施の形態において他の例として説明した図3に示される車両10のように、車体の前方に配設され、操舵輪として機能する1つの前輪である車輪12Fと、車体の後方に配設され、駆動輪12として機能する左右2つの後輪である車輪12L及び12Rとを有する3輪車である例についてのみ説明する。
この場合、車両10は、前記第1~第4の実施の形態と同様のリンク機構60によって左右の車輪12L及び12Rのキャンバー角を変化させるとともに、搭乗部14及び本体部11を含む車体を旋回内輪側へ傾斜させる、つまり、車体を横方向(左右方向)に傾斜させることができる。なお、倒立振り子の姿勢制御のような姿勢制御は行わないものとする。すなわち、車体の前後方向の姿勢制御は行わないものとする。
また、車輪12Fは、サスペンション装置の一部である前輪フォーク17を介して本体部11に接続されている。具体的には、本体部11の前端上方に操舵部77が配設され、該操舵部77によって前輪フォーク17の回転軸が回転可能に支持されている。また、前記操舵部77は、操舵用アクチュエータとしてのステアリングアクチュエータ71と、操舵量検出器としての操舵角センサ72とを備える。
前記ステアリングアクチュエータ71は、入力装置30から走行指令に応じて前記前輪フォーク17の回転軸を回転させ、操舵輪としての車輪12Fは舵角を変化させる。つまり、車両10の操舵は、いわゆるバイワイヤによって行われる。また、操舵角センサ72は、前記前輪フォーク17の回転軸の角度変化を検出することによって車輪12Fの舵角、すなわち、操舵装置の操舵量を検出することができる。
そして、本実施の形態における車両10は、図30に示されるような車両システムを有する。入力装置30は、操舵角センサ72、スロットルグリップ73及びブレーキレバー74を操縦装置として備える。前記スロットルグリップ73は、加速操作におけるジョイスティック31の前後方向への操作量を検出し、該操作量に応じて、車両10を加速するような走行指令を入力する装置である。また、前記ブレーキレバー74は、減速操作におけるジョイスティック31の前後方向への操作量を検出し、該操作量に応じて、車両10を減速するような走行指令を入力する装置である。
また、制御ECU20は、操舵制御ECU24を有する。そして、主制御ECU21は、ジョイスティック31から走行指令に応じて操舵指令値を操舵制御ECU24に送信し、該操舵制御ECU24は、受信した操舵指令値に相当する入力電圧をステアリングアクチュエータ71に供給する。そして、操舵角センサ72の検出した舵角は、主制御ECU21に送信される。
さらに、車両システムは、横加速度センサ42及びリンクセンサ43を備える。前記横加速度センサ42は、一般的な加速度センサ、ジャイロセンサ等から成るセンサであって、車両10の横加速度を検出する。また、前記リンクセンサ43は、ロータリーエンコーダ等から成るセンサであって、リンク機構60のリンク部材同士の回転角の変化を検出することによってリンク回転角及び/又は回転角速度を検出する。
なお、その他の点の構成については、前記第1及び第2の実施の形態と同様であるので、その説明を省略する。
次に、本実施の形態における車両10の動作について詳細に説明する。まず、走行及び姿勢制御処理について説明する。
走行及び姿勢制御処理において、主制御ECU21は、まず、センサから各状態量を取得する。本実施の形態においては、前後方向の姿勢制御は行わないので、車体傾斜ピッチ角又はピッチ角速度は、不要なので取得しない。
続いて、主制御ECU21は、残りの状態量を算出するが、ピッチ角速度又は車体傾斜ピッチ角は、不要なので算出しない。
なお、次に行われる操縦者の操縦操作量を取得する動作、及び、車両加速度の目標値を決定する動作については、前記第2の実施の形態と同様であるので、説明を省略する。
続いて、主制御ECU21は、車両加速度の目標値から、駆動輪回転角速度の目標値を算出する。ここで、平均駆動輪回転角速度の目標値を決定する動作については、前記第2の実施の形態と同様であるので、説明を省略する。
また、本実施の形態において、主制御ECU21は、駆動輪回転角速度左右差の目標値を下記の式によって決定する。
このように、本実施の形態においては、操舵角と平均駆動輪回転角速度目標値から左右の駆動輪12の回転角速度の差の目標である駆動輪回転角速度左右差目標値を決定する。
続いて、主制御ECU21は、車体傾斜角の目標値を決定する。なお、本実施の形態においては前後方向の姿勢制御は行わないので、主制御ECU21は、車体傾斜角の目標値を決定する際に、車体傾斜ピッチ角の目標値は算出せずに、車体傾斜ロール角の目標値のみを決定する。車体傾斜ロール角の目標値の決定は、前記第2の実施の形態と同様に行われるので、説明を省略する。
車体傾斜ロール角については、接地荷重中心が2つの駆動輪12の接地点間である安定領域に存在する範囲で、自由に目標姿勢を設定できるが、本実施の形態では乗員15の負荷が最も少ない姿勢を目標値として与える。
なお、走行及び姿勢制御処理におけるこれ以降の動作については、前記第2の実施の形態と同様であるので、その説明を省略する。
また、車両加速度目標値決定処理についても、前記第2の実施の形態と同様であるので、説明を省略する。
本実施の形態においても、入力装置30は操縦者が操作するジョイスティック31を備え、駆動輪12の回転軸に垂直な方向へのジョイスティック31の傾斜量を前後入力量とし、駆動輪12の回転軸に平行な方向へのジョイスティック31の傾斜量を左右入力量として取得し、補正した前後入力量に比例した値を前後走行状態として設定し、補正した左右入力量に比例した値を旋回走行状態として設定し、設定した前後走行状態及び旋回走行状態を前後走行状態及び/又は旋回走行状態の時間履歴に応じて補正し、設定した前後走行状態と旋回走行状態を達成するような駆動トルクを各駆動輪12に付与する。
また、前後走行状態を車両前後加速度とし、旋回走行状態を車両左右加速度とする。そして、車両左右加速度に応じて車体を左右に傾斜させる。
その他の点については、前記第2の実施の形態と同様であるので、説明を省略する。
次に、本発明の第6の実施の形態について説明する。なお、第1~第5の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1~第5の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。
図31は本発明の第6の実施の形態における車両システムの構成を示すブロック図である。
前記第5の実施の形態において、車両加速度目標値の補正は、「平均的な」操縦者を想定した所定のパラメータによって実行される。しかし、人の体の構造や動作特性、感受特性等は各個人で異なるため、操縦者によっては、操縦性が悪く、自身の操縦意図と実際の車両走行動作が一致しないと感じる可能性がある。
そこで、本実施の形態においては、車両加速度の時間履歴に応じて、補正パラメータを修正する。また、外部記憶装置に記憶された補正パラメータの取得及び書換を行う読み書き手段を備え、車両起動時に記憶された補正パラメータを取得し、取得した値を補正パラメータの初期値とし、車両停止時に補正パラメータの最終値を外部記憶装置に記憶させる。これにより、操縦者の技量、経験、癖等に適応した操縦特性を即時に実現することができ、誰でも容易に操縦できる車両10を提供できる。
図31に示されるように、本実施の形態において、入力装置30は、操舵角センサ72、スロットルグリップ73及びブレーキレバー74に加えて、外部記憶装置としてのIDカード34との送受信を行うことによって該IDカード34が記憶するデータの読込及び書込を行う読み書き手段としてのIDカードインターフェイス33を備える。
そして、操縦者である乗員15は、自身を識別するIDカード34を所持する。該IDカード34は、磁気ストライプ、半導体メモリ等のデータ記憶手段を備え、前記乗員15専用の補正パラメータをデータとして記憶する。そして、乗員15が自分の所持するIDカード34をIDカードインターフェイス33と通信可能に接続することによって前記IDカード34の記憶する補正パラメータをIDカードインターフェイス33に読み込ませると、主制御ECU21は、前記補正パラメータをIDカードインターフェイス33から受信し、車両加速度目標値の補正に用いる補正パラメータの初期値として設定する。また、車両システムの制御を終了すると、主制御ECU21は、修正した補正パラメータをIDカードインターフェイス33に送信し、前記IDカード34に記憶させる。
なお、その他の点の構成については、前記第3及び第5の実施の形態と同様であるので、説明を省略する。
また、本実施の形態における車両10の動作についても、前記第3及び第5の実施の形態と同様であるので、説明を省略する。
次に、本発明の第7の実施の形態について説明する。なお、第1~第6の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1~第6の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。
図32は本発明の第7の実施の形態における車両の構成を示す概略図、図33は本発明の第7の実施の形態における車両システムの構成を示すブロック図である。なお、図32において、(a)は操縦装置を左側に取り付けた場合の車両の背面図、(b)は操縦装置を右側に取り付けた場合の車両の背面図である。
前記第5及び第6の実施の形態においては、搭乗部14の側方にジョイスティック31が配設され、それを操縦者である乗員15が片手で操作する場合、利き腕の側とジョイスティック31の配設側とが異なると、操縦が非常に困難である。もっとも、その解決手段として、搭乗部14の左右両側にジョイスティック31を配設することも考えられるが、その場合、安価で軽量で簡素な車両10を実現する妨げとなることがある。
そこで、本実施の形態においては、操縦装置取付部を搭乗部14の左右両側に配設し、操縦装置としてのジョイスティック31をその一方に接続可能な構造とする。これにより、利き腕が左右のどちらであるかに依らず、誰でも快適に操縦でき、操縦性や快適性が高く、かつ、安価な車両10を提供できる。
図33に示されるように、本実施の形態における入力装置30は、取付部スイッチ35を有する。該取付部スイッチ35は、取付側認識装置として機能する。そして、前記ジョイスティック31は、搭乗部14の右脇及び左脇に配設された操縦装置取付部に着脱可能に取り付けられる。
