WO2010113322A1 - カーボン製反応容器の破損防止方法 - Google Patents

カーボン製反応容器の破損防止方法 Download PDF

Info

Publication number
WO2010113322A1
WO2010113322A1 PCT/JP2009/056983 JP2009056983W WO2010113322A1 WO 2010113322 A1 WO2010113322 A1 WO 2010113322A1 JP 2009056983 W JP2009056983 W JP 2009056983W WO 2010113322 A1 WO2010113322 A1 WO 2010113322A1
Authority
WO
WIPO (PCT)
Prior art keywords
substantially cylindrical
shoulder
cylindrical body
thermal expansion
reaction vessel
Prior art date
Application number
PCT/JP2009/056983
Other languages
English (en)
French (fr)
Inventor
靖史 松尾
誠 松倉
裕介 和久田
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to PCT/JP2009/056983 priority Critical patent/WO2010113322A1/ja
Priority to JP2011506945A priority patent/JP5374581B2/ja
Priority to TW099102345A priority patent/TW201036697A/zh
Publication of WO2010113322A1 publication Critical patent/WO2010113322A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0272Graphite

Definitions

  • the present invention is a method for preventing a carbon reaction vessel in which a plurality of substantially cylindrical bodies made of carbon are connected from being damaged by thermal shock, and particularly a reaction for reacting tetrachlorosilane with hydrogen to convert it to trichlorosilane.
  • the present invention relates to a method for preventing damage to a carbon reaction vessel used in a furnace.
  • Trichlorosilane (SiHCl 3 ) is a special material gas used for manufacturing semiconductors, liquid crystal panels, solar cells, and the like. In recent years, demand has been steadily expanding, and growth is expected as a CVD material widely used in the electronics field.
  • Trichlorosilane is produced by contacting tetrachlorosilane (SiCl 4 ) and hydrogen (H 2 ) to achieve the following thermal equilibrium state. SiCl 4 + H 2 ⁇ SiHCl 3 + HCl (1) This reaction is performed by heating a raw material gas composed of gasified tetrachlorosilane and hydrogen to 700 to 1400 ° C. in a carbon reaction vessel accommodated in a reaction furnace.
  • Patent Document 1 proposes a carbon reaction vessel formed by stacking several substantially cylindrical bodies (substantially cylindrical objects) treated with a silicon carbide coating.
  • the carbon reaction vessel for reacting tetrachlorosilane with hydrogen is preferably integrally molded to achieve excellent durability and heat transfer efficiency, but it is not suitable for use in production plants. Therefore, as proposed in Patent Document 1, a plurality of carbon substantially cylindrical bodies connected and integrated are used.
  • the inner diameter of the upper end of the substantially cylindrical body 101 is larger than the inner diameter of the body portion 104 in order to stably connect the substantially cylindrical bodies 101 made of carbon.
  • the shoulder 102 is formed by the step generated by the difference in inner diameter between the upper end and the body portion 104.
  • the outer diameter of the lower end of the substantially cylindrical body 101 is smaller than the outer diameter of the body portion 104.
  • the protrusion 103 is formed by a step generated due to a difference in outer diameter with respect to 104.
  • the shoulder 102 and the protrusion 103 are arranged so that when the substantially cylindrical bodies 101 are connected to each other, the protrusion 103 of one of the substantially cylindrical bodies 101 is fitted to the shoulder 102 of the other substantially cylindrical body 101.
  • the depth of the portion 102 and the length of the protruding portion 103 are designed to be substantially the same.
  • a corresponding screw thread or screw groove (not shown) may be provided on the inner peripheral surface of the shoulder portion 102 and the outer peripheral surface of the protruding portion 103. .
  • the substantially cylindrical body 101 having the above structure has the shoulder portion 102 and the protruding portion 103 at the upper end and the lower end thereof, the thickness at both ends is reduced to almost half of the body portion 104. As a result, the upper and lower end portions of the substantially cylindrical body 101 become structurally fragile.
  • the protrusion 103 of one of the substantially cylindrical bodies and the shoulder 102 of the other substantially cylindrical body at the connecting portion Due to the difference in thermal expansion or thermal shrinkage, the radial stress applied between the two changes. When this stress is remarkably increased, the thin shoulder portion 102 and the protruding portion 103 cannot withstand the load, causing cracks and cracks, which may damage the carbon reaction vessel 100.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for preventing a carbon reaction vessel in which a plurality of substantially cylindrical bodies made of carbon are connected from being damaged by thermal shock.
  • the present inventors even if they are substantially cylindrical bodies that seem to be identically manufactured using the same material and have the same shape and dimensions, It was found that the thermal expansion coefficient is different for each cylinder. Therefore, by measuring the thermal expansion coefficient of each substantially cylindrical body in advance, and connecting the substantially cylindrical bodies in such an order that the difference in thermal expansion coefficient between the shoulder portion to be connected and the protruding portion is reduced, a carbon reaction is achieved. The inventors have found that the container can be prevented from being damaged by thermal shock, and have reached the present invention.
  • the method for preventing breakage of the carbon reaction container according to the present invention includes a protrusion having a reduced outer diameter at one end and a shoulder having an increased inner diameter at the other end.
  • the plurality of substantially cylindrical bodies are connected in such an order that the difference between the thermal expansion coefficient at the projecting portion of one substantially cylindrical body and the thermal expansion coefficient at the shoulder of the other substantially cylindrical body is reduced. .
