WO2010108310A1 - 流体检测试片及其制造方法 - Google Patents

流体检测试片及其制造方法 Download PDF

Info

Publication number
WO2010108310A1
WO2010108310A1 PCT/CN2009/070941 CN2009070941W WO2010108310A1 WO 2010108310 A1 WO2010108310 A1 WO 2010108310A1 CN 2009070941 W CN2009070941 W CN 2009070941W WO 2010108310 A1 WO2010108310 A1 WO 2010108310A1
Authority
WO
WIPO (PCT)
Prior art keywords
detecting test
flow path
fluid detecting
test strip
fluid
Prior art date
Application number
PCT/CN2009/070941
Other languages
English (en)
French (fr)
Inventor
谢文彬
Original Assignee
红电医学科技股份有限公司
曾景泰
陈睿泽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 红电医学科技股份有限公司, 曾景泰, 陈睿泽 filed Critical 红电医学科技股份有限公司
Priority to KR1020117022002A priority Critical patent/KR101329846B1/ko
Priority to NZ595103A priority patent/NZ595103A/xx
Priority to EP09842047A priority patent/EP2413141A4/en
Priority to JP2012501106A priority patent/JP2012521543A/ja
Priority to CN2009801582327A priority patent/CN102395884A/zh
Priority to AU2009342863A priority patent/AU2009342863B2/en
Priority to PCT/CN2009/070941 priority patent/WO2010108310A1/zh
Priority to CA2755347A priority patent/CA2755347A1/en
Priority to RU2011141298/15A priority patent/RU2011141298A/ru
Priority to BRPI0925015A priority patent/BRPI0925015A2/pt
Priority to US12/762,165 priority patent/US8367015B2/en
Publication of WO2010108310A1 publication Critical patent/WO2010108310A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/25Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving enzymes not classifiable in groups C12Q1/26 - C12Q1/66
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a test strip, and more particularly to a fluid test strip for use in biochemical detection and immunoassay.
  • BACKGROUND OF THE INVENTION In a known technique for performing biochemical detection and immunodetection using a fluid detecting test piece, the fluid detecting test piece is designed with a concave flow path or a start channel structure on its substrate or substrate, and is matched with surface affinity/hydrophobicity.
  • the fluid to be tested can flow in the flow channel without overflowing the flow channel, but because the fluid around the flow channel is not absorbent material, and the fluid to be tested is mostly composed of a highly viscous composition such as protein or sugar, when it is to be tested After the fluid flows, it will remain around the flow path, so that the fluid to be tested cannot be completely reacted. This will not only cause waste of the fluid to be tested, but also cause errors in the final test results.
  • the fluid detecting test piece of the prior art can be designed with a flow path structure for fluid transfer, and utilizes the capillary phenomenon generated by the open channel structure to passively transfer fluid through the flow path to the reaction detection area; Then, when the fluid to be tested is injected, the driving force of the fluid is given by means of pressurization or vacuum negative pressure, or more than one valve (micro-actuator or valve) is arranged in the flow channel, so that the fluid can be active and sequential. Through the flow path, the reaction detection area is reached.
  • the fluid to be tested is often injected or entangled in the flow path to cause the flow path to be blocked, causing an error in the actual measurement, and even causing the test to fail, and the micro--
  • the addition of the actuator or valve) increases the difficulty of the overall design and the cost of the test piece.
  • the test strips of the known technology are used for molding, injection molding, and stamping.
  • the present invention provides a fluid detecting test piece, which mainly comprises a substrate and a flow path structure.
  • the substrate has a planar first surface, and the flow channel structure is formed on the first surface of the substrate in a predetermined pattern such that the surface height of the flow path structure is not lower than the first surface height of the substrate.
  • the flow channel structure has a hollow network structure, and the hydrophilicity of the flow channel structure is higher than the hydrophilicity of the first surface of the substrate.
  • the fluid detecting test strip may further include a reactive material formed in the hollow mesh structure. Accordingly, it is a primary object of the present invention to provide a fluid detecting test piece which has a hollow structure and thus prevents liquid from remaining around the flow path. Another object of the present invention is to provide a fluid detecting test piece having a hydrophilic hollow mesh structure.
  • Another object of the present invention is to provide a fluid detecting test piece, in which a bubble in a fluid is destroyed due to a fluid flowing through a hollow mesh structure of a flow path, thereby eliminating large bubbles and avoiding micro flow.
  • the condition of the bubble blocking channel occurs, which in turn affects the quantitative analysis results.
  • the flow path or micro-channel structure is made up, which saves a lot of cost for manufacturing fluid test strips.
  • Still another object of the present invention is to provide a method of manufacturing a fluid detecting test piece, which is capable of producing a fluid detecting test piece which is low in cost and more accurate in measurement.
  • the height of the surface of the flow path structure is higher than the height of the first surface.
  • the cross section of the flow path structure further has a configuration convex to the first surface.
  • the material of the flow path structure is selected from the group consisting of nitrocellulose and glass fiber.
  • the flow path structure further includes a plurality of branch flow paths.
  • at least one of the branch flow paths further includes an enlarged region whose shape is selected from the group consisting of a circular arc shape, a rectangular shape, and an island shape.
  • the flow path structure is dried and solidified in a solution to form a hollow network structure selected from the group consisting of a nitrocellulose solution and a glass fiber solution.
  • the substrate is a biocompatible material.
  • the substrate is flexible.
  • the reaction material is injected into the flow path structure with a reaction solution, and is formed after the drying process.
  • the drying process is freeze drying or air drying.
  • a fluid detecting test strip according to the present invention wherein the reactive material is an antibody and a chemical reagent.
  • the fluid detecting test strip according to the present invention further includes a pair of planar electrodes formed between the first surface and the flow path structure.
  • the fluid detecting test strip according to the present invention further includes a stack flow path formed on the flow path structure.
  • a method of manufacturing a fluid detecting test strip comprising: providing a substrate having a planar first surface; providing a solution, the solution is applied in a coating manner Forming a pattern on the first surface; drying the coated solution, thereby forming a flow path structure having the predetermined pattern such that a height of a surface of the flow path structure is not lower than a height of the first surface,
  • the flow channel structure has a hollow mesh structure, and the flow channel structure is more hydrophilic than the first surface; and a reactive material formed in the hollow mesh structure is provided.
  • a method of manufacturing a fluid detecting test strip comprising: providing a substrate having a planar first surface; providing a mask, the mask comprising a hollowed out pre- Having a pattern; temporarily bonding the mask to the substrate; providing a solution to saturate the solution with the hollow predetermined pattern; drying the solution on the predetermined pattern; removing the mask, thereby Forming a flow path structure having the predetermined pattern such that a height of a surface of the flow path structure is not lower than a height of the first surface, the flow path structure has a hollow mesh structure, and the flow path structure is hydrophilic Higher than the hydrophilicity of the first surface; and providing a reactive material formed in the hollow network structure.
  • a method of manufacturing a fluid detecting test strip according to the present invention wherein a height of a surface of the flow path structure is higher than a height of the first surface.
  • a method of manufacturing a fluid detecting test strip according to the present invention wherein the cross section of the flow path structure further has a configuration convex to the first surface.
  • a method of manufacturing a fluid detecting test strip according to the present invention wherein the coating method is selected from the group consisting of: lithography, gravure printing, letterpress printing, screen printing, scribing, ink jetting, casting, dip dyeing.
  • the flow path structure further comprises a plurality of branch flow paths.
  • a method of manufacturing a fluid detecting test strip according to the present invention wherein the at least one branch flow path further comprises an enlarged region whose shape is selected from the group consisting of a circular arc shape, a rectangular shape, and an island shape.
  • the flow path structure is dried and solidified in a solution to form a hollow network structure selected from the group consisting of a nitrocellulose solution and a glass fiber solution.
  • the substrate is a biocompatible material.
  • the reaction material is injected into the flow path structure with a reaction solution, and is formed after the drying process.
  • the method for producing a fluid test strip according to the present invention wherein the drying process is freeze drying or air drying.
  • FIG. 1A is a schematic view of a fluid detecting test piece according to a first embodiment of the present invention.
  • Fig. 1B is a cross-sectional view of the fluid detecting test piece 1 shown in Fig. 1A taken along line AA.
  • Fig. 1C is another schematic view of a fluid detecting test piece according to a first preferred embodiment of the present invention.
  • Fig. 1D is still another schematic view of the fluid detecting test piece of the first preferred embodiment of the present invention.
