WO2010110425A1 - ポリグリコール酸系樹脂組成物の製造方法 - Google Patents

ポリグリコール酸系樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2010110425A1
WO2010110425A1 PCT/JP2010/055374 JP2010055374W WO2010110425A1 WO 2010110425 A1 WO2010110425 A1 WO 2010110425A1 JP 2010055374 W JP2010055374 W JP 2010055374W WO 2010110425 A1 WO2010110425 A1 WO 2010110425A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyglycolic acid
acid resin
ester compound
resin composition
pga
Prior art date
Application number
PCT/JP2010/055374
Other languages
English (en)
French (fr)
Inventor
浩幸 佐藤
文夫 阿久津
史典 小林
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to JP2011506145A priority Critical patent/JP5631865B2/ja
Publication of WO2010110425A1 publication Critical patent/WO2010110425A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a method for producing a polyglycolic acid resin composition, and more particularly to a method for producing a polyglycolic acid resin composition containing a polyglycolic acid resin and a phosphate ester compound.
  • a polyglycolic acid resin composition containing a polyglycolic acid resin and a phosphoric acid ester compound is prepared by previously blending a granular polyglycolic acid resin and a phosphoric acid ester compound, and then extruding this mixture. It is manufactured by supplying to a kneading apparatus such as a machine and melt-kneading (for example, see JP-A-2007-126653 (Patent Document 1)).
  • the powdered polyglycolic acid-based resin usually has a non-uniform particle size, and it is not easy to mix uniformly with the powdered phosphate ester compound, and a uniform mixture is continuously added to the kneading apparatus. It was difficult to supply.
  • the polyglycolic acid resin composition obtained in this manner tended to vary in thermal stability despite being continuously produced.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and has a polyglycolic acid resin composition that has little variation over time in the content of the phosphate ester compound during production and is excellent in thermal stability.
  • An object of the present invention is to provide a method for producing a polyglycolic acid-based resin composition that can be produced continuously and stably.
  • the present inventors have determined that the mixing ratio is predetermined when continuously supplying the polyglycolic acid resin and the phosphate ester compound to the continuous kneader.
  • the supply amount of the phosphate ester compound is controlled in accordance with the supply amount of the polyglycolic acid resin so that The amount of change over time can be reduced, and furthermore, the time during which the polyglycolic acid resin and the phosphate ester compound are in contact with each other and melted can be shortened.
  • the present inventors have found that a polyglycolic acid resin composition can be produced continuously and stably, and have completed the present invention.
  • a polyglycolic acid resin composition is produced by kneading a granular polyglycolic acid resin and a phosphoric ester compound with a continuous kneader.
  • the powdered phosphoric acid ester compound having a bulk density of 0.55 to 0.65 g / cm 3 or the molten phosphoric acid ester compound is added to the granular polyglycolic acid system.
  • the polyglycolic acid resin and the phosphoric acid ester compound are used so that the time during which the phosphoric acid ester compound is in contact with the polyglycolic acid resin and melted is within 20 minutes.
  • the supply amount of the polyglycolic acid resin to the continuous kneader is continuously measured, and the addition amount of the phosphate ester compound according to the measured supply amount of the polyglycolic acid resin It is preferable to continuously add the phosphate ester compound to the granular polyglycolic acid resin while controlling the above.
  • the bulk density of the powdered polyglycolic acid resin is preferably 0.45 to 0.80 g / cm 3 .
  • the target value X 0 is preferably 2.5 to 4.5 times the mol of the catalyst remaining in the polyglycolic acid resin.
  • a change in the content of the phosphoric ester compound during production is reduced, and a polyglycolic acid resin composition having excellent thermal stability is obtained.
  • the reason for the continuous and stable production is not necessarily clear, but the present inventors speculate as follows. That is, in the production method of the present invention, the supply amount of the polyglycolic acid resin in the supply unit of the continuous kneader so that the mixing ratio of the polyglycolic acid resin and the phosphate ester compound becomes a predetermined value.
  • the amount of phosphate ester compound corresponding to is continuously supplied, so that the mixing ratio of the polyglycolic acid resin and phosphate ester compound at the time of supply decreases with time. It is presumed that a polyglycolic acid resin composition having a uniform content can be continuously produced, and a polyglycolic acid resin composition having excellent thermal stability can be obtained.
  • the polyglycolic acid resin and the phosphate ester compound are mixed in the supply unit of the continuous kneader, the time during which these are in contact with each other and melted is very long. When it becomes shorter, the thermal decomposition of the polyglycolic acid resin and the phosphate ester compound can be suppressed, and it becomes possible to continuously produce a polyglycolic acid resin composition excellent in thermal stability and water resistance. Inferred.
  • the powdered polyglycolic acid resin and the powdered phosphoric acid ester compound may be mixed uniformly. In addition to being easy, they are classified in a powder feeder such as a hopper, resulting in a more heterogeneous mixture.
  • the mixing ratio of the polyglycolic acid resin and the phosphoric ester compound varies over time and does not become constant, and in the resulting polyglycolic acid resin composition It is presumed that the thermal stability of the polyglycolic acid resin composition is lowered because the phosphoric acid ester compound content is also non-uniform.
  • the time during which the polyglycolic acid resin and the phosphate compound are in contact with each other and melted becomes longer, Since the polyglycolic acid resin and the phosphate ester compound are thermally decomposed, it is presumed that the thermal stability and water resistance of the polyglycolic acid resin composition are lowered.
  • a polyglycolic acid resin composition excellent in thermal stability and water resistance can be continuously and stably produced with little change over time in the content of a phosphate ester compound during production. Is possible.
  • PGA resin used in the method for producing the polyglycolic acid resin composition (hereinafter referred to as “PGA resin composition”) of the present invention will be described.
  • PGA-based resin As the PGA-based resin used in the present invention, the following formula (1): — [O—CH 2 —C ( ⁇ O)] — (1)
  • a glycolic acid homopolymer consisting only of glycolic acid repeating units represented by the formula hereinafter referred to as “PGA homopolymer”, including a ring-opened polymer of glycolide which is a bimolecular cyclic ester of glycolic acid), And a polyglycolic acid copolymer containing a glycolic acid repeating unit (hereinafter referred to as “PGA copolymer”).
  • PGA-type resin may be used individually by 1 type, or may use 2 or more types together.
  • the comonomers used together with the glycolic acid monomer in producing the PGA copolymer include ethylene oxalate (ie, 1,4-dioxane-2,3-dione), lactides, lactones (for example, ⁇ -Propiolactone, ⁇ -butyrolactone, ⁇ -pivalolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -methyl- ⁇ -valerolactone, ⁇ -caprolactone, etc.) carbonates (eg trimethylene carbonate, etc.), ethers ( For example, cyclic monomers such as 1,3-dioxane, ether esters (eg, dioxanone), amides (eg, ⁇ -caprolactam); lactic acid, 3-hydroxypropanoic acid, 3-hydroxybutanoic acid, 4-hydroxy Hydroxy acids such as butanoic acid and 6-hydroxycaproic acid A substantially equimolar mixture of an aliphatic
  • the catalyst used when the PGA resin is produced by ring-opening polymerization of glycolide includes tin compounds such as tin halide and tin organic carboxylate; titanium compounds such as alkoxy titanate; aluminum such as alkoxyaluminum.
  • Known ring-opening polymerization catalysts such as zirconium compounds, zirconium compounds such as zirconium acetylacetone, and antimony compounds such as antimony halide and antimony oxide.
  • the PGA-based resin can be produced by a conventionally known polymerization method.
  • the polymerization temperature is preferably 120 to 300 ° C., more preferably 130 to 250 ° C., particularly preferably 140 to 220 ° C., and 150 to 200. C is most preferred.
  • the polymerization temperature is less than the lower limit, the polymerization tends not to proceed sufficiently.
  • the polymerization temperature exceeds the upper limit, the produced resin tends to be thermally decomposed.