  • each connecting portion it is possible to reduce the difference between the thermal expansion amount of the protruding portion of one substantially cylindrical body and the thermal expansion amount of the shoulder portion of the other substantially cylindrical body, It is possible to suppress an increase in stress applied to the weak shoulder portion and the protruding portion, and to prevent the carbon reaction vessel from being damaged.
  • the carbon reaction vessel 100 handled in the present embodiment includes a plurality of substantially cylindrical bodies made of carbon such that the lower end of one substantially cylindrical body 101 is fitted to the upper end of the other substantially cylindrical body 101. It is comprised by arrange
  • the substantially cylindrical body arranged at the uppermost stage is closed at the upper end side to constitute the canopy 105 of the carbon reaction vessel 100, and the substantially cylindrical body arranged at the lowermost stage is closed at the lower end side to form a carbon reaction vessel.
  • 100 bottom plates 106 are formed.
  • an introduction port 107 for taking the raw material gas into the carbon reaction vessel 100 is formed in the approximate center of the bottom plate 106, and the reaction product gas is made of carbon on the side wall of the substantially cylindrical body located in the vicinity of the canopy 105.
  • An outlet 108 for leading the reaction vessel 100 to the outside is formed.
  • this carbon reaction vessel 100 is heated from the outside with a heater (not shown) and a carbon reaction vessel is produced.
  • the internal temperature of 100 is kept at 700 to 1400 ° C., the raw material gas supplied from the inlet 107 is reacted inside the carbon reaction vessel 100, and the generated reaction product gas is taken out from the outlet 108.
  • the substantially cylindrical body 101 has a protruding portion 103 in which the outer diameter of one end portion is reduced, and a shoulder portion 102 in which the inner diameter of the other end portion is enlarged.
  • the inner diameter of the upper end of the substantially cylindrical body 101 is larger than the inner diameter of the body part 104, and the shoulder part 102 is formed by a step caused by the inner diameter difference between the upper end and the body part 104. Is formed.
  • the outer diameter of the lower end of the substantially cylindrical body 101 is reduced from the outer diameter of the body portion 104, and the protruding portion 103 is formed by a step caused by the outer diameter difference between the lower end and the body portion 104.
  • the ratio of the thickness 109 of the shoulder portion to the thickness 110 of the protruding portion with respect to the radial direction of the substantially cylindrical body 101 is 30:70 to 70:30, more preferably 35:65 to 65: 35, more preferably in the range of 40:60 to 60:40, and more preferably about 45:55.
  • the difference in thermal expansion coefficient between the substantially cylindrical bodies 101 to be connected is set to a specific value or less, which will be described later, so that the shoulder portion 102 and the protruding portion 103 are reduced. As a result, it is possible to prevent excessive stress from being applied, and at the same time to maintain airtightness at the connecting portion.
  • the thickness 111 of the body portion of the substantially cylindrical body 101 is typically set to 0.5 to 20 cm in order to maintain strength and to avoid peeling of the silicon carbide coating described later on the surface thereof. Preferably, it is 1.5 cm to 15 cm.
  • a curved recess (R portion 112) is provided at the base of the shoulder portion 102 and the protruding portion 103.
  • the radius of curvature of the R portion 112 is preferably 5 to 10% of the thickness 111 of the body portion, and more preferably 5 to 7%.
  • Screws for screwing and fastening a plurality of substantially cylindrical bodies 101 are formed on the inner peripheral surface of the shoulder portion 102 and the outer peripheral surface of the protruding portion 103. By screwing and fastening the substantially cylindrical bodies 101 to each other, it is possible to improve the connection stability and at the same time to obtain sufficient airtightness.
  • the direction of winding of the screw to be formed, the number of threads, the shape of the thread, the diameter, and the pitch are not particularly limited. It is not always necessary to screw and fasten the plurality of substantially cylindrical bodies 101, and an appropriate sealing material such as a cement material may be applied to the connecting portion to ensure stability and airtightness.
  • a graphite material having excellent airtightness is preferable.
  • the strength is high, and the characteristics such as thermal expansion are the same in any direction. It is preferable to use isotropic high-purity graphite that is also excellent in heat resistance and corrosion resistance.
  • the substantially cylindrical body 101 is mainly made of carbon, as shown below, the thinning or embrittlement of the tissue is caused by hydrogen supplied into the carbon reaction vessel 100 or water generated by hydrogen combustion. I will receive it.
  • the silicon carbide coating is extremely resistant to such chemical decomposition, it is preferable to form the silicon carbide coating on the surface of the substantially cylindrical body 101 made of carbon.
  • the silicon carbide film is not particularly limited, but typically can be formed by vapor deposition by a CVD method.
  • a mixed gas of a silicon halide compound such as tetrachlorosilane or trichlorosilane and a hydrocarbon compound such as methane or propane is used.
  • the method of using, or heating the substantially cylindrical body 101 while pyrolyzing a silicon halide compound having a hydrocarbon group such as methyltrichlorosilane, triphenylchlorosilane, methyldichlorosilane, dimethyldichlorosilane, and trimethylchlorosilane with hydrogen can be used.