  • Fig. 1A is a schematic view of a fluid detecting test piece according to a first embodiment of the present invention.
  • Fig. 1B is a cross-sectional view of the fluid detecting test piece 1 shown in Fig. 1A taken along line AA.
  • Fig. 1C is another schematic view of a fluid detecting test piece according to a first preferred embodiment of the present invention.
  • Fig. 1D is still another schematic view of the fluid detecting test piece of the first preferred embodiment of the present invention.
  • FIG. 2 is a flow chart showing a method of manufacturing a fluid detecting test strip according to a second preferred embodiment of the present invention.
  • Fig. 3A is a flow chart showing a method of manufacturing a fluid detecting test strip according to a third preferred embodiment of the present invention.
  • Fig. 3B is a schematic view of a fluid detecting test piece according to a third preferred embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION The present invention discloses a fluid testing test strip. Since the physical, chemical principles and solution coating techniques utilized therein are well known to those of ordinary skill in the relevant art, the description below will no longer be complete. description.
  • FIG. 1A there is shown a schematic view of a fluid detecting test piece according to a first embodiment of the present invention.
  • the fluid detecting test piece 1 includes a substrate 10 and a flow path structure 11.
  • the substrate 10 has a planar first surface 100, and the flow channel structure 11 is formed on the first surface 100 of the substrate 10 in a predetermined pattern 12, and the surface height of the flow channel structure 11 is not lower than the first surface 100 of the substrate 10.
  • the flow path structure 11 has a hollow mesh structure which is more hydrophilic than the first surface 100 of the substrate 10.
  • the flow path structure 11 can be a highly hydrophilic solution by lithography, gravure printing, letterpress printing, screen printing, line marking, inkjet, casting or dipping. Paint Covering the first surface 100 of the substrate 10, the composition thereof may be nitrocellulose or glass fiber. After drying and solidifying, it has a porous hollow network structure, which can absorb the fluid to be tested, so that the fluid to be tested remains in the flow. Problems around the road. When the fluid flows through the flow path structure 11, the bubbles in the fluid are destroyed, and the blockage of the bubbles can be avoided.
  • the present invention further includes a pair of planar electrodes 13 formed between the first surface 100 of the substrate 10 and the flow channel structure 11 for detecting an electrochemical reaction of the fluid to be tested.
  • the substrate 10 is a biocompatible material and may also be a flexible material.
  • Fig. 1B there is shown a cross-sectional view of the fluid detecting test strip 1 shown in Fig. 1A along line AA.
  • the nitrocellulose solution may have a cross-section of the flow channel structure having a structure protruding from the first surface 100 during the drying and solidification process, and the flow channel structure 11 is formed on the first surface 100 of the substrate 10, so the flow path structure
  • the surface 110 has a height difference h from the first surface 100 of the substrate 10, that is, the height of the flow path structure surface 110 is not lower than the height of the first surface 100 of the substrate 10.
  • reaction material is included in the hollow network structure of the flow path structure 11, and the composition of the reaction material is related to the type of the component to be tested contained in the fluid.
  • the manner in which the solution for forming the flow path structure 11 is formed is as follows. Nitrocellulose powder
  • nitrocellulose powder is formed by mixing a mixture of an organic solvent containing an ester and a ketone organic solvent, or dissolving the glass fiber in a specific solvent to form a mixed solution, and then coating the mixed solution according to a predetermined pattern. Covering the first surface 100 of the substrate 10, after drying, the formed flow channel structure 11 has a hollow mesh structure and has a liquid absorbing capability. Therefore, when the fluid to be tested is injected into the fluid detecting test piece 1, the flow path structure 11 transmits the fluid to be tested to the reaction area (not shown) for reaction by the liquid absorbing ability possessed by the hollow network structure. Further, since the flow path structures 11 used in the present embodiment are all of a hollow mesh structure, the amount of absorbed liquid per unit volume is constant.
  • the corresponding solution volume can be deduced from the volume of the fluid to be measured to be absorbed; thus, the volume of the liquid required for detection can be fixed, and is suitable for the detection of the amount of the fluid.
  • a preferred mode in which the reaction material is formed in the hollow mesh structure of the flow path structure 11 is as follows. After the mixed solution is applied onto the substrate 10 and dried to form the flow channel structure 11, the reaction solution containing the reaction material is injected into the flow channel structure 11, and after air drying or freeze drying, the reaction material remains in a powder form. In the runner structure 11. Due to the different components to be tested, the reactions required for the detection are also different; and depending on the type of reaction, various signals are generated.
  • enzymes are used to catalyze fluids.
  • the substance to be tested and the luminescence chemical reagent thereby generating a specific wavelength of light signal for detection; or using a specific enzyme to react with the substance to be tested (for example, using catalase to detect blood sugar), causing a change in current or potential , thereby performing electrochemical detection. Therefore, for biochemical testing, the reaction material will contain enzymes and corresponding chemical reagents.
  • specific antibodies are used to specifically target the protein to be tested.
  • the fluid detecting test piece provided by the present invention can be used for detecting various components to be tested in various biological samples (such as urine, blood, and the like).
  • Fig. 1C there is shown another schematic view of a fluid detecting test strip according to a first preferred embodiment of the present invention.
  • the runner structure 11 may further include at least one branch runner 111 and an enlarged region 112.
  • a stack flow path 113 may be formed on the first surface 100 of the substrate 10, and includes a first flow path structure 1131, a second flow path structure 1132, and a third flow path node structure 1133.
  • Each of the flow path structures in the flow path 113 may be formed by the same flow path pattern, or by different flow path patterns, depending on the type of test to be performed and the type of fluid to be tested.
  • the present invention provides a method of manufacturing a plurality of fluid detecting test pieces in addition to the fluid detecting test piece of the first embodiment described above, as described in the following second and third preferred embodiments.
  • FIG. 2 which is a flow chart of a method for manufacturing a fluid detecting test strip according to a second preferred embodiment of the present invention, and the structural features of the fluid detecting test strip mentioned in the embodiment are as described above.
  • the reference numerals of the respective components are referred to FIG. 1A to FIG. 1C, and the following is not repeated.
  • the manufacturing method of the fluid detecting test piece mainly comprises the following steps: Step 21: First, a substrate 1 having a planar first surface 100 is provided. Step 22: A solution is provided, which is formed on the first surface 100 along the predetermined pattern 12 in a coating manner. Step 23: The coated solution is dried, thereby forming a flow path structure 11 having a predetermined pattern 12. The surface height of the dried flow path structure 11 has a height difference h from the substrate 10.
  • the solution coating method may be lithography, gravure printing, letterpress printing, screen printing, scribing, ink jetting.
  • a third preferred embodiment of the present invention is another manufacturing method of the fluid detecting test piece. Please refer to FIG. 3A and FIG. 3B.
  • FIG. 3A is a flow chart showing a method of manufacturing a fluid detecting test piece according to a third preferred embodiment of the present invention
  • FIG. 3B is a schematic view showing the structure of a fluid detecting test piece in the manufacturing process according to the manufacturing method of the present embodiment.
  • the manufacturing method of the fluid detecting test piece provided in this embodiment mainly includes the following steps: Step 31: First, a substrate 30 is provided, and the substrate 30 has a planar first surface 300.
  • Step 32 A mask 33 is provided, and the mask 33 includes a hollow preset pattern 32.
  • Step 33 The mask 33 is temporarily bonded to the substrate 30.
  • Step 34 A solution is provided to saturate the solution with a hollow preset pattern 32.
  • Step 35 Drying the solution on the predetermined pattern 32.
  • Step 36 The mask 33 is removed, thereby forming a runner structure 31 having a predetermined pattern 32.
  • the height of the surface of the flow-through structure 31 after dry forming is not lower than the height of the first surface 300 of the substrate 30, and the flow path structure 31 has a hollow mesh structure.
  • the hydrophilicity of the runner structure 31 is higher than the hydrophilicity of the first surface 300 of the substrate 30.
  • Step 37 The reaction material is provided to be formed in the hollow network structure of the flow path structure 31.
  • the method of forming the flow path structure 31 of the above embodiment, the material of the solution, and the method of forming the reaction material in the hollow mesh structure are the same as those described in the first preferred embodiment, and will not be described here.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

