WO2010110404A1 - 触媒粒子を担持した延伸ポリテトラフルオロエチレン多孔質膜またはテープの製造方法およびオゾン除去用フィルタ - Google Patents

触媒粒子を担持した延伸ポリテトラフルオロエチレン多孔質膜またはテープの製造方法およびオゾン除去用フィルタ Download PDF

Info

Publication number
WO2010110404A1
WO2010110404A1 PCT/JP2010/055302 JP2010055302W WO2010110404A1 WO 2010110404 A1 WO2010110404 A1 WO 2010110404A1 JP 2010055302 W JP2010055302 W JP 2010055302W WO 2010110404 A1 WO2010110404 A1 WO 2010110404A1
Authority
WO
WIPO (PCT)
Prior art keywords
tape
ptfe
porous
catalyst particles
catalyst
Prior art date
Application number
PCT/JP2010/055302
Other languages
English (en)
French (fr)
Inventor
吉田和正
Original Assignee
ジャパンゴアテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジャパンゴアテックス株式会社 filed Critical ジャパンゴアテックス株式会社
Priority to CN201080023549.2A priority Critical patent/CN102510874B/zh
Priority to EP20100756200 priority patent/EP2412755B1/en
Priority to US13/259,557 priority patent/US8974739B2/en
Priority to KR1020117025050A priority patent/KR101700982B1/ko
Publication of WO2010110404A1 publication Critical patent/WO2010110404A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • B01D53/8675Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a method for producing a stretched polytetrafluoroethylene (PTFE) porous membrane or tape carrying catalyst particles, and a filter for removing ozone containing such a porous membrane.
  • PTFE polytetrafluoroethylene
  • Catalysts are used in a variety of applications to change chemical composition or to decompose and remove contaminants.
  • a common problem when using a catalyst is to easily and stably mount, ie, immobilize, the catalyst while maximizing the available catalyst area for the reaction between the catalyst and the fluid to be treated.
  • the catalyst may provide the maximum catalyst area in powder or other particle form, but it will not catalyze unless the catalyst particles are arranged so that the fluid to be treated can flow freely throughout the catalyst area. It cannot be fully utilized. It is known to use an expanded PTFE material as a base material for containing and fixing catalyst particles (Patent Document 1).
  • the expanded PTFE material has a fine porous matrix structure composed of nodes or knots and fibrils, and the catalyst particles can be stably immobilized by confining the catalyst particles inside the fine pores.
  • expanded PTFE porous matrix provides an improved inner surface, i.e., porosity, that allows maximizing the contact area between the fluid to be treated and the catalyst particles in filtration applications.
  • the expanded PTFE porous matrix is formed by a mechanical stretching process that does not use a chemical reagent such as a foaming agent or a pore generating agent, it is advantageous in that chemical contamination of the catalyst particles to be immobilized thereafter is avoided. It is.
  • the expanded PTFE porous matrix generally has high mechanical properties such as tensile strength, it can be a catalyst-containing substrate that is excellent in handleability and is not easily damaged during use.
  • the base material containing the catalyst particles described in Patent Document 1 is prepared by first mixing a PTFE dispersion and catalyst particles to prepare a slurry, and then drying the slurry to obtain a powder, and adding a lubricant to the powder. It is manufactured by making a paste, making the paste into a tape by extrusion and rolling, and finally stretching the tape to make it porous.
  • this conventional manufacturing method has a problem in that a molded product has a defect due to the catalyst particles contained in the paste to be extruded and rolled, and the molding processability is deteriorated.
  • an object of the present invention is to provide a method for producing an expanded PTFE porous membrane or tape carrying catalyst particles, which is less prone to defects during molding and has good molding processability.
  • Another object of the present invention is to provide a method for producing an expanded PTFE porous membrane or tape carrying catalyst particles, which enables high-strength stretching and thus further improves the strength of the membrane or tape. That is.
  • MD machine direction
  • TD transverse direction
  • the tape-like porous PTFE is porous by extruding a PTFE fine powder paste into a tape shape, further rolling the extruded tape as necessary, and further drying the extruded tape.
  • the method described in (1) above is provided.
  • (3) The tape-shaped porous PTFE is further porous by further stretching the extruded tape to MD or MD and TD following the drying step. A method is provided.
  • the catalyst particles include at least one ozonization catalyst selected from the group consisting of manganese dioxide, copper oxide, titanium dioxide, platinum, palladium and alumina. A method according to paragraph 1 is provided.
  • An ozone removing filter comprising an expanded PTFE porous membrane carrying the ozone decomposition catalyst particles produced by the method described in (6) above is provided.
  • the tape is less prone to defects during molding, and molding processability is improved. Further, according to the present invention, since there are no or few defects contained in the molded tape, the subsequent high-magnification stretching is possible, and as a result, a stretched PTFE porous membrane or tape having a relatively high strength is obtained. Further, according to the present invention, since the tape-like PTFE is stretched after the impregnation step of the catalyst particle solution or dispersion, membrane shrinkage due to the solvent or dispersion medium that occurs when the PTFE porous membrane after stretching is impregnated with the catalyst particles. And a stable pore diameter can be obtained.
  • the catalyst particles since the catalyst particles are impregnated, the catalyst particles can be uniformly distributed in the PTFE porous membrane. Furthermore, according to the present invention, the concentration of catalyst particles in the solution or dispersion of catalyst particles can be increased, so that the required amount of solvent or dispersion medium can be reduced, and consequently the energy required to remove the solvent or dispersion medium. Can be saved. According to the present invention, since the porous PTFE impregnated with the catalyst particles is in the form of a tape, a wide impregnation device for membrane impregnation is not required, and the manufacturing apparatus can be miniaturized.
  • the method for producing an expanded PTFE porous membrane or tape carrying catalyst particles according to the present invention includes a step of preparing a tape-like porous PTFE, and a step of impregnating the tape-like porous PTFE with a solution or dispersion of catalyst particles. And a step of substantially removing the solvent or dispersion medium, and a step of further stretching the tape-like porous PTFE containing the catalyst particles to MD and / or TD.
  • the process of preparing the tape-like porous PTFE is known per se.
  • the tape-like porous PTFE can be prepared according to the method described in Japanese Patent Publication No. 51-18991.
  • a paste-like material obtained by mixing a fine powder of PTFE polymerized by a dispersion polymerization method and a lubricant such as solvent naphtha and mineral spirit is extruded into a tape shape.
  • a porous PTFE tape can be obtained by drying.
  • the PTFE fine powder a product commercially available from Daikin Industries, Ltd. as Polyflon (registered trademark) F-104 can be used as it is. If necessary, in order to adjust the thickness of the extruded tape-like material, the extruded tape before drying can be rolled by a conventional method.
  • the tape-like PTFE can be made porous by drying the extruded tape or the extruded / rolled tape, for example, at 200 ° C. to remove the lubricant. If the above characteristics cannot be achieved only by the drying step, the extruded tape or the extruded / rolled tape may be made porous by pre-stretching MD or MD and TD by a conventional method following the drying step. .
  • the pre-drawing ratio may be set within a range in which the above characteristics can be achieved. Although it depends on the characteristics of the raw material PTFE, it is several times to about 20 times in MD. Pre-stretching is generally performed at a temperature near the melting point of PTFE (250 to 350 ° C.).
  • Pre-stretching to TD is also possible, but in that case, it is desirable to prevent the pre-stretch ratio from becoming too high in consideration of pore size reduction due to solvent shrinkage in the impregnation step described later.
  • the stretching method refer to the above Japanese Patent Publication No. 51-18991.
  • PTFE containing no catalyst particles is formed into a tape shape, so that the tape is less prone to defects during molding, and processability in extrusion or rolling is also improved.
  • the molded tape has almost no defects, it can be stretched at a high magnification in the stretching step after impregnation described later, and finally a stretched PTFE porous membrane or tape having a high strength can be obtained.