  • the thickness of the silicon carbide coating is preferably 10 to 500 ⁇ m, more preferably 30 to 300 ⁇ m. If the thickness of the silicon carbide coating is 10 ⁇ m or more, corrosion of the substantially cylindrical body 101 caused by hydrogen, water, methane, etc. existing in the carbon reaction vessel 100 can be sufficiently suppressed, and if it is 500 ⁇ m or less, silicon carbide Neither cracking of the coating nor cracking of the structure of the substantially cylindrical body 101 is promoted.
  • the formed silicon carbide coating is a dense and uniform pinhole-free coating and is excellent in chemical stability. Therefore, chlorosilane is contained in the carbon reaction vessel 100 constituted by the substantially cylindrical body 101 provided with the silicon carbide coating. If hydrogen is reacted with hydrogen, the frequency of repairing the equipment can be reduced and the work efficiency can be further improved.
  • thermal expansion coefficient a shoulder thickness 109 or protrusion of the thickness 110 of the temperature t 0 ° C. a 0, a thickness 109 or protrusion of the thickness 110 of the shoulder at a temperature t 1 ° C. when the a 1, obtained by the respective following equations (1).
  • Thermal expansion coefficient [(a 1 ⁇ a 0 ) / a 0 ] / (t 1 ⁇ t 0 ) (1)
  • the expansion rate with respect to the amount of change in temperature is constant.
  • t 0 is 0 to 500 ° C.
  • t 1 It is preferable to perform measurement while increasing the ambient temperature at a constant rate using a differential scanning calorimeter under the condition of 400 to 1000 ° C. The measurement is preferably performed in a nitrogen gas atmosphere.
  • the coefficient of thermal expansion varies depending on the position to be measured because it changes due to local compositional differences and dimensional errors even in the same substantially cylindrical body 101.
  • the substantially cylindrical body 101 is manufactured by firing carbon, it is difficult to make the composition and dimensions completely uniform. Therefore, it is preferable to measure the shoulder portion 102 of one substantially cylindrical body 101 at a plurality of points, obtain an average value thereof, and use this average value as the thermal expansion coefficient of the shoulder portion 102 in the substantially cylindrical body 101.
  • the substantially cylindrical body 101 when the substantially cylindrical body 101 is thermally expanded, its outer diameter and inner diameter increase.
  • the expansion amount of the shoulder portion 102 is excessively larger than the expansion amount of the protruding portion 103, a gap may be generated in the connecting portion, resulting in poor airtightness.
  • the expansion amount of the protruding portion 103 exceeds the expansion amount of the shoulder portion 102 excessively, the stress acting in the radial direction at the connecting portion may increase and cracks may occur.
  • the difference is 0.4 ⁇ 10 ⁇ 6 (1 / K) or less, more preferably 0.3 ⁇ 10 ⁇ 6 (1 / K) or less, more preferably 0.2 ⁇ 10 ⁇ 6 (1 / K) or less, and further preferably 0.1 ⁇ 10 6. -6 (1 / K) or less is preferable.
  • the thermal expansion coefficient of the protrusion 103 of one substantially cylindrical body (substantially cylindrical body located on the upper side) in the connecting portion is the same as that of the shoulder 102 of the other substantially cylindrical body (substantially cylindrical body located on the lower side).
  • a plurality of substantially cylindrical bodies having a 1.35 cm shoulder and a protruding portion having a length of 3.8 cm and a radial thickness of 1.65 cm at the lower end were prepared.
  • a screw groove was formed on the inner peripheral surface of the shoulder, and a screw thread corresponding to the screw groove was formed on the outer peripheral surface of the protrusion.
  • a part of the upper end and the lower end of the substantially cylindrical body is collected in advance, and the thermal expansion coefficient corresponding to the shoulder portion and the protruding portion of the substantially cylindrical body is measured from the portion.
  • a test piece was cut out. Four test pieces were prepared for each of the upper end and the lower end in a size of 5 mm in length, 5 mm in width, and 15 mm in height.
  • the approximately cylindrical body is placed in a CVD reactor, and the interior of the apparatus is replaced with argon gas, and then heated to 1200 ° C. did.
  • a mixed gas of trichloromethylsilane and hydrogen (molar ratio 1: 5) was introduced into the CVD reactor, and a silicon carbide film having a thickness of 200 ⁇ m was formed on the entire surface of the substantially cylindrical body by the CVD method.
  • the atmospheric temperature is kept constant from 25 ° C. (t 0 ) to 1100 ° C. (t 1 ) using a differential scanning calorimeter in a nitrogen gas atmosphere.
  • the coefficient of thermal expansion was determined while increasing at a speed, and these were used as the coefficient of thermal expansion of the shoulder and protrusion of each substantially cylindrical body.
  • the substantially cylindrical body is connected so that the difference between the thermal expansion coefficient of the shoulder portion of one substantially cylindrical body to be connected and the thermal expansion coefficient of the projecting portion of the other substantially cylindrical body is within a certain range shown in Table 1, A carbon reaction vessel was produced.
  • Piping and a heating device were set in the produced carbon reaction vessel to prepare a reaction furnace.
  • the amount of the raw material gas and the reaction product gas leaked from the carbon reactor into the reactor was measured to evaluate the airtightness, and then the carbon reactor was disassembled. The occurrence of cracks in the connecting part of the substantially cylindrical body was observed. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Silicon Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