なお、その他の点の構成については、前記第4及び第5の実施の形態と同様であるので、説明を省略する。
また、本実施の形態における車両10の動作についても、前記第4及び第5の実施の形態と同様であるので、説明を省略する。
さらに、本発明の第2~第7の実施の形態においては、従来の技術の問題点を解決する手段として、以下のようなものを示すことができる。
回転可能に車体に取り付けられた左右の駆動輪と、操縦者が操作するジョイスティックを備える操縦装置と、前記駆動輪の各々に付与する駆動トルクを制御して前記車体の姿勢を制御するとともに、前記ジョイスティックの入力量に応じて走行を制御する車両制御装置とを有し、該車両制御装置は、前記駆動輪の回転軸に垂直な方向への前記ジョイスティックの入力量を前後入力量として取得し、前記駆動輪の回転軸に平行な方向への前記ジョイスティックの入力量を左右入力量として取得し、取得した前後入力量に比例した値を前後方向の走行状態を表す量である前後走行状態として設定し、取得した左右入力量に比例した値を旋回走行の状態を表す量である旋回走行状態として設定し、設定した前後走行状態及び旋回走行状態を該設定した前後走行状態及び/又は旋回走行状態の時間履歴に応じて補正し、補正した前後走行状態及び旋回走行状態を達成するような駆動トルクを前記駆動輪の各々に付与する車両。
この構成によれば、人の体の構造、動作特性、感受特性等に適応した操縦特性を実現することができ、誰でも容易かつ気軽に操縦することができる操縦性の高い車両を提供することができる。
他の車両においては、さらに、前記前後走行状態は車両前後加速度であり、前記旋回走行状態は車両左右加速度である。
この構成によれば、ジョイスティックで入力可能な2つの情報を前後及び左右の加速度に対応させることで、他の入力手段を必要とすることなく、操縦者の多様な操縦意図の入力が可能となり、直感的で自由な操縦性を実現することができる。
更に他の車両においては、さらに、前記車両制御装置は、補正した車両前後加速度に応じて前記車体を前後に傾斜させ、補正した車両左右加速度に応じて前記車体を左右に傾斜させる。
この構成によれば、操縦操作に応じて車体を傾斜させることで、超小型車両で特に重要な車両との一体感を与え、操縦感を向上させることができる。
更に他の車両においては、さらに、前記車両制御装置は、前記設定した前後走行状態に所定の第一時定数を有するローパスフィルタをかけ、前記設定した旋回走行状態に前記第一時定数よりも大きい第二時定数を有するローパスフィルタをかける。
この構成によれば、超小型車両の特徴である前後走行と旋回走行の制御の応答速度の違いに対する操縦者の違和感を軽減し、快適で容易に操縦できる車両を提供できる。
更に他の車両においては、さらに、前記車体の前後方向の姿勢制御における遅れ時間を前記第二時定数とする。
この構成によれば、倒立型車両の特徴である前後走行と姿勢制御の両立に伴う前後走行と旋回走行の応答速度の違いに対する操縦者の違和感を軽減し、快適で容易に操縦できる車両を提供できる。
更に他の車両においては、さらに、前記車両制御装置は、前記設定した前後走行状態に所定の座標軸回転角正弦値を乗じた値を前記設定した旋回走行状態に加える。
更に他の車両においては、さらに、前記車両制御装置は、前記設定した前後走行状態が車両の前方に向かう値である場合には前記操縦装置の位置から前記車体の内側に向かう方向の値を前記設定した旋回走行状態に加え、前記設定した前後走行状態が車両の後方に向かう値である場合には前記操縦装置の位置から前記車体の外側に向かう方向の値を前記設定した旋回走行状態に加える。
これらの構成によれば、操縦者が斜め前方に配置されたジョイスティックを操作する際の癖としての入力特性に対して、車両側の受信特性を適合させることで、操縦者は違和感なく快適に操縦することができる。
更に他の車両においては、さらに、前記車両制御装置は、前記設定した前後走行状態の絶対値が所定の前後不感帯閾値よりも小さい場合には前記設定した前後走行状態を零とし、前記設定した旋回走行状態の絶対値が所定の左右不感帯閾値よりも小さい場合には前記設定した旋回走行状態を零とする。
この構成によれば、ジョイスティックの操作量に対応する電気信号のノイズ若しくはオフセット、又は、外乱によるジョイスティックの微小入力等によって、車両停止時に微小な駆動トルクが付加され、車両が微小に動作することを確実に防止できる。
更に他の車両においては、さらに、前記左右不感帯閾値は前記前後不感帯閾値よりも大きい。
この構成によれば、直進操作時の不本意な左右方向入力を無視することができ、車両の直進走行性を保障することができる。
更に他の車両においては、さらに、前記左右不感帯閾値は車両速度が上昇すると増加する。
この構成によれば、高速走行時により重要となる直進性を、操縦者の技量に依らず、確実に保障することができる。
更に他の車両においては、さらに、前記設定した前後走行状態が車両の進行方向に対して逆方向であるときに、前記設定した前後走行状態の絶対値が増加すると前記左右不感帯閾値が増加する。
この構成によれば、緊急ブレーキ時など、操縦操作の微妙な調整が困難な急制動の指令時において、不本意に車両が左右に旋回することを防ぐことで、より高い操縦性や安全性を実現できる。
更に他の車両においては、さらに、前記車両制御装置は、前記設定した前後走行状態の値に所定の前後入力指数を乗じた値に比例した値を前記補正した前後走行状態とし、前記設定した旋回走行状態の値に所定の左右入力指数を乗じた値に比例した値を前記補正した旋回走行状態とする。
この構成によれば、人が有する操作量の非線形な感受特性に対して、車両側の感受特性を適合させることで、操縦者は違和感なく快適に操縦することができる。
更に他の車両においては、さらに、前記操縦装置の位置から前記車体の内側に向かう方向の前記設定した旋回走行状態に用いる前記左右入力指数は、前記操縦装置の位置から前記車体の外側に向かう方向の前記設定した旋回走行状態に用いる前記左右入力指数よりも大きい。
更に他の車両においては、さらに、前記車両制御装置は、前記操縦装置の位置から前記車体の外側に向かう方向の前記設定した旋回走行状態に1以上の所定の値である非対称係数を乗ずる。
これらの構成によれば、人の体の非対称な構造及び操作量の非対称な感受特性による左右の違いに対して、車両の感受特性を適合させることで、操縦者はより容易かつ快適に操縦することができる。
更に他の車両においては、さらに、前記車両制御装置は、前記設定した前後走行状態及び/又は旋回走行状態の時間履歴に応じて、前記設定した前後走行状態及び旋回走行状態を補正する際のパラメータである補正パラメータを修正する。
この構成によれば、操縦者の技量、経験、癖などに対して、車両側の感受特性をある程度適合させることで、誰でも容易かつ快適に操縦可能な車両を提供できる。
更に他の車両においては、さらに、前記補正パラメータは、前記座標軸回転角正弦値、前記左右不感帯閾値、前記左右入力指数、前記非対称係数のうちの少なくとも1つ以上である。
この構成によれば、特徴的なパラメータを対象とすることで、操縦特性の個人差が現れやすい特性を適切に補償することができる。
更に他の車両においては、さらに、前記車両制御装置は、前記設定した前後走行状態と前記設定した旋回走行状態との比の平均に応じて前記補正パラメータを修正する。
この構成によれば、操作量の時間履歴における特徴的な要素を適切に抽出することで、各個人の操縦特性を簡易に推定し、補償することができる。
更に他の車両においては、さらに、前記車両制御装置は、最小2乗法によって前記比の平均を取得する。
この構成によれば、より簡易な演算方法で各個人の操縦特性を推定できる。
更に他の車両においては、さらに、前記車両制御装置は、前記比の平均を前記座標軸回転角正弦値とする。
この構成によれば、操縦者が斜め前方に配置されたジョイスティックを操作する際の癖としての入力特性の個人差を補償することができ、誰でも違和感なく快適に操縦することができる。
更に他の車両においては、さらに、前記車両制御装置は、前記設定した前後走行状態に前記比の平均を乗じた値である基準旋回走行状態に対する前記設定した旋回走行状態の偏差の2乗の平均である分散値に応じて、前記左右不感帯閾値を修正する。
この構成によれば、操縦者の技量に応じて、旋回走行の応答性を犠牲にすることなく、車両の直進走行性を適度に保障することができる。
更に他の車両においては、さらに、前記車両制御装置は、前記基準旋回走行状態以上の前記設定した旋回走行状態に関する前記分散値と、前記基準旋回走行状態以下の前記設定した旋回走行状態に関する前記分散値との差に応じて、前記左右入力指数及び/又は前記非対称係数を修正する。
この構成によれば、人の体の非対称な構造及び操作量の非対称な感受特性に関する個人差に車両の感受特性を適合させることで、誰でも容易かつ快適に操縦することができる。
更に他の車両においては、さらに、前記車両制御装置は、前記取得した前後走行状態及び旋回走行状態の絶対値及び/又は該絶対値の時間変化率が、所定の閾値より小さい前記取得した前後走行状態及び旋回走行状態を前記時間履歴から除外する。
更に他の車両においては、さらに、前記車両制御装置は、前記取得した前後走行状態及び旋回走行状態の絶対値と該絶対値の時間変化率との積が所定の閾値より小さい前記取得した前後走行状態及び旋回走行状態を前記時間履歴から除外する。
これらの構成によれば、操作量の時間履歴データから特徴的な部分を抽出することで、より適切に素早く個人差に適応させることができる。
更に他の車両においては、さらに、外部記憶装置に記憶された補正パラメータの読込及び書込を行う読み書き手段を更に備え、前記車両制御装置は、車両起動時に前記読み書き手段から前記外部記憶装置に記憶された補正パラメータを取得して初期値とし、車両停止時に修正された補正パラメータの最終値を前記読み書き手段から前記外部記憶装置に記憶させる。
この構成によれば、過去のデータを活用することで、2度目の使用時から補正パラメータの適合に要する時間を省略し、走行開始直後から操縦者に適合した特性によって操縦性や快適性を即時に保障することができる。また、1台の車両を複数の人が利用する使用環境においても、各利用者が自身所有の外部記憶手段を用いることで、簡単かつ瞬間的に各操縦者の特性に適合させることができ、快適性や利便性のより高い車両を実現できる。