  • the properties of the tape-like porous PTFE before the impregnation step to be described later may be generally within the ranges of thickness 0.02 mm to 3 mm, porosity 20 to 95%, and average pore diameter 0.01 to 20 ⁇ m.
  • the tape-like porous PTFE prepared as described above is impregnated with a solution or dispersion of catalyst particles (hereinafter referred to as “catalyst dispersion or the like”).
  • catalyst particles hereinafter referred to as “catalyst dispersion or the like”.
  • Catalyst dispersion or the like There is no limitation on the type of catalyst particles, and various catalyst particles can be used depending on the application.
  • an ozone decomposition catalyst typified by manganese dioxide, copper oxide, titanium dioxide, platinum, palladium, alumina, etc.
  • the catalyst particles that can be used in the present invention are not limited to ozonolysis catalysts, and those skilled in the art who have come into contact with the present specification can easily recognize other possible catalyst particles.
  • the solvent or dispersion medium hereinafter referred to as “dispersion medium etc.” used for the catalyst dispersion liquid is not particularly limited as long as it can dissolve or disperse the catalyst particles used well.
  • Ethanol, propanol, hexane, water and the like can be used. Since the PTFE porous membrane is originally excellent in chemical resistance, the dispersion medium and the like are not limited from such a viewpoint. On the other hand, since the PTFE porous membrane is essentially hydrophobic, it is preferable to use a hydrophobic dispersion medium or the like in order to accelerate the impregnation treatment. Further, in order to uniformly distribute the catalyst particles in the PTFE porous membrane, it is preferable to use a solution of the catalyst particles.
  • the particle size of the catalyst particles in the dispersion should be as small as possible so that the catalyst particles do not aggregate in order to distribute the catalyst particles uniformly in the PTFE porous membrane.
  • the average particle size of the catalyst particles in the dispersion is preferably significantly smaller than the average pore size of the tape-like porous PTFE to be impregnated and in the range of 0.001 to 0.1 ⁇ m.
  • a dispersion aid such as citric acid may be used.
  • the catalyst concentration in the catalyst dispersion or the like can be appropriately adjusted according to the amount of catalyst supported in the finally obtained expanded PTFE porous membrane, taking into consideration the stretching ratio in the stretching step described later.
  • the amount of catalyst supported per unit area is reduced to 1/10 before and after stretching.
  • a high-concentration catalyst dispersion or the like so that the catalyst is impregnated in an amount 10 times the intended amount of catalyst.
  • the catalyst concentration in the catalyst dispersion or the like can be arbitrarily adjusted within the range of 0.1 to 10% by mass.
  • the catalyst concentration of the catalyst dispersion or the like can be increased, so that the required amount of the dispersion medium or the like can be reduced, and the energy required for removing the dispersion medium or the like in the subsequent steps can be reduced. Can be saved.
  • the deflection of PTFE due to gravity is smaller than when the PTFE porous film after stretching is subjected to the impregnation process, and more uniform impregnation is performed. It is also advantageous in that it can be realized.
  • the method of impregnating the catalyst dispersion etc. those skilled in the art such as a method of immersing the tape-like porous PTFE in the catalyst dispersion etc., a method of applying or spraying the catalyst dispersion etc. to the tape-like porous PTFE, etc. Can be selected as appropriate.
  • the impregnation step of the catalyst dispersion or the like can be performed at room temperature in the air atmosphere, but in order to promote the deaeration from the porous PTFE and promote the penetration of the catalyst dispersion or the like into the pores, Is preferably applied.
  • the porous PTFE containing the catalyst is dried to substantially remove the dispersion medium or the like. Drying may be performed under the conditions for efficiently evaporating the used dispersion medium, etc., a method of heating to a temperature higher than the boiling point of the dispersion medium, etc. in the atmosphere, a method of processing at a lower temperature by applying reduced pressure, etc.
  • the catalyst particles are uniformly deposited or adhered to the inner surfaces of the fine pores of the tape-like porous PTFE. Thereafter, in order to further increase the amount of catalyst supported on the tape-like porous PTFE, the above-described impregnation step and the dispersion medium removal step can be repeated one or more times.
  • the tape-like porous PTFE containing the catalyst particles obtained through the above-described dispersion medium removal process is further stretched to MD and / or TD.
  • MD means the machine direction
  • MD stretching refers to an elongation process for stretching the tape-like porous PTFE in the length direction.
  • TD stretching refers to a widening process for stretching the tape-like porous PTFE in the width direction. Only one of MD stretching and TD stretching may be performed, and when both MD stretching and TD stretching are performed, they may be performed in any order, or both may be performed simultaneously.
  • TD stretching a porous PTFE membrane can be formed from tape-like porous PTFE.
  • TD stretching is based on the width of the tape at the time of extrusion, and the total stretching ratio (when pre-stretching is applied, the total ratio of pre-stretching ratios, hereinafter the same) is within the range of 1.5 to 300 times. Is more preferable, and more preferably within a range of 3 to 200 times.
  • the total draw ratio is preferably in the range of 1.2 to 200 times, more preferably in the range of 2 to 100 times, based on the length of the tape at the time of extrusion.
  • An expanded PTFE porous membrane or tape having a total stretching ratio within a suitable range has a microporous matrix structure composed of nodes or knots and fibrils, and catalyst particles are evenly distributed inside the uniformly distributed micropores. And stably maintained. Further, the size of the micropores through which the fluid to be treated passes, that is, the average pore size, can be easily controlled by changing the total draw ratio to MD and / or TD within the above range. .
  • the expanded PTFE porous membrane or tape according to the present invention can exhibit, for example, characteristics within a range of a thickness of 0.001 mm to 0.5 mm, a porosity of 5 to 95%, and an average pore diameter of 0.005 to 20 ⁇ m.
  • the base material containing the catalyst particles described in Patent Document 1 is formed into a tape by extrusion / rolling the paste obtained by mixing the PTFE dispersion and the catalyst particles, and then the tape is stretched. To make it porous. That is, since PTFE is stretched in a state where the solid part of PTFE contains catalyst particles, a high stretch ratio cannot be achieved, and this can be achieved especially when there are defects caused by catalyst particles during extrusion molding. The stretch ratio becomes even lower.
  • PTFE is applied in a state where the catalyst particles are attached to the inner surface of the fine pores instead of the solid portion of the tape-like porous PTFE. Because of the stretching, the presence of the catalyst particles has almost no influence on the high magnification stretching of PTFE. Furthermore, in the method according to the present invention, since catalyst particles are not included during extrusion molding, there are almost no defects contained in the extruded tape, and subsequent high-magnification stretching is possible, and the obtained stretched PTFE porous membrane or tape is pulled. Mechanical strength such as strength is further increased.
  • the tape-like porous PTFE is impregnated with a catalyst dispersion or the like and then stretched to MD and / or TD.
  • a catalyst dispersion or the like When the catalyst particles are supported on the porous PTFE, a procedure of impregnating the expanded PTFE porous membrane after being expanded to MD and / or TD with a catalyst dispersion or the like is also conceivable.
  • the expanded PTFE porous membrane or the like causes membrane shrinkage due to contact with a dispersion medium such as a catalyst dispersion, and as a result, the pore diameter may be reduced and the membrane strength may also be reduced.
  • the expanded porous PTFE membrane is very flexible and easily damaged, it is difficult to handle when impregnating the catalyst dispersion liquid or the like.
  • the catalyst-like dispersion liquid is impregnated at the stage of easy-to-handle tape-like porous PTFE, and then the tape-like PTFE is stretched.
  • a high pore strength can be achieved.