  • the polymerization time of the PGA resin is preferably 2 minutes to 50 hours, more preferably 3 minutes to 30 hours, and particularly preferably 5 minutes to 18 hours.
  • the polymerization time is less than the lower limit, the polymerization does not proceed sufficiently, whereas when the upper limit is exceeded, the generated resin tends to be colored.
  • the content of the glycolic acid repeating unit represented by the formula (1) is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more. 100 mass% is particularly preferable.
  • the content of the glycolic acid repeating unit is less than the lower limit, heat resistance and gas barrier properties tend to decrease.
  • the weight average molecular weight of the PGA resin is preferably 30,000 to 800,000, more preferably 50,000 to 500,000.
  • the weight average molecular weight of the PGA-based resin is less than the lower limit, the mechanical strength of the PGA-based resin molded product tends to be lowered. On the other hand, when it exceeds the upper limit, melt extrusion and molding tend to be difficult.
  • the weight average molecular weight is a polymethylmethacrylate conversion value measured by gel permeation chromatography (GPC).
  • the melt viscosity (temperature: 240 ° C., shear rate: 100 sec ⁇ 1 ) of the PGA-based resin is preferably 100 to 10,000 Pa ⁇ s, more preferably 300 to 8000 Pa ⁇ s, and particularly preferably 400 to 5000 Pa ⁇ s. .
  • the melt viscosity is less than the lower limit, the mechanical strength of the PGA-based resin composition tends to decrease.
  • melt viscosity exceeds the upper limit, melt extrusion or molding tends to be difficult.
  • the PGA resin used in the present invention is granular.
  • Such a granular PGA resin can be obtained by pulverizing a PGA resin mass obtained by (co) polymerization of glycolic acid.
  • Such a pulverized product often has a non-uniform particle size.
  • the phosphate ester content is low.
  • a uniform PGA resin composition can be obtained.
  • the bulk density of the granular PGA resin is preferably 0.45 to 0.80 g / cm 3, and more preferably 0.50 to 0.70 g / cm 3 .
  • the bulk density of the granular PGA resin can be adjusted by classification using a sieve or the like.
  • a phosphate ester compound is used as a heat stabilizer.
  • the phosphate ester compound include a phosphate ester having a pentaerythritol skeleton structure (or a cyclic neopentanetetrayl structure), a phosphate alkyl ester having at least one hydroxyl group and at least one alkyl ester group, specifically, Include phosphorus compounds described in International Publication No. 2004/087813.
  • phosphoric acid monoesters and phosphoric acid diesters are preferable, phosphoric acid monoalkyl esters and phosphoric acid dialkyl esters are more preferable, and phosphoric acid monoalkyl esters and phosphoric acid dialkyl esters having an alkyl group having 8 to 18 carbon atoms are particularly preferable. .
  • These phosphate ester compounds may be used alone or in combination of two or more.
  • the phosphoric acid ester compound may be either powdered or molten, but the molten phosphoric acid ester compound is preferable because it is easily decomposed by heat.
  • a molten material can be used as long as the heating time is short (preferably 20 minutes or less).
  • the bulk density of the powdered phosphate ester compound is preferably 0.55 to 0.63 g / cm 3 .
  • the bulk density of the phosphate ester compound can be adjusted by classification using a sieve or the like. This adjustment may be performed in advance before production, or may be performed when supplying the continuous kneader.
  • a carboxyl group-capping agent may be used in order to improve the water resistance of the PGA resin composition.
  • This carboxyl group-capping agent has a function of capping carboxyl groups and is known as a water resistance improver for aliphatic polyesters such as polylactic acid (for example, described in JP-A-2001-261797)
  • carbodiimide compounds including monocarbodiimides and polycarbodiimides such as N, N-2,6-diisopropylphenylcarbodiimide, 2,2′-m-phenylenebis (2-oxazoline), Oxazoline compounds such as 2,2′-p-phenylenebis (2-oxazoline), 2-phenyl-2-oxazoline, styrene isopropenyl-2-oxazoline, 2-methoxy-5,6-dihydro-4H-1, Oxazine compounds such as 3-ox
  • various additives such as a plasticizer, a heat ray absorber, and an ultraviolet absorber and other thermoplastic resins can be added as long as the effects of the present invention are not impaired.
  • a conventionally well-known thing can be employ
  • the method for producing a PGA resin composition of the present invention is a method for producing a PGA resin composition by kneading a granular PGA resin and a phosphoric ester compound with a continuous kneader.
  • the continuous kneader is not particularly limited as long as it can knead (preferably melt knead), and conventionally known ones such as a uniaxial kneading extruder and a biaxial kneading extruder can be used.
  • the target value X 0 (unit: mass) of the phosphorus atom equivalent content of the phosphoric ester compound relative to 100 parts by mass of the PGA resin Part) is set (target value setting step).
  • a target value X 0 is preferably 2.5 to 4.5 times mol, more preferably 3.0 to 4.0 times mol of the remaining amount of the polymerization catalyst in the PGA resin.
  • a target value X 0 is a tendency that thermal stability of the PGA resin composition is set to a value less than the lower limit is reduced, while the tendency of effect of the thermal stability improving set to a value exceeding the upper limit is saturated In addition, the water resistance tends to decrease.
  • the PGA resin and the phosphoric acid ester compound are continuously supplied independently to the supply unit of the continuous kneader, and the phosphoric acid ester compound is continuously added to the PGA resin (addition step).
  • the supply amount of the PGA resin may be appropriately set in consideration of the time during which the PGA resin and the phosphate ester compound described later are in contact with each other and melted, for example, the residence time in a continuous kneader. it can.
  • the supply amount of the phosphoric acid ester compound is in the range of ⁇ 10% of the target value X 0 amount of phosphoric acid ester compound in terms of phosphorus atom with respect to 100 parts by weight of PGA resins particulate (preferably ⁇ 5%) Set to be inside.
  • the target value X 0 is 0.0010 parts by weight
  • the phosphoric acid ester compound is added to the addition amount of the phosphorus atom in terms is in the range of from 0.0009 to 0.0011 parts by weight.
  • the thermal stability of the PGA-based resin composition tends to decrease, whereas when the upper limit is exceeded, the effect of improving the thermal stability tends to be saturated, The water resistance tends to decrease.
  • the PGA-based resin is preferably supplied while continuously measuring the supply amount of the PGA-based resin with a measuring instrument, and the phosphate ester compound is added to the measured PGA-based resin.
  • the supply amount it is preferable to supply the addition amount while continuously measuring and controlling the addition amount with a measuring instrument.
  • a means for supplying the PGA resin or phosphate ester compound there is no particular problem as long as the apparatus can supply while measuring the supply amount, but a supply apparatus corresponding to the form of the PGA resin or phosphate ester compound is used. There is a need.
  • a means for supplying a powdered phosphate ester compound a microfeeder or the like can be cited, and as a means for supplying a molten phosphate ester compound, a gear pump or the like can be cited.
  • the extrusion speed (flow rate in the continuous kneader) in the continuous kneader is such that the time during which the phosphate ester compound is in contact with the PGA resin and melted (preferably the residence time) is 20 or less.
  • the contact / melting time exceeds the upper limit, the phosphate compound is thermally decomposed. From this point of view, the contact / melting time is preferably within 10 minutes, more preferably within 5 minutes.
  • the heating temperature in the case of melt-kneading the PGA resin and the phosphate ester compound is preferably 200 to 300 ° C, more preferably 230 to 280 ° C, and particularly preferably 240 to 270 ° C. If the heating temperature at the time of melt kneading is less than the lower limit, the effect of adding an additive such as a phosphate ester compound tends not to be sufficiently exhibited. On the other hand, if the upper limit is exceeded, the phosphate ester compound is thermally decomposed and added. There is a tendency that the effect is not fully exhibited.
  • the carboxyl group blocking agent is added to the PGA resin together with the phosphate ester compound at the supply section of the continuous kneader.
  • this kneading is performed near the middle stage of the continuous kneader. It is preferable to add a carboxyl group blocking agent to the product.
  • the addition amount of the carboxyl group blocking agent is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 2 parts by weight, and particularly preferably 0.3 to 1 part by weight with respect to 100 parts by weight of the PGA resin. preferable.
