WO2010113335A1 - 酸化槽、海水処理装置及び海水脱硫システム - Google Patents

酸化槽、海水処理装置及び海水脱硫システム Download PDF

Info

Publication number
WO2010113335A1
WO2010113335A1 PCT/JP2009/063196 JP2009063196W WO2010113335A1 WO 2010113335 A1 WO2010113335 A1 WO 2010113335A1 JP 2009063196 W JP2009063196 W JP 2009063196W WO 2010113335 A1 WO2010113335 A1 WO 2010113335A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
oxidation tank
pipe
sulfur
air
Prior art date
Application number
PCT/JP2009/063196
Other languages
English (en)
French (fr)
Inventor
裕 中小路
岩下 浩一郎
豊志 中川
秋山 知雄
川根 浩
貴司 川野
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN2009801582492A priority Critical patent/CN102361825B/zh
Priority to EP09842687.7A priority patent/EP2415718A4/en
Publication of WO2010113335A1 publication Critical patent/WO2010113335A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • B01D2252/1035Sea water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/502Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific solution or suspension
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/40Sorption with wet devices, e.g. scrubbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/15041Means for absorbing SOx using seawater
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Definitions

  • the present invention relates to an oxidation tank, a seawater treatment apparatus, and a seawater desulfurization system provided with an air diffusion pipe for supplying air to seawater used for desulfurization of sulfur components such as sulfur oxides in exhaust gas discharged from an industrial combustion facility.
  • the flue gas desulfurization apparatus using seawater as the absorbing liquid is less expensive than the lime-gypsum method, and is therefore used in thermal power plants and the like.
  • seawater since a large amount of seawater is used as cooling water in the condenser of the boiler, a part of the seawater effluent discharged from the condenser and heated is supplied to the desulfurization device, and SO 2 in the exhaust gas is removed. Done.
  • FIG. 26 is a diagram simply showing the configuration of a seawater desulfurization system provided with a seawater treatment device using conventional seawater.
  • a conventional seawater desulfurization system 100 using seawater includes a boiler 12 that burns with a burner (not shown) using preheated air 11, and exhaust gas 13 that is heat-exchanged and discharged by the boiler 12.
  • a dust collector 14 that removes soot, and seawater 15 that absorbs sulfur in the exhaust gas 13 and desulfurizes it, and performs water quality recovery treatment of the sulfur-absorbing seawater 16A that contains the sulfur content that is generated at a high concentration. It consists of a desulfation treatment apparatus 101.
  • the seawater desulfation treatment apparatus 101 absorbs SO 2 in the exhaust gas 13 into the sea water 15 and recovers it as sulfurous acid (H 2 SO 3 ) and sulfuric acid (H 2 SO 4 ), and the flue gas. It comprises an oxidation tank 102 that performs a water quality recovery process of the sulfur content-absorbing seawater 16A containing a high concentration of sulfur content discharged from the desulfurization absorption tower 20.
  • the exhaust gas 13 discharged from the boiler 12 is used as a heat source for generating steam, and a steam turbine generator is driven using the generated steam to generate electric power.
  • the exhaust gas 13 is sent to a flue gas denitration device (not shown) and denitrated, and then sent to a dust collector 14 to remove the dust in the exhaust gas 13.
  • the exhaust gas 13 removed by the dust collector 14 is supplied into the flue gas desulfurization absorption tower 20 by the induction fan 21.
  • the pump 24 uses a part of the seawater 15 as seawater 15 ⁇ / b> A to desulfurize the sulfur content in the exhaust gas 13. .
  • the exhaust gas 13 produced by burning fossil fuel contains sulfur, which is sulfur oxide (SOx) in the form of SO 2 or the like.
  • SOx sulfur oxide
  • the exhaust gas 13 and the seawater 15A supplied via the seawater supply line L1 are brought into gas-liquid contact in the flue gas desulfurization absorption tower 20 to cause a reaction as shown in the following formula, and SO 2 in the exhaust gas 13 is generated.
  • the sulfur component such as sulfur oxide (SOx) contained in the form is absorbed by the seawater 15A to perform desulfurization.
  • H + is generated by gas-liquid contact between the seawater 15A and the exhaust gas 13
  • the concentration of hydrogen sulfite ions (HSO 3 ⁇ ) in the seawater 15A after the seawater 15A and the exhaust gas 13 are brought into gas-liquid contact increases.
  • the release of H + will lower the pH.
  • the pH of the sulfur-absorbing seawater 16A generated by absorbing a large amount of sulfur is about 3-6.
  • the sulfur-absorbing seawater refers to seawater falling liquid that has absorbed sulfur in the flue gas desulfurization absorption tower 20.
  • the purified gas 25 desulfurized in the flue gas desulfurization absorption tower 20 is discharged into the atmosphere from the chimney 26 through the purified gas discharge line L2.
  • the sulfur content absorbing seawater 16A is discharged from the flue gas desulfurization absorption tower 20 through the sulfur content absorbing solution discharge line L3.
  • the sulfur-absorbing seawater 16A discharged from the flue gas desulfurization absorption tower 20 needs to reduce the concentration of sulfurous acid as a COD component and increase the pH and dissolved oxygen concentration before being released to the sea 22 or reused. There is. Therefore, the sulfur-absorbing seawater 16A containing a high concentration of sulfur is supplied to the oxidation tank 102 via the sulfur-absorbing seawater discharge line L3, and supplied by the seawater supply line L1 on the upstream side of the inlet of the oxidation tank 102. A part of the seawater 15 is mixed and diluted as the first dilution seawater 15B by the first seawater branch line L4. Moreover, the seawater which 16 A of sulfur content absorption seawaters and the seawater 15B for 1st dilution mixed in the oxidation tank 102 is set as the sulfur content absorption seawater 16B.
  • the pH of the sulfur-absorbing seawater 16B is raised to prevent re-emission of SO 2 in the oxidation tank 102, and at the same time, air 29 from the oxidation air blower 28 is passed from the oxidation air nozzle 30 into the oxidation tank 102 via the diffusion tube 103. It is supplied and brought into gas-liquid contact with the sulfur-absorbing seawater 16B to cause a reaction such as the following formula to raise the pH and dissolved oxygen concentration. Moreover, let the seawater after making the sulfur content absorption seawater 16B contact the air 29 gas-liquid, and let it be the sulfur content absorption seawater 16C.
  • the remaining seawater 15 is mixed and diluted into the sulfur-absorbing seawater 16C on the downstream side of the oxidation tank 102 as the second dilution seawater 15C through the second seawater branch line L5 to recover the water quality.
  • a solution obtained by diluting the sulfur content-absorbing seawater 16 ⁇ / b> C with the second dilution seawater 15 ⁇ / b> C is referred to as water quality recovery seawater 31.
  • the water quality recovery seawater 31 by which water quality was recovered is discharged
  • the sulfur-absorbing seawater 16A is mixed and diluted with the first dilution seawater 15B and the oxidation tank 102 in order to prevent the re-emission of SO 2 and improve the pH in the oxidation tank 102. Then, the sulfur-absorbing seawater 16B is aerated to oxidize and detoxify the sulfite ions (HSO 3 ⁇ ) in the sulfur-absorbing seawater 16B, and at the same time improve the dissolved oxygen concentration to obtain the sulfur-absorbing seawater 16C. The sulfur-absorbing seawater 16C is diluted to improve the pH of the sulfur-absorbing seawater 16C to form water-recovered seawater 31 that is discharged into the sea 22 (see, for example, Patent Documents 1 to 5).
  • Patent Document 5 a porous membrane is provided on the surface of the diffuser tube 103, and sulfur-absorbing seawater 16B in the oxidation tank 102 and air 29 supplied from the porous membrane provided on the surface of the diffuser tube 103 are provided. A technique for making contact is disclosed.
  • the oxidation tank 102 since it is necessary to oxidize the large amount of sulfur-absorbing seawater 16A supplied into the oxidation tank 102, it is necessary to supply a large amount of air into the oxidation tank 102, Costs such as oxidation equipment costs and power costs increase. Therefore, an oxidation treatment facility that can efficiently contact the air 29 supplied from the air diffuser 103 in the oxidation tank 102 together with the sulfur-absorbing seawater 16B in the oxidation tank 102 is desired.
  • an object of the present invention is to provide an oxidation tank, a seawater treatment device, and a seawater desulfurization system that can efficiently supply air into the seawater used for seawater desulfurization.
  • 1st invention of this invention for solving the subject mentioned above has a diffuser pipe which supplies air to the sulfur content absorption solution produced by making sulfur content in exhaust gas contact seawater and desulfurizing seawater, An oxidation tank for performing a water quality recovery treatment of the sulfur content absorption solution, wherein the oxidation tank is in contact with an inlet for flowing the sulfur content absorption solution into the diffusion tube side and the air supplied from the diffusion tube.
  • An outlet for allowing the sulfur-absorbing solution to flow out, and the air diffuser pipe includes a main pipe for supplying the air and a vent pipe extending from the main pipe.
  • a branch pipe connected to the branch pipe and extending in one direction, and a plurality of branch pipes connected to the branch pipe and extending in a direction different from the branch pipe, the branch pipe being substantially orthogonal to the flow direction of the sulfur-absorbing solution. It is in an oxidation tank characterized by being disposed.
  • the second invention is the oxidation tank according to the first invention, wherein the branch pipe comprises a pipe body and a porous film covering a surface of the pipe body.
  • a third invention is the invention according to the first or second invention, wherein the branch pipe is a flat plate, and the shape of the branch pipe in the longitudinal direction is a rectangular shape or an arc shape at both ends of the branch pipe.
  • a fourth invention is the oxidation tank according to the first or second invention, wherein a cross-sectional shape perpendicular to the longitudinal direction of the branch pipe is a circular shape.
  • a fifth invention is an oxidation tank according to any one of the first to fourth inventions, wherein two or more of the vent pipes are arranged at a predetermined interval.
  • the sixth invention is an oxidation tank according to the fifth invention, wherein a plurality of the vent pipes are arranged in parallel and the branch pipes are offset from each other.
  • the oxidation tank according to the sixth aspect wherein the branch pipes of the other adjacent diffuser pipe are alternately arranged between the branch pipes. is there.
  • the eighth invention is an oxidation tank characterized in that, in any one of the fifth to seventh inventions, a partition plate for partitioning the diffuser tubes of the oxidation tank is provided.
  • a ninth aspect of the present invention is the oxidation tank according to any one of the fifth to seventh aspects, wherein a weir is provided between the diffuser tubes of the oxidation tank.
  • a tenth aspect of the invention is an oxidation tank according to any one of the first to ninth aspects, wherein the seawater is drained from a condenser.
  • An eleventh aspect of the invention resides in a seawater treatment apparatus comprising a flue gas desulfurization apparatus that cleans sulfur in an exhaust gas by bringing it into contact with seawater, and the oxidation tank according to any one of the inventions 1 to 10. .
  • the twelfth invention uses a boiler, exhaust gas discharged from the boiler as a heat source for generating steam, a steam turbine that drives a generator using the generated steam, and water condensed in the steam turbine.
  • a condenser that collects and circulates, a flue gas denitration device that performs denitration of exhaust gas discharged from the boiler, a dust collector that removes soot in the exhaust gas, and a seawater treatment device of the eleventh invention
  • the seawater desulfurization system comprises a chimney for discharging the purified gas desulfurized by the flue gas desulfurization apparatus to the outside.
  • the air is supplied to the air diffuser for supplying the air provided in the oxidation tank for performing the water quality recovery treatment of the sulfur content absorption solution generated by bringing the sulfur content in the exhaust gas into contact with seawater and desulfurizing the seawater.
  • a vent pipe extending from the main pipe, the vent pipe being connected to the main pipe and extending in one direction, and a plurality of branch pipes connected to the branch pipe and extending in a direction different from the branch pipe.
  • the branch pipe is arranged so as to be substantially orthogonal to the flow direction of the sulfur-absorbing solution.
  • FIG. 1 is a schematic diagram showing a configuration of a seawater desulfurization system to which a seawater treatment apparatus using a first oxidation tank according to a first embodiment of the present invention is applied.
  • FIG. 2 is a schematic diagram schematically showing the configuration of the first oxidation tank according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing the configuration of the vent pipe.
  • FIG. 4 is a partially enlarged view showing a portion indicated by a symbol A in FIG.
  • FIG. 5 is a schematic view schematically showing another configuration of the oxidation tank.
  • FIG. 6 is a schematic view schematically showing another configuration of the oxidation tank.
  • FIG. 7 is a diagram illustrating an example of the configuration of the vent pipe.
  • FIG. 1 is a schematic diagram showing a configuration of a seawater desulfurization system to which a seawater treatment apparatus using a first oxidation tank according to a first embodiment of the present invention is applied.
  • FIG. 2 is a schematic diagram schematic
  • FIG. 8 is a diagram showing another example of the configuration of the vent pipe.
  • FIG. 9 is a schematic view schematically showing the configuration of the second oxidation tank according to the second embodiment of the present invention.
  • FIG. 10 is a schematic view schematically showing another configuration of the oxidation tank.
  • FIG. 11 is a schematic view schematically showing another configuration of the oxidation tank.
  • FIG. 12 is a schematic view schematically showing another configuration of the second oxidation tank.
  • FIG. 13 is a schematic view schematically showing another configuration of the oxidation tank.
  • FIG. 14 is a schematic view schematically showing another configuration of the oxidation tank.
  • FIG. 15 is a schematic diagram schematically showing the configuration of the third oxidation tank according to the third embodiment of the present invention.
  • FIG. 10 is a schematic view schematically showing another configuration of the oxidation tank according to the second embodiment of the present invention.
  • FIG. 11 is a schematic view schematically showing another configuration of the oxidation tank.
  • FIG. 12 is a
  • FIG. 16 is a schematic view schematically showing another configuration of the oxidation tank.
  • FIG. 17 is a schematic view schematically showing another configuration of the oxidation tank.
  • FIG. 18 is a schematic view schematically showing the configuration of the fourth oxidation tank according to the fourth embodiment of the present invention.
  • 19 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 20 is a schematic diagram schematically showing another configuration of the oxidation tank.
  • FIG. 21 is a schematic view schematically showing another configuration of the oxidation tank.
  • FIG. 22 is a schematic diagram schematically showing the configuration of the fifth oxidation tank according to the fifth embodiment of the present invention.
  • 23 is a cross-sectional view taken along line AA in FIG.
  • FIG. 24 is a schematic view schematically showing another configuration of the oxidation tank.
  • FIG. 25 is a schematic diagram schematically showing another configuration of the oxidation tank.
  • FIG. 26 is a diagram simply showing the configuration of a conventional seawater desul
  • FIG. 1 is a schematic view showing a configuration of a seawater desulfurization system to which a seawater treatment apparatus using a first oxidation tank according to a first embodiment of the present invention is applied