流体检测试片及其制造方法
技术领域 本发明涉及一种检测试片,特别是一种关于生化检测与免疫检测所使用 的流体检测试片。 背景技术 在以流体检测试片进行生化检测与免疫检测的已知技术中,流体检测试 片在其基板或底材上设计有凹陷的流道或啟流道结构, 并配合表面亲 /疏水性 处理, 使待测流体可在流道中流动而不至溢出流道外, 但因流道周围并非吸 水材质, 且待测流体大多为含有如蛋白质或糖类等粘度高的组合物, 所以当 待测流体流过后, 会在流道周围残留, 使得待测流体无法完全反应, 这样, 不仅造成待测流体的浪费, 更可能造成最终测试结果的误差。 此外,已知技术的流体检测试片在流体传送方面,可设计有啟流道结构, 并利用啟流道结构产生的毛细现象, 使流体经过流道被动传送至反应检测区 域; 另一种方式则是在注入待测流体时即利用加压或真空负压等方式, 给予 流体驱动力, 又或者在流道中设置一个以上的 阀门(micro-actuator or valve) 等设计, 使得流体可主动并顺序通过流道, 到达反应检测区域。 但是无论是 上述任一种方式, 待测流体注入流道后常常产生或卷入大小不一的气泡使得 流道阻塞, 造成实际测量上的误差, 甚至致使测试失败, 而孩 i阀门 (micro-actuator or valve)的增设又增力口了整体设计的难度与试片成本。 最后, 已知技术的检测试片, 在制造上多使用模铸、 注射成型、 压印
(imprint)或光刻电祷模造 ( LIGA、 Lithographie GalVanoformung Abformung, Lithography Electroforming Micro Molding)的方式在基板上制成流道或微流 道结构, 而这种方式需要高精度的模具, 但模具非常容易耗损, 且此种工艺 对于模具耗损所造成误差值的容忍度较低, 因此使得造成试片整体的生产成 本大量增加。 因此, 亟需提供一种流体检测试片, 以解决流体在流道上残留、 以及试 片制造成本过高的问题。 发明内容 为克服上述缺点, 本发明提供了一种流体检测试片, 主要包括基板及流 道结构。 基板具有平面状的第一表面, 且流道结构以预设图案形成在该基板 的第一表面上, 使得流道结构的表面高度不低于基板的第一表面高度。 流道 结构具有中空网状构造, 且流道结构的亲水性高于基板第一表面的亲水性。 此夕卜, 流体检测试片进一步可包括在中空网状构造中形成的反应材料。 因此, 本发明的主要目的在于提供一种流体检测试片, 因流道结构具有 中空结构, 因此可避免液体残留在流道周围。 本发明的另一目的在于提供一种流体检测试片,具有亲水性的中空网状 构造, 由于单位体积的中空网状构造吸收液体量为定值, 因此可经由设定流 道的体积, 而提供待测流体的定量检测。 本发明的又一目的在于提供一种流体检测试片,由于流体流经流道的中 空网状构造时, 流体中的气泡会被破坏, 因此可消弥较大的气泡, 并可避免 微流道技术中气泡阻塞流道的状况发生, 进而影响定量分析结果。 本发明的再一目的在于提供一种流体检测试片,利用形成在基板表面上 的预设流道图案, 因此不需使用模铸、 注射成型、 压印或光刻电铸模造的方 式在基板上制出流道或微流道结构, 可节省大量制造流体检测试片时所需的 成本。 本发明的再一目的在于提供一种流体检测试片的制造方法,制造低成本 且测量更加精准的流体检测试片。 才艮据本发明的流体检测试片 ,其中该流道结构的表面的高度高于该第一 表面的高度。 才艮据本发明的流体检测试片 ,其中该流道结构的横截面进一步具有凸起 于该第一表面的构造。 才艮据本发明的流体检测试片 ,其中该流道结构的材质选自由硝化纤维及 玻璃纤维组成的组。 根据本发明的流体检测试片,其中该流道结构形成于该基板的第一表面 的方式选自由下列组成的组: 平版印刷、 凹版印刷、 凸版印刷、 网板印刷、 划线、 喷墨及浸染。 才艮据本发明的流体检测试片, 其中该流道结构进一步包括多个分支流 道。 才艮据本发明的流体检测试片,其中至少一个分支流道进一步包括一扩大 区域, 该扩大区域的形状选自由圆弧形、 矩形及岛形组成的组。 根据本发明的流体检测试片,其中该流道结构以一溶液经干燥固化后形 成中空网状构造, 该溶液选自由硝化纤维溶液及玻璃纤维溶液组成的组。 才艮据本发明的流体检测试片, 其中该基板为生物相容材料。 才艮据本发明的流体检测试片, 其中该基板为挠性。 才艮据本发明的流体检测试片,其中该反应材料以一反应溶液注入该流道 结构, 再经干燥过程后形成。 才艮据本发明的流体检测试片, 其中该干燥过程为冷冻干燥或风干。 根据本发明的流体检测试片, 其中该反应材料为化学及酵素试剂。 根据本发明的流体检测试片, 其中该反应材料为抗体及化学试剂。 根据本发明的流体检测试片, 进一步包括成对的平面电极, 形成于该第 一表面与该流道结构之间。 才艮据本发明的流体检测试片,进一步包括形成于该流道结构上的堆栈流 道。 才艮据本发明的另一个方面,提供了一种流体检测试片的制造方法,包括: 提供基板, 该基板具有平面状的第一表面; 提供一溶液, 将该溶液以涂覆方 式沿预设图案形成于该第一表面上; 干燥该涂覆后的溶液, 由此形成具有该 预设图案的流道结构, 使得该流道结构的表面的高度不低于该第一表面的高 度, 该流道结构具有一中空网状构造, 且该流道结构的亲水性高于该第一表 面的亲水性; 以及提供形成于该中空网状构造中的反应材料。 