  • the addition amount of the carboxyl group blocking agent is less than the lower limit, the water resistance of the PGA resin composition tends to be lowered.
  • the upper limit is exceeded, the addition effect is saturated, and the PGA resin composition is There is a tendency to color.
  • the PGA-based resin composition kneaded in this way is usually cooled and solidified by air cooling or water cooling. Furthermore, it can be granulated using a pelletizer or a crusher as necessary.
  • the phosphorus atom content, glycolide content, 3% mass reduction temperature, melt viscosity and molecular weight retention were measured by the following methods.
  • ⁇ 3% mass reduction temperature About 10 mg of pellet-shaped PGA resin composition is precisely weighed in a platinum pan and heated in a temperature range of 50 to 500 ° C. under a nitrogen atmosphere using a thermal analyzer (“TG-50” manufactured by METTLER TOLEDO). The mass change amount of the PGA resin composition was measured at a temperature rate of 10 ° C./min. The temperature at the time of 3% reduction with respect to the initial mass was defined as the 3% mass reduction temperature.
  • the pellet-like PGA resin composition was press-molded at a temperature of 280 ° C. and a pressure of 5 MPa for 5 minutes to prepare a sheet having a thickness of 100 ⁇ m, and this sheet was rapidly cooled to prepare a PGA amorphous sheet.
  • This PGA amorphous sheet was heated at 80 ° C. for 10 minutes to prepare a PGA crystal sheet.
  • This PGA crystal sheet was exposed to an atmosphere of a temperature of 50 ° C. and a relative humidity of 90% RH for 5 days.
  • the weight average molecular weight of the PGA resin in the PGA crystal sheet before and after the exposure was measured by the following method, and the molecular weight retention rate was calculated.
  • a higher molecular weight retention means higher water resistance.
  • a reactor comprising a jacket-structured main body provided with a reaction tube (made of SUS304) having an inner diameter of 24 mm and two jacket-structured metal plates (made of SUS304) was prepared.
  • a reaction tube made of SUS304
  • two jacket-structured metal plates made of SUS304
  • the temperature of the liquid mixture is maintained at 100 ° C. from the upper opening of the reaction tube. It was transferred as it was.
  • the other metal plate hereinafter referred to as “upper plate” was attached and the reaction tube was sealed. Thereafter, a heat medium oil at 170 ° C. was circulated through the main body and a jacket of two metal plates and held for 7 hours to synthesize a polyglycolic acid resin (PGA resin).
  • PGA resin polyglycolic acid resin
  • the heat medium oil circulating in the jacket was cooled to cool the reaction apparatus to near room temperature. Thereafter, the lower plate was removed, and the PGA resin mass was taken out from the lower opening of the reaction tube.
  • the yield is almost 100%.
  • the obtained PGA resin block was pulverized by a pulverizer equipped with a 5 mm ⁇ screen.
  • the weight average molecular weight (in terms of polymethyl methacrylate) in the GPC measurement of the obtained PGA resin was 225000.
  • the bulk density of this granular PGA resin was 0.60 g / cm 3 .
  • Example 1 A PGA resin composition was produced using the apparatus shown in FIG. That is, first, we set the target value X 0 of the content of phosphorus atoms in terms of the phosphoric acid ester compound with respect to 100 parts by weight of the PGA resin in PGA resin composition.
  • the PGA resin obtained in the synthesis example 3 mmol of tin dichloride dihydrate remains, and the phosphorus atom equivalent content is 3 times mol of the remaining amount of tin dichloride dihydrate. the .0013 parts by weight was set to the target value X 0.
  • the pulverized PGA resin obtained in the above synthesis example is charged into the PGA resin tank 10 and continuously using the powder feeder 20 with a measuring instrument so that the supply rate of the PGA resin is 80 kg / hour. While weighing, the pulverized PGA resin was continuously supplied from the PGA resin tank 10 to the extruder 40 (Toshiba Machine Co., Ltd. twin screw kneading extruder “TEM-41SS”).
  • the extruder 40 Toshiba Machine Co., Ltd. twin screw kneading extruder “TEM-41SS”.
  • the extruder 40 is divided into 10 zones C1 to C10 in order from the supply section 41, and a jacket 42 (each jacket is provided with an inlet 43a and an outlet 43b for heating oil) is provided for each zone.
  • the heating temperature can be set.
  • the temperatures of C1 to C10 and the dies were set to 200 ° C., 230 ° C., 260 ° C., 270 ° C., 270 ° C., 270 ° C., 270 ° C., 250 ° C., 240 ° C., 230 ° C., 230 ° C. in order from the supply unit 41. .
  • the PGA resin and the phosphate ester supplied to the extruder 40 were melt kneaded and extruded for a residence time of 3 minutes.
  • 0.3 parts by mass of N, N-2,6-diisopropylphenylcarbodiimide was continuously used as a carboxyl group sealing agent for 100 parts by mass of PGA resin from the tank 50 with a heater heated to 80 ° C. to zone C4. Supplied.
  • the strand of the PGA resin composition extruded from a die having a single strand hole was placed on a mesh conveyor, and while being transferred, air at 25 ° C. was blown from above the strand to cool and solidify.
  • the solidified strand was pelletized using a pelletizer equipped with a rotary cutter while being pulled at a constant speed.
  • Example 2 Almost equimolar mixture of powdered mono- and distearyl acid phosphates adjusted to a bulk density of 0.602 g / cm 3 by passing through a 1000-mesh sieve as a phosphate ester compound (“ADEKA STAB AX-” manufactured by ADEKA Corporation) 71 ”) except that the PGA resin composition in the form of pellets was prepared in the same manner as in Example 1 except that the phosphorus atom content, glycolide content, 3% mass reduction temperature, melt viscosity, and molecular weight retention was measured according to the method described above. The results are shown in FIGS.
  • Example 3 Almost equimolar mixture of mono- and distearyl acid phosphate melted by heating to 80 ° C. as a phosphoric ester compound, using a liquid feeder with a meter instead of the powder feeder 30 with a meter (ADEKA Corporation)
  • a pellet-like PGA resin composition was prepared in the same manner as in Example 1 except that the product “Adeka Stab AX-71”) was continuously supplied, and the phosphorus atom content, glycolide content, 3% mass reduction temperature, melting Viscosity and molecular weight retention were measured according to the methods described above. The results are shown in FIGS.
  • a PGA resin composition was produced using the apparatus shown in FIG. That is, first, about 100 kg of the pulverized PGA resin obtained in the above synthesis example was charged into a 300 L volume tumbler 60 maintained at 120 ° C., and the phosphorus atom of the phosphate ester compound was added to 100 parts by mass of the PGA resin. Powdered mono- and distearyl acid phosphates having a bulk density adjusted to 0.552 g / cm 3 by passing through a 850 mesh sieve as a phosphoric ester compound so that the converted content is 0.0013 parts by mass was added in an approximately equimolar mixture (“ADEKA STAB AX-71” manufactured by ADEKA Corporation). Thereafter, the tumbler 60 was rotated for 30 minutes to mix the PGA resin and the phosphate ester compound.
  • ADEKA STAB AX-71 approximately equimolar mixture
  • Pellet PGA as in Example 1 except that the mixture was continuously fed to the feeding section 41 of the extruder 40 instead of feeding the PGA resin and the phosphate ester compound while continuously weighing them.
  • a resin composition was prepared, and the phosphorus atom content, glycolide content, 3% mass reduction temperature, melt viscosity, and molecular weight retention were measured according to the methods described above. The results are shown in FIGS.
  • the PGA resin and phosphate ester compound have a particle size distribution, so even if the PGA resin and phosphate ester compound are evenly mixed before being supplied to the extruder, the supply to the extruder Sometimes, the distribution causes a distribution of the ratio of the PGA resin and the phosphate ester compound in the mixture, and this distribution causes the ratio of the PGA resin and the phosphate ester compound supplied to the extruder to vary over time. This is presumed to be due to this.
  • the method for producing a PGA resin composition of the present invention is useful as a method for continuously producing a PGA resin composition having a stable quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 粉粒状のポリグリコール酸系樹脂とリン酸エステル化合物とを連続式混練機により混練してポリグリコール酸系樹脂組成物を製造する方法であって、 得られるポリグリコール酸系樹脂組成物における前記ポリグリコール酸系樹脂100質量部に対する前記リン酸エステル化合物のリン原子換算の含有量の目標値X(単位:質量部)を設定する目標値設定工程と、 前記連続式混練機の供給部において、嵩密度が0.55~0.65g/cmの粉末状のリン酸エステル化合物、または溶融状のリン酸エステル化合物を、前記粉粒状のポリグリコール酸系樹脂100質量部に対してリン原子換算で前記目標値Xの±10%の範囲内の量で連続的に添加する添加工程と、 前記リン酸エステル化合物が前記ポリグリコール酸系樹脂と接触し且つ溶融している時間が20分以内となるように、前記連続式混練機内において、前記ポリグリコール酸系樹脂と前記リン酸エステル化合物との混合物を流通させながら混練してポリグリコール酸系樹脂組成物を得る混練工程と、 を含むポリグリコール酸系樹脂組成物の製造方法。