  • FIG. 2 is a first view according to the present invention. It is the schematic which shows simply the structure of the 1st oxidation tank which concerns on this embodiment
  • FIG. 3 is a figure which shows the structure of a vent pipe. In the figure, the same components as those shown in FIG.
  • a seawater desulfurization system 40 to which a seawater treatment apparatus using a first oxidation tank according to the present embodiment is applied is illustrated using air 11 preheated by an air preheater (AH) 41.
  • the condenser 45 that collects and circulates the water 45 condensed in the above, the flue gas denitration device 47 that denitrates the exhaust gas 13 discharged from the boiler 12, and the dust in the exhaust gas 13 discharged from the boiler 12 are removed.
  • Seawater desulfurization oxidizing apparatus 48 for performing recovery processing in which the exhaust gas 13 in seawater desulfurization oxidizing apparatus 48 is composed of 26. chimney for discharging the purified gas 25 desulfurized outside.
  • the sulfur-absorbing seawater refers to seawater falling water that has absorbed sulfur in the flue gas desulfurization absorption tower 20.
  • the air 11 supplied from the outside is supplied to the air preheater 41 by the pushing fan 49 and preheated.
  • Fuel (not shown) and air 11 preheated by the air preheater 41 are supplied to the burner, and the fuel is combusted in the boiler 12 to generate steam 42 for driving the steam turbine 44.
  • fuel (not shown) used in the present embodiment is supplied from, for example, an oil tank.
  • the exhaust gas 13 generated by combustion in the boiler 12 is sent to a flue gas denitration device 47. At this time, the exhaust gas 13 exchanges heat with the water 45 discharged from the condenser 46 and is used as a heat source for generating steam 42, and the generated steam 42 drives the generator 43 of the steam turbine 44. The water 45 condensed by the steam turbine 44 is returned to the boiler 12 and circulated.
  • the exhaust gas 13 discharged from the boiler 12 and guided to the flue gas denitration device 47 is denitrated in the flue gas denitration device 47, exchanges heat with the air 11 by the air preheater 41, and then is sent to the dust collector 14.
  • the dust in the exhaust gas 13 is removed.
  • the exhaust gas 13 removed by the dust collector 14 is supplied into the flue gas desulfurization absorption tower 20 by the induction fan 21.
  • the exhaust gas 13 is heat-exchanged with the purified gas 25 desulfurized and discharged by the flue gas desulfurization absorption tower 20 by the heat exchanger 50 and then supplied into the flue gas desulfurization absorption tower 20.
  • the exhaust gas 13 may be directly supplied to the flue gas desulfurization absorption tower 20 without exchanging heat with the purified gas 25 by the heat exchanger 50.
  • the seawater desulfation treatment device 48 desulfurizes sulfur oxides (SOx) in the exhaust gas 13 to sulfurous acid (H 2 SO 3 ), and brings the sulfur content in the exhaust gas 13 into contact with a part of the seawater 15 A of the seawater 15.
  • SOx sulfur oxides
  • H 2 SO 3 sulfurous acid
  • the seawater supplied to the flue gas desulfurization absorption tower 20 is seawater 15A
  • the seawater supplied to the upstream side of the first oxidation tank 51-1 is the first dilution seawater.
  • the seawater supplied to the downstream side of the first oxidation tank 51-1 is referred to as the second dilution seawater 15C.
  • the seawater desulfurization is performed using the seawater 15 pumped up from the sea 22 by the sulfur content contained in the exhaust gas 13.
  • the exhaust gas 13 and the seawater 15A supplied via the seawater supply line L1 are brought into gas-liquid contact, and the sulfur content in the exhaust gas 13 is absorbed by the seawater 15A to perform seawater desulfurization.
  • seawater 15 pumped from the sea 22 is sent to the flue gas desulfurization absorption tower 20 by the pump 24 as a part of the seawater 15 which is the exhaust seawater discharged by exchanging heat in the condenser 46 as seawater 15A.
  • seawater 15 drawn from the sea 22 may be used directly.
  • H + generated by the gas-liquid contact between the seawater 15A and the exhaust gas 13 by the seawater desulfurization in the flue gas desulfurization absorption tower 20 is released into the seawater 15A.
  • a large amount of sulfur is absorbed in
  • a part of the seawater 15 is supplied from the seawater supply line L1 to the upstream side of the first oxidation tank 51-1 via the first seawater branch line L4 as the first dilution seawater 15B,
  • the sulfur-absorbing seawater 16A is mixed with the first dilution seawater 15B and diluted.
  • the sulfur-absorbing seawater 16A is mixed with the first dilution seawater 15B, and the diluted seawater is defined as sulfur-absorbing seawater 16B.
  • the air 29 is sent from the oxidation air blower 28 into the first oxidation tank 51-1 through the diffuser pipe 52, and the sulfur content in the first oxidation tank 51-1 is increased. Is brought into contact with air 29 to cause an oxidation reaction and a decarboxylation reaction.
  • the first oxidation tank 51-1 has air in the sulfur-absorbing seawater 16A generated by bringing the sulfur content in the exhaust gas 13 into contact with the seawater 15A and desulfurizing the seawater.
  • 29 is an oxidation tank that performs a water quality recovery process of the sulfur-absorbing seawater 16A, and the first oxidation tank 51-1 flows the sulfur-absorbing seawater 16B into the aeration pipe 52 side.
  • the diffuser pipe 52 includes a main pipe 61 for supplying the air 29,
  • the vent pipe 62 includes a vent pipe 62 extending from the pipe 61.
  • the vent pipe 62 includes a branch pipe 62a connected to the main pipe 61 and extending in one direction, and a plurality of branch pipes 62b connected to the branch pipe 62a and extending in a direction different from the branch pipe 62a.
  • the branch pipe 62b is sulfur Flow direction of the partial absorbing seawater 16B and in which is provided to be substantially orthogonal.
  • the vent pipe 62 is arranged symmetrically about the main pipe 61 as an axis.
  • the inlet 53 is provided on the inflow plate 55 provided on the supply side of the sulfur-absorbing seawater 16B in the main body 51a of the first oxidation tank 51-1, and the outlet 54 is In addition, it is provided on the outflow plate 56 provided on the discharge side of the sulfur-absorbing seawater 16B in the main body 51a of the first oxidation tank 51-1.
  • reference numeral 57 denotes a valve for connecting the branch pipes 62a.
  • FIG. 3 is a diagram showing the configuration of the vent pipe.
  • the branch pipe 62 b of the diffuser pipe 52 includes a pipe main body 64 and a porous film 65 that covers the surface of the pipe main body 64.
  • a hole 66 is provided.
  • FIG. 4 is a partially enlarged view showing a portion denoted by reference symbol A in FIG. 3, and is a partially enlarged view of the surface of the porous membrane.
  • the surface of the porous membrane 65 has micropores 67, and the air 29 supplied to the inside of the branch pipe 62 b of the vent pipe 62 is a plurality of pipes provided on the surface of the pipe body 64.
  • the sulfur content-absorbing seawater 16B in the first oxidation tank 51-1 can be supplied from the fine hole 67 of the porous membrane 65.
  • the air 29 can be supplied from the entire branch pipe 62b, the air 29 can be supplied more efficiently into the sulfur-absorbing seawater 16B, and bisulfite ions (HSO 3) in the sulfur-absorbing seawater 16B can be supplied. - an oxidation reaction of) can be further promoted.
  • the vent pipe 62 includes a branch pipe 62a that is connected to the main pipe 61 and extends in one direction, and a plurality of branch pipes 62b that are connected to the branch pipe 62a and extend in a direction different from the branch pipe 62a. Since the flow direction of the absorption seawater 16B is arranged so as to be substantially orthogonal, the liquid flow of the sulfur content absorption seawater 16B in the first oxidation tank 51-1 can be easily disturbed. For this reason, the contact efficiency between the air 29 ejected from the hole 66 of the vent pipe 62 and the sulfur-absorbing seawater 16B can be increased, and the oxidation reaction of bisulfite ions in the sulfur-absorbing seawater 16B can be further promoted.
  • the diameter of the hole 66 on the surface of the porous membrane 65 is preferably in the range of 0.9 mm to 1.1 mm, and more preferably in the range of 0.95 mm to 1.05 mm. Further, it is preferably about 1 mm. This is because the minimum bubble diameter of the hole 66 that can stably exist in seawater is about 1 mm. If the size of the hole 66 is larger than 1.1 mm, for example, the air per unit air flow rate of the branch pipe 62b is about 1 mm. This is because the liquid contact area is reduced and the efficiency of oxygen dissolution is reduced. On the other hand, if the size of the hole 66 is smaller than 0.9 mm, for example, the pressure loss of the branch pipe 62b increases, and it becomes difficult to increase the gas-liquid contact area.
  • the material of the porous membrane 65 is preferably an elastic body, and is preferably made of rubber in terms of productivity and workability.
  • Specific examples of the rubber material include known materials such as EPDM (ethylene propylene rubber), silicone rubber, polyurethane, chloroprene rubber, nitrile rubber, fluororubber, and perfluoroelastomer. Among these, EPDM is preferable from the viewpoint of strength and the like.
  • the air diffuser 52 is provided with a vent pipe 62 on both sides of the main pipe 61 as a center. Since the ventilation pipes 62 are provided on both sides of the main pipe 61, the air 29 can be stably supplied to the branch pipe 62b at the end of the ventilation pipe 62. Therefore, if the diffuser pipe 52 provided in the first oxidation tank 51-1 according to the present embodiment is used, compared to the case where the vent pipe 62 is provided only on one side of the main pipe 61, The air 29 can be stably supplied to the end of the vent pipe 62. For this reason, the air 29 from the ventilation pipe 62 can be brought into contact with the sulfur-absorbing seawater 16B in the first oxidation tank 51-1 more stably than in the prior art.
  • the diffuser tube 52 is formed of a tubular member made up of the main tube 61 and the vent tube 62, the diffuser tube 52 can be easily manufactured and installed in the first oxidation tank 51-1. Can be easily.
  • the vent pipe 62 is a cylindrical pipe
  • the shape of the branch pipe 62 b of the vent pipe 62 in the longitudinal direction is rectangular, and a cross section orthogonal to the longitudinal direction of the vent pipe 62.
  • the shape is circular.
  • an air supply facility for example, a flat plate-shaped air diffuser, a flat plate air diffuser having a substantially elliptical shape, or the like is used.
  • a branch pipe 62b having a rectangular shape in the longitudinal direction of the branch pipe 62b and a circular cross section perpendicular to the longitudinal direction of the branch pipe 62b is used conventionally.
  • the distance D between the plurality of branch pipes 62b provided in the ventilation pipe 62 rather than an air supply facility such as a flat plate-like air diffuser pipe as shown in FIG. Can be arranged narrowly. For this reason, in FIG. 2, although the space
  • the interval D between the plurality of branch pipes 62b is 400 mm or more and 1000 mm or less, preferably 450 mm or more and 490 mm or less, and more preferably about 470 mm. Since the ventilation pipe 62 is installed and fixed in seawater, the ventilation pipe 62 in the flow of seawater receives the force from the seawater and resists the flow rate of the seawater, and the seawater around the ventilation pipe 62 Is disturbed. Therefore, if the interval between the branch pipes 62b is small, the branch pipe 62b located on the downstream side is less disturbed by the branch pipe 62b located on the upstream side and the flow of seawater is reduced, and the flow resistance is reduced. , Running costs can be reduced.
  • the branch pipe 62b located on the upstream side does not serve as the flow resistance of the branch pipe 62b located on the downstream side, but the maintainability is reduced. It is. Further, if the distance D between the branch pipes 62b is larger than 1000 mm, there is a margin in the distance D between the branch pipes 62b, the seawater flow is disturbed, and the flow path resistance increases.
  • the number of branch pipes 62b that can be installed in the first oxidation tank 51-1 can be increased.
  • the amount of air supplied from the diffusing pipe 52 to the sulfur-absorbing seawater 16B can be increased as compared with conventional air supply equipment such as a trachea or a flat, flat plate-shaped diffusing pipe having an elliptical shape.
  • the number of branch pipes 62b installed per area in the first oxidation tank 51-1 can be increased, the liquid flow of the sulfur-absorbing seawater 16B can be more easily disturbed, and the branch pipe 62b.
  • the contact efficiency between the air 29 supplied from the fine holes 67 of the porous membrane 65 and the sulfur-absorbing seawater 16B can be increased.
  • a rectangular shape having a rectangular shape in the longitudinal direction of the branch pipe 62b is used.
  • the present invention is not limited to this, and the shapes of both ends of the branch pipe 62b are used.
  • An arc shape may be used.
  • the arc shape for example, there are a rectangular shape, a circular shape, an elliptical shape, etc. with rounded shapes at both ends of the branch pipe 62b.
  • air 29 is supplied from the porous membrane 65 of the branch pipe 62b to the sulfur-absorbing seawater 16B in the first oxidation tank 51-1, but the present invention provides this. It is not limited, and a plurality of nozzles for oxidized air may be provided in the longitudinal direction of the branch pipe 62b.
  • a pipe for supplying air 29 provided in a ladder shape in a direction orthogonal to the branch pipe 62b is provided, and this pipe is also provided with a porous film 65 like the branch pipe 62b.
  • the air 29 may be supplied to the sulfur-absorbing seawater 16B in the first oxidation tank 51-1.
  • an oxidation air nozzle is provided in a ladder-like pipe provided in a direction orthogonal to the branch pipe 62b, and air 29 is supplied from the oxidation air nozzle to the sulfur-absorbing seawater 16B in the first oxidation tank 51-1. You may make it supply.
  • a plurality of holes may be provided on the surface of the branch pipe 62a, and the air 29 may be supplied from the branch pipe 62a to the sulfur-absorbing seawater 16B in the first oxidation tank 51-1.
  • the pressure of the air 29 supplied from the oxidizing air blower 28 into the branch pipe 62a of the vent pipe 62 is adjusted.
  • the inlet 53 and the outlet 54 are provided on the opposing wall surfaces of the first oxidation tank 51-1, but the present invention is not limited to this.
  • 5 and 6 are schematic views simply showing other configurations of the oxidation tank. As shown in FIGS. 5 and 6, the outlet 54 may be provided on any wall surface side adjacent to the wall surface of the first oxidation tank 51-1 where the inlet 53 is provided.
  • the inflow port 53 and the outflow port 54 are not the wall surfaces constituting the first oxidation tank 51-1, but are formed, for example, on the upper part of any wall surface of the first oxidation tank 51-1.
  • An outlet 54 may be provided.
  • the sulfur-absorbing seawater 16B flows into the first oxidation tank 51-1 from the upper part of any wall surface of the first oxidation tank 51-1 into the first oxidation tank 51-1, and absorbs the sulfur content.
  • a pump may be provided on the wall surface on the side from which the seawater 16B is discharged to suck out the sulfur-absorbing seawater 16B in the first oxidation tank 51-1.
  • a larger inlet is provided in the upper part of the first oxidation tank 51-1 as an opening and an outlet than in the case where the inlet 53 and the outlet 54 are provided in the wall surface of the first oxidation tank 51-1. And it is easy to provide an outlet. For this reason, since it is easy to make a flow of the sulfur-absorbing seawater 16B over a wide range in the first oxidation tank 51-1, it is difficult to make an area where no flow of the sulfur-absorbing seawater 16B occurs.
  • one of the inlet 53 and the outlet 54 is provided on the wall surface of the first oxidation tank 51-1, and the other is provided on the upper wall surface of the first oxidation tank 51-1, and the sulfur-absorbing seawater 16B. May be allowed to flow into the first oxidation tank 51-1, and the sulfur-absorbing seawater 16C in the first oxidation tank 51-1 may be discharged using, for example, a pump.