根据本发明的又一个方面,提供了一种流体检测试片的制造方法,包括: 提供基板, 该基板具有平面状的第一表面; 提供遮带, 该遮带包括镂空的预 设图案; 将该遮带暂时粘合在该基板上; 提供一溶液, 使该溶液沾满该镂空 的预设图案; 干燥该沾满预设图案上的溶液; 移除该遮带, 由此形成一具有 该预设图案的流道结构, 使得该流道结构的表面的高度不低于该第一表面的 高度, 该流道结构具有一中空网状构造, 且该流道结构的亲水性高于该第一 表面的亲水性; 以及提供形成于该中空网状构造中的反应材料。 根据本发明的流体检测试片的制造方法,其中该流道结构的表面的高度 高于该第一表面的高度。 根据本发明的流体检测试片的制造方法,其中该流道结构的横截面进一 步具有一凸起于第一表面的构造。 根据本发明的流体检测试片的制造方法,其中该涂覆方式选自由下列组 成的组: 平版印刷、 凹版印刷、 凸版印刷、 网板印刷、 划线、 喷墨、 浇注、 浸染。 根据本发明的流体检测试片的制造方法,其中该流道结构进一步包括多 个分支流道。 根据本发明的流体检测试片的制造方法,其中至少一个分支流道进一步 包括一扩大区域, 该扩大区域的形状选自由圆弧形、 矩形及岛形组成的组。 根据本发明的流体检测试片的制造方法,其中该流道结构以一溶液经干 燥固化后形成中空网状构造, 该溶液选自由硝化纤维溶液及玻璃纤维溶液组 成的组。 根据本发明的流体检测试片的制造方法, 其中该基板为生物相容材料。 根据本发明的流体检测试片的制造方法, 其中该基板为挠性。 才艮据本发明的流体检测试片的制造方法,其中该反应材料以一反应溶液 注入该流道结构, 再经干燥过程后形成。 才艮据本发明的流体检测试片的制造方法,其中该干燥过程为冷冻干燥或 风干。 根据本发明的流体检测试片的制造方法,其中该反应材料为化学及酵素 试剂。 根据本发明的流体检测试片的制造方法,其中该反应材料为抗体及化学 试剂。 根据本发明的流体检测试片的制造方法,进一步包括提供成对的平面电 极, 该平面电极形成于该第一表面与该流道结构之间。 根据本发明的流体检测试片的制造方法,进一步包括提供形成于该流道 结构上的堆栈流道。 附图说明 图 1 A是本发明的第一实施例的流体检测试片的示意图。 图 1B是图 1A所示的流体检测试片 1沿 A-A线的剖面图。 图 1C是本发明第一优选实施例的流体检测试片的另一示意图。 图 1D是本发明第一优选实施例的流体检测试片的再一示意图。 图 2是本发明第二优选实施例的流体检测试片制造方法的流程图。 图 3A是本发明第三优选实施例的流体检测试片的制造方法的流程图。 图 3B是本发明第三优选实施例的流体检测试片的示意图。 具体实施方式 本发明披露了一种流体检测试片, 由于其中所利用的物理、化学原理及 溶液涂覆技术已为相关技术领域的普通技术人员所明了, 因此下文中的说明 将不再作完整描述。 同时, 在下文中所参照的附图, 表示与本发明特征有关 的示意图, 并未也不需要依据实际情形完整绘制, 盍先叙明。 参照图 1A, 其为本发明第一实施例的流体检测试片的示意图。 流体检 测试片 1包括基板 10与流道结构 11。 基板 10具有平面状的第一表面 100 , 而流道结构 11以预设图案 12形成在基板 10的第一表面 100上,且流道结构 11的表面高度不低于基板 10的第一表面 100的高度; 此外, 流道结构 11具 有中空网状构造, 其亲水性高于基板 10的第一表面 100的亲水性。 流道结 构 11可由平版印刷、 凹版印刷、 凸版印刷、 网版印刷(screen printing)、 划线 (line marking), 喷墨 (inkjet)、 浇注或浸染 (dipping)等方式, 将高亲水性溶液涂 覆于基板 10的第一表面 100上, 其成分可为硝化纤维或玻璃纤维, 经干燥 固化后具有多孔性的中空网状构造, 可以吸收待测流体, 如此即可避免待测 流体残留在流道周围的问题。 而当流体流经流道结构 11时, 流体中的气泡会 被破坏, 可避免造成气泡阻塞。 另夕卜, 在本发明中更进一步包括成对的平面 电极 13 , 形成于基板 10的第一表面 100与流道结构 11之间, 用以检测待测 流体的电化学反应。在优选的实施状态中,基板 10为生物相容 (biocompatible) 材料且也可为挠性材质。 接着参照图 1B ,其为图 1A所示的流体检测试片 1沿线 A-A的剖面图。 硝化纤维溶液在干燥固化过程中会因内聚力使得流道结构的横截面具有凸起 于第一表面 100的构造,且因流道结构 11形成在基板 10的第一表面 100上, 因此流道结构表面 110与基板 10的第一表面 100具有高度差 h, 亦即流道结 构表面 110的高度不低于基板 10的第一表面 100的高度。再者, 在流道结构 11的中空网状构造中包括反应材料, 反应材料的组成与流体中所含有的待测 成份的种类有关。 用于形成流道结构 11的溶液的形成方式如下所述。 先将硝化纤维粉末