更に他の車両においては、さらに、前記操縦者が搭乗する搭乗部の左右両側に配設された操縦装置取付部を更に備え、前記操縦装置は、左右いずれの操縦装置取付部にも取付可能である。
更に他の車両においては、さらに、前記操縦装置は、左右いずれの操縦装置取付部に取り付けられたかを認識する取付側認識装置を備え、前記車両制御装置は、前記取付側認識装置から受信した信号に応じて、前記設定した前後走行状態及び/又は旋回走行状態を補正する。
これらの構成によれば、右利きの人でも左利きの人でも、容易かつ快適に操縦することができる。
次に、本発明の第8及び第9の実施の形態について説明する。
「背景技術」の項で説明したような従来の車両の場合、運転者が操縦装置によって旋回の走行目標を指令するようになっているが、操縦装置が複雑で直感的な操作ができず、走行目標を容易に設定することが困難である。
そもそも、運転者が操縦装置によって旋回の走行目標を指令する車両においては、技術や経験を必要とせず、直感的で簡易な操縦を可能とするような操縦装置の操作量と旋回走行指令値の関係が適切に設定されることが望ましい。そして、運転者の簡易で直感的な操縦を可能とするため、及び、車両のシステムを簡素化するためには、操縦装置はその数が少なく、かつ簡素であることが望ましい。
しかし、1つの操縦装置の操作量を1つの走行状態量の目標値と対応させるような従来の方法では、以下のような問題が発生する可能性がある。
例えば、操縦装置の操作量を車両の「ヨーレート」に対応させた場合、運転者が所定の操作量に対する応答としての旋回走行状態について、低速走行時における旋回走行状態の程度を適切に感じる一方で、高速走行時における旋回走行状態の程度を過剰に大きいと感じることがある。また、レバーのように、特定方向に並進移動させることで入力する操縦装置を用いる場合、同方向に入力しても、前進時と後進時で逆方向に旋回すると運転者が感じることがある。
また、例えば、操縦装置の操作量を車両の「左右加速度」に対応させた場合、運転者が、所定の操作量に対する応答としての旋回走行状態について、高速走行時における旋回走行状態の程度を適切に感じる一方で、低速走行時における旋回走行状態の程度を過剰に大きいと感じることがある。また、ハンドルのように、特定方向に回転させることで入力する操縦装置を用いる場合、同方向に入力しても、前進時と後進時で逆方向に旋回すると運転者が感じることがある。
すなわち、いずれの場合も操縦性や操縦感に課題があり、運転者の要求を十分に満足することはできない。
なお、走行速度による旋回走行状態の感じ方の違いに関する第1の課題は、人間が旋回状態を視覚(周囲の景色の変化)と力覚(遠心力の変化)で感受し、より強く感じる方を旋回状態と認識することに起因する。また、進行方向による旋回方向の違和感に関する第2の課題は、前進時と後進時で、並進方向(左右加速度)を等しくする旋回動作と回転方向(ヨーレート)を等しくする旋回動作が異なることに起因する。
本発明の第8及び第9の実施の形態は、前記従来の車両の問題点を解決して、入力手段の入力量に応じてヨーレート及び左右加速度を決定し、車両速度に応じてヨーレート又は左右加速度の少なくとも一方を補正し、補正したヨーレート及び/又は左右加速度で旋回することによって、操縦者の入力量に応じて、適切な旋回走行状態を実現することができ、簡素な操縦装置で、容易かつ直感的に操縦可能な車両を提供することを目的とする。
まず、第8の実施の形態について説明する。なお、第1~第7の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1~第7の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。
図34は本発明の第8の実施の形態における車両の構成を示す概略図である。なお、図において、(a)は車両の正面図、(b)は車両の側面図、(c)はジョイスティックの側面図、(d)はジョイスティックの上面図である。
本実施の形態におけるジョイスティック31は、図34(c)及び(d)に示されるように、基部31a、該基部31aに傾動可能に取り付けられ、前後及び左右に傾斜させることで入力する手段である第1入力手段としてのレバー31b、及び、該レバー31bの基準軸周りに所定の角度範囲内で自由に回転させることができ、回転させることで入力する手段である第2入力手段としての回転部31cを備える。
そして、操縦者としての乗員15は、レバー31bを、図34(c)及び(d)において矢印で示されるように、前後及び左右に傾斜させることで走行指令を入力する。すると、ジョイスティック31は、レバー31bの前後(x軸方向)及び左右(y軸方向)の傾斜量に相当する状態量を計測し、その計測値を操縦者の入力した前後操作量及び左右操作量として、主制御ECU21に送信する。
なお、本実施の形態における以降の説明は、搭乗部14の座面が水平であるときに、駆動輪12の回転軸に垂直な方向にx軸、平行な方向にy軸、鉛直上向きにz軸を採る座標系に基づくものとする。
また、乗員15は、回転部31cを、図34(c)及び(d)において矢印で示されるように、レバー31bの基準軸周りに回転させることで走行指令を入力する。すると、ジョイスティック31は、回転部31cの回転角(レバー31bの基準軸周り)に相当する状態量を計測し、その計測値を操縦者の入力した回転操作量として、主制御ECU21に送信する。
このように、ジョイスティック31が備える2つの入力手段を活用することにより、操縦装置を追加することなく、操縦者の多様な操縦意図の入力を可能とし、より直感的に自由に操ることができる車両10を実現できる。
なお、前記レバー31bは、基部31aに対して傾動可能なものでなく、並進可能なものであってもよい。すなわち、前後に傾斜させず、前後に移動させることで走行指令を入力するものであってもよい。また、図34(c)及び(d)に示される例において、回転部31cは、レバー31bの上端にレバー31bに対して回転可能に取り付けられているが、レバー31b全体の周囲を覆うようにレバー31bに対して回転可能に取り付けられていてもよいし、レバー31bと別個に基部31aに回転可能に取り付けられていてもよいし、レバー31b自体が基準軸周りに回転することによって回転部31cとして機能してもよい。さらに、車両10がリモートコントロールによって操縦される場合には、前記ジョイスティック31が図示されないリモートコントローラに配設され、レバー31b及び回転部31cの操作量は、リモートコントローラから、有線又は無線によって車両10に配設される受信装置に送信される。この場合、ジョイスティック31の操縦者は乗員15以外の者である。
また、レバー31b及び回転部31cは、それぞれ、図示されない中立状態復帰用のばね部材によって付勢され、操縦者が手を放して解放すると、自動的に零入力に相当する中立状態に復帰する。これにより、操縦者の不測の事態等により、操縦操作の継続が不可能になった場合でも、車両10の適切な制御が可能となる。
なお、主制御ECU21、駆動輪制御ECU22及びリンク制御ECU25を含む車両システムの構成については、前記第2の実施の形態と同様であるので、その説明を省略する。
主制御ECU21は、操作量を最大操作量で正規化した入力率を入力量として扱う。レバー31bの前後入力量については、レバー31bの前方への傾斜又は移動、すなわち、前方への入力を正の値で表し、レバー31bの後方への傾斜又は移動、すなわち、後方への入力を負の値で表す。そして、前方への最大入力量を1、後方への最大入力量を-1として表す。
また、レバー31bの左右入力量については、車両10の後方から見て、レバー31bの左方への傾斜又は移動、すなわち、左方への入力を正の値で表し、レバー31bの右方への傾斜又は移動、すなわち、右方への入力を負の値で表す。そして、左方への最大入力量を1、右方への最大入力量を-1として表す。
さらに、回転部31cの回転入力量については、車両10の上方から見て、回転部31cの反時計回り方向への回転、すなわち、反時計回り方向への入力を正の値で表し、回転部31cの時計回り方向への回転、すなわち、時計回り方向への入力を負の値で表す。そして、反時計回り方向への最大入力量を1、時計回り方向への最大入力量を-1として表す。
なお、本実施の形態においては、操縦者の直感的な操縦を簡易な装置で実現するために、回転部31cを備えるジョイスティック31を用いているが、他の操縦装置を用いてもよい。例えば、アクセルペダル、ブレーキペダル、ハンドル等を備え、各々の操作量を操縦者の操縦意図として、前後加減速や旋回の程度を決定してもよい。
そして、車両システムは、レバー31bの入力量に応じてヨーレート及び左右加速度を決定し、車両速度に応じてヨーレート及び左右加速度の少なくとも一方を補正し、補正したヨーレート及び左右加速度で旋回する。
次に、本実施の形態における車両10の他の例について説明する。
図35は本発明の第8の実施の形態における車両の他の例の構成を示す概略図、図36は本発明の第8の実施の形態における車両システムの他の例の構成を示すブロック図である。なお、図35において、(a)は背面図、(b)は側面図、(c)は車体を傾斜させた状態の背面図である。
本実施の形態における車両10は、3輪以上の車輪を有するものであってもよい。つまり、前記車両10は、例えば、前輪が1輪であり後輪が2輪である3輪車、前輪が2輪であり後輪が1輪である3輪車、前輪及び後輪が2輪である4輪車等であるが、3輪以上の車輪を有するものであれば、いかなる種類のものであってもよい。
ここでは、説明の都合上、図35に示されるように、前記車両10が、車体の前方に配設され、操舵輪として機能する1つの前輪である車輪12Fと、車体の後方に配設され、駆動輪12として機能する左右2つの後輪である車輪12L及び12Rとを有する3輪車である例についてのみ説明する。
図35に示される例の車両10は、図35(c)に示されるように、リンク機構60によって左右の車輪12L及び12Rのキャンバー角を変化させるとともに、搭乗部14及び本体部11を含む車体を旋回内輪側へ傾斜させることによって、つまり、車体を横方向(左右方向)に傾斜させることによって、旋回性能の向上と乗員15の快適性の確保とを図ることができるようになっている。前記リンク機構60については、図34に示される例の車両10と同様の構成を備えるものなので、その説明を省略する。なお、倒立振り子の姿勢制御のような姿勢制御は行わないものとする。すなわち、前後方向の姿勢制御は行わないものとする。