  • FIG. 7 is a diagram illustrating an example of the configuration of the vent pipe. As shown in FIG. 7, the branch pipe 62b is disposed so as to be inclined at 45 ° or more and less than 90 ° with respect to the branch pipe 62a in the inflow direction of the sulfur-absorbing seawater 16B flowing in from the inlet 53. May be.
  • FIG. 8 is a diagram showing another example of the configuration of the vent pipe. As shown in FIG.
  • the branch pipe 62b may be disposed so as to be inclined with respect to the branch pipe 62a in the outflow direction of the sulfur-absorbing seawater 16C flowing out to the outflow port 54 within a range of, for example, 45 ° or more and less than 90 °. Good.
  • the branch pipe 62b is provided at a predetermined angle with respect to the branch pipe 62a, the air 29 supplied from the branch pipe 62b can be supplied to the sulfur-absorbing seawater 16B more efficiently.
  • the sulfur-absorbing seawater 16B is recovered in water quality by the oxidation and decarboxylation of bisulfite ions (HSO 3 ⁇ ) in the sulfur-absorbing seawater 16B in the first oxidation tank 51-1, and the sulfur-absorbing seawater 16C. Is discharged from the outlet 54 of the outflow plate 56.
  • seawater 15 is supplied from the seawater supply line L1 to the downstream side of the first oxidation tank 51-1 through the second seawater branch line L5 as the second dilution seawater 15C to absorb the sulfur content.
  • the seawater 16C is mixed with the second dilution seawater 15C to further dilute the sulfur-absorbing seawater 16C.
  • the second dilution seawater 15C is mixed with the sulfur-absorbing seawater 16C, and the diluted water quality recovery seawater 31 is discharged to the sea 22 as seawater waste liquid through the seawater discharge line L6.
  • COD can be reduced and the pH of the water quality recovery seawater 31 and COD can be discharge
  • the diffuser pipe 52 that supplies the air 29 to the sulfur-absorbing seawater 16B, the inlet 53 and the outlet 54 of the sulfur-absorbing seawater 16B
  • the air diffusion pipe 52 includes a main pipe 61 for supplying air 29 and a vent pipe 62 extending from the main pipe 61.
  • the vent pipe 62 is connected to the main pipe 61 and extends in one direction.
  • the branch pipe 62b is connected to the branch pipe 62a and extends in a different direction from the branch pipe 62a, and the branch pipe 62b is disposed so as to be substantially orthogonal to the flow direction of the sulfur-absorbing seawater 16B.
  • the flow direction of the sulfur-absorbing seawater 16B and the branch pipe 62b of the vent pipe 62 are substantially orthogonal to each other, so that the liquid flow can be easily disturbed.
  • the air 29 supplied from the vent pipe 62 and the sulfur-absorbing seawater Since the contact efficiency with 16B can be increased, the air 29 and the sulfur content absorption seawater 16B can be contacted efficiently, and the oxidation of the sulfur content absorption seawater 16B can be further promoted.
  • the branch pipe 62 b of the vent pipe 62 includes a pipe main body 64 and a porous film 65 covering the surface of the pipe main body 64, and the air 29 supplied to the inside of the vent pipe 62 is passed through the fine holes 67 of the porous film 65. Therefore, air 29 can be supplied from the entire vent pipe 62 to supply the sulfur-absorbing seawater 16B in the first oxidation tank 51-1. For this reason, the air 29 can be supplied more efficiently into the sulfur-absorbing seawater 16B.
  • the air 29 and the sulfur content supplied from the vent pipe 62 are measured.
  • the absorption seawater 16B can be contacted efficiently, and the oxidation of the sulfur content absorption seawater 16B can be further promoted.
  • the pH of the water quality recovery seawater 31 is raised to close to the seawater, the drainage standard for the pH of the water quality recovery seawater 31 (pH 6.0 or more) is satisfied, and it can be released into the ocean or reused.
  • Equipment costs can be reduced and costs can be reduced.
  • the seawater treatment apparatus for treating seawater used for seawater desulfurization in the first oxidation tank 51-1 in the flue gas desulfurization absorption tower 20 has been described.
  • the first oxidation tank 51-1 includes, for example, sulfur oxides contained in exhaust gas discharged from factories in various industries, power plants such as large and medium-sized thermal power plants, large boilers for electric utilities, or general industrial boilers. It can be used to remove sulfur content in seawater that is absorbed by sulfur desulfurization.
  • FIG. 9 is a schematic view simply showing the configuration of the second oxidation tank according to the second embodiment of the present invention.
  • the second oxidation tank 51-2A according to the present embodiment has two aeration pipes 52-1 and 52-2, and the aeration pipe 51-1 includes the main pipe 61 and the ventilation pipe.
  • the air diffuser 52-2 includes a main pipe 61 and a vent pipe 62-2.
  • the ventilation pipe 62-1 has a branch pipe 62a-1 and a branch pipe 62b-1
  • the ventilation pipe 62-2 has a branch pipe 62a-2 and a branch pipe 62b-2.
  • a porous film 65 (see FIGS. 3 and 4) is provided on the surfaces of the branch pipes 62b-1 and 62b-2.
  • the diffuser tubes 52-1 and 52-2 are orthogonal to the axial direction of the branch tubes 62a-1 and 62a-2. They are arranged in parallel at a predetermined interval in the direction.
  • the branch pipes 62a-1 and 62a-2 share the main pipe 61.
  • the present invention is not limited to this, and each branch pipe 62a-1 and 62a-2 is provided for each branch pipe 62a-1.
  • the main pipe 61 may be provided separately.
  • the two diffuser tubes 52-1 and 52-2 have a predetermined interval in a direction orthogonal to the axial direction of the branch tubes 62a-1 and 62a-2.
  • the air 29 is more efficiently passed from the fine holes 67 of the porous membranes 65 of the branch pipes 62b-1 and 62b-2 to the sulfur-absorbing seawater 16B in the second oxidation tank 51-2A. Can be supplied.
  • the inlet 53 and the outlet 54 are provided on the opposing wall surfaces of the second oxidation tank 52-2A, but the present invention is not limited to this.
  • 10 and 11 are schematic views simply showing other configurations of the oxidation tank. As shown in FIGS. 10 and 11, the outlet 54 may be provided on any wall surface side adjacent to the wall surface of the second oxidation tank 51-2A where the inlet 53 is provided.
  • the branch pipes 62b-1 and 62b-2 of the two ventilation pipes 62-1 and 62-2 are connected to the branch pipes 62a-1 and 62a-2.
  • the present invention is not limited to this.
  • FIG. 12 is a schematic diagram simply showing another configuration of the second oxidation tank according to the present embodiment.
  • the second oxidation tank 51-2B according to the present embodiment two vent pipes 62-1 and 62-2 are arranged in parallel, and their branch pipes 62b-1 and 62b are arranged. -2 is offset. That is, the second oxidation tank 51-2B according to the present embodiment has a branch pipe in the position of one or both of the branch pipes 62b-1 and 62b-2 of the second oxidation tank 51-2A shown in FIG.
  • the branch pipes 62b-2 are provided so as to be positioned between the branch pipes 62b-1 while being shifted in the axial direction of 62a-1 and 62a-2.
  • the branch pipes 62b-1 and 62b-2 are offset from each other, sulfur in the second oxidation tank 51-2B is formed from the fine holes 67 of the porous membrane 65 of each of the branch pipes 62b-1 and 62b-2.
  • the air 29 can be efficiently supplied to the partial absorption seawater 16B, and can be supplied uniformly without unevenness.
  • the inlet 53 and the outlet 54 are provided on the opposing wall surfaces of the second oxidation tank 51-2B, the present invention is not limited to this.
  • 13 and 14 are schematic views simply showing other configurations of the oxidation tank. As shown in FIGS. 13 and 14, the outlet 54 may be provided on any wall surface side adjacent to the wall surface of the second oxidation tank 51-2B where the inlet 53 is provided.
  • the diffuser tubes 52-1 and 52-2 are arranged in a direction perpendicular to the axial direction of the branch tubes 62a-1 and 62a-2.
  • the present invention is not limited to this, and the diffuser tubes 52-1 and 52-2 are arranged at predetermined intervals in a direction orthogonal to the axial direction of the branch tubes 62a-1 and 62a-2. Or three or more in parallel.
  • a pair of the diffusion tubes 52-1 and 52-2 is provided in the axial direction of the branch tubes 62a-1 and 62a-2.
  • the present invention is not limited to this, and one or both of the diffuser tubes 52-1, 52-2 are provided along the axial direction of the branch tubes 62a-1, 62a-2. You may do it.
  • the diffuser tubes 52-1 and 52-2 are arranged both in the axial direction of the branch tubes 62a-1 and 62a-2 and in the direction orthogonal to the axial direction of the branch tubes 62a-1 and 62a-2. Two or more may be provided at predetermined intervals.
  • FIG. 15 is a schematic diagram schematically showing the configuration of the third oxidation tank according to the third embodiment of the present invention.
  • the branch pipes 62b-1 and 62b-2 of the two ventilation pipes 62-1 and 62-2 are comb-toothed.
  • the branch pipes 62b-2 of the other adjacent vent pipe 62-2 are alternately arranged so as to be inserted between the branch pipes 62b-1 of the one vent pipe 62-1. It will be.
  • the branch pipe 62b-2 of the other ventilation pipe 62-2 adjacent to each other between the branch pipes 62b-1 of the one ventilation pipe 62-1. are arranged so as to alternately enter into the sulfur-absorbing seawater 16B in the third oxidation tank 51-3 from the minute holes 67 of the porous membrane 65 via the branch pipes 62b-1 and 62b-2. Can be efficiently supplied, and can be supplied uniformly and at high density without unevenness.
  • the inlet 53 and the outlet 54 are provided on the opposing wall surfaces of the third oxidation tank 51-3, but the present invention is not limited to this.
  • 16 and 17 are schematic views simply showing other configurations of the oxidation tank. As shown in FIGS. 16 and 17, the outlet 54 may be provided on any wall surface side adjacent to the wall surface of the third oxidation tank 51-3 where the inlet 53 is provided.
  • FIG. 18 is a schematic view schematically showing the configuration of the fourth oxidation tank according to the fourth embodiment of the present invention
  • FIG. 19 is a cross-sectional view taken along line AA of FIG.
  • the fourth oxidation tank 51-4 according to the present embodiment is provided with a partition plate 68 that partitions between the two diffuser tubes 52-1, 52-2. . That is, the fourth oxidation tank 51-4 according to the present embodiment is provided with two diffuser tubes 52-1, 52-2, and the diffuser tubes 52-1, 52 provided along the axial direction of the main body 51a. -2 has a partition plate 68 between them. Further, air 29 is supplied from the main pipes 61-1 and 61-2 to the two air diffusion pipes 52-1 and 52-2, respectively.
  • sulfur is fed into the main body 51a by providing a partition plate 68 between the two diffuser tubes 52-1, 52-2.
  • the partial absorption seawater 16B can pass over the diffuser pipes 52-1 and 52-2, and the fourth oxidation tank is formed from the fine holes 67 of the porous membrane 65 of the branch pipes 62b-1 and 62b-2. Since the air 29 supplied to the sulfur-absorbing seawater 16B in 51-4 can be brought into gas-liquid contact for a long time, the air 29 can be reliably supplied to the sulfur-absorbing seawater 16B.
  • the two diffuser tubes 52-1 and 52-2 are partitioned by the partition plate 68, but the present invention is limited to this. Not a thing. For example, you may make it provide the partition plate 68 between each diffuser tube according to the number of the diffuser tubes installed in the main body 51a.
  • Two or more of the branch pipes 62a-1 and 62a-2 may be provided in parallel in a direction orthogonal to the axial direction at a predetermined interval. Further, the number of the diffuser tubes 52-1 and 52-2 provided on both through the partition plate 68 may be different.
  • two or more diffuser tubes 52-1 and 52-2 may be arranged at predetermined intervals in the axial direction of the branch tubes 62a-1 and 62a-2.
  • the branch pipes 62b-1 and 62b-2 of the ventilation pipes 62-1 and 62-2 are connected to the shafts of the branch pipes 62a-1 and 62a-2.
  • branch pipes 62b-1, 62b- are provided as in the second oxidation tank 51-2B according to the second embodiment shown in FIG. The two may be arranged while being offset from each other.
  • the inlet 53 and the outlet 54 are provided on the same wall surface side of the fourth oxidation tank 51-4, but the present invention is not limited to this.
  • 20 and 21 are schematic views simply showing other configurations of the oxidation tank. As shown in FIGS. 20 and 21, the outlet 54 may be provided on any wall surface side adjacent to the wall surface of the fourth oxidation tank 51-4 where the inlet 53 is provided.
  • FIG. 22 is a schematic view schematically showing the configuration of the fifth oxidation tank according to the fifth embodiment of the present invention
  • FIG. 23 is a cross-sectional view taken along line AA of FIG.
  • the fifth oxidation tank 51-5 according to the present embodiment is provided between the diffuser tube 52-1 to the diffuser tube 52-4 and between the diffuser tube 52-5 to the diffuser tube 52-8.
  • a weir 69 is provided.
  • the fifth oxidation tank 51-5 is provided with four diffuser tubes 52-1 to 52-4 on one side through the weir 69.
  • the diffuser tubes 52-1 and 52-2 are arranged in parallel at a predetermined interval in a direction orthogonal to the axial direction of the branch tubes 62a-1 and 62a-2. Further, the branch pipes 62b-1 and 62b-2 are offset from each other.
  • the diffusion tubes 52-3 and 52-4 are arranged in parallel at a predetermined interval in a direction orthogonal to the axial direction of the branch tubes 62a-3 and 62a-4, similarly to the diffusion tubes 52-1, 52-2.
  • the branch pipes 62b-3 and 62b-4 are offset from each other.
  • the diffuser tubes 52-5 to 52-8 are arranged on the opposite side through the weir 69 in the same manner as the diffuser tubes 52-1 to 52-4.
  • the diffuser tubes 52-5 and 52-6 are arranged in parallel at a predetermined interval in a direction orthogonal to the axial direction of the branch tubes 62a-5 and 62a-6, and the branch tubes 62b-5 and 62b-6 are offset from each other.
  • the diffuser tubes 52-7 and 52-8 are also arranged in parallel at a predetermined interval in a direction orthogonal to the axial direction of the branch tubes 62a-7 and 62a-8, and the branch tubes 62b-7 and 62b-8 are connected to each other. It is offset.
  • the air 29 is supplied from the main pipe 61-1 to the two air diffusers 52-1, 52-2, and the air 29 is supplied from the main pipe 61-2 to the two air diffusers 52-3, 52-4.
  • the air 29 is supplied from the main pipe 61-3 to the two air diffusers 52-5 and 52-6, and the air 29 is supplied from the main pipe 61-4 to the two air diffusers 52-7 and 52-8.
  • each of the diffuser tubes 52-1 to 52-4 and the diffuser tubes 52-5 to 52-8 are provided on each side of the weir 69.
  • the present invention is not limited to this.
  • the number of diffuser pipes is adjusted as appropriate according to the size.
  • a weir 69 is provided between the diffusion tube 52-1 to the diffusion tube 52-4 and the diffusion tube 52-5 to the diffusion tube 52-8. Therefore, as shown in FIG. 23, since convection can be generated on both sides of the weir 69, the sulfur-absorbing seawater 16B and the air 29 can be brought into gas-liquid contact more efficiently.
  • two diffuser tubes are perpendicular to the axial direction of the branch tubes 62a-1 and 62a-2 of the diffuser tubes 52-1 and 52-2.
  • the weir 69 is provided for each of the 52-1 and 52-2, the present invention is not limited to this, and the weir 69 is provided for each of the diffuser pipes 52-1, 52-2. May be.
  • the inlet 53 and the outlet 54 are provided on the same wall surface as the fifth oxidation tank 51-5, but the present invention is not limited to this.
  • 24 and 25 are schematic views simply showing other configurations of the oxidation tank. As shown in FIGS. 24 and 25, an outlet 54 may be provided on any wall surface side adjacent to the wall surface of the fifth oxidation tank 51-5 where the inlet 53 is provided.
  • the oxidation tank according to the present invention is useful for efficiently supplying air into seawater, and is used for an oxidation tank for supplying air into seawater containing sulfur content used for seawater desulfurization. Is suitable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