 本発明は、熱膨張による連結部の割れの発生を防止することができる、カーボン製反応容器の破損防止方法に関し、一方の端部に外径が縮小されてなる突出部を有しかつ他方の端部に内径が拡大されてなる肩部を有するカーボン製の複数の略円筒体を、一方の略円筒体の突出部における熱膨張係数と他方の略円筒体の肩部における熱膨張係数との差が小さくなるような順序で連結することを特徴とする。

Description

カーボン製反応容器の破損防止方法
 本発明は、カーボンからなる複数の略円筒体を連結したカーボン製反応容器を熱衝撃による破損から防止する方法であって、特にテトラクロロシランと水素とを反応させてトリクロロシランに転換するための反応炉に使用されるカーボン製反応容器の破損防止方法に関する。
 トリクロロシラン(SiHCl)は、半導体、液晶パネル、太陽電池等の製造に用いられる特殊材料ガスである。近年、需要は順調に拡大し、エレクトロニクス分野で広く使用されるCVD材料として、今後も伸びが期待されている。
 トリクロロシランは、テトラクロロシラン(SiCl)と水素(H)とを接触させ、以下の熱平衡状態を達成することによって生成される。
      SiCl+H⇔SiHCl+HCl     (1)
 この反応は、ガス化したテトラクロロシランと水素とからなる原料ガスを反応炉に収容されたカーボン製反応容器内おいて700~1400℃に加熱することによって行われる。
 上記反応によりトリクロロシランを製造するための従来のカーボン製反応容器としては、例えば特許文献1に記載されたものがある。この文献には、炭化珪素被膜処理された数個の略円筒体(略円筒状物)を積み重ねて形成されたカーボン製反応容器が提案されている。
特許第3529070号公報
 テトラクロロシランと水素とを反応させるためのカーボン製反応容器は、優れた耐久性や伝熱効率を実現するために本来は一体成型されていることが好ましいが、製造プラントで使用される場合には規模が大きくなるため、特許文献1に提案されているように、カーボン製の複数の略円筒体を連結一体化させたものが用いられる。
 このようなカーボン製反応容器は、例えば図1に示すように、カーボン製の略円筒体101同士を安定に連結させるために、略円筒体101の上端の内径が胴体部104の内径よりも拡大され、上端と胴体部104との内径差により生じた段差により肩部102が形成され、その一方、略円筒体101の下端の外径が胴体部104の外径より縮小され、下端と胴体部104との外径差により生じた段差により突出部103が形成されている。肩部102と突出部103は、略円筒体101同士を連結する際に、一方の略円筒体101の突出部103が、他方の略円筒体101の肩部102に嵌合するように、肩部102の深さと突出部103の長さとが略同一となるように設計されている。また、略円筒体101同士を螺合締結すべく、肩部102の内周面と突出部103の外周面には、対応するネジ山またはネジ溝(不図示)が設けられている場合もある。
 しかしながら、上記構造の略円筒体101は、その上端および下端に肩部102および突出部103を有するため、両端の肉厚が胴体部104のほぼ半分近くにまで薄くなってしまう。その結果、略円筒体101の上下端部が構造上脆くなってしまう。
 その上、複数の略円筒体101を連結一体化して使用するため、急激な温度変化を加えると、連結部における一方の略円筒体の突出部103と他方の略円筒体の肩部102との熱膨張量または熱収縮量の相違により、両者間にかかる径方向の応力が変化する。この応力が顕著に増大すると、肉厚の薄い肩部102や突出部103が負荷に耐えきれず割れやひび割れを生じ、カーボン製反応容器100を破損する場合がある。
 本発明は上記事情に鑑みてなされたものであり、カーボンからなる複数の略円筒体を連結したカーボン製反応容器を熱衝撃による破損から防止する方法を提供することを目的とする。
 本発明者等は、前記課題を解決する方法を鋭意検討した結果、同一の材質を用いて、同一の形状および寸法となるように製造された一見同一に見える略円筒体であっても、略円筒体毎に熱膨張係数が異なることを見出した。そこで、各略円筒体の熱膨張係数を予め測定しておき、連結する肩部と突出部との熱膨張係数の差が小さくなるような順序で略円筒体を連結することにより、カーボン製反応容器を熱衝撃による破損から防止できることを見出し、本発明に至った。
 すなわち、本発明のカーボン製反応容器の破損防止方法は、一方の端部に外径が縮小されてなる突出部を有しかつ他方の端部に内径が拡大されてなる肩部を有するカーボン製の複数の略円筒体を、一方の略円筒体の突出部における熱膨張係数と他方の略円筒体の肩部における熱膨張係数との差が小さくなるような順序で連結することを特徴とする。
 このような構成とすることにより、各連結部において、一方の略円筒体の突出部の熱膨張量と他方の略円筒体の肩部の熱膨張量との差を低減することができるため、強度の弱い肩部や突出部にかかる応力の増大を抑制でき、カーボン製反応容器の破損を防止することができる。
本発明において取り扱うカーボン製反応容器の一形態を示す概略縦断面図である。 図1の丸枠Aで囲まれた略円筒体間の連結部の拡大図である。
100:カーボン製反応容器
101:略円筒体
102:肩部
103:突出部
104:胴体部
105:天蓋
106:底板
107:導入口
108:抜出口
109:肩部の厚み
110:突出部の厚み
111:胴体部の厚み
112:R部
 以下、本発明の一実施形態について、図面を用いて説明する。本実施形態では、特に、テトラクロロシランと水素とを含む原料ガスからトリクロロシランと塩化水素とを含む反応生成ガスを生成するために用いられるカーボン製反応容器の破損防止方法について説明する。
 本実施形態で扱うカーボン製反応容器100は、図1に示すように、一方の略円筒体101の下端が他方の略円筒体101の上端に嵌合するように複数のカーボン製の略円筒体101を略同軸に上下に配して連結することにより構成されている。