また、図35に示される例の車両10において、車輪12Fは、サスペンション装置の一部である前輪フォーク17を介して本体部11に接続されている。そして、一般的なオートバイ、自転車等の場合と同様に、操舵輪としての車輪12Fは舵角を変化させ、これにより、車両10の進行方向が変化する。
具体的には、図35に示されるように、本体部11の前端上方に操舵部77が配設され、該操舵部77によって前輪フォーク17の回転軸が回転可能に支持されている。また、前記操舵部77は、操舵用アクチュエータとしてのステアリングアクチュエータ71と、操舵量検出器としての操舵角センサ72とを備える。前記ステアリングアクチュエータ71は、ジョイスティック31から走行指令に応じて前記前輪フォーク17の回転軸を回転させ、操舵輪としての車輪12Fは舵角を変化させる。つまり、車両10の操舵は、いわゆるバイワイヤによって行われる。また、操舵角センサ72は、前記前輪フォーク17の回転軸の角度変化を検出することによって車輪12Fの舵角、すなわち、操舵装置の操舵量を検出することができる。
なお、図35に示される例の車両10は、図36に示されるような車両システムを有する。ここで、制御ECU20は、操舵制御ECU24を更に有する。そして、主制御ECU21は、ジョイスティック31から走行指令に応じて操舵指令値を操舵制御ECU24に送信し、該操舵制御ECU24は、受信した操舵指令値に相当する入力電圧をステアリングアクチュエータ71に供給する。そして、操舵角センサ72の検出した舵角は、主制御ECU21に送信される。
また、車体制御システム40は、横加速度センサ42を備える。該横加速度センサ42は、一般的な加速度センサ、ジャイロセンサ等から成るセンサであって、車両10の横加速度を検出する。
なお、図35に示される例の車両10におけるその他の点の構成については、図34に示される例の車両10と同様であるので、その説明を省略する。
次に、本実施の形態における車両10の動作について詳細に説明する。まず、走行及び姿勢制御処理について説明する。
図37は本発明の第8の実施の形態における走行及び姿勢制御処理の動作を示すフローチャートである。
なお、本実施の形態において、Ψは車体ヨー角〔rad〕であり、αは車両加速度〔m/s2 〕である。
走行及び姿勢制御処理において、主制御ECU21は、まず、センサから各状態量を取得する(ステップS41)。具体的には、駆動輪センサ51から左右の駆動輪回転角又は回転角速度を取得し、車体傾斜センサ41から車体傾斜ピッチ角又はピッチ角速度及び車体傾斜ロール角又はロール角速度を取得する。
なお、図35に示される例の車両10においては、車体の前後方向の姿勢制御を行わないので、車体傾斜ピッチ角又はピッチ角速度の取得は不要である。
続いて、主制御ECU21は、残りの状態量を算出する(ステップS42)。この場合、取得した状態量を時間微分又は時間積分することによって、残りの状態量を算出する。例えば、取得した状態量が駆動輪回転角、車体傾斜ピッチ角及び車体傾斜ロール角である場合には、これらを時間微分することによって、回転角速度、ピッチ角速度及びロール角速度を得ることができる。また、例えば、取得した状態量が回転角速度、ピッチ角速度及びロール角速度である場合には、これらを時間積分することによって、駆動輪回転角、車体傾斜ピッチ角及び車体傾斜ロール角を得ることができる。
続いて、主制御ECU21は、操縦者の操縦操作量を取得する(ステップS43)。この場合、操縦者が、車両10の加速、減速、旋回、その場回転、停止、制動等の走行指令を入力するために操作したジョイスティック31の操作量を取得する。
続いて、主制御ECU21は、走行状態目標値決定処理を実行し(ステップS44)、取得したジョイスティック31の操作量等に基づいて、車両10の走行状態目標値、例えば、車両速度、前後加速度、左右加速度、ヨーレート(ヨー角速度)等の目標値を決定する。
続いて、主制御ECU21は、走行状態目標値から、駆動輪回転角速度の目標値を算出する(ステップS45)。具体的には、下記の式によって平均駆動輪回転角速度の目標値を決定する。
なお、本実施の形態における説明において、上付き添字*は目標値であることを表し、記号上の1ドットは1階時間微分した値、すなわち、速度であることを表し、記号上の2ドットは2階時間微分した値、すなわち、加速度であることを表すものとする。
また、下記の式によって駆動輪回転角速度左右差の目標値を決定する。
このように、走行状態目標値に相当する駆動輪回転角速度の目標値を決定する。つまり、車両速度の目標値から、平均駆動輪回転角速度の目標値を決定し、ヨーレートの目標値から、駆動輪回転角速度左右差の目標値を決定する。
なお、本実施の形態においては、駆動輪接地点と路面との間に滑りが存在しないという仮定の下で、車両速度やヨーレートを駆動輪12の回転角速度に換算しているが、滑りを考慮して駆動輪回転角速度の目標値を決定してもよい。また、車両速度やヨーレート自体をフィードバックして制御してもよい。
続いて、主制御ECU21は、車体傾斜角の目標値を決定する(ステップS46)。具体的には、車両加速度の目標値と車体パラメータとから、下記の式によって車体傾斜ピッチ角の目標値を決定する。
なお、図35に示される例の車両10においては、前後方向の姿勢制御を行わないので、車体傾斜ピッチ角の目標値を決定する必要はない。そして、下記の式によって車体傾斜ロール角の目標値を決定する。
なお、本実施の形態における説明において、下付き添字Xは前後(x軸方向)であることを表し、下付き添字Yは左右(y軸方向)であることを表すものとする。
このように、車両加速度の目標値に応じて車体傾斜角の目標値を決定する。つまり、車体傾斜ピッチ角については、前後の車体姿勢と走行状態に関する倒立振り子の力学的構造を考慮して、前後加速度で与えられる走行目標を達成できる車体姿勢を目標値として与える。また、車体傾斜ロール角については、接地荷重中心が2つの駆動輪12の接地点間である安定領域に存在する範囲で、自由に目標姿勢を設定できるが、本実施の形態では乗員15の負荷が最も少ない姿勢を目標値として与える。
なお、車体傾斜ロール角の目標値として他の値を与えてもよい。例えば、目標左右加速度の絶対値が所定の閾値よりも小さい場合には目標車体傾斜ロール角を零として、小さな左右加速度に対しては直立姿勢を維持させてもよい。
続いて、主制御ECU21は、残りの目標値を算出する(ステップS47)。すなわち、各目標値を時間微分又は時間積分することによって、駆動輪回転角及び車体傾斜角速度の目標値をそれぞれ算出する。
続いて、主制御ECU21は、各アクチュエータのフィードフォワード出力を決定する(ステップS48)。具体的には、下記の式によって、フィードフォワード出力として、総駆動トルクのフィードフォワード量τW,FF、駆動トルク左右差のフィードフォワード量ΔτW,FF及びリンクトルクのフィードフォワード量τL,FFを決定する。
このように、目標とする走行状態や車体姿勢を実現するのに必要なアクチュエータ出力を力学モデルより予測し、その分をフィードフォワード的に付加することで、車両10の走行及び姿勢制御を高精度に実行する。つまり、前後方向の走行目標を達成できるように、車両前後加減速目標値に応じた駆動トルクを付加する。また、左右方向の車体姿勢目標を達成できるように、車体傾斜ロール角目標値に応じた駆動トルクを付加する。なお、車体に作用する遠心力(左右加速度)の影響を考慮する。
続いて、主制御ECU21は、各アクチュエータのフィードバック出力を決定する(ステップS49)。具体的には、下記の式によって、フィードバック出力として、総駆動トルクのフィードバック量τW,FB、駆動トルク左右差のフィードバック量ΔτW,FB及びリンクトルクのフィードバック量τL,FBを決定する。
このように、状態フィードバック制御により、実際の状態を目標とする状態に近付けるようにフィードバック出力を与える。なお、各フィードバックゲインK**の値は、例えば、最適レギュレータの値を予め設定しておく。また、スライディングモード制御等の非線形のフィードバック制御を導入してもよい。さらに、より簡単な制御として、KW2、KW3、Kd2及びKL1を除くゲインのいくつかを零にしてもよい。さらに、定常偏差をなくすために、積分ゲインを導入してもよい。なお、図35に示される例の車両10においては、前後方向の姿勢制御を行わないので、総駆動トルクのフィードバック量τW,FBの項、及び、駆動トルク左右差のフィードバック量ΔτW,FBの項は不要である。すなわち、リンクトルクのフィードバック量τL,FBのみを決定する。
最後に、主制御ECU21は、各要素制御システムに指令値を与えて(ステップS50)、走行及び姿勢制御処理を終了する。具体的には、主制御ECU21は、駆動輪制御ECU22及びリンク制御ECU25に、下記の式によって決定される指令値として、右駆動トルク指令値τWR、左駆動トルク指令値τWL、総駆動トルク指令値τW 、駆動トルク左右差指令値ΔτW 及びリンクトルク指令値τL を与える。
このように、フィードフォワード出力とフィードバック出力の和を指令値として与える。また、平均駆動トルクと駆動トルク左右差が要求する値になるように、右駆動トルクと左駆動トルクの指令値を与える。なお、図35に示される例の車両10においては、前後方向の姿勢制御を行わないので、総駆動トルクのフィードバック量τW,FBの項、及び、駆動トルク左右差のフィードバック量ΔτW,FBの項は不要であり、削除される。
また、走行及び姿勢制御処理は、所定の時間間隔(例えば、100〔μs〕毎)で繰り返し実行される。
次に、走行状態目標値決定処理について説明する。
図38は本発明の第8の実施の形態における第1旋回走行目標値と車両速度の目標値との関係を示す図、図39は本発明の第8の実施の形態における第2旋回走行目標値と車両速度の目標値との関係を示す図、図40は本発明の第8の実施の形態における前後加速度目標値補正量と車両速度の目標値との関係を示す図、図41は本発明の第8の実施の形態における走行状態目標値決定処理の動作を示すフローチャートである。なお、図38において、(a)は第1左右加速度目標値と車両速度の目標値との関係を示し、(b)は第1ヨーレート目標値と車両速度の目標値との関係を示し、図39において、(a)は第2左右加速度目標値と車両速度の目標値との関係を示し、(b)は第2ヨーレート目標値と車両速度の目標値との関係を示す。