 第一の酸化槽51-1は、排ガス中の硫黄分を海水と接触させて海水脱硫することによって生じた硫黄分吸収海水に空気29を供給する散気管52を有し、硫黄分吸収海水の水質回復処理を行う酸化槽であって、第一の酸化槽51-1は、散気管52側に硫黄分吸収海水16Bを流入させる流入口53と空気29と接触後の硫黄分吸収海水16Cを流出させる流出口54とが設けられ、散気管52は、空気29を供給する本管61と、本管61から延びる通気管62とからなり、通気管62は、本管61と連結し一方向に延びる支管62aと、支管62aと連結し支管62aとは異なる方向に伸びる複数の枝管62bとからなり、枝管62bは硫黄分吸収海水16Bの流れ方向と略直交するように配設される。

Description

酸化槽、海水処理装置及び海水脱硫システム
 本発明は、工業燃焼設備から排出される排ガス中の硫黄酸化物など硫黄分の脱硫に用いた海水に空気を供給する散気管を備えた酸化槽、海水処理装置及び海水脱硫システムに関する。
 近年、海水淡水化プラントを併設した火力発電所が増加傾向にある。また、石炭等の化石燃料を燃焼することで発生する排ガス中に含有される硫黄分を除去するため脱硫装置が設けられている。発電所などでは大量の冷却水を必要とするため海に面した場所に建設される場合が多いこと、脱硫処理の稼動コストを低く抑えられることなどの観点から、海水を吸収液として利用して脱硫を行う海水脱硫が注目されている。
 この吸収液として海水を用いた排煙脱硫装置は、石灰‐石膏法に比べて低コストであるため、火力発電所などにおいて用いられている。また、ボイラの復水器で多量の海水を冷却水として用いるため、前記復水器から排出されて温められた海水排液の一部は脱硫装置に供給され、排ガス中のSO2の除去が行われる。
 従来の海水を用いた海水処理装置の一例を図26に示す。図26は、従来の海水を用いた海水処理装置を備えた海水脱硫システムの構成を簡略に示す図である。図26に示すように、従来の海水を用いた海水脱硫システム100は、予熱された空気11を用いて図示しないバーナにより燃焼させるボイラ12と、ボイラ12で熱交換され、排出される排ガス13中の煤塵を除去する集塵装置14と、排ガス13中の硫黄分を海水15に吸収させて脱硫し、生成される硫黄分を高濃度に含んだ硫黄分吸収海水16Aの水質回復処理を行う海水脱硫酸化処理装置101とからなるものである。この海水脱硫酸化処理装置101は、排ガス13中のSO2を海水15に吸収させ亜硫酸(H2SO3)及び硫酸(H2SO4)として回収する排煙脱硫吸収塔20と、この排煙脱硫吸収塔20から排出される硫黄分を高濃度に含んだ硫黄分吸収海水16Aの水質回復処理を行う酸化槽102とからなるものである。
 そして、ボイラ12から排出される排ガス13を蒸気発生用の熱源として使用し、発生した蒸気を用いて蒸気タービンの発電機を駆動し、発電するようにしている。
 排ガス13は図示しない排煙脱硝装置に送給され脱硝した後、集塵装置14に送給され、排ガス13中の煤塵を除去する。そして、集塵装置14で除塵された排ガス13は誘引ファン21により排煙脱硫吸収塔20内に供給される。
 排煙脱硫吸収塔20では、海22からポンプ23を用いて汲み上げられた海水15のうち、ポンプ24により海水15の一部を海水15Aとして用いて排ガス13中の硫黄分の脱硫を行っている。即ち、化石燃料を燃焼させて生じる排ガス13には、SO2などの形態で硫黄酸化物(SOx)である硫黄分が含有されている。海水脱硫では、排煙脱硫吸収塔20において排ガス13と海水供給ラインL1を介して供給される海水15Aとを気液接触させて、下記式に示すような反応が生じ、排ガス13中のSO2などの形態で含有されている硫黄酸化物(SOx)などの硫黄分を海水15Aに吸収させ、脱硫を行っている。
SO2 + H2O → HSO3 - + H+ ・・・(1)
 海水15Aと排ガス13との気液接触によりH+が発生するため、海水15Aと排ガス13とを気液接触させた後の海水15Aは亜硫酸水素イオン(HSO3 -)の濃度が上昇すると共に、H+の遊離によりpHが下がることになる。そして、多量の硫黄分を吸収させて生じる硫黄分吸収海水16AのpHは3~6程度になる。なお、硫黄分吸収海水とは、排煙脱硫吸収塔20において硫黄分を吸収した海水の流下液のことをいう。
 そして、排煙脱硫吸収塔20で脱硫された浄化ガス25は浄化ガス排出ラインL2を通って煙突26より大気中に放出する。硫黄分吸収海水16Aは硫黄分吸収溶液排出ラインL3を介して排煙脱硫吸収塔20から排出される。
 排煙脱硫吸収塔20から排出される硫黄分吸収海水16Aは、海22へと放出または再利用する前にCOD成分となる亜硫酸の濃度を低減し、pH及び溶存酸素濃度を上昇させておく必要がある。そのため、硫黄分を高濃度に含んだ硫黄分吸収海水16Aは、硫黄分吸収海水排出ラインL3を介して酸化槽102に供給され、その酸化槽102の入口前流側において海水供給ラインL1により供給される海水15の一部を第一の海水分岐ラインL4により第一の希釈用海水15Bとして混合希釈させる。また、酸化槽102で硫黄分吸収海水16Aと第一の希釈用海水15Bとが混合した海水を硫黄分吸収海水16Bとする。
 この硫黄分吸収海水16BのpHを上昇させ酸化槽102におけるSO2の再放散を防ぐと同時に酸化用空気ブロア28から空気29を散気管103を介して酸化空気用ノズル30から酸化槽102内に供給し、硫黄分吸収海水16Bと気液接触させて下記式のような反応を生じさせ、pH及び溶存酸素濃度を上昇させる。また、硫黄分吸収海水16Bを空気29と気液接触させた後の海水を硫黄分吸収海水16Cとする。
HSO3 - + 1/2O2 → SO4 2- + H+ ・・・(2)
HCO3 - + H+ → CO2(g) + H2O ・・・(3)
CO3 2- + 2H+ → CO2(g) + H2O ・・・(4)
 その後、第二の海水分岐ラインL5により残りの海水15を第二の希釈用海水15Cとして酸化槽102の下流側で硫黄分吸収海水16Cに混合希釈し、水質回復する。硫黄分吸収海水16Cを第二の希釈用海水15Cで希釈した溶液を水質回復海水31とする。そして、水質回復された水質回復海水31は、酸化槽102から排出され、海水排液として海水排出ラインL6を介して海22に排出される。
 このように、従来の海水脱硫システム100では、酸化槽102でSO2の再放散の防止とpHを向上するため、硫黄分吸収海水16Aを第一の希釈用海水15Bと酸化槽102で混合希釈し、硫黄分吸収海水16Bを曝気処理することで硫黄分吸収海水16B中の亜硫酸イオン(HSO3 -)を酸化して無害化すると同時に溶存酸素濃度を向上させ、硫黄分吸収海水16Cとし、さらに硫黄分吸収海水16Cを希釈して硫黄分吸収海水16CのpHを向上させて水質回復海水31とし、海22に排出するようにしている(例えば、特許文献1~特許文献5参照)。
 また、特許文献4では、散気管103を構成する管の一部に複数の孔を設け、酸化槽102内の硫黄分吸収海水16Bと散気管103から供給される空気29とを接触するようにした技術が開示されている。
 また、特許文献5では、散気管103の表面に多孔性膜を設け、酸化槽102内の硫黄分吸収海水16Bと散気管103の表面に設けた前記多孔性膜から供給される空気29とを接触するようにした技術が開示されている。
特開2006-055779号公報 特開2007-125474号公報 特開2008-155195号公報 米国特許第4960546号明細書 米国特許第7044453号明細書
 ここで、酸化槽102では酸化槽102内に供給される多量の硫黄分吸収海水16Aを酸化処理する必要があるため、酸化槽102内にはその分、多量の空気を供給する必要があり、酸化設備費、動力費などのコストが高くなる。そのため、酸化槽102内において散気管103から供給される空気29を酸化槽102内の硫黄分吸収海水16Bと共に効率よく接触させることが可能な酸化処理設備が切望されている。
 本発明は、前記問題に鑑み、海水脱硫に用いた海水中に空気を効率良く供給することが可能な酸化槽、海水処理装置及び海水脱硫システムを提供することを課題とする。
 上述した課題を解決するための本発明の第1の発明は、排ガス中の硫黄分を海水と接触させて海水脱硫することによって生じた硫黄分吸収溶液に空気を供給する散気管を有し、前記硫黄分吸収溶液の水質回復処理を行う酸化槽であって、前記酸化槽には、前記散気管側に前記硫黄分吸収溶液を流入させる流入口と前記散気管から供給された前記空気と接触させた前記硫黄分吸収溶液を流出させる流出口とが設けられ、前記散気管は、前記空気を供給する本管と、該本管から延びる通気管とからなり、該通気管は、前記本管と連結し一方向に延びる支管と、該支管と連結し前記支管とは異なる方向に伸びる複数の枝管とからなり、前記枝管は、前記硫黄分吸収溶液の流れ方向と略直交するように配設されたことを特徴とする酸化槽にある。
 第2の発明は、第1の発明において、前記枝管が、管本体と、該管本体の表面を覆う多孔性膜とからなることを特徴とする酸化槽にある。
 第3の発明は、第1又は2の発明において、前記枝管が平板であって、前記枝管の長手方向の形状が、前記枝管の両端の形状を矩形状又は円弧状とするものであることを特徴とする酸化槽にある。
 第4の発明は、第1又は2の発明において、前記枝管の長手方向に対して直交する断面形状が、円形状であることを特徴とする酸化槽にある。
 第5の発明は、第1乃至4の発明の何れか一つにおいて、前記通気管が、所定間隔をもって二つ以上配置されていることを特徴とする酸化槽にある。
 第6の発明は、第5の発明において、複数の前記通気管同士を並列に配置し、それらの前記枝管同士がオフセットされていることを特徴とする酸化槽にある。
 第7の発明は、第6の発明において、一方の前記枝管の間に、隣接する他方の前記散気管の前記枝管が交互に入り込みつつ配設されてなることを特徴とする酸化槽にある。
 第8の発明は、第5乃至7の何れか一つの発明において、前記酸化槽の前記散気管同士の間を仕切る仕切り板が設けられていることを特徴とする酸化槽にある。
 第9の発明は、第5乃至7の何れか一つの発明において、前記酸化槽の前記散気管同士の間に配設される堰が設けられていることを特徴とする酸化槽にある。
 第10の発明は、第1乃至9の何れか一つの発明において、前記海水が復水器から排出される排液であることを特徴とする酸化槽にある。
 第11の発明は、排ガス中の硫黄分を海水と接触させて洗浄する排煙脱硫装置と、1乃至10の何れか一つの発明の酸化槽とを有することを特徴とする海水処理装置にある。
 第12の発明は、ボイラと、前記ボイラから排出される排ガスを蒸気発生用の熱源として使用すると共に、発生した蒸気を用いて発電機を駆動する蒸気タービンと、前記蒸気タービンで凝縮した水を回収し、循環させる復水器と、前記ボイラから排出される排ガスの脱硝を行う排煙脱硝装置と、前記排ガス中の煤塵を除去する集塵装置と、第11の発明の海水処理装置と、前記排煙脱硫装置で脱硫された浄化ガスを外部へ排出する煙突とからなることを特徴とする海水脱硫システムにある。
 本発明によれば、排ガス中の硫黄分を海水と接触させて海水脱硫することによって生じた硫黄分吸収溶液の水質回復処理を行う酸化槽に設けた空気を供給する散気管を、空気を供給する本管と、本管から延びる通気管とからなり、その通気管を、本管と連結し一方向に延びる支管と、該支管と連結し前記支管とは異なる方向に伸びる複数の枝管とで構成し、枝管を硫黄分吸収溶液の流れ方向と略直交するように配設している。このため、硫黄分吸収海水の流れ方向と通気管の長手方向とが略直交することで液流れに乱れを生じ易くなり、通気管から供給された空気と硫黄分吸収海水とを効率良く接触させることができ、硫黄分吸収海水の酸化をより促進することができる。