  • the present invention exhibits high mechanical strength that cannot be obtained by the conventional method by synergistically impregnating the porous PTFE with the catalyst dispersion and the like and performing the stretching step after the impregnation.
  • a catalyst-supporting PTFE porous membrane is realized.
  • Example 1 Tape-like porous PTFE was prepared according to the method described in Japanese Patent Publication No. 51-18991. Specifically, 1000 g of PTFE fine powder (CD-123 manufactured by Asahi Glass) was mixed with 220 g of solvent naphtha (manufactured by Idemitsu Kosan) to form a PTFE fine powder paste. This paste was loaded into an extruder and extruded into a tape shape having a width of 20 cm and a thickness of 1 mm. Extruded PTFE tape was continuously introduced into a dryer, and the solvent naphtha was removed by drying at a temperature of 200 ° C.
  • PTFE fine powder CD-123 manufactured by Asahi Glass
  • solvent naphtha manufactured by Idemitsu Kosan
  • the PTFE tape after drying is continuously introduced into a stretching device, and pre-stretched at a temperature of 300 ° C. in the tape traveling direction (MD) at a stretch ratio of 8 times to form a pre-stretched PTFE porous tape.
  • MD tape traveling direction
  • As a catalyst particle 1 g of manganese dioxide (MnO 2 ) (manufactured by Wako Pure Chemical Industries) was pulverized with a ball mill and dispersed in 1 L of ethanol at a concentration of 1 wt / vol% to prepare a dispersion of catalyst particles.
  • MnO 2 manganese dioxide
  • the pre-stretched PTFE porous tape is unwound, continuously introduced into the catalyst particle dispersion, and subjected to an immersion treatment at room temperature for 1 minute, so that the fine pores of the pre-stretched PTFE porous tape 0.1 g / m 2 of catalyst particles was adhered to the surface.
  • the prestretched PTFE porous tape after the immersion treatment was continuously introduced into a dryer, and ethanol was removed by performing a drying treatment at a temperature of 120 ° C. for a residence time of 1 minute. Subsequently, the pre-stretched PTFE porous tape after drying was continuously introduced into the stretching apparatus and stretched at a stretching ratio of 10 times in the tape width direction (TD) at a temperature of 300 ° C.
  • Example 1 A pre-stretched PTFE porous tape was formed in the same manner as in Example 1. Next, a pre-stretched PTFE porous tape was continuously introduced into the stretching apparatus, and stretched at a stretching ratio of 10 to TD at a temperature of 300 ° C. to form a stretched PTFE porous membrane.
  • the expanded porous PTFE membrane was continuously heat-treated at 380 ° C. to fix (heat set) the porous structure, and then wound up.
  • a catalyst particle 0.1 g of the above manganese dioxide was dispersed in 1 L of ethanol at a concentration of 0.1 wt / vol% to prepare a dispersion of catalyst particles.
  • the expanded PTFE porous membrane is continuously introduced into the catalyst particle dispersion, and subjected to an immersion treatment at room temperature for 1 minute, so that catalyst particles are placed on the inner surface of the fine pores of the expanded PTFE porous membrane. 0.01 g / m 2 was deposited.
  • the expanded PTFE porous membrane after the immersion treatment was continuously introduced into the dryer, and ethanol was removed by performing a drying treatment at a temperature of 120 ° C. for a residence time of 1 minute.
  • Comparative Example 2 1000 g of the PTFE fine powder was mixed with 2 g of the manganese dioxide as catalyst particles to prepare a PTFE fine powder containing 2 wt% manganese dioxide. According to the method described in Japanese Patent Publication No. 51-18991, the PTFE fine powder was mixed with 220 g of the solvent naphtha at room temperature to form a PTFE fine powder paste. This paste was loaded into the extruder and extruded into a tape shape having a width of 20 cm and a thickness of 1 mm.
  • Extruded PTFE tape was continuously introduced into the dryer and subjected to a drying treatment at a temperature of 200 ° C. to remove the solvent naphtha. Subsequently, the dried PTFE tape was continuously introduced into a stretching apparatus, and pre-stretched to a MD at a stretching ratio of 8 times at a temperature of 300 ° C., thereby forming a pre-stretched PTFE porous tape and winding it. Subsequently, a pre-stretched PTFE porous tape was continuously introduced into the stretching apparatus, and stretched to a TD at a temperature of 300 ° C. at a stretching ratio of 10 to form a stretched PTFE porous membrane.
  • the expanded porous PTFE membrane was continuously heat-treated at 380 ° C. to fix (heat set) the porous structure, and then wound up.
  • the adhesion amount of manganese dioxide contained in the obtained expanded PTFE porous membrane was 0.01 g / m 2 .
  • a normal expanded PTFE porous membrane containing no catalyst was prepared by the same procedure as in Example 1 except that the step of impregnating the dispersion of catalyst particles and the drying step of removing the dispersion medium were omitted. was used as a control sample.
  • Air permeability The air permeability was measured for each expanded PTFE porous membrane of Examples, Comparative Examples and Control Examples.
  • the air permeability is determined by measuring the amount of air passing through the membrane when a stretched PTFE porous membrane sample is fixed to an O-shaped jig having an inner diameter of 16 mm and one side of the membrane is pressurized with air at 1.5 kPa. It measured with the flowmeter (Estec FILM FLOW METER). The results are shown in FIG. As shown in FIG. 1, Comparative Example 1 in which the expanded PTFE porous membrane was impregnated with the catalyst dispersion had a significantly lower air permeability than Example 1. In addition, Comparative Example 2 in which catalyst particles were blended with PTFE fine powder paste also had a significantly lower air permeability than Example 1.
  • Example 1 in which a tape-like porous PTFE was impregnated with a catalyst dispersion or the like and then subjected to a stretching process had an air permeability comparable to that of a normal expanded PTFE porous membrane (control) containing no catalyst particles.
  • Example 1 in which a tape-like porous PTFE was impregnated with a catalyst dispersion or the like and then subjected to a stretching process had an air permeability comparable to that of a normal expanded PTFE porous membrane (control) containing no catalyst particles.
  • Test Tensile strength was measured for each expanded PTFE porous membrane of Examples, Comparative Examples and Control Examples. AG-1 manufactured by Shimadzu Corporation was used as the tensile tester, and the test piece shape was a No. 5 test piece based on JIS K 7127-1989.
  • Example 1 in which a tape-like porous PTFE was impregnated with a catalyst dispersion or the like and then subjected to a stretching process was a normal stretched PTFE porous membrane containing no catalyst particles in both MD and TD (control). Had significantly higher tensile strength than. (Ozone resolution) Using the expanded PTFE porous membranes of Examples, Comparative Examples and Control Examples, a filter for removing ozone for measuring ozone resolution was prepared.
  • each of the above expanded PTFE porous membranes was cut into a size of 25 cm ⁇ 5 m, and one side (25 cm) of a tempered aluminum foil (made by Toyo Aluminum) having a thickness of 0.08 mm ⁇ 5 m).
  • the laminated porous membrane / foil was then cut into 20 mm wide strips and then pleated using a geared pleating machine to provide a pleat height of about 1.8 mm.
  • This pleated layer was placed on a straight non-pleated layer and the two layers were wound into a spiral filter with a diameter of about 50 mm. This shape produced a pressure drop of 2.54 mm water column at an air flow rate of 50 m / min.
  • the filter was supplied with 1 ppm ozone-containing air at an air velocity of 50 m / min.
  • the room temperature during the test was maintained at 21-24 ° C., and the humidity of the air in the test chamber was 10% RH or less during the test.
  • An Orec Model VI-0 Ozonator (obtained from Orec of Phoenix, Arizona) was used as an ozone gas generator, ozone was generated in the gas stream, and the filter was passed at a concentration of 1 ppm and a flow rate of 50 m / min.
  • An Orec Model DM-100 monitor was used as an ozone gas measuring device, the ozone concentration was measured upstream and downstream of the filter, and the ozone decomposition rate was determined from the amount of decrease.
  • the present invention can be used in various technical fields that require immobilization of a catalyst.
  • the contribution of the present invention to industrial development is remarkable in that high catalytic activity can be realized while maintaining the high mechanical properties, chemical resistance, etc. inherent to the expanded PTFE porous membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Catalysts (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