 最上段に配される略円筒体は、上端側が閉塞されていてカーボン製反応容器100の天蓋105を構成し、最下段に配される略円筒体は、下端側が閉塞されていてカーボン製反応容器100の底板106を構成している。また、底板106の略中央には原料ガスをカーボン製反応容器100の内部に取り込むための導入口107が形成され、天蓋105の近傍に位置する略円筒体の側壁には反応生成ガスをカーボン製反応容器100の外部へ導出するための抜出口108が形成されている。
 テトラクロロシランと水素とを含む原料ガスからトリクロロシランと塩化水素とを含む反応生成ガスを生成するには、このカーボン製反応容器100を外側からヒータ(図示せず)で加熱してカーボン製反応容器100の内部温度を700~1400℃に保ち、導入口107から供給される原料ガスをカーボン製反応容器100の内部で反応させ、生成された反応生成ガスを抜出口108から取り出す。
<略円筒体>
 略円筒体101は、図1に示すように、一方の端部の外径が縮小されてなる突出部103と、他方の端部の内径が拡大されてなる肩部102とを有する。
 本実施形態で用いるカーボン製反応容器100では、略円筒体101の上端の内径が胴体部104の内径よりも拡大され、この上端と胴体部104との内径差により生じた段差により肩部102が形成されている。また、略円筒体101の下端の外径が胴体部104の外径より縮小され、この下端と胴体部104との外径差により生じた段差により突出部103が形成されている。
 図2に拡大して示すように、略円筒体101の径方向に対する肩部の厚み109:突出部の厚み110の比は、30:70~70:30、さらに好ましくは35:65~65:35、さらに好ましくは40:60~60:40の範囲であることが好ましく、とりわけ約45:55であることがさらに好ましい。肩部102および突出部103の厚みをこのような範囲とすることにより、連結する略円筒体101の熱膨張係数の差を後述する特定の値以下とすることによって、肩部102および突出部103に過度の応力がかかることを防ぐことができると同時に、連結部における気密性を維持することができる。
 略円筒体101の胴体部の厚み111は、強度を保持するため、並びに、その表面に施す後記の炭化ケイ素被膜の剥離を避けるために、典型的には、0.5~20cmとするのが好ましく、1.5cm~15cmとするのがさらに好ましい。
 また、肩部102および突出部103の付け根には、曲面状の窪み(R部112)が設けられている。R部112の曲率半径は胴体部の厚み111の5~10%であることが好ましく、5~7%であることがさらに好ましい。R部112を設けることにより、割れの起点になりやすい肩部102および突出部103の付け根にかかる応力を分散させることができ、カーボン製反応容器100の破損を一層防止することができる。また、R部112の曲率半径がこの範囲内であれば、略円筒体101の肉厚が薄くなり過ぎないため、強度を十分に保持することができる。
 肩部102の内周面および突出部103の外周面には、複数の略円筒体101を螺合締結するためのネジが形成されている。略円筒体101同士を螺合締結することにより、連結の安定性を高めると同時に、十分な気密性を得ることができる。形成するネジの巻きの方向、条数、ネジ山の形状、径およびピッチは、特に限定されるものではない。尚、複数の略円筒体101を連結するにあたって必ずしも螺合締結する必要はなく、連結部にセメント材等の適切なシール材を塗布して安定性および気密性を確保してもよい。
 また、略円筒体101を構成する材質としては、気密性に優れた黒鉛材が好ましく、特に、微粒子構造のため強度が高く、熱膨張等の特性がどの方向に対しても同一であることから耐熱性および耐食性にも優れている等方性高純度黒鉛を用いることが好ましい。
<表面処理>
 略円筒体101は、カーボンを主材料とするため、カーボン製反応容器100内に供給される水素や、水素の燃焼により生成する水によって、以下に示すように、組織の減肉または脆化を受けてしまう。
   C+2H→CH
   C+HO→H+CO
   C+2HO→2H+CO
 炭化ケイ素被膜はこれらの化学的分解に対して極めて耐性が高いため、カーボン製の略円筒体101の表面に炭化ケイ素被膜を形成することが好ましい。
 炭化ケイ素被膜は、特に制限はないが、典型的にはCVD法により蒸着させて形成することができる。
 CVD法によりカーボン製の略円筒体101の表面に炭化ケイ素被膜を形成するには、例えば、テトラクロロシラン又はトリクロロシランのようなハロゲン化珪素化合物とメタンやプロパンなどの炭化水素化合物との混合ガスを用いる方法、またはメチルトリクロロシラン、トリフェニルクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、トリメチルクロロシランのような炭化水素基を有するハロゲン化珪素化合物を水素で熱分解しながら、加熱された略円筒体101の表面に炭化ケイ素を堆積させる方法を用いることができる。
 炭化ケイ素被膜の厚みは、10~500μmとすることが好ましく、30~300μmであればさらに好ましい。炭化ケイ素被膜の厚みが10μm以上であれば、カーボン製反応容器100内に存在する水素、水、メタン等による略円筒体101の腐食を十分に抑制でき、また、500μm以下であれば、炭化ケイ素被膜のひび割れや略円筒体101の組織の割れが助長されることもない。
 形成された炭化ケイ素被膜は、緻密均質なピンホールのない被膜であり、化学安定性に優れているため、炭化ケイ素被膜を施した略円筒体101により構成されたカーボン製反応容器100中でクロロシランと水素との反応を行えば、設備の修繕頻度を低減でき、作業能率をさらに向上させることができる。
<熱膨張係数>
 本明細書において、「熱膨張係数」とは、温度t℃における肩部の厚み109又は突出部の厚み110をa、温度t℃における肩部の厚み109又は突出部の厚み110をaとした場合に、それぞれ以下の式(1)によって求められる。
熱膨張係数=[(a-a)/a]/(t-t)     (1)