図1は、本発明による第一の実施の形態に係る第一の酸化槽を用いた海水処理装置を適用した海水脱硫システムの構成を示す概略図である。 図2は、本発明による第一の実施の形態に係る第一の酸化槽の構成を簡略に示す概略図である。 図3は、通気管の構成を示す図である。 図4は、図3中の符号Aの部分を示す部分拡大図である。 図5は、酸化槽の他の構成を簡略に示す概略図である。 図6は、酸化槽の他の構成を簡略に示す概略図である。 図7は、通気管の構成の一例を示す図である。 図8は、通気管の構成の他の一例を示す図である。 図9は、本発明による第二の実施の形態に係る第二の酸化槽の構成を簡略に示す概略図である。 図10は、酸化槽の他の構成を簡略に示す概略図である。 図11は、酸化槽の他の構成を簡略に示す概略図である。 図12は、第二の酸化槽の他の構成を簡略に示す概略図である。 図13は、酸化槽の他の構成を簡略に示す概略図である。 図14は、酸化槽の他の構成を簡略に示す概略図である。 図15は、本発明による第三の実施の形態に係る第三の酸化槽の構成を簡略に示す概略図である。 図16は、酸化槽の他の構成を簡略に示す概略図である。 図17は、酸化槽の他の構成を簡略に示す概略図である。 図18は、本発明による第四の実施の形態に係る第四の酸化槽の構成を簡略に示す概略図である。 図19は、図18のA-A断面図である。 図20は、酸化槽の他の構成を簡略に示す概略図である。 図21は、酸化槽の他の構成を簡略に示す概略図である。 図22は、本発明による第五の実施の形態に係る第五の酸化槽の構成を簡略に示す概略図である。 図23は、図22のA-A断面図である。 図24は、酸化槽の他の構成を簡略に示す概略図である。 図25は、酸化槽の他の構成を簡略に示す概略図である。 図26は、従来の海水脱硫システムの構成を簡略に示す図である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
[第一の実施の形態]
 本発明による第一の実施の形態に係る第一の酸化槽を用いた海水処理装置を適用した海水脱硫システムについて、図面を参照して説明する。
 図1は、本発明による第一の実施の形態に係る第一の酸化槽を用いた海水処理装置を適用した海水脱硫システムの構成を示す概略図であり、図2は、本発明による第一の実施の形態に係る第一の酸化槽の構成を簡略に示す概略図であり、図3は、通気管の構成を示す図である。図中、前記図26に示した装置と同一構成には同一符号を付して重複した説明は省略する。
 図1に示すように、本実施の形態に係る第一の酸化槽を用いた海水処理装置を適用した海水脱硫システム40は、空気予熱器(AH)41で予熱された空気11を用いて図示しないバーナにより燃焼させるボイラ12と、ボイラ12から排出される排ガス13を蒸気発生用の熱源として使用すると共に、発生した蒸気42を用いて発電機43を駆動する蒸気タービン44と、この蒸気タービン44で凝縮した水45を回収し、循環させる復水器46と、ボイラ12から排出される排ガス13の脱硝を行う排煙脱硝装置47と、ボイラ12から排出される排ガス13中の煤塵を除去する集塵装置14と、排ガス13中の硫黄分を海水15を用いて海水脱硫し、海水脱硫することで生成される硫黄分を高濃度に含んだ硫黄分吸収海水16Aの水質回復処理を行う海水脱硫酸化処理装置48と、海水脱硫酸化処理装置48で排ガス13が脱硫された浄化ガス25を外部へ排出する煙突26とからなるものである。
 尚、本実施の形態において、硫黄分吸収海水とは、排煙脱硫吸収塔20において硫黄分を吸収した海水の流下液のことをいう。
 外部から供給される空気11は押込みファン49により空気予熱器41に送給され予熱される。図示しない燃料と空気予熱器41で予熱された空気11とは前記バーナに供給され、前記燃料がボイラ12で燃焼され蒸気タービン44を駆動するための蒸気42を発生する。また、本実施の形態において用いられる図示しない燃料は、例えば油タンクなどから供給される。
 ボイラ12内で燃焼して発生する排ガス13は排煙脱硝装置47に送給される。このとき、排ガス13は復水器46から排出される水45と熱交換し、蒸気42を発生する熱源として使用され、発生した蒸気42は蒸気タービン44の発電機43を駆動している。そして、蒸気タービン44で凝縮した水45を再びボイラ12に戻し、循環させるようにしている。
 そして、ボイラ12から排出され、排煙脱硝装置47に導かれた排ガス13は排煙脱硝装置47内で脱硝され、空気予熱器41で空気11と熱交換した後、集塵装置14に送給され、排ガス13中の煤塵を除去する。そして、集塵装置14で除塵された排ガス13は、誘引ファン21により排煙脱硫吸収塔20内に供給される。この時、排ガス13は熱交換器50で排煙脱硫吸収塔20で脱硫され排出される浄化ガス25と熱交換された後、排煙脱硫吸収塔20内に供給される。また、排ガス13は熱交換器50で浄化ガス25と熱交換することなく、直接、排煙脱硫吸収塔20に供給するようにしてもよい。
 海水脱硫酸化処理装置48は、排ガス13中の硫黄酸化物(SOx)を亜硫酸(H2SO3)へ脱硫反応させ、排ガス13中の硫黄分を海水15の一部の海水15Aと接触させて洗浄する排煙脱硫吸収塔20と、この排煙脱硫吸収塔20から排出される硫黄分吸収海水16A中の硫黄分を酸化すると共に脱炭酸し、水質回復を行う第一の酸化槽51-1と、海水15を排煙脱硫吸収塔20に供給する海水供給ラインL1と、硫黄分吸収海水16Aを第一の酸化槽51-1に排出する硫黄分吸収海水排出ラインL3と、海水15の一部を第一の希釈用海水15Bとして第一の酸化槽51-1の上流側に供給する第一の海水分岐ラインL4と、海水15の一部を第二の希釈用海水15Cとして第一の酸化槽51-1の下流側に供給する第二の海水分岐ラインL5とを有するものである。
 本実施の形態においては、海水15のうち、排煙脱硫吸収塔20に送給する海水を海水15Aとし、第一の酸化槽51-1の上流側に供給する海水を第一の希釈用海水15Bとし、第一の酸化槽51-1の下流側に供給する海水を第二の希釈用海水15Cとする。
 排煙脱硫吸収塔20では、排ガス13中に含有されている硫黄分を海22から汲み上げられた海水15を用いて海水脱硫を行っている。排煙脱硫吸収塔20において排ガス13と海水供給ラインL1を介して供給される海水15Aとを気液接触させて、排ガス13中の硫黄分を海水15Aに吸収させ、海水脱硫を行っている。
 また、海22から汲み上げられた海水15は復水器46で熱交換して排出される排海水である海水15の一部を海水15Aとしてポンプ24で排煙脱硫吸収塔20に送給し、海水脱硫に用いているが、海22から汲み上げた海水15を直接用いるようにしてもよい。
 また、排煙脱硫吸収塔20において海水脱硫により海水15Aと排ガス13とを気液接触することにより発生したH+が海水15A中に遊離するため、海水15AのpHが下がり、硫黄分吸収海水16Aには多量の硫黄分が吸収される。
 また、海水供給ラインL1から海水15の一部を第一の希釈用海水15Bとして第一の海水分岐ラインL4を介して第一の酸化槽51-1の上流側に送給し、第一の酸化槽51-1において硫黄分吸収海水16Aを第一の希釈用海水15Bと混合し、希釈している。この硫黄分吸収海水16Aを第一の希釈用海水15Bで混合し、希釈した海水を硫黄分吸収海水16Bとする。これにより、硫黄分吸収海水16BのpHを上昇させることができると共に、SO2分圧を低減することでSO2の飛散を防止することができる。
 また、第一の酸化槽51-1では、空気29を酸化用空気ブロア28から散気管52を介して第一の酸化槽51-1内に送り込み、第一の酸化槽51-1において硫黄分を空気29と接触させることで、酸化反応と脱炭酸反応とが生じている。
 図2に示すように、本実施の形態に係る第一の酸化槽51-1は、排ガス13中の硫黄分を海水15Aと接触させて海水脱硫することによって生じた硫黄分吸収海水16Aに空気29を供給する散気管52を有し、硫黄分吸収海水16Aの水質回復処理を行う酸化槽であって、第一の酸化槽51-1は、散気管52側に硫黄分吸収海水16Bを流入させる流入口53と散気管52から供給された空気29と接触させた硫黄分吸収海水16Cを流出させる流出口54とが設けられ、散気管52は、空気29を供給する本管61と、本管61から延びる通気管62とからなり、通気管62は、本管61と連結し一方向に延びる支管62aと、支管62aと連結し支管62aとは異なる方向に伸びる複数の枝管62bとからなり、枝管62bは硫黄分吸収海水16Bの流れ方向と略直交するように配設されるものである。また、通気管62は、本管61を軸に左右対称に配置されている。
 また、本実施の形態においては、流入口53は、第一の酸化槽51-1の本体51a内の硫黄分吸収海水16Bの供給側に設けられた流入板55に設けられ、流出口54は、第一の酸化槽51-1の本体51a内の硫黄分吸収海水16Bの排出側に設けられた流出板56に設けられている。
 尚、図2中、符号57は支管62a同士を連結するバルブを示す。
 また、図3は、通気管の構成を示す図である。図3に示すように、散気管52の枝管62bは、管本体64と、この管本体64の表面を覆う多孔性膜65とからなるものであり、この管本体64の表面には複数の孔66が設けられている。
 また、図4は、図3中の符号Aの部分を示す部分拡大図であり、多孔性膜の表面の部分拡大図である。図4に示すように、多孔性膜65の表面には微細孔67があり、通気管62の枝管62bの内部に供給された空気29は、管本体64の表面に設けられている複数の孔66を介して多孔性膜65の微細孔67から第一の酸化槽51-1内の硫黄分吸収海水16Bに供給することができる。
 このため、枝管62b全体から空気29を供給することができるため、硫黄分吸収海水16B中に空気29を更に効率良く供給することができ、硫黄分吸収海水16B中の亜硫酸水素イオン(HSO3 -)の酸化反応を更に促進することができる。
 また、通気管62は、本管61と連結し一方向に延びる支管62aと、支管62aと連結し支管62aとは異なる方向に伸びる複数の枝管62bとからなり、枝管62bは、硫黄分吸収海水16Bの流れ方向とが略直交するように配設されているため、第一の酸化槽51-1内の硫黄分吸収海水16Bの液流れに乱れを生じ易くすることができる。このため、通気管62の孔66から噴出する空気29と硫黄分吸収海水16Bとの接触効率を増加させ、硫黄分吸収海水16B中の亜硫酸水素イオンの酸化反応を更に促進することができる。
 また、図4に示すように、多孔性膜65の表面の孔66の直径としては、例えば0.9mm以上1.1mm以下の範囲が好ましく、0.95mm以上1.05mm以下の範囲がより好ましく、更には1mm程度であるのが好ましい。これは、海水中で安定して存在できる孔66の最低の気泡径は約1mm程度であり、孔66の大きさが例えば1.1mmよりも大きいと、枝管62bの単位通気量当たりの気液接触面積が小さくなり、酸素溶解の効率が低下するためである。一方、孔66の大きさが例えば0.9mmよりも小さいと、枝管62bの圧損が上昇し、気液接触面積を増加させ難くなるためである。
 また、多孔性膜65の材質としては、弾性体が好ましく、生産性、加工性の点でゴム製が好ましい。具体的なゴム製の材料としては、公知のものが適用され、EPDM(エチレンプロピレンゴム)、シリコーンゴム、ポリウレタン、クロロプレンゴム、ニトリルゴム、フッ素ゴム、パーフロロエラストマ等が適用される。中でも、強度等の点よりEPDMが好ましい。
 また、散気管52は、本管61を中心としてその両側に通気管62が設けられている。本管61を中心にその両側に通気管62を設けているため、通気管62の末端の枝管62bにまで空気29を安定して供給することができる。よって、本実施の形態に係る第一の酸化槽51-1に備えられている散気管52を用いれば、本管61の何れか一方の片側にのみ通気管62を設けている場合よりも、通気管62の末端にまで空気29を安定して供給することができる。このため、通気管62からの空気29を第一の酸化槽51-1内の硫黄分吸収海水16Bと従来よりも安定して接触させることができる。
 また、散気管52は本管61と通気管62とからなる管状部材で構成されているため、散気管52を容易に製造することができると共に、第一の酸化槽51-1への設置を容易にすることができる。
 また、図3に示すように、通気管62は、円筒状の管であって通気管62の枝管62bの長手方向の形状は長方形であり、通気管62の長手方向に対して直交する断面形状を円形状としている。これに対し、従来では、空気供給設備として、例えば、平板状のプレート型の散気管や、略楕円形状とした扁平型の平板状の散気管などが用いられている。
 本実施の形態のように、枝管62bの長手方向の形状を長方形とし、枝管62bの長手方向に対して直交する断面形状を円形状とした枝管62bを用いることで、従来より用いられているような平板状のプレート型の散気管や、略楕円形状とした扁平型の平板状の散気管のような空気供給設備よりも通気管62に設けられる複数の枝管62b同士の間隔Dを狭くして配置することができる。このため、図2中では、枝管62b同士の間隔Dを広くしているが、枝管62b同士が接しない程度にまで間隔Dを狭くすることができる。