触媒粒子を担持した延伸ポリテトラフルオロエチレン(PTFE)多孔質膜またはテープの製造方法を 改良する。本発明による触媒粒子を担持した延伸PTFE多孔質膜またはテープの製造方法は、テープ状多孔質PTFEを用意する工程と、該テープ状多孔質PTFEに触媒粒子の溶液または分散液を含浸させる工程と、当該溶媒または分散媒を実質的に除去する工程と、該触媒粒子を含有するテープ状多孔質PTFEをさらに縦方向(MD)および/または横方向(TD)に延伸する工程とを含んでなる。

Description

触媒粒子を担持した延伸ポリテトラフルオロエチレン多孔質膜またはテープの製造方法およびオゾン除去用フィルタ
 本発明は、触媒粒子を担持した延伸ポリテトラフルオロエチレン(PTFE)多孔質膜またはテープの製造方法、およびそのような多孔質膜を含むオゾン除去用フィルタに関する。
 触媒は、化学的組成物を変化させ、或いは汚染物を分解除去するため、種々の用途に使用されている。触媒を使用する際の一般的な問題として、触媒と処理されるべき流体の間の反応に利用できる触媒面積を最大化しつつ、触媒を容易かつ安定に装着、すなわち固定化することがある。触媒は、粉末その他の粒子形態において最大限の触媒面積を提供し得るが、処理されるべき流体が触媒面積の全体を自由に流れることが可能なように触媒粒子が配置されない限り、触媒能を十分に発揮することはできない。
 触媒粒子を収容して固定化するための基材として、延伸PTFE材料を使用することが知られている(特許文献1)。延伸PTFE材料は、ノードまたは結節とフィブリルとからなる微細多孔質マトリックス構造を有し、その微細孔の内部に触媒粒子を閉じ込めることにより、触媒粒子を安定に固定化することができる。特許文献1によると、延伸PTFE多孔質マトリックスは、濾過用途において、処理されるべき流体と触媒粒子との接触面積を最大化することを可能にする改良された内表面、すなわち多孔性を提供する。また、延伸PTFE多孔質マトリックスは、発泡剤や気孔発生剤等の化学試薬を使用しない機械的延伸加工で形成されるため、その後固定化される触媒粒子の化学的汚染が回避される点でも有利である。さらに、延伸PTFE多孔質マトリックスは、一般に引張強度等の機械的特性が高いことから、取り扱い性に優れ、かつ、使用時に損傷を受けにくい触媒収容基材となり得る。
特表平11−505469号公報
 特許文献1に記載の触媒粒子を収容した基材は、まずPTFE分散体と触媒粒子を混合してスラリーを調製し、続いて該スラリーを乾燥させて粉末とし、該粉末に潤滑剤を加えてペースト状にし、該ペーストを押出・圧延成形によりテープ状にし、最後に該テープを延伸して多孔質化させることにより製造される。しかしながら、この従来の製造方法には、押出・圧延成形されるペーストに含まれる触媒粒子が原因で、成形品に欠点が生じ、また成形加工性が悪くなるという問題がある。さらに、触媒粒子を含有する状態でテープを延伸すると、高延伸倍率が実現できず、特に欠点がある場合にはさらに延伸倍率が低くなり、得られる多孔質マトリックスの強度が不十分となる。
 したがって、本発明の目的は、触媒粒子を担持した延伸PTFE多孔質膜またはテープの製造方法であって、成形時に欠点が生じにくく、成形加工性も良好となる方法を提供することである。
 本発明の別の目的は、触媒粒子を担持した延伸PTFE多孔質膜またはテープの製造方法であって、高倍率延伸を可能とし、ひいては該膜またはテープの強度が一層向上される方法を提供することである。
 本発明のその他の目的は、下記の課題を解決するための手段その他の記載から明らかとなる。
 本発明によると、
 (1)テープ状多孔質ポリテトラフルオロエチレン(PTFE)を用意する工程と、
 該テープ状多孔質PTFEに触媒粒子の溶液または分散液を含浸させる工程と、
 当該溶媒または分散媒を実質的に除去する工程と、
 該触媒粒子を含有するテープ状多孔質PTFEをさらに縦方向(MD)および/または横方向(TD)に延伸する工程と
を含んでなる、触媒粒子を担持した延伸PTFE多孔質膜またはテープの製造方法が提供される。
 さらに本発明によると、
 (2)前記テープ状多孔質PTFEが、PTFE微粉末のペースト状物をテープ状に押出成形し、必要に応じて該押出テープをさらに圧延加工し、さらに該押出テープを乾燥することにより多孔質化されたものである、上記(1)に記載の方法が提供される。
 さらに本発明によると、
 (3)前記テープ状多孔質PTFEが、前記乾燥工程に続いて、さらに前記押出テープをMDまたはMDとTDに予備延伸することにより多孔質化されたものである、上記(2)に記載の方法が提供される。
 さらに本発明によると、
 (4)前記TDへの全延伸倍率が1.5~300倍の範囲内にある、上記(1)~(3)のいずれか1項に記載の方法が提供される。
 さらに本発明によると、
 (5)前記MDへの全延伸倍率が1.2~200倍の範囲内にある、上記(1)~(4)のいずれか1項に記載の方法が提供される。
 さらに本発明によると、
 (6)前記触媒粒子が、二酸化マンガン、酸化銅、二酸化チタン、白金、パラジウムおよびアルミナからなる群より選ばれた少なくとも1種のオゾン分解触媒を含む、上記(1)~(5)のいずれか1項に記載の方法が提供される。
 さらに本発明によると、
 (7)上記(6)に記載の方法で製造された、オゾン分解触媒粒子を担持した延伸PTFE多孔質膜を含んでなる、オゾン除去用フィルタが提供される。
 本発明によると、触媒粒子を含有しないPTFEをテープ状に成形するため、成形時にテープに欠点が生じにくく、成形加工性も良好となる。また本発明によると、成形されたテープに含まれる欠点が無い、または少ないため、その後の高倍率延伸が可能となり、結果として比較的強度が高い延伸PTFE多孔質膜またはテープが得られる。さらに本発明によると、触媒粒子の溶液または分散液の含浸工程後にテープ状PTFEを延伸するため、延伸後のPTFE多孔質膜に触媒粒子を含浸させた場合に起こる溶媒または分散媒による膜収縮が無く、安定した孔径が得られる。また本発明によると、触媒粒子を含浸させるため、PTFE多孔質膜に触媒粒子を均一に分布させることができる。さらに本発明によると、触媒粒子の溶液または分散液の触媒粒子濃度を高めることができるため、溶媒または分散媒の所要量を削減することができ、ひいては溶媒または分散媒を除去するのに要するエネルギーを節約することができる。また本発明によると、触媒粒子を含浸する際の多孔質PTFEがテープ状であるため、膜含浸用の幅広の含浸装置が不要となり、製造装置を小型化することができる。
発明例と比較例で得られた各延伸PTFE多孔質膜の透気度を示す棒グラフである。 発明例と比較例で得られた各延伸PTFE多孔質膜のMDおよびTDにおける比強度を示す棒グラフである。
 本発明による触媒粒子を担持した延伸PTFE多孔質膜またはテープの製造方法は、テープ状多孔質PTFEを用意する工程と、該テープ状多孔質PTFEに触媒粒子の溶液または分散液を含浸させる工程と、当該溶媒または分散媒を実質的に除去する工程と、該触媒粒子を含有するテープ状多孔質PTFEをさらにMDおよび/またはTDに延伸する工程とを含んでなる。
 テープ状多孔質PTFEを用意する工程自体は公知であり、例えば、特公昭51−18991号公報に記載の方法に従いテープ状多孔質PTFEを調製することができる。すなわち、例えば、分散重合法等により重合されたPTFEの微粉末と、ソルベントナフサ、ミネラルスピリット等の潤滑剤とを混合して得られるペースト状物をテープ状に押出成形し、さらに該押出テープを乾燥することにより多孔質化されたPTFEテープを得ることができる。PTFE微粉末は、ダイキン工業株式会社からポリフロン(登録商標)F−104として市販されているものをそのまま使用することもできる。必要に応じて、押出成形されたテープ状物の厚さを調整するため、常用の方法で、乾燥前の押出テープを圧延加工することができる。その後、押出テープまたは押出・圧延テープを、例えば200℃で乾燥させて潤滑剤を除去することにより、テープ状PTFEを多孔質化することができる。