Description

ポリグリコール酸系樹脂組成物の製造方法
 本発明は、ポリグリコール酸系樹脂組成物の製造方法に関し、より詳しくは、ポリグリコール酸系樹脂とリン酸エステル化合物とを含有するポリグリコール酸系樹脂組成物を製造する方法に関する。
 通常、ポリグリコール酸系樹脂とリン酸エステル化合物とを含有するポリグリコール酸系樹脂組成物は、予め、粉粒状のポリグリコール酸系樹脂とリン酸エステル化合物とを配合した後、この混合物を押出機などの混練装置に供給して溶融混練することによって製造されている(例えば、特開2007-126653号公報(特許文献1)参照)。
 しかしながら、粉粒状のポリグリコール酸系樹脂は、通常、粒径が不均一であり、粉末状のリン酸エステル化合物と均一に混合することは容易ではなく、混練装置に均一な混合物を連続的に供給することが困難であった。また、このようにして得られるポリグリコール酸系樹脂組成物は、連続的に製造しているにも関わらず、熱安定性にはバラツキが生じる傾向にあった。
特開2007-126653号公報
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、製造時におけるリン酸エステル化合物の含有量の経時的な変動が少なく、熱安定性に優れたポリグリコール酸系樹脂組成物を連続的に安定して製造することが可能なポリグリコール酸系樹脂組成物の製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、連続式混練機にポリグリコール酸系樹脂とリン酸エステル化合物とを連続的に供給する際に、これらの混合比率が所定の値となるように、連続式混練機の供給部において、ポリグリコール酸系樹脂の供給量に対応してリン酸エステル化合物の供給量を制御することによって、製造時におけるリン酸エステル化合物の含有量の経時的な変動を少なくすることができ、さらに、ポリグリコール酸系樹脂とリン酸エステル化合物とが接触し且つ溶融している時間を短くすることが可能となるため、熱安定性に優れたポリグリコール酸系樹脂組成物を連続的に安定して製造できることを見出し、本発明を完成するに至った。
 すなわち、本発明のポリグリコール酸系樹脂組成物の製造方法は、粉粒状のポリグリコール酸系樹脂とリン酸エステル化合物とを連続式混練機により混練してポリグリコール酸系樹脂組成物を製造する方法であって、
 得られるポリグリコール酸系樹脂組成物における前記ポリグリコール酸系樹脂100質量部に対する前記リン酸エステル化合物のリン原子換算の含有量の目標値X(単位:質量部)を設定する目標値設定工程と、
 前記連続式混練機の供給部において、嵩密度が0.55~0.65g/cmの粉末状のリン酸エステル化合物、または溶融状のリン酸エステル化合物を、前記粉粒状のポリグリコール酸系樹脂100質量部に対してリン原子換算で前記目標値Xの±10%の範囲内の量で連続的に添加する添加工程と、
 前記リン酸エステル化合物が前記ポリグリコール酸系樹脂と接触し且つ溶融している時間が20分以内となるように、前記連続式混練機内において、前記ポリグリコール酸系樹脂と前記リン酸エステル化合物との混合物を流通させながら混練してポリグリコール酸系樹脂組成物を得る混練工程と、
必要に応じて、前記混練工程で得られたポリグリコール酸系樹脂組成物を冷却固化させた後、粒状化する粒状化工程と、
を含むものである。
 前記添加工程においては、前記連続式混練機へのポリグリコール酸系樹脂の供給量を連続的に計量し、且つ計量したポリグリコール酸系樹脂の供給量に応じて前記リン酸エステル化合物の添加量を制御しながら、前記粉粒状のポリグリコール酸系樹脂に前記リン酸エステル化合物を連続的に添加することが好ましい。
 本発明において、粉粒状のポリグリコール酸系樹脂の嵩密度としては、0.45~0.80g/cmが好ましい。前記目標値Xとしては、前記ポリグリコール酸系樹脂中の触媒の残存量に対して2.5~4.5倍モルの値が好ましい。
 なお、本発明のポリグリコール酸系樹脂組成物の製造方法によって、製造時におけるリン酸エステル化合物の含有量の経時的な変動が少なくなり、熱安定性に優れたポリグリコール酸系樹脂組成物を連続的に安定して製造できる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明の製造方法においては、ポリグリコール酸系樹脂とリン酸エステル化合物との混合比率が所定の値となるように、連続式混練機の供給部において、ポリグリコール酸系樹脂の供給量に対応する量のリン酸エステル化合物を連続的に供給しているため、供給時におけるポリグリコール酸系樹脂とリン酸エステル化合物との混合比率の経時的な変動が少なくなり、リン酸エステル化合物の含有量が均一なポリグリコール酸系樹脂組成物を連続的に製造することが可能になり、熱安定性に優れたポリグリコール酸系樹脂組成物を得ることができるものと推察される。
 また、本発明の製造方法においては、連続式混練機の供給部において、ポリグリコール酸系樹脂とリン酸エステル化合物とを混合しているため、これらが接触し且つ溶融している時間が非常に短くなり、ポリグリコール酸系樹脂やリン酸エステル化合物の熱分解を抑制することができ、熱安定性や耐水性に優れたポリグリコール酸系樹脂組成物を連続的に製造することが可能になると推察される。
 一方、従来のように、予め、ポリグリコール酸系樹脂とリン酸エステル化合物とを配合した場合においては、粉粒状のポリグリコール酸系樹脂と粉末状のリン酸エステル化合物を均一に混合することが容易ではないことに加えて、これらがホッパーなどの粉体供給装置内で分級されるために、さらに不均一な混合物が形成される。このため、連続式押出機への供給時においては、ポリグリコール酸系樹脂とリン酸エステル化合物との混合比率が経時的に変動して一定とならず、得られるポリグリコール酸系樹脂組成物中のリン酸エステル化合物の含有量も不均一となるため、ポリグリコール酸系樹脂組成物の熱安定性が低下するものと推察される。
 また、連続式押出機に供給する前に混合物の均一性を高めるために混合物を予備的に加熱すると、ポリグリコール酸系樹脂とリン酸エステル化合物が接触し且つ溶融している時間が長くなり、ポリグリコール酸系樹脂やリン酸エステル化合物が熱分解するため、ポリグリコール酸系樹脂組成物の熱安定性や耐水性が低下するものと推察される。
 本発明によれば、製造時におけるリン酸エステル化合物の含有量の経時的な変動が少なく、熱安定性や耐水性に優れたポリグリコール酸系樹脂組成物を連続的に安定して製造することが可能となる。
実施例において使用したポリグリコール酸系樹脂組成物の製造装置の一例を示す模式図である。 実施例および比較例で得たポリグリコール酸系樹脂組成物中のリン原子含有量と押出経過時間との関係を示すグラフである。 実施例および比較例で得たポリグリコール酸系樹脂組成物中のグリコリド含有量と押出経過時間との関係を示すグラフである。 実施例および比較例で得たポリグリコール酸系樹脂組成物の3%質量減少温度と押出経過時間との関係を示すグラフである。 実施例および比較例で得たポリグリコール酸系樹脂組成物の溶融粘度と押出経過時間との関係を示すグラフである。 実施例および比較例で得たポリグリコール酸系樹脂組成物の分子量保持率と押出経過時間との関係を示すグラフである。 比較例1において使用したポリグリコール酸系樹脂組成物の製造装置の一例を示す模式図である。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 <ポリグリコール酸系樹脂>
 先ず、本発明のポリグリコール酸系樹脂組成物(以下、「PGA系樹脂組成物」という。)の製造方法に用いるポリグリコール酸系樹脂(以下、「PGA系樹脂」という。)について説明する。本発明に用いられるPGA系樹脂としては、下記式(1):
-[O-CH-C(=O)]-     (1)
で表されるグリコール酸繰り返し単位のみからなるグリコール酸の単独重合体(以下、「PGA単独重合体」という。グリコール酸の2分子間環状エステルであるグリコリドの開環重合体を含む。)、前記グリコール酸繰り返し単位を含むポリグリコール酸共重合体(以下、「PGA共重合体」という。)などが挙げられる。このようなPGA系樹脂は、1種を単独で使用しても2種以上を併用してもよい。
 前記PGA共重合体を製造する際に、グリコール酸モノマーとともに使用されるコモノマーとしては、シュウ酸エチレン(すなわち、1,4-ジオキサン-2,3-ジオン)、ラクチド類、ラクトン類(例えば、β-プロピオラクトン、β-ブチロラクトン、β-ピバロラクトン、γ-ブチロラクトン、δ-バレロラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトンなど)カーボネート類(例えば、トリメチレンカーボネートなど)、エーテル類(例えば、1,3-ジオキサンなど)、エーテルエステル類(例えば、ジオキサノンなど)、アミド類(ε-カプロラクタムなど)などの環状モノマー;乳酸、3-ヒドロキシプロパン酸、3-ヒドロキシブタン酸、4-ヒドロキシブタン酸、6-ヒドロキシカプロン酸などのヒドロキシカルボン酸またはそのアルキルエステル;エチレングリコール、1,4-ブタンジオールなどの脂肪族ジオール類と、こはく酸、アジピン酸などの脂肪族ジカルボン酸類またはそのアルキルエステル類との実質的に等モルの混合物を挙げることができる。これらのコモノマーは1種を単独で使用しても2種以上を併用してもよい。このようなコモノマーのうち、耐熱性の観点からヒドロキシカルボン酸が好ましい。