 本実施の形態においては、複数の枝管62b同士の各々の間隔Dは、400mm以上、1000mm以下であり、好ましくは450mm以上、490mm以下、更に好ましくは470mm程度とするのが最も好ましい。通気管62は海水中に設置して固定されているため、海水の流れの中にある通気管62は、海水からの力を受け、海水の流速に抗して、通気管62の周りの海水の流れが乱される。そのため、枝管62b同士の間隔が小さいと、下流側に位置する枝管62bは上流側に位置する枝管62bにより海水の流れの乱され具合が減り、流路抵抗が低減するため、設備コスト、ランニングコストを低減することができる。よって、枝管62b同士の間隔Dが400mmよりも小さくても上流側に位置する枝管62bが下流側に位置する枝管62bの流路抵抗となることはないが、メンテナンス性が低下するためである。また、枝管62b同士の間隔Dが1000mmよりも大きいと、枝管62b同士の間隔Dに余裕ができ、海水の流れの乱され具合が大きくなり、流路抵抗が増大するためである。
 複数の枝管62b同士の間隔Dを狭くして配置することにより、第一の酸化槽51-1内に設置できる枝管62bの数を多くすることができるため、平板状のプレート型の散気管や、略楕円形状とした扁平型の平板状の散気管のような従来の空気供給設備に比べて散気管52から硫黄分吸収海水16Bに供給される空気量を増加させることができる。
 また、第一の酸化槽51-1内の面積当りの枝管62bの設置数を多くすることができるため、硫黄分吸収海水16Bの液流れをより乱し易くすることができ、枝管62bの多孔性膜65の微細孔67から供給される空気29と硫黄分吸収海水16Bとの接触効率を増加させることができる。
 また、本実施の形態においては、枝管62bの長手方向の形状を長方形とした矩形状のものを用いているが、本発明はこれに限定されるものではなく、枝管62bの両端の形状を円弧状としたものを用いるようにしてもよい。円弧状としては、例えば、枝管62bの両端の形状が丸みをもつ矩形状、円形状または楕円形状などがある。
 また、本実施の形態においては、枝管62bの多孔性膜65から第一の酸化槽51-1内の硫黄分吸収海水16Bに空気29を供給するようにしているが、本発明はこれに限定されるものではなく、枝管62bの長手方向に複数の酸化空気用ノズルを設けるようにしてもよい。
 更に、枝管62bと直交する方向に更にはしご状に設けた空気29を供給する管を設け、この管も枝管62bと同様に多孔性膜65を設け、多孔性膜65の微細孔67から空気29を第一の酸化槽51-1内の硫黄分吸収海水16Bに供給するようにしてもよい。または、枝管62bと直交する方向に更にはしご状に設けた管に酸化空気用ノズルを設け、この酸化空気用ノズルから空気29を第一の酸化槽51-1内の硫黄分吸収海水16Bに供給するようにしてもよい。
 また、本実施の形態においては、支管62aの表面に複数の孔を設け、支管62aから第一の酸化槽51-1内の硫黄分吸収海水16Bに空気29を供給するようにしてもよい。このとき、全ての通気管62に空気29が供給されるようにするため、酸化用空気ブロア28より通気管62の支管62a内に供給される空気29の圧力を調整する。
 また、本実施の形態においては、第一の酸化槽51-1の対向する壁面に、流入口53及び流出口54が設けられているが、本発明はこれに限定されるものではない。図5、6は、酸化槽の他の構成を簡略に示す概略図である。図5、6に示すように、第一の酸化槽51-1の流入口53の設けられている壁面と隣接する何れかの壁面側に流出口54を設けるようにしてもよい。
 更に、流入口53及び流出口54は、第一の酸化槽51-1を構成する壁面ではなく、例えば、第一の酸化槽51-1の何れかの壁面の上部に、流入口53及び流出口54を設けるようにしてもよい。このとき、硫黄分吸収海水16Bは第一の酸化槽51-1の何れかの壁面の上部から流入口として第一の酸化槽51-1内に硫黄分吸収海水16Bを流入させ、硫黄分吸収海水16Bを流出させる側の壁面にはポンプを設け、第一の酸化槽51-1内の硫黄分吸収海水16Bを吸い出すようにしてもよい。
 第一の酸化槽51-1の上部に開口部として流入口及び流出口を設ける方が、第一の酸化槽51-1の壁面に流入口53及び流出口54を設ける場合より、大きい流入口及び流出口を設けやすい。このため、第一の酸化槽51-1内には、広範囲で硫黄分吸収海水16Bの流れを作り易いため、硫黄分吸収海水16Bの流れの生じない領域をでき難くすることができる。
 更に、流入口53及び流出口54の何れか一方は第一の酸化槽51-1の壁面に設け、他方は、第一の酸化槽51-1の壁面の上部に設け、硫黄分吸収海水16Bを第一の酸化槽51-1内に流入させ、第一の酸化槽51-1内の硫黄分吸収海水16Cを例えばポンプなどを用いて排出するようにしてもよい。
 また、本実施の形態においては、第一の酸化槽51-1内に枝管62bを硫黄分吸収海水16Bの流れ方向と直交するように配設しているが、本発明はこれに限定されるものではない。図7は、通気管の構成の一例を示す図である。図7に示すように、枝管62bを流入口53より流入してくる硫黄分吸収海水16Bの流入方向に支管62aに対して例えば45°以上、90°未満となるように傾けて配設してもよい。また、図8は、通気管の構成の他の一例を示す図である。図8に示すように、枝管62bを流出口54に流出する硫黄分吸収海水16Cの流出方向に支管62aに対して例えば45°以上、90°未満となる範囲で傾けて配設してもよい。このように、枝管62bを支管62aに対して所定角度傾けて設けるようにすれば、枝管62bから供給される空気29を硫黄分吸収海水16Bに更に効率良く供給することができる。
 そして、第一の酸化槽51-1で硫黄分吸収海水16B中の亜硫酸水素イオン(HSO3 -)の酸化反応、脱炭酸反応により、硫黄分吸収海水16Bは水質回復され、硫黄分吸収海水16Cとして流出板56の流出口54から排出される。
 また、海水供給ラインL1から海水15の一部を第二の希釈用海水15Cとして第二の海水分岐ラインL5を介して第一の酸化槽51-1の下流側に送給し、硫黄分吸収海水16Cに第二の希釈用海水15Cを混合し、硫黄分吸収海水16Cを更に希釈する。
 そして、硫黄分吸収海水16Cに第二の希釈用海水15Cを混合し、更に希釈した水質回復海水31は海水排出ラインL6を介して海水廃液として海22に排出される。これにより、水質回復海水31のpHを上昇させると共に、CODを低減することができ、水質回復海水31のpH、CODを海水放流可能なレベルとして放出することができる。
 従って、本実施の形態に係る第一の酸化槽51-1によれば、硫黄分吸収海水16Bに空気29を供給する散気管52と、硫黄分吸収海水16Bの流入口53と流出口54とを有し、散気管52は、空気29を供給する本管61と、本管61から延びる通気管62とからなり、通気管62を、本管61と連結し一方向に延びる支管62aと、支管62aと連結し支管62aとは異なる方向に伸びる複数の枝管62bとで構成し、枝管62bを、硫黄分吸収海水16Bの流れ方向と略直交するように配設されている。硫黄分吸収海水16Bの流れ方向と通気管62の枝管62bとが略直交することで、液流れに乱れを生じ易くすることができ、通気管62から供給された空気29と硫黄分吸収海水16Bとの接触効率を増加させることができるため、空気29と硫黄分吸収海水16Bとを効率良く接触させることができ、硫黄分吸収海水16Bの酸化をより促進させることができる。
 また、通気管62の枝管62bは、管本体64とこの管本体64の表面を覆う多孔性膜65とからなり、通気管62内部に供給された空気29を多孔性膜65の微細孔67から第一の酸化槽51-1内の硫黄分吸収海水16Bに供給するため、通気管62全体から空気29を供給することができる。このため、硫黄分吸収海水16B中に空気29を更に効率良く供給することができる。
 このように、本実施の形態に係る第一の酸化槽51-1を用いた海水脱硫酸化処理装置48を適用した海水脱硫システム40によれば、通気管62から供給された空気29と硫黄分吸収海水16Bとを効率良く接触させることができ、硫黄分吸収海水16Bの酸化をより促進させることができる。このため、水質回復海水31のpHを海水近くにまで上昇させ、水質回復海水31のpHの排水基準(pH6.0以上)を満たし、海洋への放出または再利用を行うことができると共に、酸化設備のコストを低減し、低コスト化を図ることができる。
 また、本実施の形態においては、第一の酸化槽51-1を排煙脱硫吸収塔20で海水脱硫に用いた海水の処理を行う海水処理装置について説明したが、本発明はこれに限定されるものではない。第一の酸化槽51-1は、例えば各種産業における工場、大型、中型火力発電所などの発電所、電気事業用大型ボイラ又は一般産業用ボイラ等から排出される排ガス中に含まれる硫黄酸化物を海水脱硫することで生じる硫黄分吸収海水中の硫黄分の除去に利用することができる。
[第二の実施の形態]
 次に、本発明による第二の実施の形態に係る第二の酸化槽を用いた海水処理装置を適用した海水脱硫システムについて、図面を参照して説明する。
 海水脱硫システムの構成は、本発明の第一の実施の形態に係る第一の酸化槽を用いた海水処理装置を適用した海水脱硫システムと同様であるため、海水脱硫システムの全体の構成についての説明は省略し、本実施の形態に係る第二の酸化槽についてのみ説明する。上記第一の実施の形態に係る第一の酸化槽と同一構成については同一符号を付して重複した説明は省略する。
 図9は、本発明による第二の実施の形態に係る第二の酸化槽の構成を簡略に示す概略図である。
 図9に示すように、本実施の形態に係る第二の酸化槽51-2Aは、二つの散気管52-1、52-2を有し、散気管51-1が本管61と通気管62-1とを有し、散気管52-2が本管61と通気管62-2とからなる。通気管62-1は支管62a-1と枝管62b-1とを有し、通気管62-2は支管62a-2と枝管62b-2とを有する。また、枝管62b-1、62b-2の表面には、多孔性膜65(図3、4参照)が設けられてなるものである。
 即ち、図9に示すように、本実施の形態に係る第二の酸化槽51-2Aは、散気管52-1、52-2が支管62a-1、62a-2の軸方向に対して直交方向に所定間隔をもって並行に配置されているものである。
 また、本実施の形態においては、支管62a-1、62a-2は本管61を共通にしているが、本発明はこれに限定されるものではなく、支管62a-1、62a-2毎に本管61を別々に設けるようにしてもよい。
 本実施の形態に係る第二の酸化槽51-2Aのように、二つの散気管52-1、52-2が支管62a-1、62a-2の軸方向に対して直交方向に所定間隔をもって並行に配置することで、枝管62b-1、62b-2の各々の多孔性膜65の微細孔67から第二の酸化槽51-2A内の硫黄分吸収海水16Bに空気29を更に効率良く供給することができる。
 また、本実施の形態においては、第二の酸化槽52-2Aの対向する壁面に、流入口53及び流出口54が設けられているが、本発明はこれに限定されるものではない。図10、11は、酸化槽の他の構成を簡略に示す概略図である。図10、11に示すように、第二の酸化槽51-2Aの流入口53の設けられている壁面と隣接する何れかの壁面側に流出口54を設けるようにしてもよい。
 また、本実施の形態に係る第二の酸化槽51-2Aにおいては、二つの通気管62-1、62-2の枝管62b-1、62b-2を支管62a-1、62a-2の軸方向に同列に等間隔で配置しているが、本発明はこれに限定されるものではない。
 図12は、本実施の形態に係る第二の酸化槽の他の構成を簡略に示す概略図である。図12に示すように、本実施の形態に係る第二の酸化槽51-2Bは、二つの通気管62-1、62-2同士を並列に配置し、それらの枝管62b-1、62b-2同士がオフセットされている。即ち、本実施の形態に係る第二の酸化槽51-2Bは、図9に示す第二の酸化槽51-2Aの枝管62b-1、62b-2の何れか一方又は両方の位置を支管62a-1、62a-2の軸方向にずらして枝管62b-1同士の間に枝管62b-2が位置するように設けている。