 上記乾燥工程のみでは上記特性を達成できない場合には、乾燥工程に続いて、押出テープまたは押出・圧延テープを、常用の方法でMDまたはMDとTDに予備延伸することにより多孔質化すればよい。予備延伸倍率は、上記特性を達成できるような範囲内とすればよく、原料PTFEの特性にもよるが、MDにおいて数倍~約20倍が目安となる。予備延伸は、一般にPTFEの融点付近(250~350℃)の温度で実施される。TDへの予備延伸も可能であるが、その場合、後述する含浸工程における溶剤収縮による孔径の縮小を考慮して、予備延伸倍率が高くなりすぎないようにすることが望ましい。延伸方法の詳細については、上記特公昭51−18991号公報を参照されたい。このように、本発明においては、触媒粒子を含有しないPTFEをテープ状に成形するため、成形時にテープに欠点が生じにくく、押出または圧延における加工性も良好となる。さらに、成形されたテープにはほとんど欠点が無いため、後述する含浸後の延伸工程において高倍率延伸が可能となり、最終的に強度が高い延伸PTFE多孔質膜またはテープを得ることができる。なお、後述する含浸工程前のテープ状多孔質PTFEの特性としては、概ね、厚さ0.02mm~3mm、気孔率20~95%、平均孔径0.01~20μmの範囲内にあればよい。
 次いで、上述のように用意されたテープ状多孔質PTFEに、触媒粒子の溶液または分散液(以下、「触媒分散液等」という。)を含浸させる。触媒粒子の種類に限定はなく、用途に応じて種々の触媒粒子を使用することができる。一例として、本発明による触媒粒子を担持した延伸PTFE多孔質膜またはテープをオゾン除去用フィルタとして使用する場合、二酸化マンガン、酸化銅、二酸化チタン、白金、パラジウム、アルミナ等に代表されるオゾン分解触媒を単独または組み合わせて使用することが企図される。本発明において使用できる触媒粒子は、オゾン分解触媒に限定されるものではなく、本願明細書に接した当業者であれば実施可能なその他の触媒粒子を容易に認識することができる。
 触媒分散液等に用いられる溶媒または分散媒(以下、「分散媒等」という。)としては、使用される触媒粒子を良好に溶解または分散させることができるものであれば特に限定はなく、例えば、エタノール、プロパノール、ヘキサン、水等を使用することができる。元来PTFE多孔質膜は耐薬品性に優れるため、そのような観点で分散媒等が制限されることはない。一方、PTFE多孔質膜は本質的に疎水性であるため、含浸処理を促進するためには疎水性の分散媒等を使用することが好ましい。また、PTFE多孔質膜に触媒粒子を均一に分布させるためには、触媒粒子の溶液を使用することが好ましい。触媒粒子の分散液を使用する場合には、PTFE多孔質膜に触媒粒子を均一に分布させるため分散液中の触媒粒子の粒径を、触媒粒子同士が凝集しない範囲で可能な限り小さくすることが好ましい。例えば、分散液中の触媒粒子の平均粒径は、含浸されるテープ状多孔質PTFEの上記平均孔径よりも有意に小さく、かつ、0.001~0.1μmの範囲内とすることが好ましい。また、触媒粒子の分散液を調製するに際し、クエン酸等の分散助剤を使用してもよい。
 触媒分散液等における触媒濃度は、後述する延伸工程における延伸倍率を考慮しつつ、最終的に得られる延伸PTFE多孔質膜において望まれる触媒担持量に応じて、適宜調整することができる。例えば、延伸工程において延伸倍率を10倍に設定することにより膜面積が10倍大きくなる場合、単位面積当たりの触媒担持量は延伸前後で10分の1に減少するため、テープ状多孔質PTFEに所期の触媒担持量の10倍量の触媒が含浸されるように高濃度の触媒分散液等を使用することが望まれる。具体的には、触媒分散液等における触媒濃度を0.1~10質量%の範囲内で任意に調整できることが好ましい。このように、本発明によると触媒分散液等の触媒濃度を高めることができるため、分散媒等の所要量を削減することができ、その後の工程において分散媒等を除去するのに要するエネルギーを節約することができる。また、延伸工程前のテープ状多孔質PTFEは、含浸対象面積が小さいため、延伸後のPTFE多孔質膜を含浸工程に供する場合と比べて重力によるPTFEのたわみが小さくなり、より均一な含浸を実現することができる点でも有利である。
 触媒分散液等を含浸させる方法については、触媒分散液等の中にテープ状多孔質PTFEを浸漬する方法、触媒分散液等をテープ状多孔質PTFEに塗布し、または吹付ける方法等、当業者であれば適宜選択することができる。また、触媒分散液等の含浸工程は、大気雰囲気中、室温において行うことができるが、多孔質PTFEからの脱気を促してその気孔内への触媒分散液等の浸入を促進するため、減圧を適用することが好ましい。
 テープ状多孔質PTFEに触媒分散液等を含浸させた後、触媒を含有する多孔質PTFEを乾燥させることにより、当該分散媒等を実質的に除去する。乾燥は、使用した分散媒等を効率よく蒸発させる条件下で行えばよく、大気雰囲気中、分散媒等の沸点以上の温度に加熱する方法や、減圧を適用してより低温で処理する方法等、当業者であれば適宜選択することができる。分散媒等を実質的に除去することにより、テープ状多孔質PTFEの微細気孔の内表面に触媒粒子が均一に析出または付着する。その後さらにテープ状多孔質PTFEへの触媒担持量を増加させるため、上述の含浸工程と分散媒等除去工程を1回以上繰り返すことも可能である。
 本発明によると、上述の分散媒等除去工程を経て得られた触媒粒子を含有するテープ状多孔質PTFEを、さらにMDおよび/またはTDに延伸する。MDとは縦方向を意味し、MD延伸はテープ状多孔質PTFEを長さ方向に延伸する伸長加工をさす。またTDとは横方向を意味し、TD延伸はテープ状多孔質PTFEを幅方向に延伸する拡幅加工をさす。MD延伸とTD延伸は、いずれか一方のみを実施してもよく、またMD延伸とTD延伸を両方実施する場合には、いずれの順序で実施することも、両方同時に実施することもできる。TD延伸を含むことによりテープ状多孔質PTFEから多孔質PTFE膜を形成することができる。TD延伸は、押出時のテープの幅を基準として、全延伸倍率(予備延伸を施した場合には予備延伸倍率を合計した倍率、以下同じ)が1.5~300倍の範囲内にあることが好ましく、さらに3~200倍の範囲内にあることがより好ましい。MD延伸は、押出時のテープの長さを基準として、全延伸倍率が1.2~200倍の範囲内にあることが好ましく、さらに2~100倍の範囲内にあることがより好ましい。全延伸倍率が好適な範囲内にある延伸PTFE多孔質膜またはテープは、ノードまたは結節とフィブリルとからなる微細多孔質マトリックス構造を有し、その均一に分布した微細孔の内部に触媒粒子が均等に分散され、かつ、安定に保持される。また、処理されるべき流体が通過することになる微細孔の大きさ、すなわち平均孔径は、MDおよび/またはTDへの全延伸倍率を上記範囲内で変化させることにより容易に制御することができる。本発明による延伸PTFE多孔質膜またはテープは、一例として、厚さ0.001mm~0.5mm、気孔率5~95%、平均孔径0.005~20μmの範囲内の特性を示すことができる。
 上述したように、特許文献1に記載の触媒粒子を収容した基材は、PTFE分散体と触媒粒子を混合して得られたペーストを押出・圧延成形によりテープ状にし、その後該テープを延伸して多孔質化させている。すなわち、PTFEの中実部に触媒粒子が含まれた状態でPTFEを延伸させるため、高延伸倍率が実現できず、特に押出成形時に触媒粒子が原因で生じた欠点がある場合には、実現可能な延伸倍率がさらに低くなる。一方、本発明による触媒粒子を担持した延伸PTFE多孔質膜またはテープの製造方法では、テープ状多孔質PTFEの中実部ではなく微細気孔の内表面に触媒粒子が付着している状態でPTFEを延伸させるため、触媒粒子の存在がPTFEの高倍率延伸に与える影響がほとんどない。さらに本発明による方法では、押出成形の際に触媒粒子が含まれないため、押出テープに含まれる欠点がほとんど無く、その後の高倍率延伸が可能となり、得られる延伸PTFE多孔質膜またはテープの引張強度等の機械強度が一層高くなる。
 さらに、本発明によりテープ状多孔質PTFEに触媒分散液等を含浸させた後にMDおよび/またはTDに延伸することには、別の重要な意義がある。多孔質PTFEに触媒粒子を担持させる場合、MDおよび/またはTDに延伸した後の延伸PTFE多孔質膜等に触媒分散液等を含浸させる手順も考えられる。しかしながら、延伸PTFE多孔質膜等は、触媒分散液等の分散媒等との接触により膜収縮を起こし、その結果孔径が縮小し、膜強度も低下するおそれがある。また、延伸PTFE多孔質膜等は非常に柔軟で破損し易いため、触媒分散液等を含浸させる際の取り扱いが困難である。一方、本発明による方法では、取り扱いが容易なテープ状多孔質PTFEの段階で触媒分散液等を含浸させ、その後にテープ状PTFEを延伸するため、上述の分散媒等による膜収縮が無く、安定した孔径が得られ、その上高い膜強度を実現することができる。このように本発明は、多孔質PTFEに触媒分散液等を含浸させることと、含浸後に延伸工程を実施することとが相乗的に作用することにより、従来法では得られない高い機械強度を示す触媒担持PTFE多孔質膜を実現するものである。