 また、前記PGA系樹脂をグリコリドの開環重合によって製造する場合に使用する触媒としては、ハロゲン化スズ、有機カルボン酸スズなどのスズ系化合物;アルコキシチタネートなどのチタン系化合物;アルコキシアルミニウムなどのアルミニウム系化合物;ジルコニウムアセチルアセトンなどのジルコニウム系化合物;ハロゲン化アンチモン、酸化アンチモンなどのアンチモン系化合物といった公知の開環重合触媒が挙げられる。
 前記PGA系樹脂は従来公知の重合方法により製造することができるが、その重合温度としては、120~300℃が好ましく、130~250℃がより好ましく、140~220℃が特に好ましく、150~200℃が最も好ましい。重合温度が前記下限未満になると重合が十分に進行しない傾向にあり、他方、前記上限を超えると生成した樹脂が熱分解する傾向にある。
 また、前記PGA系樹脂の重合時間としては、2分間~50時間が好ましく、3分間~30時間がより好ましく、5分間~18時間が特に好ましい。重合時間が前記下限未満になると重合が十分に進行しない傾向にあり、他方、前記上限を超えると生成した樹脂が着色する傾向にある。
 本発明に用いるPGA系樹脂において、前記式(1)で表されるグリコール酸繰り返し単位の含有量としては、70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましく、100質量%が特に好ましい。グリコール酸繰り返し単位の含有量が前記下限未満になると耐熱性やガスバリア性が低下する傾向にある。
 前記PGA系樹脂の重量平均分子量としては、3万~80万が好ましく、5万~50万がより好ましい。PGA系樹脂の重量平均分子量が前記下限未満になるとPGA系樹脂成形体の機械強度が低下する傾向にあり、他方、前記上限を超えると溶融押出や成形加工が困難となる傾向にある。なお、前記重量平均分子量はゲルパーミエーションクロマトグラフィ(GPC)により測定したポリメチルメタクリレート換算値である。
 また、前記PGA系樹脂の溶融粘度(温度:240℃、剪断速度:100sec-1)としては、100~10000Pa・sが好ましく、300~8000Pa・sがより好ましく、400~5000Pa・sが特に好ましい。溶融粘度が前記下限未満になるとPGA系樹脂組成物の機械的強度が低下する傾向にあり、他方、前記上限を超えると溶融押出や成形加工が困難となる傾向にある。
 本発明に用いられるPGA系樹脂は粉粒状のものである。このような粉粒状のPGA系樹脂は、グリコール酸の(共)重合によって得られたPGA系樹脂の塊状物を粉砕することによって得ることができる。このような粉砕物は粒径が不均一であることが多いが、本発明の製造方法においては、このような粒径が不均一な粉粒状PGA系樹脂を用いてもリン酸エステル含有量が均一なPGA系樹脂組成物を得ることができる。
 前記粉粒状PGA系樹脂の嵩密度としては0.45~0.80g/cmが好ましく、0.50~0.70g/cmがより好ましい。粉粒状PGA系樹脂の嵩密度が前記下限未満になると混練機へのPGA系樹脂の供給速度にバラツキが生じたり、混練機内での溶融に時間がかかり、混練機のモーターに負荷がかかる傾向にあり、他方、前記上限を超えるとPGA系樹脂の表面積が大きくなり、吸湿しやすくなる傾向にある。粉粒状PGA系樹脂の嵩密度は篩などを用いて分級することによって調整することができる。この調整は製造前に予め行なってもよいし、連続式混練機に供給する際に行なってもよい
 <リン酸エステル化合物>
 本発明のPGA系樹脂組成物の製造方法においては、熱安定剤としてリン酸エステル化合物を使用する。このリン酸エステル化合物としては、ペンタエリスリトール骨格構造(またはサイクリックネオペンタンテトライル構造)を有するリン酸エステルや、少なくとも1つの水酸基と少なくとも1つのアルキルエステル基を有するリン酸アルキルエステル、具体的には国際公開第2004/087813号に記載のリン化合物などが挙げられる。中でも、リン酸モノエステルおよびリン酸ジエステルが好ましく、リン酸モノアルキルエステルおよびリン酸ジアルキルエステルがより好ましく、炭素数8~18のアルキル基を有するリン酸モノアルキルエステルおよびリン酸ジアルキルエステルが特に好ましい。これらのリン酸エステル化合物は1種を単独で使用しても2種以上を併用してもよい。
 本発明においては、リン酸エステル化合物としては、粉末状または溶融状のいずれのものも使用することはできるが、溶融状のリン酸エステル化合物は熱分解しやすいため、粉末状のものが好ましい。ただし、溶融状のものであっても加熱時間が短時間(好ましくは20分以下)であれば使用することができる。また、粉末状のリン酸エステル化合物であっても熱に対して不安定であることから、本発明においては、リン酸エステル化合物は室温で取り扱うことが好ましい。また、酸化劣化を防止するために窒素雰囲気下で保存することが好ましい。
 前記リン酸エステル化合物として粉末状のものを使用する場合においては、嵩密度が0.55~0.65g/cmのものを使用する必要がある。粉末状リン酸エステル化合物の嵩密度が前記下限未満になるとPGA系樹脂組成物のリン原子含有量、3%質量減少温度、溶融粘度および分子量保持率が不均一となる傾向にある。これは、粉末状リン酸エステル化合物の計量安定性が低下するためであると推察される。他方、嵩密度が前記上限を超えると吸湿によりリン酸エステル化合物が加水分解される傾向にある。また、これらの観点から、粉末状リン酸エステル化合物の嵩密度は0.55~0.63g/cmが好ましい。なお、リン酸エステル化合物の嵩密度は篩などを用いて分級することによって調整することができる。この調整は製造前に予め行なってもよいし、連続式混練機に供給する際に行なってもよい。
 <カルボキシル基封止剤>
 本発明のPGA系樹脂組成物の製造方法においては、PGA系樹脂組成物の耐水性を向上させるために、カルボキシル基封止剤を使用してもよい。このカルボキシル基封止剤としては、カルボキシル基を封止する作用を有し、ポリ乳酸などの脂肪族ポリエステルの耐水性向上剤として知られているもの(例えば、特開2001-261797号公報に記載のもの)を一般に用いることができ、例えば、N,N-2,6-ジイソプロピルフェニルカルボジイミドなどのモノカルボジイミドおよびポリカルボジイミドを含むカルボジイミド化合物、2,2’-m-フェニレンビス(2-オキサゾリン)、2,2’-p-フェニレンビス(2-オキサゾリン)、2-フェニル-2-オキサゾリン、スチレン・イソプロペニル-2-オキサゾリンなどのオキサゾリン化合物、2-メトキシ-5,6-ジヒドロ-4H-1,3-オキサジンなどのオキサジン化合物、N-グリシジルフタルイミド、シクロヘキセンオキシド、トリグリシジルイソシアヌレートなどのエポキシ化合物などが挙げられる。これらのカルボキシル基封止剤は1種を単独で使用しても2種以上を併用してもよい。このようなカルボキシル基封止剤のうち、カルボジイミド化合物およびエポキシ化合物が好ましい。
 <その他の添加剤>
 本発明においては、本発明の効果を損なわない範囲において、可塑剤、熱線吸収剤、紫外線吸収剤などの各種添加剤や他の熱可塑性樹脂を添加することができる。これらの添加剤の添加量や添加場所、添加手段などは従来公知のものを採用することができる。
 (PGA系樹脂組成物の製造方法)
 本発明のPGA系樹脂組成物の製造方法は、粉粒状のPGA系樹脂とリン酸エステル化合物とを連続式混練機により混練してPGA系樹脂組成物を製造する方法である。前記連続式混練機としては、混練(好ましくは溶融混練)できるものであれば特に制限はなく、例えば、一軸混練押出機、二軸混練押出機など従来公知のものを使用することができる。
 このような本発明の製造方法においては、先ず、目的とするPGA系樹脂組成物において、PGA系樹脂100質量部に対するリン酸エステル化合物のリン原子換算の含有量の目標値X(単位:質量部)を設定する(目標値設定工程)。このような目標値Xとしては、PGA系樹脂中の重合触媒の残存量の2.5~4.5倍モルの量が好ましく、3.0~4.0倍モルの量がより好ましい。目標値Xを前記下限未満の値に設定するとPGA系樹脂組成物の熱安定性が低下する傾向にあり、他方、前記上限を超える値に設定すると熱安定性向上という効果が飽和する傾向にあり、また、耐水性が低下する傾向にある。