( nitrocellulose powder )与含有西旨类 ( ester )和酉同类 ( ketone ) 有机溶剂 '昆 合后形成混合溶液, 或将玻璃纤维溶于特定溶剂中形成混合溶液, 再将混合 溶液依预设图案涂覆在基板 10的第一表面 100上, 经干燥后, 所形成的流 道结构 11具有中空网状构造, 具有吸液能力。 因此当将待测流体注入流体检 测试片 1后, 流道结构 11即会以其中空网状结构所具有的吸液能力, 将待测 流体传送至反应区域(未示出) 进行反应。 此外, 由于本实施例中所使用的流道结构 11全部为中空网状构造, 因 此其单位体积的吸收液体量为定值。 当应用于定量检测时, 可由要吸收的待 测流体的体积推算出对应的溶液体积;如此可以固定检测所需液体的体积量, 并适用于孩 i量检测。 反应材料形成于流道结构 11 中空网状构造的优选方式如下所述。 待上 述混合溶液涂覆于基板 10上并干燥形成流道结构 11后, 将含有反应材料的 反应溶液注入流道结构 11 , 经过风干或冷冻干燥后, 反应材料则会以粉末状 的形式留存在流道结构 11中。 由于待测成份不同, 检测所需进行的反应也有所差异; 进而依反应种类 的不同, 产生各种不同的信号。 例如进行生化检测时, 用酵素催化流体中的 待测物质与冷光化学试剂, 进而产生特定波长的光信号以供检测; 或是利用 特定酵素与待测物质进行反应 (例如使用过氧化氢酶来检测血糖),使其产生 电流或电位的改变, 由此进行电化学的检测。 所以要进行生化检测, 反应材 料则会包含酵素及相对应的化学试剂。 另一方面, 如果要检测检体中的某些 蛋白质 -例如曱型胎儿蛋白 ( α-fetoprotein ) 或白蛋白 ( Albumin ) -是否存 在, 则利用具有特异性的抗体, 与待测蛋白质进行特异性结合, 再利用其它 化学试剂与已结合了待测蛋白质的抗体进行反应, 发出可供检测的信号。 因 此要进行免疫检测, 反应材料中则会包括化学及抗体等免疫试剂。 因此, 本 发明所提供的流体检测试片, 可用于各种生物检体 (如尿液、 血液等流体) 中的各项待测成份的检测。 参照图 1C ,其为本发明第一优选实施例的流体检测试片的另一示意图。 流道结构 11可进一步包括至少一个分支流道 111及扩大区域 112。 不同流体 (例如, 待测流体或反应所需试剂) 可各自流经分支流道 111 , 并在扩大区 域 112中充分混合。 其中扩大区域 112可为圆弧形、 矩形及岛形等形状, 可 使流道中的待测流体与反应材料有足够的反应时间, 让检测结果更加准确。 另夕卜,如图 1D中所示,基板 10的第一表面 100上可形成堆栈流道 113 , 其中包含第一流道结构 1131、 第二流道结构 1132及第三流道节结构 1133 , 堆栈流道 113中的各流道结构可分别由相同流道图案所形成, 或由不同流道 图案所形成, 依所需进行的测试种类及待测流体种类而定。 本发明除了提供上述第一实施例的流体检测试片之外,也提供多种流体 检测试片的制造方法, 如在下列第二及第三优选实施例中所述。 另夕卜, 参照图 2 , 其为本发明第二优选实施例的流体检测试片的制造方 法流程图, 而本实施例中所提及的流体检测试片的结构特征如上述第一优选 实施例中所述, 且各组件标号参照图 1A至图 1C , 以下不再重复赞述。 流体 检测试片的制造方法主要包括下列步骤: 步骤 21: 首先提供基板 1 , 基板 1具有平面状的第一表面 100。 步骤 22: 提供一溶液, 将该溶液以涂覆方式沿预设图案 12形成在第一 表面 100上。 步骤 23:干燥涂覆后的溶液,由此形成具有预设图案 12的流道结构 11。 干燥后的流道结构 11的表面高度与基板 10间具有高度差 h。 在本步骤中, 溶液涂覆的方式可为平版印刷、 凹版印刷、 凸版印刷、 网版印刷、 划线、 喷 墨。 本发明第三优选实施例为流体检测试片的另一种制造方法, 请参照图 3A和图 3B。 图 3A为本发明第三优选实施例的流体检测试片的制造方法流 程图; 图 3B 则为依本实施例的制造方法, 在制造过程中流体检测试片的结 构示意图。 本实施例所提供的流体检测试片的制造方法主要包括下列步骤: 步骤 31: 首先提供基板 30, 基板 30具有平面状的第一表面 300。 步骤 32: 提供遮带 33 , 遮带 33包括镂空的预设图案 32。 步骤 33: 将遮带 33暂时粘合在基板 30上。 步骤 34: 提供一溶液, 使该溶液沾满镂空的预设图案 32。 步骤 35: 干燥沾满预设图案 32上的溶液。 步骤 36: 移除遮带 33 , 由此形成具有预设图案 32的流道结构 31。 干 燥成形后的流道结构 31的表面的高度不低于基板 30的第一表面 300的高度, 且流道结构 31具有中空网状构造。 而流道结构 31的亲水性高于基板 30的 第一表面 300的亲水性。 步骤 37: 提供反应材料, 使其形成在流道结构 31的中空网状构造中。 上述实施例的流道结构 31的形成方式、 溶液的材质及反应材料形成于 中空网状构造的方法均与第一优选实施例中所述的相同,在此不再加以说明。 以上所述仅为本发明的优选实施例, 并非用以限制本发明的保护范围; 同时, 对于本领域的普通技术人员来说应可明了及实施以上的描述, 因此其 它未脱离本发明所披露的 4青申下所完成的等同改变或变更, 均应包括在下述 的权利要求书中。 主要组件符号说明
流体检测试片 1 基板 10、 20、 30 第一表面 100、 300 ¾ u道结构 11、 31 流道结构表面 110 预设图案 12、 32 平面电极 13 分支流道 111 扩大区域 112 堆栈流道 113 第一流道结构 1131 第二流道结构 1132 第三流道结构 1133 遮带 33
流道结构的表面与第一表面的 度差 h