 熱膨張係数を求めるには、カーボン製反応容器100の運転条件に近い条件下で熱膨張量の測定を行うことが好ましいが、カーボンからなる略円筒体101はカーボン製反応容器100の通常運転条件である1400℃以下のいずれの温度帯域であっても、温度変化量に対する膨張率は一定であるため、必ずしも運転温度まで加熱して測定を行う必要はない。テトラクロロシランと水素とを含む原料ガスからトリクロロシランと塩化水素とを含む反応生成ガスを生成するためのカーボン製反応容器として使用する場合、具体的には、tを0~500℃、tを400~1000℃とする条件で、示差走査熱量計を用いて雰囲気温度を一定速度で上昇させながら測定することが好ましい。また、測定は窒素ガス雰囲気中で行うことが好ましい。
 熱膨張係数は、同一の略円筒体101であっても、局所的な組成の相違や寸法の誤差によって変化するため、測定する位置によって相違する場合がある。特に略円筒体101はカーボンを焼成することによって製造されるため、その組成や寸法を完全に均一にすることは難しい。
 そこで、1つの略円筒体101の肩部102について複数点で測定を行い、これらの平均値を求め、この平均値をその略円筒体101における肩部102の熱膨張係数とすることが好ましい。同様に、突出部103の熱膨張係数についても平均値を求めることが好ましい。肩部102および突出部103の熱膨張係数として、それぞれの平均値を用いることにより、このような測定位置による熱膨張係数のバラツキの影響を低減することができる。
<カーボン製反応容器の組み立ておよび破損防止方法>
 予め熱膨張係数を求めた複数の略円筒体101について、一方の略円筒体の肩部102における熱膨張係数と、他方の略円筒体の突出部103における熱膨張係数との差が小さくなるような順序を決定し、一方の略円筒体の肩部102に他方の略円筒体の突出部103を順次螺入させて締結する。
 一般に、略円筒体101が熱膨張すると、その外径および内径が増加する。その結果、肩部102の膨張量が突出部103の膨張量を過度に上回ると連結部に隙間が生じて気密性が悪くなる場合がある。一方、突出部103の膨張量が肩部102の膨張量を過度に上回ると両者の連結部において径方向に作用する応力が増大して割れを発生する場合がある。
 そこで、このように、互いに連結する略円筒体101同士の熱膨張係数の差が小さくなるような順序で連結することにより、連結部に作用する応力の増大を許容限界以下に抑制することができるとともに、連結部の気密性を向上させることができる。
 具体的には、肩部の厚み109:突出部の厚み110が30:70~70:30の範囲である場合に、連結する略円筒体101の肩部102および突出部103の熱膨張係数の差を0.4x10-6(1/K)以下、さらに好ましくは0.3x10-6(1/K)以下、さらに好ましくは0.2x10-6(1/K)以下、さらに好ましくは0.1x10-6(1/K)以下とすることが好ましい。
 とりわけ、連結部において、一方の略円筒体(上側に位置する略円筒体)の突出部103の熱膨張係数が、他方の略円筒体(下側に位置する略円筒体)の肩部102の熱膨張係数より大きくなるように略円筒体101を組み合わせることにより、割れを生じにくく、しかも気密性に優れたカーボン製反応容器を製造することができる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 例えば、本実施形態で用いるカーボン製反応容器100では、略円筒体101の上端に肩部102が設けられ、下端に突出部103が設けられている場合について説明したが、上端に突出部103が設けられ、下端に肩部102が設けられていてもよい。
 以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるものではない。
 25℃(t)において外径15cm、高さ10cm、厚さ3cmの等方性黒鉛からなる直円筒状の略円筒体であって、上端に深さが3.8cm、径方向の厚みが1.35cmの肩部、下端に長さが3.8cm、径方向の厚みが1.65cmの突出部を有する略円筒体を複数準備した。肩部の内周面にはネジ溝を形成し、突出部の外周面には前記ネジ溝に対応するネジ山を形成した。また、略円筒体の加工を行う前に、略円筒体の上端および下端の一部を予め採取しておき、当該部位からその略円筒体の肩部および突出部に対応する熱膨張係数を測定するための試験片を切り出した。試験片は、上端および下端のそれぞれについて、縦5mm、幅5mm、高さ15mmの大きさで4点ずつ準備した。
 次いで、これらの略円筒体の内周面および外周面に炭化ケイ素被膜を形成するために、略円筒体をCVD反応装置内に設置し、装置内部をアルゴンガスで置換したのち、1200℃に加熱した。CVD反応装置内にトリクロロメチルシランと水素の混合ガス(モル比1:5)を導入し、CVD法により、略円筒体の全表面に200μmの厚みの炭化ケイ素被膜を形成した。
 一方、各略円筒体の肩部および突出部に対応する試験片について、窒素ガス雰囲気下で、示差走査熱量計を用いて雰囲気温度を25℃(t)~1100℃(t)まで一定速度で上昇させながら熱膨張係数を求め、これらを各略円筒体の肩部および突出部の熱膨張係数とした。
 連結する一方の略円筒体の肩部の熱膨張係数と、他方の略円筒体の突出部の熱膨張係数との差が表1に示す一定の範囲となるように略円筒体を連結し、カーボン製反応容器を製造した。
 製造したカーボン製反応容器に配管及び加熱装置等をセットして反応炉として整えた。
 この反応炉にテトラクロロシランと水素(モル=1:1)の混合ガスを供給し、常圧、反応温度1100℃で反応を行い、トリクロロシランを生成した。
 反応炉を連続的に2000時間運転した後、カーボン製反応容器から反応炉内に漏れ出した原料ガスおよび反応生成ガスの量を測定して気密性を評価した後、カーボン製反応容器を解体して略円筒体の連結部における割れの発生を観察した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001