 次に、PGA系樹脂とリン酸エステル化合物をそれぞれ独立に連続式混練機の供給部に連続的に供給して、PGA系樹脂にリン酸エステル化合物を連続的に添加する(添加工程)。このとき、PGA系樹脂の供給量は、後述するPGA系樹脂とリン酸エステル化合物が接触し且つ溶融している時間、例えば、連続式混練機における滞留時間などを考慮して適宜設定することができる。リン酸エステル化合物の供給量は、粉粒状のPGA系樹脂100質量部に対してリン酸エステル化合物の添加量がリン原子換算で目標値Xの±10%(好ましくは±5%)の範囲内となるように設定する。例えば、目標値Xが0.0010質量部の場合には、リン酸エステル化合物はリン原子換算の添加量が0.0009~0.0011質量部の範囲内となるように添加する。リン酸エステル化合物の添加量が前記下限未満になるとPGA系樹脂組成物の熱安定性が低下する傾向にあり、他方、前記上限を超えると熱安定性向上という効果が飽和する傾向にあり、また、耐水性が低下する傾向にある。
 また、本発明において、前記PGA系樹脂は、PGA系樹脂の供給量を計量器により連続的に計量しながら供給することが好ましく、また、前記リン酸エステル化合物は、この計量したPGA系樹脂の供給量に応じて、その添加量を計量器により連続的に計量して制御しながら供給することが好ましい。これにより、PGA系樹脂の供給量が変化した場合であっても、それに応じてリン酸エステル化合物の供給量を調整することができ、製造時におけるPGA系樹脂組成物中のリン酸エステル化合物の含有量の経時的な変動を少なくすることができる。
 PGA系樹脂やリン酸エステル化合物の供給手段としては、供給量を計量しながら供給できる装置であれば特に問題はないが、PGA系樹脂やリン酸エステル化合物の形態に応じた供給装置を使用する必要がある。例えば、粉末状のリン酸エステル化合物を供給する手段としてはマイクロフィーダーなどが挙げられ、溶融状のリン酸エステル化合物を供給する手段としてはギアポンプなどが挙げられる。
 本発明において、連続式混練機における押出速度(連続式混練機内の流量)は、リン酸エステル化合物がPGA系樹脂と接触し且つ溶融している時間(好ましくは滞留時間)が20以内となるように設定する。前記接触・溶融時間が前記上限を超えるとリン酸エステル化合物が熱分解する。また、このような観点から前記接触・溶融時間としては10分以内が好ましく、5分以内がより好ましい。
 また、PGA系樹脂とリン酸エステル化合物とを溶融混練する場合の加熱温度としては200~300℃が好ましく、230~280℃がより好ましく、240~270℃が特に好ましい。溶融混練時の加熱温度が前記下限未満になるとリン酸エステル化合物などの添加剤の添加効果が十分に発揮されない傾向にあり、他方、前記上限を超えるとリン酸エステル化合物が熱分解してその添加効果が十分に発揮されない傾向にある。
 このような条件で、前記連続式混練機内にPGA系樹脂とリン酸エステルとの混合物を流通させながら混練(好ましくは溶融混練)することによって、製造時におけるリン酸エステル含有量の変動が少なく、熱安定性に優れたポリグリコール酸系樹脂組成物を連続的に安定して製造することが可能となる。
 本発明のPGA系樹脂組成物の製造方法において、カルボキシル基封止剤を添加する場合には、連続式混練機の供給部においてPGA系樹脂にリン酸エステル化合物とともにカルボキシル基封止剤を添加してもよいが、PGA系樹脂組成物の熱安定性および耐水性を向上させるという観点から、PGA系樹脂とリン酸エステル化合物とを混錬した後、前記連続式混練機の中段付近でこの混練物にカルボキシル基封止剤を添加することが好ましい。カルボキシル基封止剤の添加量としては、PGA系樹脂100質量部に対して0.01~10質量部が好ましく、0.1~2質量部がより好ましく、0.3~1質量部が特に好ましい。カルボキシル基封止剤の添加量が前記下限未満になるとPGA系樹脂組成物の耐水性が低下する傾向にあり、他方、前記上限を超えるとその添加効果が飽和し、またPGA系樹脂組成物が着色する傾向にある。
 このようにして混練されたPGA系樹脂組成物を、通常、空冷や水冷などによって冷却して固化させる。さらに必要に応じてペレタイザーやクラッシャーを用いて粒状化することができる。
 以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、リン原子含有量、グリコリド含有量、3%質量減少温度、溶融粘度および分子量保持率は以下の方法により測定した。
 <リン原子含有量>
 ペレット状のPGA樹脂組成物約10gを精秤し、濃硫酸2.5mlと過酸化水素水2mlを添加して湿式分解させた後、イオン交換水を加えて50mlにメスアップし、高周波誘導結合プラズマ-原子発光分析法(ICP-AES)によりリンイオン濃度を測定した。得られたリンイオン濃度から、PGA樹脂1kgに対するリン原子の含有量を算出した。
 <グリコリド含有量>
 ペレット状のPGA樹脂組成物約100mgに、内部標準物質として4-クロロベンゾフェノンを0.2g/Lの濃度で含有するジメチルスルホキシド2mlを添加し、150℃で約10分間加熱して前記PGA樹脂組成物を溶解させた。この溶液を室温まで冷却してろ過した後、ろ液中のグリコリド量をキャピラリガスクロマトグラフ((株)島津製作所製「GC-2010」、カラム:「TC-17」(0.25mmφ×30mm)、検出器:FID(水素炎イオン化検出器))を用いて下記条件で測定し、前記PGA樹脂組成物中のグリコリド含有量を算出した。
 (GC分析条件)
インジェクション温度:180℃。
カラム温度:150℃で5分間保持、20℃/分で270℃まで昇温、270℃で3分間保持。
検出器温度:300℃。
 <3%質量減少温度>
 白金パンにペレット状のPGA樹脂組成物約10mgを精秤し、熱分析装置(メトラー・トレド(株)製「TG-50」)を用いて窒素雰囲気下、50~500℃の温度範囲、昇温速度10℃/分で前記PGA樹脂組成物の質量変化量を測定した。初期の質量に対して3%減少した時点の温度を3%質量減少温度とした。
 <溶融粘度>
 キャピラリー(1mmφ、長さ10mm)を装着したキャピログラフ((株)東洋精機製作所製「キャピログラフ1C」)にペレット状のPGA樹脂組成物約20gを導入して270℃で5分間保持した。その後、温度270℃、剪断速度121sec-1で溶融粘度を測定した。
 <分子量保持率>
 ペレット状のPGA樹脂組成物を、温度280℃、圧力5MPaで5分間プレス成形して厚さ100μmのシートを作製し、このシートを急冷してPGA非晶シートを作製した。このPGA非晶シートを80℃で10分間加熱してPGA結晶シートを作製した。このPGA結晶シートを温度50℃、相対湿度90%RHの雰囲気下に5日間曝露した。曝露前後のPGA結晶シート中のPGA樹脂の重量平均分子量を以下の方法により測定し、分子量保持率を算出した。なお、分子量保持率が高いものほど耐水性が高いことを意味する。
 <分子量測定>
 シートの一部(約10mg)を切り出し、5mMのトリフルオロ酢酸ナトリウムを溶解させたヘキサフルオロイソプロパノール(HFIP)溶液10mLに溶解させた。得られた溶液をポリテトラフルオロエチレン製のメンブレンフィルターでろ過した後、ろ液を、5mMのトリフルオロ酢酸ナトリウムを溶解させたHFIP溶液を溶離液としてゲルパーミエーションクロマトグラフィ(昭和電工(株)製「Shodex-104」、カラム:HFIP-606M×2本+プレカラムを直列に接続、検出器:RI検出器)を用いて、カラム温度40℃、流速0.6mL/分の条件で分析し、PGA樹脂の重量平均分子量を測定した。
 <嵩密度測定>
 粉粒状のPGA樹脂および粉末状のリン酸エステル化合物はJIS K7365に従って測定した。
 (合成例)
 攪拌機を備えるスチームジャケット構造の密閉可能なSUS製容器(容量:56L)にグリコリド22500gおよび二塩化スズ2水和物0.68g(30質量ppm)を仕込み、容器内の全プロトン濃度が0.13モル%となるように水1.49gを添加した。なお、前記容器内の全プロトンは容器内の雰囲気中の水分(湿気)のプロトンを含むものであり、前記水の添加量はこの容器内の雰囲気中の水分量(0.11g)を考慮して決定した。その後、容器を密閉し、攪拌しながらジャケットにスチームを循環させて容器内の混合物の温度が100℃になるまで加熱して混合物を溶融し、均一な液状混合物を得た。
 次に、内径24mmの反応管(SUS304製)を備えるジャケット構造の本体部とジャケット構造の金属板(SUS304製)2枚とからなる反応装置を準備した。前記反応管の下側開口部に前記金属板の一方(以下、「下板」という。)を取り付けた後、前記反応管の上側開口部から、前記液状混合物を、その温度を100℃に保持したまま移送した。移送終了後、直ちにもう一方の金属板(以下、「上板」という。)を取り付けて反応管を密閉した。その後、本体部と2枚の金属板のジャケットに170℃の熱媒体油を循環させて7時間保持し、ポリグリコール酸樹脂(PGA樹脂)を合成した。