Claims

权 利 要 求 书
1. 一种流体检测试片, 包括基板与流道结构, 其特征在于:
所述基板具有平面状的第一表面;
所述流道结构以一预设图案形成在所述基板的所述第一表面上, 使得所述流道结构的表面的高度不低于所述第一表面的高度, 所述流 道结构具有一中空网状构造, 且所述流道结构的亲水性高于所述第一 表面的亲水 '1·生; 以及
所述流体检测试片进一步包括形成在所述中空网状构造中的反 应材料。
2. 根据权利要求 1所述的流体检测试片, 其中, 所述流道结构的表面的 高度高于所述第一表面的高度。
3. 根据权利要求 2所述的流体检测试片, 其中, 所述流道结构的横截面 进一步具有凸起于所述第一表面的构造。
4. 根据权利要求 1所述的流体检测试片, 其中, 所述流道结构的材质选 自由硝化纤维及玻璃纤维组成的组。
5. 根据权利要求 1所述的流体检测试片, 其中, 所述流道结构形成于所 述基板的第一表面的方式选自由下列组成的组: 平版印刷、 凹版印刷、 凸版印刷、 网板印刷、 划线、 喷墨及浸染。
6. 根据权利要求 1所述的流体检测试片, 其中, 所述流道结构进一步包 括多个分支流道。
7. 才艮据权利要求 6所述的流体检测试片, 其中, 至少一个分支流道进一 步包括一扩大区域, 所述扩大区域的形状选自由圆弧形、 矩形及岛形 组成的组。
8. 根据权利要求 1所述的流体检测试片, 其中, 所述流道结构以一溶液 经干燥固化后形成中空网状构造, 所述溶液选自由 肖化纤维溶液及玻 璃纤维溶液组成的组。
9. 根据权利要求 1所述的流体检测试片, 其中, 所述基板为生物相容材 料。
10. 根据权利要求 1所述的流体检测试片, 其中, 所述基板为挠性。
11. 根据权利要求 1所述的流体检测试片, 其中, 所述反应材料以一反应 溶液注入所述流道结构, 再经干燥过程后形成。
12. 根据权利要求 11所述的流体检测试片, 其中, 所述干燥过程为冷冻干 燥或风干。
13. 根据权利要求 1所述的流体检测试片, 其中, 所述反应材料为化学及 酵素试剂。
14. 根据权利要求 1所述的流体检测试片, 其中, 所述反应材料为抗体及 化学试剂。
15. 根据权利要求 1所述的流体检测试片, 进一步包括成对的平面电极, 形成于所述第一表面与所述流道结构之间。
16. 根据权利要求 1所述的流体检测试片, 进一步包括形成于所述流道结 构上的堆栈流道。
17. 一种流体检测试片的制造方法, 包括:
提供基板, 所述基板具有平面状的第一表面;
提供一溶液, 将所述溶液以涂覆方式沿预设图案形成于所述第一 表面上;
干燥所述涂覆后的溶液, 由此形成具有所述预设图案的流道结 构, 使得所述流道结构的表面的高度不低于所述第一表面的高度, 所 述流道结构具有一中空网状构造, 且所述流道结构的亲水性高于所述 第一表面的亲水性; 以及
提供形成于所述中空网状构造中的反应材料。
18. 根据权利要求 17所述的流体检测试片的制造方法, 其中, 所述流道结 构的表面的高度高于所述第一表面的高度。
19. 根据权利要求 17所述的流体检测试片的制造方法, 其中, 所述流道结 构的横截面进一步具有一凸起于第一表面的构造。
20. 根据权利要求 17所述的流体检测试片的制造方法,其中所述涂覆方式 选自由下列组成的组: 平版印刷、 凹版印刷、 凸版印刷、 网板印刷、 划线、 喷墨、 浇注、 浸染。
21. 根据权利要求 17所述的流体检测试片的制造方法, 其中, 所述流道结 构进一步包括多个分支流道。
22. 根据权利要求 21所述的流体检测试片的制造方法, 其中, 至少一个分 支流道进一步包括一扩大区域, 所述扩大区域的形状选自由圆弧形、 矩形及岛形组成的组。
23. 根据权利要求 17所述的流体检测试片的制造方法, 其中, 所述流道结 构以一溶液经干燥固化后形成中空网状构造, 所述溶液选自由 肖化纤 维溶液及玻璃纤维溶液组成的组。
24. 根据权利要求 17所述的流体检测试片的制造方法, 其中, 所述基板为 生物相容材料。
25. 根据权利要求 17所述的流体检测试片的制造方法, 其中, 所述基板为 挠性。
26. 根据权利要求 17所述的流体检测试片的制造方法, 其中, 所述反应材 料以一反应溶液注入所述流道结构, 再经干燥过程后形成。
27. 根据权利要求 26所述的流体检测试片的制造方法, 其中, 所述干燥过 程为冷冻干燥或风干。
28. 根据权利要求 17所述的流体检测试片的制造方法, 其中, 所述反应材 料为化学及酵素试剂。
29. 根据权利要求 17所述的流体检测试片的制造方法, 其中, 所述反应材 料为抗体及化学试剂。
30. 根据权利要求 17所述的流体检测试片的制造方法,进一步包括提供成 对的平面电极, 所述平面电极形成于所述第一表面与所述流道结构之 间。
31. 根据权利要求 17所述的流体检测试片的制造方法,进一步包括提供形 成于所述流道结构上的堆栈流道。
32. 一种流体检测试片的制造方法, 包括:
提供基板, 所述基板具有平面状的第一表面;
提供遮带, 所述遮带包括镂空的预设图案;
将所述遮带暂时粘合在所述基板上;
提供一溶液, 使所述溶液沾满所述镂空的预设图案; 干燥所述沾满预设图案上的溶液;
移除所述遮带, 由此形成一具有所述预设图案的流道结构, 使得 所述流道结构的表面的高度不低于所述第一表面的高度, 所述流道结 构具有一中空网状构造, 且所述流道结构的亲水性高于所述第一表面 的亲水 '1·生; 以及
提供形成于所述中空网状构造中的反应材料。
33. 根据权利要求 32所述的流体检测试片的制造方法, 其中, 所述流道结 构的表面的高度高于所述第一表面的高度。
34. 根据权利要求 32所述的流体检测试片的制造方法, 其中, 所述流道结 构的横截面进一步具有一凸起于第一表面的构造。
35. 根据权利要求 32所述的流体检测试片的制造方法, 其中, 所述流道结 构进一步包括多个分支流道。
36. 根据权利要求 35所述的流体检测试片的制造方法, 其中, 至少一个分 支流道进一步包括一扩大区域, 所述扩大区域的形状选自由圆弧形、 矩形及岛形组成的组。
37. 根据权利要求 32所述的流体检测试片的制造方法, 其中, 所述流道结 构系以一溶液经干燥固化后形成中空网状构造, 所述溶液选自由硝化 纤维溶液及玻璃纤维溶液组成的组。
38. 根据权利要求 32所述的流体检测试片的制造方法, 其中, 所述基板为 生物相容材料。
39. 根据权利要求 32所述的流体检测试片的制造方法, 其中, 所述基板为 挠性。
40. 根据权利要求 32所述的流体检测试片的制造方法, 其中, 所述反应材 料以一反应溶液注入所述流道结构, 再经干燥过程后形成。
41. 根据权利要求 40所述的流体检测试片的制造方法, 其中, 所述干燥过 程为冷冻干燥或风干。
42. 根据权利要求 32所述的流体检测试片的制造方法, 其中, 所述反应材 料为化学及酵素试剂。
43. 根据权利要求 32所述的流体检测试片的制造方法, 其中, 所述反应材 料为抗体及化学试剂。
44. 根据权利要求 32所述的流体检测试片的制造方法,进一步包括提供成 对的平面电极, 所述平面电极形成于所述基板的第一表面与所述流道 结构之间。
45. 根据权利要求 32所述的流体检测试片的制造方法,进一步包括提供形 成于所述流道结构上的堆栈流道。
PCT/CN2009/070941 2009-03-23 2009-03-23 流体检测试片及其制造方法 WO2010108310A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020117022002A KR101329846B1 (ko) 2009-03-23 2009-03-23 분석 스트립 및 그의 제조 방법
NZ595103A NZ595103A (en) 2009-03-23 2009-03-23 Analytical strip and the manufacturing method thereof
EP09842047A EP2413141A4 (en) 2009-03-23 2009-03-23 FLUID TEST CHIP AND METHOD FOR PREPARING THE SAME
JP2012501106A JP2012521543A (ja) 2009-03-23 2009-03-23 分析用ストリップ及びその製造方法
CN2009801582327A CN102395884A (zh) 2009-03-23 2009-03-23 流体检测试片及其制造方法
AU2009342863A AU2009342863B2 (en) 2009-03-23 2009-03-23 Analytical Strip and the Manufacturing Method Thereof
PCT/CN2009/070941 WO2010108310A1 (zh) 2009-03-23 2009-03-23 流体检测试片及其制造方法
CA2755347A CA2755347A1 (en) 2009-03-23 2009-03-23 Analytical strip and the manufacturing method thereof
RU2011141298/15A RU2011141298A (ru) 2009-03-23 2009-03-23 Аналитическая полоска и способ ее изготовления
BRPI0925015A BRPI0925015A2 (pt) 2009-03-23 2009-03-23 chip de teste de fluido e método para produzir o mesmo
US12/762,165 US8367015B2 (en) 2009-03-23 2010-04-16 Analytical strip and the manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/070941 WO2010108310A1 (zh) 2009-03-23 2009-03-23 流体检测试片及其制造方法