*1略円筒体間の熱膨張係数差=[連結部において上側に位置する略円筒体の突出部の熱膨張係数]-[連結部において下側に位置する略円筒体の肩部の熱膨張係数]
 <実験の考察>
 以上の結果から、互いに連結される略円筒体の熱膨張係数差が0.1x10-6以下であれば、連結部に割れを発生せず、カーボン製反応容器の破損を防止できることが確認された。特に、連結される一方の略円筒体の突出部における熱膨張係数が、他方の略円筒体の肩部における熱膨張係数よりも大きく、しかも両者の差が0.1x10-6以下である場合に、割れの発生および気密性の両面において特に優れた効果を得られることが確認された。
 以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。

Claims (7)

  1.  一方の端部に外径が縮小されてなる突出部を有しかつ他方の端部に内径が拡大されてなる肩部を有するカーボン製の複数の略円筒体を、一方の略円筒体の突出部における熱膨張係数と他方の略円筒体の肩部における熱膨張係数との差が小さくなるような順序で連結する、カーボン製反応容器の破損防止方法。
  2.  略円筒体の径方向に対する肩部の厚み:突出部の厚みが30:70~70:30の範囲である、請求項1記載のカーボン製反応容器の破損防止方法。
  3.  肩部および突出部の付け根に曲面状の窪み(R部)が設けられている、請求項1記載のカーボン製反応容器の破損防止方法。
  4.  略円筒体が黒鉛製である、請求項1記載のカーボン製反応容器の破損防止方法。
  5.  略円筒体の内周面および/または外周面が炭化ケイ素被膜処理されている、請求項1記載のカーボン製反応容器の破損防止方法。
  6.  肩部の厚み:突出部の厚みが30:70~70:30の範囲である場合に、肩部および突出部の熱膨張係数の差が0.1x10-6(1/K)以下となるように略円筒体同士を連結する、請求項1記載のカーボン製反応容器の破損防止方法。
  7.  肩部の厚み:突出部の厚みが30:70~70:30の範囲である場合に、互いに連結される突出部の熱膨張係数が肩部の熱膨張係数より大きく、かつ、その差が0.1x10-6(1/K)以下となるように略円筒体同士を連結する、請求項1記載のカーボン製反応容器の破損防止方法。
PCT/JP2009/056983 2009-04-03 2009-04-03 カーボン製反応容器の破損防止方法 WO2010113322A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/056983 WO2010113322A1 (ja) 2009-04-03 2009-04-03 カーボン製反応容器の破損防止方法
JP2011506945A JP5374581B2 (ja) 2009-04-03 2009-04-03 カーボン製反応容器の破損防止方法
TW099102345A TW201036697A (en) 2009-04-03 2010-01-28 Damage prevention method of reaction vessel made of carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056983 WO2010113322A1 (ja) 2009-04-03 2009-04-03 カーボン製反応容器の破損防止方法