走行状態目標値決定処理において、主制御ECU21は、まず、車両速度目標値を決定する(ステップS44-1)。具体的には、車両加速度の目標値を時間積分して車両速度の目標値V* を決定する。この場合、車両加速度の目標値には、1つ前の制御ステップにおいて決定された値を用いる。
続いて、主制御ECU21は、第1旋回走行目標値を決定する(ステップS44-2)。具体的には、操縦装置であるジョイスティック31の左右操作量、すなわち、第1入力手段であるレバー31bの左右入力量と車両速度の目標値とから、下記の式によって第1左右加速度目標値を決定する。
そして、第1左右加速度目標値と車両速度の目標値との関係は、図38(a)に示されるようになる。なお、図38(a)のグラフは、レバー31bの左右入力量が正の値である場合を表しており、レバー31bの左右入力量が負の値である場合には、図38(a)のグラフを横軸(V* 軸)に対して対称移動させたグラフになる。
また、レバー31bの左右入力量と車両速度の目標値とから、下記の式によって第1ヨーレート目標値を決定する。
そして、第1ヨーレート目標値と車両速度の目標値との関係は、図38(b)に示されるようになる。なお、図38(b)のグラフは、図38(a)のグラフと同様に、レバー31bの左右入力量が正の値である場合を表しており、レバー31bの左右入力量が負の値である場合には、図38(b)のグラフを横軸に対して対称移動させたグラフになる。また、図38(a)及び(b)のグラフは、所定の入力量を与えた場合を示している。
このように、本実施の形態においては、操縦装置の左右入力量と車両速度の目標値によって、旋回走行の目標値を決定する。この場合、車両速度の目標値に応じて、操縦装置の左右入力率を左右加速度又はヨーレートのいずれか一方に対応させる。
具体的には、車両速度の目標値が所定の閾値(図38に示される例において、第2速度閾値)以上である場合、操縦装置の左右入力率に比例した値を左右加速度の目標値とし、車両速度と左右加速度の目標値に相当するヨーレートの値をその目標値とする。また、車両速度の目標値が前記閾値未満である場合、操縦装置の左右入力率に比例した値をヨーレートの目標値とし、車両速度とヨーレートの目標値に相当する左右加速度の値をその目標値とする。このように、高速走行時には左右加速度を、低速走行時にはヨーレートを、それぞれ、旋回走行状態の程度として認識する傾向が強い人間の特性に適した方を用いることで、操縦性や操縦感を向上させる。
また、操縦装置の左右入力率に応じて決定された左右加速度とヨーレートの目標値を各々の基準値として、左右加速度の基準値と、ヨーレートの基準値を車両速度の目標値によって左右加速度に換算した値とを比較して、より小さい方を左右加速度の目標値とし、ヨーレートの基準値と、左右加速度の基準値を車両速度の目標値によってヨーレートに換算した値とを比較して、より小さい方をヨーレートの目標値とする。このように、左右加速度を基準とする操縦特性とヨーレートを基準とする操縦特性との間の切替を適切かつ滑らかに行うことで、操縦性や快適性をより向上させることができる。
さらに、本実施の形態において、操縦装置であるジョイスティック31は、第1入力手段としてのレバー31bを備え、該レバー31bの左右入力方向と左右加速度の方向が一致するように目標値を決定する。そして、同じレバー31bの入力方向に対して、車両10の前進時と後進時とで、目標とするヨーレートの正負を反転させる。このように、レバー31bの並進方向を車両10の並進方向と対応させることで、より直感的な操縦を可能とする。
さらに、車両速度の目標値が所定の閾値(図38に示される例において、第1速度閾値)未満である場合、車両速度に応じて旋回走行目標値を制限する。なお、車両速度の目標値が零であるときに旋回走行目標値が共に零になるように、車両速度に応じて制限する。これにより、前後進行方向を連続的に切り替えることが可能な車両10において、進行方向の切替時における車両10の回転方向及びヨーレートの急激な変化を防ぎ、操縦を容易にするのとともに、車両速度に不相応な車両回転速度が発生することによる操縦者の違和感や車両10周辺の他者に与える違和感や誤認識を防ぎ、より安全で快適に使用できる車両10を実現する。
なお、本実施の形態においては、操縦装置の入力量を左右加速度又はヨーレートのいずれかに対応させるかを決定する第2速度閾値を左右加速度目標値とヨーレート目標値の最大値に基づいて設定しているが、第2速度閾値の設定値に応じて、他の最大値を設定してもよい。例えば、人間の感受特性に適切な閾値を第2速度閾値とし、また、車体姿勢の安定限界に応じて左右加速度目標値の最大値を決定し、決定した両値からヨーレート目標値の最大値を設定してもよい。これにより、更に操縦性や操縦感のよい車両10を実現できる。
続いて、主制御ECU21は、第2旋回走行目標値を決定する(ステップS44-3)。具体的には、操縦装置であるジョイスティック31の回転操作量、すなわち、第2入力手段である回転部31cの回転入力量と車両速度の目標値とから、下記の式によって第2左右加速度目標値を決定する。
そして、第2左右加速度目標値と車両速度の目標値との関係は、図39(a)に示されるようになる。なお、図39(a)のグラフは、回転部31cの回転入力量が正の値である場合を表しており、回転部31cの回転入力量が負の値である場合には、図39(a)のグラフを横軸(V* 軸)に対して対称移動させたグラフになる。
また、回転部31cの回転入力量と車両速度の目標値とから、下記の式によって第2ヨーレート目標値を決定する。
そして、第2ヨーレート目標値と車両速度の目標値との関係は、図39(b)に示されるようになる。なお、図39(b)のグラフは、図39(a)のグラフと同様に、回転部31cの回転入力量が正の値である場合を表しており、回転部31cの回転入力量が負の値である場合には、図39(b)のグラフを横軸に対して対称移動させたグラフになる。また、図39(a)及び(b)のグラフは、所定の入力量を与えた場合を示している。
このように、本実施の形態においては、操縦装置の回転入力量と車両速度の目標値によって、旋回走行の目標値を決定する。そして、車両速度の目標値が所定の閾値(図39に示される例において、第3速度閾値)未満である場合、操縦装置の回転入力率をヨーレートに対応させる。
つまり、第1入力手段であるレバー31bによる旋回走行指令に対して、低速走行時のヨーレート目標値を制限する一方で、第2入力手段である回転部31cによる旋回走行指令に対して、低速走行時のヨーレート目標値を許可する。このように、旋回走行の意図を指令する第1入力手段とは別に、車体方向転換の意図を指令する第2入力手段を具備することで、車体方向転換を指令する操縦者の操縦方法及び制御に必要な意図の識別を容易にし、操縦自由度や操縦性の高い車両10を実現する。
また、回転入力率に比例した値をヨーレートの目標値とし、車両速度とヨーレートの目標値に相当する左右加速度の値をその目標値とする。これにより、車体方向の転換速度を定量的に指令することを可能とし、より操縦性の高い車両10を実現する。
さらに、本実施の形態においては、第2入力手段としての回転部31cを備え、該回転部31cの回転入力方向とヨーレートの方向が一致するように目標値を決定する。そして、同じ回転部31cの入力方向に対して、車両10の前進時と後進時とで、目標とする左右加速度の正負を反転させる。このように、第1入力手段による旋回指令時の課題である、車両10の前後進行方向の切替時に車両10の回転方向及びヨーレートが急激に変化する現象を回避すると共に、回転部31cの回転方向を車両10の回転方向と対応させることで、より直感的な操縦を可能とする。
さらに、車両速度の目標値が前記閾値以上である場合、車両速度に応じて旋回走行目標値を制限する。この場合、車両速度の目標値が所定の閾値(図39に示される例において、第4速度閾値)以上のときに旋回走行目標値が共に零になるように、車両速度に応じて制限する。これにより、操縦者が旋回走行の指令時と車体方向転換の指令時で適切な入力手段を選択することを促し、操縦意図の識別を容易にするのと共に、第2入力手段からの旋回走行指令入力と車両10の制動指令入力を同時に操作できない操縦装置を用いる場合において、高速走行時からの緊急の車両制動指令が遅れるような操縦方法である第2入力手段による旋回走行指令入力を禁止し、より安全で快適に使用できる車両10を実現する。
続いて、主制御ECU21は、旋回走行目標値を決定する(ステップS44-4)。具体的には、第1旋回走行目標値と第2旋回走行目標値とから決定する。まず、操縦装置の左右入力量に応じて決定される第1左右加速度目標値と操縦装置の回転入力量に応じて決定される第2左右加速度目標値とから、下記の式によって左右加速度目標値を決定する。
また、操縦装置の左右入力量に応じて決定される第1ヨーレート目標値と操縦装置の回転入力量に応じて決定される第2ヨーレート目標値とから、下記の式によってヨーレート目標値を決定する。
このように、本実施の形態においては、操縦装置の入力量に応じて決定された旋回走行目標値に基づいて、実際の制御での目標値を決定する。具体的には、第1入力手段であるレバー31bの左右入力量及び車両速度目標値によって決定された第1左右加速度目標値と、第2入力手段である回転部31cの回転入力量及び車両速度目標値によって決定された第2左右加速度目標値との和を左右加速度目標値とする。また、第1入力手段であるレバー31bの左右入力量及び車両速度目標値によって決定された第1ヨーレート目標値と、第2入力手段である回転部31cの回転入力量及び車両速度目標値によって決定された第2ヨーレート目標値との和をヨーレート目標値とする。このように、レバー31bと回転部31cの操作入力による操縦者の操縦意図を総合的に把握し、それに適合した旋回走行目標値を設定することで、操縦性及び操縦自由度の高い車両10を実現できる。
なお、本実施の形態においては、左右加速度及びヨーレートの目標値を設定しているが、いずれか一方のみの目標値を旋回走行目標値として設定してもよい。例えば、ヨーレートの目標値のみを旋回目標として決定してもよい。また、左右加速度が必要な場合にはヨーレートの目標値と車両速度の目標値から左右加速度を求めてもよい。さらに、旋回半径、曲率等の他の状態量によって旋回走行目標値を設定してもよい。これらの状態量は、上記の左右加速度やヨーレートから所定の関係式によって容易に決定される。