Publications (1)

Publication Number Publication Date
WO2010108310A1 true WO2010108310A1 (zh) 2010-09-30

Family

ID=42738001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070941 WO2010108310A1 (zh) 2009-03-23 2009-03-23 流体检测试片及其制造方法

Country Status (10)

Country Link
US (1) US8367015B2 (zh)
EP (1) EP2413141A4 (zh)
JP (1) JP2012521543A (zh)
KR (1) KR101329846B1 (zh)
CN (1) CN102395884A (zh)
AU (1) AU2009342863B2 (zh)
BR (1) BRPI0925015A2 (zh)
CA (1) CA2755347A1 (zh)
RU (1) RU2011141298A (zh)
WO (1) WO2010108310A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5610389B2 (ja) * 2010-11-05 2014-10-22 国立大学法人北陸先端科学技術大学院大学 イムノクロマト分析用ストリップ、及びイムノクロマト分析方法
KR102074974B1 (ko) * 2018-01-23 2020-02-07 윤형열 패턴 형성 장치 및 방법
CN109738428B (zh) * 2019-02-28 2021-08-10 杭州艾克瑞尔检测科技有限公司 一种空气中甲醛含量的显色滴定检测装置及其检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837584A (en) * 1997-01-15 1998-11-17 Macronix International Co., Ltd. Virtual ground flash cell with asymmetrically placed source and drain and method of fabrication
CN101021631A (zh) * 2006-02-15 2007-08-22 虹创科技股份有限公司 基板结构及薄膜图案层的制造方法
CN101203311A (zh) * 2005-06-20 2008-06-18 阿米克公司 产生流体传送的方法和设备
US20080194804A1 (en) * 2007-02-14 2008-08-14 Chung-Cheng Chang Method of nucleic acid hybridization
CN101262949A (zh) * 2005-09-14 2008-09-10 朗迅科技公司 化学和生物检测阵列