Publications (1)

Publication Number Publication Date
WO2010113322A1 true WO2010113322A1 (ja) 2010-10-07

Family

ID=42827650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056983 WO2010113322A1 (ja) 2009-04-03 2009-04-03 カーボン製反応容器の破損防止方法

Country Status (3)

Country Link
JP (1) JP5374581B2 (ja)
TW (1) TW201036697A (ja)
WO (1) WO2010113322A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026370A (ja) * 2018-08-10 2020-02-20 イビデン株式会社 反応装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282687A (ja) * 1989-04-21 1990-11-20 Nippon Steel Corp 竪型マッフル式熱処理炉のマッフルの支持方法
JPH09157073A (ja) * 1995-12-01 1997-06-17 Denki Kagaku Kogyo Kk カーボン製反応容器
JP2003327437A (ja) * 2002-05-13 2003-11-19 Sumitomo Electric Ind Ltd 加熱炉
JP2008137885A (ja) * 2006-11-07 2008-06-19 Mitsubishi Materials Corp トリクロロシランの製造方法およびトリクロロシラン製造装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016134A1 (ja) * 2008-08-07 2010-02-11 電気化学工業株式会社 カーボン製反応容器
JP5319681B2 (ja) * 2008-08-07 2013-10-16 電気化学工業株式会社 カーボン製反応装置
WO2010113323A1 (ja) * 2009-04-03 2010-10-07 電気化学工業株式会社 カーボン製反応容器の破損防止方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282687A (ja) * 1989-04-21 1990-11-20 Nippon Steel Corp 竪型マッフル式熱処理炉のマッフルの支持方法
JPH09157073A (ja) * 1995-12-01 1997-06-17 Denki Kagaku Kogyo Kk カーボン製反応容器
JP2003327437A (ja) * 2002-05-13 2003-11-19 Sumitomo Electric Ind Ltd 加熱炉
JP2008137885A (ja) * 2006-11-07 2008-06-19 Mitsubishi Materials Corp トリクロロシランの製造方法およびトリクロロシラン製造装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026370A (ja) * 2018-08-10 2020-02-20 イビデン株式会社 反応装置
JP7093264B2 (ja) 2018-08-10 2022-06-29 イビデン株式会社 反応装置

Also Published As

Publication number Publication date
JP5374581B2 (ja) 2013-12-25
JPWO2010113322A1 (ja) 2012-10-04
TW201036697A (en) 2010-10-16

Similar Documents

Publication Publication Date Title
CA2104411C (en) Chemical vapor deposition-production silicon carbide having improved properties
JPS6047202B2 (ja) 超硬高純度の配向多結晶質窒化珪素
JP5727362B2 (ja) 化学気相蒸着反応器内にガスを流通させるためのシステムおよび方法
JP3529070B2 (ja) カーボン製反応容器
Kim et al. Effect of diluent gases on growth behavior and characteristics of chemically vapor deposited silicon carbide films
WO2002060834A1 (fr) Procede d'assemblage de pieces en ceramique de haute purete
JP5436542B2 (ja) カーボン製反応容器の破損防止方法
JP5374581B2 (ja) カーボン製反応容器の破損防止方法
KR101601282B1 (ko) 탄화규소 분체 제조용 도가니 및 이를 이용한 탄화규소 분체 제조 방법
WO2012086238A1 (ja) 単結晶炭化ケイ素液相エピタキシャル成長用シード材及び単結晶炭化ケイ素の液相エピタキシャル成長方法
WO2012086239A1 (ja) 単結晶炭化ケイ素エピタキシャル成長用フィード材及び単結晶炭化ケイ素のエピタキシャル成長方法
WO2012086237A1 (ja) 単結晶炭化ケイ素液相エピタキシャル成長用ユニット及び単結晶炭化ケイ素の液相エピタキシャル成長方法
US3961003A (en) Method and apparatus for making elongated Si and SiC structures
JP5553754B2 (ja) カーボン製反応容器
JP5319681B2 (ja) カーボン製反応装置
Yan et al. Kinetic and microstructure of SiC deposited from SiCl4-CH4-H2
US8440566B2 (en) Method for forming an aluminum nitride thin film
JP5412447B2 (ja) 炭素含有材料からなる反応容器を備える反応装置、その反応装置の腐食防止方法およびその反応装置を用いたクロロシラン類の生産方法
JP5436454B2 (ja) 発熱装置
Smith et al. The chemical vapor deposition of bulk polycrystalline silicon carbide
TWI744867B (zh) SiC-SiN複合材料的製備方法及基於其的SiC-SiN複合材料
TW202242208A (zh) 碳化矽塗佈基底基板、其之碳化矽基板、及其方法
JPH0547670A (ja) 常圧cvd装置のための黒鉛製ウエハ保持治具
JP2001261490A (ja) エピタキシャル用サセプターとその製造方法
JPH01224212A (ja) 炭化けい素−窒化けい素複合膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842676

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011506945

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842676

Country of ref document: EP

Kind code of ref document: A1