 以下、本発明を実施例により具体的に説明する。
(実施例1)
 特公昭51−18991号公報に記載の方法に従いテープ状多孔質PTFEを調製した。具体的には、1000gのPTFE微粉末(旭硝子製CD−123)に220gのソルベントナフサ(出光興産製)を配合してPTFE微粉末ペーストを形成した。このペーストを押出成形機に装填し、幅20cm、厚さ1mmのテープ状に押出した。押出PTFEテープを連続的に乾燥機に導入し、温度200℃で乾燥処理を施すことによりソルベントナフサを除去した。引き続き、乾燥後のPTFEテープを連続的に延伸装置に導入し、温度300℃でテープ進行方向(MD)に延伸倍率8倍で予備延伸することにより、予備延伸PTFE多孔質テープを形成して巻き取った。
 触媒粒子として1gの二酸化マンガン(MnO)(和光純薬製)をボールミルにて粉砕後、1Lのエタノールに濃度1wt/vol%で分散させて、触媒粒子の分散液を調製した。上記予備延伸PTFE多孔質テープを巻き出して、連続的に上記触媒粒子分散液中に導入し、室温で滞留時間1分の浸漬処理を施すことにより、予備延伸PTFE多孔質テープの微細気孔の内表面に触媒粒子を0.1g/m付着させた。浸漬処理後の予備延伸PTFE多孔質テープを連続的に乾燥機に導入し、温度120℃で滞留時間1分の乾燥処理を施すことによりエタノールを除去した。引き続き、乾燥後の予備延伸PTFE多孔質テープを連続的に上記延伸装置に導入し、温度300℃でテープ幅方向(TD)に延伸倍率10倍で延伸することにより延伸PTFE多孔質膜を形成した。さらに、延伸PTFE多孔質膜を、連続的に380℃で熱処理することにより多孔質構造を固定化(ヒートセット)した後、巻き取った。得られた延伸PTFE多孔質膜に含まれる二酸化マンガンの付着量は0.01g/mであった。
(比較例1)
 実施例1と同様にして予備延伸PTFE多孔質テープを形成した。次いで、予備延伸PTFE多孔質テープを連続的に上記延伸装置に導入し、温度300℃でTDに延伸倍率10倍で延伸することにより延伸PTFE多孔質膜を形成した。さらに、延伸PTFE多孔質膜を、連続的に380℃で熱処理することにより多孔質構造を固定化(ヒートセット)した後、巻き取った。
 触媒粒子として0.1gの上記二酸化マンガンを1Lのエタノールに濃度0.1wt/vol%で分散させて、触媒粒子の分散液を調製した。上記延伸PTFE多孔質膜を連続的に上記触媒粒子分散液中に導入し、室温で滞留時間1分の浸漬処理を施すことにより、延伸PTFE多孔質膜の微細気孔の内表面に触媒粒子を0.01g/m付着させた。浸漬処理後の延伸PTFE多孔質膜を連続的に上記乾燥機に導入し、温度120℃で滞留時間1分の乾燥処理を施すことによりエタノールを除去した。
(比較例2)
 1000gの上記PTFE微粉末に触媒粒子として2gの上記二酸化マンガンを配合し、2wt%の二酸化マンガンを含有するPTFE微粉末を調製した。特公昭51−18991号公報に記載の方法に従い上記PTFE微粉末に220gの上記ソルベントナフサを室温で配合してPTFE微粉末ペーストを形成した。このペーストを上記押出成形機に装填し、幅20cm、厚さ1mmのテープ状に押出した。押出PTFEテープを連続的に上記乾燥機に導入し、温度200℃で乾燥処理を施すことによりソルベントナフサを除去した。引き続き、乾燥後のPTFEテープを連続的に延伸装置に導入し、温度300℃でMDに延伸倍率8倍で予備延伸することにより、予備延伸PTFE多孔質テープを形成して巻き取った。引き続き、予備延伸PTFE多孔質テープを連続的に上記延伸装置に導入し、温度300℃でTDに延伸倍率10倍で延伸することにより延伸PTFE多孔質膜を形成した。さらに、延伸PTFE多孔質膜を、連続的に380℃で熱処理することにより多孔質構造を固定化(ヒートセット)した後、巻き取った。得られた延伸PTFE多孔質膜に含まれる二酸化マンガンの付着量は0.01g/mであった。
(対照例)
 触媒粒子の分散液を含浸させる工程とその分散媒を除去する乾燥工程を省略したことを除き、実施例1と同一の手順によって、触媒を含まない通常の延伸PTFE多孔質膜を作製し、これを対照試料とした。
(透気度)
 実施例、比較例および対照例の各延伸PTFE多孔質膜について、透気度を測定した。透気度は、延伸PTFE多孔質膜の試料を内径16mmのO型治具に固定し、該膜の片面側を空気で1.5kPa加圧した際に該膜を透過する空気量を膜式流量計(エステック製FILM FLOW METER)で測定した。結果を図1に示す。図1が示すように、延伸PTFE多孔質膜に触媒分散液を含浸させた比較例1は、実施例1と比べて透気度が顕著に低かった。また、PTFE微粉末ペーストに触媒粒子を配合させた比較例2も、実施例1と比べて透気度が有意に低かった。一方、テープ状多孔質PTFEに触媒分散液等を含浸させた後に延伸工程を施した実施例1は、触媒粒子を含まない通常の延伸PTFE多孔質膜(対照)に匹敵する透気度を有していた。
(引張強度)
 実施例、比較例および対照例の各延伸PTFE多孔質膜について、引張強度を測定した。引張試験機としては島津製作所製AG−1用い、試験片形状はJIS K 7127−1989準拠5号試験片とした。引張試験のチャック間距離は80mmとし、引張速度200mm/分、温度23℃、湿度50%RHの試験条件で、各試料についてそれぞれMDとTDの引張強度を測定した。結果を図2に示す。図2が示すように、PTFE微粉末ペーストに触媒粒子を配合させた比較例2は、実施例1と比べてMDとTDのいずれにおいても引張強度が顕著に低かった。また、延伸PTFE多孔質膜に触媒分散液を含浸させた比較例1は、特にTDにおいて実施例1よりも引張強度が有意に低かった。一方、テープ状多孔質PTFEに触媒分散液等を含浸させた後に延伸工程を施した実施例1は、MDとTDのいずれにおいても、触媒粒子を含まない通常の延伸PTFE多孔質膜(対照)よりも有意に高い引張強度を有していた。
(オゾン分解能)
 実施例、比較例および対照例の各延伸PTFE多孔質膜を使用して、オゾン分解能を測定するためのオゾン除去用フィルタを作製した。熱可塑性接着剤(セメダイン製HM712)を用い、上記各延伸PTFE多孔質膜を25cm×5mの大きさに切り出し、厚さ0.08mmの焼戻アルミニウム箔(東洋アルミニウム製)の一方の面(25cm×5m)に接着した。次いでこのラミネートした多孔質膜/箔を切断して幅20mmのストリップにし、次いでギア式プリーツ加工機を用いてプリーツ加工し、約1.8mmのプリーツ高さを設けた。このプリーツ加工した層を真直ぐなプリーツ加工していない層の上に載置し、この2つの層を巻き、直径約50mmの螺旋状フィルタにした。この形状は、50m/分の空気流速で水柱2.54mmの圧損を生じた。このフィルタに、50m/分の空気速度で1ppmのオゾンガス含有空気を流した。試験中の室温は21~24℃に維持し、試験チャンバ内の空気の湿度は、試験中10%RH以下とした。オゾンガス発生器としてOrec Modelo VI−0 Ozonator(アリゾナ州フェニックスのOrec社より入手)を使用し、ガス流中にオゾンを発生させ、濃度1ppm、流速50m/分で上記フィルタを通過させた。オゾンガス測定器としてOrec Model DM−100モニターを使用し、フィルタの上流と下流でオゾン濃度を測定し、その減少量からオゾン分解率を求めた。結果を以下に示す。
     オゾン分解率
対照     0%
実施例1  91%
比較例1  76%
比較例2  79%
 対照は、二酸化マンガンを含まないので、オゾン分解率は0%である。延伸PTFE多孔質膜に触媒分散液を含浸させた比較例1も、PTFE微粉末ペーストに触媒粒子を配合させた比較例2も、実施例1と比べてオゾン分解率が有意に低かった。一方、テープ状多孔質PTFEに触媒分散液等を含浸させた後に延伸工程を施した実施例1は、91%という高いオゾン分解率を示した。
 本発明は、触媒の固定化が必要とされる様々な技術分野において利用することができる。特に、延伸PTFE多孔質膜が元来有する高い機械特性、耐薬品性等を保持しつつ高い触媒活性を実現し得る点で、本発明が産業の発達に寄与する貢献は顕著である。