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2584498B1 (fr) * 1985-07-02 1987-10-16 Centre Nat Rech Scient Dispositif pour detecter sur une feuille de nitrocellulose la presence de complexes macromoleculaires, tels que antigenes/anticorps et procede de mise en oeuvre.
WO1990008322A1 (en) 1989-01-11 1990-07-26 Nathan, Pamela, Anne An immunological method of testing concentration
US5540888A (en) * 1991-11-11 1996-07-30 British Technology Group Limited Liquid transfer assay devices
US5290518A (en) * 1992-08-17 1994-03-01 Eastman Kodak Company Flexible extraction device with burstable sidewall
US5547833A (en) 1994-01-04 1996-08-20 Intracel Corporation Radial flow assay, delivering member, test kit, and methods
GB9416002D0 (en) * 1994-08-08 1994-09-28 Univ Cranfield Fluid transport device
US5569608A (en) 1995-01-30 1996-10-29 Bayer Corporation Quantitative detection of analytes on immunochromatographic strips
GB9705667D0 (en) * 1997-03-19 1997-05-07 Jackson James R Diagnostic and analytical devices
KR100241928B1 (ko) * 1997-03-31 2000-03-02 박종근 다공성 박막 위에 전극이 일체로 형성된 정량장치 및 이를 이용한 정량방법
US6756019B1 (en) * 1998-02-24 2004-06-29 Caliper Technologies Corp. Microfluidic devices and systems incorporating cover layers
ATE237807T1 (de) * 1998-08-06 2003-05-15 Spectral Diagnostics Inc Analytisches testgerät und verfahren
AUPP713498A0 (en) 1998-11-17 1998-12-10 Chandler, Howard Milne A method of detecting blood
EP1141713A1 (de) 1999-01-09 2001-10-10 Bernd Dr. Pevec Verfahren und vorrichtung zur bestimmung eines analyten
CN1304041A (zh) * 1999-10-25 2001-07-18 上海市工业微生物研究所 血糖测试条及其制备方法
US6670115B1 (en) * 1999-11-24 2003-12-30 Biotronic Technologies, Inc. Devices and methods for detecting analytes using electrosensor having capture reagent
JP2001201479A (ja) 2000-01-21 2001-07-27 Matsushita Electric Ind Co Ltd バイオセンサ
US6436722B1 (en) 2000-04-18 2002-08-20 Idexx Laboratories, Inc. Device and method for integrated diagnostics with multiple independent flow paths
JP4761688B2 (ja) 2000-05-16 2011-08-31 アークレイ株式会社 バイオセンサおよびその製造方法
US6627159B1 (en) * 2000-06-28 2003-09-30 3M Innovative Properties Company Centrifugal filling of sample processing devices
US6984494B2 (en) 2000-08-15 2006-01-10 Genentech, Inc. Analytical method
US6884592B2 (en) 2001-09-05 2005-04-26 Lifescan, Inc. Devices for analyte concentration determination and methods of manufacturing and using the same
GB0128350D0 (en) * 2001-11-27 2002-01-16 Lab901 Ltd Non-rigid apparatus for microfluidic applications
FI118904B (fi) 2003-03-28 2008-04-30 Ani Biotech Oy Monikanavainen testiväline, menetelmä sen valmistamiseksi ja sen käyttö
WO2005075979A1 (ja) * 2004-02-04 2005-08-18 Matsushita Electric Industrial Co., Ltd. バイオセンサおよびバイオセンサ測定装置、並びに測定方法
CA2561343C (en) 2004-03-30 2013-01-22 Whatman, Inc. Lateral flow assay on a single hydrophilic monolithic matrix made of a network of fibres
DE102004039628A1 (de) * 2004-08-10 2006-02-23 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Trägerplatte zur Durchführung funktioneller Tests an biologischen Zellen sowie Verfahren zur Beschichtung der Trägerplatte
KR100579831B1 (ko) * 2004-09-07 2006-05-15 삼성전자주식회사 조립 가능한 미세유동형 바이오시료 처리장치
AP2007004015A0 (en) 2004-11-01 2007-06-30 Uma Mahesh Babu Disposable immunodiagnostic test system
KR100635110B1 (ko) * 2004-12-09 2006-10-17 주식회사 바이오디지트 현장분석용 랩온어칩 및 랩온어칩용 신호탐지기
CN100504373C (zh) 2005-04-20 2009-06-24 华广生技股份有限公司 电化学式感测试片与其制作方法
CN1851459A (zh) 2005-04-22 2006-10-25 清华大学 多参数全血集成试条
US7723120B2 (en) * 2005-10-26 2010-05-25 General Electric Company Optical sensor array system and method for parallel processing of chemical and biochemical information
JP2007139649A (ja) 2005-11-21 2007-06-07 Asahi Kasei Corp 分析装置の多孔体
CN101341407A (zh) 2006-01-10 2009-01-07 因韦尔尼斯医药瑞士股份有限公司 免疫检测的装置和方法
CN100388906C (zh) 2006-03-22 2008-05-21 山东师范大学 人体重心动态位置测量仪及其测量方法
TWI310786B (en) 2006-04-10 2009-06-11 Univ Nat Sun Yat Sen Method for sorting microfluidic particles and microfluidic chips therefor
EP2016410A1 (de) 2006-05-08 2009-01-21 8sens.biognostic Gmbh Verfahren zum gekoppelten enzym-immunchemischen nachweis von analyten mittels endogener kalibratoren
DE102007003830B4 (de) * 2007-01-25 2009-08-06 Robert Seuffer Gmbh & Co. Kg Vorrichtung zur Messung eines durch einen elektrischen Leiter fließenden elektrischen Stroms
JP4850855B2 (ja) * 2007-03-22 2012-01-11 信越化学工業株式会社 マイクロアレイ作製用基板の製造方法
CN101303358A (zh) 2007-05-10 2008-11-12 胡军 虹吸式血糖测试试纸
CN102099682B (zh) * 2008-08-29 2013-12-18 红电医学科技股份有限公司 流体检测试片
TWM354070U (en) 2008-09-19 2009-04-01 Actherm Inc Substrate
TWM350706U (en) 2008-09-23 2009-02-11 Actherm Inc Testing strip
TWM359693U (en) 2008-10-09 2009-06-21 Actherm Inc Combinatory testing strip
TW201035551A (en) * 2009-03-27 2010-10-01 Actherm Inc Analytical strip and the manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837584A (en) * 1997-01-15 1998-11-17 Macronix International Co., Ltd. Virtual ground flash cell with asymmetrically placed source and drain and method of fabrication
CN101203311A (zh) * 2005-06-20 2008-06-18 阿米克公司 产生流体传送的方法和设备
CN101262949A (zh) * 2005-09-14 2008-09-10 朗迅科技公司 化学和生物检测阵列
CN101021631A (zh) * 2006-02-15 2007-08-22 虹创科技股份有限公司 基板结构及薄膜图案层的制造方法
US20080194804A1 (en) * 2007-02-14 2008-08-14 Chung-Cheng Chang Method of nucleic acid hybridization

Also Published As

Publication number Publication date
EP2413141A1 (en) 2012-02-01
KR101329846B1 (ko) 2013-11-14
AU2009342863A1 (en) 2011-09-29
US20100240120A1 (en) 2010-09-23
CA2755347A1 (en) 2010-09-30
KR20110129411A (ko) 2011-12-01
RU2011141298A (ru) 2013-04-27
BRPI0925015A2 (pt) 2018-02-27
EP2413141A4 (en) 2013-03-06
CN102395884A (zh) 2012-03-28
US8367015B2 (en) 2013-02-05
JP2012521543A (ja) 2012-09-13
AU2009342863B2 (en) 2013-09-05

Similar Documents

Publication Publication Date Title
KR101275447B1 (ko) 미세유체 분석 장치
US7625760B2 (en) Analyzing cartridge and liquid feed control device
US8361782B2 (en) Piezo dispensing of a diagnostic liquid into microfluidic devices
CN106111219A (zh) 基于多版图案化丝网联合印刷技术的三维纸芯片制备方法
WO2010108310A1 (zh) 流体检测试片及其制造方法
KR101252940B1 (ko) 조합적 시험용 스트립
TW201035551A (en) Analytical strip and the manufacturing method thereof
JP5162031B2 (ja) 液体の検査方法
TWM362993U (en) Analytical strip
EP2336773B1 (en) A fluid test chip base plate
JP5872971B2 (ja) フローセルおよびその製造方法
Kalish Nonplanar Three Dimensional Paper Microfluidics And Distance-Based Semi-Quantitative DNA Detection
CN109012770A (zh) 多层纸芯片结构、制造设备和方法以及流体层间流动方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158232.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842047

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009342863

Country of ref document: AU

Ref document number: 595103

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2755347

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009842047

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117022002

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012501106

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009342863

Country of ref document: AU

Date of ref document: 20090323

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011141298

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0925015

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0925015

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110919