最後に、主制御ECU21は、前後走行の目標値を決定して(ステップS44-5)、走行状態目標値決定処理を終了する。具体的には、操縦装置の前後入力量と回転入力量とから、下記の式によって前後加速度目標値を決定する。
そして、前後加速度目標値補正量と車両速度の目標値との関係は、図40に示されるようになる。
このように、本実施の形態においては、操縦装置の回転入力量と車両速度の目標値とによって、前後加速度の目標値を補正する。この場合、操縦装置の回転入力率に応じて、車両10の走行速度を低下させるように前後加速度の目標値を補正する。具体的には、第2入力手段による旋回走行指令が許可される車両速度目標値の範囲内において、回転入力率に比例した減速度を前後加速度目標値の補正量とし、操縦装置の前後入力量に応じて決定された前後加速度操縦指令値を補正する。このように、車体方向転換を指令する第2入力手段からの入力に応じて車両速度を低下させることで、理想的な車体方向転換動作である超信地旋回(その場回転)の状態に速やかに誘導すると共に、第2入力手段からの旋回走行指令入力と車両10の制動指令入力を同時に操作できない操縦装置を用いる場合において、車両10を自動的に制動させることで、より安全で快適な使用を可能とする。
また、車両速度目標値が所定の閾値(図40に示される例において、Vsh,0)以下である場合、前後加速度目標値補正量を制限する。このように、車両10の前進と後進の切替に伴う前後加速度補正量の正負の切替を滑らかにすることで、走行状態や車体姿勢の振動を防止し、快適性を向上させる。
なお、本実施の形態においては、ステップS44-3の第2旋回走行目標値を決定するための式で用いた第3速度閾値及び第4速度閾値と、ステップS44-5の前後走行の目標値を決定するための式で用いた第3速度閾値及び第4速度閾値とに同じ値を設定しているが、異なる値を設定してもよい。例えば、ステップS44-5の前後走行の目標値を決定するための式で用いた第3速度閾値及び第4速度閾値の方をより大きな値とすることで、回転入力量による旋回走行指令が禁止される車両速度で回転入力量を与えた場合でも、自動的に車両速度が低下した後に、車体方向転換動作に移行させることができる。
また、本実施の形態においては、前後加速度目標値補正量を回転入力量に比例した値としているが、他の決定方法を用いてもよい。例えば、回転入力量が所定の閾値よりも大きい場合に限り、所定の減速度を与えるようにしてもよい。
さらに、本実施の形態においては、前後方向の車両加速度を補正しているが、車両速度を補正してもよい。例えば、車体速度の目標値を零とすることで、超信地旋回状態へのより速やかな移行を促してもよい。
このように、本実施の形態においては、第1入力手段の入力量に応じてヨーレート及び左右加速度を決定し、車両速度に応じてヨーレート又は左右加速度の少なくとも一方を補正し、補正したヨーレート及び/又は左右加速度で旋回する。
この場合、車両速度に応じて状態量であるヨーレート又は左右加速度の一方を選択し、一方の状態量の値を車両速度によって換算した値を、補正した他方の状態量とする。具体的には、車両速度が所定の閾値以上である場合には左右加速度を選択し、車両速度が所定の閾値未満である場合にはヨーレートを選択する。また、一方の状態量の値の絶対値が、他方の状態量の値を車両速度によって一方の状態量に換算した値である換算値の絶対値よりも小さい場合には一方の状態量を選択し、換算値の絶対値以上である場合には他方の状態量を選択する。
また、前進走行状態と後進走行状態の遷移状態において、第1入力手段の所定の入力量に対するヨーレートの正負を反転する。なお、第1入力手段はレバー31bであり、該レバー31bを駆動輪12の回転軸と平行な方向に傾斜又は移動させて入力する。
さらに、車両速度が所定の閾値以下であるときに、補正したヨーレートの絶対値を低減する。
また、本実施の形態においては、第2入力手段を更に備え、第1入力手段の入力量に応じて決定されたヨーレート及び左右加速度と、第2入力手段の入力量に応じて決定されたヨーレート及び左右加速度との和であるヨーレート及び左右加速度で旋回する。
この場合、第2入力手段の入力量に応じて決定されたヨーレートを車両速度によって左右加速度に換算した値を、第2入力手段に応じて決定された左右加速度に置き換える。
また、前進走行状態と後進走行状態の遷移状態において、第2入力手段の所定の入力量に対する左右加速度の正負を反転する。なお、第2入力手段は回転部31cであり、該回転部31cを駆動輪12の回転軸に垂直な直線を回転軸として回転させて入力する。
さらに、車両速度が所定の閾値以上であるときに、第2入力手段に応じて決定されるヨーレートと左右加速度の値を零とする。
さらに、第2入力手段の入力量に応じて、車両10の前後加速度を補正する。具体的には、車両速度が所定の閾値以下であるとき、車両10の前後加速度を補正する。また、車両10が減速するように、前後加速度を補正する。
さらに、ヨーレートと左右加速度の目標値を決定し、それに応じた駆動トルクを左右の駆動輪12に与える。具体的には、ヨーレートの目標値を駆動輪回転角速度差に換算した値を駆動輪回転角速度差の目標値とし、該目標値と計測値との差に比例した大きさの差動トルクを駆動輪12に与える。
さらに、左右加速度に応じた量だけ、駆動輪12の接地点に対する車体重心の相対位置を移動させる。具体的には、車体左右傾斜機構としてのリンク機構60を備え、車両加速度に応じた量だけ車体を傾斜させる。
これにより、本実施の形態においては、操縦者の操作入力量に応じて、適切な旋回走行状態を実現することができる。そして、簡素な操縦装置で、容易かつ直感的に操縦可能な車両10を提供できる。
次に、本発明の第9の実施の形態について説明する。なお、第1~第8の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1~第8の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。
図42は本発明の第9の実施の形態における第1旋回走行目標値と車両速度の目標値との関係を示す図、図43は本発明の第9の実施の形態における第2旋回走行目標値と車両速度の目標値との関係を示す図である。なお、図42において、(a)は第1左右加速度目標値と車両速度の目標値との関係を示し、(b)は第1ヨーレート目標値と車両速度の目標値との関係を示し、図43において、(a)は第2左右加速度目標値と車両速度の目標値との関係を示し、(b)は第2ヨーレート目標値と車両速度の目標値との関係を示す。
前記第8の実施の形態において、ステップS44-2で用いた第1旋回走行目標値を決定するための式や、ステップS44-3で用いた第2旋回走行目標値を決定するための式は、変化率が不連続な点を含むので、旋回走行時に速度を変化させるとき、操縦者に違和感を与える可能性がある。また、式が複雑であるので、制御に必要な演算処理内容が多く、高価な演算手段を必要とする可能性がある。さらに、任意の定数を含むので、適切なパラメータ値を設定するのに時間を要する。すなわち、前記式は、簡素で、任意定数を含まず、変化率が連続である方が望ましい。
そこで、本実施の形態においては、第1旋回走行目標値を決定するための式及び第2旋回走行目標値を決定するための式として、簡素で、任意定数を含まず、かつ、変化率が連続である式を使用する。これにより、より操縦性が高く、操作感のよい安価な倒立型の車両10を提供することができる。
まず、第1旋回走行目標値を決定するための式について説明する。本実施の形態においては、下記の式によって第1左右加速度目標値を決定する。
これにより、本実施の形態における第1左右加速度目標値と車両速度の目標値との関係は、図42(a)に示されるようになる。なお、図42(a)のグラフは、レバー31bの左右入力量が正の値である場合を表しており、レバー31bの左右入力量が負の値である場合には、図42(a)のグラフを横軸(V* 軸)に対して対称移動させたグラフになる。
また、下記の式によって第1ヨーレート目標値を決定する。
これにより、本実施の形態における第1ヨーレート目標値と車両速度の目標値との関係は、図42(b)に示されるようになる。なお、図42(b)のグラフは、図42(a)のグラフと同様に、レバー31bの左右入力量が正の値である場合を表しており、レバー31bの左右入力量が負の値である場合には、図42(b)のグラフを横軸に対して対称移動させたグラフになる。
次に、第2旋回走行目標値を決定するための式について説明する。本実施の形態においては、下記の式によって第2左右加速度目標値を決定する。
これにより、本実施の形態における第2左右加速度目標値と車両速度の目標値との関係は、図43(a)に示されるようになる。なお、図43(a)のグラフは、回転部31cの回転入力量が正の値である場合を表しており、回転部31cの回転入力量が負の値である場合には、図43(a)のグラフを横軸(V* 軸)に対して対称移動させたグラフになる。
また、下記の式によって第2ヨーレート目標値を決定する。
これにより、本実施の形態における第2ヨーレート目標値と車両速度の目標値との関係は、図43(b)に示されるようになる。なお、図43(b)のグラフは、図43(a)のグラフと同様に、回転部31cの回転入力量が正の値である場合を表しており、回転部31cの回転入力量が負の値である場合には、図43(b)のグラフを横軸に対して対称移動させたグラフになる。
なお、その他の点については、前記第8の実施の形態と同様であるので、説明を省略する。
このように、本実施の形態においては、簡素で、任意定数を含まず、かつ、変化率が連続である式を使用して、第1旋回走行目標値及び第2旋回走行目標値を決定するので、より操縦性が高く、操作感のよい安価な車両10を提供することができる。
さらに、本発明の第8及び第9の実施の形態においては、従来の技術の問題点を解決する手段として、以下のようなものを示すことができる。
回転可能に車体に取り付けられた左右の駆動輪と、操縦者が操作する第1入力手段と、前記駆動輪の各々に付与する駆動トルクを制御して前記車体の姿勢を制御するとともに、前記第1入力手段の入力量に応じて走行を制御する車両制御装置とを有し、該車両制御装置は、前記第1入力手段の入力量に応じてヨーレート及び左右加速度を決定し、決定したヨーレート又は左右加速度の少なくとも一方を車両速度に応じて補正し、補正したヨーレート及び/又は左右加速度に基づいて旋回走行を制御する車両。