Claims (7)

  1. テープ状多孔質ポリテトラフルオロエチレン(PTFE)を用意する工程と、
     該テープ状多孔質PTFEに触媒粒子の溶液または分散液を含浸させる工程と、
     当該溶媒または分散媒を実質的に除去する工程と、
     該触媒粒子を含有するテープ状多孔質PTFEをさらに縦方向(MD)および/または横方向(TD)に延伸する工程と
    を含んでなる、触媒粒子を担持した延伸PTFE多孔質膜またはテープの製造方法。
  2. 前記テープ状多孔質PTFEが、PTFE微粉末のペースト状物をテープ状に押出成形し、必要に応じて該押出テープをさらに圧延加工し、さらに該押出テープを乾燥することにより多孔質化されたものである、請求項1に記載の方法。
  3. 前記テープ状多孔質PTFEが、前記乾燥工程に続いて、さらに前記押出テープをMDまたはMDとTDに予備延伸することにより多孔質化されたものである、請求項2に記載の方法。
  4. 前記TDへの全延伸倍率が1.5~300倍の範囲内にある、請求項1~3のいずれか1項に記載の方法。
  5. 前記MDへの全延伸倍率が1.2~200倍の範囲内にある、請求項1~4のいずれか1項に記載の方法。
  6. 前記触媒粒子が、二酸化マンガン、酸化銅、二酸化チタン、白金、パラジウムおよびアルミナからなる群より選ばれた少なくとも1種のオゾン分解触媒を含む、請求項1~5のいずれか1項に記載の方法。
  7. 請求項6に記載の方法で製造された、オゾン分解触媒粒子を担持した延伸PTFE多孔質膜を含んでなる、オゾン除去用フィルタ。
PCT/JP2010/055302 2009-03-25 2010-03-18 触媒粒子を担持した延伸ポリテトラフルオロエチレン多孔質膜またはテープの製造方法およびオゾン除去用フィルタ WO2010110404A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080023549.2A CN102510874B (zh) 2009-03-25 2010-03-18 负载有催化剂颗粒的膨胀型聚四氟乙烯多孔膜或条带的制备方法和臭氧去除过滤器
EP20100756200 EP2412755B1 (en) 2009-03-25 2010-03-18 Process for producing porous stretched polytetrafluoroethylene film or tape having catalyst particles supported thereon, film and filter for ozone removal
US13/259,557 US8974739B2 (en) 2009-03-25 2010-03-18 Method for producing porous film or tape of expanded polytetrafluoroethylene supporting catalyst particles, and ozone-removing filter
KR1020117025050A KR101700982B1 (ko) 2009-03-25 2010-03-18 촉매 입자를 담지한 연신 폴리테트라플루오로에틸렌 다공질막 또는 테이프의 제조 방법 및 오존 제거용 필터

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009074617A JP5455407B2 (ja) 2009-03-25 2009-03-25 触媒粒子を担持した延伸ポリテトラフルオロエチレン多孔質膜またはテープの製造方法およびオゾン除去用フィルタ
JP2009-074617 2009-03-25

Publications (1)

Publication Number Publication Date
WO2010110404A1 true WO2010110404A1 (ja) 2010-09-30

Family

ID=42781094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055302 WO2010110404A1 (ja) 2009-03-25 2010-03-18 触媒粒子を担持した延伸ポリテトラフルオロエチレン多孔質膜またはテープの製造方法およびオゾン除去用フィルタ

Country Status (6)