 枝管62b-1、62b-2同士がオフセットされていることで、枝管62b-1、62b-2の各々の多孔性膜65の微細孔67から第二の酸化槽51-2B内の硫黄分吸収海水16Bに空気29を効率良く供給することができると共に、ムラなく均一に供給することができる。
 また、第二の酸化槽51-2Bの対向する壁面に、流入口53及び流出口54が設けられているが、本発明はこれに限定されるものではない。図13、14は、酸化槽の他の構成を簡略に示す概略図である。図13、14に示すように、第二の酸化槽51-2Bの流入口53の設けられている壁面と隣接する何れかの壁面側に流出口54を設けるようにしてもよい。
 また、本実施の形態に係る第二の酸化槽51-2A、51-2Bにおいては、散気管52-1、52-2を支管62a-1、62a-2の軸方向に対して直交方向に並列に設けるようにしているが、本発明はこれに限定されるものではなく、散気管52-1、52-2を支管62a-1、62a-2の軸方向に対して直交方向に所定間隔をもって並列に3つ以上設けるようにしてもよい。
 また、本実施の形態に係る第二の酸化槽51-2A、51-2Bにおいては、散気管52-1、52-2を支管62a-1及び62a-2の軸方向に一組設けるようにしているが、本発明はこれに限定されるものではなく、散気管52-1、52-2の何れか一方又は両方を支管62a-1、62a-2の軸方向に沿って2つ以上設けるようにしてもよい。
 また、本実施の形態においては、散気管52-1、52-2を支管62a-1、62a-2の軸方向、支管62a-1、62a-2の軸方向に対して直交方向の両方に所定間隔をもって二つ以上設けるようにしてもよい。
[第三の実施の形態]
 次に、本発明による第三の実施の形態に係る第三の酸化槽を用いた海水処理装置を適用した海水脱硫システムについて、図面を参照して説明する。
 海水脱硫システムの構成は、本発明の第一の実施の形態に係る第一の酸化槽を用いた海水処理装置を適用した海水脱硫システムと同様であるため、海水脱硫システムの全体の構成についての説明は省略し、本実施の形態に係る第三の酸化槽についてのみ説明する。上記第一の実施の形態に係る第一の酸化槽及び上記第二の実施の形態に係る第二の酸化槽と同一構成については同一符号を付して重複した説明は省略する。
 図15は、本発明による第三の実施の形態に係る第三の酸化槽の構成を簡略に示す概略図である。
 図15に示すように、本実施の形態に係る第三の酸化槽51-3は、二つの通気管62-1、62-2の枝管62b-1、62b-2同士が櫛歯状に配置されてなるものであり、一方の通気管62-1の枝管62b-1同士の間に、隣接する他方の通気管62-2の枝管62b-2が交互に入り込みつつ配設されてなるものである。
 本実施の形態に係る第三の酸化槽51-3のように、一方の通気管62-1の枝管62b-1同士の間に隣接する他方の通気管62-2の枝管62b-2が交互に入り込みつつ配設することで、枝管62b-1、62b-2を介して多孔性膜65の微細孔67から第三の酸化槽51-3内の硫黄分吸収海水16Bに空気29を効率良く供給することができると共に、ムラなく均一に高密度で供給することができる。
 また、本実施の形態においては、第三の酸化槽51-3の対向する壁面に、流入口53及び流出口54が設けられているが、本発明はこれに限定されるものではない。図16、17は、酸化槽の他の構成を簡略に示す概略図である。図16、17に示すように、第三の酸化槽51-3の流入口53の設けられている壁面と隣接する何れかの壁面側に流出口54を設けるようにしてもよい。
[第四の実施の形態]
 次に、本発明による第四の実施の形態に係る第四の酸化槽を用いた海水処理装置を適用した海水脱硫システムについて、図面を参照して説明する。
 海水脱硫システムの構成は、本発明の第一の実施の形態に係る第一の酸化槽を用いた海水処理装置を適用した海水脱硫システムと同様であるため、海水脱硫システムの全体の構成についての説明は省略し、本実施の形態に係る第四の酸化槽についてのみ説明する。上記第一の実施の形態に係る第一の酸化槽乃至上記第三の実施の形態に係る第三の酸化槽と同一構成については同一符号を付して重複した説明は省略する。
 図18は、本発明による第四の実施の形態に係る第四の酸化槽の構成を簡略に示す概略図であり、図19は、図18のA-A断面図である。
 図18に示すように、本実施の形態に係る第四の酸化槽51-4は、二つの散気管52-1、52-2同士の間を仕切る仕切り板68が設けられてなるものである。
 即ち、本実施の形態に係る第四の酸化槽51-4は、二つの散気管52-1、52-2が設けられ、本体51aの軸方向に沿って設けられる散気管52-1、52-2同士の間に仕切り板68を有するものである。また、二つの散気管52-1、52-2には本管61-1、61-2から各々空気29を供給するようにしている。
 本実施の形態に係る第四の酸化槽51-4のように、二つの散気管52-1、52-2同士の間に仕切り板68を設けることで、本体51a内に送給される硫黄分吸収海水16Bが各々の散気管52-1、52-2上を通過させることができ、枝管62b-1、62b-2の各々の多孔性膜65の微細孔67から第四の酸化槽51-4内の硫黄分吸収海水16Bに供給される空気29と長時間に亙って気液接触させることができるため、硫黄分吸収海水16Bに空気29を確実に供給することができる。
 また、本実施の形態に係る第四の酸化槽51-4においては、仕切り板68で二つの散気管52-1、52-2を仕切るようにしているが、本発明はこれに限定されるものでない。例えば、本体51a内に設置される散気管の数に応じて各々の散気管同士の間に仕切り板68を設けるようにしてもよい。
 また、本実施の形態においては、仕切り板68を介して両側に図9に示す第二の実施の形態に係る第二の酸化槽51-2Aのような散気管52-1、52-2を支管62a-1、62a-2軸方向に対して直交する方向に並列に所定間隔をもって二つ以上設けるようにしてもよい。また、仕切り板68を介して両方に設けられる散気管52-1、52-2の各々の数を異なるようにしてもよい。
 また、本実施の形態においては、散気管52-1、52-2を支管62a-1、62a-2の軸方向に所定間隔をもって2つ以上配置するようにしてもよい。
 また、本実施の形態に係る第四の酸化槽51-4においては、通気管62-1、62-2の枝管62b-1、62b-2同士を支管62a-1、62a-2の軸方向に沿って同じ位置となるように同列に配置しているが、図12に示す第二の実施の形態に係る第二の酸化槽51-2Bのように、枝管62b-1、62b-2同士をオフセットしつつ配置するようしてもよい。
 また、本実施の形態においては、第四の酸化槽51-4の同一の壁面側に、流入口53及び流出口54が設けられているが、本発明はこれに限定されるものではない。図20、21は、酸化槽の他の構成を簡略に示す概略図である。図20、21に示すように、第四の酸化槽51-4の流入口53の設けられている壁面と隣接する何れかの壁面側に流出口54を設けるようにしてもよい。
[第五の実施の形態]
 次に、本発明による第五の実施の形態に係る第五の酸化槽を用いた海水処理装置を適用した海水脱硫システムについて、図面を参照して説明する。
 海水脱硫システムの構成は、本発明の第一の実施の形態に係る第一の酸化槽を用いた海水処理装置を適用した海水脱硫システムと同様であるため、海水脱硫システムの全体の構成についての説明は省略し、本実施の形態に係る第五の酸化槽についてのみ説明する。上記第一の実施の形態に係る第一の酸化槽乃至上記第四の実施の形態に係る第四の酸化槽と同一構成については同一符号を付して重複した説明は省略する。
 図22は、本発明による第五の実施の形態に係る第五の酸化槽の構成を簡略に示す概略図であり、図23は、図22のA-A断面図である。
 図22に示すように、本実施の形態に係る第五の酸化槽51-5は、散気管52-1~散気管52-4と散気管52-5~散気管52-8との間に堰69が設けられてなるものである。
 即ち、図22に示すように、本実施の形態に係る第五の酸化槽51-5は、堰69を介して片側に四つの散気管52-1~52-4が設けられている。散気管52-1、52-2は、支管62a-1、62a-2の軸方向に対して直交方向に所定間隔を持って並列に配置されている。また、枝管62b-1、62b-2同士はオフセットされている。また、散気管52-3、52-4も、散気管52-1、52-2と同様に、支管62a-3、62a-4の軸方向に対して直交方向に所定間隔を持って並列に配置され、枝管62b-3、62b-4同士はオフセットされている。また、堰69を介して反対側に散気管52-5~散気管52-8が散気管52-1~52-4と同様に配置されている。散気管52-5、52-6は、支管62a-5、62a-6の軸方向に対して直交方向に所定間隔を持って並列に配置され、枝管62b-5、62b-6同士はオフセットされている。また、散気管52-7、52-8も支管62a-7、62a-8の軸方向に対して直交方向に所定間隔を持って並列に配置され、枝管62b-7、62b-8同士はオフセットされている。
 また、二つの散気管52-1、52-2には本管61-1から空気29を供給し、二つの散気管52-3、52-4には本管61-2から空気29を供給し、二つの散気管52-5、52-6には本管61-3から空気29を供給し、二つの散気管52-7、52-8には本管61-4から空気29を供給するようにしている。
 また、散気管52-1~52-4、散気管52-5~52-8を堰69の片側に各々4つずつ設けるようにしているが、これに限定されるものではなく、酸化槽の大きさに応じて散気管を設ける数量は適宜調整するようにする。
 本実施の形態に係る第五の酸化槽51-5のように、散気管52-1~散気管52-4と散気管52-5~散気管52-8との間に堰69を設けることで、図23に示すように堰69の両側で対流を生じさせることができるため、硫黄分吸収海水16Bと空気29とを更に効率良く気液接触させることができる。
 また、本実施の形態に係る第五の酸化槽51-5においては、散気管52-1、52-2の支管62a-1、62a-2の軸方向に対して直交方向に2つの散気管52-1、52-2毎に堰69を設けるようにしているが、本発明はこれに限定されるものではなく、各々の散気管52-1、52-2毎に堰69を設けるようにしてもよい。
 また、本実施の形態においては、第五の酸化槽51-5と同一の壁面に、流入口53及び流出口54が設けられているが、本発明はこれに限定されるものではない。図24、25は、酸化槽の他の構成を簡略に示す概略図である。図24、25に示すように、第五の酸化槽51-5の流入口53の設けられている壁面と隣接する何れかの壁面側に流出口54を設けるようにしてもよい。
 以上のように、本発明に係る酸化槽は、海水中に空気を効率良く供給するのに有用であり、海水脱硫に用いた硫黄分を含む海水中に空気を供給する酸化槽に用いるのに適している。
 11 空気
 12 ボイラ
 13 排ガス
 14 集塵装置
 15、15A 海水
 15B 第一の希釈用海水
 15C 第二の希釈用海水
 16A~16C 硫黄分吸収海水
 20 排煙脱硫吸収塔
 21 誘引ファン
 22 海
 23、24 ポンプ
 25 浄化ガス
 26 煙突
 27 酸化槽流入海水
 28 酸化用空気ブロア
 29 空気
 31 水質回復海水
 40 海水脱硫システム
 41 空気予熱器(AH)
 42 蒸気
 43 発電機
 44 蒸気タービン
 45 水
 46 復水器
 47 排煙脱硝装置
 48 海水脱硫酸化処理装置
 49 押込みファン
 50 熱交換器
 51-1 第一の酸化槽
 51-2A、51-2B 第二の酸化槽
 51-3 第三の酸化槽
 51-4 第四の酸化槽
 51-5 第五の酸化槽
 51a 本体
 52、52-1~52-8 散気管
 53 流入口
 54 流出口
 55 流入板
 56 流出板
 57 バルブ
 61、61-1~61-4 本管
 62、62-1、62-2 通気管
 62a、62a-1~62a-8 支管
 62b、62b-1~62b-8 枝管
 64 管本体
 65 多孔性膜
 66 孔
 67 微細孔
 68 仕切り板
 69 堰
 L1 海水供給ライン
 L2 浄化ガス排出ライン
 L3 硫黄分吸収海水排出ライン
 L4 第一の海水分岐ライン
 L5 第二の海水分岐ライン
 L6 海水排出ライン