この構成によれば、操縦装置の入力量に応じて、適切な旋回走行状態を実現することができ、簡素な操縦装置で、容易かつ直感的に操縦することができる。
他の車両においては、さらに、前記車両制御装置は、車両速度に応じてヨーレート又は左右加速度の一方を選択し、該一方の値を車両速度によって換算した値を他方の補正値とする。
この構成によれば、人間の感覚に即した旋回走行状態を実現することができ、操縦感が向上する。
更に他の車両においては、さらに、前記車両制御装置は、車両速度が所定の閾値以上である場合には左右加速度を選択し、車両速度が前記閾値未満である場合にはヨーレートを選択する。
更に他の車両においては、さらに、前記車両制御装置は、前記ヨーレート又は左右加速度の一方の値の絶対値が他方の値を車両速度によって換算した値の絶対値よりも小さい場合には前記一方を選択し、その他の場合には前記他方を選択する。
これらの構成によれば、ヨーレートと左右加速度を適切かつ滑らかに切り替えることで、操縦者に違和感を与えることがなくなり、操縦感がより向上する。
更に他の車両においては、さらに、前記車両制御装置は、前進走行状態と後進走行状態の遷移状態において、前記第1入力手段の入力量に対するヨーレートの正負を反転する。
この構成によれば、第1入力手段による操縦者の旋回操縦操作に対する前進時の旋回方向と後進時の旋回方向との違いについて、操縦者に違和感を与えることがない。
更に他の車両においては、さらに、前記車両制御装置は、車両速度が所定の閾値以下である場合には補正したヨーレートの絶対値を低減する。
この構成によれば、前進状態と後進状態との間の遷移時に車体の回転方向が急に替わることを防ぎ、操縦感や操縦性をさらに向上させることができる。
更に他の車両においては、さらに、操縦者が操作する第2入力手段を更に備え、前記車両制御装置は、前記第1入力手段の入力量に応じて決定したヨーレート及び左右加速度と、前記第2入力手段の入力量に応じて決定したヨーレート及び左右加速度との和であるヨーレート及び左右加速度に基づいて旋回走行を制御する。
この構成によれば、操縦者の操縦意図をより適切に把握することができ、操縦性及び操縦自由度が向上する。
更に他の車両においては、さらに、前記車両制御装置は、前記第2入力手段の入力量に応じて決定したヨーレートを車両速度によって左右加速度に換算した値を、前記第2入力手段の入力量に応じて決定した左右加速度の値と置き換える。
この構成によれば、より直感的な操作が可能となり、操縦感や操縦性をさらに向上させることができる。
更に他の車両においては、さらに、前記車両制御装置は、前進走行状態と後進走行状態の遷移状態において、前記第2入力手段の入力量に対する左右加速度の正負を反転する。
この構成によれば、第2入力手段による操縦者の旋回操縦操作に対する前進時の旋回方向と後進時の旋回方向との違いについて、操縦者に違和感を与えることがない。
更に他の車両においては、さらに、前記車両制御装置は、車両速度が所定の閾値以上である場合には前記第2入力手段の入力量に応じて決定したヨーレート及び左右加速度の値を零にする。
この構成によれば、操縦意図に応じた入力装置の適切な使い分けを促し、安全性と快適性を向上させることができる。
更に他の車両においては、さらに、前記車両制御装置は、前記第2入力手段の入力量に応じて前後加速度を補正する。
この構成によれば、超信地旋回(その場旋回)の操縦性や快適性を向上させることができる。
なお、本発明は前記実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形させることが可能であり、それらを本発明の範囲から排除するものではない。
本発明は、車両に適用することができる。
10 車両
12 駆動輪
12L、12R 車輪
14 搭乗部
15 乗員
20 制御ECU
31 ジョイスティック
31b レバー
12 駆動輪
12L、12R 車輪
14 搭乗部
15 乗員
20 制御ECU
31 ジョイスティック
31b レバー
Claims (13)
- 回転可能に車体に取り付けられた駆動輪と、
操縦者が操作する操縦装置と、
前記駆動輪に付与する駆動トルクを制御して前記車体の姿勢を制御するとともに、前記操縦装置の操作量に応じて走行を制御する車両制御装置とを有し、
該車両制御装置は、前記操作量に応じて車両加速度を決定し、決定した車両加速度を前記操作量の時間履歴に応じて補正した値を車両加速度の目標値とすることを特徴とする車両。 - 前記車両制御装置は、前記操縦装置の操作方向及び操作量並びに車両走行状態に応じて車両加速度を決定する請求項1に記載の車両。
- 前記車両制御装置は、前記操縦装置の操作方向が所定の方向である場合に、車両の停止時又は前進時には操作量に応じた加速度を前記車両加速度の目標値とし、車両の後進時には操作量に応じた減速度を前記車両加速度の目標値とし、前記操縦装置の操作方向が前記所定の方向と逆である場合に、車両の停止時又は後進時には操作量に応じた加速度を前記車両加速度の目標値とし、車両の前進時には操作量に応じた減速度を前記車両加速度の目標値とする請求項2に記載の車両。
- 前記車両制御装置は、前記操作量の時間履歴に応じて走行モードを前進、後進又は停止モードのいずれかに決定し、決定した走行モードによって前記車両加速度を制限する請求項2又は3に記載の車両。
- 前記車両制御装置は、前記走行モードが前進モードである場合には後方への加速を制限し、前記走行モードが後進モードである場合には前方への加速を制限し、前記操縦装置に外力又は外トルクが付与されず、かつ、車両速度が所定値以下であるときに限り、前記走行モードの前進から後進への切替及び後進から前進への切替を許可する請求項4に記載の車両。
- 前記車両制御装置は、車両速度に応じて前記車両加速度を補正する請求項1~3のいずれか1項に記載の車両。
- 前記車両制御装置は、車両速度の2乗に比例した量だけ前記車両加速度を小さく補正する請求項6に記載の車両。
- 前記車両制御装置は、車両速度が所定の閾値以下であるとき、車両速度に比例した車両減速度の上限値により車両減速度を制限する請求項7に記載の車両。
- 前記車両制御装置は、前記操縦装置に外力又は外トルクが付与されない場合、所定の車両減速度を決定する請求項1~8のいずれか1項に記載の車両。
- 前記操縦装置は、前記駆動輪の回転軸に垂直な方向に並進可能、又は、前記駆動輪の回転軸に平行な直線周りに回転可能な入力手段を備え、
前記車両制御装置は、前記入力手段の位置又は回転角に応じて車両加速度を決定する請求項1~9のいずれか1項に記載の車両。 - 前記車両制御装置は、前記車両加速度の目標値に応じた駆動トルクを駆動輪に付与する請求項1~10のいずれか1項に記載の車両。
- 前記車両制御装置は、前記車両加速度の目標値を時間積分した値に所定の定数を乗じた値と前記駆動輪の回転角速度との差に応じた駆動トルクを駆動輪に付与する請求項11に記載の車両。
- 前記車体に対して移動可能に取り付けられた能動重量部を更に有し、
前記車両制御装置は、前記能動重量部の位置を制御して、前記車両加速度の目標値に応じた量だけ、前記駆動輪の接地点に対する前記車体の重心の相対位置を移動させる請求項1~12のいずれか1項に記載の車両。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080014817.4A CN102378703B (zh) | 2009-03-31 | 2010-03-25 | 车辆 |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-084089 | 2009-03-31 | ||
JP2009084089 | 2009-03-31 | ||
JP2009-095443 | 2009-04-10 | ||
JP2009095443 | 2009-04-10 | ||
JP2009095706 | 2009-04-10 | ||
JP2009-095706 | 2009-04-10 | ||
JP2009-267885 | 2009-11-25 | ||
JP2009-267851 | 2009-11-25 | ||
JP2009267851A JP5229193B2 (ja) | 2009-03-31 | 2009-11-25 | 車両 |
JP2009267885A JP5273020B2 (ja) | 2009-04-10 | 2009-11-25 | 車両 |
JP2009271355A JP5229199B2 (ja) | 2009-04-10 | 2009-11-30 | 車両 |
JP2009-271355 | 2009-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010113439A1 true WO2010113439A1 (ja) | 2010-10-07 |
Family
ID=42827755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/002140 WO2010113439A1 (ja) | 2009-03-31 | 2010-03-25 | 車両 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010113439A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013051194A1 (ja) * | 2011-10-06 | 2013-04-11 | ヤマハ発動機株式会社 | 電動車両 |
EP2783960A1 (en) * | 2013-03-27 | 2014-10-01 | Honda Motor Co., Ltd. | Inverted pendulum type vehicle |
US8949010B2 (en) | 2013-03-29 | 2015-02-03 | Honda Motor Co., Ltd. | Inverted pendulum type vehicle |
US9061721B2 (en) | 2013-05-31 | 2015-06-23 | Honda Motor Co., Ltd. | Inverted pendulum type vehicle |
US9139224B2 (en) | 2013-03-29 | 2015-09-22 | Honda Motor Co., Ltd. | Inverted pendulum type vehicle |