Country Link
US (1) US8974739B2 (ja)
EP (1) EP2412755B1 (ja)
JP (1) JP5455407B2 (ja)
KR (1) KR101700982B1 (ja)
CN (1) CN102510874B (ja)
WO (1) WO2010110404A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105050582B (zh) * 2013-03-15 2018-11-30 W.L.戈尔及同仁股份有限公司 用于低表面能结构的水性递送体系
EP3065929A1 (en) 2013-11-08 2016-09-14 Saint-gobain Performance Plastics Corporation Articles containing ptfe having improved dimensional stability particularly over long lengths, methods for making such articles, and cable/wire assemblies containing such articles
GB201412507D0 (en) 2014-07-14 2014-08-27 Alphasense Ltd Amperometric electrochemical gas sensing apparatus and method for measuring oxidising gases
CN105137660A (zh) * 2015-09-25 2015-12-09 京东方科技集团股份有限公司 一种光配向膜杂质去除装置和方法
EP3223005A1 (en) * 2016-03-22 2017-09-27 Alphasense Limited Electrochemical gas sensing apparatus and methods
JP7044802B2 (ja) 2017-04-04 2022-03-30 ダブリュ.エル.ゴア アンド アソシエーツ,ゲゼルシャフト ミット ベシュレンクテル ハフツング 強化されたエラストマー及び統合電極を含む誘電複合体
KR102487749B1 (ko) 2018-04-11 2023-01-11 더블유.엘. 고어 앤드 어소시에이트스, 인코포레이티드 금속 지지된 분말 촉매 매트릭스 및 다상 화학 반응을 위한 방법
KR20210006963A (ko) 2018-05-08 2021-01-19 더블유.엘. 고어 앤드 어소시에이트스, 인코포레이티드 신장성 및 비신장성 기재 상의 내구성 있는 연성 인쇄 회로
US11212916B2 (en) 2018-05-08 2021-12-28 W. L. Gore & Associates, Inc. Flexible printed circuits for dermal applications
CA3097115C (en) 2018-05-08 2023-03-07 W. L. Gore & Associates, Inc. Flexible and stretchable printed circuits on stretchable substrates
JP7369062B2 (ja) * 2020-02-27 2023-10-25 三菱重工業株式会社 フィルタの製造方法
CN113198461A (zh) * 2021-04-20 2021-08-03 上海师范大学 一种纳米MnO2/PTFE复合材料及其制备方法和应用
CN113279150B (zh) * 2021-05-14 2023-03-21 天津工业大学 一种导电聚四氟乙烯多孔膜的制备方法
CN113797650A (zh) * 2021-08-25 2021-12-17 安徽元琛环保科技股份有限公司 一种高催化剂负载率的ptfe过滤材料的制备方法
KR102478940B1 (ko) 2021-11-30 2022-12-19 주식회사 마이크로원 Ptfe 파이버 제조 방법 및 이를 이용한 ptfe 멤브레인 촉매필터
CN114899464A (zh) * 2022-05-30 2022-08-12 国家电投集团氢能科技发展有限公司 一种微孔膜及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235718A (ja) * 1991-01-11 1992-08-24 Japan Vilene Co Ltd オゾン分解用シート
JPH10272367A (ja) * 1997-04-01 1998-10-13 Japan Gore Tex Inc 空気浄化材及びその製造方法
JP2000176293A (ja) * 1998-12-11 2000-06-27 Junkosha Co Ltd 光触媒担持体とその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA962021A (en) * 1970-05-21 1975-02-04 Robert W. Gore Porous products and process therefor
US5891402A (en) * 1994-03-02 1999-04-06 W. L. Gore & Associates, Inc. Catalyst retaining apparatus and use in an ozone filter
DE19544912A1 (de) * 1995-12-01 1997-06-05 Gore W L & Ass Gmbh PTFE-Körper aus mikroporösem Polytetrafluorethylen mit Füllstoff und Verfahren zu dessen Herstellung
US5620669A (en) 1995-08-15 1997-04-15 W. L. Gore & Associates, Inc. Catalytic filter material and method of making same
US8652705B2 (en) * 2005-09-26 2014-02-18 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same
EP2215143A1 (en) 2007-11-30 2010-08-11 E. I. du Pont de Nemours and Company Compositions of and processes for producing a poly(trimethylene glycol carbonate trimethylene glycol ether) diol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235718A (ja) * 1991-01-11 1992-08-24 Japan Vilene Co Ltd オゾン分解用シート
JPH10272367A (ja) * 1997-04-01 1998-10-13 Japan Gore Tex Inc 空気浄化材及びその製造方法
JP2000176293A (ja) * 1998-12-11 2000-06-27 Junkosha Co Ltd 光触媒担持体とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2412755A4 *

Also Published As

Publication number Publication date
EP2412755B1 (en) 2015-05-06
KR20120034601A (ko) 2012-04-12
EP2412755A1 (en) 2012-02-01
CN102510874A (zh) 2012-06-20
KR101700982B1 (ko) 2017-01-31
JP2010222542A (ja) 2010-10-07
CN102510874B (zh) 2014-03-12
US8974739B2 (en) 2015-03-10
US20120164035A1 (en) 2012-06-28
EP2412755A4 (en) 2013-05-01
JP5455407B2 (ja) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5455407B2 (ja) 触媒粒子を担持した延伸ポリテトラフルオロエチレン多孔質膜またはテープの製造方法およびオゾン除去用フィルタ
TWI500447B (zh) 包含多層鹵化聚烯烴多微孔膜之組合物,包含其之過濾器及其製造方法
Dzinun et al. Morphological study of co-extruded dual-layer hollow fiber membranes incorporated with different TiO2 loadings
CA2530805C (en) Membranes containing poly(vinyl methyl ether) and hydrophilisation of membranes using poly(vinyl methyl ether)
Mukherjee et al. Novel carbon-nanoparticle polysulfone hollow fiber mixed matrix ultrafiltration membrane: Adsorptive removal of benzene, phenol and toluene from aqueous solution
Zhang et al. Improved performances of PVDF/PFSA/O-MWNTs hollow fiber membranes and the synergism effects of two additives
CN107530649B (zh) 反渗透复合膜及反渗透复合膜的制造方法
JP4939124B2 (ja) フッ素樹脂多孔質膜
EP3023138B1 (en) Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
WO2007018393A1 (en) Nano composite hollow fiber membrane and method of manufacturing the same
WO2001028667A1 (en) Heat-resistant microporous film
JP2012139619A (ja) ポリフッ化ビニリデン系多孔質平膜およびその製造方法
WO2002072248A1 (fr) Film microporeux et procede de preparation correspondant
Adib et al. Fabrication of integrally skinned asymmetric membranes based on nanocomposite polyethersulfone by supercritical CO2 for gas separation
JP2007313491A (ja) 低汚染性フッ化ビニリデン系樹脂多孔水処理膜およびその製造方法
JPWO2015104871A1 (ja) 多孔性中空糸膜及びその製造方法、並びに浄水方法
KR101915280B1 (ko) Ptfe/pfsa 블렌딩된 막
Abidin et al. The effect of PCA-g-MWCNTs loading on the performance of PES/MWCNTs hemodialysis membrane
KR20230161489A (ko) 탄소질 물질을 포함하는 액체 정제 막 및 이의 형성 방법
KR20220022936A (ko) 미세섬유 기반의 멤브레인 및 이의 제조방법
CN113195082A (zh) 用于高压过滤的多孔膜
KR100977397B1 (ko) 환형편직물로 지지되는 대칭형 다공성 중공사막 및 그제조방법
Hazarika et al. Polymer-based hollow fiber membranes: A modern trend in gas separation technologies
KR20200044564A (ko) 불소계 수지 다공성 막 및 이의 제조 방법
KR101998628B1 (ko) 중공사막 및 이를 이용한 산소 농축을 위한 분리막 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080023549.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10756200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010756200

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117025050

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13259557

Country of ref document: US