 次に、前記ジャケットを循環している熱媒体油を冷却して反応装置を室温付近まで冷却した。その後、前記下板を取り外して反応管の下側開口部から前記PGA樹脂の塊状物を取り出した。なお、この方法によりPGA樹脂を合成した場合、その収率はほぼ100%となる。得られたPGA樹脂塊状物を5mmφのスクリーンを備える粉砕機により粉砕した。得られたPGA樹脂のGPC測定における重量平均分子量(ポリメチルメタクリレート換算)は225000であった。また、この粉粒状のPGA樹脂の嵩密度は0.60g/cmであった。
 (実施例1)
 図1に示す装置を用いてPGA樹脂組成物を製造した。すなわち、先ず、目的とするPGA樹脂組成物におけるPGA樹脂100質量部に対するリン酸エステル化合物のリン原子換算の含有量の目標値Xを設定した。前記合成例で得たPGA樹脂には3ミリモルの二塩化スズ2水和物が残存しており、この二塩化スズ2水和物の残存量の3倍モルのリン原子換算含有量である0.0013質量部を目標値Xに設定した。
 次に、前記合成例で得たPGA樹脂の粉砕物約100kgをPGA樹脂タンク10に仕込み、PGA樹脂の供給速度が80kg/時となるように計量器付き粉体フィーダー20を用いて連続的に計量しながら、前記PGA樹脂粉砕物をPGA樹脂タンク10から押出機40(東芝機械(株)製二軸混練押出機「TEM-41SS」)に連続的に供給した。このとき、リン酸エステル化合物の添加量がリン原子換算で前記目標値Xの±10%の範囲内の量となるように計量器付き粉体フィーダー30を用いて連続的に計量しながら、リン酸エステル化合物として850メッシュの篩を通過させて嵩密度を0.552g/cmに調整した粉末状のモノおよびジステアリルアシッドフォスフェートのほぼ等モル混合物((株)ADEKA製「アデカスタブAX-71」)を供給速度16g/時で前記押出機40の供給部41に連続的に供給した。
 前記押出機40は供給部41から順にC1~C10の10個のゾーンに分割され、ゾーンごとにジャケット42(各ジャケットには加熱用オイルの入口43aと出口43bが設けられている。)が設けられており、加熱温度を設定できるものである。前記C1~C10およびダイスの温度は供給部41から順に、200℃、230℃、260℃、270℃、270℃、270℃、270℃、250℃、240℃、230℃、230℃に設定した。
 この温度条件で、押出機40に供給された前記PGA樹脂と前記リン酸エステルとを、滞留時間3分間で溶融混練して押出した。このとき、80℃に加熱したヒーター付きタンク50からゾーンC4に、PGA樹脂100質量部に対して0.3質量部のN,N-2,6-ジイソプロピルフェニルカルボジイミドをカルボキシル基封止剤として連続的に供給した。
 その後、単一ストランド孔を有するダイスから押し出されたPGA樹脂組成物のストランドをメッシュコンベアに載せ、移送しながらストランド上部から25℃の空気を吹き付けて冷却して固化させた。この固化したストランドを回転式カッターを備えるペレタイザーを用いて一定速度で引き取りながらペレット化した。
 押出機のダイスからPGA樹脂組成物が押し出され初めてから1分後、30分後および60分後に押し出されたPGA樹脂組成物のペレットについて、リン原子含有量、グリコリド含有量、3%質量減少温度、溶融粘度および分子量保持率を前記方法に従って測定した。その結果を図2~6に示す。
 (実施例2)
 リン酸エステル化合物として1000メッシュの篩を通過させて嵩密度を0.602g/cmに調整した粉末状のモノおよびジステアリルアシッドフォスフェートのほぼ等モル混合物((株)ADEKA製「アデカスタブAX-71」)を連続的に供給した以外は実施例1と同様にしてペレット状のPGA樹脂組成物を作製し、リン原子含有量、グリコリド含有量、3%質量減少温度、溶融粘度および分子量保持率を前記方法に従って測定した。その結果を図2~6に示す。
 (実施例3)
 計量器付き粉体フィーダー30の代わりに計量器付き液体フィーダーを使用し、リン酸エステル化合物として80℃に加熱して溶融させたモノおよびジステアリルアシッドフォスフェートのほぼ等モル混合物((株)ADEKA製「アデカスタブAX-71」)を連続的に供給した以外は実施例1と同様にしてペレット状のPGA樹脂組成物を作製し、リン原子含有量、グリコリド含有量、3%質量減少温度、溶融粘度および分子量保持率を前記方法に従って測定した。その結果を図2~6に示す。
 (比較例1)
 図2に示す装置を用いてPGA樹脂組成物を製造した。すなわち、先ず、前記合成例で得たPGA樹脂の粉砕物約100kgを、120℃に保持した容積300Lのタンブラー60に仕込み、これに、PGA樹脂100質量部に対してリン酸エステル化合物のリン原子換算の含有量が0.0013質量部となるように、リン酸エステル化合物として850メッシュの篩を通過させて嵩密度を0.552g/cmに調整した粉末状のモノおよびジステアリルアシッドフォスフェートのほぼ等モル混合物((株)ADEKA製「アデカスタブAX-71」)を添加した。その後、タンブラー60を30分間回転させて前記PGA樹脂と前記リン酸エステル化合物とを混合した。
 押出機40の供給部41に、PGA樹脂とリン酸エステル化合物とをそれぞれ連続的に計量しながら供給する代わりに前記混合物を連続的に供給した以外は実施例1と同様にしてペレット状のPGA樹脂組成物を作製し、リン原子含有量、グリコリド含有量、3%質量減少温度、溶融粘度および分子量保持率を前記方法に従って測定した。その結果を図2~6に示す。
 (比較例2)
 リン酸エステル化合物として600メッシュの篩を通過させて嵩密度を0.452g/cmに調整した粉末状のモノおよびジステアリルアシッドフォスフェートのほぼ等モル混合物((株)ADEKA製「アデカスタブAX-71」)を連続的に供給した以外は実施例1と同様にしてペレット状のPGA樹脂組成物を作製し、リン原子含有量、グリコリド含有量、3%質量減少温度、溶融粘度および分子量保持率を前記方法に従って測定した。その結果を図2~6に示す。
 図2~6に示した結果から明らかなように、PGA樹脂と所定の嵩密度のリン酸エステルとをそれぞれ連続的に計量しながら供給した場合(実施例1~3)においては、製造時におけるPGA樹脂組成物中のリン原子含有量の経時的な変動が見られず、また、目標値に近い含有量であった。この結果から明らかなように、本発明の製造方法においては、リン酸エステル化合物が所望の比率で経時的な変動がなく均一に混練されていることが確認された。また、グリコリド含有量、3%質量減少温度、溶融粘度および分子量保持率も製造時における経時的な変動は少なかった。従って、本発明の製造方法によってPGA樹脂組成物を連続的に安定して製造できることが確認された。
 一方、PGA系樹脂と所定の嵩密度のリン酸エステル化合物とをタンブラーで混合し、この混合物を押出機に供給した場合(比較例1)においては、押出開始時にリン原子含有量が目標値とは大きく異なるPGA樹脂組成物が製造され、押出経過時間とともにリン原子含有量が大きく減少した。これは、PGA系樹脂やリン酸エステル化合物には粒径分布があるため、PGA系樹脂とリン酸エステル化合物とを、押出機に供給する前に均一に混合しても、押出機への供給時には分級されて混合物中のPGA系樹脂とリン酸エステル化合物との比率に分布が生じ、この分布によって、押出機に供給されるPGA系樹脂とリン酸エステル化合物との比率が経時的に変動するためであると推察される。
 また、比較例1においては、押出経過時間とともにグリコリド含有量が増大し、3%質量減少温度、溶融粘度および分子量保持率についても大きく変動した。これは、リン酸エステルの含有量が押出経過時間とともに減少したことに加えて、タンブラー内で混合物が加熱されたためにリン酸エステル化合物が熱分解したことによって、PGA樹脂組成物の熱安定性が低下したためであると推察される。
 また、比較的嵩密度が小さい粉末状のリン酸エステル化合物を連続的に供給した場合(比較例2)においては、製造時におけるリン原子含有量、3%質量減少温度、溶融粘度および分子量保持率の経時的な変動は、比較例1の場合に比べて少なかったが、実施例1~3の場合に比べると大きいものであった。これは、嵩密度が小さくなると供給時の計量安定性が低下し、リン酸エステル化合物の供給量を正確に制御しにくくなるためであると推察される。
 以上説明したように、本発明によれば、粉粒状のPGA系樹脂とリン酸エステル化合物とを所定の割合で含有するPGA系樹脂組成物を連続的に安定して製造することが可能となる。
 したがって、本発明のPGA系樹脂組成物の製造方法は、品質が安定したPGA系樹脂組成物を連続して製造することができる方法などとして有用である。
 10…PGA樹脂タンク;20、30…計量器付き粉体フィーダー;40…押出機;41…押出機供給部;42…ジャケット;43a…加熱オイル入口;43b…加熱オイル出口;50…ヒーター付きタンク;60…タンブラー、M…モーター。