US9317039B2 (en) | 2013-03-29 | 2016-04-19 | Honda Motor Co., Ltd. | Inverted pendulum type vehicle |
US9367066B2 (en) | 2013-03-29 | 2016-06-14 | Honda Motor Co., Ltd. | Inverted pendulum type vehicle |
US9423795B2 (en) | 2013-03-29 | 2016-08-23 | Honda Motor Co., Ltd. | Inverted pendulum type vehicle |
US9505459B2 (en) | 2013-05-31 | 2016-11-29 | Honda Motor Co., Ltd. | Inverted pendulum type vehicle |
US9511656B2 (en) | 2013-05-31 | 2016-12-06 | Honda Motor Co., Ltd. | Inverted pendulum type vehicle |
US20180339589A1 (en) * | 2017-05-29 | 2018-11-29 | Toyota Jidosha Kabushiki Kaisha | Electric wheelchair operation apparatus and vehicle operation method therefor |
CN112682024A (zh) * | 2021-02-01 | 2021-04-20 | 地晨环境技术(南京)有限公司 | 一种环保钻机用电气比例手柄校正方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007186184A (ja) * | 2005-12-14 | 2007-07-26 | Equos Research Co Ltd | 車両 |
JP2008043135A (ja) * | 2006-08-09 | 2008-02-21 | Honda Motor Co Ltd | 車両用モータの制御装置 |
JP2008247149A (ja) * | 2007-03-29 | 2008-10-16 | Equos Research Co Ltd | 車両 |
JP2009044938A (ja) * | 2007-08-10 | 2009-02-26 | Equos Research Co Ltd | 車両 |
-
2010
- 2010-03-25 WO PCT/JP2010/002140 patent/WO2010113439A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007186184A (ja) * | 2005-12-14 | 2007-07-26 | Equos Research Co Ltd | 車両 |
JP2008043135A (ja) * | 2006-08-09 | 2008-02-21 | Honda Motor Co Ltd | 車両用モータの制御装置 |
JP2008247149A (ja) * | 2007-03-29 | 2008-10-16 | Equos Research Co Ltd | 車両 |
JP2009044938A (ja) * | 2007-08-10 | 2009-02-26 | Equos Research Co Ltd | 車両 |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2765024A4 (en) * | 2011-10-06 | 2016-04-27 | Yamaha Motor Co Ltd | ELECTRIC VEHICLE |
WO2013051194A1 (ja) * | 2011-10-06 | 2013-04-11 | ヤマハ発動機株式会社 | 電動車両 |
JPWO2013051194A1 (ja) * | 2011-10-06 | 2015-03-30 | ヤマハ発動機株式会社 | 電動車両 |
TWI485085B (zh) * | 2011-10-06 | 2015-05-21 | Yamaha Motor Co Ltd | Electric vehicle |
US9346511B2 (en) | 2013-03-27 | 2016-05-24 | Honda Motor Co., Ltd. | Inverted pendulum type vehicle |
EP2783960A1 (en) * | 2013-03-27 | 2014-10-01 | Honda Motor Co., Ltd. | Inverted pendulum type vehicle |
US9367066B2 (en) | 2013-03-29 | 2016-06-14 | Honda Motor Co., Ltd. | Inverted pendulum type vehicle |
US9139224B2 (en) | 2013-03-29 | 2015-09-22 | Honda Motor Co., Ltd. | Inverted pendulum type vehicle |
US9317039B2 (en) | 2013-03-29 | 2016-04-19 | Honda Motor Co., Ltd. | Inverted pendulum type vehicle |
US8949010B2 (en) | 2013-03-29 | 2015-02-03 | Honda Motor Co., Ltd. | Inverted pendulum type vehicle |
US9423795B2 (en) | 2013-03-29 | 2016-08-23 | Honda Motor Co., Ltd. | Inverted pendulum type vehicle |
US9511656B2 (en) | 2013-05-31 | 2016-12-06 | Honda Motor Co., Ltd. | Inverted pendulum type vehicle |
US9505459B2 (en) | 2013-05-31 | 2016-11-29 | Honda Motor Co., Ltd. | Inverted pendulum type vehicle |
US9061721B2 (en) | 2013-05-31 | 2015-06-23 | Honda Motor Co., Ltd. | Inverted pendulum type vehicle |
US20180339589A1 (en) * | 2017-05-29 | 2018-11-29 | Toyota Jidosha Kabushiki Kaisha | Electric wheelchair operation apparatus and vehicle operation method therefor |
EP3434245A1 (en) * | 2017-05-29 | 2019-01-30 | Toyota Jidosha Kabushiki Kaisha | Electric wheelchair operation apparatus and vehicle operation method therefor |
US10807470B2 (en) | 2017-05-29 | 2020-10-20 | Toyota Jidosha Kabushiki Kaisha | Electric wheelchair operation apparatus and vehicle operation method therefor |
CN112682024B (zh) * | 2021-02-01 | 2022-02-18 | 地晨环境技术(南京)有限公司 | 一种环保钻机用电气比例手柄校正方法 |
CN112682024A (zh) * | 2021-02-01 | 2021-04-20 | 地晨环境技术(南京)有限公司 | 一种环保钻机用电气比例手柄校正方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010113439A1 (ja) | 車両 | |
CN101687528B (zh) | 车辆 | |
JP5013256B2 (ja) | 車両 | |
JP5273020B2 (ja) | 車両 | |
WO2009084384A1 (ja) | 車両 | |
WO2010047070A1 (ja) | 車両 | |
JP5229193B2 (ja) | 車両 | |
JP4831490B2 (ja) | 車両 | |
JP5229199B2 (ja) | 車両 | |
JP4894706B2 (ja) | 車両 | |
JP5152627B2 (ja) | 車両 | |
JP5181923B2 (ja) | 車両 | |
JP5088061B2 (ja) | 車両 | |
JP4743197B2 (ja) | 車両 | |
JP5041224B2 (ja) | 車両 | |
JP5061828B2 (ja) | 車両 | |
JP2010173406A (ja) | 車両 | |
JP5151308B2 (ja) | 車両 | |
JP2010006201A (ja) | 車両 | |
JP5186853B2 (ja) | 車両 | |
JP5223265B2 (ja) | 車両 | |
JP5201440B2 (ja) | 車両 | |
JP2009073271A (ja) | 車両 | |
JP5152626B2 (ja) | 車両 | |
JP5061943B2 (ja) | 車両 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080014817.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10758224 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10758224 Country of ref document: EP Kind code of ref document: A1 |