Claims (12)

  1.  排ガス中の硫黄分を海水と接触させて海水脱硫することによって生じた硫黄分吸収溶液に空気を供給する散気管を有し、前記硫黄分吸収溶液の水質回復処理を行う酸化槽であって、
     前記酸化槽には、前記散気管側に前記硫黄分吸収溶液を流入させる流入口と前記散気管から供給された前記空気と接触させた前記硫黄分吸収溶液を流出させる流出口とが設けられ、
     前記散気管は、前記空気を供給する本管と、該本管から延びる通気管とからなり、
     該通気管は、前記本管と連結し一方向に延びる支管と、該支管と連結し前記支管とは異なる方向に伸びる複数の枝管とからなり、
     前記枝管は、前記硫黄分吸収溶液の流れ方向と略直交するように配設されたことを特徴とする酸化槽。
  2.  請求項1において、
     前記枝管が、管本体と、該管本体の表面を覆う多孔性膜とからなることを特徴とする酸化槽。
  3.  請求項1又は2において、
     前記枝管が平板であって、
     前記枝管の長手方向の形状が、前記枝管の両端の形状を矩形状又は円弧状とするものであることを特徴とする酸化槽。
  4.  請求項1又は2において、
     前記枝管の長手方向に対して直交する断面形状が、円形状であることを特徴とする酸化槽。
  5.  請求項1乃至4の何れか一つにおいて、
     前記通気管が、所定間隔をもって二つ以上配置されていることを特徴とする酸化槽。
  6.  請求項5において、
     複数の前記通気管同士を並列に配置し、
     それらの前記枝管同士がオフセットされていることを特徴とする酸化槽。
  7.  請求項6において、
     一方の前記枝管の間に、隣接する他方の前記散気管の前記枝管が交互に入り込みつつ配設されてなることを特徴とする酸化槽。
  8.  請求項5乃至7の何れか一つにおいて、
     前記酸化槽の前記散気管同士の間を仕切る仕切り板が設けられていることを特徴とする酸化槽。
  9.  請求項5乃至7の何れか一つにおいて、
     前記酸化槽の前記散気管同士の間に配設される堰が設けられていることを特徴とする酸化槽。
  10.  請求項1乃至9の何れか一つにおいて、
     前記海水が復水器から排出される排液であることを特徴とする酸化槽。
  11.  排ガス中の硫黄分を海水と接触させて洗浄する排煙脱硫装置と、
     請求項1乃至10の何れか一つの酸化槽とを有することを特徴とする海水処理装置。
  12.  ボイラと、
     前記ボイラから排出される排ガスを蒸気発生用の熱源として使用すると共に、発生した蒸気を用いて発電機を駆動する蒸気タービンと、
     前記蒸気タービンで凝縮した水を回収し、循環させる復水器と、
     前記ボイラから排出される排ガスの脱硝を行う排煙脱硝装置と、
     前記排ガス中の煤塵を除去する集塵装置と、
     請求項11の海水処理装置と、
     前記排煙脱硫装置で脱硫された浄化ガスを外部へ排出する煙突とからなることを特徴とする海水脱硫システム。
PCT/JP2009/063196 2009-03-31 2009-07-23 酸化槽、海水処理装置及び海水脱硫システム WO2010113335A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801582492A CN102361825B (zh) 2009-03-31 2009-07-23 氧化槽、海水处理装置及海水脱硫系统
EP09842687.7A EP2415718A4 (en) 2009-03-31 2009-07-23 OXIDATION TANK, SEAWATER TREATMENT APPARATUS AND SYSTEM FOR DESULFURING SEAWATER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-087546 2009-03-31
JP2009087546A JP5754877B2 (ja) 2009-03-31 2009-03-31 酸化槽、海水処理装置及び海水脱硫システム

Publications (1)

Publication Number Publication Date
WO2010113335A1 true WO2010113335A1 (ja) 2010-10-07

Family

ID=42827660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063196 WO2010113335A1 (ja) 2009-03-31 2009-07-23 酸化槽、海水処理装置及び海水脱硫システム

Country Status (8)

Country Link
EP (1) EP2415718A4 (ja)
JP (1) JP5754877B2 (ja)
CN (1) CN102361825B (ja)
CL (1) CL2011002425A1 (ja)
MY (1) MY166535A (ja)
SA (1) SA110310071B1 (ja)
TW (1) TWI415798B (ja)
WO (1) WO2010113335A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120313267A1 (en) * 2009-11-12 2012-12-13 Sartorius Stedim Biotech Gmbh Aeration device for bioreactors
WO2013146143A1 (ja) * 2012-03-30 2013-10-03 三菱重工業株式会社 海水脱硫酸化処理装置及び海水排煙脱硫システム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014520989A (ja) * 2011-07-01 2014-08-25 シーガン ペン, 内燃機関ガス排出背圧を最適化する方法、装置及びシステム
EP2578544B1 (en) * 2011-10-07 2018-12-12 General Electric Technology GmbH Method and system for controlling treatment of effluent from seawater flue gas scrubber
JP5991664B2 (ja) * 2012-05-25 2016-09-14 三菱重工環境・化学エンジニアリング株式会社 排煙脱硫システム
CN102728192A (zh) * 2012-07-06 2012-10-17 安徽金森源环保工程有限公司 一种湿式脱硫氧化装置
JP6313945B2 (ja) * 2013-09-30 2018-04-18 三菱日立パワーシステムズ株式会社 海水脱硫用散気装置及びそれを備えた海水脱硫装置、並びに水質改善方法
CN103585878A (zh) * 2013-11-27 2014-02-19 丁华声 一种脱硫塔浆池脉冲悬浮装置
JP6441660B2 (ja) 2014-03-17 2018-12-19 株式会社荏原製作所 除害機能付真空ポンプ
JP6285773B2 (ja) * 2014-03-28 2018-02-28 富士電機株式会社 排ガス処理装置の排水処理方法
CN104815543B (zh) * 2015-04-01 2017-09-22 东北大学 一种海水脱硫循环系统及脱硫方法
CN104815523B (zh) * 2015-04-01 2017-01-04 东北大学 一种海水脱硫系统
US9630864B2 (en) 2015-06-17 2017-04-25 General Electric Technology Gmbh Seawater plant with inclined aeration and mixed auto recovery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960546A (en) 1989-04-19 1990-10-02 Charles E. Tharp Diffuser mounting arrangement for waste water aeration systems
JPH04338286A (ja) * 1991-05-14 1992-11-25 Nitto Denko Corp 散気管およびそれに用いるチューブ
JP2006055779A (ja) 2004-08-20 2006-03-02 Mitsubishi Heavy Ind Ltd 海水処理方法および海水処理装置
US7044453B2 (en) 2004-01-08 2006-05-16 Environmental Dynamics, Inc. Membrane diffuser with uniform gas distribution
JP2007125474A (ja) 2005-11-01 2007-05-24 Nippon Kankyo Kikaku Kk 海水による排ガス脱硫方法及び排ガス脱硫装置
JP2008155195A (ja) 2006-12-23 2008-07-10 Lentjes Gmbh 燃焼排ガス浄化設備の曝気装置
EP1967253A1 (de) * 2007-03-09 2008-09-10 Enviroserv Gmbh Waschturm
JP2009028572A (ja) * 2007-07-24 2009-02-12 Mitsubishi Heavy Ind Ltd エアレーション装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496764A (ja) * 1972-05-06 1974-01-21
JPS59213495A (ja) * 1983-05-20 1984-12-03 Kurita Water Ind Ltd 水の処理方法
US5160714A (en) * 1991-04-08 1992-11-03 Ari Technologies, Inc. Continuous autocirculation, multiple zone mass transfer apparatus and method
JPH06285326A (ja) * 1993-04-05 1994-10-11 Chiyoda Corp 排煙脱硫方法と排煙脱硫装置
JP3498402B2 (ja) * 1995-02-06 2004-02-16 石川島播磨重工業株式会社 脱硫装置
US6497402B2 (en) * 2001-03-30 2002-12-24 Environmental Dynamics, Inc. Diffuser mounting system for aeration of liquids
JP5324747B2 (ja) * 2007-02-21 2013-10-23 三菱重工業株式会社 泡回収装置及び泡回収システム
JP5199585B2 (ja) * 2007-02-21 2013-05-15 三菱重工業株式会社 排煙脱硫装置
JP5351393B2 (ja) * 2007-07-10 2013-11-27 三菱重工業株式会社 流体の混合流路構造及び混合方法
JP5330658B2 (ja) * 2007-07-24 2013-10-30 三菱重工業株式会社 エアレーション装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960546A (en) 1989-04-19 1990-10-02 Charles E. Tharp Diffuser mounting arrangement for waste water aeration systems
US4960546B1 (en) 1989-04-19 1996-04-09 Environmental Dynamics Inc Diffuser mounting arrangement for waste water aeration systems
JPH04338286A (ja) * 1991-05-14 1992-11-25 Nitto Denko Corp 散気管およびそれに用いるチューブ
US7044453B2 (en) 2004-01-08 2006-05-16 Environmental Dynamics, Inc. Membrane diffuser with uniform gas distribution
JP2006055779A (ja) 2004-08-20 2006-03-02 Mitsubishi Heavy Ind Ltd 海水処理方法および海水処理装置
JP2007125474A (ja) 2005-11-01 2007-05-24 Nippon Kankyo Kikaku Kk 海水による排ガス脱硫方法及び排ガス脱硫装置
JP2008155195A (ja) 2006-12-23 2008-07-10 Lentjes Gmbh 燃焼排ガス浄化設備の曝気装置
EP1967253A1 (de) * 2007-03-09 2008-09-10 Enviroserv Gmbh Waschturm
JP2009028572A (ja) * 2007-07-24 2009-02-12 Mitsubishi Heavy Ind Ltd エアレーション装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2415718A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120313267A1 (en) * 2009-11-12 2012-12-13 Sartorius Stedim Biotech Gmbh Aeration device for bioreactors
US9636644B2 (en) * 2009-11-12 2017-05-02 Sartorius Stedim Biotech Gmbh Aeration device for bioreactors
WO2013146143A1 (ja) * 2012-03-30 2013-10-03 三菱重工業株式会社 海水脱硫酸化処理装置及び海水排煙脱硫システム

Also Published As

Publication number Publication date
CN102361825B (zh) 2013-05-22
EP2415718A1 (en) 2012-02-08
TW201034973A (en) 2010-10-01
EP2415718A4 (en) 2014-08-06
CL2011002425A1 (es) 2012-07-06
CN102361825A (zh) 2012-02-22
JP5754877B2 (ja) 2015-07-29
MY166535A (en) 2018-07-10
TWI415798B (zh) 2013-11-21
JP2010234334A (ja) 2010-10-21
SA110310071B1 (ar) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5754877B2 (ja) 酸化槽、海水処理装置及び海水脱硫システム
JP5773687B2 (ja) 海水排煙脱硫システムおよび発電システム
WO2013115107A1 (ja) 海水排煙脱硫システムおよび発電システム
WO2016186038A1 (ja) 海水脱硫排水の水質改質装置及び海水排煙脱硫システム
JP2012179521A5 (ja)
JP2007263078A (ja) 船舶用排煙処理装置及び船舶用排煙処理方法
JP2012115764A (ja) 海水脱硫装置の排水水路及び海水排煙脱硫システム
WO2017069044A1 (ja) 硫黄吸収溶液の処理装置及び処理方法
TWI531538B (zh) Oxidation tank, seawater desulfurization system and power generation system
JPWO2010116482A1 (ja) 海水脱硫酸化処理装置、脱硫海水の処理方法及びこれを適用した発電システム
JP2010269248A (ja) 排煙脱硫吸収装置及び排ガス処理方法
JP5437151B2 (ja) 排煙脱硫装置及びこれを備えた酸素燃焼装置と方法
JP2010240624A (ja) 排煙脱硫装置及び排ガス処理方法
JP5144967B2 (ja) 排ガス処理システム
WO2010131327A1 (ja) 海水排煙脱硫装置及び脱硫海水の処理方法
JP6285773B2 (ja) 排ガス処理装置の排水処理方法
JP5535823B2 (ja) エアレーション装置及びこれを備えた海水排煙脱硫装置、エアレーション装置の運転方法
JP4719117B2 (ja) 排ガス処理方法
JP5535824B2 (ja) エアレーション装置及びこれを備えた海水排煙脱硫装置
JP2008155195A (ja) 燃焼排ガス浄化設備の曝気装置
KR102059190B1 (ko) 미스트 제거기 및 이를 포함하는 습식배연 탈황장치
JP2012239922A (ja) 海水排煙脱硫装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158249.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842687

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12011501866

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2009842687

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011002425

Country of ref document: CL

Ref document number: 7079/CHENP/2011

Country of ref document: IN