Claims (5)

  1.  粉粒状のポリグリコール酸系樹脂とリン酸エステル化合物とを連続式混練機により混練してポリグリコール酸系樹脂組成物を製造する方法であって、
     得られるポリグリコール酸系樹脂組成物における前記ポリグリコール酸系樹脂100質量部に対する前記リン酸エステル化合物のリン原子換算の含有量の目標値X(単位:質量部)を設定する目標値設定工程と、
     前記連続式混練機の供給部において、嵩密度が0.55~0.65g/cmの粉末状のリン酸エステル化合物、または溶融状のリン酸エステル化合物を、前記粉粒状のポリグリコール酸系樹脂100質量部に対してリン原子換算で前記目標値Xの±10%の範囲内の量で連続的に添加する添加工程と、
     前記リン酸エステル化合物が前記ポリグリコール酸系樹脂と接触し且つ溶融している時間が20分以内となるように、前記連続式混練機内において、前記ポリグリコール酸系樹脂と前記リン酸エステル化合物との混合物を流通させながら混練してポリグリコール酸系樹脂組成物を得る混練工程と、
    を含むポリグリコール酸系樹脂組成物の製造方法。
  2.  前記添加工程において、前記連続式混練機へのポリグリコール酸系樹脂の供給量を連続的に計量し、且つ計量したポリグリコール酸系樹脂の供給量に応じて前記リン酸エステル化合物の添加量を制御しながら、前記粉粒状のポリグリコール酸系樹脂に前記リン酸エステル化合物を連続的に添加する、請求項1に記載のポリグリコール酸系樹脂組成物の製造方法。
  3.  前記混練工程で得られたポリグリコール酸系樹脂組成物を冷却固化させた後、粒状化する粒状化工程を含む請求項1または2に記載のポリグリコール酸系樹脂組成物の製造方法。
  4.  前記粉粒状のポリグリコール酸系樹脂の嵩密度が0.45~0.80g/cmである、請求項1~3のうちのいずれか一項に記載のポリグリコール酸系樹脂組成物の製造方法。
  5.  前記目標値Xが、前記ポリグリコール酸系樹脂中の触媒の残存量に対して2.5~4.5倍モルの量である、請求項1~4のうちのいずれか一項に記載のポリグリコール酸系樹脂組成物の製造方法。
PCT/JP2010/055374 2009-03-26 2010-03-26 ポリグリコール酸系樹脂組成物の製造方法 WO2010110425A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011506145A JP5631865B2 (ja) 2009-03-26 2010-03-26 ポリグリコール酸系樹脂組成物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-076720 2009-03-26
JP2009076720 2009-03-26

Publications (1)

Publication Number Publication Date
WO2010110425A1 true WO2010110425A1 (ja) 2010-09-30

Family

ID=42781115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055374 WO2010110425A1 (ja) 2009-03-26 2010-03-26 ポリグリコール酸系樹脂組成物の製造方法

Country Status (2)

Country Link
JP (1) JP5631865B2 (ja)
WO (1) WO2010110425A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229404A (ja) * 2011-04-11 2012-11-22 Kureha Corp 脂肪族ポリエステル系樹脂組成物、及びその製造方法
KR20160048783A (ko) * 2013-08-29 2016-05-04 에보니크 룀 게엠베하 분말 형태의 생체재흡수성 폴리에스테르를 제조하는 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126653A (ja) * 2005-10-31 2007-05-24 Kureha Corp 脂肪族ポリエステル組成物の製造方法
WO2008004490A1 (fr) * 2006-07-07 2008-01-10 Kureha Corporation Composition de polyester aliphatique et son procédé de fabrication
WO2009034942A1 (ja) * 2007-09-12 2009-03-19 Kureha Corporation 低溶融粘度ポリグリコール酸及びその製造方法、並びに該低溶融粘度ポリグリコール酸の使用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126653A (ja) * 2005-10-31 2007-05-24 Kureha Corp 脂肪族ポリエステル組成物の製造方法
WO2008004490A1 (fr) * 2006-07-07 2008-01-10 Kureha Corporation Composition de polyester aliphatique et son procédé de fabrication
WO2009034942A1 (ja) * 2007-09-12 2009-03-19 Kureha Corporation 低溶融粘度ポリグリコール酸及びその製造方法、並びに該低溶融粘度ポリグリコール酸の使用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229404A (ja) * 2011-04-11 2012-11-22 Kureha Corp 脂肪族ポリエステル系樹脂組成物、及びその製造方法
KR20160048783A (ko) * 2013-08-29 2016-05-04 에보니크 룀 게엠베하 분말 형태의 생체재흡수성 폴리에스테르를 제조하는 방법
JP2016536412A (ja) * 2013-08-29 2016-11-24 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Roehm GmbH 粉末の形の生体吸収性ポリエステルの製造方法
US9790331B2 (en) 2013-08-29 2017-10-17 Evonik Roehm Gmbh Process for preparing a bio-resorbable polyester in the form of a powder
KR102104306B1 (ko) 2013-08-29 2020-04-24 에보니크 오퍼레이션즈 게엠베하 분말 형태의 생체재흡수성 폴리에스테르를 제조하는 방법

Also Published As

Publication number Publication date
JPWO2010110425A1 (ja) 2012-10-04
JP5631865B2 (ja) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5224815B2 (ja) ポリグリコール酸樹脂粒状体組成物およびその製造方法
JP5595639B2 (ja) 脂肪族ポリエステル組成物の製造方法
JP5234585B2 (ja) ポリグリコール酸樹脂組成物の製造方法
JP5164576B2 (ja) ポリグリコール酸樹脂組成物
JP5559482B2 (ja) 脂肪族ポリエステルの製造方法
WO2010122881A1 (ja) 固体状ポリグリコール酸系樹脂組成物の製造方法
EP1956045B1 (en) Polylactic acid composition
AT506040A1 (de) Partikuläre katalysator- und katalysator/stabilisator-systeme zur herstellung hochmolekularer homo- und copolyester von l-, d- oder d,l-milchsäure
JP5631865B2 (ja) ポリグリコール酸系樹脂組成物の製造方法
JP5406569B2 (ja) ポリグリコール酸系樹脂組成物およびその成形体
JP4322502B2 (ja) 脂肪族ポリエステル及びその製造方法
WO2003087191A1 (de) Verfahren zum herstellen schmelzestabiler homo- und copolyester cyclischer ester und/oder diester
JP5946309B2 (ja) 脂肪族ポリエステル系樹脂組成物、及びその製造方法
JP5555690B2 (ja) 脂肪族ポリエステルの製造方法
US9458287B2 (en) Aliphatic polyester manufacturing method
JP2017094565A (ja) 粒状ポリグリコール酸系樹脂組成物の製造方法
WO2012144511A1 (ja) 生分解性脂肪族ポリエステル粒子、及びその製造方法
JP2010229243A (ja) 紫外線遮断材料およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10756221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011506145

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10756221

Country of ref document: EP

Kind code of ref document: A1